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Preface

This book presents material taught by the authors in graduated courses at Trieste (SISSA), Paris
(Institut Henri Poincaré, Orsay, Paris Diderot), and several summer schools, in the period 2008 –
2018.

It contains material for an introductory course in sub-Remannan geometry at master or PhD
level, as well as material for a more advanced course.

The book attempts to be as elementary as possible but, although the main concepts are recalled,
it requires a certain ability in managing object in differential geometry (vector fields, differential
forms, symplectic manifolds, etc.). We try to avoid as much as possible the use of functional analysis
(some is required starting from Chapter 6).

We do not require any knowledge in Riemannian geometry. Actually from the book one can
extract an introductory course in Riemannian geometry as a special case of sub-Riemannian one,
starting from the geometry of surfaces in Chapter 1.

There are few other books of sub-Riemannian geometry available. Besides the pioneering book
edited by A. Belläıche and J.-J. Risler [BR96], a nowadays classical reference is the book of R. Mont-
gomery [Mon02], that inspired several of our chapters. More recent books, written in a language
similar to the one we use, are those of F. Jean [Jea14] and L. Rifford [Rif14]; see also the collection
of lectures notes [BBS16a, BBS16b]. Other related books, although with a different approach, are
the monographs [BLU07] and [CDPT07].

Example of an introductory course of sub-Riemannan geometry.
Chapters 2, 3 (without the appendices), 4, 7 (without 7.1), 9, 13, 21.

Example of an advanced course of sub-Riemannan geometry.
Chapters 2, 3 (with the appendices), 4, 6, 7 (together with 7.1), 8, 9, 10, 11, 12, 13, 14, 15, 17, 18,
19, 20, 21, the appendix by Zelenko.

Example of a course of Riemannan geometry.
Chapters 1, 2, 3 (without the appendices), 4, 5, 7, 8, 11, 14 (without 14.4 -14.5 -14.6), 15, 16, 21
(only 21.1).
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Ludovic Sacchelli, Yuri Sachkov, and Michele Stecconi.
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Introduction

This book concerns a fresh development of the eternal idea of the distance as the length of a shortest
path. In Euclidean geometry, shortest paths are segments of straight lines that satisfy all classical
axioms. In the Riemannian world, Euclidean geometry is just one of a huge amount of possibilities.
However, each of these possibilities is well approximated by Euclidean geometry at very small scale.
In other words, Euclidean geometry is treated as geometry of initial velocities of the paths starting
from a fixed point of the Riemannian space rather than the geometry of the space itself.

The Riemannian construction was based on the previous study of smooth surfaces in the Eu-
clidean space undertaken by Gauss. The distance between two points on the surface is the length
of a shortest path on the surface connecting the points. Initial velocities of smooth curves starting
from a fixed point on the surface form a tangent plane to the surface, that is an Euclidean plane.
Tangent planes at two different points are isometric, but neighborhoods of the points on the surface
are not locally isometric in general; certainly not if the Gaussian curvature of the surface is different
at the two points.

Riemann generalized Gauss’ construction to higher dimensions and realized that it can be
done in an intrinsic way; you do not need an ambient Euclidean space to measure the length of
curves. Indeed, to measure the length of a curve it is sufficient to know the Euclidean length
of its velocities. A Riemannian space is a smooth manifold whose tangent spaces are endowed
with Euclidean structures; each tangent space is equipped with its own Euclidean structure that
smoothly depends on the point where the tangent space is attached.

For a habitant sitting at a point of the Riemannian space, tangent vectors give directions where
to move or, more generally, to send and receive information. He measures lengths of vectors, and
angles between vectors attached at the same point, according to the Euclidean rules, and this is
essentially all what he can do. It is important that our habitant can, in principle, completely
recover the geometry of the space by performing these simple measurements along different curves.

In the sub-Riemannian space we cannot move, receive and send information in all directions.
There are restrictions (imposed by the God, the moral imperative, the government, or simply a
physical law). A sub-Riemannian space is a smooth manifold with a fixed admissible subspace in
any tangent space where admissible subspaces are equipped with Euclidean structures. Admissible
paths are those curves whose velocities are admissible. The distance between two points is the
infimum of the length of admissible paths connecting the points. It is assumed that any pair of
points in the same connected component of the manifold can be connected by at least an admissible
path. The last assumption might look strange at a first glance, but it is not. The admissible
subspace depends on the point where it is attached, and our assumption is satisfied for a more or
less general smooth dependence on the point; better to say that it is not satisfied only for very
special families of admissible subspaces.

Let us describe a simple model. Let our manifold be R3 with coordinates x, y, z. We consider
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the differential 1-form ω = −dz + 1
2 (xdy − ydx). Then dω = dx ∧ dy is the pullback on R3 of

the area form on the xy-plane. In this model the subspace of admissible velocities at the point
(x, y, z) is assumed to be the kernel of the form ω. In other words, a curve t 7→ (x(t), y(t), z(t)) is
an admissible path if and only if ż(t) = 1

2 (x(t)ẏ(t)− y(t)ẋ(t)) or equivalently if

z(t) = z(0) +
1

2

∫ t

0

(
x(s)ẏ(s)− y(s)ẋ(s)

)
ds.

If x(0) = y(0) = z(0) = 0, then z(t) is the signed area of the domain bounded by the curve and the
segment connecting (0, 0) with (x(t), y(t)).

In this geometry, the length of an admissible tangent vector (ẋ, ẏ, ż) is defined to be (ẋ2+ ẏ2)
1
2 ,

that is the length of the projection of the vector to the xy-plane. By construction, the sub-
Riemannian length of the admissible curve in R3 is equal to the Euclidean length of its projection
to the plane.

In this geometry, to compute the shortest paths connecting the origin (0, 0, 0) to a fixed point
(x1, y1, z1) we are then reduced to solve the classical Dido isoperimetric problem: find a shortest
planar curve among those connecting (0, 0) with (x1, y1) and such that the signed area of the domain
bounded by the curve and the segment joining (0, 0) and (x1, y1) is equal to z1 (see Figure 1).

z (x(t), y(t), z(t))

x1

y1
z1

(x(t), y(t))

y

x

Figure 1: The Dido problem

Solutions of the Dido problem are arcs of circles and their lifts to R3 are spirals where z(t) is
the area of the piece of disc cut by the hord connecting (0, 0) with (x(t), y(t)) (see Figure 2).

A piece of such a spiral is a shortest admissible path between its endpoints while the planar
projection of this piece is an arc of the circle. The spiral ceases to be a shortest path when its
planar projection starts to run the circle for the second time, i.e., when the spiral starts its second
turn. Sub-Riemannian balls centered at the origin for this model look like apples with singularities
at the poles (see Figure 3).

Singularities are points on the sphere connected with the center by more than one shortest
path. The dilation (x, y, z) 7→ (rx, ry, r2z) transforms the ball of radius 1 into the ball of radius
r. In particular, arbitrary small balls have singularities. This is always the case when admissible
subspaces are proper subspaces.

Another important symmetry connects balls with different centers. Indeed, the product opera-
tion

(x, y, z) · (x′, y′, z′) .=
(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − x′y)

)
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x

z

y

Figure 2: Solutions to the Dido problem

Figure 3: The Heisenberg sub-Riemannian sphere

turns R3 into a group, the Heisenberg group. The origin in R3 is the unit element of this group. It
is easy to see that left-translations of the group transform admissible curves into admissible ones
and preserve the sub-Riemannian length. Hence left translations transform balls in balls of the
same radius. A detailed description of this example and other models of sub-Riemannian spaces is
done in Sections 4.4.3, 7.5.1, 13.2.

Actually, even this simplest model tells us something about life in a sub-Riemannian space. Here
we deal with planar curves but, in fact, operate in the three-dimensional space. Sub-Riemannian
spaces always have a kind of hidden extra dimension. A good and not yet exploited source for mystic
speculations but also for theoretical physicists who are always searching new crazy formalizations.
In mechanics, this is a natural geometry for systems with nonholonomic constraints like skates,
wheels, rolling balls, bearings etc. This kind of geometry could also serve to model social behavior
that allows to increase the level of freedom without violation of a restrictive legal system.

Anyway, in this book we perform a purely mathematical study of sub-Riemannian spaces to
provide an appropriate formalization ready for all potential applications. Riemannian spaces appear
as a very special case. Of course, we are not the first to study the sub-Riemannian stuff. There
is a broad literature even if there are not so many experts who could claim that sub-Riemannian
geometry is his main field of expertise. Important motivations come from CR geometry, hyperbolic
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geometry, analysis of hypoelliptic operators, and some other domains. Our first motivation was
control theory: length minimizing is a nice class of optimal control problems.

Indeed, one can find a control theory spirit in our treatment of the subject. First of all, we
include admissible paths in admissible flows that are flows generated by vector fields whose values
in all points belong to admissible subspaces. The passage from admissible subspaces attached at
different points of the manifold to a globally defined space of admissible vector fields makes the
structure more flexible and well-adapted to algebraic manipulations. We pick generators f1, . . . , fk
of the space of admissible fields, and this allows us to describe all admissible paths as solutions
to time-varying ordinary differential equations of the form: q̇(t) =

∑k
i=1 ui(t)fi(q(t)). Different

admissible paths correspond to the choice of different control functions ui(·) and initial points q(0)
while the vector fields fi are fixed at the very beginning.

We also use a Hamiltonian approach supported by the Pontryagin maximum principle to char-
acterize shortest paths. Few words about the Hamiltonian approach: sub-Riemannian geodesics
are admissible paths whose sufficiently small pieces are length-minimizers, i. e. the length of such
a piece is equal to the distance between its endpoints. In the Riemannian setting, any geodesic is
uniquely determined by its velocity at the initial point q. In the general sub-Riemannian situation
we have much more geodesics based at the the point q than admissible velocities at q. Indeed, every
point in a neighborhood of q can be connected with q by a length-minimizer, while the dimension
of the admissible velocities subspace at q is usually smaller than the dimension of the manifold.

What is a natural parametrization of the space of geodesics? To understand this question, we
adapt a classical “trajectory – wave front” duality. Given a length-parameterized geodesic t 7→ γ(t),
we expect that the values at a fixed time t of geodesics starting at γ(0) and close to γ fill a piece
of a smooth hypersurface (see Figure 4). For small t this hypersurface is a piece of the sphere of
radius t, while in general it is only a piece of the “wave front”.

γ(0)

p(t)

γ(t)

Figure 4: The “wave front” and the “impulse”

Moreover, we expect that γ̇(t) is transversal to this hypersurface. It is not always the case but
this is true for a generic geodesic.

The “impulse” p(t) ∈ T ∗
γ(t)M is the covector orthogonal to the “wave front” and normalized by

the condition 〈p(t), γ̇(t)〉 = 1. The curve t 7→ (p(t), γ(t)) in the cotangent bundle T ∗M satisfies a
Hamiltonian system. This is exactly what happens in rational mechanics or geometric optics.

The sub-Riemannian Hamiltonian H : T ∗M → R is defined by the formula H(p, q) = 1
2〈p, v〉2,

where p ∈ T ∗
qM , and v ∈ TqM is an admissible velocity of length 1 that maximizes 〈p,w〉 among

all admissible velocities w of length one at q ∈M .
Any smooth function on the cotangent bundle defines a Hamiltonian vector field and such a
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field generates a Hamiltonian flow. The Hamiltonian flow on T ∗M associated to H is the sub-
Riemannian geodesic flow. The Riemannian geodesic flow is just a special case.

As we mentioned, in general, the construction described above cannot be applied to all geodesics:
the so-called abnormal geodesics are missed. An abnormal geodesic γ(t) also possesses its “impulse”
p(t) ∈ T ∗

γ(t)M but this impulse belongs to the orthogonal complement to the subspace of admissible
velocities and does not satisfy the above Hamiltonian system. Geodesics that are trajectories of the
geodesic flow are called normal. Actually, abnormal geodesics belong to the closure of the space of
the normal ones, and elementary symplectic geometry provides a uniform characterization of the
impulses for both classes of geodesics. Such a characterization is, in fact, a very special case of the
Pontryagin maximum principle.

Recall that all velocities are admissible in the Riemannian case, and the Euclidean structure on
the tangent bundle induces the identification of tangent vectors and covectors, i.e., of the velocities
and impulses. We should however remember that this identification depends on the metric. One
can think to a sub-Riemannian metric as the limit of a family of Riemannian metrics when the
length of forbidden velocities tends to infinity, while the length of admissible velocities remains
untouched. It is easy to see that the Riemannian Hamiltonians defined by such a family converge
with all derivatives to the sub-Riemannian Hamiltonian. Hence the Riemannian geodesics with a
prescribed initial impulse converge to the sub-Riemannian geodesic with the same initial impulse.
On the other hand, we cannot expect any reasonable convergence for the family of Riemannian
geodesics with a prescribed initial velocity: those with forbidden initial velocities disappear at the
limit, while the number of geodesics with admissible initial velocities jumps to infinity.

Outline of the book

We start in Chapter 1 from surfaces in R3 that is the beginning of everything in differential geometry,
and also a starting point of the story told in this book. There are not yet Hamiltonians here, but a
control flavor is already present. The presentation is elementary and self-contained. A student in
applied mathematics or analysis who missed the geometry of surfaces at the university or simply
is not satisfied by his understanding of these classical ideas, might find it useful to read just this
chapter even if he does not plan to study the rest of the book.

In Chapter 2, we recall some basic properties of vector fields and vector bundles. Sub-Riemannian
structures are defined in Chapter 3 where we also study three fundamental facts: the finiteness and
the continuity of the sub-Riemannian distance, the existence of length-minimizers, and the infinites-
imal characterization of geodesics. The first is the classical Rashevskii-Chow theorem, the second
and the third one are simplified versions of the Filippov existence theorem and of the Pontryagin
maximum principle.

In Chapter 4, we introduce the symplectic language. We define the geodesic Hamiltonian
flow, we consider some interesting two- and three-dimensional problems, and we prove a general
sufficient condition for length-minimality of normal trajectories. Chapter 5 is devoted to integrable
Hamiltonian systems. We explain the construction of the action-angle coordinates and we describe
classical examples of integrable geodesic flows, such as the geodesic flow on ellipsoids.

Chapters 1–5 form a first part of the book where we do not use any tool from functional analysis.
In fact, even the knowledge of the Lebesgue integration and elementary real analysis are not essential
with a unique exception of the existence theorem in Section 3.3. In all other parts of the text, the
reader will nevertheless understand the content just replacing the terms “Lipschitz” and “absolutely
continuous” with “piecewise C1” and the term “measurable” with “piecewise continuous”.
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We start to use some basic functional analysis in Chapter 6. In this chapter, we give elements
of an operator calculus that simplifies and clarifies calculations with non-stationary flows, their
variations and compositions. In Chapter 7, we give a brief introduction to the Lie group theory.
Lie groups are introduced as subgroups of the groups of diffeomorphisms of a manifold M induced
by a family of vector fields whose Lie algebra is finite dimensional. Then we study left-invariant
sub-Riemannian structures and their geodesics.

In Chapter 8, we interpret the “impulses” as Lagrange multipliers for constrained optimization
problems and apply this point of view to the sub-Riemannian case. We also introduce the sub-
Riemannian exponential map and we study cut and conjugate points.

In Chapter 9, we consider two-dimensional sub-Riemannian metrics; such a metric coincides
with a Riemannian one on an open and dense subset. We describe in details the model space of
this geometry, known as the Grushin plane, and we discuss several properties in the generic case,
among which a Gauss-Bonnet like theorem.

In Chapter 10, we construct the nonholonomic tangent space at a point q of the manifold: a
first quasi-homogeneous approximation of the space if you observe and exploit it from q by means
of admissible paths. In general, such a tangent space is a homogeneous space of a nilpotent Lie
group equipped with an invariant vector distribution; its structure may depend on the point where
the tangent space is attached. At generic points, this is a nilpotent Lie group endowed with a
left-invariant vector distribution. The construction of the nonholonomic tangent space does not
need a metric; if we take into account the metric, we obtain the Gromov–Hausdorff tangent to the
sub-Riemannian metric space. Useful “ball-box” estimates of small balls follow automatically.

In Chapter 11, we study general analytic properties of the sub-Riemannian distance as a function
of points of the manifold. It is shown that the distance is smooth on an open dense subset and
is Lipschitz out of the points connected by abnormal length-minimizers. Moreover, if these bad
points are absent, then almost every sphere is a Lipschitz submanifold.

In Chapter 12, we turn to abnormal geodesics, which provide the deepest singularities of the
distance. Abnormal geodesics are critical points of the endpoint map defined on the space of
admissible paths, and the main tool for their study is the Hessian of the endpoint map. This study
permits to prove also that the cut locus from a point is adjacent to the point itself as soon as the
structure is not Riemannian.

Chapter 13 is devoted to the explicit calculation of the sub-Riemannian optimal synthesis for
model spaces. After a discussion on Carnot groups, we describe a technique based on the Hadamard
theorem that permits, under certain assumptions, to compute the cut locus explicitly. We then
apply this technique to several relevant examples.

This is the end of the second part of the book; next few chapters are devoted to the curvature
and its applications. Let Φt : T ∗M → T ∗M , for t ∈ R, be a sub-Riemannian geodesic flow.
Submanifolds Φt(T ∗

qM), q ∈ M, form a fibration of T ∗M . Given λ ∈ T ∗M , let Jλ(t) ⊂ Tλ(T
∗M)

be the tangent space to the leaf of this fibration.

Recall that Φt is a Hamiltonian flow and T ∗
qM are Lagrangian submanifolds; hence the leaves

of our fibrations are Lagrangian submanifolds and Jλ(t) is a Lagrangian subspace of the symplectic
space Tλ(T

∗M).

In other words, Jλ(t) belongs to the Lagrangian Grassmannian of Tλ(T
∗M), and t 7→ Jλ(t) is

a curve in the Lagrangian Grassmannian, a Jacobi curve of the sub-Riemannian structure. The
curvature of the sub-Riemannian space at λ is simply the “curvature” of this curve in the Lagrangian
Grassmannian.
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Chapter 14 is devoted to the elementary differential geometry of curves in the Lagrangian
Grassmannian. In Chapter 15 we apply this geometry to Jacobi curves, that are curves in the
Lagrange Grassmannian representing Jacobi fields.

The language of Jacobi curves is translated to the traditional language in the Riemannian
case in Chapter 16. We recover the Levi-Civita connection and the Riemannian curvature and
demonstrate their symplectic meaning. In Chapter 17, we explicitly compute the sub-Riemannian
curvature for contact three-dimensional spaces and we show how the curvature invariants appear
in the classification of sub-Riemannian left-invariant structures on 3D Lie groups. In Chapter 18,
after a brief introduction on Poisson manifolds, we prove the integrability of the sub-Riemannian
geodesic flow on 3D Lie groups. As a byproduct, we obtain a classification of coadjoint orbits on 3D
Lie algebras. In the next Chapter 19 we study the small distance asymptotics of the exponential
map for three-dimensional contact case and see how the structure of the conjugate locus is encoded
in the curvature.

In Chapter 20 we address the problem of defining a canonical volume in sub-Riemannian geom-
etry. First we introduce the Popp volume, that is a canonical volume that is smooth for equiregular
sub-Riemannian manifold, and we study its basic properties. Then we define the Hausdorff volume
and we study its density with respect to Popp’s one.

In the last Chapter 21 we define the sub-Riemannian Laplace operator, and we study its prop-
erties (hypoellipticity, self-adjointness, etc.). We conclude with a discussion of the sub-Riemannian
heat equation and an explicit formula for the heat kernel in the three-dimensional Heisenberg case.

The book is finished by an Appendix on the canonical frames for a wide class of curves in the
Lagrangian Grassmannians, written by Igor Zelenko. This is a necessary background for a deeper
systematic study of the curvature-type sub-Riemannian invariants, beyond the scope of this book.

We stop here this introduction into the “Comprehensive Introduction”. We hope that the reader
won’t be bored; comments to the chapters contain references and suggestions for further reading.
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Chapter 1

Geometry of surfaces in R3

In this preliminary chapter we study the geometry of smooth two dimensional surfaces in R3 as a
“warm-up problem” and we recover some classical results.

In the fist part of the chapter we consider surfaces in R3 endowed with the standard Euclidean
product, which we denote by 〈· | ·〉. In the second part we study surfaces in the 3D pseudo-Euclidean
space, that is R3 endowed with a sign-indefinite inner product, which we denote by 〈· | ·〉h
Definition 1.1. A surface of R3 is a subset M ⊂ R3 such that for every q ∈ M there exists a
neighborhood U ⊂ R3 of q and a smooth function a : U → R such that U ∩M = a−1(0) and ∇a 6= 0
on U ∩M .

1.1 Geodesics and optimality

Let M ⊂ R3 be a surface and γ : [0, T ]→M be a smooth curve in M . The length of γ is defined as

ℓ(γ) :=

∫ T

0
‖γ̇(t)‖dt. (1.1)

where ‖v‖ =
√
〈v | v〉 denotes the norm of a vector in R3.

Notice that the definition of length in (1.1) is invariant by reparametrizations of the curve.
Indeed let ϕ : [0, T ′] → [0, T ] be a monotone smooth function. Define γϕ : [0, T ′] → M by
γϕ := γ ◦ ϕ. Using the change of variables t = ϕ(s), one gets

ℓ(γϕ) =

∫ T ′

0
‖γ̇ϕ(s)‖ds =

∫ T ′

0
‖γ̇(ϕ(s))‖|ϕ̇(s)|ds =

∫ T

0
‖γ̇(t)‖dt = ℓ(γ).

The definition of length can be extended to piecewise smooth curves on M , by adding the length
of every smooth piece of γ.

When the curve γ is parametrized in such a way that ‖γ̇(t)‖ ≡ c for some c > 0 we say that
γ has constant speed. If moreover c = 1 we say that γ is parametrized by arc length (or arc length
parametrized).

The distance between two points p, q ∈M is the infimum of length of curves that join p to q

d(p, q) = inf{ℓ(γ) | γ : [0, T ]→M piecewise smooth, γ(0) = p, γ(T ) = q}. (1.2)

Now we focus on length-minimizers, i.e., piece-wise smooth curves γ : [0, T ] → M realizing the
distance between their endpoints, i.e., satisfying ℓ(γ) = d(γ(0), γ(T )).
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Exercise 1.2. Prove that, if γ : [0, T ]→M is a length-minimizer, then the curve γ|[t1,t2] is also a
length-minimizer, for all 0 < t1 < t2 < T .

The following proposition characterizes smooth minimizers. We prove later that all length-
minimizers are smooth (cf. Corollary 1.12 and 1.13).

Proposition 1.3. Let γ : [0, T ] → M be a smooth minimizer parametrized by arc length. Then
γ̈(t) ⊥ Tγ(t)M for all t ∈ [0, T ].

The proof of Proposition 1.3 requires some preliminary constructions. Fix a smooth length-
minimizer parametrized by arc length γ : [0, T ] → M and consider a smooth non-autonomous
vector field that extends the tangent vector to γ in a neighborhood W of the graph of the curve
{(t, γ(t)) | t ∈ [0, T ]} ⊂ R×M , i.e., a smooth map (t, q) 7→ ft(q) ∈ TqM satisfying

ft(γ(t)) = γ̇(t), and ‖ft(q)‖ = 1, ∀ (t, q) ∈W.

Let now (t, q) 7→ gt(q) ∈ TqM be a smooth non-autonomous vector field such that ft(q) and gt(q)
define a local orthonormal frame in the following sense:

〈ft(q) | gt(q)〉 = 0, ‖gt(q)‖ = 1, ∀ (t, q) ∈W.

Piecewise smooth curves parametrized by arc length on M are solutions of the following ordinary
differential equation

ẋ(t) = cos u(t)ft(x(t)) + sinu(t)gt(x(t)), (1.3)

for some initial condition x(0) = q and some piecewise continuous function u(t), which we call
control. The curve γ is the solution to (1.3) associated with the control u(t) ≡ 0 and initial
condition γ(0).

Let us consider now the family of controls

uτ,s(t) =

{
0, t < τ

s, t ≥ τ
0 ≤ τ ≤ T, s ∈ R (1.4)

and denote by xτ,s(t) the solution of (1.3) that corresponds to the control uτ,s(t) and with initial
condition xτ,s(0) = γ(0). We have the following two results.

Lemma 1.4. For every τ1, τ2, t ∈ [0, T ] the following vectors are linearly dependent

∂

∂s

∣∣∣∣
s=0

xτ1,s(t),
∂

∂s

∣∣∣∣
s=0

xτ2,s(t). (1.5)

Proof. Thanks to Exercice 1.2, it is not restrictive to assume t = T . Fix 0 ≤ τ1 ≤ τ2 ≤ T and
consider the family of controls

vh1,h2(t) =





0, t ∈ [0, τ1[,

h1, t ∈ [τ1, τ2[,

h1 + h2, t ∈ [τ2, T + ε[,

(1.6)

where h1, h2 belong to a neighborhood of 0 and ε > 0 is chosen small enough to guarantee the
existence of the solutions of (1.3) associated with controls vh1,h2 . Denote by t 7→ φ(t;h1, h2) the
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corresponding solution. Notice that this defines a map φ : U ⊂ R3 →M , well-defined and smooth
on a neighborhood U of (T, 0, 0). Moreover, by construction

∂φ

∂hi

∣∣∣∣
(T,0,0)

=
∂

∂s

∣∣∣∣
s=0

xτi,s(T ), i = 1, 2.

By contradiction assume that the vectors in (1.5) are linearly independent. Then ∂φ
∂h is invertible

(recall that φ takes values inM) and the implicit function theorem applied to the map (t, h1, h2) 7→
φ(t;h1, h2) at the point (T, 0, 0) implies that there exists δ > 0 such that

∀ t ∈ ]T − δ, T + δ[, ∃h1, h2, s.t. φ(t;h1, h2) = γ(T ),

In particular there exists a curve with unit speed joining γ(0) and γ(T ) in time t < T , which gives
a contradiction, since γ is a length-minimizer.

Lemma 1.5. For every τ, t ∈ [0, T ] the following identity holds

〈
∂

∂s

∣∣∣∣
s=0

xτ,s(t)

∣∣∣∣ γ̇(t)
〉

= 0. (1.7)

In particular ∂
∂s

∣∣
s=0

xτ,s(t) is parallel to gt(γ(t)).

Proof. If t ≤ τ , then by construction (cf. (1.4)) the first vector is zero since there is no variation
w.r.t. s and the conclusion follows. Assume now that t > τ . Let us write the Taylor expansion of
ψ(t) = ∂

∂s

∣∣
s=0

xτ,s(t) in a right neighborhood of t = τ . For t ≥ τ , by (1.4), one has

ẋτ,s = cos(s)ft(xτ,s) + sin(s)gt(xτ,s).

Hence

ψ(τ) =
∂

∂s

∣∣∣∣
s=0

xτ,s(τ) = 0, ψ̇(τ) =
∂

∂s

∣∣∣∣
s=0

ẋτ,s(τ) = gτ (xτ,s(τ)).

Then, for t ≥ τ , we have
ψ(t) = (t− τ)gτ (xτ,s(τ)) +O((t− τ)2). (1.8)

By Exercice 1.2, it is sufficient to prove the statement at t = T . Then taking t = T in (1.8) and
passing to the limit for τ → T one gets

1

T − τ
∂

∂s

∣∣∣∣
s=0

xτ,s(T ) −→
τ→T

gT (γ(T )).

Now, by Lemma 1.4 all vectors in the left hand side are parallel among them, hence they are parallel
to gT (γ(T )). The lemma is proved since γ̇(T ) = fT (γ(T )) and fT and gT are orthogonal.

We can now prove Proposition 1.3.

Proof of Proposition 1.3. Let γ : [0, T ] → M be a smooth length-minimizer parametrized by arc
length and consider the smooth non-autonomous vector fields ft(q) and gt(q) defining a local or-
thonormal frame as above. The claim γ̈(t) ⊥ Tγ(t)M is equivalent to the following

〈γ̈(t) | ft(γ(t))〉 = 〈γ̈(t) | gt(γ(t))〉 = 0. (1.9)

23



Recall that 〈γ̇(t) | γ̇(t)〉 = 1 for every t ∈ [0, T ]. Differentiating this identity with respect to t, one
gets for t ∈ [0, T ]

0 =
d

dt
〈γ̇(t) | γ̇(t)〉 = 2 〈γ̈(t) | γ̇(t)〉 .

This shows that γ̈(t) is orthogonal to ft(γ(t)) for every t ∈ [0, T ]. Next, differentiating1 (1.7) with
respect to t, we have for t 6= τ

〈
∂

∂s

∣∣∣∣
s=0

ẋτ,s(t)

∣∣∣∣ γ̇(t)
〉
+

〈
∂

∂s

∣∣∣∣
s=0

xτ,s(t)

∣∣∣∣ γ̈(t)
〉

= 0. (1.10)

Moreover, from the identity 〈ẋτ,s(t) | ẋτ,s(t)〉 = 1 one gets
〈
∂

∂s
ẋτ,s(t)

∣∣∣∣ ẋτ,s(t)
〉

= 0, for t 6= τ. (1.11)

Evaluating (1.11) at s = 0, using that xτ,0(t) = γ(t), one has
〈
∂

∂s

∣∣∣∣
s=0

ẋτ,s(t)

∣∣∣∣ γ̇(t)
〉

= 0, for t 6= τ. (1.12)

Hence, combining (1.12) with (1.10), it follows that
〈
∂

∂s

∣∣∣∣
s=0

xτ,s(t)

∣∣∣∣ γ̈(t)
〉

= 0,

which holds for t 6= τ and then, by continuity, for every t ∈ [0, T ]. Using that ∂
∂s

∣∣
s=0

xτ,s(t) is
parallel to gt(γ(t)) (by Lemma 1.5), it follows that 〈gt(γ(t)) | γ̈(t)〉 = 0.

Definition 1.6. A smooth curve γ : [0, T ]→M parametrized with constant speed is called geodesic
if it satisfies

γ̈(t) ⊥ Tγ(t)M, ∀ t ∈ [0, T ]. (1.13)

Proposition 1.3 says that a smooth curve that minimizes the length is a geodesic.

Next we get an explicit characterization of geodesics when the manifold M is globally defined
as the zero level of a smooth function. In other words there exists a smooth function a : R3 → R
such that

M = a−1(0), and ∇a 6= 0 on M. (1.14)

Remark 1.7. Recall that for every q ∈ M it holds ∇qa ⊥ TqM . Indeed, for every q ∈ M and
v ∈ TqM , let γ : [0, T ] → M be a smooth curve on M such that γ(0) = q and γ̇(0) = v. By
definition of M one has a(γ(t)) = 0. Differentiating this identity with respect to t at t = 0 one gets
〈∇qa | v〉 = 0.

Proposition 1.8. A smooth curve γ : [0, T ]→M is a geodesic if and only if it satisfies, in matrix
notation:

γ̈(t) = −
γ̇(t)T (∇2

γ(t)a)γ̇(t)

‖∇γ(t)a‖2
∇γ(t)a, ∀ t ∈ [0, T ], (1.15)

where ∇2
γ(t)a is the Hessian matrix of a.

1notice that xτ,s is smooth on the set [0, T ] \ {τ}.
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Proof. Differentiating the equality
〈
∇γ(t)a

∣∣ γ̇(t)
〉
= 0 with respect to t, we get (we use matrix

notation):

γ̇(t)T (∇2
γ(t)a)γ̇(t) + γ̈(t)T∇γ(t)a = 0.

By definition of geodesic there exists a function b(t) such that

γ̈(t) = b(t)∇γ(t)a.

Combining the two previous formulas we get

γ̇(t)T (∇2
γ(t)a)γ̇(t) + b(t)‖∇γ(t)a‖2 = 0,

from which (1.15) easily follows.

Remark 1.9. A surface in R3 (cf. Definition 1.1) is always locally defined as the zero set of a smooth
function, hence the characterization given in Proposition 1.8 is still true on every open set U where
in (1.15) a : U ⊂ R3 → R denotes a smooth function such that M ∩ U = a−1(0) and ∇a 6= 0.

1.1.1 Existence and minimizing properties of geodesics

As a direct consequence of Proposition 1.8 one gets the following existence and uniqueness theorem
for geodesics.

Corollary 1.10. Let q ∈M and v ∈ TqM . There exists a unique geodesic γ : [0, ε] →M , for ε > 0
small enough, such that γ(0) = q and γ̇(0) = v.

Proof. By Proposition 1.8, geodesics satisfy a second order ODE, hence they are smooth curves,
characterized by ther initial position and velocity.

To end this section we show that small pieces of geodesics are always global minimizers.

Theorem 1.11. Let γ : [0, T ]→M be a geodesic. For every τ ∈ [0, T [ there exists ε > 0 such that

(i) γ|[τ,τ+ε] is a minimizer, i.e., d(γ(τ), γ(τ + ε)) = ℓ(γ|[τ,τ+ε]),

(ii) γ|[τ,τ+ε] is the unique minimizer joining γ(τ) and γ(τ + ε) in the class of piecewise smooth
curves, up to reparametrization.

Proof. Without loss of generality let us assume that τ = 0 and that γ is arc length parametrized.
Consider a arc length parametrized curve α on M such that α(0) = γ(0) and α̇(0) ⊥ γ̇(0) and
denote by (t, s) 7→ xs(t) a smooth variation of geodesics such that x0(t) = γ(t) and (see also Figure
1.1)

xs(0) = α(s), ẋs(0) ⊥
∂

∂s
α(s). (1.16)

The map ψ : (t, s) 7→ xs(t) is smooth, and is a local diffeomorphism near (0, 0). Indeed we compute
the partial derivatives

∂ψ

∂t

∣∣∣
t=s=0

=
∂

∂t

∣∣∣∣
t=0

x0(t) = γ̇(0),
∂ψ

∂s

∣∣∣
t=s=0

=
∂

∂s

∣∣∣∣
s=0

xs(0) = α̇(0),
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γ

α(s)

xs(t)

Figure 1.1: Proof of Theorem 1.11

and they are linearly independent. Thus ψ maps a neighborhood U of (0, 0) on a neighborhood W
of γ(0). We now consider the function φ and the vector field X defined on W by

φ : xs(t) 7→ t, X : xs(t) 7→ ẋs(t).

Claim. For every q ∈W it holds ∇qφ = X(q).

To prove the claim, we first show that the two vectors are parallel, and then that they actually
coincide. To show that they are parallel, first notice that ∇φ is orthogonal to its level set {t =
const}, hence 〈

∇xs(t)φ
∣∣∣∣
∂

∂s
xs(t)

〉
= 0, ∀ (t, s) ∈ U. (1.17)

Now, let us now consider the quantity, for fixed s

ζs(t) :=

〈
∂

∂s
xs(t)

∣∣∣∣ ẋs(t)
〉
. (1.18)

Let us prove that, for fixed s, one has ζ̇s(t) = 0. Indeed computing the derivative with respect to t
of (1.18) one gets

ζ̇s(t) =

〈
∂

∂s
ẋs(t)

∣∣∣∣ ẋs(t)
〉
+

〈
∂

∂s
xs(t)

∣∣∣∣ ẍs(t)
〉

(1.19)

which is identically zero. Indeed the first term in (1.19) vanishes since ẋs(t) has unit speed, while
the second one vanishes thanks to the geodesic property (1.13). Hence, (1.18) is constant with
respect to t and ζs(t) = ζs(0) = 0 by the orthogonality assumption (1.16), for every s.

Combining (1.17) and (1.18) one gets that ∇φ is parallel to X. Actually they coincide since

〈∇φ |X〉 = d

dt
φ(xs(t)) = 1,

which proves the claim. Now consider ε > 0 small enough such that γ|[0,ε] is contained in W and
take a piecewise smooth and length parametrized curve c : [0, ε′]→M contained in W and joining
γ(0) to γ(ε). Let us show that γ is shorter than c. First notice that

ℓ(γ|[0,ε]) = ε = φ(γ(ε)) = φ(c(ε′)).
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Using that φ(c(0)) = φ(γ(0)) = 0 and that ℓ(c) = ε′ we have that

ℓ(γ|[0,ε]) = φ(c(ε′))− φ(c(0)) =
∫ ε′

0

d

dt
φ(c(t))dt (1.20)

=

∫ ε′

0
〈∇φ(c(t)) | ċ(t)〉 dt

=

∫ ε′

0
〈X(c(t)) | ċ(t)〉 dt ≤ ε′ = ℓ(c), (1.21)

The last inequality follows from the Cauchy-Schwartz inequality. Indeed

〈X(c(t)) | ċ(t)〉 ≤ ‖X(c(t))‖‖ċ(t)‖ = 1, (1.22)

which holds at every smooth point of c(t). In addition, equality in (1.22) holds if and only if
ċ(t) = X(c(t)) (at the smooth points of c). Hence we get that ℓ(c) = ℓ(γ|[0,ε]) if and only if c
coincides with γ|[0,ε].

To show that there exists ε̄ ≤ ε such that γ|[0,ε̄] is a global minimizer among all piecewise
smooth curves joining γ(0) to γ(ε̄), it is enough to take ε̄ < dist(γ(0), ∂W ). Indeed every curve
that escapes from W has length greater than ε̄.

From Theorem 1.11 we obtain the following.

Corollary 1.12. Any minimizer of the distance (in the class of piecewise smooth curves) is a
geodesic, and hence smooth.

1.1.2 Absolutely continuous curves

Notice that formula (1.1) defines the length of a curve even if γ is only absolutely continuous,
if one interprets the integral in the Lebesgue sense (recall that absolutely continuous curve are
differentiable almost everywhere).

The proof of Theorem 1.11, and in particular estimates (1.20)-(1.21), can be extended to the
class of absolutely continuous curves. This proves that small pieces of geodesics are minimizers also
in the larger class of absolutely continuous curves on M . As a byproduct, we have the following
corollary.

Corollary 1.13. Any minimizer of the distance (in the class of absolutely continuous curves) is a
geodesic, and hence smooth.

1.2 Parallel transport

In this section we want to introduce the notion of parallel transport on a surface (along a curve),
which let us to define its main geometric invariant: the Gaussian curvature.

Definition 1.14. Let γ : [0, T ] → M be a smooth curve. A smooth curve of tangent vectors
ξ(t) ∈ Tγ(t)M is said to be parallel if ξ̇(t) ⊥ Tγ(t)M .
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This notion generalizes the notion of parallelism of vectors on the plane, where it is possible to
canonically identify every tangent space to M = R2 with R2 itself.2 In this case a smooth curve of
tangent vectors ξ(t) ∈ Tγ(t)M is parallel if and only if ξ̇(t) = 0.

