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A SECOND-ORDER NECESSARY CONDITION FOR OPTIMALITY
IN THE GENERAL NONLINEAR CASE

UDC 519.3

A. A. AGRACEV

ABSTRACT. In this paper a second-order optimality condition is obtained for the general
nonlinear problem with arbitrary boundary conditions and an integral-type minimized
functional. Moreover, a second-order sufficient condition for controllability is derived.

Bibliography: 3 titles.

This paper is a direct continuation of [1]. Here, the necessary condition for optimality
contained in [1] is extended to the general nonlinear problem with arbitrary boundary
conditions and minimized functional of integral type. Moreover, a second-order
sufficient condition for controllability is derived as a corollary.

The work consists of four sections. The problem is formulated and necessary notions
introduced in §1. In §2 the basic result of the work, i.e. a second-order necessary
condition for optimality (Theorem 1), is formulated, and simple consequences are noted.
A sufficient condition for controllability, Proposition 2, is formulated in §3. Finally, the
outline of the proof of Theorem 1 is presented in §4. The proof of this theorem, except
for the changes related to boundary conditions and the functional being more general
than that of [1], consists in essence of reducing the problem with the aid of sliding
regimes to the case of linear control that was considered in [1].

§§1-3 can be read independently of [1]. On the contrary, §4 depends on [1] in an
essential way.

I would like to express my deep gratitude to R. V. Gamkrelidze, under whose guidance
this work was done.

§1. Basic definitions

Let there be given a (1 4- m)-dimensional, twice continuously differentiable function
of two «-dimensional arguments xQ, xl E. R",

\<7<n (*0. xl)J

and the η-dimensional controlled equation

x=f(x,u), x£Rn,
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494 Α. Α. AGRACEV

We assume that the function f(x, u) is infinitely differentiable, and that the set U is
bounded and has the form

where W is arbitrary and V is an open subset of R*, 0 < s < r.
This decomposition of the control parameter u is convenient insofar as we can derive

additional information, corresponding to the "classical" case, when a part of the coordinates
of the vector u changes freely.

The problem consists of minimizing the function q^x(0), x(tl)) over the set of pairs
(/„*(/)), where tx e R1 and x(i) is a solution of (1.1) (corresponding to a certain
admissible control), where the following "boundary conditions" are satisfied:

<7(*(0),*(/1)) = 0. (1.2)

We fix a (not necessarily optimal) solution of (1.1) that satisfies (1.2),

x(t), Z(t) = ( v { t ) ) , 0</<a, (1.3)

\w(i)J
Throughout the presentation, we shall use the following notation:

The matrices Qo and Qx have the dimension (1 + m) x n; adjoining the matrix Qx to
the matrix - Qo, we obtain the (1 + m) X 2« matrix ( - QQ, <2i), with the aid of which
the transversality condition is formulated (see (1.7)).

The dimension of the matrix fv(t, x) is η Χ s, and we shall consider this matrix as an
«-dimensional linear form of the j-dimensional argument δυ. Correspondingly,/„„(/, x) is
an «-dimensional bilinear form of the j-dimensional arguments 5c, and Sv2, and we shall
write

fo(t,x)6v, fw(t,x)l^>v1,6v%].

We denote by Σ the interior of the set of infinite differentiability points of the control

The convex hull of the set/(x, U) in R" will be denoted by conv/(x, U) (U is the
closure of the set U in R"). The faces of the set conv/(jc, U) are the equivalence classes
into which this set is subdivided if two points are said to be equivalent whenever they he
in an open interval contained in conv/(jc, U).

Let there be given a point y = ('^) with t e Σ. We denote by Φ̂- the set of infinitely
differentiable functions φ: R"+ 1-»R" such that, for all y = ('J of a neighborhood
Oy c Rn + 1 of the point y (the neighborhood depending on the function), the vector
y{y) = <p(t> x) l i e s ώ the set conv/(x, U), and on the same face of this set as the vector
/(/, x). Finally, we denote by U- the linear hull of the set (φ(^) - f(y): φ e Φ;}. Then
Π; is a subspace of R".