When M is the zero level of a smooth function a : R3 → R as in (1.14), we have the following
description:

Proposition 1.15. A smooth curve of tangent vectors ξ(t) defined along γ : [0, T ]→M is parallel
if and only if it satisfies

ξ̇(t) = −
γ̇(t)T (∇2

γ(t)a)ξ(t)

‖∇γ(t)a‖2
∇γ(t)a, ∀ t ∈ [0, T ]. (1.23)

Proof. As in Remark 1.7, ξ(t) ∈ Tγ(t)M implies
〈
∇γ(t)a, ξ(t)

〉
= 0. Moreover, by assumption,

ξ̇(t) = α(t)∇γ(t)a for some smooth function α. With analogous computations as in the proof of
Proposition 1.8 we get that

γ̇(t)T (∇2
γ(t)a)ξ(t) + α(t)‖∇γ(t)a‖2 = 0,

from which the statement follows.

Remark 1.16. Notice that, since (1.23) is a first order linear ODE with respect to ξ, for a given
curve γ : [0, T ] → M and initial datum v ∈ Tγ(0)M , there is a unique parallel curve of tangent
vectors ξ(t) ∈ Tγ(t)M along γ such that ξ(0) = v. Since (1.23) is a linear ODE, the operator that
associates with every initial condition ξ(0) the final vector ξ(t) is a linear operator, which is called
parallel transport.

Next we state a key property of the parallel transport.

Proposition 1.17. The parallel transport preserves the inner product. In other words, if ξ(t), η(t)
are two parallel curves of tangent vectors along γ, then we have

d

dt
〈ξ(t) | η(t)〉 = 0, ∀ t ∈ [0, T ]. (1.24)

Proof. From the fact that ξ(t), η(t) ∈ Tγ(t)M and ξ̇(t), η̇(t) ⊥ Tγ(t)M one immediately gets

d

dt
〈ξ(t) | η(t)〉 = 〈ξ̇(t)|η(t)〉 + 〈ξ(t) | η̇(t)〉 = 0.

The notion of parallel transport just introduced, permits to give a new characterization of
geodesics, cf. Propositions 1.8 and 1.15.

Corollary 1.18. A smooth curve γ : [0, T ]→M is a geodesic if and only if γ̇ is parallel along γ.

2The canonical isomorphism R2 ≃ TxR2 is written explicitly as follows: y 7→ d
dt

∣∣
t=0

x+ ty.
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1.2.1 Parallel transport and Levi-Civita connection

Definition 1.19. An orientation of a surface M is a smooth map ν : M → R3, defined globally
on M , such that ν(q) ⊥ TqM and ‖ν(q)‖ = 1 for every q ∈M . Notice that if ν is an orientation of
M , then also −ν defines an orientation of M .

A surface M is oriented if it is given (when it exists) an orientation. On an oriented surface
M , an orthonormal frame {e1, e2} of TqM is said positively oriented (resp. negatively oriented) if
e1 ∧ e2 = kν(q) with k > 0 (resp. k < 0).

In the following we assume that M is an oriented surface.

Definition 1.20. The spherical bundle SM on M is the disjoint union of all unit tangent vectors
to M :

SM =
⊔

q∈M
SqM, SqM = {v ∈ TqM, ‖v‖ = 1}. (1.25)

SM can be endowed with the structure of smooth manifold of dimension 3, and more precisely of
fiber bundle with base manifold M , typical fiber S1, and canonical projection

π : SM →M, π(v) = q if v ∈ TqM.

Remark 1.21. Fix a positively oriented local orthonormal frame {e1(q), e2(q)} on M . Since every
vector in the fiber SqM has norm one, we can write every v ∈ SqM as v = cos(θ)e1(q)+ sin(θ)e2(q)
for θ ∈ S1.

A choice of such an orthonormal frame induces then coordinates (q, θ) on SM . Notice that the
choice of a different positively oriented local orthonormal frame {e′1(q), e′2(q)} induces coordinates
(q′, θ′) on SM where q′ = q and θ′ = θ + φ(q) for φ ∈ C∞(M).

The orientation of M permits, once a unit tangent vector is given, to define a canonical or-
thonormal frame.

Definition 1.22. Let ξ ∈ SqM . The canonical orthonormal frame associated with ξ is the unique
orthonormal frame (ξ, η, ν) of R3 where (ξ, η) defines a positively oriented orthonormal frame on
TqM and ν ⊥ TqM is the unit vector defined by the orientation of M .

Let t 7→ ξ(t) ∈ Sγ(t)M be a smooth curve of unit tangent vectors along γ : [0, T ] → M . Define
for every t ∈ [0, T ] the canonical orthonormal frame (ξ(t), η(t), ν(t)) associated with ξ(t) as above.
Since t 7→ ξ(t) has constant speed, one has ξ(t) ⊥ ξ̇(t) for every t. Hence ξ̇ has no component along
ξ, and we can write

ξ̇(t) = uξ(t)η(t) + vξ(t)ν(t). (1.26)

Next we introduce the Levi-Civita connection as a differential 1-form. A differential 1-form is a
dual object of a vector field, and with every point associates a covector, that is a linear functional
on the tangent space.

Definition 1.23. The Levi-Civita connection on M is the 1-form ω ∈ Λ1(SM) defined by

ωξ : TξSM → R, ωξ(z) = uz, (1.27)

where z = uzη + vzν and (ξ, η, ν) is the orthonormal frame defined above.

Notice that ω changes sign if we change the orientation of M .
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Lemma 1.24. A curve of unit tangent vectors ξ(t) is parallel if and only if ωξ(t)(ξ̇(t)) = 0.

Proof. By definition ξ(t) is parallel if and only if ξ̇(t) is orthogonal to Tγ(t)M , i.e., collinear to
ν(t).

In particular from the previous lemma it follows that a curve parametrized by arc length γ :
[0, T ]→M is a geodesic if and only if

ωγ̇(t)(γ̈(t)) = 0, ∀ t ∈ [0, T ]. (1.28)

Proposition 1.25. The Levi-Civita connection ω ∈ Λ1(SM) satisfies the following properties:

(i) there exist two smooth functions a1, a2 :M → R such that

ω = dθ + a1(x1, x2)dx1 + a2(x1, x2)dx2, (1.29)

where (x1, x2, θ) is a system of coordinates on SM induced by the choice of coordinates on M
and a local orthonormal frame (cf. Remark 1.21).

(ii) dω = π∗Ω, where Ω is a 2-form defined on M and π : SM →M is the canonical projection.

Proof. (i). Fix a system of coordinates (x1, x2) on M and a local orthonormal frame, in such a way
that coordinates (x1, x2, θ) on SM are defined as in Remark 1.21. Consider the vector field ∂/∂θ
on SM (this vector field is independent on the choice of the coordinates). Let us prove that

ω

(
∂

∂θ

)
= 1.

Indeed consider a curve t 7→ ξ(t) of unit tangent vectors at a fixed point which describes a rotation
in a single fibre. As a curve on SM , the velocity of this curve is exactly its orthogonal vector, i.e.,
ξ̇(t) = η(t) and the equality above follows from the definition of ω. By construction, ω is invariant
by rotations, hence the coefficients ai = ω(∂/∂xi) do not depend on the variable θ.

(ii). A differential two-form on SM is the pull-back of a two form on M through the canonical
projection π : SM → M if and only if, when written in coordinates, its expression depends only
on coordinates on the base M . The claim then follows from the coordinate expression (1.29) since

dω =

(
−∂a1
∂x2

(x1, x2) +
∂a2
∂x1

(x1, x2)

)
dx1 ∧ dx2. (1.30)

Remark 1.26. Notice that the functions a1, a2 in (1.29) are not invariant by change of coordinates
on the fiber. Indeed fix a new angular coordinate θ′ = θ + ϕ(x1, x2) (induced by a different choice
of orthonormal frame, cf. Remark 1.21). Then one gets dθ′ = dθ + (∂x1ϕ)dx1 + (∂x2ϕ)dx2. Hence
ω = dθ′ + a′1(x1, x2)dx1 + a′2(x1, x2)dx2 where a′i = ai + ∂xiϕ for i = 1, 2.

By definition ω is an intrinsic 1-form on SM . Its differential, by property (ii) of Proposition
1.25, is the pull-back of an intrinsic 2-form on M , that in general is not exact.

Definition 1.27. The area form dV on a surfaceM is the differential 2-form that on every tangent
space to the manifold agrees with the volume induced by the inner product. In other words, for
every positively oriented orthonormal frame e1, e2 of TqM , one has dV (e1, e2) = 1.

Given a set Γ ⊂M its area is the quantity |Γ| =
∫
Γ dV .
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Since any 2-form on M is proportional to the area form dV , it makes sense to give the following
definition:

Definition 1.28. The Gaussian curvature of M is the function κ :M → R defined by the equality

Ω = −κdV. (1.31)

Note that κ does not depend on the orientation ofM , since both Ω and dV change sign if we reverse
the orientation. Moreover the area 2-form dV on the surface depends only on the metric structure
on the surface.

1.3 Gauss-Bonnet theorems

In this section we will prove both the local and the global version of the Gauss-Bonnet theorem. A
strong consequence of these results is the celebrated Gauss’ Theorema Egregium which says that
the Gaussian curvature of a surface is independent on its embedding in R3.

Definition 1.29. Let γ : [0, T ]→M be a smooth curve parametrized by arc length. The geodesic
curvature of γ is defined as

ργ(t) = ωγ̇(t)(γ̈(t)). (1.32)

Notice that if γ is a geodesic, then ργ(t) = 0 for every t ∈ [0, T ]. The geodesic curvature
measures how much a curve is far from being a geodesic.

Remark 1.30. The geodesic curvature changes sign if we move along the curve in the opposite
direction. Moreover, if M = R2, it coincides with the usual notion of curvature of a planar curve.

1.3.1 Gauss-Bonnet theorem: local version

A regular polygon in R2 is a polygon that is equiangular and equilateral. We include disks among
regular polygons (as a limit case, when the number of edges is infinite).

Definition 1.31. A curvilinear polygon Γ on an oriented surface M is the image of a regular
polygon in R2 under a diffeomorphism. We assume that ∂Γ is oriented consistently with the
orientation of M .

Notice that a curvilinear polygon is always homeomorphic to a disk, and the case when ∂Γ is
smooth (and Γ is diffeomorphic to the disk) is included in the definition.

In what follows, given a curvilinear polygon Γ on an oriented surface M , we denote by (cf. also
Figure 1.2)

• γi : Ii →M , for i = 1, . . . ,m, the smooth curves parametrized by arc length, with orientation
consistent with ∂Γ, such that ∂Γ = ∪mi=1γi(Ii),

• αi, for i = 1, . . . ,m, the external angles at the points where ∂Γ is not C1.

Theorem 1.32 (Gauss-Bonnet, local version). Let Γ be a curvilinear polygon on an oriented surface
M . Then we have ∫

Γ
κdV +

m∑

i=1

∫

Ii

ργi(t)dt+

m∑

i=1

αi = 2π. (1.33)
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Γ

γ1

γ2

γ5

γ3

γ4

α1

α2α3

α4

α5

Figure 1.2: A curvilinear polygon

Proof. (i). Case ∂Γ smooth.

In this case Γ is the image of the unit (closed) ball B1, centered in the origin of R2, under a
diffeomorphism

F : B1 →M, Γ = F (B1).

In what follows we denote by γ : I → M the curve such that γ(I) = ∂Γ. We consider on B1

the vector field V (x) = x1∂x2 − x2∂x1 which has an isolated zero at the origin and whose flow is
a rotation around zero. Denote by X := F∗V the induced vector field on M with critical point
q0 = F (0).

For ε > 0 small enough, we define (cf. Figure 1.3)

Γε := Γ \ F (Bε), and Aε := ∂F (Bε),

where Bε is the ball of radius ε centered at zero in R2. We have ∂Γε = Aε ∪ ∂Γ. Define the map

Γε

F

Aε

γ

MB1 \Bε

Figure 1.3: The map F
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φ : Γε → SM, φ(q) =
X(q)

|X(q)| .

First notice that ∫

φ(Γε)
dω =

∫

φ(Γε)
π∗Ω =

∫

π(φ(Γε))
Ω =

∫

Γε

Ω, (1.34)

where we used the fact that π(φ(Γε)) = Γε. Then let us compute the integral of the curvature κ
on Γε

∫

Γε

κdV = −
∫

Γε

Ω = −
∫

φ(Γε)
dω, (by (1.34))

= −
∫

∂φ(Γε)
ω, (by Stokes Theorem)

=

∫

φ(Aε)
ω −

∫

φ(∂Γ)
ω, (since ∂φ(Γε) = φ(Aε) ∪ φ(∂Γ)) (1.35)

Notice that in the third equality we used the fact that the induced orientation on ∂φ(Γε) gives
opposite orientation on the two terms. Let us treat separately these two terms. The first one, by
Proposition 1.25, can be written as

∫

φ(Aε)
ω =

∫

φ(Aε)
dθ +

∫

φ(Aε)
a1(x1, x2)dx1 + a2(x1, x2)dx2. (1.36)

The first element of (1.36) is equal to 2π since we integrate the 1-form dθ on a closed curve. The
second element of (1.36), for ε→ 0, satisfies

∣∣∣∣∣

∫

φ(Aε)
a1(x1, x2)dx1 + a2(x1, x2)dx2

∣∣∣∣∣ ≤ Cℓ(φ(Aε))→ 0, (1.37)

Indeed the functions ai are smooth (hence bounded on compact sets) and the length of φ(Aε) goes
to zero for ε→ 0.

Let us now consider the second term of (1.35). Since φ(∂Γ) is parametrized by the curve
t 7→ γ̇(t) (as a curve on SM), we have

∫

φ(∂Γ)
ω =

∫

I
ωγ̇(t)(γ̈(t))dt =

∫

I
ργ(t)dt.

Concluding we have from (1.35)

∫

Γ
κdV = lim

ε→0

∫

Γε

κdV = 2π −
∫

I
ργ(t)dt,

that is (1.33) in the smooth case (i.e., when αi = 0 for all i).
(ii). Case ∂Γ non smooth.

We reduce to the previous case by considering a sequence of polygons Γn such that ∂Γn is
smooth and Γn approximates Γ in a “smooth” way. In particular, we assume that ∂Γn coincides
with ∂Γ except in neighborhoods Ui, for i = 1, . . . ,m, of each point qi where ∂Γ is not smooth, in

such a way that the smooth curve σ
(n)
i that parametrizes (∂Γn \ ∂Γ) ∩ Ui satisfies ℓ(σni ) ≤ 1/n.
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If we apply the statement of the theorem for the smooth case to Γn we have

∫

Γn

κdV +

∫
ργ(n)(t)dt = 2π,

where γ(n) is the curve that parametrizes ∂Γn. Since Γn tends to Γ as n→∞, then

lim
n→∞

∫

Γn

κdV =

∫

Γ
κdV.

We are left to prove that

lim
n→∞

∫
ργ(n)(t)dt =

m∑

i=1

∫

Ii

ργi(t)dt+
m∑

i=1

αi. (1.38)

For every n, let us split the curve γ(n) as the union of the smooth curves σ
(n)
i and γ

(n)
i . Then

∫
ργ(n)(t)dt =

m∑

i=1

∫
ρ
γ
(n)
i

(t)dt+
m∑

i=1

∫
ρ
σ
(n)
i

(t)dt.

Since the curve γ
(n)
i tends to γi for n→∞ one has

lim
n→∞

∫
ρ
γ
(n)
i

(t)dt =

∫
ργi(t)dt.

Moreover, with analogous computations of part (i) of the proof

∫
ρ
σ
(n)
i

(t)dt =

∫

φ(σ
(n)
i )

ω =

∫

φ(σ
(n)
i )

dθ + a1(x1, x2)dx1 + a2(x1, x2)dx2,

and one has, using that ℓ(φ(σ
(n)
i ))→ 0

∫

φ(σ
(n)
i )

dθ −→
n→∞

αi,

∫

φ(σ
(n)
i )

a1(x1, x2)dx1 + a2(x1, x2)dx2 −→
n→∞

0.

Then (1.38) follows.

An important corollary is obtained by applying the Gauss-Bonnet theorem to geodesic triangles.
A geodesic triangle T is a curvilinear polygon with m = 3 edges and such that every smooth piece
of boundary γi is a geodesic. For a geodesic triangle T we denote by Ai := π−αi its internal angles,
for i = 1, 2, 3.

Corollary 1.33. Let T be a geodesic triangle and Ai(T ) its internal angles, for i = 1, 2, 3. Then

κ(q) = lim
|T |→0

∑3
i=1Ai(T )− π
|T | . (1.39)
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Proof. Fix a geodesic triangle T . Using that the geodesic curvature of γi vanishes, the local version
of Gauss-Bonnet theorem (1.33) can be rewritten as

3∑

i=1

Ai = π +

∫

Γ
κdV. (1.40)

Dividing for |T | and passing to the limit for |T | → 0 in the class of geodesic triangles containing q
one obtains

κ(q) = lim
|T |→0

1

|T |

∫

T
κdV = lim

|T |→0

∑3
i=1Ai(T )− π
|T | . (1.41)

1.3.2 Gauss-Bonnet theorem: global version

Now we state the global version of the Gauss-Bonnet theorem. In other words we want to generalize
(1.33) to the case when Γ is a region ofM not necessarily homeomorphic to the disk, see for instance
Figure 1.4. As we will see that the result depends on the Euler characteristic χ(Γ) of this region.

In what follows, by a triangulation ofM we mean a decomposition ofM into curvilinear polygons
(see Definition 1.31). Notice that every compact surface admits a triangulation.3

Definition 1.34. Let M ⊂ R3 be a compact oriented surface with piecewise smooth boundary
∂M . Consider a triangulation of M . We define the Euler characteristic of M as

χ(M) := n2 − n1 + n0, (1.42)

where ni is the number of i-dimensional faces in the triangulation.

The Euler characteristic can be defined for every region Γ of M in the same way. Here, by a
region Γ on a surfaceM , we mean a closed domain of the manifold with piecewise smooth boundary.

Remark 1.35. The Euler characteristic is well-defined. Indeed one can show that the quantity (1.42)
is invariant for refinement of a triangulation, since at every step of the refinement the alternating
sum does not change. Moreover, given two different triangulations of the same region, there always
exists a triangulation that is a refinement of both of them. This shows that the quantity (1.42) is
independent on the triangulation.

Example 1.36. For a compact connected orientable surface Mg of genus g (i.e., a surface that
topologically is a sphere with g handles) one has χ(Mg) = 2− 2g. For instance one has χ(S2) = 2,
χ(T2) = 0, where T2 is the torus. Notice also that χ(B1) = 1, where B1 is the closed unit disk in
R2.

Following the notation introduced in the previous section, for a given region Γ, we assume that
∂Γ is oriented consistently with the orientation of M and ∂Γ = ∪mi=1γi(Ii) where γi : Ii → M , for
i = 1, . . . ,m, are smooth curves parametrized by arc length (with orientation consistent with ∂Γ).
We denote by αi the external angles at the points where ∂Γ is not C1 (see Figure 1.4).

3Formally, a triangulation of a topological space M is a simplicial complex K, homeomorphic to M , together with
a homeomorphism h : K → M .
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M

Γ3

Γ1

Γ4

Γ2

Figure 1.4: Gauss-Bonnet theorem

Theorem 1.37 (Gauss-Bonnet, global version). Let Γ be a region of a surface on a compact
oriented surface M . Then

∫

Γ
κdV +

m∑

i=1

∫

Ii

ργi(t)dt+

m∑

i=1

αi = 2πχ(Γ). (1.43)

Proof. As in the proof of the local version of the Gauss-Bonnet theorem we consider two cases:
(i) Case ∂Γ smooth (in particular αi = 0 for all i).
Consider a triangulation of Γ and let {Γj , j = 1, . . . , n2} be the corresponding subdivision of Γ in

curvilinear polygons. We denote by {γ(j)k } the smooth curves parametrized by arc length whose

image are the edges of Γj and by and θ
(j)
k the external angles of Γj . We assume that all orientations

are chosen accordingly to the orientation of M . Applying Theorem 1.32 to every Γj and summing
w.r.t. j we get

n2∑

j=1

(∫

Γj

κdV +
∑

k

∫
ρ
γ
(j)
k

(t)dt+
∑

k

θ
(j)
k

)
= 2πn2. (1.44)

We have that
n2∑

j=1

∫

Γj

κdV =

∫

Γ
κdV,

∑

j,k

∫
ρ
γ
(j)
k

(t)dt =
m∑

i=1

∫
ργi(t)dt. (1.45)

The second equality is a consequence of the fact that every edge of the decomposition that does
not belong to ∂Γ appears twice in the sum, with opposite sign. It remains to check that

∑

j,k

θ
(j)
k = 2π(n1 − n0), (1.46)

Let us denote by N the total number of angles in the sum of the left hand side of (1.46). After
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reindexing we have to check that
N∑

ν=1

θν = 2π(n1 − n0). (1.47)

Denote by n∂0 the number of vertexes that belong to ∂Γ and with nI0 := n0 − n∂0 . Similarly we
define n∂1 and nI1. We have the following relations:

(i) N = 2nI1 + n∂1 ,

(ii) n∂0 = n∂1 ,

Claim (i) follows from the fact that every curvilinear polygon with n edges has n angles, but
the internal edges are counted twice since each of them appears in two polygons. Claim (ii) is a
consequence of the fact that ∂Γ is the union of closed curves. If we denote by Ak := π − θk the
internal angles, we have

N∑

ν=1

θν = Nπ −
N∑

ν=1

Aν . (1.48)

Moreover the sum of the internal angles is equal to π for a boundary vertex, and to 2π for an
internal one. Hence one gets

N∑

ν=1

Aν = 2πnI0 + πn∂0 , (1.49)

Combining (1.48), (1.49) and (i) one has

ν∑

i=1

θν = (2nI1 + n∂1)π − (2nI0 + n∂0)π

Using (ii) one finally gets (1.47).
(ii) Case ∂Γ non-smooth.

We consider a decomposition of Γ into curvilinear polygons whose edges intersect the boundary in
the smooth part (this is always possible). The proof is identical to the smooth case up to formula
(1.45). Now, instead of (1.47), we have to check that

N∑

ν=1

θν =
m∑

i=1

αi + 2π(n1 − n0), (1.50)

Now (1.50) can be rewritten as ∑

ν /∈A
θν = 2π(n1 − n0),

where A is the set of indices whose corresponding angles are non smooth points of ∂Γ.
Consider now a new region Γ̃, obtained by smoothing the edges of Γ, together with the decom-

position induced by Γ (see Figure 1.4). Denote by ñ1 and ñ0 the number of edges and vertexes of
the decomposition of Γ̃. Notice that {θν , ν /∈ A} is exactly the set of all angles of the decomposition
of Γ̃. Moreover ñ1 − ñ0 = n1 − n0, since n0 = ñ0 +m and n1 = ñ1 +m, where m is the number of
non-smooth points. Hence, by part (i) of the proof:

∑

ν /∈A
θν = 2π(ñ1 − ñ0) = 2π(n1 − n0).
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Corollary 1.38. Let M be a compact oriented surface without boundary. Then

∫

M
κdV = 2πχ(M). (1.51)

1.3.3 Consequences of the Gauss-Bonnet theorems

Definition 1.39. Let M,M ′ be two surfaces in R3. A smooth map φ : R3 → R3 is called a local
isometry between M and M ′ if φ(M) =M ′ and for every q ∈M it satisfies

〈v |w〉 = 〈Dqφ(v) |Dqφ(w)〉 , ∀ v,w ∈ TqM. (1.52)

If, moreover, the map φ is a bijection, then φ is called a global isometry.

Two surfaces M and M ′ are said to be locally isometric (resp. globally isometric) if there exists
a local isometry (resp. global isometry) between M and M ′. Notice that the restriction φ of an
isometry of R3 to a surface M ⊂ R3 always defines a global isometry between M and M ′ = φ(M).

Formula (1.52) says that a local isometry between two surfaces M and M ′ preserves the angles
between tangent vectors and, a fortiori, the length of curves and the distance between points.

By Corollary 1.33, thanks to the fact that the angles and the volumes are preserved by isometries,
one obtains that the Gaussian curvature is invariant by local isometries, in the following sense.

Theorem 1.40 (Gauss’s Theorema Egregium). Let φ is a local isometry between M and M ′. Then
for every q ∈M one has κ(q) = κ′(φ(q)), where κ (resp. κ′) is the Gaussian curvature of M (resp.
M ′).

The previous result says that the Gaussian curvature κ depends only on the metric structure on
M and not on the specific fact that the surface is embedded in R3 with the induced inner product.

Exercise 1.41. (i). Prove that the Euclidean plane R2 has vanishing Gaussian curvature.

(ii). Prove that a surface M is locally isometric to the Euclidean plane R2 if and only if there
exists a coordinate system (x1, x2) in a neighborhood of each point q ∈ M such that the vectors
∂x1 and ∂x2 have unit length and are everywhere orthonormal.

Corollary 1.42. Let M be a surface and q ∈ M . If κ(q) 6= 0 then M is not locally isometric to
R2 in a neighborhood of q.

As a converse of Corollary 1.42 we have the following.

Theorem 1.43. Assume that κ ≡ 0 in a neighborhood U of a point q ∈ M . Then M is locally
Euclidean (i.e., locally isometric to R2) on U .

Proof. From our assumptions we have, in a neighborhood U of q:

Ω = κdV = 0.

Hence dω = π∗Ω = 0. From the explicit expression

ω = dθ + a1(x1, x2)dx1 + a2(x1, x2)dx2,
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it follows that the 1-form a1dx1 + a2dx2 is locally exact, i.e., there exists a neighborhood W of q,
W ⊂ U , and a function φ : W → R such that a1(x1, x2)dx1 + a2(x1, x2)dx2 = dφ. Hence

ω = d(θ + φ(x1, x2)).

Thus we can define a new angular coordinate on SM (cf. also Remark 1.26), which we still denote
by θ, in such a way that

ω = dθ. (1.53)

Now, let γ be an arc length parametrized geodesic, i.e., ωγ̇(t)(γ̈(t)) = 0. Using the the angular
coordinate θ just defined on the fibers of SM , the curve t 7→ γ̇(t) ∈ Sγ(t)M is written as t 7→ θ(t).
Using (1.53), we have then

0 = ωγ̇(t)(γ̈(t)) = dθ(γ̈(t)) = θ̇(t).

In other words the angular coordinate along a geodesic γ is constant.

We want to construct Cartesian coordinates in a neighborhood U of q. Consider the two length
parametrized geodesics γ1 and γ2 starting from q and such that θ1(0) = 0, θ2(0) = π/2. Define
them to be the x1-axes and x2-axes of our coordinate system, respectively.

Then, for each point q′ ∈ U consider the two geodesics starting from q′ and satisfying θ1(0) = 0
and θ2(0) = π/2. We assign coordinates (x1, x2) to each point q′ in U by considering the length
parameter of the geodesic projection of q′ on γ1 and γ2 (See Figure 1.5). Notice that the family of
geodesics constructed in this way, and parametrized by q′ ∈ U , are mutually orthogonal at every
point.

By construction, in this coordinate system the vectors ∂x1 and ∂x2 have length one (being the
tangent vectors to length parametrized geodesics) and are everywhere mutually orthogonal. Hence
the statement follows from part (ii) of Exercise 1.41.

q

q′

γ2

γ1

x1

x2

Figure 1.5: Proof of Theorem 1.43.

1.3.4 The Gauss map

We end this section with a geometric characterization of the Gaussian curvature of a manifold M ,
using the Gauss map. The Gauss map is a map from the surface M to the unit sphere S2 of R3.
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Definition 1.44. Let M be an oriented surface. We define the Gauss map associated with M as

N :M → S2, q 7→ νq, (1.54)

where νq ∈ S2 ⊂ R3 denotes the external unit normal vector to M at q.

Let us consider the differential of the Gauss map at the point q

DqN : TqM → TN (q)S
2.

Notice that a tangent vector to the sphere S2 at N (q) is by construction orthogonal to N (q). Hence
it is possible to identify TN (q)S

2 with TqM and think to the differential of the Gauss map DqN as
an endomorphism of TqM .

Theorem 1.45. Let M be a surface of R3 with Gauss map N and Gaussian curvature κ. Then

κ(q) = det(DqN ), (1.55)

where DqN is interpreted as an endomorphism TqM .

We start by proving an important property of the Gauss map.

Lemma 1.46. For every q ∈M , the differential DqN of the Gauss map is a symmetric operator,
i.e., it satisfies

〈DqN (ξ) | η〉 = 〈ξ |DqN (η)〉 , ∀ ξ, η ∈ TqM. (1.56)

Proof. The statement is local, hence it is not restrictive to assume that M parametrized by a
function φ : R2 → M . In this case TqM = ImDuφ, where φ(u) = q. Let v,w ∈ R2 such that
ξ = Duφ(v) and η = Duφ(w). Since N (q) ∈ TqM⊥ we have

〈N (q) | η〉 = 〈N (q) |Duφ(w)〉 = 0.

Differentiating the last identity in the direction of ξ, one gets

〈DqN (ξ) | η〉+
〈
N (q)

∣∣D2
uφ(v,w)

〉
= 0,

where D2
uφ is the second differential. Exchanging the role of v and w in the previous argument,

and using that D2
uφ is a bilinear symmetric map, the identity (1.56) follows.

The proof of Theorem 1.45 relies on the general Cartan’s moving frame method, which is based
on the following idea. Fix ξ ∈ SM , and denote by

(e1(ξ), e2(ξ), e3(ξ)), ei : SM → R3, (1.57)

the canonical orthonormal basis (ξ, η, ν) attached at ξ and constructed as in Section 1.2. In partic-
ular e1(ξ) = ξ for every ξ ∈ SM . Then one computes the differentials of these maps (taking values
in the ambient space R3) and writes them as linear combinations of the vectors ei as follows

dξei(z) =

3∑

j=1

(ωξ)ij(z) ej(ξ), z ∈ TξSM. (1.58)
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where each coefficient ωij ∈ Λ1SM is a differential 1-form. Dropping ξ and z from the notation in
(1.58), the previous identity is rewritten as

dei =
3∑

j=1

ωij ej , ωij ∈ Λ1SM. (1.59)

Since for each ξ the basis (e1(ξ), e2(ξ), e3(ξ)) is orthonormal, the derivative of each vector is or-
thogonal to the vector itself. It follows that the matrix ω has vanishing coefficient on the principal
diagonal, and is actually is skew-symmetric4. It follows that

de1 = ω12e2 +ω13e3
de2 = −ω12e1 +ω23e3
de3 = −ω13e1 −ω23e2

(1.60)

Lemma 1.47. We have the identity

ω13 ∧ ω23 = dω12. (1.61)

Proof. Differentiating the first equation in (1.60) one gets, using that d2 = 0,

0 = d2e1 = dω12e2 + ω12 ∧ de2 + dω13e3 + ω13 ∧ de3
= (dω12 − ω13 ∧ ω23)e2 + (dω13 − ω12 ∧ ω23)e3,

which implies in particular (1.61).

Remark 1.48. By construction, the 1-form ω12 computes the coefficient of the derivative of the
first vector of the orthonormal basis along the second one. It means that ω12 = ω, where ω is the
Levi-Civita connection (cf. also Definition 1.54).

Before proving Theorem 1.45, let us recall the following linear algebra property.

Exercise 1.49. Let V be a 2-dimensional Euclidean vector space and let e1, e2 be an orthonormal
basis of V . Let F : V → V a linear map and write F = F1e1 + F2e2, where Fi : V → R are linear
functionals. Prove that F1 ∧ F2 = (detF )dV , where dV is the area form induced by the inner
product.

Proof of Theorem 1.45. The statement can be rewritten as an identity between differential 2-forms
on M as follows

κdV = det(DqN )dV, (1.62)

where dV denotes the area form on M . Applying the pullback π∗ of the canonical projection
π : SM →M to both sides of 1.62 one gets

dω = π∗(κdV ) = π∗(det(DqN )dV ) (1.63)

Combining Lemma 1.47 and Remark 1.48, it is sufficient to prove the identity

ω13 ∧ ω23 = π∗(det(DqN )dV ) = det(Dπ(ξ)N )π∗dV. (1.64)

Since e3 = N ◦ π, where π : SM →M is the canonical projection, one has

DqN ◦ π∗ = de3 = −ω13e1 − ω23e2.

The identity (1.64) then follows by Exercice 1.49.
4this can be seen as a consequence of the fact that (e1(ξ), e2(ξ), e3(ξ)) defines an element of the Lie group SO(3)

hence ω belongs to its tangent space, that is the Lie algebra of skew-symmetric matrices so(3).
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Further comments

Lemma 1.46 allows us to define the principal curvatures of M at the point q as the two real
eigenvalues k1(q), k2(q) of the map DqN . In particular

κ(q) = k1(q)k2(q), q ∈M.

The principal curvatures at q can be geometrically interpreted as the maximum and the minimum
of the curvature of the curves obtained by intersecting M with planes passing through q and
orthogonal to TqM .

Notice moreover that, using the Gauss-Bonnet theorem, one can relate then degree of the map
N with the Euler characteristic of M as follows

degN :=
1

|S2|

∫

M
(detDqN )dV =

1

4π

∫

M
κdV =

1

2
χ(M).

where |S2| denotes the area of the unit sphere S2 of R3.

1.4 Surfaces in R3 with the Minkowski inner product

The theory and the results obtained in this chapter can be adapted to the case when M ⊂ R3 is
a surface in the Minkowski 3-space, that is R3 endowed with the hyperbolic (or pseudo-Euclidean)
inner product

〈q1, q2〉h = x1x2 + y1y2 − z1z2. (1.65)

Here qi = (xi, yi, zi) for i = 1, 2, are two points in R3. When 〈q, q〉h ≥ 0, we denote by ‖q‖h =

〈q, q〉1/2h the length of the vector induced by the inner product (1.65).

For the metric structure to be well-defined on M , we should require that the restriction of the
inner product (1.65) to the tangent space to M is positive definite at every point. Indeed, under
this assumption, the inner product (1.65) can be used to define the length of a tangent vector to the
surface (which is non-negative). Thus one can introduce the length of (piecewise) smooth curves on
M and its distance by the same formulas as in Section 1.1. These surfaces are also called space-like
surfaces in the Minkowski space.

The structure of the inner product imposes some conditions on the structure of space-like
surfaces, as the following exercice shows.

Exercise 1.50. Let M be a space-like surface in R3 endowed with the inner product (1.65).

(i) Show that if v ∈ TqM is a non zero vector that is orthogonal to TqM , then 〈v, v〉h < 0.

(ii) Prove that, if M is compact, then ∂M 6= ∅.

(iii) Show that the restriction to M of the projection π : R3 → R2 defined by π(x, y, z) = (x, y) is
a local diffeomorphism.

(iv) M is locally a graph, i.e., for every point in M there exists U ⊂ R3 such that M ∩ U =
{(x, y, z) | z = f(x, y)}, for a suitable smooth function f .
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The results obtained in the previous sections for surfaces embedded in R3 can be recovered for
space-like surfaces by simply adapting all formulas to their “hyperbolic” counterpart. For instance,
geodesics are defined as curves of unit speed whose second derivative is orthogonal, with respect to
〈· | ·〉h, to the tangent space to M .

For a smooth function a : R3 → R, its hyperbolic gradient ∇hqa is defined as

∇hqa =

(
∂a

∂x
,
∂a

∂y
,−∂a

∂z

)
.

If we assume that M = a−1(0) is a regular level set of a smooth function a : R3 → R and γ(t) is a
curve contained in M (i.e., a(γ(t)) = 0), one has the identity

0 =
〈
∇hγ(t)a

∣∣∣ γ̇(t)
〉
h
.

The same computation shows that ∇hγ(t)a is orthogonal to the level sets of a, where orthogo-

nal always means with respect to 〈· | ·〉h. In particular, if M = a−1(0) is space-like, one has
〈∇qa,∇qa〉h < 0.

Exercise 1.51. Let γ be a geodesic on M = a−1(0). Show that γ satisfies the equation (in matrix
notation)

γ̈(t) = −
γ̇(t)T (∇2

γ(t)a)γ̇(t)

‖∇hγ(t)a‖2h
∇hγ(t)a, ∀ t ∈ [0, T ]. (1.66)

where ∇2
γ(t)a is the (classical) matrix of second derivatives of a.5

Given a smooth curve γ : [0, T ] → M on a surface M , a smooth curve of tangent vectors
ξ(t) ∈ Tγ(t)M is said to be parallel if ξ̇(t) ⊥ Tγ(t)M , with respect to the hyperbolic inner product.
It is then straightforward to check that, if M is the zero level of a smooth function a : R3 → R,
then ξ(t) is parallel along γ if and only if it satisfies

ξ̇(t) = −
γ̇(t)T (∇2

γ(t)a)ξ(t)

‖∇hγ(t)a‖2h
∇hγ(t)a, ∀ t ∈ [0, T ]. (1.67)

By definition a smooth curve γ : [0, T ]→M is a geodesic if and only if γ̇ is parallel along γ.

Remark 1.52. As for surfaces in the Euclidean space, given curve γ : [0, T ]→M and initial datum
v ∈ Tγ(0)M , there is a unique parallel curve of tangent vectors ξ(t) ∈ Tγ(t)M along γ such that
ξ(0) = v. Moreover the operator ξ(0) 7→ ξ(t) is a linear operator, which the parallel transport of v
along γ.

Exercise 1.53. Show that if ξ(t), η(t) are two parallel curves of tangent vectors along the same
curve γ, then we have

d

dt
〈ξ(t) | η(t)〉h = 0, ∀ t ∈ [0, T ]. (1.68)

Assume that M is oriented. Given an element ξ ∈ SqM we can complete it to an orthonormal
frame (ξ, η, ν) of R3 in the following unique way:

5otherwise one can write the numerator of (1.66) as
〈
∇2,h

γ(t)γ̇(t)
∣∣∣ γ̇(t)

〉

h
, where ∇2,h

γ(t) is the hyperbolic Hessian.
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(i) η ∈ TqM is orthogonal to ξ with respect to 〈· | ·〉h and (ξ, η) is positively oriented (w.r.t. the
orientation of M),

(ii) ν ⊥ TqM with respect to 〈· | ·〉h and (ξ, η, ν) is positively oriented (w.r.t. the orientation of
R3).

For a smooth curve of unit tangent vectors ξ(t) ∈ Sγ(t)M along a curve γ : [0, T ] → M we define
η(t), ν(t) ∈ Tγ(t)M and we can write

ξ̇(t) = uξ(t)η(t) + vξ(t)ν(t).

Definition 1.54. The hyperbolic Levi-Civita connection on M is the 1-form ω ∈ Λ1(SM) defined
by

ωξ : TξSM → R, ωξ(z) = uz, (1.69)

where z = uzη + vzν and (ξ, η, ν) is the orthonormal frame defined above.

It is again easy to check that a curve of unit tangent vectors ξ(t) is parallel if and only if
ωξ(t)(ξ̇(t)) = 0 and a curve parametrized by arc length γ : [0, T ]→M is a geodesic if and only if

ωγ̇(t)(γ̈(t)) = 0, ∀ t ∈ [0, T ]. (1.70)

Exercise 1.55. Prove that the hyperbolic Levi Civita connection ω ∈ Λ1(SM) satisfies:

(i) there exist two smooth functions a1, a2 :M → R such that

ω = dθ + a1(x1, x2)dx1 + a2(x1, x2)dx2, (1.71)

where (x1, x2, θ) is a system of coordinates on SM .

(ii) dω = π∗Ω, where Ω is a 2-form defined on M and π : SM →M is the canonical projection.

Again one can introduce the area form dV on M induced by the inner product and it makes
sense to give the following definition:

Definition 1.56. The Gaussian curvature of a surfaceM in the Minkowski 3-space is the function
κ :M → R defined by the equality

Ω = −κdV. (1.72)

By reasoning as in the Euclidean case, one can define the geodesic curvature of a curve and
prove the analogue of the Gauss-Bonnet theorem in this context. As a consequence one gets that
the Gaussian curvature is again invariant under isometries of M and hence is an intrinsic quantity
that depends only on the metric properties of the surface and not on the fact that its metric is
obtained as the restriction of some metric defined in the ambient space.

Finally one can define the hyperbolic Gauss map.

Definition 1.57. Let M be an oriented surface. We define the Gauss map

N :M → H2, q 7→ νq, (1.73)

where νq ∈ H2 ⊂ R3 denotes the external unit normal vector to M at q, with respect to the
Minkowski inner product.
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Let us now consider the differential of the Gauss map at the point q:

DqN : TqM → TN (q)H
2 ≃ TqM

where an element tangent to the hyperbolic plane H2 at N (q), being orthogonal to N (q), is iden-
tified with a tangent vector to M at q.

Theorem 1.58. The differential of the Gauss map DqN is symmetric, and κ(q) = det(DqN ).

1.5 Model spaces of constant curvature

In this section we briefly discuss surfaces embedded in R3 (with Euclidean or Minkowski inner
product) that have constant Gaussian curvature, playing the role of model spaces. For each model
we are interested in describing geodesics and, more generally, curves of constant geodesic curvature.
These results will be useful in the study of sub-Riemannian model spaces in dimension three (cf.
Chapter 7).

Assume that the surface M has constant Gaussian curvature κ ∈ R. We already know that κ
is a metric invariant of the surface, i.e., it does not depend on the embedding of the surface in R3.
We will distinguish the following three cases:

(i) κ = 0: this is the flat model, corresponding to the Euclidean plane,

(ii) κ > 0: these corresponds to the case of the sphere,

(iii) κ < 0: these corresponds to the hyperbolic plane.

We will briefly discuss the case (i), since it is trivial, and study in some more detail the cases (ii)
and (iii) of spherical and hyperbolic geometry.

1.5.1 Zero curvature: the Euclidean plane

The Euclidean plane can be realized as the surface of R3 defined by the zero level set of the function

a : R3 → R, a(x, y, z) = z.

It is an easy exercise, applying the results of the previous sections, to show that the Gaussian
curvature of this surface is zero (the Gauss map is constant) and to characterize geodesics and
curves with constant geodesic curvature.

Exercise 1.59. Prove that geodesics on the Euclidean plane are lines. Moreover, show that curves
with constant geodesic curvature c 6= 0 are circles of radius 1/c.

1.5.2 Positive curvature: the sphere

Let us consider the sphere S2
r of radius r as the surface of R3 defined as the zero level set of the

function

S2
r = a−1(0), a(x, y, z) = x2 + y2 + z2 − r2. (1.74)
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If we denote, as usual, with 〈· | ·〉 the Euclidean inner product in R3, S2
r can be viewed also as the

set of points q = (x, y, z) whose Euclidean norm is constant

S2
r = {q ∈ R3 | 〈q | q〉 = r2}.

The Gauss map associated with this surface can be easily computed and it is explicitly given by

N : S2
r → S2, N (q) =

1

r
q, (1.75)

It follows immediately by (1.75) that the Gaussian curvature of the sphere is κ = 1/r2 at every
point q ∈ S2

r . Let us now recover the structure of geodesics and curves with constant geodesic
curvature on the sphere.

Proposition 1.60. Let γ : [0, T ]→ S2
r be a curve with unit speed and constant geodesic curvature

equal to c ∈ R. Then, for every w ∈ R3, the function α(t) = 〈γ̇(t) |w〉 is a solution of the differential
equation

α̈(t) +

(
c2 +

1

r2

)
α(t) = 0.

Proof. Differentiating twice the equality a(γ(t)) = 0, where a is the function defined in (1.74), we
get (in matrix notation):

γ̇(t)T (∇2
γ(t)a)γ̇(t) + γ̈(t)T∇γ(t)a = 0.

Moreover, since ‖γ̇(t)‖ is constant and γ has constant geodesic curvature equal to c, there exists a
function b(t) such that

γ̈(t) = b(t)∇γ(t)a+ cη(t), (1.76)

where c is the geodesic curvature of the curve and η(t) = γ̇(t)⊥ is the vector orthogonal to γ̇(t) in
Tγ(t)S

2
r (defined in such a way that γ̇(t) and η(t) is a positively oriented frame). Reasoning as in

the proof of Proposition 1.8 and noticing that ∇γ(t)a is proportional to the vector γ(t), one can
compute b(t) and obtains that γ satisfies the differential equation

γ̈(t) = − 1

r2
γ(t) + cη(t). (1.77)

Claim. We have η̇(t) = −cγ̇(t).
The curve η(t) has constant norm, hence η̇(t) is orthogonal to η(t). Recall that the triple

(γ(t), γ̇(t), η(t)) defines an orthogonal frame at every point. Differentiating the identity 〈η(t) | γ(t)〉 =
0 with respect to t one has

0 = 〈η̇(t) | γ(t)〉+ 〈η(t) | γ̇(t)〉 = 〈η̇(t) | γ(t)〉 .

Hence η̇(t) has non vanishing component only along γ̇(t). Differentiating the identity 〈η(t) | γ̇(t)〉 =
0 one obtains

0 = 〈η̇(t) | γ̇(t)〉+ 〈η(t) | γ̈(t)〉 = 〈η̇(t) | γ̇(t)〉+ c,

where we used (1.77). Hence η̇(t) = 〈η̇(t) | γ̇(t)〉 γ̇(t) = −cγ̇(t), which proves the claim.
Next we compute the derivatives of the function α as follows

α̇(t) = 〈γ̈(t) |w〉 = − 1

r2
〈γ(t) |w〉+ c 〈η(t) |w〉 . (1.78)
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Using the above claim, we have

α̈(t) = − 1

r2
〈γ̇(t) |w〉+ c 〈η̇(t) |w〉 (1.79)

= − 1

r2
〈γ̇(t) |w〉 − c2 〈γ̇(t) |w〉 = −

(
1

r2
+ c2

)
α(t). (1.80)

which ends the proof of the Proposition 1.60.

Corollary 1.61. Constant geodesic curvature curves are contained in the intersection of S2
r with

an affine plane of R3. In particular, geodesics are contained in the intersection of S2
r with planes

passing through the origin, i.e., great circles.

Proof. Let γ be a curve with constant geodesic curvature. Without loss of generality we can assume
that γ is arc length parametrized. Let us fix a vector w ∈ R3 that is orthogonal to γ̇(0) and γ̈(0).
By Proposition 1.60, the function α(t) := 〈γ̇(t) |w〉 = 0 is a solution of the Cauchy problem

{
α̈(t) + ( 1

r2
+ c2)α(t) = 0

α(0) = α̇(0) = 0
(1.81)

By uniqueness of the solution to the Cauchy problem (1.81), we have α(t) = 0 for all t. This means
that γ̇(t) is contained in a plane orthogonal to w.

If the curve is a geodesic, then c = 0 and the geodesic equation (1.77) is written as γ̈(t) =
− 1
r2
γ(t). Then consider the function Γ(t) := 〈γ(t) |w〉, where w is chosen as before. Γ(t) is constant

since Γ̇(t) = α(t) = 0. In fact Γ(t) is identically zero since Γ(0) = 〈γ(0) |w〉 = − 1
r2
〈γ̈(0) |w〉 = 0,

by the assumption on w. This proves that the curve γ is contained in a plane passing through the
origin.

Remark 1.62. Curves with constant geodesic curvatures on the spheres are circles obtained as the
intersection of the sphere with an affine plane. Moreover all these curves can be also characterized
in the following two ways:

(i) curves that have constant distance from a geodesic (equidistant curves),

(ii) boundary of metric balls (spheres).

1.5.3 Negative curvature: the hyperbolic plane

The negative constant curvature model is the hyperbolic plane H2
r obtained as the surface of R3,

endowed with the hyperbolic metric, defined as the zero level set of the function

a(x, y, z) = x2 + y2 − z2 + r2. (1.82)

Indeed this surface is a two-fold hyperboloid, so we restrict our attention to the set of points
H2
r = a−1(0) ∩ {z > 0}.
In analogy with the positive constant curvature model (which is the set of points in R3 whose

euclidean norm is constant) the negative constant curvature can be seen as the set of points whose
hyperbolic norm is constant in R3. In other words

H2
r = {q = (x, y, z) ∈ R3 | ‖q‖2h = −r2} ∩ {z > 0}.
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The hyperbolic Gauss map associated with this surface can be easily computed since it is explicitly
given by

N : H2
r → H2, N (q) =

1

r
∇qa, (1.83)

Exercise 1.63. Prove that the Gaussian curvature of H2
r is κ = −1/r2 at every point q ∈ H2

r .

We can now discuss the structure of geodesics and curves with constant geodesic curvature on
the hyperbolic space. We start with a result than can be proved in an analogous way to Proposition
1.60. The proof is left to the reader.

Proposition 1.64. Let γ : [0, T ]→ H2
r be a curve with unit speed and constant geodesic curvature

equal to c ∈ R. For every vector w ∈ R3, the function α(t) = 〈γ̇(t) |w〉h is a solution of the
differential equation

α̈(t) +

(
c2 − 1

r2

)
α(t) = 0. (1.84)

As for the sphere, this result implies immediately the following corollary.

Corollary 1.65. Constant geodesic curvature curves on H2
r are contained in the intersection of

H2
r with affine planes of R3. In particular, geodesics are contained in the intersection of H2

r with
planes passing through the origin.

Exercise 1.66. Prove Proposition 1.64 and Corollary 1.65.

Geodesics on H2
r are hyperbolas, obtained as intersections of the hyperboloid with plane passing

through the origin. The classification of curves with constant geodesic curvature is in fact more
rich. The sections of the hyperboloid with affine planes can have different shapes depending on the
Euclidean orthogonal vector to the plane: they are circles when it has negative hyperbolic length,
hyperbolas when it has positive hyperbolic length or parabolas when it has length zero (that is it
belong to the x2 + y2 − z2 = 0).

These distinctions reflects in the value of the geodesic curvature. Indeed, as the form of (1.84)
also suggest, the value c = 1

r plays the role of threshold and we have the following situations:

(i) if 0 ≤ |c| < 1/r, then the curve is an hyperbola,

(ii) if |c| = 1/r, then the curve is a parabola,

(iii) if |c| > 1/r, then the curve is a circle.

This is not the only interesting feature of this classification. Indeed, following the description of
Remark 1.62, curves of type (i) are equidistant curves, while curves of type (iii) are boundary of
metric balls, (i.e., spheres) in the hyperbolic plane. Curves of type (ii) are also known as horocycles.

1.6 Bibliographical note

The material presented in this chapter is classical and covered by many textbook in basic differential
geometry of curves and surfaces, as for instance in [dC76, Spi79, BG92, K1̈5]. Some results, such
as those of Sections 1.1 and 1.2, are revisited in the spirit of geometric control theory, to serve as
a model case study for the forthcoming chapters.
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Chapter 2

Vector fields

In this chapter we collect some basic definitions of differential geometry, in order to recall some
useful results and to fix the notation. We assume the reader to be familiar with the definitions of
smooth manifold and smooth map between manifolds.

2.1 Differential equations on smooth manifolds

In what follows I denotes an interval of R containing 0 in its interior.

2.1.1 Tangent vectors and vector fields

Let M be a smooth n-dimensional manifold and γ1, γ2 : I → M two smooth curves based at
q = γ1(0) = γ2(0) ∈ M . We say that γ1 and γ2 are equivalent if they have the same 1-st order
Taylor polynomial in some (or, equivalently, in every) coordinate chart. This defines an equivalence
relation on the space of smooth curves based at q.

Definition 2.1. Let M be a smooth n-dimensional manifold and let γ : I →M be a smooth curve
such that γ(0) = q ∈M . Its tangent vector at q = γ(0), denoted by

d

dt

∣∣∣∣
t=0

γ(t), or γ̇(0), (2.1)

is the equivalence class in the space of all smooth curves in M such that γ(0) = q (with respect to
the equivalence relation defined above).

It is easy to check, using the chain rule, that this definition is well-posed (i.e., it does not depend
on the representative curve).

Definition 2.2. Let M be a smooth n-dimensional manifold. The tangent space to M at a point
q ∈M is the set

TqM :=

{
d

dt

∣∣∣∣
t=0

γ(t) , γ : I →M smooth, γ(0) = q

}
.

It is a standard fact that TqM has a natural structure of n-dimensional vector space, where n =
dimM .
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Definition 2.3. A smooth vector field on a smooth manifold M is a smooth map

X : q 7→ X(q) ∈ TqM,

that associates to every point q inM a tangent vector at q. We denote by Vec(M) the set of smooth
vector fields on M .

In coordinates we can writeX =
∑n

i=1X
i(x) ∂

∂xi
, and the vector field is smooth if its components

Xi(x) are smooth functions. The value of a vector field X at a point q is denoted in what follows
both with X(q) and X

∣∣
q
.

Definition 2.4. Let M be a smooth manifold and X ∈ Vec(M). The equation

q̇ = X(q), q ∈M, (2.2)

is called an ordinary differential equation (or ODE ) on M . A solution of (2.2) is a smooth curve
γ : J →M , where J ⊂ R is an open interval, such that

γ̇(t) = X(γ(t)), ∀ t ∈ J. (2.3)

We also say that γ is an integral curve of the vector field X.

A standard theorem on ODE ensures that, for every initial condition, there exists a unique
integral curve of a smooth vector field, defined on some open interval.

Theorem 2.5. Let X ∈ Vec(M) and consider the Cauchy problem
{
q̇(t) = X(q(t))

q(0) = q0
(2.4)

For any point q0 ∈ M there exists δ > 0 and a solution γ : (−δ, δ) → M of (2.4), denoted by
γ(t; q0). Moreover the map (t, q) 7→ γ(t; q) is smooth on a neighborhood of (0, q0).

The solution is unique in the following sense: if there exists two solutions γ1 : I1 → M and
γ2 : I2 →M of (2.4) defined on two different intervals I1, I2 containing zero, then γ1(t) = γ2(t) for
every t ∈ I1 ∩ I2. This permits to introduce the notion of maximal solution of (2.4), that is the
unique solution of (2.4) that is not extendable to a larger interval J containing I.

If the maximal solution of (2.4) is defined on a bounded interval I = (a, b), then the solution
leaves every compact K of M in a finite time tK < b. We refer the reader, for instance, to [HS74]
for a proof of classical results on ODE.

A vector field X ∈ Vec(M) is called complete if, for every q0 ∈M , the maximal solution γ(t; q0)
of the equation (2.2) is defined on I = R.

Remark 2.6. The classical theory of ODE ensures completeness of the vector field X ∈ Vec(M) in
the following cases:

(i) M is a compact manifold (or more generally X has compact support in M),

(ii) M = Rn and X has sub-linear growth at infinity, i.e., there exists C1, C2 > 0 such that

|X(x)| ≤ C1|x|+C2, ∀x ∈ Rn.

where | · | denotes the Euclidean norm in Rn.
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Remark 2.7. When we are interested in the behavior of the trajectories of a vector fieldX ∈ Vec(M)
in a compact subset K of M , the assumption of completeness is not restrictive.

Indeed consider an open neighborhood OK of a compact K with compact closure OK in M .
There exists a smooth cut-off function a :M → R that is identically 1 on K, and that vanishes out
of OK . Then the vector field aX is complete, since it has compact support in M . Moreover, the
vector fields X and aX coincide on K, hence their integral curves coincide on K as well.

2.1.2 Flow of a vector field

Given a complete vector field X ∈ Vec(M) we can consider the family of maps

φt : M →M, φt(q) = γ(t; q), t ∈ R. (2.5)

where γ(t; q) is the integral curve of X starting at q when t = 0. By Theorem 2.5 it follows that
the map

φ : R×M →M, φ(t, q) = φt(q),

is smooth in both variables and the family {φt, t ∈ R} is a one parametric subgroup of Diff(M),
namely, it satisfies the following identities:

φ0 = Id,

φt ◦ φs = φs ◦ φt = φt+s, ∀ t, s ∈ R, (2.6)

(φt)
−1 = φ−t, ∀ t ∈ R,

Moreover, by construction, we have

∂φt(q)

∂t
= X(φt(q)), φ0(q) = q, ∀ q ∈M. (2.7)

The family of maps φt defined by (2.5) is called the flow generated by X. For the flow φt of a
vector field X it is convenient to use the exponential notation φt := etX , for every t ∈ R. Using
this notation, the group properties (2.6) take the form:

e0X = Id, etX ◦ esX = esX ◦ etX = e(t+s)X , (etX )−1 = e−tX , (2.8)

d

dt
etX(q) = X(etX (q)), ∀ q ∈M. (2.9)

Remark 2.8. When X(x) = Ax is a linear vector field on Rn, where A is a n × n matrix, the
corresponding flow φt is the matrix exponential φt(x) = etAx.

2.1.3 Vector fields as operators on functions

A vector field X ∈ Vec(M) induces an action on the algebra C∞(M) of the smooth functions on
M , defined as follows:

X : C∞(M)→ C∞(M), a 7→ Xa, a ∈ C∞(M), (2.10)

where

(Xa)(q) =
d

dt

∣∣∣∣
t=0

a(etX(q)), q ∈M. (2.11)

In other words X differentiates the function a along its integral curves.
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Remark 2.9. Let us denote at := a◦etX . The map t 7→ at is smooth and from (2.11) it immediately
follows that Xa represents the first order term in the expansion of at when t→ 0: more precisely
for q ∈M one has

at(q) = a(q) + t (Xa)(q) +O(t2).

One can indeed show from the explicit expression that the remainder is uniform with respect to
the point and write the identity

at = a+ tXa+O(t2).

Exercise 2.10. Let a ∈ C∞(M) and X ∈ Vec(M), and denote at = a ◦ etX . Prove the following
formulas

d

dt
at = Xat, (2.12)

at = a+ tXa+
t2

2!
X2a+

t3

3!
X3a+ . . .+

tk

k!
Xka+O(tk+1). (2.13)

It is easy to see also that the following Leibniz rule is satisfied

X(ab) = (Xa)b+ a(Xb), ∀ a, b ∈ C∞(M), (2.14)

This is equivalent to say that X, as an operator on smooth functions, is a derivation of the algebra
of smooth functions C∞(M).

Remark 2.11. Notice that, if a ∈ C∞(M) and X =
∑n

i=1Xi(x)
∂
∂xi

in some coordinate set, then

Xa =
∑n

i=1Xi(x)
∂a
∂xi

. In particular, when X is applied to the coordinate functions ai(x) = xi for
i = 1, . . . , n, then Xai = Xi, which shows that a vector field is completely characterized by its
action on functions.

Exercise 2.12. Let a1, . . . , ak ∈ C∞(M) and assume that N = {a1 = . . . = ak = 0} ⊂ M is a
smooth submanifold. Show that X ∈ Vec(M) is tangent to N , i.e., X(q) ∈ TqN for all q ∈ N , if
and only if Xai(q) = 0 for every q ∈ N and i = 1, . . . , k.

2.1.4 Nonautonomous vector fields

Definition 2.13. A nonautonomous vector field is family of vector fields {Xt}t∈R such that the
map X(t, q) = Xt(q) satisfies the following properties

(C1) the map t 7→ X(t, q) is measurable, for every fixed q ∈M ,

(C2) the map q 7→ X(t, q) is smooth, for every fixed t ∈ R,

(C3) for every system of coordinates defined in an open set Ω ⊂ M and every compact K ⊂ Ω
and compact interval I ⊂ R there exists two functions c(t), k(t) in L∞(I) such that for all
(t, x), (t, y) ∈ I ×K

‖X(t, x)‖ ≤ c(t), ‖X(t, x) −X(t, y)‖ ≤ k(t)‖x− y‖.

Conditions (C1) and (C2) are equivalent to require that for every smooth function a ∈ C∞(M)
the scalar function (t, q) 7→ Xta|q defined on R×M is measurable in t and smooth in q.
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Remark 2.14. In what follows we are mainly interested in nonautonomous vector fields of the
following form

Xt(q) =

m∑

i=1

ui(t)fi(q), (2.15)

where ui are L
∞ functions and fi are smooth vector fields on M . For this class of nonautonomous

vector fields, assumptions (C1)-(C2) are trivially satisfied. For what concerns (C3), thanks to the
smoothness of fi, for every compact set K ⊂ Ω we can find two positive constants CK , LK such
that for all i = 1, . . . ,m, and j = 1, . . . , n, we have

‖fi(x)‖ ≤ CK ,
∥∥∥∥
∂fi
∂xj

(x)

∥∥∥∥ ≤ LK , ∀x ∈ K,

and one gets for all (t, x), (t, y) ∈ I ×K

‖X(t, x)‖ ≤ CK
m∑

i=1

|ui(t)|, ‖X(t, x) −X(t, y)‖ ≤ LK
m∑

i=1

|ui(t)| · ‖x− y‖. (2.16)

The existence and uniqueness of integral curves of a nonautonomous vector field is guaranteed
by the following theorem (see [BP07]).

Theorem 2.15 (Carathéodory theorem). Assume that the nonautonomous vector field {Xt}t∈R
satisfies (C1)-(C3). Then the Cauchy problem

{
q̇(t) = X(t, q(t))

q(t0) = q0
(2.17)

has a unique solution γ(t; t0, q0) defined on an open interval I containing t0 such that (2.17) is
satisfied for almost every t ∈ I and γ(t0; t0, q0) = q0. Moreover the map (t, q0) 7→ γ(t; t0, q0) is
locally Lipschitz with respect to t and smooth with respect to q0.

Let us assume now that the vector field Xt is complete, i.e., for all t0 ∈ R and q0 ∈ M the
solution γ(t; t0, q0) to (2.17) is defined on I = R. Let us denote Pt0,t(q) = γ(t; t0, q). The family of
maps {Pt,s}t,s∈R where Pt,s :M →M is the (nonautonomous) flow generated by Xt.

By definition, for every fixed t0 ∈ R, the nonautonomous flow t 7→ Pt0,t associated to a nonau-
tonomous vector field Xt is locally Lipschitz and satisfies the equation for a.e. t

∂

∂t
Pt0,t(q) = X(t, Pt0,t(q)), q ∈M. (2.18)

Moreover the following algebraic identities are satisfied by {Pt,s}t,s∈R
Pt,t = Id, (2.19)

Pt2,t3 ◦ Pt1,t2 = Pt1,t3 , ∀ t1, t2, t3 ∈ R, (2.20)

(Pt1,t2)
−1 = Pt2,t1 , ∀ t1, t2 ∈ R,

Conversely, with every family of smooth diffeomorphism Pt,s : M → M satisfying the relations
(2.19)-(2.20), that is called a flow onM , one can associate its infinitesimal generator Xt as follows:

Xt(q) =
d

ds

∣∣∣∣
s=0

Pt,t+s(q), ∀ q ∈M. (2.21)
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Differentiating the equation (2.18) with respect to q and assuming that one can exchange the
time and spatial derivatives one obtains that the nonautonomous flow t 7→ Pt0,t associated to a
nonautonomous vector field Xt satisfies for almost every t the identity

∂

∂t

∂Pt0,t
∂q

(q0) =
∂X

∂q
(t, Pt0,t(q0))

∂Pt0 ,t
∂q

(q0). (2.22)

The formal justification of the validity of (2.22) can be found in [BP07]. The following lemma
characterizes flows whose infinitesimal generator is autonomous. Its proof is left as an exercise.

Lemma 2.16. Let {Pt,s}t,s∈R be a family of smooth diffeomorphisms satisfying (2.19)-(2.20). Its
infinitesimal generator is an autonomous vector field if and only if

P0,t ◦ P0,s = P0,t+s, ∀ t, s ∈ R.

2.2 Differential of a smooth map

A smooth map between manifolds induces a map between the corresponding tangent spaces.

Definition 2.17. Let ϕ : M → N a smooth map between smooth manifolds and q ∈ M . The
differential of ϕ at the point q is the linear map

ϕ∗,q : TqM → Tϕ(q)N, (2.23)

defined as follows:

ϕ∗,q(v) =
d

dt

∣∣∣∣
t=0

ϕ(γ(t)), if v =
d

dt

∣∣∣∣
t=0

γ(t), q = γ(0).

It is easily checked that this definition depends only on the equivalence class of γ.

ϕ(γ(t))

ϕ(q)

v

q

γ(t)

ϕ

ϕ∗,qv

N
M

Figure 2.1: Differential of a map ϕ :M → N

The differential ϕ∗,q of a smooth map ϕ : M → N , also called its pushforward, is sometimes
denoted by the symbols Dqϕ or dqϕ (see Figure 2.1).

Exercise 2.18. Let ϕ : M → N , ψ : N → Q be smooth maps between manifolds. Prove that the
differential of the composition ψ ◦ ϕ :M → Q satisfies (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.
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As we said, a smooth map induces a transformation of tangent vectors. If we deal with diffeo-
morphisms, we can also pushforward a vector field.

Definition 2.19. Let X ∈ Vec(M) and ϕ : M → N be a diffeomorphism. The pushforward
ϕ∗X ∈ Vec(N) is the vector field on N defined by

(ϕ∗X)(ϕ(q)) := ϕ∗(X(q)), ∀ q ∈M. (2.24)

When P ∈ Diff(M) is a diffeomorphism on M , we can rewrite the identity (2.24) as

(P∗X)(q) = P∗(X(P−1(q))), ∀ q ∈M. (2.25)

Notice that, in general, if ϕ is a smooth map, the pushforward of a vector field is not well-defined.

Remark 2.20. From this definition it follows the useful formula for X,Y ∈ Vec(M)

(etX∗ Y )
∣∣
q
= etX∗

(
Y
∣∣
e−tX(q)

)
=

d

ds

∣∣∣∣
s=0

etX ◦ esY ◦ e−tX(q).

If P ∈ Diff(M) and X ∈ Vec(M), then P∗X is, by construction, the vector field whose integral
curves are the image under P of integral curves of X. The following lemma shows how it acts as
operator on functions.

Lemma 2.21. Let P ∈ Diff(M), X ∈ Vec(M) and a ∈ C∞(M) then

etP∗X = P ◦ etX ◦ P−1, (2.26)

(P∗X)a = (X(a ◦ P )) ◦ P−1. (2.27)

Proof. From the formula

d

dt

∣∣∣∣
t=0

P ◦ etX ◦ P−1(q) = P∗(X(P−1(q))) = (P∗X)(q),

it follows that t 7→ P ◦ etX ◦ P−1(q) is an integral curve of P∗X, from which (2.26) follows. To
prove (2.27) let us compute

(P∗X)a
∣∣
q
=

d

dt

∣∣∣∣
t=0

a(etP∗X(q)).

Using (2.26) this is equal to

d

dt

∣∣∣∣
t=0

a(P (etX (P−1(q))) =
d

dt

∣∣∣∣
t=0

(a ◦ P )(etX (P−1(q))) = (X(a ◦ P )) ◦ P−1.

As a consequence of Lemma 2.21 one gets the following formula: for every X,Y ∈ Vec(M)

(etX∗ Y )a = Y (a ◦ etX ) ◦ e−tX . (2.28)
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2.3 Lie brackets

In this section we introduce a fundamental notion for sub-Riemannian geometry, the Lie bracket of
two vector fieldsX and Y . Geometrically it is defined as the infinitesimal version of the pushforward
of the second vector field along the flow of the first one. As explained below, it measures how much
Y is modified by the flow of X.

Definition 2.22. Let X,Y ∈ Vec(M). We define their Lie bracket as the vector field

[X,Y ] :=
∂

∂t

∣∣∣∣
t=0

e−tX∗ Y. (2.29)

Remark 2.23. The geometric meaning of the Lie bracket can be understood by writing explicitly

[X,Y ]
∣∣
q
=

∂

∂t

∣∣∣∣
t=0

e−tX∗ Y
∣∣
q
=

∂

∂t

∣∣∣∣
t=0

e−tX∗ (Y
∣∣
etX(q)

) =
∂

∂s∂t

∣∣∣∣
t=s=0

e−tX ◦ esY ◦ etX(q). (2.30)

Proposition 2.24. As derivations on functions, one has the identity

[X,Y ] = XY − Y X. (2.31)

Proof. By definition of Lie bracket we have [X,Y ]a = ∂
∂t

∣∣
t=0

(e−tX∗ Y )a. Hence we have to compute
the first order term in the expansion, with respect to t, of the map

t 7→ (e−tX∗ Y )a.

Using formula (2.28) we have

(e−tX∗ Y )a = Y (a ◦ e−tX) ◦ etX .

By Remark 2.9 we have a ◦ e−tX = a− tXa+O(t2), hence

(e−tX∗ Y )a = Y (a− tXa+O(t2)) ◦ etX

= (Y a− t Y Xa+O(t2)) ◦ etX .

Denoting b = Y a− t Y Xa+O(t2), bt = b ◦ etX , and using again the expansion above we get

(e−tX∗ Y )a = (Y a− t Y Xa+O(t2)) + tX(Y a− t Y Xa+O(t2)) +O(t2)

= Y a+ t(XY − Y X)a+O(t2),

that proves that the first order term with respect to t in the expansion is (XY − Y X)a.

Proposition 2.24 shows that (Vec(M), [·, ·]) is a Lie algebra.

Exercise 2.25. Prove the coordinate expression of the Lie bracket: let

X =

n∑

i=1

Xi
∂

∂xi
, Y =

n∑

j=1

Yj
∂

∂xj
,

be two smooth vector fields in Rn. Show that

[X,Y ] =

n∑

i,j=1

(
Xi
∂Yj
∂xi
− Yi

∂Xj

∂xi

)
∂

∂xj
.
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Next we prove that every diffeomorphism induces a Lie algebra homomorphism on Vec(M).

Proposition 2.26. Let P ∈ Diff(M). Then P∗ is a Lie algebra homomorphism of Vec(M), i.e.,

P∗[X,Y ] = [P∗X,P∗Y ], ∀X,Y ∈ Vec(M).

Proof. We show that the two terms are equal as derivations on functions. Let a ∈ C∞(M),
preliminarly we see, using (2.27), that

P∗X(P∗Y a) = P∗X(Y (a ◦ P ) ◦ P−1)

= X(Y (a ◦ P ) ◦ P−1 ◦ P ) ◦ P−1

= X(Y (a ◦ P )) ◦ P−1,

and using twice this property and (2.31)

[P∗X,P∗Y ]a = P∗X(P∗Y a)− P∗Y (P∗Xa)

= XY (a ◦ P ) ◦ P−1 − Y X(a ◦ P ) ◦ P−1

= (XY − Y X)(a ◦ P ) ◦ P−1

= P∗[X,Y ]a.

To end this section, we show that the Lie bracket of two vector fields is zero (i.e., they commute
as operator on functions) if and only if their flows commute.

Proposition 2.27. Let X,Y ∈ Vec(M). The following properties are equivalent:

(i) [X,Y ] = 0,

(ii) etX ◦ esY = esY ◦ etX , ∀ t, s ∈ R.

Proof. We start the proof with the following claim: [X,Y ] = 0 implies for every t ∈ R

e−tX∗ Y = Y. (2.32)

To prove (2.32) let us show that [X,Y ] = d
dt

∣∣
t=0

e−tX∗ Y = 0 implies that d
dte

−tX
∗ Y = 0 for all t ∈ R.

Indeed we have

d

dt
e−tX∗ Y =

d

dε

∣∣∣∣
ε=0

e
−(t+ε)X
∗ Y =

d

dε

∣∣∣∣
ε=0

e−tX∗ e−εX∗ Y

= e−tX∗
d

dε

∣∣∣∣
ε=0

e−εX∗ Y = e−tX∗ [X,Y ] = 0,

which proves (2.32) since the identity is true at t = 0.
(i)⇒(ii). Fix t ∈ R. Let us show that φs := e−tX ◦ esY ◦ etX is the flow generated by Y . Indeed

we have

∂

∂s
φs =

∂

∂ε

∣∣∣∣
ε=0

e−tX ◦ e(s+ε)Y ◦ etX

=
∂

∂ε

∣∣∣∣
ε=0

e−tX ◦ eεY ◦ etX ◦ e−tX ◦ esY ◦ etX︸ ︷︷ ︸
φs

= e−tX∗ Y ◦ φs = Y ◦ φs,
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where in the last equality we used (2.32). Using uniqueness of the flow generated by a vector field
we get

e−tX ◦ esY ◦ etX = esY , ∀ t, s ∈ R,

which is equivalent to (ii).
(ii)⇒(i). For every function a ∈ C∞ we have

XY a =
∂2

∂t∂s

∣∣∣
t=s=0

a ◦ esY ◦ etX =
∂2

∂s∂t

∣∣∣
t=s=0

a ◦ etX ◦ esY = Y Xa.

Then (i) follows from (2.31).

Exercise 2.28. Let X,Y ∈ Vec(M) and q ∈M . Consider the curve on M

γ(t) = e−tY ◦ e−tX ◦ etY ◦ etX(q).
Prove that the the curve t 7→ γ(

√
t) is C1 in a neighborhood of t = 0, and that its tangent vector

at t = 0 is [X,Y ](q).

Exercise 2.29. Let X,Y ∈ Vec(M). Using the semigroup property of the flow, prove that

d

dt
e−tX∗ Y = e−tX∗ [X,Y ]. (2.33)

Deduce the following formal series expansion (here (adX)Y = [X,Y ])

e−tX∗ Y =
∞∑

n=0

tn

n!
(adX)nY (2.34)

= Y + t[X,Y ] +
t2

2
[X, [X,Y ]] +

t3

6
[X, [X, [X,Y ]]] + . . .

Exercise 2.30. Let X,Y ∈ Vec(M) and a ∈ C∞(M). Prove the following Leibniz rule for the Lie
bracket:

[X, aY ] = a[X,Y ] + (Xa)Y.

Exercise 2.31. Let X,Y,Z ∈ Vec(M). Prove that the Lie bracket satisfies the Jacobi identity :

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. (2.35)

Hint: Differentiate the identity etX∗ [Y,Z] = [etX∗ Y, etX∗ Z] with respect to t.

Exercise 2.32. LetM be a smooth n-dimensional manifold andX1, . . . ,Xn be linearly independent
vector fields in a neighborhood of a point q0 ∈M . Prove that the map

ψ : Rn →M, ψ(t1, . . . , tn) = et1X1 ◦ . . . ◦ etnXn(q0),

is a local diffeomorphism at 0. Moreover we have, denoting t = (t1, . . . , tn),

∂ψ

∂ti
(t) = et1X1∗ ◦ · · · ◦ etiXi∗

(
Xi

∣∣
eti+1Xi+1◦···◦etnXn(q0)

)
(2.36)

=
(
et1X1∗ · · · etiXi∗ Xi

)
(ψ(t)). (2.37)

Deduce that, when [Xi,Xj ] = 0 for every i, j = 1, . . . , n, one has

∂ψ

∂ti
(t) = Xi(ψ(t)).
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2.4 Frobenius theorem

In this section we prove Frobenius theorem about vector distributions.

Definition 2.33. Let M be a smooth manifold. A vector distribution D of rank m on M is a
family of vector subspaces Dq ⊂ TqM where dimDq = m for every q.

A vector distribution D is said to be smooth if, for every point q0 ∈M , there exists a neighbor-
hood Oq0 of q0 and a family of vector fields X1, . . . ,Xm such that

Dq = span{X1(q), . . . ,Xm(q)}, ∀ q ∈ Oq0 . (2.38)

Definition 2.34. A smooth vector distribution D (of rank m) on M is said to be involutive if
there exists a local basis of vector fields X1, . . . ,Xm satisfying (2.38) and smooth functions akij on
M such that

[Xi,Xk] =

m∑

j=1

akijXj, ∀ i, k = 1, . . . ,m. (2.39)

Exercise 2.35. Prove that a smooth vector distribution D is involutive if and only if for every
local basis of vector fields X1, . . . ,Xm satisfying (2.38) there exist smooth functions akij such that
(2.39) holds.

Definition 2.36. A smooth vector distribution D on M is said to be flat if for every point q0 ∈M
there exists a local diffeomorphism φ : Oq0 → Rn such that φ∗,q(Dq) = Rm × {0} for all q ∈ Oq0 .

Theorem 2.37 (Frobenius Theorem). A smooth distribution is involutive if and only if it is flat.

Proof. The statement is local, hence it is sufficient to prove the statement on a neighborhood of
every point q0 ∈M .

(i). Assume first that the distribution is flat. Then there exists a diffeomorphism φ : Oq0 → Rn

such that Dq = φ−1
∗,q(R

m × {0}). It follows that for all q ∈ Oq0 we have

Dq = span{X1(q), . . . ,Xm(q)}, Xi(q) := φ−1
∗,q

∂

∂xi
.

and we have for i, k = 1, . . . ,m,

[Xi,Xk] =

[
φ−1
∗,q

∂

∂xi
, φ−1

∗,q
∂

∂xk

]
= φ−1

∗,q

[
∂

∂xi
,
∂

∂xi

]
= 0.

(ii). Let us now prove that if D is involutive then it is flat. As before, it is not restrictive to
work on a neighborhood where

Dq = span{X1(q), . . . ,Xm(q)}, ∀ q ∈ Oq0 . (2.40)

and (2.39) are satisfied. We first need a lemma.