Any family of functions φ ^ ) , . . . , <pk(y) belonging to Φ^ and such that the vectors
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— f(y), i = I,.. ., k, constitute a basis of the space IL; will be called aparametri-
zation at the point y (defined by the control w(0)·

A parametrization at the point y will also be a parametrization at all points close to y
if dim IL, = dim IL; for any point y sufficiently close to y. These points will be called
regular points (for u(t)).

The set of regular points is open and dense everywhere in Σ Χ R", because, if
_y Ε Σ Χ R", then, as it follows easily from the definition of the space IL,, we have
dim IL, > dim IL; for all y sufficiently close to y. Therefore the function dim IL,,
y e Σ X R", assuming a finite number of values, is lower semicontinuous, which implies
the assertion.

We introduce sliding regimes. Let

Α = |λ = (λο,λΙ λΒ): λ ,>0, f = 0, 1 η, g λ, = ΐ}

be an «-dimensional simplex, and let

M=*AXUn+\ F(x, μ ) = 2 λ ί ( Χ , «<), where μ = (λ, «„, uu . . . , un)£M.

Clearly, F(x, Μ) = con\f(x, U). In the sequel, we shall make use of the controlled
equation

x=F(x, μ), \ι£Μ. (1.4)

Let us indicate a simple method of constructing a parametrization at a given point
with the aid of the function F(x, μ). Let A be a convex set containing the origin. The
linear hull of the face of A containing the origin coincides with the linear hull of the set
A n {—A). We shall utilize this fact in order to find the parametrization at the point

y = (';)•

Consider the following equation in unknown functions μ(/, χ) and μ'(ί, χ):

F(xtV.) + F(x,p')—2f(t,x) = 0, μ ( / , * ) , μ'(ί,χ)£Μ V/, χ. (1.5)

Let (μι, μ',), . . . , (μΛ, μ£) be the maximal family of solutions of (1.5) defined in a
neighborhood of the point φ that satisfies the following conditions:

a) The functions F{x, μί(ί, χ)), i = 1, . . . , k, are infinitely differentiable.
b) The vectors F(x, μ,(ί, χ)) - f(t, χ), i = 1, . . . , k, are linearly independent.
Then the functions F(x, μ,(ί, χ)), i = 1, . . . , k, give a parametrization at the point (y.

Assume now that the solution (1.3) is an extremal, i.e. that it satisfies the maximum
principle: there exists a solution ψ(ί), 0 < / < a, of the equation ψ = - ψίχ(ί) such that,
for almost all /, the maximum condition

Ψ (0/(0 = sup ψ (*)/(*(/), u) = 0 (I·6)

holds, and the transversality condition

(ψ(0),ψ(α)) = ξ ( - ρ ο , ρ 1 ) , (1.7)

where ξ is a nonzero (1 + w)-dimensional row, is satisfied.
In order to guarantee that the maximum principle is nontrivial, we assume that the

rank of the matrix ( - Qo, 2,) is 1 + m. In this case, the η-dimensional row \p(t) φ 0.
We denote the set of all ψ(ί) of this form by Ψ,
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) s u p ψ(*)/(*(/), κ) = 0, Ο·»)

For any function ψ(ί) e Ψ, we form the J X s symmetric matrix

which we shall consider as a linear mapping of the s-dimensional space R* into itself. We
denote the intersection of the kernels of all such mappings by P,,

It follows from the maximum condition (1.6) that the quadratic forms
\p(t)fm(t)[Sv, δν], ψ(0 e Ψ, axe nonpositive. Therefore the subspace P, c R1 can be also
defined by the condition

We denote by Σ 0 the set of those t ε Σ in a neighborhood of which dim P, does not
change. The same considerations that proved that the set of regular points is open and
everywhere dense in Σ X R" imply that the set Σ 0 is open and everywhere dense in Σ.

Finally, letp(t) be the orthogonal projection of R* onto P,. Obviously, p{t) on the set
Σ 0 is an infinitely differentiable function of t.

We are now able to give the basic definition of this section.
Let σ ε Σ°, and let φ,(ί, *), . . . , <pk (t, χ) be an arbitrary parametrization of the

extremal (1.3) at the point (;"o)) = y{o). We introduce the η X (ko + s) matrix

Δ 7 (/, *) = to (f, χ), . . . . φ*σ (t, χ), fv (t, χ)ρ {()).

The first ka columns of this matrix consist of the vectors ψχ,..., φ^, and the remaining
s columns are the columns of the η Χ s matrix fo • p.

We now form the following function that depends linearly onj-e R*°+i:

The controlled equation

;v) = f{t,x) + A"f(t,x)v, v€R*e*\ ( L 9 >

in which the parameter ν enters hnearly, will be called the linearization of the controlled
equation (1.1) at the point y(a) corresponding to the chosen parametrization and the
trajectory (1.3) under consideration.

§2. Formulation of a necessary condition for optimaiiry

In order to formulate Theorem 1, we must introduce the Legendre operators S,, i > 0.
The definition of these will be preceded by a brief listing of the notation that we use
pertaining to vector fields.

Let an infinitely differentiable function g: R* -»R* be considered as a vector field, i.e.
as an operator which acts in the set of arbitrary dimensional, infinitely differentiable
functions ψ{ζ), ζ e RA, according to the formula

The successive application of the fields g2 and g, yields an operator on the set of all
φ(ζ), which is denoted by gx ° g2 (there will be no misunderstanding because of the dual
use of the symbol ° ). In general, this operator is not a vector field. However, the Lie
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brackets of the fields gx and g2 defined by the expression

are always a field, i.e. a function, where

We denote by ad gx the operator acting in the set of vector fields by the formula

(adft)ft = [ft,ft],

and the z'th power of the operator ad g, will be denoted by ad' gx, e.g.

If A is an operator, then e^ denotes the formal series of operators of the variable ε,

""Ι "τ-
For arbitrary fields gl and g2 and an infinitely differentiable scalar-valued function

φ(ζ), we have

(adft) (<PftO = to ο Φ) ft+ Φ (ad ft) ft. (2·1)

Hence by induction we obtain

We now set ζ = y = Q) and k = 1 + n. Let g(i, χ, ν), ν G. Rd, be an n-dimensional
function of the form

)v, (23)

where go(t, x) is an n-dimensional function infinitely differentiable with respect to (f, x),
and G (t, x) is an infinitely differentiable η Χ d matrix.

We introduce the (n + l)-dimensional field go(y) = go(t, x), and the family of (n +
l)-dimensional fields G(y)v = G(t, x)v that depends on ν according to the formulas

) . λ. G(y)v = G(t,x)v=( ) v.

We define the result of the action of the operator £„ ι = 0, 1, 2, . . . , on an arbitrary
function g(t, x, v) of the form (2.3) as the n-dimensional bilinear form S,g(i, x)[vx, v2] of
J-dimensional variables νλ and v2 which is infinitely differentiable with respect to / and
x, and is evaluated by the formula

ο u \* ]=W8o)Gvlt Gv.lfM. (2.4)
Qig(t,x)lvltvt]) \xj

This is a correct definition, since it follows easily from the definitions of the fields g0

and Gp that the vector field in the right-hand side of (2.4) has first coordinate zero.
The operators S, have "local character"; namely, the coefficients of S(-(i", Χ)[»Ί, ν2] at a

point t, χ are expressed by partial derivatives of go(i, x) and G(t, x) at (t, x). It is
convenient to give S, in the form of the "generating series"

for more detail see [lj.
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If ξ is an η-dimensional row, then the products ££,g(i, x)[vx, v^\, i = 0, 1, 2, . . . , are
scalar-valued bilinear forms in vx and v2.

THEOREM 1. Assume that qo(x(O), x(a)) is the minimum of the functional qQ(x(0), JC(/,))

on solutions of (1.1) under the conditions (1.2). Then there exists a function \j/(t) Ε Ψ (see
(1.8)) such that, for an arbitrary point σ e Σ 0 and an arbitrary linearization (1.9) of (1.1),
the following assertions hold at the point (£„$ (we assume that dim Πσ = ka):

\)Ifl> Ms an odd integer, if ν is a fixed vector of R*°+s, and if the following equalities
hold in a neighborhood Oa of the point σ for all odd i < / - 2:

ψ (0 Q^f (t, χ (t)) [v, v] = 0 V ψ 6 Ψ, V / 6 Oa,

then

(— 1) 2 ψ (σ) β,π7 (σ, χ (σ)) [ν, ν] < 0.