Lemma 2.38. For every k = 1, . . . ,m, we have etXk∗ D = D.
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Proof of Lemma 2.38. Let us define the time dependent vector fields

Y k
i (t) := etXk∗ Xi.

Using (2.39) and (2.33) we compute

Ẏ k
i (t) = etXk∗ [Xi,Xk] =

m∑

j=1

etXk∗
(
akijXj

)
=

m∑

j=1

akij(t)Y
k
j (t),

where we set akij(t) = akij ◦ e−tXk . Denote by Ak(t) = (akij(t))
m
i,j=1 and consider the unique solution

Γk(t) = (γkij(t))
m
i,j=1 to the matrix Cauchy problem

Γ̇k(t) = Ak(t)Γk(t), Γk(0) = I. (2.41)

Then we have

Y k
i (t) =

m∑

j=1

γkij(t)Y
k
j (0),

that implies, for every i, k = 1, . . . ,m,

etXk∗ Xi =

m∑

j=1

γkij(t)Xj ,

which proves the claim.

We can now end the proof of Theorem 2.37. Complete the family X1, . . . ,Xm to a basis of the
tangent space

TqM = span{X1(q), . . . ,Xm(q), Zm+1(q), . . . , Zn(q)},
in a neighborhood of q0 and set ψ : Rn →M defined by

ψ(t1, . . . , tm, sm+1, . . . , sn) = et1X1 ◦ . . . ◦ etmXm ◦ esm+1Zm+1 ◦ . . . ◦ esnZn(q0).

By construction ψ is a local diffeomorphism at (t, s) = (0, 0) and for (t, s) close to (0, 0) we have
that (cf. Exercice 2.32)

∂ψ

∂ti
(t, s) =

(
et1X1∗ . . . etiXi∗ Xi

)
(ψ(t, s)),

for every i = 1, . . . ,m. These vectors are linearly independent and, thanks to Lemma 2.38, belong
to D. Hence

Dq = ψ∗ span
{
∂

∂t1
, . . . ,

∂

∂tm

}
, q = ψ(t, s),

and the claim is proved.

Reformulating Frobenius theorem in terms of submanifold, one immediately obtains the follow-
ing corollary.

Corollary 2.39. Let D be an involutive distribution of rank m on a smooth manifold M of dimen-
sion n ≥ m. Then, for every q ∈M , there exists a (locally defined) submanifold S of dimension m
passing through q and that is tangent to D at every point, i.e., TxS = Dx for every x ∈ S.
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2.4.1 An application of Frobenius theorem

Let M and N be two smooth manifolds. Given a vector field X ∈ Vec(M) and Y ∈ Vec(N) we
define the vector field X × Y ∈ Vec(M ×N) as the derivation

(X × Y )a = Xa1y + Y a2x,

where, given a ∈ C∞(M ×N), we define a1y ∈ C∞(M) and a2x ∈ C∞(N) as follows

a1y(x) := a(x, y), a2x(y) := a(x, y), x ∈M,y ∈ N.

Notice that, if we denote by p1 :M ×N →M and p2 :M ×N → N the two projections, we have

(p1)∗(X × Y ) = X, (p2)∗(X × Y ) = Y. (2.42)

Exercise 2.40. Let X1,X2 ∈ Vec(M) and Y1, Y2 ∈ Vec(N). Prove that

[X1 × Y1,X2 × Y2] = [X1,X2]× [Y1, Y2].

We can now prove the following result, which will be useful later for the classification of left-
invariant structures on 3D Lie groups (cf. Section 17.5).

Theorem 2.41. Let M and N be two n-dimensional smooth manifolds endowed with two local
basis of vector fields X1, . . . ,Xn and Y1, . . . , Yn around x0 ∈ M and y0 ∈ N , respectively. Assume
that there exists constants ckij ∈ R such that

[Xi,Xj ] =

n∑

k=1

ckijXk, [Yi, Yj] =

n∑

k=1

ckijYk.

Then there exists a local diffeomorphism φ : Ox0 → Oy0 such that φ∗Xi = Yi for every i = 1, . . . , n.

Proof. Let us consider the family of vector fields {Xi×Yi}i=1,...,n defined locally onM×N . Thanks
to Exercice 2.40 we have for i, j = 1, . . . , n

[Xi × Yi,Xj × Yj] = [Xi,Xj ]× [Yi, Yj ] =

n∑

k=1

ckijXk ×
n∑

k=1

ckijYk =

n∑

k=1

ckij(Xk × Yk).

It follows that the n-dimensional distribution D = span{Xi × Yi}i=1,...,n on the 2n-dimensional
smooth manifold M × N is involutive. Thanks to the Frobenius theorem (cf. Corollary 2.39),
there exists a n-dimensional submanifold S on Ox0 × Oy0 passing through (x0, y0) ∈ M × N
and whose tangent space at every point coincides with D. It follows that p1|S : S → Ox0 and
p2|S : S → Oy0 are two diffeomorphisms (thanks to (2.42) both (pi|S)∗ are isomorphisms) and
φ := p2 ◦ (p1|S)−1 : Ox0 → Oy0 is a diffeomorphism which satisfy φ(x0) = y0 and φ∗Xi = Yi for
every i = 1, . . . , n by construction.
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2.5 Cotangent space

In this section we introduce covectors, that are linear functionals on the tangent space. The space
of all covectors at a point q ∈ M , called cotangent space is, in algebraic terms, simply the dual
space to the tangent space.

Definition 2.42. Let M be a n-dimensional smooth manifold. The cotangent space at a point
q ∈M is the set

T ∗
qM := (TqM)∗ = {λ : TqM → R, λ linear}.

If λ ∈ T ∗
qM and v ∈ TqM , we will denote by 〈λ, v〉 := λ(v) the evaluation of the covector λ on the

vector v.

As we have seen, the differential of a smooth map yields a linear map between tangent spaces.
The dual of the differential gives a linear map between cotangent spaces.

Definition 2.43. Let ϕ :M → N be a smooth map and q ∈M . The pullback of ϕ at point ϕ(q),
where q ∈M , is the map

ϕ∗ : T ∗
ϕ(q)N → T ∗

qM, λ 7→ ϕ∗λ,

defined by duality in the following way

〈ϕ∗λ, v〉 := 〈λ, ϕ∗v〉 , ∀ v ∈ TqM, ∀λ ∈ T ∗
ϕ(q)N.

Example 2.44. Let a : M → R be a smooth function and q ∈ M . The differential dqa of the
function a at the point q ∈M , defined through the formula

〈dqa, v〉 :=
d

dt

∣∣∣∣
t=0

a(γ(t)), v ∈ TqM, (2.43)

where γ is any smooth curve such that γ(0) = q and γ̇(0) = v, is an element of T ∗
qM . Indeed the

right hand side of (2.43) is linear with respect to v.

Definition 2.45. A differential 1-form on a smooth manifold M is a smooth map

ω : q 7→ ω(q) ∈ T ∗
qM,

that associates with every point q in M a cotangent vector at q. We denote by Λ1(M) the set of
differential forms on M .

Since differential forms are dual objects to vector fields, it is well defined the action of ω ∈ Λ1M
on X ∈ Vec(M) pointwise, defining a function on M .

〈ω,X〉 : q 7→ 〈ω(q),X(q)〉 . (2.44)

The differential form ω is smooth if and only if, for every smooth vector field X ∈ Vec(M), the
function 〈ω,X〉 ∈ C∞(M)

Definition 2.46. Let ϕ : M → N be a smooth map and a : N → R be a smooth function. The
pullback ϕ∗a is the smooth function on M defined by

(ϕ∗a)(q) = a(ϕ(q)), q ∈M.

In particular, if π : T ∗M →M is the canonical projection and a ∈ C∞(M), then

(π∗a)(λ) = a(π(λ)), λ ∈ T ∗M,

which is constant on fibers.
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2.6 Vector bundles

Heuristically, a smooth vector bundle on a smooth manifold M , is a smooth family of vector spaces
parametrized by points in M .

Definition 2.47. Let M be a n-dimensional manifold. A smooth vector bundle of rank k over M
is a smooth manifold E with a surjective smooth map π : E →M such that

(i) the set Eq := π−1(q), the fiber of E at q, is a k-dimensional vector space,

(ii) for every q ∈ M there exist a neighborhood Oq of q and a linear-on-fibers diffeomorphism
(called local trivialization) ψ : π−1(Oq)→ Oq×Rk such that the following diagram commutes

π−1(Oq)

π
%%▲▲

▲▲
▲▲

▲▲
▲▲

▲

ψ
// Oq × Rk

π1

��
Oq

(2.45)

The space E is called total space and M is the base of the vector bundle. We will refer at π as the
canonical projection and rank E will denote the rank of the bundle.

Remark 2.48. A vector bundle E, as a smooth manifold, has dimension

dimE = dimM + rank E = n+ k.

In the case when there exists a global trivialization map (i.e., when one can choose a local trivi-
alization with Oq = M for all q ∈ M), then E is diffeomorphic to M × Rk and we say that E is
trivializable.

Example 2.49. For any smooth n-dimensional manifold M , the tangent bundle TM , defined as
the disjoint union of the tangent spaces at all points of M ,

TM =
⋃

q∈M
TqM,

has a natural structure of 2n-dimensional smooth manifold, equipped with the vector bundle struc-
ture (of rank n) induced by the canonical projection map

π : TM →M, π(v) = q if v ∈ TqM.

In the same way one can consider the cotangent bundle T ∗M , defined as

T ∗M =
⋃

q∈M
T ∗
qM.

Again, it is a 2n-dimensional manifold, and the canonical projection map

π : T ∗M →M, π(λ) = q if λ ∈ T ∗
qM,

endows T ∗M with a structure of rank n vector bundle.
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Let O ⊂M be a coordinate neighborhood and denote by

φ : O → Rn, φ(q) = (x1, . . . , xn),

a local coordinate system. The differentials of the coordinate functions

dxi
∣∣
q
, i = 1, . . . , n, q ∈ O,

form a basis of the cotangent space T ∗
qM . The dual basis in the tangent space TqM is defined by

the vectors

∂

∂xi

∣∣∣∣
q

∈ TqM, i = 1, . . . , n, q ∈ O, (2.46)

〈
dxi,

∂

∂xj

〉
= δij , i, j = 1, . . . , n. (2.47)

Thus any tangent vector v ∈ TqM and any covector λ ∈ T ∗
qM can be decomposed in these basis

v =
n∑

i=1

vi
∂

∂xi

∣∣∣∣
q

, λ =
n∑

i=1

pidxi
∣∣
q
,

and the maps

ψ : v 7→ (x1, . . . , xn, v1, . . . , vn), ψ̄ : λ 7→ (x1, . . . , xn, p1, . . . , pn), (2.48)

define local coordinates on TM and T ∗M respectively, which we call canonical coordinates induced
by the coordinates ψ on M .

Definition 2.50. A morphism f : E → E′ between two vector bundles E,E′ on the base M (also
called a bundle map) is a smooth map such that the following diagram is commutative

E

π
  ❆

❆❆
❆❆

❆❆
❆

f
// E′

π′

��
M

(2.49)

where f is linear on fibers. Here π and π′ denote the canonical projections.

Definition 2.51. Let π : E → M be a smooth vector bundle over M . A local section of E is a
smooth map1 σ : A ⊂M → E satisfying π ◦ σ = IdA, where A is an open set of M . In other words
σ(q) belongs to Eq for each q ∈ A, smoothly with respect to q. If σ is defined on all M it is said to
be a global section.

Example 2.52. Let π : E →M be a smooth vector bundle over M . The zero section of E is the
global section

ζ :M → E, ζ(q) = 0 ∈ Eq, ∀ q ∈M.

We will denote by M0 := ζ(M) ⊂ E.

1here smooth means as a map between manifolds.
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Remark 2.53. Notice that smooth vector fields and smooth differential forms are, by definition,
sections of the vector bundles TM and T ∗M respectively.

We end this section with some classical constructions on vector bundles.

Definition 2.54. Let ϕ :M → N be a smooth map between smooth manifolds and E be a vector
bundle on N , with fibers {Eq′ , q′ ∈ N}. The induced bundle (or pullback bundle) ϕ∗E is a vector
bundle on the base M defined by

ϕ∗E := {(q, v) | q ∈M,v ∈ Eϕ(q)} ⊂M × E.

Notice that rankϕ∗E = rankE, hence dimϕ∗E = dimM + rankE.

Example 2.55. (i). Let M be a smooth manifold and TM its tangent bundle, endowed with an
Euclidean structure. The spherical bundle SM is the vector subbundle of TM defined as follows

SM =
⋃

q∈M
SqM, SqM = {v ∈ TqM | |v| = 1}.

(ii). Let E,E′ be two vector bundles over a smooth manifold M . The direct sum E ⊕ E′ is the
vector bundle over M defined by

(E ⊕ E′)q := Eq ⊕ E′
q.

2.7 Submersions and level sets of smooth maps

If ϕ :M → N is a smooth map, we define the rank of ϕ at q ∈M to be the rank of the linear map
ϕ∗,q : TqM → Tϕ(q)N . It is of course just the rank of the matrix of partial derivatives of ϕ in any
coordinate chart, or the dimension of im (ϕ∗,q) ⊂ Tϕ(q)N . If ϕ has the same rank k at every point,
we say ϕ has constant rank, and write rankϕ = k.

An immersion is a smooth map ϕ :M → N with the property that ϕ∗ is injective at each point
(or equivalently rankϕ = dimM). Similarly, a submersion is a smooth map ϕ :M → N such that
ϕ∗ is surjective at each point (equivalently, rankϕ = dimN).

Theorem 2.56 (Rank Theorem). Suppose M and N are smooth manifolds of dimensions m and
n, respectively, and ϕ :M → N is a smooth map with constant rank k in a neighborhood of q ∈M .
Then there exist coordinates (x1, . . . , xm) centered at q and (y1, . . . , yn) centered at ϕ(q) in which
ϕ has the following coordinate representation:

ϕ(x1, . . . , xm) = (x1, . . . , xk, 0, . . . , 0). (2.50)

Remark 2.57. The previous theorem can be rephrased in the following way. Let ϕ : M → N be a
smooth map between two smooth manifolds. Then the following are equivalent:

(i) ϕ has constant rank in a neighborhood of q ∈M .

(ii) There exist coordinates near q ∈M and ϕ(q) ∈ N in which the coordinate representation of
ϕ is linear.

In the case of a submersion, from Theorem 2.56 one can deduce the following result.
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Corollary 2.58. Assume ϕ : M → N is a smooth submersion at q. Then ϕ admits a local right
inverse at ϕ(q). Moreover ϕ is open at q. More precisely it exist ε > 0 and C > 0 such that

Bϕ(q)(C
−1r) ⊂ ϕ(Bq(r)), ∀ r ∈ [0, ε), (2.51)

where the balls in (2.51) are considered with respect to some Euclidean norm in a coordinate chart.

Remark 2.59. The constant C appearing in (2.51) is related to the norm of the differential of the
local right inverse, computed with respect to the chosen Euclidean norm in the coordinate chart.
When ϕ is a diffeomorphism, C is a bound on the norm of the differential of the inverse of ϕ. This
recover the classical quantitative statement of the inverse function theorem.

Using these results, one can give some general criteria for level sets of smooth maps (or smooth
functions) to be submanifolds.

Theorem 2.60 (Constant rank level set theorem). Let M and N be smooth manifolds, and let
ϕ : M → N be a smooth map with constant rank k. Each level set ϕ−1(y), for y ∈ N is a closed
embedded submanifold of codimension k in M .

Remark 2.61. It is worth to specify the following two important sub-cases of Theorem 2.60:

(a) If ϕ : M → N is a submersion at every q ∈ ϕ−1(y) for some y ∈ N , then ϕ−1(y) is a closed
embedded submanifold whose codimension is equal to the dimension of N .

(b) If a :M → R is a smooth function such that dqa 6= 0 for every q ∈ a−1(c), where c ∈ R, then
the level set a−1(c) is a smooth hypersurface of M

Exercise 2.62. Let a : M → R be a smooth function. Assume that c ∈ R is a regular value of
a, i.e., dqa 6= 0 for every q ∈ a−1(c). Then Nc = a−1(c) = {q ∈ M | a(q) = c} ⊂ M is a smooth
submanifold. Prove that for every q ∈ Nc

TqNc = ker dqa = {v ∈ TqM | 〈dqa, v〉 = 0}.

2.8 Bibliographical note

The material presented in this chapter is classical and covered by many textbook in differential
geometry, as for instance in [Boo86, Lee13, dC92, Spi79].

Theorem 2.15 is a well-known theorem in ODE. The statement presented here can be deduced
from [BP07, Theorem 2.1.1, Exercice 2.4]. The functions c(t), k(t) appearing in (C3) are assumed
to be L∞, that is stronger than L1 (on compact intervals). This stronger assumption imply that
the solution is not only absolutely continuous with respect to t, but also locally Lipschitz (compare
also with the discussion in Section 3.6).
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Chapter 3

Sub-Riemannian structures

In this section we introduce the notion of sub-Riemannian structure: the definition given here is
quite general, permitting to include all the classical notions appearing in the literature with different
names such as constant-rank sub-Riemannian structure, rank-varying sub-Riemannian structure,
almost-Riemannian structure etc. Riemannian manifolds appear as particular cases as well.

After having introduced the fundamental object of this book, the sub-Riemannian distance,
we prove its finiteness and continuity, also known as Rashevskii-Chow theorem. Then we move to
metric property of sub-Riemannian manifold as metric spaces, proving in particular existence of
length-minimizers.

In the final part of the chapter we introduce Pontryagin extremals, which are curves in the
cotangent space satisfying a first-order necessary condition for length-minimality.

3.1 Basic definitions

We start by introducing bracket-generating family of vector fields.

Definition 3.1. Let M be a smooth manifold and let F ⊂ Vec(M) be a family of smooth vector
fields. The Lie algebra generated by F is the smallest sub-algebra of Vec(M) containing F , namely

LieF := span{[X1, . . . , [Xj−1,Xj ]],Xi ∈ F , j ∈ N}. (3.1)

We will say that F is bracket-generating (or that satisfies the Hörmander condition) if

LieqF := {X(q),X ∈ LieF} = TqM, ∀ q ∈M.

Moreover, for s ∈ N, we define

LiesF := span{[X1, . . . , [Xj−1,Xj ]],Xi ∈ F , j ≤ s}. (3.2)

We say that the family F has step s at q if s ∈ N is the minimal integer satisfying

LiesqF := {X(q),X ∈ LiesF} = TqM,

Notice that, in general, the step may depend on the point on M and s = s(q) can be unbounded
on M even for bracket-generating families.
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Definition 3.2. Let M be a connected smooth manifold. A sub-Riemannian structure on M is a
pair (U, f) where:

(i) U is an Euclidean bundle with base M and Euclidean fiber Uq, i.e., for every q ∈M , Uq is a
vector space equipped with a scalar product (· | ·)q , smooth with respect to q. For u ∈ Uq we
denote the norm of u as |u|2 = (u |u)q.

(ii) f : U→ TM is a smooth map that is a morphism of vector bundles and is fiber-wise linear.
In particular the following diagram is commutative

U

πU ""❉
❉❉

❉❉
❉❉

❉

f
// TM

π
��
M

(3.3)

where πU : U→M and π : TM →M denote the canonical projections.

(iii) The set of horizontal vector fields D := {f(σ) |σ : M → U smooth section}, is a bracket-
generating family of vector fields. We call step of the sub-Riemannian structure at q the step
of D.

When the vector bundleU admits a global trivialization we say that (U, f) is a free sub-Riemannian
structure.

A smooth manifold endowed with a sub-Riemannian structure (i.e., the triple (M,U, f)) is
called a sub-Riemannian manifold. When the map f : U → TM is fiberwise surjective, (M,U, f)
is called a Riemannian manifold (cf. Exercise 3.24).

Definition 3.3. Let (M,U, f) be a sub-Riemannian manifold. The distribution is the family of
subspaces

{Dq}q∈M , where Dq := f(Uq) ⊂ TqM.

We call m = rank(U) the bundle rank of the sub-Riemannian structure, and r(q) := dimDq the
rank of the sub-Riemannian structure at q ∈M . We say that the sub-Riemannian structure (U, f)
on M has constant rank if r(q) is constant. Otherwise we say that the sub-Riemannian structure
is rank-varying.

The set of horizontal vector fields D ⊂ Vec(M) has the structure of a finitely generated module
over C∞(M). The distribution at each point can be written in terms of horizontal vector fields as
follows

Dq = {X(q)|X ∈ D}.
The rank of a sub-Riemannian structure (M,U, f) satisfies for every q ∈M

r(q) ≤ min{m,n}, where m = rankU, n = dimM. (3.4)

In what follows we denote points in U as pairs (q, u), where q ∈ M is an element of the base and
u ∈ Uq is an element of the fiber. Following this notation we can write the value of f at this point
as

f(q, u) or fu(q).

We prefer the second notation to stress that, for each q ∈M , fu(q) is a vector in TqM . .
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Definition 3.4. A Lipschitz curve γ : [0, T ] → M is said to be admissible (or horizontal) for a
sub-Riemannian structure if there exists a measurable and essentially bounded function

u : t ∈ [0, T ] 7→ u(t) ∈ Uγ(t), (3.5)

called control, such that

γ̇(t) = f(γ(t), u(t)), for a.e. t ∈ [0, T ]. (3.6)

In this case we say that u(·) is a control corresponding to γ. Notice that different controls may
correspond to the same trajectory (see Figure 3.1).

Notice that a curve γ : [0, T ]→M such that γ(t) = γ(0) for every t ∈ [0, T ] is always admissible.
In what follows we call such a curve trivial trajectory.

Dq

Figure 3.1: A horizontal curve

Remark 3.5. Once we have chosen a local trivialization Oq × Rm for the vector bundle U, where
Oq is a neighborhood of a point q ∈ M , we can choose a basis in the fibers and the map f is
written f(q, u) =

∑m
i=1 uifi(q), where m is the rank of U. In this trivialization, a Lipschitz curve

γ : [0, T ]→M is admissible if there exists u = (u1, . . . , um) ∈ L∞([0, T ],Rm) such that

γ̇(t) =

m∑

i=1

ui(t)fi(γ(t)), for a.e. t ∈ [0, T ]. (3.7)

Thanks to this local characterization and Theorem 2.15, for each initial condition q ∈ M and
u ∈ L∞([0, T ],Rm) it follows that there exists an admissible curve γ, defined on a sufficiently small
interval, such that u is the control associated with γ and γ(0) = q.

Remark 3.6. Notice that, for a curve to be admissible, it is not sufficient to satisfy γ̇(t) ∈ Dγ(t) for
almost every t ∈ [0, T ]. Take for instance the two free sub-Riemannian structures on R2 having
bundle rank two and defined by

f(x, y, u1, u2) = (x, y, u1, u2x), f ′(x, y, u1, u2) = (x, y, u1, u2x
2). (3.8)

and let D and D′ the corresponding moduli of horizontal vector fields. It is easily seen that the
curve γ : [−1, 1]→ R2, γ(t) = (t, t2) satisfies γ̇(t) ∈ Dγ(t) and γ̇(t) ∈ D′

γ(t) for every t ∈ [−1, 1].
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Moreover, γ is admissible for f , since its corresponding control is (u1, u2) = (1, 2) for a.e.
t ∈ [−1, 1], but it is not admissible for f ′, since its corresponding control is uniquely determined
as (u1(t), u2(t)) = (1, 2/t) for a.e. t ∈ [−1, 1], which is not essentially bounded (and even not
integrable).

The example discussed in the previous remark shows that, for two different sub-Riemannian
structures (U, f) and (U′, f ′) on the same manifold M , one can have Dq = D′

q for every q ∈ M ,
but D 6= D′.

Exercise 3.7. Prove that if the distribution has constant rank one has Dq = D′
q for every q ∈ M

if and only if D = D′.

3.1.1 The minimal control and the length of an admissible curve

We start by defining the sub-Riemannian norm for vectors that belong to the distribution.

Definition 3.8. Let v ∈ Dq. We define the sub-Riemannian!norm of v as follows

‖v‖ := min{|u|, u ∈ Uq s.t. v = f(q, u)}. (3.9)

Notice that since f is linear with respect to u, the minimum in (3.9) is always attained at a unique
point. Indeed the condition f(q, ·) = v defines an affine subspace of Uq (which is nonempty since
v ∈ Dq) and the minimum in (3.9) is uniquely attained at the orthogonal projection of the origin
onto this subspace (see Figure 3.2).

u1 + u2 = v

u1

u2

‖v‖

Figure 3.2: The norm of a vector v for f(x, u1, u2) = u1 + u2

Exercise 3.9. Show that ‖ · ‖ is a norm in Dq. Moreover prove that it satisfies the parallelogram
law, i.e., it is induced by a scalar product 〈· | ·〉q on Dq, that can be recovered by the polarization
identity

〈v |w〉q =
1

4
‖v + w‖2 − 1

4
‖v − w‖2, v, w ∈ Dq. (3.10)

Exercise 3.10. Let u1, . . . , um ∈ Uq be an orthonormal basis for Uq. Define vi = f(q, ui). Show
that if f(q, ·) is injective then v1, . . . , vm is an orthonormal basis for Dq.
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An admissible curve γ : [0, T ] → M is Lipschitz, hence differentiable at almost every point.
Hence it is well defined a.e. on [0, T ] the unique control t 7→ u∗(t) associated with γ and realizing
the minimum in (3.9).

Definition 3.11. Given an admissible curve γ : [0, T ] → M , we define at every differentiability
point of γ

u∗(t) := argmin {|u|, u ∈ Uq s.t. γ̇(t) = f(γ(t), u)}. (3.11)

We say that the control u∗ is the minimal control associated with γ.

We stress that u∗(t) is pointwise defined for a.e. t ∈ [0, T ]. The proof of the following crucial
Lemma is postponed to the Section 3.5.

Lemma 3.12. Let γ : [0, T ] → M be an admissible curve. Then its minimal control u∗(·) is
measurable and essentially bounded on [0, T ].

Remark 3.13. If the admissible curve γ : [0, T ]→M is differentiable, its minimal control is defined
everywhere on [0, T ]. Nevertheless, it could be not continuous, in general. Indeed consider, as in
Remark 3.6, the free sub-Riemannian structure on R2 given by

f(x, y, u1, u2) = (x, y, u1, u2x), (3.12)

and let γ : [−1, 1]→ R2 defined by γ(t) = (t, t2). Its minimal control u∗(t) satisfies (u∗1(t), u
∗
2(t)) =

(1, 2) when t 6= 0, while (u∗1(0), u
∗
2(0)) = (1, 0), hence is not continuous.

Thanks to Lemma 3.12 we are allowed to introduce the following definition.

Definition 3.14. Let γ : [0, T ]→M be an admissible curve. We define the sub-Riemannian length
of γ as

ℓ(γ) :=

∫ T

0
‖γ̇(t)‖dt. (3.13)

We say that γ is parametrized by arc length (or arc length parametrized if ‖γ̇(t)‖ = 1 for a.e.
t ∈ [0, T ].

Formula (3.13) says that the length of an admissible curve is the integral of the norm of its
minimal control.

ℓ(γ) =

∫ T

0
|u∗(t)|dt. (3.14)

In particular any admissible curve has finite length. For an arc length parametrized curve we have
that ℓ(γ) = T .

Lemma 3.15. The length of an admissible curve is invariant by Lipschitz reparametrization.

Proof. Let γ : [0, T ]→M be an admissible curve and ϕ : [0, T ′]→ [0, T ] a Lipschitz reparametriza-
tion, i.e., a Lipschitz and monotone surjective map. Consider the reparametrized curve

γϕ : [0, T ′]→M, γϕ := γ ◦ ϕ.

First observe that γϕ is a composition of Lipschitz functions, hence Lipschitz. Moreover γϕ is
admissible since, by the linearity of f , it has minimal control (u∗ ◦ ϕ)ϕ̇ ∈ L∞, where u∗ is the
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minimal control of γ. Using the change of variables t = ϕ(s), one gets (for the validity of the chain
rule one can see for instance [Rud87, Ch. 7])

ℓ(γϕ) =

∫ T ′

0
‖γ̇ϕ(s)‖ds =

∫ T ′

0
|u∗(ϕ(s))||ϕ̇(s)|ds =

∫ T

0
|u∗(t)|dt =

∫ T

0
‖γ̇(t)‖dt = ℓ(γ). (3.15)

Lemma 3.16. Every admissible curve of positive length is a Lipschitz reparametrization of an arc
length parametrized admissible one.

Proof. Let γ : [0, T ]→M be an admissible curve with ℓ(γ) > 0 and minimal control u∗. Consider
the Lipschitz monotone function ϕ : [0, T ]→ [0, ℓ(γ)] defined by

ϕ(t) :=

∫ t

0
|u∗(τ)|dτ.

Notice that if ϕ(t1) = ϕ(t2), the monotonicity of ϕ ensures γ(t1) = γ(t2). Hence we are allowed to
define the curve ζ : [0, ℓ(γ)]→M by

ζ(s) := γ(t), if s = ϕ(t) for some t ∈ [0, T ].

In other words, it holds γ = ζ ◦ ϕ. To show that ζ is Lipschitz let us first show that there exists
a constant C > 0 such that, for every t0, t1 ∈ [0, T ] one has, in some local coordinates (where | · |
denotes the Euclidean norm in coordinates)

|γ(t1)− γ(t0)| ≤ C
∫ t1

t0

|u∗(τ)|dτ.

Indeed fix K ⊂ M a compact set such that γ([0, T ]) ⊂ K and set C := max
x∈K

(
m∑

i=1

|fi(x)|2
)1/2

.

Then

|γ(t1)− γ(t0)| ≤
∫ t1

t0

m∑

i=1

|u∗i (t)fi(γ(t))| dt

≤
∫ t1

t0

√√√√
m∑

i=1

|u∗i (t)|2
√√√√

m∑

i=1

|fi(γ(t))|2dt

≤ C
∫ t1

t0

|u∗(t)|dt,

Hence if s1 = ϕ(t1) and s0 = ϕ(t0) one has

|ζ(s1)− ζ(s0)| = |γ(t1)− γ(t0)| ≤ C
∫ t1

t0

|u∗(τ)|dτ = C|s1 − s0|,

which proves that ζ is Lipschitz. It particular ζ̇(s) exists for a.e. s ∈ [0, ℓ(γ)].

72



Next, we prove that ζ is admissible and its minimal control has norm one. Define for every s
such that s = ϕ(t), ϕ̇(t) exists and ϕ̇(t) 6= 0, the control

v(s) :=
u∗(t)
ϕ̇(t)

=
u∗(t)
|u∗(t)| .

The control v is defined for a.e. s ∈ [0, ℓ(γ)], thanks to Exercise 3.17. Moreover, by construction,
|v(s)| = 1 for a.e. s ∈ [0, ℓ(γ)], and v is the minimal control associated with ζ.

Exercise 3.17. Let ϕ : [0, T ]→ R be a Lipschitz and monotone function and define the set

Cϕ = {s ∈ R | s = ϕ(t), ϕ̇(t) exists, ϕ̇(t) = 0}.

Prove that the Lebesgue measure of the set Cϕ is zero.

By the previous discussion, in what follows, it will be often convenient to assume that admissible
curves are arc length parametrized (or parametrized such that ‖γ̇(t)‖ is constant).

3.1.2 Equivalence of sub-Riemannian structures

In this section we introduce the notion of equivalence for sub-Riemannian structures on the same
base manifold M and the notion of isometry between sub-Riemannian manifolds.

Definition 3.18. Let (U, f), (U′, f ′) be two sub-Riemannian structures on a smooth manifold M .
They are said to be equivalent as distributions if

(i) there exist an Euclidean bundle V and two surjective vector bundle morphisms p : V → U
and p′ : V→ U′ such that the following diagram is commutative

U
f

""❊
❊❊

❊❊
❊❊

❊

V

p′   ❆
❆❆

❆❆
❆❆

❆

p
>>⑤⑤⑤⑤⑤⑤⑤⑤

TM

U′
f ′

<<②②②②②②②②

(3.16)

The structures (U, f), (U′, f ′) are said to be equivalent as sub-Riemannian structures (or simply
equivalent) if (i) is satisfied and moreover:

(ii) the projections p, p′ are compatible with the scalar product, i.e., it holds

|u| = min{|v|, p(v) = u}, ∀u ∈ U,

|u′| = min{|v|, p′(v) = u′}, ∀u′ ∈ U′.

Remark 3.19. If (U, f) and (U′, f ′) are equivalent as sub-Riemannian structures on M , then:

(a) the distributions Dq and D′
q defined by f and f ′ coincide, since f(Uq) = f ′(U ′

q) for all q ∈M .

(b) for each w ∈ Dq we have ‖w‖ = ‖w‖′, where ‖ · ‖ and ‖ · ‖′ are the norms are induced by
(U, f) and (U′, f ′) respectively.
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In particular the length of an admissible curve for two equivalent sub-Riemannian structures is the
same.

Exercise 3.20. Prove that (M,U, f), (M,U′ , f ′) are equivalent as distributions if and only if the
two moduli of horizontal vector fields D and D′ coincides.

Definition 3.21. Let M be a sub-Riemannian manifold. We define the minimal bundle rank of
M as the infimum of rank of bundles that induce equivalent structures on M . Given q ∈ M the
local minimal bundle rank of M at q is the minimal bundle rank of the structure restricted on a
sufficiently small neighborhood Oq of q.

Exercise 3.22. Prove that the free sub-Riemannian structure on R2 defined by f : R2×R3 → TR2

defined by
f(x, y, u1, u2, u3) = (x, y, u1, u2x+ u3y)

has non-constant local minimal bundle rank.

For equivalence classes of sub-Riemannian structures we introduce the following definition.

Definition 3.23. Two equivalent classes of sub-Riemannian manifolds are said to be isometric if
there exist two representatives (M,U, f) and (M ′,U′, f ′), a diffeomorphism φ : M → M ′ and an
isomorphism of Euclidean bundles ψ : U→ U′ such that the following diagram is commutative

U

ψ
��

f
// TM

φ∗
��

U′
f ′

// TM ′

(3.17)

Here isomorphism of bundles is understood in the broad sense, i.e., ψ is fiberwise linear but does
not necessarily map a fiber into a fiber over the same point.

3.1.3 Examples

Our definition of sub-Riemannian manifold is quite general. In the following we list some classical
geometric structures which are included in our setting.

1. Riemannian structures.
Classically a Riemannian manifold is defined as a pair (M, 〈· | ·〉), where M is a smooth

manifold and 〈· | ·〉q is a family of scalar product on TqM , smoothly depending on q ∈ M .
This definition is included in Definition 3.2 by taking U = TM endowed with the Euclidean
structure induced by 〈· | ·〉 and f : TM → TM the identity map.

Exercise 3.24. Show that every Riemannian manifold in the sense of Definition 3.2 is indeed
equivalent to a Riemannian structure in the classical sense above.

2. Constant rank sub-Riemannian structures.
Classically a constant rank sub-Riemannian manifold is a triple (M,D, 〈· | ·〉), where D is a
vector subbundle of TM and 〈· | ·〉q is a family of scalar product on Dq, smoothly depending
on q ∈ M . This definition is included in Definition 3.2 by taking U = D, endowed with its
Euclidean structure, and f : D →֒ TM the canonical inclusion.
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3. Almost-Riemannian structures.
An almost-Riemannian structure on M is a sub-Riemannian structure (U, f) on M such

that its local minimal bundle rank at every point is equal to the dimension of M .

4. Free sub-Riemannian structures.
Let U = M × Rm be the trivial Euclidean bundle of rank m on M . A point in U can be
written as (q, u), where q ∈M and u = (u1, . . . , um) ∈ Rm.

If we denote by {e1, . . . , em} an orthonormal basis of Rm, then we can define globally m
smooth vector fields on M by fi(q) := f(q, ei) for i = 1, . . . ,m. Then we have

f(q, u) = f

(
q,

m∑

i=1

uiei

)
=

m∑

i=1

uifi(q), q ∈M. (3.18)

In this case, the problem of finding an admissible curve joining two fixed points q0, q1 ∈ M
and with minimal length is rewritten as the optimal control problem





γ̇(t) =

m∑

i=1

ui(t)fi(γ(t))

∫ T

0
|u(t)|dt→ min

γ(0) = q0, γ(T ) = q1

(3.19)

For a free sub-Riemannian structure, the set of vector fields f1, . . . , fm build as above is called
a generating family. Notice that, in general, a generating family is not orthonormal when f
is not injective.

5. Surfaces in R3 as free sub-Riemannian structures
Due to topological constraints, in general it not possible to regard a surface of R3 (with the
induced metric) as a free sub-Riemannian structure of bundle rank 2, i.e., defined by a pair
of globally defined orthonormal vector fields. However, it is always possible to regard it as a
free sub-Riemannian structure of bundle rank 3.

Indeed, for an embedded surfaceM in R3, consider the trivial Euclidean bundle U =M×R3,
where points are denoted as usual (q, u), with u ∈ R3, q ∈M , and the map

f : U→ TM, f(q, u) = π⊥q (u) ∈ TqM. (3.20)

where π⊥q : R3 → TqM is the orthogonal projection onto TqM ⊂ R3.

Notice that f is a surjective bundle map and the set of vector fields {π⊥q (∂x), π⊥q (∂y), π⊥q (∂z)}
is a generating family for this structure.

Exercise 3.25. Show that (U, f) defined in (3.20) is equivalent to the Riemannian structure
on M induced by the embedding in R3.
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3.1.4 Every sub-Riemannian structure is equivalent to a free one

The purpose of this section is to show that every sub-Riemannian structure (U, f) on M is equiv-
alent to a sub-Riemannian structure (U′, f ′) where U′ is a trivial bundle with sufficiently large
bundle rank.

Lemma 3.26. Let M be a n-dimensional smooth manifold and π : E →M a smooth vector bundle
of rank m. Then, there exists a vector bundle π0 : E0 → M with rankE0 ≤ 2n + m such that
E ⊕E0 is a trivial vector bundle.

Proof. Remember that E, as a smooth manifold, has dimension

dim E = dim M + rank E = n+m.

Consider the map i : M →֒ E which embeds M into the vector bundle E as the zero section
M0 = i(M). If we denote with TME := i∗(TE) the pullback vector bundle, i.e., the restriction of
TE to the section M0, we have the isomorphism (as vector bundles on M)

TME ≃ E ⊕ TM. (3.21)

Eq. (3.21) is a consequence of the fact that the tangent to every fibre Eq, being a vector space, is
canonically isomorphic to its tangent space TqEq so that

TqE = TqEq ⊕ TqM ≃ Eq ⊕ TqM, ∀ q ∈M.