2) If Ι > 0 is an even integer, if Ν is a subspace of R*»+i such that, in a neighborhood Oa

of σ and for all i < I - 1, the bilinear forms

ψ (ή 2tn°f (t, χ (ή) [ν,, v2] V ψ 6 Ψ, W 6 Οσ,

in vx, c 2 £JV vanish identically, then so does the bilinear form

REMARK. If the control parameter in the linearized equation (1.9) is considered only on
the subspace of those vectors ν of R*°+' whose first ka coordinates are zero, and if the
corresponding ί-dimensional vectors are denoted by v, then from the definition of the
Legendre operators (2.4) we obtain

where

It will be seen from the proof of the theorem that the corresponding necessary
condition is a necessary condition for a "weak" minimum (local in the control, the
"classical" case), whereas the theorem in the stated form yields only a necessary
condition for a "strong" minimum, where one can compare with u(t) arbitrary controls
u(t) that are close to u(t) in a metric weaker than the uniform metric.

If the controlled equation (1.1) is linear in u, and if U is a convex polyhedron, then we
obtain from Theorem 1 for the time-optimal problem with fixed endpoints, as a simple
corollary, a result whose form is somewhat more general than that of [1]. However, as is
easy to see, the results of [1] contain this consequence.

To conclude this section, we shall discuss the problem of the effect of nonuniqueness
of the linearized equation on the content of Theorem 1.

The assertions of the theorem for various linearizations (at the same point) are,
generally speaking, not equivalent; and there is no linearization for which the assertion
of the theorem would be the strongest. Nevertheless, if y(a) = (^σ)) is a regular point
(σ ε Σ°), then the assertions of the theorem turn out to be equivalent for all possible
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linearizations at a given point y(a) in an important particular case. Namely, the
following proposition holds.

PROPOSITION 1. Let σ e Σ, let y(a) be a regular point, and let

Λ f (t, x, v) = f (t, χ) + Δ7 (t, x) v, naf (t, x,v) = f (f, x) + \"f (t, χ) ν

be two different linearizations at the point y(a). There exists a constant (not dependent on t
or x) nonsingular (ka + s) X (ko + s) matrix Bo such that, for any ψ ε Φ and I > 0, the
equalities

ψ(σ)£/π«/'(σ, *(σ))[νυ v2] = 0 Vvlt v 2 GR V s , V t < / - 1 , (2.5)

imply

Ψ (σ) ZfiFf' (σ, χ (σ)) [vlf v2] = ψ (σ) Q^f (σ, "χ (σ)) [Bovu Bov2] {2£)

PROOF. Let ψ e Ψ, and let / > 0 be such that the equalities (2.5) hold. We introduce
the (1 + η) Χ (ka + s) matrices

(y) ( , ) ( )

Wf(t,x)l Wf'(t,x)J
and the (1 + «)th row ψ(ί) = (0, ψ(ί))· As before,

is a (1 + «)-dimensional vector. With this notation, we obtain from (2.4) the equality

ψ (σ) £,*«/ (σ, * (σ)) [ν,, ν,] = ψ (σ) [(ad'/) Gvlf Gv2] (y (σ))

and a similar equality for ψ(σ)β,ττσ/'(σ, χ(σ))[νν ν2].
Since j7 (σ) is a regular point, the linear hull of the columns of the matrix G(y), for all

y sufficiently close to y(a), coincides with the linear hull of the columns of the matrix
g'(y) (and with the subspace (^ ) of R"+1; see §1). Therefore G'(y) = G(y)B(y), where
B(y) is a (ka + s) X (ka + s) nonsingular matrix,^) which is infinitely differentiable
with respect to y.

From the maximum condition (1.6), which holds for the functions belonging to the set
Ψ, one can easily obtain the identity

0 (2-7)

for all t sufficiently close to σ.
Let ν ε R*-+I. Since ψ(ί) satisfies the adjoint equation, we have, obviously,

· £ (Ψ (0 G (y(t)) v) = ψ (/) ((ad f) Gv) (y (/)).

(') In fact, we can assume that B(y) has the form

(B (y) 0
1 0

I I
S.