By Whitney theorem we have a (nonlinear on fibers, in general) immersion

Ψ : E → RN , Ψ∗ : TME ⊂ TE →֒ TRN ,

for N = 2(n+m), and Ψ∗ is injective as bundle map, i.e., TME is a sub-bundle of TRN ≃ RN×RN .
Thus we can choose as a complement E′, the orthogonal bundle (on the base M) with respect to
the Euclidean metric in RN , i.e.,

E′ =
⋃

q∈M
E′
q, E′

q = (TqEq ⊕ TqM)⊥,

and considering E0 := TME ⊕ E′ we have that E0 is trivial since its fibers are sum of orthogonal
complements and by (3.21) the conclusion follows.

Corollary 3.27. Every sub-Riemannian structure (U, f) on M is equivalent to a sub-Riemannian
structure (U, f̄) where U is a trivial bundle.

Proof. By Lemma 3.26 there exists a vector bundle U′ such that the direct sum U := U ⊕U′ is
a trivial bundle. Endow U′ with any metric structure g′. Define a metric on U in such a way
that ḡ(u + u′, v + v′) = g(u, v) + g′(u′, v′) on each fiber Ūq = Uq ⊕ U ′

q. Notice that Uq and U ′
q are

orthogonal subspace of Ūq with respect to ḡ.
Let us define the sub-Riemannian structure (U, f̄) on M by

f̄ : U→ TM, f̄ := f ◦ p1,
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where p1 : U⊕U′ → U denotes the projection on the first factor. By construction, the diagram

U
f̄

!!❈
❈❈

❈❈
❈❈

❈

U⊕U′

p1
##❍

❍❍
❍❍

❍❍
❍❍

Id

;;✇✇✇✇✇✇✇✇✇
TM

U
f

==④④④④④④④④④

(3.22)

is commutative. Moreover condition (ii) of Definition 3.18 is satisfied since for every ū = u + u′,
with u ∈ Uq and u′ ∈ U ′

q, we have |ū|2 = |u|2 + |u′|2, hence |u| = min{|ū|, p1(ū) = u}.

Since every sub-Riemannian structure is equivalent to a free one, in what follows we can assume
that there exists a global generating family, i.e., a family of f1, . . . , fm of vector fields globally
defined on M such that every admissible curve of the sub-Riemannian structure satisfies

γ̇(t) =
m∑

i=1

ui(t)fi(γ(t)), (3.23)

Moreover, by the classical Gram-Schmidt procedure, we can assume that fi are the image of an
orthonormal frame defined on the fiber. (cf. Example 4 of Section 3.1.3)

Under these assumptions the length of an admissible curve γ is given by

ℓ(γ) =

∫ T

0
|u∗(t)|dt =

∫ T

0

√√√√
m∑

i=1

u∗i (t)
2dt,

where u∗(t) is the minimal control associated with γ.
Notice that Corollary 3.27 implies that the modulus of horizontal vector fields D is globally

generated by f1, . . . , fm.

Remark 3.28. The curve γ : [0, T ]→M defined by γ(t) = etfi , integral curve of an element fi of a
generating family F = {f1, . . . , fm}, is admissible and ℓ(γ) ≤ T . If F = {f1, . . . , fm} are linearly
independent then they are an orthonormal frame and ℓ(γ) = T .

Exercise 3.29. Consider a sub-Riemannian structure (U, f) over M . Let m = rank(U) and
hmax = max{h(q) : q ∈ M} ≤ m where h(q) is the local minimal bundle rank at q. Prove that
there exists a sub-Riemannian structure (U, f) equivalent to (U, f) such that rank(U) = hmax.

3.2 Sub-Riemannian distance and Rashevskii-Chow theorem

In this section we introduce the sub-Riemannian distance and we prove the Rashevskii-Chow the-
orem.

Recall that, thanks to the results of Section 3.1.4, in what follows we can assume that the
sub-Riemannian structure on M is free, with generating family F = {f1, . . . , fm}. Notice that, by
definition, of sub-Riemannian manifold, M is assumed to be connected and F is assumed to be
bracket-generating.
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Definition 3.30. Let M be a sub-Riemannian manifold and q0, q1 ∈ M . The sub-Riemannian
distance (or Carnot-Caratheodory distance) between q0 and q1 is

d(q0, q1) = inf{ℓ(γ) | γ : [0, T ]→M admissible, γ(0) = q0, γ(T ) = q1}. (3.24)

We now state the main result of this section.

Theorem 3.31 (Rashevskii-Chow). Let M be a sub-Riemannian manifold. Then

(i) (M,d) is a metric space,

(ii) the topology induced by (M,d) is equivalent to the manifold topology.

In particular, d :M ×M → R is continuous.

One of the main consequences of this result is that, thanks to the bracket-generating condition,
for every q0, q1 ∈M , for every q0 and q1 in M there always exists an admissible curve that joining
them. Hence d(q0, q1) < +∞.

In what follows B(q, r) (sometimes denoted also Br(q)) is the (open) sub-Riemannian ball of
radius r and center q

B(q, r) := {q′ ∈M | d(q, q′) < r}.
The rest of this section is devoted to the proof of Theorem 3.31. To prove it, we have to show that
d is actually a distance, i.e.,

(a) 0 ≤ d(q0, q1) < +∞ for all q0, q1 ∈M ,

(b) d(q0, q1) = 0 if and only if q0 = q1,

(c) d(q0, q1) = d(q1, q0) and d(q0, q2) ≤ d(q0, q1) + d(q1, q2) for all q0, q1, q2 ∈M ,

and the equivalence between the metric and the manifold topology: for every q0 ∈M we have

(d) for every ε > 0 there exists a neighborhood Oq0 of q0 such that Oq0 ⊂ B(q0, ε),

(e) for every neighborhood Oq0 of q0 there exists δ > 0 such that B(q0, δ) ⊂ Oq0 .

3.2.1 Proof of Rashevskii-Chow theorem

The symmetry of d is a direct consequence of the fact that if γ : [0, T ] → M is admissible,
then the curve γ̄ : [0, T ] → M defined by γ̄(t) = γ(T − t) is admissible and ℓ(γ̄) = ℓ(γ). The
triangular inequality follows from the fact that, given two admissible curves γ1 : [0, T1] → M and
γ2 : [0, T2]→M such that γ1(T1) = γ2(0), their concatenation

γ : [0, T1 + T2]→M, γ(t) =

{
γ1(t), t ∈ [0, T1],

γ2(t− T1), t ∈ [T1, T1 + T2].
(3.25)

is still admissible. These two arguments prove item (c).
We divide the rest of the proof of the Theorem in the following steps.

S1. We prove that, for every q0 ∈ M , there exists a neighborhood Oq0 of q0 such that d(q0, ·) is
finite and continuous in Oq0 . This proves (d).
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S2. We prove that d is finite on M ×M . This proves (a).

S3. We prove (b) and (e).

To prove Step 1 we first need the following lemmas:

Lemma 3.32. Let N ⊂M be a submanifold and F ⊂ Vec(M) be a family of vector fields tangent
to N , i.e., X(q) ∈ TqN , for every q ∈ N and X ∈ F . Then for all q ∈ N we have LieqF ⊂ TqN .
In particular dimLieqF ≤ dimN .

Proof. Let X ∈ F . As a consequence of the local existence and uniqueness of the two Cauchy
problems {

q̇ = X(q), q ∈M,

q(0) = q0, q0 ∈ N.
and

{
q̇ = X

∣∣
N
(q), q ∈ N,

q(0) = q0, q0 ∈ N.
it follows that etX(q) ∈ N for every q ∈ N and t small enough. This property, together with the
definition of Lie bracket (see formula (2.30)) implies that, if X,Y are tangent to N , the vector field
[X,Y ] is tangent to N as well. Iterating this argument we get that LieqF ⊂ TqN for every q ∈ N ,
from which the conclusion follows.

Lemma 3.33. Let M be an n-dimensional sub-Riemannian manifold with generating family F =
{f1, . . . , fm}. For every q0 ∈ M and every neighborhood V of the origin in Rn there exist ŝ =
(ŝ1, . . . , ŝn) ∈ V , and a choice of n vector fields fi1 , . . . , fin ∈ F , such that ŝ is a regular point of
the map

ψ : Rn →M, ψ(s1, . . . , sn) = esnfin ◦ · · · ◦ es1fi1 (q0).
Remark 3.34. Notice that, if Dq0 6= Tq0M , then ŝ = 0 cannot be a regular point of the map ψ.
Indeed, for s = 0, the image of the differential of ψ at 0 is spanq0{fij , j = 1, . . . , n} ⊂ Dq0 and the
differential of ψ cannot be surjective.

We stress that, in the choice of fi1 , . . . , fin ∈ F , a vector field can appear more than once, as
for instance in the case m < n.

Proof of Lemma 3.33. We prove the lemma by steps.

1. There exists a vector field fi1 ∈ F such that fi1(q0) 6= 0, otherwise all vector fields in F vanish
at q0 and dimLieq0F = 0, which contradicts the bracket-generating condition. Then, for |s|
small enough, the map

φ1 : s1 7→ es1fi1 (q0),

is a local diffeomorphism onto its image Σ1. If dimM = 1 the Lemma is proved.

2. Assume dimM ≥ 2. Then there exist t11 ∈ R, with |t11| small enough, and fi2 ∈ F such that,

if we denote by q1 = et
1
1fi1 (q0), the vector fi2(q1) is not tangent to Σ1. Otherwise, by Lemma

3.32, dim Lieq0F = 1, which contradicts the bracket-generating condition. Then the map

φ2 : (s1, s2) 7→ es2fi2 ◦ es1fi1 (q0),
is a local diffeomorphism near (t11, 0) onto its image Σ2. Indeed the vectors

∂φ2
∂s1

∣∣∣∣
(t11,0)

∈ Tq1Σ1,
∂φ2
∂s2

∣∣∣∣
(t11,0)

= fi2(q1),

are linearly independent by construction. If dimM = 2 the Lemma is proved.
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3. Assume dimM ≥ 3. Then there exist t12, t
2
2, with |t12 − t11| and |t22| small enough, and fi3 ∈ F

such that, if q2 = et
2
2fi2 ◦ et12fi1 (q0) we have that fi3(q2) is not tangent to Σ2. Otherwise, by

Lemma 3.32, dim Lieq1D = 2, which contradicts the bracket-generating condition. Then the
map

φ3 : (s1, s2, s3) 7→ es3fi3 ◦ es2fi2 ◦ es1fi1 (q0),

is a local diffeomorphism near (t12, t
2
2, 0). Indeed the vectors

∂φ3
∂s1

∣∣∣∣
(t12,t

2
2,0)

,
∂φ3
∂s2

∣∣∣∣
(t12,t

2
2,0)

∈ Tq2Σ2,
∂φ3
∂s3

∣∣∣∣
(t12,t

2
2,0)

= fi3(q2),

are linearly independent since the last one is transversal to Tq2Σ2 by construction, while the
first two are linearly independent since φ3(s1, s2, 0) = φ2(s1, s2) and φ2 is a local diffeomor-
phisms at (t12, t

2
2) which is close to (t11, 0).

Repeating the same argument n times (with n = dimM), the lemma is proved.

Proof of Step 1. Thanks to Lemma 3.33 there exists a neighborhood V̂ ⊂ V of ŝ such that ψ is
a diffeomorphism from V̂ to ψ(V̂ ), see Figure 3.3. We stress that in general q0 = ψ(0) does not
belong to ψ(V̂ ), cf. Remark 3.34.

ψ(V̂ )

V

V̂

ŝ

ψ

q0

Figure 3.3: Proof of Lemma 3.33

To build a local diffeomorphism whose image contains q0, we consider the map (here ŝ = (ŝ1, . . . , ŝn))

ψ̂ : Rn →M, ψ̂(s1, . . . , sn) = e−ŝ1fi1 ◦ · · · ◦ e−ŝnfin ◦ ψ(s1, . . . , sn),

which has the following property: ψ̂ is a diffeomorphism from a neighborhood of ŝ ∈ V , that we
still denote V̂ , to a neighborhood of ψ̂(ŝ) = q0.

Fix now ε > 0 and apply the construction above where V is the neighborhood of the origin in
Rn defined by V = {s ∈ Rn | ∑n

i=1 |si| < ε}. Let us show that the claim of Step 1 holds with

Oq0 = ψ̂(V̂ ). Indeed, for every q ∈ ψ̂(V̂ ), let s = (s1, . . . , sn) such that q = ψ̂(s), and denote by γ
the admissible curve joining q0 to q, built by 2n-pieces, as in Figure 3.4.
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s

V

V̂

ψ̂

ψ(s)

q0

ψ̂(s)

ψ̂(V̂ )

Figure 3.4: The map ψ̂

In other words γ is the concatenation of integral curves of the vector fields fij , i.e., admissible

curves of the form t 7→ etfij (q) defined on some interval [0, T ], whose length is less or equal than T
(cf. Remark 3.28). Since s, ŝ ∈ V̂ ⊂ V , it follows that:

d(q0, q) ≤ ℓ(γ) ≤ |s1|+ . . .+ |sn|+ |ŝ1|+ . . .+ |ŝn| < 2ε,

which ends the proof of Step 1, i.e., the finiteness and continuity of d(q0, ·) in Oq0 .

Proof of Step 2. To prove that d is finite on M×M let us consider the equivalence classes of points
in M with respect to the relation

q1 ∼ q2 if d(q1, q2) < +∞. (3.26)

From the triangular inequality and the proof of Step 1, it follows that each equivalence class is open.
Moreover, by definition, the equivalence classes are disjoint and nonempty. Since M is connected,
it cannot be the union of open disjoint and nonempty subsets. It follows that there exists only one
equivalence class.

Remark 3.35. Notice that from the triangular inequality one gets for q1, q2, q
′
1, q

′
2 in M

|d(q′1, q′2)− d(q1, q2)| ≤ d(q′1, q1) + d(q′2, q2),

hence the continuity of d on M ×M follows automatically.

Lemma 3.36. Let q0 ∈ M and K ⊂ M a compact set with q0 ∈ intK. Then there exists δK > 0
such that every admissible curve γ starting from q0 and with ℓ(γ) ≤ δK is contained in K.

Proof. Without loss of generality we can assume that K is contained in a coordinate chart of M ,
where we denote by | · | the Euclidean norm in the coordinate chart. Let us define

CK := max
x∈K

(
m∑

i=1

|fi(x)|2
)1/2

, (3.27)
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and fix δK > 0 such that dist(q0, ∂K) > CKδK (here dist denotes the Euclidean distance from a
point to a set, in coordinates).

Let us show that for any admissible curve γ : [0, T ] → M such that γ(0) = q0 and ℓ(γ) ≤ δK
we have γ([0, T ]) ⊂ K. Indeed, if this is not true, there exists an admissible curve γ : [0, T ] → M
with ℓ(γ) ≤ δK and t∗ < T , where t∗ := sup{t ∈ [0, T ] | γ([0, t]) ⊂ K}. Then

|γ(t∗)− γ(0)| ≤
∫ t∗

0
|γ̇(t)|dt ≤

∫ t∗

0

m∑

i=1

|u∗i (t)fi(γ(t))| dt (3.28)

≤
∫ t∗

0

√√√√
m∑

i=0

|fi(γ(t))|2
√√√√

m∑

i=0

u∗i (t)
2 dt (3.29)

≤ CK
∫ t∗

0

√√√√
m∑

i=0

u∗i (t)
2 dt ≤ CKℓ(γ) (3.30)

≤ CKδK < dist(q0, ∂K), (3.31)

which contradicts the fact that, at t∗, the curve γ leaves the compact K. Thus t∗ = T .

Proof of Step 3. Let us prove that Lemma 3.36 implies property (b). Indeed the only nontrivial
implication is that d(q0, q1) > 0 whenever q0 6= q1. To prove this, fix a compact neighborhood K of
q0 such that q1 /∈ K. By Lemma 3.36, each admissible curve joining q0 and q1 has length greater
than δK , hence d(q0, q1) ≥ δK > 0.

Let us now prove property (e). Fix ε > 0 and a compact neighborhood K of q0. Define CK
and δK as in Lemma 3.36, and set δ := min{δK , ε/CK}. Let us show that |q − q0| < ε whenever
d(q0, q) < δ, where again | · | is the Euclidean norm in a coordinate chart.

Consider a minimizing sequence γn : [0, T ]→M of admissible trajectories joining q0 and q such
that ℓ(γn) → d(q0, q) for n →∞. Without loss of generality, we can assume that ℓ(γn) ≤ δ for all
n. By Lemma 3.36, γn([0, T ]) ⊂ K for all n.

We can repeat estimates (3.28)-(3.30) proving that |q − q0| = |γn(T )− γn(0)| ≤ CKℓ(γn) for all
n. Passing to the limit for n→∞, one gets

|q − q0| ≤ CKd(q0, q) ≤ CKδ < ε. (3.32)

Corollary 3.37. The metric space (M,d) is locally compact, i.e., for any q ∈M there exists ε > 0
such that the closed sub-Riemannian ball B(q, r) is compact for all 0 ≤ r ≤ ε.
Proof. By the continuity of d, the set B(q, r) = {d(q, ·) ≤ r} is closed for all q ∈ M and r ≥ 0.
Moreover the sub-Riemannian metric d induces the manifold topology onM . Hence, for radius small
enough, the sub-Riemannian ball is bounded. Thus small sub-Riemannian balls are compact.

3.2.2 Non bracket-generating structures

Sometimes can be useful to consider structures that satisfy only property (i) and (ii) of Defini-
tion 3.2, but that are not bracket-generating.

The typical example is the following: assume that the family of horizontal vector fields D
satisfies
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(i) [D,D] ⊂ D,

(ii) dimDq does not depend on q ∈M .

In this case the manifold M is foliated by integral manifolds of the distribution (cf. Frobenius
theorem), and each of them is endowed with a Riemannian structure. In this case the quantity

d(q0, q1) = inf{ℓ(γ) | γ : [0, T ]→M admissible, γ(0) = q0, γ(T ) = q1}. (3.33)

does not define a metric, since (3.33) is infinite when q0 and q1 do not belong to the same leaf of
the foliation.

On the other hand, observe that the bracket-generating condition is only a sufficient condition
for the formula (3.33) defining a distance on the manifold M .

Exercise 3.38. Let φ : R→ R be the C∞ function defined by

φ(x) =

{
0, x ≤ 0

e−1/x, x > 0

Prove that the family of horizontal vector fields defined by the free sub-Riemannian structure

f : R2 × R2 → TR2, f(x, y, u1, u2) = (x, y, u1, u2φ(x)).

is not bracket-generating. Prove that (3.33) still defines a distance in this case, but that d is not
continuous with respect to the Euclidean topology.

3.3 Existence of length-minimizers

In this section we want to discuss the existence of length-minimizers.

Definition 3.39. Let γ : [0, T ]→M be an admissible curve. We say that γ is a length-minimizer
if it minimizes the length among admissible curves with same endpoints, i.e., ℓ(γ) = d(γ(0), γ(T )).

Remark 3.40. Notice that the existence length-minimizers between two points is not guaranteed
in general, as it happens for two points in M = R2 \ {0} (endowed with the Euclidean distance)
that are symmetric with respect to the origin. On the other hand, when length-minimizers exist
between two fixed points, they may not be unique, as it happens for two antipodal points on the
sphere S2.

We now show a general semicontinuity property of the length functional.

Theorem 3.41. Let γn : [0, T ]→M be a sequence of admissible curves parametrized by arc length
such that γn → γ uniformly on [0, T ] with lim infn→∞ ℓ(γn) < +∞. Then γ is admissible and

ℓ(γ) ≤ lim inf
n→∞

ℓ(γn). (3.34)

Proof. Let L := lim infn→∞ ℓ(γn) < +∞ and choose a subsequence, still denoted (γn)n∈N, such
that ℓ(γn)→ L.

Fix δ > 0. It is not restrictive to assume that, for n large enough, ℓ(γn) ≤ L+δ and, by uniform
convergence, that the image of γn are all contained in a common compact set K.
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Up to a common time rescaling, we can assume that all the curves are parametrized with
constant speed on the interval [0, 1]. Under this assumption, we have that γ̇n(t) ∈ Vγn(t) for a.e. t,
where

Vq = {fu(q), |u| ≤ L+ δ} ⊂ TqM, fu(q) =

m∑

i=1

uifi(q).

Notice that Vq is convex for every q ∈M , thanks to the linearity of f in u. Let us prove that γ is
admissible and satisfies ℓ(γ) ≤ L+ δ. Once this is done, since δ is arbitrary, this implies ℓ(γ) ≤ L,
that is (3.34).

Writing in local coordinates, we have for every ε > 0

1

ε
(γn(t+ ε)− γn(t)) =

1

ε

∫ t+ε

t
fun(τ)(γn(τ))dτ ∈ conv{Vγn(τ) | τ ∈ [t, t+ ε]}, (3.35)

where conv S denotes the covex hull of a set S. Next we want to estimate the right hand side of
(3.35) uniformly with respect to n. For n ≥ n0 sufficiently large, we have |γn(t) − γ(t)| < ε (by
uniform convergence) and an estimate similar to (3.30) gives for τ ∈ [t, t+ ε]

|γn(t)− γn(τ)| ≤
∫ τ

t
|γ̇n(s)|ds ≤ CK(L+ δ)|t− τ | ≤ CK(L+ δ)ε, (3.36)

where CK is the constant (3.27) defined by the compact K. Hence we deduce for every τ ∈ [t, t+ ε]
and every n ≥ n0

|γn(τ)− γ(t)| ≤ |γn(t)− γn(τ)|+ |γn(t)− γ(t)| ≤ C ′ε, (3.37)

where C ′ is independent on n and ε. From the estimate (3.37) and the equivalence of the manifold
and metric topology we have that, for all τ ∈ [t, t+ ε] and n ≥ n0, γn(τ) ∈ Bγ(t)(rε), with rε → 0
when ε→ 0. In particular

conv{Vγn(τ) | τ ∈ [t, t+ ε]} ⊂ conv{Vq | q ∈ Bγ(t)(rε)}. (3.38)

Using the inclusion (3.38) in (3.35) and passing to the limit for n→∞ we get finally to

1

ε
(γ(t+ ε)− γ(t)) ∈ conv{Vq, q ∈ Bγ(t)(rε)}. (3.39)

Passing to the limit for n → ∞ in (3.36) one has that γ is Lipschitz. Then for a.e. t ∈ [0, 1] the
limit of the left hand side in (3.39) for ε→ 0 exists and gives γ̇(t) ∈ conv Vγ(t) = Vγ(t). We can thus
define the unique u∗(t) satisfying γ̇(t) = f(γ(t), u∗(t)) and |u∗(t)| = ‖γ̇(t)‖ for a.e. t ∈ [0, 1]. Using
the argument contained in Appendix 3.5 it follows that u∗(t) is measurable on [0, 1]. Moreover
|u∗(t)| is essentially bounded since, by construction, |u∗(t)| ≤ L + δ for a.e. t ∈ [0, 1]. Hence γ is
admissible and ℓ(γ) ≤ L+ δ since γ is defined on the interval [0, 1], which completes the proof.

Corollary 3.42. Let γn : [0, T ]→M be a sequence of length-minimizers parametrized by arc length
on M such that γn → γ uniformly on [0, T ]. Then γ is a length-minimizer.

Proof. Since γn is a length-minimizer one has ℓ(γn) = d(γn(0), γn(T )). By uniform convergence
γn(t)→ γ(t) for every t ∈ [0, T ] and, by continuity of the distance and semicontinuity of the length

ℓ(γ) ≤ lim inf
n→∞

ℓ(γn) = lim inf
n→∞

d(γn(0), γn(T )) = d(γ(0), γ(T )),

that implies that ℓ(γ) = d(γ(0), γ(T )), i.e., γ is a length-minimizer.

84



The semicontinuity of the length implies the existence of minimizers, under a natural compact-
ness assumption on the space.

Theorem 3.43 (Existence of minimizers). Let M be a sub-Riemannian manifold and q0 ∈ M .
Assume that the ball Bq0(r) is compact, for some r > 0. Then for all q1 ∈ Bq0(r) there exists a
length minimizer joining q0 and q1, i.e., we have

d(q0, q1) = min{ℓ(γ) | γ : [0, T ]→M admissible , γ(0) = q0, γ(T ) = q1}.

Proof. Fix q1 ∈ Bq0(r) and consider a minimizing sequence γn : [0, 1] → M of admissible trajecto-
ries, parametrized with constant speed, joining q0 and q1 and such that ℓ(γn)→ d(q0, q1).

Since d(q0, q1) < r, we have ℓ(γn) ≤ r for all n ≥ n0 large enough, hence we can assume without
loss of generality that the image of γn is contained in the common compact K = Bq0(r) for all n.
In particular, the same argument leading to (3.36) shows that for all n ≥ n0

|γn(t)− γn(τ)| ≤
∫ t

τ
|γ̇n(s)|ds ≤ CKr|t− τ |, ∀ t, τ ∈ [0, 1]. (3.40)

where CK depends only on K. In other words, all trajectories in the sequence {γn}n∈N are Lipschitz
with the same Lipschitz constant. Thus the sequence is equicontinuous and uniformly bounded.

By the classical Ascoli-Arzelà Theorem there exist a subsequence of γn, which we still denote by
the same symbol, and a Lipschitz curve γ : [0, T ] → M such that γn → γ uniformly. By Theorem
3.41, the curve γ satisfies ℓ(γ) ≤ lim inf ℓ(γn) = d(q0, q1), that implies ℓ(γ) = d(q0, q1).

Remark 3.44. Assume that B(q, r0) is compact for some r0 > 0. Then for every 0 < r ≤ r0 we
have that B(q, r) is compact also, being a closed subset of a compact set B(q, r0).

Combining Theorem 3.43 and Corollary 3.37 one gets the following corollary.

Corollary 3.45. Let q0 ∈ M . There exists ε > 0 such that for every q1 ∈ Bq0(ε) there exists a
minimizing curve joining q0 and q1.

3.3.1 On the completeness of the sub-Riemannian distance

We provide here a characterization of metric completeness of a sub-Riemannian manifold. We start
by proving a preliminary lemma. We recall that B(x, r) (resp. B(x, r)) denotes the open (resp.
closed) ball of center x ∈M and radius r > 0 with respect to the sub-Riemannian distance.

Lemma 3.46. Let M be a sub-Riemannian manifold. For every ε > 0 and x ∈M we have

B(x, r + ε) =
⋃

y∈B(x,r)

B(y, ε). (3.41)

Proof. The inclusion ⊇ is a direct consequence of the triangle inequality.
Let us prove the inclusion ⊆. Fix z ∈ B(x, r + ε) \ B(x, ε). Then there exists a length-

parameterized curve γ connecting x with z such that ℓ(γ) = t+ ε where 0 ≤ t < r. Let t′ ∈ (t, r);
then γ(t′) ∈ B(x, r) and z ∈ B(γ(t′), ε).

Proposition 3.47. Let M be a sub-Riemannian manifold. Then the three following properties are
equivalent:
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(i) (M,d) is complete,

(ii) B(x, r) is compact for every x ∈M and r > 0,

(iii) there exists ε > 0 such that B(x, ε) is compact for every x ∈M .

Proof. (iii) implies (i). Let us prove that every Cauchy sequence {xn}n∈N in M is convergent. Fix
ε > 0 satisfying the assumption. Since {xn}n∈N is Cauchy there exists N ∈ N such that one has
d(xn, xm) < ε for all n,m ≥ N .

In particular, by choosing m = N , for all n ≥ N one has that xn ∈ B(xN , ε), that is compact
by assumption. Hence {xn}n≥N is a Cauchy sequence and admits a convergent subsequence, that
implies that the whole sequence {xn}n∈N in M is convergent.

(ii) implies (iii). This is evident.
(i) implies (ii). Assume now that (M,d) is complete. Fix x ∈M and define

A := {r > 0 |B(x, r) is compact }, R := supA. (3.42)

Since the topology of (M,d) is locally compact then A 6= ∅ and R > 0. First we prove that A is
open and then we prove that R = +∞. Notice in particular that this proves that A =]0,+∞[ since,
by Remark 3.44, r ∈ A implies ]0, r[⊂ A.

(ii.a) It is enough to show that, if r ∈ A, then there exists δ > 0 such that r + δ ∈ A. For each
y ∈ B(x, r) there exists ρ(y) < ε small enough such that B(y, ρ(y)) is compact. We have

B(x, r) ⊂
⋃

y∈B(x,r)

B(y, ρ(y)).

By compactness of B(x, r) there exists a finite number of points {yi}Ni=1 in B(x, r) such that (denote
ρi := ρ(yi))

B(x, r) ⊂
N⋃

i=1

B(yi, ρi).

Moreover, since B(x, r+δ) coincides with the set of points {y ∈M |dist(y,B(x, r)) ≤ δ} by Lemma
3.46, there exists δ > 0 such that

B(x, r + δ) ⊂
N⋃

i=1

B(yi, ρi).

This proves that r + δ ∈ A, since a finite union of compact sets is compact.
(ii.b) Assume by contradiction that R < +∞ and let us prove that B := B(x,R) is compact.

Since B is a closed set, it is enough to show that it is totally bounded, i.e., it admits a finite ε-net1

for every ε > 0. Fix ε > 0 and consider an (ε/3)-net S for the ball B′ = B(x,R− ε/3), that exists
by compactness. By Lemma 3.46 one has for every y ∈ B that dist(y,B′) < ε/3. Then it follows
that

dist(y, S) < dist(y,B′) + ε/3 < ε,

that is S is an ε-net for B and B is compact.
This shows that if R < +∞, then R ∈ A. Hence (ii.a) implies that R + δ ∈ A for some δ > 0,

contradicting the fact that R is a sup. Hence R = +∞.
1A finite ε-net S for a set B in a metric space is a finite set of points S = {zi}

N
i=1 such that for every y ∈ B one

has dist(y, S) < ε (or, equivalently, for every y ∈ B there exists i such that d(y, zi) < ε).
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Remark 3.48. Notice that we used that the distance is sub-Riemannian only to prove Lemma 3.46,
which enters in the “(i) implies (ii)” part of the statement. Actually the same result holds true in
the more general context of length metric space, see [BBI01, Ch. 2].

For the relation with geodesic completeness of the sub-Riemannian manifold, see Section 11.4.

Combining this result with Corollary 3.43, we obtain the following corollary.

Corollary 3.49. Let (M,d) be a complete sub-Riemannian manifold. Then for every q0, q1 ∈ M
there exists a length minimizer joining q0 and q1.

3.3.2 Lipschitz curves with respect to d vs admissible curves

The goal of this section is to prove that continous curves that are Lipschitz with respect to sub-
Riemannian distance are exactly admissible curves.

Proposition 3.50. Let γ : [0, T ]→M be a continuous curve. Then γ is Lipschitz with respect to
the sub-Riemannian distance if and only if γ is admissible.

Proof. (i). Assume γ is admissible and let u be a control associated with γ. By definition u is
essentially bounded. Then for t, s ∈ [0, T ] with t < s one has

d(γ(t), γ(s)) ≤ ℓ(γ|[t,s]) ≤
∫ t

s
|u(τ)|dτ ≤ C|t− s|,

for some constant C > 0. Then γ is Lipschitz with respect to the sub-Riemannian distance.
(ii). Conversely assume that γ is Lipschitz with respect to the sub-Riemannian distance, with

Lipschitz constant L > 0, meaning that

d(γ(t), γ(s)) ≤ L|t− s|, ∀ t, s ∈ [0, T ]. (3.43)

Repeating arguments contained in the proof of Lemma 3.36 we have that for a compact neighbor-
hood K ⊂M of γ([0, T ]) there exists CK > 0 such that

|γ(t)− γ(s)| ≤ CKd(γ(t), γ(s)), (3.44)

for every t, s close enough, where | · | denotes the Euclidean norm in coordinates. Combining (3.43)
and (3.44) it follows that γ is Lipschitz in charts and γ is differentiable almost everywhere by
Rademacher theorem.

Let us prove that γ is admissile. Consider the partition σn = {ti,n}2ni=1 of the interval [0, T ] into
2n intervals of length T/2n, namely ti,n := iT/2n for i = 1, . . . , 2n. By compactness of small balls
and compactness of [0, T ], for n large enough, there exists a length-minimizer joining γ(ti,n) and
γ(ti+1,n) for i = 1, . . . , 2n − 1.

Denote by γn the curve defined by the concatenation of length-minimizers joining γ(ti,n) and
γ(ti+1,n) for i = 1, . . . , 2n − 1. Thanks to (3.43) we have the uniform bound on the length

ℓ(γn) =
2n∑

i=1

d(γ(ti,n), γ(ti+1,n)) ≤
2n∑

i=1

L|ti,n − ti+1,n| ≤
2n∑

i=1

L

2n
T ≤ LT. (3.45)

Moreover, by construction, γn converge uniformly to γ when n→∞. By Theorem 3.41, the curve
γ is admissible and ℓ(γ) ≤ L.
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Exercise 3.51. Let γ : [0, T ] → M be an admissible curve. For every t ∈ [0, T ] let us define,
whenever it exists, the limit

vγ(t) := lim
ε→0

d(γ(t+ ε), γ(t))

|ε| . (3.46)

(i) Prove that vγ(t) exist for a.e. t ∈ [0, T ].

(ii) Prove that vγ(t) = ‖γ̇(t)‖ = |u∗(t)| for a.e. t ∈ [0, T ].

Hint: fix a dense set {xn}n∈N in γ([0, T ]). Consider the functions ϕn(t) = d(γ(t), xn). Prove that
ϕn is Lipschitz for every n and vγ(t) = supn |ϕ̇n(t)| for a.e t ∈ [0, T ].

Exercise 3.52. Let γ : [0, T ]→M be an admissible curve. Prove that

ℓ(γ) = sup

{
n∑

i=1

d(γ(ti), γ(ti−1)) : 0 = t0 < t1 < . . . < tn−1 < tn = T

}
. (3.47)

3.3.3 Lipschitz equivalence of sub-Riemannian distances

The goal of this section is to discuss a condition for two sub-Riemannian distances on the same
manifold to be Lipschitz equivalent.

Definition 3.53. Let (M,U, f) and (M,U′, f ′) be two sub-Riemannian structures on M . We say
that the two structures are Lipschitz equivalent if the corresponding sub-Riemannian distance d
and d′ satisfy the following property: for every compact K ⊂M there exist constants 0 < c1 < c2
such that

c1d(x, y) ≤ d′(x, y) ≤ c2d(x, y), ∀x, y ∈ K. (3.48)

We have the following characterization of Lipschitz equivalent structures in terms of the distri-
bution, in the case when the structure is regular, i.e., the distribution has constant rank.

Proposition 3.54. Two complete and regular sub-Riemannian structures (U, f) and (U′, f ′) on
M are Lipschitz equivalent if and only if they are equivalent as distributions.

Recall that (U, f) and (U′, f ′) are equivalent as distributions if and only if the corresponding
moduli of horizontal vector fields D and D′ coincide, cf. Exercice 3.20. For a regular distribution
the modulus of horizontal vector fields corresponds to sections that are point-wise horizontal, cf.
Exercice 3.7

D = {X ∈ Vec(M) | X(q) ∈ Dq,∀ q ∈M}. (3.49)

Proof. Assume that (U, f) and (U′, f ′) are equivalent as distribution. Thanks to Definition 3.18
this means we can assume that both structures are defined on the same vector bundle V, endowed
with different inner products (· | ·) and (· | ·)′. Denote by |v| and |v|′ the corresponding norm of an
element v ∈ Vq.

Fix an arbitrary compact set K ⊂ M and set B = B(x0, 3R), for some x0 ∈ K and R :=
max{diamK,diam′K}. The set B is compact by completeness. Since any two norms on a finite-
dimensional vector space are equivalent it follows that there exist constants 0 < c1 < c2 such that

c1|v| ≤ |v|′ ≤ c2|v|, ∀ v ∈ Vq, q ∈ B. (3.50)

88



Then computing the length of an admissible curves γ : [0, T ]→M contained in B we have

c1ℓ(γ) ≤ ℓ′(γ) ≤ c2ℓ(γ). (3.51)

Notice that if x, y ∈ K then max{d(x, y), d′(x, y)} ≤ R hence to compute distances it is not
restrictive to consider only curves contained in B. In particular if γ is an admissible curve contained
in B we have the two inequalities

c1d(x, y) ≤ ℓ′(γ), d′(x, y) ≤ c2ℓ(γ). (3.52)

Taking the infimum over all curves this implies

c1d(x, y) ≤ d′(x, y) ≤ c2d(x, y), ∀x, y ∈ K. (3.53)

This proves that the two structures are Lipschitz equivalent.
Assume now that the two structures are Lipschitz equivalent, hence (3.48) holds. It follows

that if γ : [0, T ]→M is a Lipschitz curve for d if and only if it is a Lipschitz curve for d′. Thanks
to Proposition 3.50, the curve γ : [0, T ] → M is admissible for (U, f) if and only if is admissible
for (U′, f ′). Moreover, given a horizontal vector field X for (U, f), the integral curves of X are
admissible trajectories. Hence the integral curves of X are admissible trajectories with respect to
(U′, f ′) as well. This implies that X(q) ∈ D′

q for every q and thanks to (3.49) X is horizontal for
(U′, f ′).

3.3.4 Continuity of d with respect to the sub-Riemannian structure

In this section, for m ∈ N we define the space Sm of free and complete sub-Riemannian structures
of bundle rank m defined by f : Rm ×M → TM .

The space Sm is naturally endowed with the C0-topology as follows: embed M into RN , for
some N ∈ N, thanks to Whitney theorem. Given f, f ′ : Rm×M → TM , and K ⊂M compact, we
define

‖f ′ − f‖0,K = sup{|f ′(q, v) − f(q, v)| : q ∈ K, |v| ≤ 1}.
The family of seminorms ‖ · ‖0,K induces a topology on Sm with a countable local basis of neigh-
borhood as follows: take an increasing family of compact sets {Kn}n∈N invading M , i.e., Kn ⊂
Kn+1 ⊂M for every n ∈ N and M = ∪n∈NKn.

For every f ∈ Sm, a countable local basis of neighborhood of f is given by

Uf,n :=

{
f ′ ∈ Sm : ‖f ′ − f‖0,Kn ≤

1

n

}
, n ∈ N. (3.54)

Exercise 3.55. (i) Prove that (3.54) defines a basis for a topology. (ii) Prove that this topology
does not depend on the immersion of M into RN .

Given f ∈ Sm, we denote by df the sub-Riemannian distance on M associated with f .