V0 0 l / '
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Therefore successive differentiation of (2.7) with respect to t yields

(2.8)

We shall prove Proposition 1, transforming the expression

ψ (σ) [eeadlG\, G\] (y (σ)) = ^ ψ (σ) β ^ γ (σ, χ (σ)) [vlt ν,] - £ · ,
i=0

*i. v26

where, as a rule, the arguments σ and y(a) will be omitted. Besides (2.8), we shall
subsequently employ (2.1) and (2.2).

Let Bo = B(y(a)). The expansion in a Taylor series of the functions B(y)vt (t = 1, 2)
at the point y(a) can be expressed as B(y)pt ~ 2JL0<pJ(y)it{, where q>*(y) are scalar-
valued polynomials of y, and V a r e constant (independent of y) (1 + n)-vectors, where
φ°(>>) = 1, TJ(° = Bovl and «^(/(σ)) = 0 iorj > 1. We have

Λ/=ο

ί,/=0 i,/=0

4- (β6'"» Φ') ( ( e e a d ^ i ) ο φ/) ψθη{—φ7 ((Gi|{) ο e«? ο φ

i=o

Thus

^[e£ a d /G'v1 )G'v ( 2] = 2_
/=0

The last equality and (2.5) at once imply the desired equality (2.6).

§3. A sufficient condition for controllability

The method of proving Theorem 1 (described in §4) allows one to obtain also a
sufficient condition (of second order) for local controllability, which will be formulated
here. In so doing, we restrict ourselves to the consideration of controllability in a
neighborhood of a fixed point for an equation with a one-dimensional control, in which
case the condition has a particularly simple form.

Thus, we are given the equation

x = f{x,u), xeRn,u£U(ZR, 06intU, f (0, 0) = 0. (3.1)

Let a > 0; we denote by Xa the set of attainability at the time a,

is an admissible trajectory of equation (3.1), x (0) = 0}.

We also use the following notation: fx = fx(0) = (Θ//9Λ:Χ0, 0) is an η Χ η matrix,
f(x) = f(x> 0) and/„(.*) = (df/du)(x, 0) are vector fields in R".

Let Hm be the linear hull of the vectors /u(0),/x ·/„(<)), ...,/Γ1 'W) (a subspace of
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R"). A well-known condition (of first order) for controllability states that
If Η(l) = R", then the origin is an interior point of the set Xa for any a > 0.
If Hm φ R", let k be the smallest integer κ such that at least one of the η vectors

fx K a c T * - 1 / ) fu, fu] ( 0 ) , i = 0 , 1 , . . . , « - 1 ,

does not lie in the subspace Hm; it is assumed in this connection that

If there are no such κ, there is also no second-order condition.
Clearly, the k thus defined is the least integer κ such that the curve

<Γ**[(3ά2κ-7)/„,/„](()), t>o,

does not lie entirely in Hm.
Finally, we define H}2) as the cone spanned in R" by the convex hull

conv (//(l) U { (-1 )k+1e~tfx [(ad2*"1/) f», fu\ (0); 0 < * < a}).

PROPOSITION 2. Let a > 0. If # a

( 2 ) = R", then the origin is an interior point of the set of
attainability Xa.

Let us clarify how this result can be obtained from the proof of Theorem 1. If we set
Q(xQ, Χι) = JC, — e"f'x0, x(t) = 0, u(t) = 0, then we arrive at the situation considered in
§§1, 2 and 4 (only instead of (1.1) we consider (3.1)). In this case, the closure of the
second-order cone K}2) (see p. 504) contains the set eaf"H}2). Therefore, since the matrix eafx

is nonsingular, the assertion being proved follows from the arguments of §4.

REMARK. Proposition 2 can be strengthened in the following way. Let χ Ε R" and
a > 0. If the vector χ lies in the interior of the cone e°A//a

(2) then the vector εχ is an
interior point of the set Xa for all ε > 0 sufficiently small.(2)

On the basis of this remark, we obtain the following corollary.

COROLLARY. If the linear hull of 2n vectors

coincides with R", then the set of attainability Xa has a nonempty interior for any a > 0.

§4. An outline of the proof of Theorem 1

In this section, we shall freely use the definitions and results of [1].
Again, as in §§1 and 2, we consider (1.1) and its solution (1.3). Let σ G Σ0, let
t, x), . . . , φΑ (t, x) be a parametrization at the point (ί"σ)), and let

Δσ/(/, *) = (φ, (/,*), . . . . Ψ^,χ),ίν(β,

(see §1). Moreover, let vt(·): R-»R*-+J be a family of measurable functions depending
on ε > 0, where vt{t) tends to zero uniformly in/GRas8—>0. We denote the first ka

coordinates of ve(f) by v}{t), . . . , v^-{t), the vector composed of the remaining s
coordinates by v°(t), and we set

(2) In order to prove this assertion, one needs to change somewhat the arguments of §4. However, we shall
not dwell on it in detail.
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Κ Ιο = ess sup Κ (9|.

If the functions vt(i) are nonzero only in a sufficiently small neighborhood of σ, then for
all small ε the solution of the equation

* = 2 Mt)Viit, x) + ±-f{t, x)±±-f{x, v(t) + 2p(t)vt(t),w(t)), χ(0) = x(0), (4.1)

is determined on the entire interval [0, a], and it is an admissible trajectory of equation
(1.4) on this interval.

Indeed, since »>e(/)->0 as e-»0, the solution of (1.4) tends to x(t) uniformly in
/ G [0, a] as e -» 0. Moreover, if the functions v*(i) are small and distinct from zero only
close to σ, then, for (/, x) sufficiently close to the curve (/, x(t)) with 0 < / < a, we have

*, x)+f(t, x))eF(x, M)

(see the definition of parametrization). Therefore the vector in the right-hand side of
(4.1) also belongs to F(x, M). Thus, the solution of (4.1) is an admissible trajectory of
(1.4).

We expand the last term in the right-hand side of (4.1) in powers of v°(t):

x = f(t,x) + Δσ/ (t, χ) ν ε (9 + fm (t, ~x (9) [p (t) vl (t), ρ (t) vl (9J

where r(t, χ; ε) is uniformly bounded in ε.
Let α (ε) and β (ε) be real-valued positive functions of the positive argument ε, with

α (ε), β(ε)\0 as ε —> +0. Further, let η (τ) (τ e R) be a (ka + i)-dimensional function
that is measurable, bounded, and distinct from zero only for τ e [— 1, 1], and let η "(τ)
be the vector composed of the last s coordinates of η (τ).

We denote by x(t; ε) the solution of (4.1) which we obtain on setting

Here σ' is a point of Σ 0. It follows from what we have said that, if σ' is sufficiently close
to σ, then the curve x(t; ε) with 0 < / < a is an admissible trajectory of (1.4) for all
small ε.

We now consider the equation

which is linear in the control. Obviously the curve xa(t) = x(t) is the solution (4.3)
corresponding to the control ν = 0.

The family of controls ve(j) = α(ε)η((ί - σ')/β(ε)) is a packet of perturbations of this
control (see [1], (1.8)). Let xa(t; ε) be the family of trajectories obtained as a result of
applying this packet of perturbations to equation (4.3), i.e.

xo (/; ε) = / (/, χσ (t; ε)) + Δσ/ (t, χσ (t\ ε)) α (ε) η ('-^) , χσ (0; β) = χ (0).
V Ρ (8) /

We denote by Γ(/) the fundamental matrix of the equation f = fx(t)T, Γ(ί, τ) =
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(X, x(x)) [p (t) η° (~pj , ρ (t) i

It follows from the definition of ρ{τ) that \p(a)R(a; ε) = 0 for any ψ Ε Ψ (obviously,
ψ(τ) = ψ(α)Γ(α, τ)). Finally, from (4.2) one can derive the equality

χ (f, ε) = xa (f, ε) + α2 (ε) R (t; ε) + 0 (α3 (ε)), (4.4)

where 0(α3(ε))/α3(ε) is uniformly bounded in ε. The formula (4.4) allows one to apply
to (1.4) the method developed in [1] for equations linear in the control. In order to pass
to (1.1), one must also use the "approximation lemma" of R. V. Gamkrelidze, from
which it follows that any family of trajectories of (1.4) depending continuously on a
parameter can be approximated to within any accuracy by a family of trajectories of
(1.1) that depends continuously on a parameter (for the exact definitions and proofs, see
[2] and [3]).