Theorem 3.56. Let q0, q1 ∈ M and let Sm the space of free and complete sub-Riemannian struc-
tures of bundle rank m. The function

distq0,q1 : Sm → R, distq0,q1(f) := df (q0, q1),

is continuous with respect to the C0-topology on Sm.
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Proof. Let us prove separately the lower and the upper semi-continuity.
(i). Fix f ∈ Sm and 0 < r < df (q0, q1). To prove lower semi-continuity we show that there exist
ε > 0 such that r < df ′(q0, q1) for any sub-Riemannian structure f ′ with ‖f ′ − f‖0,K < ε for a
suitable choice of K.

Let Bq0(r) be the ball of radius r and centered at q0, with respect to the sub-Riemannian
structure defined by f . By completeness, this is a precompact set and by construction we have
q1 /∈ Bq0(r). Let O ⊃ Bq0(r) be an open neighbourhood of this ball in M such that q1 /∈ O. To
prove the claim it is sufficient to show that for ε small enough the ball B′

q0(r) of radius r and
centered at q0 defined by the sub-Riemannian structure f ′ is also contained in O.

Let K be a compact containing O and let a :M → R be a smooth cut-off function with compact
support on K, satisfying 0 ≤ a ≤ 1 and a|O ≡ 1. By compactness, there exists C > 0 such that

|a(q′)f(q′, v)− a(q)f(q, v)| ≤ C|q′ − q|, ∀q, q′ ∈M, |v| ≤ 1. (3.55)

Given u ∈ L∞([0, 1];Rm) and f ′ ∈ Sm, let us denote by γ(t) (resp. γ′(t)) the solution of the equation
q̇ = a(q)f(q, u) (resp. q̇ = a(q)f ′(q, u)) with initial condition q(0) = q0. We set:

δu(t) := |γ′(t)− γ(t)|.

Combining the definition of δu(t) and (3.55) one gets

δu(t) ≤
∫ t

0
|a(γ(s))f(γ(s), u(s)) − a(γ′(s))f ′(γ′(s), u(s))|ds

≤
∫ t

0
|a(γ(s))f(γ(s), u(s)) − a(γ′(s))f(γ′(s), u(s))|ds

+

∫ t

0
|a(γ′(s))f(γ′(s), u(s)) − a(γ′(s))f ′(γ′(s), u(s))|ds

≤ C
∫ t

0
δu(s) ds+ ‖f ′ − f‖0,K

t∫

0

|u(s)| ds, 0 ≤ t ≤ 1.

where we used that |a| ≤ 1 on K. By the Gronwall lemma, the previous inequality implies that
for any sub-Riemannian structure f ′ with ‖f ′ − f‖0,K < ε

δu(t) ≤ eC‖f ′ − f‖0,K‖u‖L∞ ≤ εeC‖u‖L∞ .

Choosing ε small enough we have that γ′(t) belongs toO for every control u such that ‖u‖L∞ ≤ r.
In particular, since a = 1 on O, we have γ′(t) coincides with the solution of q̇ = f ′(q, u) for every
t ∈ [0, 1]. Thus B′

q0(r) ⊂ O, as claimed.

(ii). The upper semi-continuity is valid even without completeness of the sub-Riemannian struc-
tures. Fix r > df (q0, q1) and let us show that r > df ′(q0, q1) for any sub-Riemannian structure f ′

that is C0-close to f .

Fix u ∈ L∞([0, 1];Rm) such that γf (1;u) = q1, with ‖u‖L∞ = r′ < r. Notice that ‖u‖L1 ≤
‖u‖L∞ . Consider the local diffeomorphism (here, as usual, n = dimM)

ψ̂ : (s1, . . . , sn) 7→ e−ŝ1fi1 ◦ · · · ◦ e−ŝnfin ◦ esnfin ◦ · · · ◦ es1fi1 (q1),
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constructed as in the proof of the Rashevskii-Chow theorem, associated with the base point q1 and
defined for |s| < ε. Notice that ŝ can be chosen arbitrarily small. Fix ε > 0 small enough so that
length of all admissible curves involved in the construction is smaller then r − r′.

Moreover, if f ′ is C0-close to f , then the map

ψ̂′ : (s1, . . . , sn) 7→ e
−ŝ1f ′i1 ◦ · · · ◦ e−ŝnf ′in ◦ esnf ′in ◦ · · · ◦ es1f ′i1 (γf ′(1;u))

is uniformly close to ψ̂. The map ψ̂′ is a map that is C0-close to a local diffeomorphism, hence
its image contains the point q1, as a consequence of Lemma 3.57 below. This implies that we can
connect q0 with q1 by an admissible curve of the structure f ′ that is shorter than r.

In the next lemma we use the notation B(0, r) = {x ∈ Rn | |x| ≤ r}.

Lemma 3.57. Let F : Rn → Rn be a continous map such that F (x) = x+G(x), with G continuous
and ‖G‖0 ≤ ε. Then the image of F contains the ball B(0, ε).

Proof. Fix y ∈ B(0, ε) and let us prove that there exists x such that F (x) = x+G(x) = y. This is
equivalent to prove that there exists x ∈ Rn such that x = y − G(x), i.e., the map Φ : Rn → Rn

with Φ(x) = y −G(x) has a fixed point. But Φ is continuous and Φ(B(0, 2ε)) ⊂ B(0, 2ε) so, from
the Brower fixed point theorem, it has a fixed point.

As a consequence of Lemma 3.57 and the classical inverse function theorem, one obtains the
following statement which completes the proof of Theorem 3.56.

Lemma 3.58. Let F : M → N be a continuous map between smooth manifolds that is a small
perturbation in the C0-norm of a smooth map Φ, where Φ is a local diffeomorphism at q0 ∈ M .
Then the image of F contains Φ(q0).

3.4 Pontryagin extremals

In this section we want to give necessary conditions to characterize length-minimizer trajectories.
To begin with, we would like to motivate our Hamiltonian approach that we develop in the sequel.

In classical Riemannian geometry length-minimizer trajectories satisfy a necessary condition
given by a second order differential equation inM , which can be reduced to a first-order differential
equation in TM . Hence the set of all length-minimizers is contained in the set of extremals, i.e.,
trajectories that satisfy the necessary condition, that are be parametrized by initial position and
velocity.

In our setting (which includes Riemannian and sub-Riemannian geometry) we cannot use the
initial velocity to parametrize length-minimizing trajectories. This can be easily understood by a
dimensional argument. If the rank of the sub-Riemannian structure is smaller than the dimension
of the manifold, the initial velocity γ̇(0) of an admissible curve γ(t) starting from q0, belongs to
the proper subspace Dq0 of the tangent space Tq0M . Hence the set of admissible velocities form a
set whose dimension is smaller than the dimension of M , even if, by the Rashevskii-Chow theorem
and Theorem 3.43, length-minimizer trajectories starting from a point q0 cover a full neighborhood
of q0.

The right approach is to parametrize length-minimizers by their initial point and an initial
covector λ0 ∈ T ∗

q0M , which can be thought as the linear form annihilating the “front”, i.e., the set
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Fε = {γq0(ε) | γq0 is a length-minimizer starting from q0} on the corresponding length-minimizer
trajectory, for ε→ 0.

The next theorem gives the necessary condition satisfied by length-minimizers in sub-Riemannian
geometry. Curves satisfying this condition are called Pontryagin extremals. The proof the following
theorem is given in the next section.

Theorem 3.59 (Characterization of Pontryagin extremals). Let γ : [0, T ] → M be an admissible
curve which is a length-minimizer, parametrized by constant speed. Let u(·) be the corresponding
minimal control, i.e., for a.e. t ∈ [0, T ]

γ̇(t) =
m∑

i=1

ui(t)fi(γ(t)), ℓ(γ) =

∫ T

0
|u(t)|dt = d(γ(0), γ(T )),

with |u(t)| constant a.e. on [0, T ]. Denote with P0,t the flow2 of the nonautonomous vector field

fu(t) =
∑k

i=1 ui(t)fi. Then there exists λ0 ∈ T ∗
γ(0)M such that defining

λ(t) := (P−1
0,t )

∗λ0, λ(t) ∈ T ∗
γ(t)M, (3.56)

we have that one of the following conditions is satisfied:

(N) ui(t) ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m,

(A) 0 ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m.

Moreover in case (A) one has λ0 6= 0.

Definition 3.60. Let γ : [0, T ]→M be an admissible curve with minimal control u ∈ L∞([0, T ],Rm).
Fix λ0 ∈ T ∗

γ(0)M \ {0}, and define λ(t) by (3.56).

- If λ(t) satisfies (N) then it is called normal extremal (and γ(t) a normal extremal trajectory).

- If λ(t) satisfies (A) then it is called abnormal extremal (and γ(t) a abnormal extremal trajec-
tory).

Observe that, by construction, the curve λ(t) is Lipschitz continuous.

Exercise 3.61. Prove that condition (N) of Theorem 3.56 implies that the minimal control u(t)
is smooth. In particular normal extremals are smooth.

For a given lift λ(t), the two conditions (N) and (A) are mutually exclusive, unless u(t) = 0 for
a.e. t ∈ [0, T ], i.e., γ is the trivial trajectory.

If the sub-Riemannian structure is not Riemannian at q0, namely if

Dq0 = spanq0{f1, . . . , fm} 6= Tq0M,

then the trivial trajectory, corresponding to u(t) ≡ 0, is always normal (with associated λ0 = 0)
and abnormal (with associated λ0 ∈ D⊥

q0).
Notice that even a nontrivial admissible trajectory γ can be both normal and abnormal, since

there may exist two different lifts λ(t), λ′(t) ∈ T ∗
γ(t)M , such that λ(t) satisfies (N) and λ′(t) satisfies

(A).

2P0,t(x) is defined for t ∈ [0, T ] and x in a neighborhood of γ(0).
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Remark 3.62. In the Riemannian case there are no abnormal extremals. Indeed, since the map f
is fiberwise surjective, we can always find m vector fields f1, . . . , fm on M such that

spanq0{f1, . . . , fm} = Tq0M,

and (A) would imply that 〈λ0, v〉 = 0, for all v ∈ Tq0M , that gives the contradiction λ0 = 0.

At this level it seems yet not obvious how to use Theorem 3.59 to find the explicit expression of
extremals for a given sub-Riemannian structure. In the next chapter we provide another formulation
of Theorem 3.59 which gives Pontryagin extremals as solutions of a Hamiltonian system.

The rest of this section is devoted to the proof of Theorem 3.59.

3.4.1 The energy functional

Let γ : [0, T ] → M be an admissible curve. We define the energy functional J on the space of
Lipschitz curves on M as follows

J(γ) =
1

2

∫ T

0
‖γ̇(t)‖2dt.

Notice that J(γ) < +∞ for every admissible curve γ.

Remark 3.63. While ℓ is invariant by reparametrization (see Remark 3.15), J is not. Indeed
consider, for every α > 0, the reparametrized curve

γα : [0, T/α]→M, γα(t) = γ(αt).

Using that γ̇α(t) = α γ̇(αt), we have

J(γα) =
1

2

∫ T/α

0
‖γ̇α(t)‖2dt =

1

2

∫ T/α

0
α2‖γ̇(αt)‖2dt = αJ(γ).

Thus, if the final time is not fixed, the infimum of J , among admissible curves joining two fixed
points, is always zero.

The following lemma relates minimizers of J with fixed final time with minimizers of ℓ.

Lemma 3.64. Fix T > 0 and let Ωq0,q1 be the set of admissible curves joining q0, q1 ∈ M . An
admissible curve γ : [0, T ] → M is a minimizer of J on Ωq0,q1 if and only if it is a minimizer of ℓ
on Ωq0,q1 and has constant speed.

Proof. Applying the Cauchy-Schwarz inequality

(∫ T

0
f(t)g(t)dt

)2

≤
∫ T

0
f(t)2dt

∫ T

0
g(t)2dt, (3.57)

with f(t) = ‖γ̇(t)‖ and g(t) = 1 we get

ℓ(γ)2 ≤ 2J(γ)T. (3.58)

Moreover in (3.57) equality holds if and only if f is proportional to g, i.e., ‖γ̇(t)‖ = const. in (3.58).
Since, by Lemma 3.16, every curve is a Lipschitz reparametrization of an arc length parametrized
one, the minima of J are attained at admissible curves with constant speed, and the statement
follows.
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3.4.2 Proof of Theorem 3.59

By Lemma 3.64 we can assume that γ is a minimizer of the functional J among admissible curves
joining q0 = γ(0) and q1 = γ(T ) in fixed time T > 0. In particular, if we define the functional

J̃(u(·)) := 1

2

∫ T

0
|u(t)|2dt, (3.59)

on the space of controls u(·) ∈ L∞([0, T ],Rm), the minimal control u(·) of γ is a minimizer for the
energy functional J̃

J̃(u(·)) ≤ J̃(u(·)), ∀u ∈ L∞([0, T ],Rm),

where trajectories corresponding to u(·) join q0, q1 ∈M . In the following we denote the functional
J̃ by J .

Consider now a variation u(·) = u(·)+v(·) of the control u(·), and its associated trajectory q(t),
solution of the equation

q̇(t) = fu(t)(q(t)), q(0) = q0, (3.60)

Recall that P0,t denotes the local flow associated with the optimal control u(·) and that γ(t) =
P0,t(q0) is the optimal admissible curve. We stress that in general, for q different from q0, the curve
t 7→ P0,t(q) is not optimal. Let us introduce the curve x(t) defined by the identity

q(t) = P0,t(x(t)). (3.61)

In other words x(t) = P−1
0,t (q(t)) is obtained by applying the inverse of the flow of u(·) to the solution

associated with the new control u(·) (see Figure 3.5). Notice that if v(·) = 0, then x(t) ≡ q0.

x(t)

q(t) P0,t

q0

Figure 3.5: The trajectories q(t), associated with u(·) = u(·) + v(·), and the corresponding x(t).

The next step is to write the ODE satisfied by x(t). Differentiating (3.61) we get

q̇(t) = fu(t)(q(t)) + (P0,t)∗(ẋ(t)) (3.62)

= fu(t)(P0,t(x(t))) + (P0,t)∗(ẋ(t)) (3.63)
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and using that q̇(t) = fu(t)(q(t)) = fu(t)(P0,t(x(t))) we can invert (3.63) with respect to ẋ(t) and
rewrite it as follows

ẋ(t) = (P−1
0,t )∗

[
(fu(t) − fu(t))(P0,t(x(t)))

]

=
[
(P−1

0,t )∗(fu(t) − fu(t))
]
(x(t))

=
[
(P−1

0,t )∗(fu(t)−u(t))
]
(x(t))

=
[
(P−1

0,t )∗fv(t)
]
(x(t)) (3.64)

If we define the nonautonomous vector field gtv(t) = (P−1
0,t )∗fv(t) we finally obtain by (3.64) the

following Cauchy problem for x(t)

ẋ(t) = gtv(t)(x(t)), x(0) = q0. (3.65)

Notice that the vector field gtv is linear with respect to v, since fu is linear with respect to u. Now
we fix the control v(t) and consider the map

s ∈ R 7→
(
J(u+ sv)
x(T ;u+ sv)

)
∈ R×M

where x(T ;u + sv) denote the solution at time T of (3.65), starting from q0, corresponding to
control u(·) + sv(·), and J(u+ sv) is the associated cost.

Lemma 3.65. There exists λ̄ ∈ (R⊕ Tq0M)∗, with λ̄ 6= 0, such that for all v ∈ L∞([0, T ],Rm)
〈
λ̄ ,

(
∂J(u+ sv)

∂s

∣∣∣
s=0

,
∂x(T ;u+ sv)

∂s

∣∣∣
s=0

)〉
= 0. (3.66)

Proof of Lemma 3.65. We argue by contradiction: assume that (3.66) is not true, then there exist
v0, . . . , vn ∈ L∞([0, T ],Rm) such that the vectors in R⊕ Tq0M




∂J(u+ sv0)

∂s

∣∣∣
s=0

∂x(T ;u+ sv0)

∂s

∣∣∣
s=0


 , . . . ,




∂J(u+ svn)

∂s

∣∣∣
s=0

∂x(T ;u+ svn)

∂s

∣∣∣
s=0


 (3.67)

are linearly independent. Let us then consider the map

Φ : Rn+1 → R×M, Φ(s0, . . . , sn) =

(
J(u+

∑n
i=0 sivi)

x(T ;u+
∑n

i=0 sivi)

)
. (3.68)

By differentiability properties of solution of smooth ODEs with respect to parameters, the map
(3.68) is smooth in a neighborhood of s = 0. Moreover, since the vectors (3.67) are the components
of the differential of Φ and they are independent, then the inverse function theorem implies that Φ
is a local diffeomorphism sending a neighborhood of s = 0 in Rn+1 in a neighborhood of (J(u), q0)
in R×M . As a result we can find v(·) =∑i sivi(·) such that (see also Figure 3.4.2)

x(T ;u+ v) = q0, J(u+ v) < J(u).
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x(T, ū)

J(ū)

J

x

In other words the curve t 7→ q(t;u+ v) joins q(0;u+ v) = q0 to

q(T ;u+ v) = P0,T (x(T ;u+ v)) = P0,T (q0) = q1,

with a cost smaller that the cost of γ(t) = q(t;u), which is a contradiction

Remark 3.66. Notice that if λ̄ satisfies (3.66), then for every α ∈ R, with α 6= 0, αλ̄ satisfies (3.66)
too. Thus we can normalize λ̄ to be (−1, λ0) or (0, λ0), with λ0 ∈ T ∗

q0M , and λ0 6= 0 in the second
case (since λ̄ is not zero).

Condition (3.66) implies that there exists λ0 ∈ T ∗
q0M such that one of the following identities

is satisfied for all v ∈ L∞([0, T ],Rm):

∂J(u+ sv)

∂s

∣∣∣
s=0

=

〈
λ0,

∂x(T ;u+ sv)

∂s

∣∣∣
s=0

〉
, (3.69)

0 =

〈
λ0,

∂x(T ;u+ sv)

∂s

∣∣∣
s=0

〉
. (3.70)

with λ0 6= 0 in the second case (cf. Remark 3.66). To end the proof we have to show that identities
(3.69) and (3.70) are equivalent to conditions (N) and (A) of Theorem 3.59. Let us show that

∂J(u+ sv)

∂s

∣∣∣
s=0

=

∫ T

0

m∑

i=1

ui(t)vi(t)dt, (3.71)

∂x(T ;u+ sv)

∂s

∣∣∣
s=0

=

∫ T

0
gtv(t)(q0)dt =

∫ T

0

m∑

i=1

((P−1
0,t )∗fi)(q0)vi(t)dt. (3.72)

The identity (3.71) follows from the definition of J

J(u+ sv) =
1

2

∫ T

0
|u+ sv|2dt. (3.73)

Eq. (3.72) can be proved in coordinates. Indeed by (3.65) and the linearity of gv with respect to v
we have

x(T ;u+ sv) = q0 + s

∫ T

0
gtv(t)(x(t;u+ sv))dt,

and differentiating with respect to s at s = 0 one gets (3.72).
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Let us show that (3.69) is equivalent to (N) of Theorem 3.59. Similarly, one gets that (3.70) is
equivalent to (A). Using (3.71) and (3.72), equation (3.69) is rewritten as

∫ T

0

m∑

i=1

ui(t)vi(t)dt =

∫ T

0

m∑

i=1

〈
λ0, ((P

−1
0,t )∗fi)(q0)

〉
vi(t)dt

=

∫ T

0

m∑

i=1

〈λ(t), fi(γ(t))〉 vi(t)dt, (3.74)

where we used, for every i = 1, . . . ,m, the identities
〈
λ0, ((P

−1
0,t )∗fi)(q0)

〉
=
〈
λ0, (P

−1
0,t )∗fi(γ(t))

〉
=
〈
(P−1

0,t )
∗λ0, fi(γ(t))

〉
= 〈λ(t), fi(γ(t))〉 .

Since vi(·) ∈ L∞([0, T ],Rm) are arbitrary, we get ui(t) = 〈λ(t), fi(γ(t))〉 for a.e. t ∈ [0, T ].

3.5 Appendix: Measurability of the minimal control

In this appendix we prove a technical lemma about measurability of solutions to a class of mini-
mization problems. This lemma when specified to the sub-Riemannian context, implies that the
minimal control associated with an admissible curve is measurable.

3.5.1 A measurability lemma

Let us fix an interval I = [a, b] ⊂ R and a compact set U ⊂ Rm. Consider two functions g : I×U →
Rn, v : I → Rn such that

(M1) g(·, u) is measurable in t for every fixed u ∈ U ,

(M2) g(t, ·) is continuous in u for every fixed t ∈ I,

(M3) v(t) is measurable with respect to t.

Moreover we assume that

(M4) for every fixed t ∈ I, the problem min{|u| : g(t, u) = v(t), u ∈ U} has a unique solution.

Let us denote by u∗(t) the solution of (M4) for a fixed t ∈ I.
Lemma 3.67. Under assumptions (M1)-(M4), the function t 7→ |u∗(t)| is measurable on I.

Proof. To prove the lemma we show that for every fixed r > 0 the set

A = {t ∈ I : |u∗(t)| ≤ r},

is measurable in R. By our assumptions

A = {t ∈ I : ∃u ∈ U s.t. |u| ≤ r, g(t, u) = v(t)}.

Let us fix r > 0 and a countable dense set {ui}i∈N in the ball of radius r in U . Let show that

A =
⋂

n∈N
An =

⋂

n∈N

⋃

i∈N
Ai,n

︸ ︷︷ ︸
:=An

, (3.75)
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where

Ai,n := {t ∈ I : |g(t, ui)− v(t)| < 1/n}.

Notice that the set Ai,n is measurable by construction and, if (3.75) is true, A is also measurable.

⊂ inclusion. Let t ∈ A. This means that there exists ū ∈ U such that |ū| ≤ r and g(t, ū) = v(t).
Since g is continuous with respect to u and {ui}i∈N is a dense, for each n we can find uin such that
|g(t, uin)− v(t)| < 1/n, that is t ∈ An for all n.

⊃ inclusion. Assume t ∈ ⋂n∈N An. Then for every n there exists in such that the corresponding
uin satisfies |g(t, uin) − v(t)| < 1/n. From the sequence uin , by compactness, it is possible to
extract a convergent susequence uin → ū. By continuity of g with respect to u one easily gets that
g(t, ū) = v(t). That is t ∈ A.

Next we exploit the fact that the scalar function ϕ(t) := |u∗(t)| is measurable to show that the
vector function u∗(t) is measurable.

Lemma 3.68. Under assumptions (M1)-(M4), the vector function t 7→ u∗(t) is measurable on I.

Proof. In this proof we denote by ϕ(t) := |u∗(t)|. It is sufficient to prove that, for every closed ball
O in Rn the set

B := {t ∈ I : u∗(t) ∈ O}

is measurable. Since the minimum in (M4) is uniquely determined, this set is equal to

B = {t ∈ I : ∃u ∈ O s.t. |u| = ϕ(t), g(t, u) = v(t)}.

Let us fix the ball O and a countable dense set {ui}i∈N in O. Let show that

B =
⋂

n∈N
Bn =

⋂

n∈N

⋃

i∈N
Bi,n

︸ ︷︷ ︸
:=Bn

(3.76)

where

Bi,n := {t ∈ I : |ui| < ϕ(t) + 1/n, |g(t, ui)− v(t)| < 1/n; }

Notice that the set Bi,n is measurable by construction and, if (3.76) is true, B is also measurable.

⊂ inclusion. Let t ∈ B. This means that there exists ū ∈ O such that |ū| = ϕ(t) and
g(t, ū) = v(t). Since g is continuous with respect to u and {ui}i∈N is a dense in O, for each n we
can find uin such that |g(t, uin)− v(t)| < 1/n and |uin | < ϕ(t) + 1/n, that is t ∈ Bn for all n.

⊃ inclusion. Assume t ∈ ⋂n∈N Bn. Then for every n it is possible to find in such that the
corresponding uin satisfies |g(t, uin )− v(t)| < 1/n and |uin | < ϕ(t) + 1/n. From the sequence uin ,
by compactness of the closed ball O, it is possible to extract a convergent susequence uin → ū. By
continuity of f in u one easily gets that g(t, ū) = v(t). Moreover |ū| ≤ ϕ(t). Hence |ū| = ϕ(t).
That is t ∈ B.
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3.5.2 Proof of Lemma 3.12

Consider an admissible curve γ : [0, T ] → M . Since measurability is a local property it is not
restrictive to assume M = Rn. Moreover, by Lemma 3.16, we can assume that γ is arc length
parametrized so that its minimal control belong to the compact set U = {|u| ≤ 1}. Define g :
[0, T ]× U → Rn and v : [0, T ]→ Rn by

g(t, u) = f(γ(t), u), v(t) = γ̇(t).

Assumptions (M1)-(M4) are satisfied. Indeed (M1)-(M3) follow from the fact that g(t, u) is linear
with respect to u and measurable in t. Moreover (M4) is also satisfied by linearity with respect to
u of f . Applying Lemma 3.68 one gets that the minimal control u∗(t) is measurable in t.

3.6 Appendix: Lipschitz vs absolutely continuous admissible curves

In these lecture notes sub-Riemannian geometry is developed in the framework of Lipschitz admissi-
ble curves (that correspond to the choice of L∞ controls). However, the theory can be equivalently
developed in the framework of W 1,2 admissible curves (corresponding to L2 controls) or in the
framework of absolutely continuous admissible curves (corresponding to L1 controls).

Definition 3.69. An absolutely continuous curve γ : [0, T ] → M is said to be AC-admissible if
there exists an L1 function u : t ∈ [0, T ] 7→ u(t) ∈ Uγ(t) such that γ̇(t) = f(γ(t), u(t)), for a.e.
t ∈ [0, T ]. We define W 1,2-admissible curves similarly.

Being the set of absolutely continuous curve bigger than the set of Lipschitz ones, one could
expect that the sub-Riemannian distance between two points is smaller when computed among all
absolutely continuous admissible curves. However this is not the case thanks to the invariance by
reparametrization. Indeed Lemmas 3.15 and 3.16 can be rewritten in the absolutely continuous
framework in the following form.

Lemma 3.70. The length of an AC-admissible curve is invariant by AC reparametrization.

Lemma 3.71. Any AC-admissible curve of positive length is a AC reparametrization of an arc
length parametrized admissible one.

The proof of Lemma 3.70 differs from the one of Lemma 3.15 only by the fact that, if u∗ ∈ L1

is the minimal control of γ then (u∗ ◦ ϕ)ϕ̇ is the minimal control associated with γ ◦ ϕ. One can
prove that (u∗ ◦ ϕ)ϕ̇ ∈ L1, using the monotonicity of ϕ. Under these assumptions the change of
variables formula (3.15) holds (see [Rud87, Ch. 7]).

The proof of Lemma 3.71 is unchanged. Notice that the statement of Exercise 3.17 remains true
if we replace Lipschitz with absolutely continuous. We stress that the curve γ built in the proof is
Lipschitz (since it is arc length parametrized).

As a consequence of these results, if we define

dAC(q0, q1) = inf{ℓ(γ) | γ : [0, T ]→M AC -admissible, γ(0) = q0, γ(T ) = q1}, (3.77)

we have the following proposition.

Proposition 3.72. dAC(q0, q1) = d(q0, q1)

Since L∞([0, T ],Rm) ⊂ L2([0, T ],Rm) ⊂ L1([0, T ],Rm), one can introduce W 1,2 admissible
curves, i.e., those associated with L2 controls, and obtains that dW 1,2(q0, q1) = d(q0, q1).
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3.7 Bibliographical note

Sub-Riemannian manifolds have been introduced, even if with different terminology, in several
contexts starting from the end of 60s, see for instance [JSC87, Hör67, Fol73, Hul76, Gav77] and
[Jur97, Jur16, Pan89, GV88, Bro82, BR96, Bro84, VG87]. However, some pioneering ideas were al-
ready present in the work of Carathéodory [Car09] and Cartan [Car33]. The name sub-Riemannian
geometry first appeared in [Str86].

Classical general references for sub-Riemannian geometry are [Mon02, Bel96, Mon96, Gro96,
Sus96]. Some more recent monographs, written in a language similar to the one we use, are
[Jea14, Rif14].

The definition of sub-Riemannian manifold using the language of bundles dates back to [Bel96,
AG97]. For the original proof of the Raschevski-Chow theorem see [Ras38, Cho39]. The problem of
the measurability of the minimal control can be seen as a problem of differential inclusion [BP07].
The proof of existence of sub-Riemannian length-minimizers presented here is an adaptation of
the proof of Filippov theorem in optimal control. The fact that in sub-Riemannian geometry there
exist strictly abnormal length-minimizers is due to Montgomery [Mon94, Mon02]. The fact that the
theory can be equivalently developed for Lipschitz or absolutely continuous curves is well-known,
a discussion can be found in [Bel96]. A sub-Riemannian manifold, from the metric viewpoint, is a
length space. A link with this theory is provided by Exercices 3.51–3.52, see also [BBI01, Ch. 2].

The characterization of Pontryagin extremals given in Theorem 3.59 is a simplified version of
the Pontryagin Maximum Principle [PBGM62]. The proof presented here is original and adapted
to this setting. For more general versions of the Pontryagin Maximum Principle see [AS04, BP07].
The fact that every sub-Riemannian structure is equivalent to a free one (cf. Section 3.1.4) is a
consequence of classical results on fiber bundles. A different proof in the case of classical (constant
rank) distribution was also considered in [Rif14, Sus08].
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Chapter 4

Pontryagin extremals:
characterization and local minimality

This chapter is devoted to the study of geometric properties of Pontryagin extremals. To this
purpose we first rewrite Theorem 3.59 in a more geometric setting, which permits to write a
differential equation in T ∗M satisfied by Pontryagin extremals and to show that they do not
depend on the choice of a generating family. Finally we prove that small pieces of normal extremal
trajectories are length-minimizers.

To this aim, all along this chapter we develop the language of symplectic geometry, starting
from the key concept of Poisson bracket.

4.1 Geometric characterization of Pontryagin extremals

Let M be endowed with a sub-Riemannian structure with generating family f1, . . . , fm and let
γ : [0, T ] → M be a length minimizer parametrized by constant speed, and associated with its
minimal control u(·). In the previous chapter we proved that there exists λ0 ∈ T ∗

γ(0)M such that
defining

λ(t) = (P−1
0,t )

∗λ0, λ(t) ∈ T ∗
γ(t)M, (4.1)

one of the following conditions is satisfied:

(N) ui(t) ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m,

(A) 0 ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m, λ0 6= 0.

Here P0,t denotes the flow associated with the nonautonomous vector field fu(t) =
∑m

i=1 ui(t)fi and

(P−1
0,t )

∗ : T ∗
qM → T ∗

P0,t(q)
M. (4.2)

is the induced flow on the cotangent space.
The goal of this section is to characterize the curve (4.1) as the integral curve of a suitable

(nonautonomous) vector field on T ∗M . To this purpose, we start by showing that a vector field
on T ∗M is completely characterized by its action on functions that are affine on fibers. To fix the
ideas, we first focus on the case in which P0,t :M →M is the flow associated with an autonomous
vector field X ∈ Vec(M), namely P0,t = etX .
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4.1.1 Lifting a vector field from M to T ∗M

We start by some preliminary considerations on the algebraic structure of smooth functions on
T ∗M . As usual π : T ∗M →M denotes the canonical projection.

The set C∞(M) of smooth functions on M is in one-to-one correspondence with the set
C∞(T ∗M) of functions that are constant on fibers via the map α 7→ π∗α = α ◦ π. In other
words we have the isomorphism of algebras

C∞(M) ≃ C∞
cst(T

∗M) := {π∗α |α ∈ C∞(M)} ⊂ C∞(T ∗M). (4.3)

In what follows, with abuse of notation, we often identify the function π∗α ∈ C∞(T ∗M) with the
function α ∈ C∞(M).

In a similar way smooth vector fields on M are in a one-to-one correspondence with smooth
functions in C∞(T ∗M) that are linear on fibers via the map Y 7→ aY , where aY (λ) := 〈λ, Y (q)〉
and q = π(λ).

Vec(M) ≃ C∞
lin(T

∗M) := {aY |Y ∈ Vec(M)} ⊂ C∞(T ∗M). (4.4)

Notice that this is an isomorphism as modules over C∞(M). Indeed, as Vec(M) is a module
over C∞(M), we have that C∞

lin(T
∗M) is a module over C∞(M) as well. For any α ∈ C∞(M) and

aX ∈ C∞
lin(T

∗M) their product is defined as αaX := (π∗α)aX = aαX ∈ C∞
lin(T

∗M).

Definition 4.1. We say that a function a ∈ C∞(T ∗M) is affine on fibers if there exist two functions
α ∈ C∞

cst(T
∗M) and aX ∈ C∞

lin(T
∗M) such that a = α+ aX . In other words

a(λ) = α(q) + 〈λ,X(q)〉 , q = π(λ).

We denote by C∞
aff(T

∗M) the set of affine function on fibers.

Remark 4.2. Linear and affine functions on T ∗M are particularly important since they reflects the
linear structure of the cotangent bundle. In particular every vector field on T ∗M , as a derivation
of C∞(T ∗M), is completely characterized by its action on affine functions,

Indeed for a vector field V ∈ Vec(T ∗M) and f ∈ C∞(T ∗M), one has that

(V f)(λ) =
d

dt

∣∣∣∣
t=0

f(etV (λ)) = 〈dλf, V (λ)〉 , λ ∈ T ∗M. (4.5)

which depends only on the differential of f at the point λ. Hence, for each fixed λ ∈ T ∗M ,
to compute (4.5) one can replace the function f with any affine function whose differential at λ
coincide with dλf . Notice that such a function is not unique.

Let us now consider the infinitesimal generator of the flow (P−1
0,t )

∗ = (e−tX )∗. Since it satisfies
the group law

(e−tX )∗ ◦ (e−sX)∗ = (e−(t+s)X )∗, ∀ t, s ∈ R,

by Lemma 2.16 its infinitesimal generator is an autonomous vector field VX on T ∗M . In other
words we have (e−tX )∗ = etVX for all t.

Let us then compute the right hand side of (4.5) when V = VX and f is either a function
constant on fibers or a function linear on fibers.
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The action of VX on functions that are constant on fibers coincides with the action of X on
functions on the base manifold, in the following sense: VX(β ◦ π) = Xβ for every β ∈ C∞(M).
Indeed, for every λ ∈ T ∗M , one has

d

dt

∣∣∣∣
t=0

β ◦ π((e−tX )∗λ)) =
d

dt

∣∣∣∣
t=0

β(etX (q)) = (Xβ)(q), q = π(λ). (4.6)

For what concerns the action of VX on functions that are linear on fibers, of the form aY (λ) =
〈λ, Y (q)〉, we have for all λ ∈ T ∗M

d

dt

∣∣∣∣
t=0

aY ((e
−tX )∗λ) =

d

dt

∣∣∣∣
t=0

〈
(e−tX )∗λ, Y (etX(q))

〉

=
d

dt

∣∣∣∣
t=0

〈
λ, (e−tX∗ Y )(q)

〉
= 〈λ, [X,Y ](q)〉 (4.7)

= a[X,Y ](λ).

Hence, by linearity, one gets that the action of VX on functions of C∞
aff(T

∗M) is given by

VX(β + aY ) = Xβ + a[X,Y ]. (4.8)

As explained in Remark 4.2, formula (4.8) characterizes completely the generator VX of (P−1
0,t )

∗.
To find its explicit form we introduce the notion of Poisson bracket.

4.1.2 The Poisson bracket

The purpose of this section is to introduce an operation {·, ·} on C∞(T ∗M), called Poisson bracket.
First we introduce it on the set C∞

lin(T
∗M), where it is induced by the Lie bracket through the

identification between Vec(M) and C∞
lin(T

∗M). Then it is uniquely extended to C∞
aff(T

∗M), and
then on C∞(T ∗M), by requiring it to be a derivation of the algebra C∞(T ∗M) in each argument.

More precisely, we start by the following definition.

Definition 4.3. Let aX , aY ∈ C∞
lin(T

∗M) be two linear on fibers functions associated with vector
fields X,Y ∈ Vec(M). Their Poisson bracket is defined by

{aX , aY } := a[X,Y ], (4.9)

where a[X,Y ] is the function in C∞
lin(T

∗M) associated with the vector field [X,Y ].

Remark 4.4. Recall that the Lie bracket is a bilinear, skew-symmetric map defined on Vec(M),
that satisfies the Leibniz rule for X,Y ∈ Vec(M):

[X,αY ] = α[X,Y ] + (Xα)Y, ∀α ∈ C∞(M). (4.10)

As a consequence, the Poisson bracket is bilinear, skew-symmetric and satisfies the following relation

{aX , α aY } = {aX , aαY } = a[X,αY ] = αa[X,Y ] + (Xα) aY , ∀α ∈ C∞(M). (4.11)

Notice that this expression makes sense since the product between α ∈ C∞
cst(T

∗M) and aX ∈
C∞
lin(T

∗M) belongs to C∞
lin(T

∗M), with αaX = aαX .
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Next, we extend this definition on the whole C∞(T ∗M).

Proposition 4.5. There exists a unique bilinear and skew-simmetric map

{·, ·} : C∞(T ∗M)× C∞(T ∗M)→ C∞(T ∗M),

that extends (4.9) on C∞(T ∗M), and that is a derivation in each argument, i.e., it satisfies

{a, bc} = {a, b}c + {a, c}b, ∀ a, b, c ∈ C∞(T ∗M). (4.12)

We call this operation the Poisson bracket on C∞(T ∗M).

Proof. We start by proving that, as a consequence of the requirement that {·, ·} is a derivation in
each argument, it is uniquely extended to C∞

aff(T
∗M).

By linearity and skew-symmetry we are reduced to compute Poisson brackets of kind {aX , α}
and {α, β}, where aX ∈ C∞

lin(T
∗M) and α, β ∈ C∞

cst(T
∗M). Using that aαY = αaY and (4.12) one

gets

{aX , aαY } = {aX , α aY }
= α{aX , aY }+ {aX , α}aY . (4.13)

Comparing (4.11) and (4.13) one gets

{aX , α} = Xα. (4.14)

Next, using (4.12) and (4.14), one has

{aαY , β} = {α aY , β} = α{aY , β} + {α, β}aY (4.15)

= αY β + {α, β}aY . (4.16)

Using again (4.14) one also has {aαY , β} = αY β, hence {α, β} = 0.