We shall now formulate an assertion (Theorem Γ), from which Theorem 1 can be
derived in the same way as Theorem 2.2 was derived from Theorem 2.1 in [1]. We turn
again to equation (4.3). All the definitions of [1] can be applied to this equation. For
example, for this equation one can write the Legendre representation (see [1], (1.13)) of
the endpoint of the second variation 82χσ(α; ε) of the trajectory xa(t) = x(t) on the
packet α(ε)η((( - α')/β (ε)).

We denote this Legendre representation as

Obviously, the Legendre representation (4.5) depends on the choice of a linearization
at the point d°a)) (the choice of a linearization (1.9) determines (4.3)), although this
dependence is not noted explicitly.

Let L(£+s) be the linear space of all bounded measurable (ka + j)-dimensional
functions on [— 1, 1], and let %J^ be the family of functions η(ί) from L^>+I) such that

THEOREM Γ. Assume that qo(x(O), x(a)) is the minimum of the functional qo(x(0), x(tj)

over the solutions of equation (1.1) subject to the conditions (1.2). Then there exists a

function ψ ε Ψ such that, for an arbitrary point σ £ Σ°, for η(ί) Ε *ΐΚ%\ and for an

arbitrary linearization o/(l.l) at the point (x"a^), the following assertion holds.

If I > 0 is an integer, and if in a neighborhood Oa of σ

ψ (α) If (σ') [η (0] = 0 ν ψ 6 Ψ , Va'eOa, V t < / — 1 , (4.6)

then ψ(α)Ζ-σ(σ)[η(0] < 0.

Let us describe the main steps of the proof of Theorem Γ. We return to (1.4) and
introduce the sets
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(• t

δ χχ {f) = f Γ (t, χ) φ (t) dx : φ (ΐ) is measurable,

Ι

Thus διΧ(ί) is the set of the first variations of the trajectory χ(τ) at the instant of time t.
Subsequently, we shall assume that α is a Lebesgue point of the function u(t)

(otherwise the constructions presented below become somewhat more complicated). We
denote by A^(1) the cone spanned by the origin of R l + m and the convex set

Γ (a, 0)] δχ0 + QJ (a)6t + Q&x (a): bx0 6 R",

This cone will be called the first-order cone of the solution x(t), it(t) at the point x(a).
Let K}n* be the polar of the cone A"e

(1), i.e. the set of those (1 + m) rows ξ for which
ξζ < 0 for a U z E K™. Further, let

iV e ={z6R 1 + m :£z = 0 V

Then Λ^ is the maximal linear subspace of K^ (the closure of the cone ATa

(1)).

LEMMA 1. A function ψ(0 e Ψ if and only if ψ(α) = IQX, where ξ e ΑΓβ

(Ι)·, ξ φ 0.

The assertion of the lemma can be easily derived from the definitions of Ψ and
Let σ e Σ0, and let there be chosen a linearization at the point (ί°σ)). We introduce the

set (we do not explicitly show the dependence on the linearization)

To = [JJ- Qtf (σ) [η (/)]: / > 0 is an integer, η (/) 6 X$, Q^f (σ1) [η (/)] 6 Na

for all t < / and σ' sufficiently close to ff|c3Rx+m

The union of the sets Ta over all points σ e Σ 0 and all possible linearizations will be
denoted by Τ (by analogy with [1], §3).

The cone spanned by the origin of R 1 + m and conv (K}1) υ Τ) (the convex hull of the
union of the first-order cone A"a

(1) and T) will be called the second-order cone K* of the
solution x(t), u(t) at the point x(a).

We obtain by Lemma 1 that Theorem Γ is equivalent to the assertion that the polar of
the cone A"o

(2) is nonempty, or, in other words, the assertion that the cone K}2* does not
coincide with R 1 + m .

Thus, it is sufficient to show that the equality A"a

(2) = R 1 + m leads to a contradiction.
This equality implies the existence of dx + d2 vectors

such that the origin of R 1 + m is an interior point of the set

conv {0,2! δ^, 6 2 2 1 ( . . . . 6tzdl).
We have

V/ = jj Qiti1, (°/) h/ (01. / = ι, · · ·, 4,

and QtL?(aj)ty(t)] e Na for i < lj and oj close to σ,. Since ^(σ')[η(ί)] depends
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continuously on a', the convex hull of the vectors

δΛ, i = 1, . . . , du 62ζ] = ± QjLij (σ)) [η, (/)], / = 1, . . . , d,,

for σ' close to σ also contains the origin in its interior, i.e.

0 6 int (conv { ό Λ δ ^ , , δ ^ , . . . , δ2ζ^}). (4.7)

Obviously, moreover, the points aj, j: = 1, . . . , d2, can be chosen pairwise distinct,
whereas the σ, are not, in general, pairwise distinct.

The central point of the proof is the following lemma (compare with the lemma in [1],

§3).

BASIC LEMMA. Let there be given vectors δ,ζ,, . . ., δ,ζ^ ε Α"β

(1) and points Oj, aj ε Σ°,
j = 1, . . . , d2, let there be chosen linearizations at the points σ,, j' = 1, . . . , d2, and let
there be given vectors

where η(ί) ε 5Q, and Q\Lp(pj)[t]j(i)\ ε Nafor i < lj — 1 an*/./ = 1, . . . , d2. Let

& = α = ( a J f . . . , a r f l + ! i i ) : at· > 0, ^ a< = •

y t = i

Z>e a (rf] + d2ydimensional simplex.
If the points aj, j = 1, . . . , d2, are pairwise distinct, and if the numbers \aj — Oj\ are

sufficiently small, then for all α ε IS- and all ε > 0 sufficiently small one can construct
controls u(t; α, ε), u{t; α, ε) ε U with t ε JO,perturbations of initial conditions δχο(α, ε) ε
R", and perturbations 8t(a, ε) of the terminal instant of time such that the following
assertion holds.

The equation χ = f(x, u{t; α, ε)) with the initial condition x(O) = x(O) + δχο(α, ε) has
the solution x(t; α, ε), / ε [0, a + δί(α, ε)], which depends continuously on (t, α) ε {(/, a):
« ε ί , Ο < / < ι ΐ + 8t(a, ε)} for every ε, and the following equality holds:

(α, ε), x(a + bt(a, ε); a, 8 ) ) - Q (x(0), χ (a))

(4.8)

= ω(α; ε),
/

where ω(α; ε)/ε -» 0 as ε -» 0 uniformly in a E. &.

Since (4.4) holds, the proof of the basic lemma follows the same pattern as that of the
corresponding lemma in [1], §3. It is true that, since we consider the problem with
moving endpoints, the cones K^ and K& are constructed in a somewhat different way
than in [1] (and even in a different space). However, this does not change the essence of
the matter, and in this sense the proof of Theorem Γ is related to the proof presented in
[1] in the same way as the derivation of the maximum principle for the problem with
moving endpoints is related to its proof for the problem with fixed endpoints. One more
peculiarity (as compared with [1]) consists of the necessity to return from a convex
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problem (equation (1.4)) to the initial problem (equation (1.1)). This transfer is accom-
plished with the aid of the already mentioned "approximation lemma" in the same way
as in the proof of the maximum principle with the aid of generalized controls or sliding
regimes (see [2] and [3]).

Making use of the basic lemma, one can easily finish the proof of Theorem Γ. Indeed,
by the Brouwer fixed point theorem one can derive the following assertion from (4.7)
and (4.8):

For all sufficiently small e > 0, the set

(α, ε); a, B))-Q(X(0)~x(a)): a£ <2>

contains the origin qfKl+masan interior point.

Thus the intersection of ZE with the ray

{z = (zo.2i zm)ieR1+m:zo<0,zi= ... =zm = 0}

is nonempty. Therefore for ά ε £E we have

q0 (x (0; α, ε), χ (α + 6t (α, ε); α, ε ) ) - q 0 (χ (0), χ (α)) < 0,

and

ql{x{0;a,B),x(a + 6t(a,s);a,R)) = ql(x(0),'x(a)) = 0, ί = 1, . . . , m,

which contradicts the assumption that q^x(0), x(a)) is the minimum.
Received 7/OCT/76
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