Combining the previous formulas one obtains the following expression for the Poisson bracket
between two affine functions on T ∗M

{aX + α, aY + β} := a[X,Y ] +Xβ − Y α. (4.17)

Notice that formula (4.17) involves only the first derivatives of aX + α and aY + β. It follows
that the Poisson bracket computed at a fixed λ ∈ T ∗M depends only on the differential of the two
functions evaluated at λ.

Next we extend this definition to C∞(T ∗M) in such a way that it is a derivation. For f, g ∈
C∞(T ∗M) we define

{f, g}|λ := {af,λ, ag,λ}|λ, (4.18)

where af,λ and ag,λ are two functions in C∞
aff(T

∗M) such that dλf = dλ(af,λ) and dλg = dλ(ag,λ).

Remark 4.6. The definition (4.18) is well posed, since if we take two different affine functions af,λ
and a′f,λ their difference satisfy dλ(af,λ − a′f,λ) = dλ(af,λ) − dλ(a′f,λ) = 0, hence by bilinearity of
the Poisson bracket

{af,λ, ag,λ}|λ = {a′f,λ, ag,λ}|λ.
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Let us now compute the coordinate expression of the Poisson bracket. In canonical coordinates
(p, x) in T ∗M , if

X =

n∑

i=1

Xi(x)
∂

∂xi
, Y =

n∑

i=1

Yi(x)
∂

∂xi
,

we have

aX(p, x) =
n∑

i=1

piXi(x), aY (p, x) =
n∑

i=1

piYi(x).

and, denoting f = aX + α, g = aY + β, we have

{f, g} = a[X,Y ] +Xβ − Y α

=

n∑

i,j=1

pj

(
Xi
∂Yj
∂xi
− Yi

∂Xj

∂xi

)
+Xi

∂β

∂xi
− Yi

∂α

∂xi

=

n∑

i,j=1

Xi

(
pj
∂Yj
∂xi

+
∂β

∂xi

)
− Yi

(
pj
∂Xj

∂xi
+
∂α

∂xi

)

=
n∑

i=1

∂f

∂pi

∂g

∂xi
− ∂f

∂xi

∂g

∂pi
.

From these computations we get the formula for Poisson brackets of two functions a, b ∈ C∞(T ∗M)

{a, b} =
n∑

i=1

∂a

∂pi

∂b

∂xi
− ∂a

∂xi

∂b

∂pi
, a, b ∈ C∞(T ∗M). (4.19)

The explicit formula (4.19) shows that the extension of the Poisson bracket to C∞(T ∗M) is still a
derivation.

Remark 4.7. As previously discussed, the value {a, b}|λ of the Poisson bracket at a point λ ∈ T ∗M
depends only on dλa and dλb. In particular, the Poisson bracket computed at the point λ ∈ T ∗M
can be seen as a skew-symmetric and nondegenerate bilinear form

{·, ·}λ : T ∗
λ (T

∗M)× T ∗
λ (T

∗M)→ R.

Exercise 4.8. Let h = (h1, . . . , hk) : T ∗M → Rk, g : T ∗M → R and ϕ : Rk → R be smooth
functions. Denote by ϕh := ϕ ◦ h. Prove that

{ϕh, g} =
k∑

i=1

∂ϕ

∂hi
{hi, g}. (4.20)

4.1.3 Hamiltonian vector fields

By construction, the linear operator defined by

~a : C∞(T ∗M)→ C∞(T ∗M), ~a(b) := {a, b}, (4.21)

is a derivation of the algebra C∞(T ∗M), therefore can be identified with an element of Vec(T ∗M).
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Definition 4.9. The vector field ~a on T ∗M defined by (4.21) is called the Hamiltonian vector field
associated with the smooth function a ∈ C∞(T ∗M).

From (4.19) we can easily write the coordinate expression of ~a for any arbitrary function a ∈
C∞(T ∗M)

~a =
n∑

i=1

∂a

∂pi

∂

∂xi
− ∂a

∂xi

∂

∂pi
. (4.22)

Let us recall that the flow (P−1
0,t )

∗ is generated by some autonomous vector field V on T ∗M . The
following proposition gives the explicit form of V .

Proposition 4.10. Let X ∈ Vec(M) be a complete vector field and let P0,t = etX . The flow
on T ∗M defined by (P−1

0,t )
∗ = (e−tX )∗ is generated by the Hamiltonian vector field ~aX , where

aX(λ) = 〈λ,X(q)〉 and q = π(λ).

Proof. To prove that the generator V of (P−1
0,t )

∗ coincides with the vector field ~aX it is sufficient to
show that their action on affine functions is the same. Indeed, by definition of Hamiltonian vector
field, we have

~aX(α) = {aX , α} = Xα,

~aX(aY ) = {aX , aY } = a[X,Y ].

Hence this action coincides with the action of V as in (4.6) and (4.7).

Remark 4.11. In coordinates (p, x) if the vector field X is written X =
∑n

i=1Xi
∂
∂xi

then aX(p, x) =∑n
i=1 piXi and the Hamitonian vector field ~aX is written as follows

~aX =

n∑

i=1

Xi
∂

∂xi
−

n∑

i,j=1

pi
∂Xi

∂xj

∂

∂pj
. (4.23)

Notice that the projection of ~aX onto M coincides with X itself, i.e., π∗(~aX) = X.

This construction can be extended to the case of nonautonomous vector fields we consider (cf.
also Definition 2.13).

Proposition 4.12. Let Xt =
∑m

i=1 ui(t)Xi be a nonautonomous vector field, where X1, . . . ,Xm

are smooth vector fields and u ∈ L∞([0, T ],Rm). Denote by P0,t the flow of Xt on M . Then the
nonautonomous vector field on T ∗M

Vt :=
−→aXt , aXt(λ) = 〈λ,Xt(q)〉 ,

is the generator of the flow (P−1
0,t )

∗.

The proof is based on the following idea: from the autonomous case one proves the identity
between the flow generated by Vt and (P−1

0,t )
∗ for Xt =

∑m
i=1 ui(t)Xi with u that is piecewise

constant. Then one proves the continuity of both flows with respect to the control (for instance
in the L1 topology). Since one can approximate any L∞ control by piecewise constant ones, the
required identity follows for any nonautonomous vector field of the form Xt =

∑m
i=1 ui(t)Xi. These

steps use the validity of the variation equation for nonautonomous vector fields, namely (2.22).
The details are left to the reader.
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4.2 The symplectic structure

In this section we introduce the symplectic structure of T ∗M following the classical construction. In
subsection 4.2.1 we show that the symplectic form can be interpreted as the “dual” of the Poisson
bracket, in a suitable sense.

Definition 4.13. The tautological (or Liouville) 1-form s ∈ Λ1(T ∗M) is defined as follows:

s : λ 7→ sλ ∈ T ∗
λ (T

∗M), 〈sλ, w〉 := 〈λ, π∗w〉 , ∀λ ∈ T ∗M, w ∈ Tλ(T ∗M),

where π : T ∗M →M denotes the canonical projection.

The name “tautological” comes from its expression in coordinates. Recall that, given a system
of coordinates x = (x1, . . . , xn) on M , canonical coordinates (p, x) on T ∗M are defined in such a
way that every element λ ∈ T ∗M is written as follows

λ =

n∑

i=1

pidxi.

For every w ∈ Tλ(T ∗M) we have the following

w =

n∑

i=1

αi
∂

∂pi
+ βi

∂

∂xi
=⇒ π∗w =

n∑

i=1

βi
∂

∂xi
,

hence we get

〈sλ, w〉 = 〈λ, π∗w〉 =
n∑

i=1

piβi =
n∑

i=1

pi 〈dxi, w〉 =
〈

n∑

i=1

pidxi, w

〉
.

In other words the coordinate expression of the Liouville form s at the point λ coincides with the
one of λ itself, namely

sλ =

n∑

i=1

pidxi. (4.24)

Exercise 4.14. Let s ∈ Λ1(T ∗M) be the tautological form. Prove that

ω∗s = ω, ∀ω ∈ Λ1(M).

(Recall that a 1-form ω is a section of T ∗M , i.e., a map ω :M → T ∗M such that π ◦ ω = idM ).

Definition 4.15. The differential of the tautological 1-form σ := ds ∈ Λ2(T ∗M) is called the
canonical symplectic structure on T ∗M .

By construction σ is a closed 2-form on T ∗M . Moreover its expression in canonical coordinates
(p, x) shows immediately that is a nondegenerate two form. Indeed from (4.24)

σ =

n∑

i=1

dpi ∧ dxi. (4.25)
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Remark 4.16 (The symplectic form in non-canonical coordinates). Given a basis ω1, . . . , ωn of 1-
forms on M , one can build coordinates on the fibers of T ∗M as follows.

Every λ ∈ T ∗M can be written uniquely as λ =
∑n

i=1 hiωi. Thus the functions hi, for i =
1, . . . , n, become coordinates on the fibers. Notice that these coordinates are not related to a
specific choice of coordinates on the manifold, as the p were. By definition, in these coordinates,
we have

s =
n∑

i=1

hiωi, σ = ds =
n∑

i=1

dhi ∧ ωi + hidωi. (4.26)

Notice that, with respect to (4.25) in the expression of σ an extra term appears since, in general,
the 1-forms ωi are not closed.

4.2.1 Symplectic form vs Poisson bracket

Let V be a finite dimensional vector space and let V ∗ denote its dual (i.e., the space of linear forms
on V ). By classical linear algebra arguments one has the following identifications

{
non degenerate

bilinear forms on V

}
≃
{
linear invertible maps

V → V ∗

}
≃
{

non degenerate
bilinear forms on V ∗

}
. (4.27)

Indeed to every bilinear form B : V × V → R we can associate a linear map L : V → V ∗ defined
by L(v) = B(v, ·). On the other hand, given a linear map L : V → V ∗, we can associate with it
a bilinear map B : V × V → R defined by B(v,w) = 〈L(v), w〉, where 〈·, ·〉 denotes as usual the
pairing between a vector space and its dual. Moreover B is non-degenerate if and only if the map
B(v, ·) is an isomorphism for every v ∈ V , or equivalently, if and only if L is invertible.

The previous argument shows how to identify a bilinear form on B on V with an invertible
linear map L from V to V ∗ (the same reasoning applied to the linear map L−1, produces a bilinear
map on V ∗).

If, in the previous discussion, one choses as V = Tλ(T
∗M) and as B the canonical symplectic

form σ, one notices the map w 7→ σλ(·, w) defines a linear isomorphism between the vector spaces
Tλ(T

∗M) and T ∗
λ (T

∗M) and ~h is the vector field canonically associated by the symplectic structure

with differential −dh. For this reason ~h is also called symplectic gradient of h.
This is formalized in the following result, whose proof is left to the reader.

Proposition 4.17. Let h ∈ C∞(T ∗M). The Hamiltonian vector field ~h ∈ Vec(T ∗M) satisfies the
following identity

σ(·,~h(λ)) = dλh, ∀λ ∈ T ∗M. (4.28)

Moreover, for every λ ∈ T ∗M , the bilinear form σλ on Tλ(T
∗M) and {·, ·}λ on T ∗

λ (T
∗M) (cf.

Remark 4.7) are dual under the identification (4.27). In particular

{a, b} = ~a(b) = 〈db,~a〉 = σ(~a,~b), ∀ a, b ∈ C∞(T ∗M). (4.29)

Thanks to formula (4.25) we have that in canonical coordinates (p, x) the Hamiltonian vector
field associated with h is expressed as follows

~h =

n∑

i=1

∂h

∂pi

∂

∂xi
− ∂h

∂xi

∂

∂pi
,
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and the Hamiltonian system λ̇ = ~h(λ) is rewritten as





ẋi =
∂h

∂pi

ṗi = −
∂h

∂xi

, i = 1, . . . , n.

We conclude this section with two classical but rather important results.

Proposition 4.18. A function a ∈ C∞(T ∗M) is a constant of the motion of the Hamiltonian
system associated with h ∈ C∞(T ∗M) if and only if {h, a} = 0.

Proof. Let us consider a solution λ(t) = et
~h(λ0) of the Hamiltonian system associated with ~h, with

λ0 ∈ T ∗M . From (4.29), we have the following formula for the derivative of the function a along
the solution

d

dt
a(λ(t)) = {h, a}(λ(t)). (4.30)

It is then easy to see that {h, a} = 0 if and only if the derivative of the function a along the flow
vanishes for all t, that means that the function a is constant along λ(t).

The skew-simmetry of the Poisson bracket immediately implies the following corollary.

Corollary 4.19. A function h ∈ C∞(T ∗M) is a constant of the motion of the Hamiltonian system
defined by ~h.

4.3 Characterization of normal and abnormal Pontryagin extremals

In this section we rewrite Theorem 3.59 using the symplectic language developed in the last section.
Given a sub-Riemannian structure on M with generating family {f1, . . . , fm}, let us define the

fiberwise linear functions on T ∗M associated with these vector fields

hi : T
∗M → R, hi(λ) := 〈λ, fi(q)〉 , i = 1, . . . ,m.

Recall that the generating family contains the data of the scalar product on the distribution.

Theorem 4.20 (Hamiltonian characterization of Pontryagin extremals). Let γ : [0, T ] → M be
an admissible curve which is a length-minimizer, parametrized by constant speed. Let u(·) be the
corresponding minimal control. Then there exists a Lipschitz curve λ(t) ∈ T ∗

γ(t)M such that

λ̇(t) =

m∑

i=1

ui(t)~hi(λ(t)), a.e. t ∈ [0, T ], (4.31)

and one of the following conditions is satisfied:

(N) hi(λ(t)) ≡ ui(t), i = 1, . . . ,m, ∀ t,

(A) hi(λ(t)) ≡ 0, i = 1, . . . ,m, ∀ t.
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Moreover in case (A) one has λ(t) 6= 0 for all t ∈ [0, T ].

Proof. The statement is a rephrasing of Theorem 3.59, obtained by combining Proposition 4.10
and Proposition 4.12.

Notice that Theorem 4.20 says that normal and abnormal extremals appear as solution of an
Hamiltonian system. Nevertheless, this Hamiltonian system is a priori nonautonomous and depends
on the trajectory itself by the presence of the control u(t) associated with the extremal trajectory.

Moreover, the actual formulation of Theorem 4.20 for the necessary optimality condition still
does not clarify if the extremals depend on the choice of a generating family {f1, . . . , fm} of the
sub-Riemannian structure. The rest of the section is devoted to the geometric intrinsic description
of normal and abnormal extremals.

4.3.1 Normal extremals

In this section we show that normal extremals are characterized as solutions of a smooth au-
tonomous Hamiltonian system on T ∗M , where the Hamiltonian H is a function that encodes all
the informations on the sub-Riemannian structure.

Definition 4.21. Let M be a sub-Riemannian manifold. The sub-Riemannian Hamiltonian is the
function on T ∗M defined as follows

H : T ∗M → R, H(λ) = max
u∈Uq

(
〈λ, fu(q)〉 −

1

2
|u|2
)
, q = π(λ). (4.32)

Proposition 4.22. The sub-Riemannian Hamiltonian H is smooth and quadratic on fibers. More-
over, for every generating family {f1, . . . , fm} of the sub-Riemannian structure, the sub-Riemannian
Hamiltonian H is written as follows

H(λ) =
1

2

m∑

i=1

〈λ, fi(q)〉2 , λ ∈ T ∗
qM, q = π(λ). (4.33)

Proof. In terms of a generating family {f1, . . . , fm}, the sub-Riemannian Hamiltonian (4.32) is
written as follows

H(λ) = max
u∈Rm

(
m∑

i=1

ui 〈λ, fi(q)〉 −
1

2

m∑

i=1

u2i

)
. (4.34)

Differentiating (4.34) with respect to ui, one gets that the maximum in the right hand side is
attained for ui = 〈λ, fi(q)〉, from which formula (4.33) follows. The fact that H is smooth and
quadratic on fibers then easily follows from (4.33).

Exercise 4.23. Prove that two equivalent sub-Riemannian structures (U, f) and (U′, f ′) on a
manifold M define the same Hamiltonian.

Exercise 4.24. Consider the sub-Riemannian Hamiltonian H : T ∗M → R. Denote by Hq its
restriction on fiber T ∗

qM and fix λ ∈ T ∗
qM . The differential dλHq : T ∗

qM → R is a linear form,
hence it can be canonically identified with an element of TqM .

(i) Prove that dλHq ∈ Dx for all λ ∈ T ∗
qM .
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(ii) Prove that ‖dλHq‖2 = 2H(λ).

Hint: show that, if f1, . . . , fm is a generating family, then

dλHq =

m∑

i=1

〈λ, fi(q)〉 fi(q).

Theorem 4.25. A Lipschitz curve λ : [0, T ] → T ∗M is a normal extremal if and only if it is a
solution of the Hamiltonian system

λ̇(t) = ~H(λ(t)). (4.35)

Moreover, given a normal extremal, the corresponding normal extremal trajectory γ(t) = π(λ(t)) is
smooth and has constant speed satisfying

1

2
‖γ̇(t)‖2 = H(λ(t)), ∀ t ∈ [0, T ].

Proof. Let {f1, . . . , fm} be a generating family and denote, as usual, hi(λ) = 〈λ, fi(q)〉 for i =

1, . . . ,m. Using the identity
−→
h2i = 2hi~hi (see (4.12)), it follows that

~H =
1

2

−−−→
m∑

i=1

h2i =
m∑

i=1

hi~hi.

Let λ(t) be a normal extremal. In particular hi(λ(t)) = ui(t) by condition (N) of Theorem 4.20,
and one gets

~H(λ(t)) =
m∑

i=1

hi(λ(t))~hi(λ(t)) =
m∑

i=1

ui(t)~hi(λ(t)).

On the other hand assume that λ(t) satisfies λ̇(t) = ~H(λ(t)). In terms of a generating family this
implies that

λ̇(t) =
m∑

i=1

hi(λ(t))~hi(λ(t))

and for its projection γ(t) = π(λ(t)) one has

γ̇(t) =
m∑

i=1

hi(λ(t))fi(γ(t)) =
m∑

i=1

〈λ(t), fi(γ(t))〉 fi(γ(t)), (4.36)

since fi = π∗~hi. Hence ui(t) = 〈λ(t), fi(γ(t))〉 defines a control for the curve γ. This control is
indeed the minimal one thanks to (4.34) (cf. also Exercice 4.24) and

1

2
‖γ̇(t)‖2 = 1

2

m∑

i=1

ui(t)
2 =

1

2

m∑

i=1

〈λ(t), fi(γ(t))〉2 = H(λ(t)) (4.37)
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Remark 4.26. In canonical coordinates λ = (p, x) in T ∗M , H is quadratic with respect to p and

H(p, x) =
1

2

m∑

i=1

〈p, fi(x)〉2 .

The Hamiltonian system associated with H, in these coordinates, is written as follows





ẋ =
∂H

∂p
=
∑m

i=1 〈p, fi(x)〉 fi(x)

ṗ = −∂H
∂x

= −∑m
i=1 〈p, fi(x)〉 〈p,Dxfi(x)〉

(4.38)

From here it is easy to see that if λ(t) = (p(t), x(t)) is a solution of (4.38) then also the rescaled
extremal αλ(αt) = (α p(αt), x(αt)) is a solution of the same Hamiltonian system, for every α > 0.

Corollary 4.27. A normal extremal trajectory is parametrized by constant speed. In particular it
is arc length parametrized if and only if its extremal lift is contained in the level set H−1(1/2).

Proof. The fact that H is constant along λ(t), easily implies by (4.37) that ‖γ̇(t)‖2 is constant.
Moreover one easily gets that ‖γ̇(t)‖ = 1 if and only if H(λ(t)) = 1/2.

Finally, by Remark 4.26, all normal extremal trajectories are reparametrization of arc length
parametrized ones.

Remark 4.28. Notice that from (4.36) it follows that if γ(t) is a normal extremal trajectory asso-
ciated with initial covector λ0 ∈ T ∗

q0M it follows that

γ̇(0) =

m∑

i=1

〈λ0, fi(q0)〉 fi(q0). (4.39)

Let λ(t) be a normal extremal such that λ(0) = λ0 ∈ T ∗
q0M . The corresponding normal extremal

trajectory γ(t) = π(λ(t)) can be written in the exponential notation

γ(t) = π ◦ et ~H(λ0).

By Corollary 4.27, arc length parametrized normal extremal trajectories corresponds to the choice
of λ0 ∈ H−1(1/2).

We end this section by characterizing normal extremal trajectory as characteristic curves of the
canonical symplectic form contained in the level sets of H.

Definition 4.29. Let M be a smooth manifold and Ω ∈ Λ2M a 2-form. A Lipschitz curve
γ : [0, T ]→M is a characteristic curve for Ω if for almost every t ∈ [0, T ] it holds

γ̇(t) ∈ ker Ωγ(t), (i.e., Ωγ(t)(γ̇(t), ·) = 0) (4.40)

Notice that this notion is independent on the parametrization of the curve.

Proposition 4.30. Let H be the sub-Riemannian Hamiltonian and assume that c > 0 is a regular
value of H. Then a Lipschitz curve on H−1(c) is a characteristic curve for σ|H−1(c) if and only if
it is the reparametrization of a normal extremal.
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Proof. Recall that if c is a regular value of H, then the set H−1(c) is a smooth (2n−1)-dimensional
manifold in T ∗M . Notice that, thanks to the classical Sard Theorem, almost every c > 0 is a
regular value for H.

For every λ ∈ H−1(c) let us denote by Eλ = TλH
−1(c). Notice that, by construction, Eλ is

an hyperplane in Tλ(T
∗M) (i.e., dimEλ = 2n − 1) and dλH

∣∣
Eλ

= 0. The restriction σ|H−1(c) is

computed by σλ|Eλ
, for each λ ∈ H−1(c).

On one hand, ker σλ|Eλ
is non-trivial since the dimension of Eλ is odd. On the other hand, the

symplectic 2-form σ is nondegenerate on T ∗M . It follows that dimker σλ|Eλ
= 1.

We are left to show that kerσλ|Eλ
is spanned by ~H(λ). Let ker σλ|Eλ

= Rξ, for some ξ ∈
Tλ(T

∗M). By construction, Eλ coincides with the skew-orthogonal to ξ, namely

Eλ = ξ∠ = {w ∈ Tλ(T ∗M) | σλ(ξ, w) = 0}.
By definition of Hamiltonian vector field one has σ(·, ~H) = dH, hence for the restriction to Eλ one
gets

σλ(·, ~H(λ))
∣∣
Eλ

= dλH
∣∣
Eλ

= 0.

Exercise 4.31. Assume that two smooth Hamiltonians h1, h2 : T ∗M → R define the same level
set, i.e., E = {h1 = c1} = {h2 = c2} for some c1, c2 ∈ R regular values of h1, h2 respectively, then
their Hamiltonian flows ~h1,~h2 coincide on E, up to reparametrization.

Exercise 4.32. The goal of this exercice is to show that, given the sub-Riemannian Hamiltonian
H, one can recover all the information about the sub-Riemannian structure.

(a) Prove that for a vector v ∈ TqM the two following properties are equivalent:

(a.1) v ∈ Dq and ‖v‖ ≤ 1,

(a.2) 1
2 |〈λ, v〉|2 ≤ H(λ) for all λ ∈ T ∗

qM .

(b) Show that the sub-Riemannian Hamiltonian can be written as follows

H(λ) =
1

2
‖λ‖2, ‖λ‖ = sup

v∈Dq,‖v‖=1
|〈λ, v〉|. (4.41)

4.3.2 Abnormal extremals

In this section we provide a geometric characterization of abnormal extremals. Even if for abnormal
extremals it is not possible to determine a priori their regularity (which should be understood with
respect to the length parametrization), we show that unparametrized abnormal trajectories can be
characterized as characteristic curves of the symplectic form. This gives an unified point of view of
both classes of extremals.

We recall that an abnormal extremal is a non-vanishing solution of the following equations

λ̇(t) =

m∑

i=1

ui(t)~hi(λ(t)), hi(λ(t)) = 0, i = 1, . . . ,m,

where {f1, . . . , fm} is a generating family for the sub-Riemannian structure and h1, . . . , hm are the
corresponding functions on T ∗M that are linear on fibers. In particular every abnormal extremal
is contained in the set

H−1(0) = {λ ∈ T ∗M | 〈λ, fi(q)〉 = 0, i = 1, . . . ,m, q = π(λ)}. (4.42)
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where H denotes the sub-Riemannian Hamiltonian (4.33).
Notice that 0 is never a regular value of H. Nevertheless, the following regularity assumption

on the distribution guarantees that H−1(0) is a smooth manifold.

Definition 4.33. Consider a sub-Riemannian structure onM with generating family {f1, . . . , fm}.
We say that the sub-Riemannian structure is regular if there exists r ∈ N such that for every q ∈M

dimDq = dim spanq{f1, . . . , fm} = r. (4.43)

In this case we say that the structure is regular of rank r.

Notice that, thanks to the constant rank theorem (cf. Theorem 2.60), if the sub-Riemannian
structure is regular of rank r, then the set H−1(0) defined by (4.42) is a smooth submanifold of
T ∗M of codimension r.

Proposition 4.34. Let H be the sub-Riemannian Hamiltonian associated with a regular sub-
Riemannian structure. Then a Lipschitz curve on H−1(0) is a characteristic curve for σ|H−1(0)

if and only if it is the reparametrization of an abnormal extremal.

Proof. In this proof we denote for simplicity N := H−1(0) ⊂ T ∗M . For every λ ∈ N we have the
identity

kerσλ|N = TλN
∠ = span{~hi(λ) | i = 1, . . . ,m}. (4.44)

Indeed, from the definition of N and the regularity assumption, it follows that

TλN = {w ∈ Tλ(T ∗M) | 〈dλhi, w〉 = 0, i = 1, . . . ,m}
= {w ∈ Tλ(T ∗M) |σ(w,~hi(λ)) = 0, i = 1, . . . ,m}
= span{~hi(λ) | i = 1, . . . ,m}∠,

and (4.44) follows by taking the skew-orthogonal on both sides. Thus w ∈ TλH−1(0)∠ if and only
if w is a linear combination of the vectors ~hi(λ). This implies that λ(t) is a characteristic curve for
σ|H−1(0) if and only if it is a reparametrization of a curve satisfying

λ̇(t) =
m∑

i=1

ui(t)~hi(λ(t)). (4.45)

for some controls ui(·), with i = 1, . . . ,m.

Remark 4.35. From Proposition 4.34 it follows that abnormal extremals do not depend on the
sub-Riemannian metric, but only on the distribution. Indeed the set H−1(0) is characterized as
the annihilator D⊥ of the distribution

H−1(0) = {λ ∈ T ∗M | 〈λ, v〉 = 0, ∀ v ∈ Dπ(λ)} = D⊥ ⊂ T ∗M.

Here the orthogonal is meant in the duality sense.

Under the regularity assumption (4.43), we can assume without loss of generality that f1, . . . , fm
are linearly independent (hence r = m in the regularity assumption) and select (at least locally) a
basis of 1-forms ω1, . . . , ωm for the dual of the distribution

D⊥
q = span{ωi(q) | i = 1, . . . ,m}. (4.46)
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Let us complete this set of 1-forms to a basis ω1, . . . , ωn of T
∗M and consider the induced coordinates

h1, . . . , hn as defined in Remark 4.16. In these coordinates the restriction of the symplectic structure
D⊥ to is expressed as follows

σ|D⊥ = d(s|D⊥) =
m∑

i=1

dhi ∧ ωi + hidωi. (4.47)

We stress that the restriction σ|D⊥ can be written only in terms of the elements ω1, . . . , ωm (and
not of a full basis of 1-forms) since the differential d commutes with the restriction.

4.3.3 Codimension one and contact distributions

Let M be a n-dimensional manifold endowed with a constant rank distribution D of codimension
one, i.e., dimDq = n− 1 for every q ∈M . In this case D and D⊥ are sub-bundles of TM and T ∗M
respectively and their dimensions, as smooth manifolds, are

dim D = dimM + rankD = 2n− 1,

dim D⊥ = dimM + rankD⊥ = n+ 1.

Since the symplectic form σ is skew-symmetric, a dimensional argument implies that for n even,
the restriction σ|D⊥ has always a nontrivial kernel. Hence there always exist characteristic curves
of σ|D⊥ , that correspond to reparametrized abnormal extremals by Proposition 4.34.

Let us consider in more detail the simplest case when the dimension is odd, namely n = 3.
Assume that there exists a one-form ω ∈ Λ1(M) such that D = kerω (this is not restrictive for a
local description) and consider a basis of one-forms ω0, ω1, ω2 such that ω0 := ω and the associated
coordinates h0, h1, h2 on the fibers (see Remark 4.16). By (4.47) one has

σ|D⊥ = dh0 ∧ ω + h0 dω, (4.48)

Notice that, if the dimension of M is odd, then D⊥ is even-dimensional. We recall the following
criterion for a 2-form to be degenerate on an even-dimensional manifold.

Lemma 4.36. Let N be a smooth 2k-dimensional manifold and Ω ∈ Λ2M . Then Ω is non-
degenerate on N if and only if ∧kΩ 6= 0.1

In our specific case, from (4.48), one can easily compute (recall that D⊥ is 4-dimensional)

(σ ∧ σ)|D⊥ = 2h0 dh0 ∧ ω ∧ dω. (4.49)

We introduce the following definition.

Definition 4.37. Let M be a 3-dimensional manifold. We say that a constant rank distribution
D = kerω on M of corank one is a contact distribution if ω ∧ dω 6= 0.

Collecting the previous results we obtain the following.

1Here ∧kΩ = Ω ∧ . . . ∧ Ω︸ ︷︷ ︸
k

.
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Proposition 4.38. Let M be a 3D sub-Riemannian manifold such that D = kerω. Then all
nontrivial abnormal extremal trajectories are contained in the Martinet set

M = {q ∈M | (ω ∧ dω)|q = 0}.

In particular, if the sub-Riemannian structure is contact, there is no nontrivial abnormal extremal
trajectory.

Proof. By Proposition 4.34 any abnormal extremal λ(t) is a characteristic curve of σ|D⊥ . By Lemma
4.36 σ|D⊥ is degenerate if and only if σ ∧ σ|D⊥ = 0.

Since the covector associated to an abnormal extremal is never vanishing, and h1 = h2 = 0
on D⊥, it follows that h0 is never vanishing along abnormal extremals. Then, thanks to (4.49),
σ ∧ σ|D⊥ vanishes at a point λ ∈ D⊥ if and only if ω ∧ dω = 0 at q = π(λ) (notice that ω ∧ dω
depend only on coordinates on the manifold while h0 is a coordinate on the fibers).

This shows that, if γ(t) is an abnormal trajectory and λ(t) is the associated abnormal extremal,
then λ(t) is a characteristic curve of σ|D⊥ if and only if (ω ∧ dω)|γ(t) = 0, that means that γ(t) is
contained in M.

If the distribution D is contact, then it follows directly from Definition 4.37 that the Martinet
set M is empty.

Remark 4.39. Let M be three dimensional and fix a smooth volume form dV on M . We can write
ω ∧ dω = adV where a ∈ C∞(M).

The Martinet set is M = a−1(0) and the distribution is contact if and only if the function a
is never vanishing. When 0 is a regular value of a, the Martinet set is a two-dimensional smooth
manifold. Notice that this condition is satisfied for a generic choice of the (one form defining the)
distribution.

Abnormal extremal trajectories then coincides with horizontal curves that are contained in the
Martinet set.

When M is a smooth surface, the intersection of the tangent bundle to the surface M and the
2-dimensional distribution of admissible velocities defines, generically, a line field on M. Abnormal
extremal trajectories coincide, up to a reparametrization, with the integral curves of this line field.

4.4 Examples

In this section we consider in detail some examples. First we focus on Riemannian structures on a
2-dimensional manifold. Then we consider sub-Riemannian structures associated with isoperimetric
problems, containing the Heisenberg group H as a particular case.

4.4.1 2D Riemannian geometry

Let M be a 2-dimensional Riemannian manifold and let f1, f2 ∈ Vec(M) be a local orthonormal
frame for the Riemannian structure. The problem of finding length-minimizers on M could be
described locally as the optimal control problem

q̇(t) = u1(t)f1(q(t)) + u2(t)f2(q(t)),

116



where length and energy are expressed as

ℓ(q(·)) =
∫ T

0

√
u1(t)2 + u2(t)2 dt, J(q(·)) = 1

2

∫ T

0

(
u1(t)

2 + u2(t)
2
)
dt.

Let us start by showing that there is no abnormal extremal. Indeed if λ(t) is an abnormal
extremal and γ(t) is the associated abnormal trajectory we have

〈λ(t), f1(γ(t))〉 = 〈λ(t), f2(γ(t))〉 = 0, ∀ t ∈ [0, T ], (4.50)

that implies that λ(t) = 0 for all t ∈ [0, T ] since {f1, f2} is a basis of the tangent space at every
point. This is a contradiction since λ(t) 6= 0 by Theorem 3.59.

Normal extremal trajectories are projections of integral curves of the sub-Riemannian Hamil-
tonian in T ∗M .

H(λ) =
1

2
(h1(λ)

2 + h2(λ)
2), hi(λ) = 〈λ, fi(q)〉 , i = 1, 2.

Since the vector fields f1 and f2 are linearly independent, the functions (h1, h2) defines a system of
coordinates on fibers of T ∗M . In what follows it is convenient to use (q, h1, h2) as coordinates on
T ∗M (notice that we are fixing a set of coordinates on the fibers but not on the base manifold).

Suppose now that λ(t) is a normal extremal. Then ui(t) = hi(λ(t)) and the equation on the
base manifold is

q̇ = h1f1(q) + h2f2(q). (4.51)

For the equation on the fibers we have (remember that along solutions ȧ = {H, a})
{
ḣ1 = {H,h1} = −{h1, h2}h2
ḣ2 = {H,h2} = {h1, h2}h1.

(4.52)

From these equations one can recover by a direct computation that H is constant along solutions.
Indeed

Ḣ = h1ḣ1 + h2ḣ2 = 0.

If we require that normal extremals are parametrized by arclength one gets u1(t)
2 + u2(t)

2 = 1 for
a.e. t ∈ [0, T ], and

H(λ(t)) =
1

2
⇐⇒ h21(λ(t)) + h22(λ(t)) = 1.

It is then convenient to restrict to the spherical cotangent bundle S∗M (cf. Example 2.55) defined
by the equation h21 + h22 = 1. It is natural then to introduce an angular coordinate θ on each fiber
by setting

h1 = cos θ, h2 = sin θ. (4.53)

Let c1, c2 ∈ C∞(M) be such that
[f1, f2] = c1f1 + c2f2. (4.54)

Since {h1, h2}(λ) = 〈λ, [f1, f2]〉, we have {h1, h2} = c1h1+ c2h2 and equations (4.51) and (4.52) are
rewritten in the (q, θ) coordinates

{
θ̇ = c1(q) cos θ + c2(q) sin θ

q̇ = cos θf1(q) + sin θf2(q)
(4.55)
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In other words, an arc length parametrized curve on M (namely, satisfying the second equation
in (4.55)) is a normal extremal trajectory if and only if it satisfies the first equation of (4.55).
Heuristically this suggests that the quantity

θ̇ − c1(q) cos θ − c2(q) sin θ,

should be related to the geodesic curvature of the trajectory on M .
Let µ1, µ2 be the dual frame to f1, f2 (so that the Riemannian area form on M writes as

dV = µ1 ∧ µ2) and consider the Hamiltonian vector field in these coordinates

~H = cos θf1 + sin θf2 + (c1 cos θ + c2 sin θ)∂θ. (4.56)

The Levi-Civita connection on M is expressed by some coefficients (cf. (1.29) in Chapter 1)

ω = dθ + a1µ1 + a2µ2,

where ai are suitable smooth functions on M . On the other hand, normal extremal trajectories are
projections of integral curves of ~H. Moreover

〈ω, ~H〉 = 0 =⇒ a1 = −c1, a2 = −c2.

In particular if we apply ω = dθ−c1µ1−c2µ2 to a generic curve on S∗M (not necessarily a geodesic)
satisfying

λ̇ = cos θf1 + sin θf2 + θ̇ ∂θ,

which projects on γ we find the geodesic curvature

κg(γ) = θ̇ − c1 cos θ − c2 sin θ,

as we infer above. To end this section we prove a useful formula for the Gaussian curvature of M

Proposition 4.40. The Gaussian curvature κ of the Riemannian structure on M defined by a
local orthonormal frame f1, f2 is computed by

κ = f1(c2)− f2(c1)− c21 − c22,

where c1, c2 are the smooth functions satisfying [f1, f2] = c1f1 + c2f2.

Proof. From (1.72) we have that dω = −κdV where dV = µ1 ∧ µ2 is the Riemannian volume form.
On the other hand we have in this frame

dci = f1(ci)µ1 + f2(ci)µ2, i = 1, 2.

We also can compute (cf. also Cartan’s formula (4.84) which is proved later in this chapter)

dµi = dµi(f1, f2)µ1 ∧ µ2 = −ciµ1 ∧ µ2, i = 1, 2. (4.57)

Then we can compute

dω = d(−c1µ1 − c2µ2)
= −dc1 ∧ µ1 − dc2 ∧ µ2 − c1dµ1 − c2dµ2
= −(f1(c2)− f2(c1)− c21 − c22)µ1 ∧ µ2.

from which the claim follows.
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Remark 4.41. Notice that the relations (4.57) imply that the one-form η = −c1µ1 − c2µ2 satisfies

dµ1 = η ∧ µ2, dµ2 = −η ∧ µ1. (4.58)

In particular the geodesic curvature of a curve γ parametrized by unit speed and satisfying

γ̇ = cos θf1 + sin θf2,

where f1, f2 is a local orthonormal frame, is given by κg(γ) = θ̇ + η(γ̇).

4.4.2 Isoperimetric problem

LetM be a 2-dimensional orientable Riemannian manifold and denote by ν its Riemannian volume
form. Fix a smooth one-form A ∈ Λ1M and c ∈ R.

Problem 1. Fix c ∈ R and q0, q1 ∈M . Find, whenever it exists, the solution to

min

{
ℓ(γ) | γ(0) = q0, γ(T ) = q1,

∫

γ
A = c

}
. (4.59)

Remark 4.42. Minimizers depend only on dA, i.e., if we add an exact term to A we will find same
minima for the problem (with a different value of c).

Problem 1 can be reformulated as a sub-Riemannian problem on the extended manifold

M =M × R,

in the sense that solutions of the problem (4.59) turns to be length-minimizers for a suitable sub-
Riemannian structure on M , that we are going to construct.

With every curve γ on M satisfying γ(0) = q0 and γ(T ) = q1 we can associate the function

z(t) =

∫

γ|[0,t]
A =

∫ t

0
A(γ̇(s))ds.

The curve ζ(t) = (γ(t), z(t)) defined on M satisfies ω(ζ̇(t)) = 0 where ω = dz −A is a one form on
M , since

ω(ζ̇(t)) = ż(t)−A(γ̇(t)) = 0.

Equivalently, ζ̇(t) ∈ Dζ(t) where D = kerω. We define a metric on D by setting the norm of a vector

v ∈ D as the Riemannian norm of its projection π∗v on M , where π :M →M is the projection on
the first factor. This endows M with a sub-Riemannian structure.

If we fix a local orthonormal frame f1, f2 for M , the pair (γ(t), z(t)) satisfies

(
γ̇
ż

)
= u1

(
f1
〈A, f1〉

)
+ u2

(
f2
〈A, f2〉

)
. (4.60)

Hence the two vector fields on M

F1 = f1 + 〈A, f1〉 ∂z, F2 = f2 + 〈A, f2〉 ∂z, (4.61)
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constitute an orthonormal frame for the metric defined above on D = span(F1, F2). Problem 1 is
then equivalent to the following:

Problem 2. Fix c ∈ R and q0, q1 ∈M . Find, whenever it exists, the solution to

min
{
ℓ(ζ) | ζ(0) = (q0, 0), ζ(T ) = (q1, c), ζ̇(t) ∈ Dζ(t)

}
. (4.62)

Notice that, by construction, D is a distribution of constant rank (equal to 2) but is not
necessarily bracket-generating.

Let us now compute normal and abnormal Pontryagin extremals associated with the sub-
Riemannian structure just introduced on M . In what follows we denote with hi(λ) = 〈λ, Fi(ζ)〉,
for i = 1, 2, the Hamiltonians linear on fibers of T ∗M .

Normal Pontryagin extremals

Equations of normal Pontryagin extremals are projections of integral curves of the sub-Riemannian
Hamiltonian in T ∗M

H(λ) =
1

2
(h21(λ) + h22(λ)), hi(λ) = 〈λ, Fi(ζ)〉 , i = 1, 2.

Let us introduce F0 = ∂z and h0(λ) = 〈λ, F0(ζ)〉. Since F1, F2 and F0 are linearly independent,
then (h1, h2, h0) defines a system of coordinates on fibers of T ∗M , hence in what follows we use
(ζ, h1, h2, h0) as coordinates on T

∗M .
For a normal extremal we have ui(t) = hi(λ(t)) for i = 1, 2 and the equation on the base is

ζ̇ = h1F1(ζ) + h2F2(ζ). (4.63)

For the equation on the fibers we have (recall that ȧ = {H, a})




ḣ1 = {H,h1} = −{h1, h2}h2
ḣ2 = {H,h2} = {h1, h2}h1.
ḣ0 = {H,h0} = 0

(4.64)

Considering normal Pontryagin extremals parametrized by arclength is equivalent to restrict to the
cylinder H−1(1/2) = {h21 + h22 = 1} of the cotangent bundle T ∗M . Thus we can introduce the
coordinate θ by setting

h1 = cos θ, h2 = sin θ.

Let c1, c2 ∈ C∞(M) be such that
[f1, f2] = c1f1 + c2f2. (4.65)

Then

[F1, F2] = [f1 + 〈A, f1〉 ∂z, f2 + 〈A, f2〉 ∂z]
= [f1, f2] + (f1 〈A, f2〉 − f2 〈A, f1〉)∂z

(by (4.65))-(4.61) = c1(F1 − 〈A, f1〉 ∂z) + c2(F2 − 〈A, f2〉 ∂z) + (f1 〈A, f2〉 − f2 〈A, f1〉)∂z
= c1F1 + c2F2 + dA(f1, f2)∂z.
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where in the last equality we use Cartan formula (cf. (4.84) for a proof). Let µ1, µ2 be the 1-forms
onM that are dual to f1 and f2. Then the Riemannian volume form onM is written as ν = µ1∧µ2
and we can write dA = bµ1 ∧ µ2, for a suitable function b ∈ C∞(M). It follows

[F1, F2] = c1F1 + c2F2 + b∂z,

and
{h1, h2} = 〈λ, [F1, F2]〉 = c1h1 + c2h2 + bh0. (4.66)

With similar computations to the one performed in Section 4.4.1, we obtain the Hamiltonian
system associated with H in the (ζ, θ, h0) coordinates





ζ̇ = cos θF1(ζ) + sin θF2(ζ)

θ̇ = c1 cos θ + c2 sin θ + bh0

ḣ0 = 0

(4.67)

Notice that the coefficients c1, c1, b in the last formula depends only on q, where ζ = (q, z).
The projection γ(t) = π(ζ(t)) of a normal extremal path on M (here π : M → M), with

geodesic curvature
κg(γ(t)) = θ̇(t)− c1(γ(t)) cos θ(t)− c2(γ(t)) sin θ(t), (4.68)

then satisfies
κg(γ(t)) = b(γ(t))h0. (4.69)

Namely, projections onM of normal extremal paths are curves with geodesic curvature proportional
to the function b at every point. The case b equal to constant is treated in the example of Section
4.4.3.

Abnormal Pontryagin extremals

We give an explicit proof of the following fact, which follows also from the discussion of Section 4.3.3.

Lemma 4.43. The projection on M of non constant abnormal extremal trajectories on M is
contained in the set b−1(0).

Proof. Assume that λ(t) is an abnormal extremal whose projection is a curve ζ(t) = π(λ(t)) that
is not reduced to a point. Then we have

h1(λ(t)) = 〈λ(t), F1(ζ(t))〉 = 0, h2(λ(t)) = 〈λ(t), F2(ζ(t))〉 = 0, ∀ t ∈ [0, T ], (4.70)

We can differentiate the two equalities with respect to t ∈ [0, T ] and we get

d

dt
h1(λ(t)) = u2(t){h1, h2}|λ(t) = 0

d

dt
h2(λ(t)) = −u1(t){h1, h2}|λ(t) = 0

Since the pair (u1(t), u2(t)) 6= (0, 0) we have that {h1, h2}|λ(t) = 0 that implies

0 = 〈λ(t), [F1, F2](ζ(t))〉 = b(γ(t))h0, (4.71)

where in the last equality γ(t) = π(ζ(t)) and we used (4.66) and the fact that h1(λ(t)) = h2(λ(t)) =
0. Recall that h0 6= 0 otherwise the covector is identically zero (that is not possible for abnormals),
then b(γ(t)) = 0 for all t ∈ [0, T ], where γ(t) = π(ζ(t)).
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The last result shows that abnormal extremal trajectories are forced to live in connected com-
ponents of b−1(0).

Exercise 4.44. Prove that the set b−1(0) is independent on the Riemannian metric chosen on M
(and the corresponding sub-Riemannian metric defined on D).

4.4.3 Heisenberg group

The Heisenberg group H is a basic example in sub-Riemannian geometry. It is the sub-Riemannian
structure defined by the isoperimetric problem in M = R2 = {(x, y)} endowed with its Euclidean
scalar product and the 1-form (cf. previous section)

A =
1

2
(xdy − ydx).

Notice that dA = dx ∧ dy defines the area form on R2, hence b ≡ 1 in this case. On the extended
manifold M = R3 = {(x, y, z)} the one-form ω is written as

ω = dz − 1

2
(xdy − ydx)

Following the notation of the previous paragraph we can choose as an orthonormal frame for R2

the frame f1 = ∂x and f2 = ∂y. This induces the choice

F1 = ∂x −
y

2
∂z, F2 = ∂y +

x

2
∂z.

for the orthonormal frame on D = kerω. Notice that [F1, F2] = ∂z, that implies that D is bracket-
generating at every point. Defining F0 = ∂z and hi = 〈λ, Fi(q)〉 for i = 0, 1, 2, the Hamiltonians
linear on fibers of T ∗M , we have

{h1, h2} = h0,

hence the equation (4.67) for normal extremals become (here q = (x, y, z))





q̇ = cos θF1(q) + sin θF2(q)

θ̇ = h0

ḣ0 = 0

(4.72)

It follows that the two last equations can be immediately solved
{
θ(t) = θ0 + h0t

h0(t) = h0
(4.73)

Moreover {
h1(t) = cos(θ0 + h0t)

h2(t) = sin(θ0 + h0t)
(4.74)

From these formulas and the explicit expression of F1 and F2 it is immediate to recover the normal
extremal trajectories starting from the origin (x0 = y0 = z0 = 0) in the case h0 6= 0

x(t) =
1

h0
(sin(θ0 + h0t)− sin(θ0)), y(t) = − 1

h0
(cos(θ0 + h0t)− cos(θ0)), (4.75)
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and the vertical coordinate z is computed as the integral

z(t) =
1

2

∫ t

0
x(s)ẏ(s)− y(s)ẋ(s)ds = 1

2h20
(h0t− sin(h0t)).

When h0 = 0 the curve is simply a straight line

x(t) = cos(θ0)t, y(t) = sin(θ0)t, z(t) = 0. (4.76)

Notice that, as we know from the results of the previous subsection, normal extremal trajectories
are curves whose projection on R2 = {(x, y)} has constant geodesic curvature, i.e., straight lines or
circles on R2 (that correspond to horizontal lines and helix on M).

We remark finally that there is no non trivial abnormal extremal trajectory since b = 1.

Remark 4.45. This sub-Riemannian structure on R3 is called Heisenberg group since it can be seen
as a left-invariant structure on a Lie group, see also Section 7.5.

4.5 Lie derivative

In this section we extend the notion of Lie derivative, already introduced for vector fields in Section
3.2, to differential forms. Recall that if X,Y ∈ Vec(M) are two vector fields, their Lie derivative is
defined as

LXY = [X,Y ] =
d

dt

∣∣∣∣
t=0

e−tX∗ Y.

If P : M →M is a diffeomorphism we can consider the pullback P ∗ : T ∗
P (q)M → T ∗

qM and extend

its action to k-forms. For ω ∈ ΛkM , one defines P ∗ω ∈ ΛkM in the following way:

(P ∗ω)q(ξ1, . . . , ξk) := ωP (q)(P∗ξ1, . . . , P∗ξk), q ∈M, ξi ∈ TqM. (4.77)

It is easy to check that this operation is linear and satisfies the two following properties

P ∗(ω1 ∧ ω2) = P ∗ω1 ∧ P ∗ω2, (4.78)

P ∗ ◦ d = d ◦ P ∗. (4.79)

Definition 4.46. Let X ∈ Vec(M) and ω ∈ ΛkM , where k ≥ 0. We define the Lie derivative of ω
with respect to X as the operator

LX : ΛkM → ΛkM, LXω =
d

dt

∣∣∣∣
t=0

(etX)∗ω. (4.80)

For k = 0 this definition coincides with the Lie derivative of smooth functions, namely LXf =
Xf , for f ∈ C∞(M). From (4.78) and (4.79), one easily deduces the following properties of the
Lie derivative:

(i) LX(ω1 ∧ ω2) = (LXω1) ∧ ω2 + ω1 ∧ (LXω2),

(ii) LX ◦ d = d ◦ LX .
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Property (i) can be also expressed by saying that LX is a derivation of the exterior algebra of
k-forms.

The Lie derivative of a k-form along a vector field defines a new k-form. Given a k-form and a
vector field, one can also introduce their inner product, defining a (k − 1)-form as follows.

Definition 4.47. Let X ∈ Vec(M) and ω ∈ ΛkM , with k ≥ 1. We define the inner product of ω
and X as the operator iX : ΛkM → Λk−1M , such that

(iXω)(Y1, . . . , Yk−1) := ω(X,Y1, . . . , Yk−1), Yi ∈ Vec(M). (4.81)

The operator iX is an anti-derivation, in the following sense:

iX(ω1 ∧ ω2) = (iXω1) ∧ ω2 + (−1)k1ω1 ∧ (iXω2), ωi ∈ ΛkiM, i = 1, 2. (4.82)

We end this section proving two classical formulas, usually referred as Cartan’s formulas.

Proposition 4.48 (Cartan’s formula). Let X ∈ Vec(M). The following identity holds true

LX = iX ◦ d+ d ◦ iX . (4.83)

Proof. Set DX := iX ◦ d + d ◦ iX . It is easy to check that DX is a derivation on the algebra of
k-forms, since iX and d are anti-derivations. Let us show that DX commutes with d. Indeed, using
the fact that d2 = 0, one gets

d ◦DX = d ◦ iX ◦ d = DX ◦ d.
Since any k-form can be expressed in coordinates as ω =

∑
ωi1...ikdxi1 . . . dxik , it is sufficient to

prove that LX coincide with DX on functions. This last property is easily verified, since

DXf = iX(df) + d(iXf)︸ ︷︷ ︸
=0

= 〈df,X〉 = Xf = LXf.

Corollary 4.49. Let X,Y ∈ Vec(M) and ω ∈ Λ1M , then

dω(X,Y ) = X 〈ω, Y 〉 − Y 〈ω,X〉 − 〈ω, [X,Y ]〉 . (4.84)

Proof. On one hand Definition 4.46 implies, by Leibniz rule

〈LXω, Y 〉q =
d

dt

∣∣∣∣
t=0

〈
(etX )∗ω, Y

〉
q

=
d

dt

∣∣∣∣
t=0

〈
ω, etX∗ Y

〉
etX(q)

= X 〈ω, Y 〉 − 〈ω, [X,Y ]〉 .

On the other hand, Cartan’s formula (4.83) gives

〈LXω, Y 〉 = 〈iX(dω), Y 〉+ 〈d(iXω), Y 〉
= dω(X,Y ) + Y 〈ω,X〉 .

Comparing the two identities one gets (4.84).

Exercise 4.50. Prove the following Leibniz rule formula: for X ∈ Vec(M), ω ∈ ΛkM , and
f ∈ C∞(M)

LfXω = fLXω + df ∧ iXω (4.85)

124



4.6 Symplectic manifolds

In this section we generalize some of the constructions we considered on the cotangent bundle T ∗M
to the case of a general symplectic manifold.

Definition 4.51. A symplectic manifold (N,σ) is a smooth manifold N endowed with a closed,
non degenerate 2-form σ ∈ Λ2(N). A symplectomorphism of N is a diffeomorphism φ : N → N
such that φ∗σ = σ.

Notice that, thanks to the non-degeneracy assumption on the symplectic form, a symplectic
manifold N is necessarily even-dimensional. We stress that, on a general symplectic manifold, the
symplectic form σ is not exact.

The symplectic structure on a symplectic manifold N permits us to define the Hamiltonian
vector field ~h ∈ Vec(N) associated with a function h ∈ C∞(N) by the formula i~hσ = −dh, or
equivalently σ(·,~h) = dh.

Proposition 4.52. A diffeomorphism φ : N → N is a symplectomorphism if and only if for every
h ∈ C∞(N):

(φ−1
∗ )~h =

−−−→
h ◦ φ. (4.86)

Proof. Assume that φ is a symplectomorphism, namely φ∗σ = σ. More precisely, this means that
for every λ ∈ N and every v,w ∈ TλN one has

σλ(v,w) = (φ∗σ)λ(v,w) = σφ(λ)(φ∗v, φ∗w),

where the second equality is the definition of φ∗σ. If we apply the above equality at w = φ−1
∗ ~h one

gets, for every λ ∈ N and v ∈ TλN

σλ(v, φ
−1
∗ ~h) = (φ∗σ)λ(v, φ

−1
∗ ~h) = σφ(λ)(φ∗v,~h)

=
〈
dφ(λ)h, φ∗v

〉
=
〈
φ∗dφ(λ)h, v

〉
.

= 〈d(h ◦ φ), v〉

This shows that σλ(·, φ−1
∗ ~h) = d(h◦φ), that is (4.86). The converse implication follows analogously.

Next we want to characterize those vector fields whose flow generates a one-parametric family
of symplectomorphisms.

Lemma 4.53. Let X ∈ Vec(N) be a complete vector field on a symplectic manifold (N,σ). The
following properties are equivalent

(i) (etX )∗σ = σ for every t ∈ R,

(ii) LXσ = 0,

(iii) iXσ is a closed 1-form on N .
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Proof. By the group property e(t+s)X = etX ◦ esX one has the following identity for every t ∈ R:

d

dt
(etX )∗σ =

d

ds

∣∣∣∣
s=0

(etX)∗(esX)∗σ = (etX )∗LXσ.

This proves the equivalence between (i) and (ii), since the map (etX )∗ is invertible for every t ∈ R.
Recall now that the symplectic form σ is, by definition, a closed form. Then dσ = 0 and

Cartan’s formula (4.83) reads as follows

LXσ = d(iXσ) + iX(dσ) = d(iXσ),

which proves the the equivalence between (ii) and (iii).

Corollary 4.54. The flow of a Hamiltonian vector field is a one-parameter family of symplecto-
morphisms.

Proof. This is a direct consequence of the fact that, for a Hamitonian vector field ~h, one has
i~hσ = −dh. Hence i~hσ is a closed form (actually exact) and property (iii) of Lemma 4.53 holds.

Notice that the converse of Corollary 4.54 is true when N is simply connected, since in this case
every closed form is exact.

Definition 4.55. Let (N,σ) be a symplectic manifold and a, b ∈ C∞(N). The Poisson bracket
between a and b is defined as {a, b} = σ(~a,~b).

We end this section by collecting some properties of the Poisson bracket that follow from the
previous results.

Proposition 4.56. The Poisson bracket satisfies the identities

(i) {a, b} ◦ φ = {a ◦ φ, b ◦ φ}, ∀ a, b ∈ C∞(N),∀φ ∈ Sympl(N),

(ii) {a, {b, c}} + {c, {a, b}} + {b, {c, a}} = 0, ∀ a, b, c ∈ C∞(N).

Proof. Property (i) follows from (4.86). Property (ii) follows by considering φ = et~c in (i), for some
c ∈ C∞(N), and computing the derivative with respect to t at t = 0.

Corollary 4.57. For every a, b ∈ C∞(N) we have

−−−→{a, b} = [~a,~b]. (4.87)

Proof. Property (ii) of Proposition 4.56 can be rewritten, by skew-symmetry of the Poisson bracket,
as follows

{{a, b}, c} = {a, {b, c}} − {b, {a, c}}. (4.88)

Using that {a, b} = σ(~a,~b) = ~ab one rewrite (4.88) as

−−−→{a, b}c = ~a(~bc)−~b(~ac) = [~a,~b]c.

Remark 4.58. Property (ii) of Proposition 4.56 says that {a, ·} is a derivation of the algebra C∞(N).
Moreover, the space C∞(N) endowed with {·, ·} as a product is a Lie algebra isomorphic to a sub-
algebra of Vec(N). Indeed, by (4.87), the correspondence a 7→ ~a is a Lie algebra homomorphism
between C∞(N) and Vec(N).
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4.7 Local minimality of normal extremal trajectories

In this section we prove a fundamental result about local optimality of normal trajectories. More
precisely we show that small pieces of a normal trajectory are length minimizers.

4.7.1 The Poincaré-Cartan one-form

Fix a smooth function a ∈ C∞(M) and consider the smooth submanifold of T ∗M defined by the
graph of its differential

L0 = {dqa | q ∈M} ⊂ T ∗M. (4.89)

Notice that the restriction of the canonical projection π : T ∗M →M to L0 defines a diffeomorphism
between L0 and M , hence dimL0 = n. Assume that the Hamiltonian flow is complete and consider
the image of L0 under the Hamiltonian flow

Lt := et
~H(L0), t ∈ [0, T ]. (4.90)

Define the (n+ 1)-dimensional manifold with boundary in R× T ∗M as follows

L = {(t, λ) ∈ R× T ∗M |λ ∈ Lt, 0 ≤ t ≤ T} (4.91)

= {(t, et ~Hλ0) ∈ R× T ∗M |λ0 ∈ L0, 0 ≤ t ≤ T}. (4.92)

Finally, let us introduce the Poincaré-Cartan 1-form on T ∗M × R defined by

s−Hdt ∈ Λ1(T ∗M × R)

where s ∈ Λ1(T ∗M) denotes, as usual, the tautological 1-form of T ∗M . We start by proving a
preliminary lemma.

Lemma 4.59. s|L0 = d(a ◦ π)|L0

Proof. By definition of tautological 1-form sλ(w) = 〈λ, π∗w〉, for every w ∈ Tλ(T ∗M). If λ ∈ L0
then λ = dqa, where q = π(λ). Hence for every w ∈ Tλ(T ∗M)

sλ(w) = 〈λ, π∗w〉 = 〈dqa, π∗w〉 = 〈π∗dqa,w〉 = 〈dq(a ◦ π), w〉 .

Proposition 4.60. The 1-form (s−Hdt)|L is exact.

Proof. We divide the proof in two steps: (i) we show that the restriction of the Poincare-Cartan
1-form (s−Hdt)|L is closed and (ii) that it is exact.

(i). To prove that the 1-form is closed we need to show that the differential

d(s −Hdt) = σ − dH ∧ dt, (4.93)

vanishes when applied to every pair of tangent vectors to L. Since, for each t ∈ [0, T ], the set Lt
has codimension 1 in L, there are only two possibilities for the choice of the two tangent vectors:

(a) both vectors are tangent to Lt, for some t ∈ [0, T ].

(b) one vector is tangent to Lt while the second one is transversal.
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Case (a). Since both tangent vectors are tangent to Lt, it is enough to show that the restriction of
the one form σ− dH ∧ dt to Lt is zero. First let us notice that dt vanishes when applied to tangent

vectors to Lt, thus σ − dH ∧ dt|Lt = σ|Lt . Moreover, since by definition Lt = et
~H(L0) one has

σ|Lt = σ|
et ~H (L0)

= (et
~H )∗σ|L0 = σ|L0 = ds|L0 = d2(a ◦ π)|L0 = 0.

where in the last line we used Lemma 4.59 and the fact that (et
~H)∗σ = σ, since et

~H is an Hamiltonian
flow and thus preserves the symplectic form.
Case (b). The manifold L is, by construction, the image of the smooth mapping

Ψ : [0, T ]× L0 → [0, T ]× T ∗M, Ψ(t, λ) 7→ (t, et
~Hλ),

Thus a tangent vector to L that is transversal to Lt can be obtained by differentiating the map Ψ
with respect to t:

∂Ψ

∂t
(t, λ) =

∂

∂t
+ ~H(λ) ∈ T(t,λ)L. (4.94)

It is then sufficient to show that the vector (4.94) is in the kernel of the two form σ − dH ∧ dt. In
other words we have to prove

i∂t+ ~H(σ − dH ∧ dt) = 0. (4.95)

The last equality is a consequence of the following identities

i ~Hσ = σ( ~H, ·) = −dH, i∂tσ = 0,

i ~H(dH ∧ dt) = (i ~HdH︸ ︷︷ ︸
=0

) ∧ dt− dH ∧ (i ~Hdt︸︷︷︸
=0

) = 0,

i∂t(dH ∧ dt) = (i∂tdH︸ ︷︷ ︸
=0

) ∧ dt− dH ∧ (i∂tdt︸︷︷︸
=1

) = −dH.

where we used that i ~HdH = dH( ~H) = {H,H} = 0.
(ii). Next we show that the form s − Hdt|L is exact. To this aim we have to prove that, for

every closed curve Γ in L one has ∫

Γ
s−Hdt = 0. (4.96)

Every curve Γ in L can be written as follows

Γ : [0, T ]→ L, Γ(s) = (t(s), et(s)
~Hλ(s)), where λ(s) ∈ L0.

Moreover, it is easy to see that the continuous map defined by

K : [0, 1] × L → L, K(τ, (t, et
~Hλ0)) = (tτ, etτ

~Hλ0)

defines an homotopy on L such that K(1, (t, et
~Hλ0)) = (t, et

~Hλ0) and K(0, (t, et
~Hλ0)) = (0, λ0).

Then the curve Γ is homotopic to the curve Γ0(s) = (0, λ(s)). Since the 1-form s−Hdt is closed,
the integral is invariant under homotopy, namely

∫

Γ
s−Hdt =

∫

Γ0

s−Hdt.
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Moreover, the integral over Γ0 is computed as follows (recall that Γ0 ⊂ L0 and dt = 0 on L0):
∫

Γ0

s−Hdt =
∫

Γ0

s =

∫

Γ0

d(a ◦ π) = 0,

where we used Lemma 4.59 and the fact that the integral of an exact form over a closed curve is
zero. Then (4.96) follows.

4.7.2 Normal Pontryagin extremal trajectories are geodesics

Now we are ready to prove a sufficient condition that ensures the optimality of small arcs of normal
Pontryagin extremal trajectories. As a corollary we will get that normal extremal trajectories are
geodesics in the following sense.

Definition 4.61. An admissible trajectory γ : [0, T ]→M is called a geodesic if it is parametrized
by non-zero constant speed and for every t ∈ [0, T ] there exists a neighborhood I of t in [0, T ] such
that ℓ(γ|I) is equal to the distance between its end-points.

Let f1, . . . , fm be a generating family for the sub-Riemannian structure. Recall that normal
trajectories for the sub-Riemannian structure

q̇ = fu(q) =

m∑

i=1

uifi(q), (4.97)

are projections of integral curves of the Hamiltonian vector field associated with the sub-Riemannian
Hamiltonian

λ̇(t) = ~H(λ(t)), (i.e., λ(t) = et
~H(λ0)), (4.98)

γ(t) = π(λ(t)), t ∈ [0, T ]. (4.99)

where

H(λ) = max
u∈Uq

{
〈λ, fu(q)〉 −

1

2
|u|2
}

=
1

2

m∑

i=1

〈λ, fi(q)〉2 . (4.100)

Recall that, given a smooth function a ∈ C∞(M), we can consider the image of its differential
L0 and its evolution Lt under the Hamiltonian flow associated with H as in (4.89) and (4.90).

Theorem 4.62. Assume that there exists a ∈ C∞(M) such that the restriction of the projection
π|Lt is a diffeomorphism for every t ∈ [0, T ]. Fix λ0 ∈ L0, then the normal extremal trajectory

γ(t) = π ◦ et ~H(λ0), t ∈ [0, T ], (4.101)

is a strict length-minimizer among all admissible curves γ with the same initial and final points
(up to reparametrization).

The previous Theorem is a consequence of the following more general argument.

Proposition 4.63. Under the assumptions of Theorem 4.62, the curve γ is a strict minimizer of
the energy functional with penalty defined by

Ja(γ) := a(γ(0)) + J(γ),

among all admissible curves γ with the same final point.
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Proof of Proposition 4.63. Let γ be an admissible trajectory, different from γ, associated with the
control u(·) and such that γ(T ) = γ(T ). We denote by u(·) the control associated with the curve

γ and by λ̄(·) the corresponding covector, i.e., λ̄(t) = et
~H(λ0).

By assumption, for every t ∈ [0, T ] the map π|Lt : Lt → M is a local diffeomorphism, thus the
trajectory γ(t) can be uniquely lifted to a smooth curve λ(t) ∈ Lt, for t ∈ [0, T ]. Notice that the
corresponding curves Γ and Γ in L defined by

Γ(t) = (t, λ(t)), Γ(t) = (t, λ(t)) (4.102)

have the same final conditions, since for t = T they project to the same base point on M and their
lifts are uniquely determined by the diffeomorphism π|LT

.

Now, recall that, by definition of the sub-Riemannian Hamiltonian, we have

H(λ(t)) ≥
〈
λ(t), fu(t)(γ(t))

〉
− 1

2
|u(t)|2, for a.e. t ∈ [0, T ], γ(t) = π(λ(t)), (4.103)

We claim that the inequality in (4.103) is strict on a set of positive measure in [0, T ], since γ is
different from γ.

Indeed, assume by contradiction that in (4.103) we have equality for a.e. t ∈ [0, T ]. Then by
uniqueness of the maximum we have

ui(t) = 〈λ(t), fi(γ(t)〉 =: hi(λ(t)) for a.e. t ∈ [0, T ], i = 1, . . . ,m. (4.104)

Let now λ0(t) be defined by λ(t) = et
~H(λ0(t)). Then γ(t) = π ◦ et ~H(λ0(t)). Let us compute γ̇(t).

On one side we have

γ̇(t) = π∗ ~H(λ(t)) + π∗e
t ~H
∗ λ̇0(t) =

m∑

i=1

hi(λ(t))fi(γ(t)) + π∗e
t ~H
∗ λ̇0(t).

On the other side γ̇(t) =
∑m

i ui(t)fi(γ(t)). Using (4.104) it follows λ̇0 ≡ 0 a.e. and, as a conse-
quence, λ0(t) = λ0(0) = λ0(T ) for every t ∈ [0, T ]. It follows that λ(·) and λ̄(·) are solutions of the
same Hamiltonian system with the same final condition. Hence λ(t) = λ̄(t) for every t ∈ [0, T ] and
γ and γ coincide as well. Contradiction. The claim is proved.

Consider now a trajectory δ : [0, 1] →M on the manifold such that δ(0) = γ(0) and δ(1) = γ(0).
Let ∆(s) = (0, η(s)) where η(s) is the unique lift of δ(s) on L0. The concatenation of Γ,Γ and ∆
form a closed curve in T ∗M × R. By Lemma 4.60, the 1-form s−Hdt is exact. Then the integral
over a closed curve is zero and one gets

∫

Γ
s−Hdt =

∫

∆
s−Hdt+

∫

Γ
s−Hdt. (4.105)

Let us compute each term in (4.105). First notice that, when restricted to L0, the 1-form s−Hdt
coincides with the differential of a, as shown in Lemma 4.59. Hence

∫

∆
s−Hdt =

∫

∆
d(a ◦ π) = a(δ(1)) − a(δ(0)) = a(γ(0)) − a(γ(0)). (4.106)
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The other two terms can be computed as follows

∫

Γ
s−Hdt =

∫ T

0
〈λ(t), γ̇(t)〉 −H(λ(t))dt =

∫ T

0

〈
λ(t), fu(t)(γ(t))

〉
−H(λ(t))dt

<

∫ T

0

〈
λ(t), fu(t)(γ(t))

〉
−
(〈
λ(t), fu(t)(γ(t))

〉
− 1

2
|u(t)|2

)
dt (4.107)

=
1

2

∫ T

0
|u(t)|2dt.

where we used (4.103) with strict inequality in a set of positive measure. A similar computation
for γ, using the fact that now H(λ̄(t)) =

〈
λ̄(t), fū(t)(γ̄(t))

〉
− 1

2 |u(t)|2, for a.e. t ∈ [0, T ], gives

∫

Γ
s−Hdt = 1

2

∫ T

0
|u(t)|2dt, (4.108)

Combining (4.105) and the previous computations we have

1

2

∫ T

0
|u(t)|2dt < a(γ(0)) − a(γ(0)) + 1

2

∫ T

0
|u(t)|2dt, (4.109)

which is equivalent to

Ja(γ) = a(γ(0)) +
1

2

∫ T

0
|u(t)|2dt < a(γ(0)) +

1

2

∫ T

0
|u(t)|2dt = Ja(γ). (4.110)

As a corollary we state a local version of the same theorem, that can be proved by adapting
the above technique.

Corollary 4.64. Assume that there exists a smooth function a ∈ C∞(M) and an open set Ω0 such

that π◦et ~H ◦da|Ω0 is a diffeomorphism onto its image (i.e., from Ω0 to Ωt = π◦et ~H ◦da|Ω0) for every

t ∈ [0, T ]. Then if λ0 ∈ π−1(Ω0) ∩ L0, we have that γ(t) = π ◦ et ~H(λ0) is a strict length-minimizer
(up to reparametrization) among all admissible trajectories γ with the same boundary conditions
and such that γ(t) ∈ Ωt for all t ∈ [0, T ].

We are in position to prove that small pieces of normal trajectories are global length-minimizers.

Theorem 4.65. Let γ : [0, T ] → M be a sub-Riemannian normal trajectory. Then for every
τ ∈ [0, T [ there exists ε0 > 0 such that for 0 < ε < ε0

(i) γ|[τ,τ+ε] is a length-minimizer, i.e., d(γ(τ), γ(τ + ε)) = ℓ(γ|[τ,τ+ε]).

(ii) γ|[τ,τ+ε] is the unique length-minimizer joining γ(τ) and γ(τ + ε), up to reparametrization.

Proof. Without loss of generality we can assume that the curve is parametrized by arc length and

prove the theorem for τ = 0. Let γ(t) be a normal extremal trajectory, such that γ(t) = π(et
~H(λ0)),

for t ∈ [0, T ]. Consider a smooth function a ∈ C∞(M) such that dqa = λ0 and let Lt be the family
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of submanifold of T ∗M associated with this function by (4.89) and (4.90). By construction, the

extremal lift associated with γ satisfies λ(t) = et
~H(λ0) ∈ Lt for all t.

Let Ω0 be a sufficiently small open set containing γ([0, T ]). For t = 0, the map π ◦ et ~H ◦da|Ω0 is
a diffeomorphism from Ω0 to Ω0 since it is the identity. By smoothness there exists t0 ∈]0, T ] such
that π ◦ et ~H ◦ da|Ω0 is a diffeomorphism onto its image Ωt for every t ∈ [0, t0].

By Corollary 4.64, γ|[0,t0] is a strict length-minimizer among all admissible trajectories γ′ with
same boundary conditions and such that γ′(t) ∈ Ωt for all t ∈ [0, t0].

Let t1 ∈]0, t0] be such that the intersection ∩t∈[0,t1]Ωt still contains a compact neighborhood K
of γ(0). Let tK ∈]0, t1] be such that γ|[0,tK ] ⊂ int(K). Let us now denote δK > 0 the constant
defined in Lemma 3.36 such that every curve starting from γ(0) and leaving K is necessary longer
than δK . Then, defining ε := min{δK , tK}, we have that the curve γ|[0,ε] is shorter than any other
curve with the same boundary conditions. Thus γ|[0,ε] is a global minimizer. Moreover it is unique
up to reparametrization by uniqueness of the solution of the Hamiltonian equations.

Remark 4.66. When Dq0 = Tq0M , as it is the case for a Riemannian structure, the level set of the
Hamiltonian

{H = 1/2} = {λ ∈ T ∗
q0M |H(λ) = 1/2},

is diffeomorphic to an ellipsoid, hence compact. Under this assumption, for each λ0 ∈ {H = 1/2},
the corresponding geodesic γ(t) = π(et

~H(λ0)) is optimal up to a time ε = ε(λ0). By compactness
of the set {H = 1/2}, it follows that it is possible to find a common ε > 0 (depending only on q0)
such that each normal trajectory with base point q0 is optimal on the interval [0, ε].

It can be proved that this is false as soon as Dq0 6= Tq0M . Indeed in this case, for every ε > 0
there exists a normal extremal path that lose optimality in time ε, see Theorem 12.17.

With essentially no modifications, the proof of Theorem 4.62 (and of Corollary 4.64) permits
to obtain the following result. Details are left to the reader.

Exercise 4.67. Prove that given T > 0 and a normal extremal defined on the interval [−T, T ] by

γ : [−T, T ]→M, γ(t) = π ◦ et ~H (λ0), (4.111)

for some initial covector λ0 ∈ T ∗
qM , for every τ ∈]−T, T [ there exists ε0 > 0 such that for 0 < ε < ε0

(i) γ|[τ−ε,τ+ε] is a length-minimizer, i.e., d(γ(τ − ε), γ(τ + ε)) = ℓ(γ|[τ−ε,τ+ε]).

(ii) γ|[τ−ε,τ+ε] is the unique length-minimizer joining γ(τ−ε) and γ(τ+ε), up to reparametrization.

Remark 4.68. We stress that, thanks to the results of this section, nontrivial normal extremal
trajectories are geodesics. Nontrivial abnormal extremal trajectories could be geodesics or not (for
an example of abnormal extremal trajectory that is not a geodesic see Section 12.6.1).

Thanks to Exercice 4.67 we can prove the following statement

Proposition 4.69. Let M be a sub-Riemannian manifold. Then for every q ∈ M there exists
r0 > 0 such that

diam(B(q, r)) = 2r, ∀ r ≤ r0. (4.112)

Here diam(A) denotes the diameter of a set A ⊂M with respect to the sub-Riemannian distance d.
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Proof. Since B(q, ε) is a ball in the metric space (M,d) then by the triangular inequality we have
diam(B(q, r)) ≤ 2r for every r > 0. Let us show that the equality holds if r is small enough.

Fix a normal extremal trajectory γ(t) = π ◦ et ~H(λ0), for some initial condition λ0 ∈ T ∗
qM ∩

H−1(1/2), and defined on a interval [−T, T ]. Thanks to claim (i) of Exercice 4.67 for τ = 0, we have
d(γ(−ε), γ(ε)) = ℓ(γ|[−ε,ε]) = 2ε since the curve is parametrized by arc length (thanks to the choice
λ0 ∈ H−1(1/2)). It follows that diam(B(q, ε)) ≥ d(γ(−ε), γ(ε)) = 2ε hence diam(B(q, ε)) = 2ε, for
ε ≤ ε0.

4.8 Bibliographical note

The Hamiltonian approach to sub-Riemannian geometry is nowadays classical. However the con-
struction of the symplectic structure, obtained by extending the Poisson bracket from the space of
affine functions, is not standard. The presentation given here is inspired by [Gam14].

The extension to nonautonomous case stated in Proposition 4.12 is based on the proof of the
variation equation for nonautonomous ODE, the interested reader could find the details in [BP07].

Historically, in the setting of PDE, the sub-Riemannian distance (also called Carnot-Carathéodo-
ry distance) is introduced by means of sub-unit curves, see for instance [Gar16] and the discussion
therein. The link between the two definitions is obtained through Exercice 4.32.

The proof that normal extremals are geodesics is an adaptation of a technique used to prove
optimality taken from [AS04] for a more general class of problems. This is inspired by the idea of
“fields of extremals” in classical Calculus of Variation.
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Chapter 5

First integrals and integrable systems

In this chapter we present some applications of the Hamiltonian formalism developed in the Chap-
ter 4. In particular we give a proof the well-known Arnold-Liouville’s theorem and, as an appli-
cation, we study the complete integrability of the geodesic flow on a special class of Riemannian
manifolds.

More examples of completely integrable geodesic flows are presented in Chapters 7 and 13.
A proof that all left-invariant sub-Riemannian geodesic flows on 3D Lie groups are completely
integrable is given in Chapter 18.

5.1 Reduction of Hamiltonian systems with symmetries

Recall that a symplectic manifold (N,σ) is a smooth manifold endowed with a closed non-degenerate
two-form σ (cf. Section 4.6). Fix a smooth Hamiltonian h : N → R.

Definition 5.1. A first integral for the Hamiltonian system defined by h is any non-constant
smooth function g : N → R such that {h, g} = 0.

Recall that by definition {h, g} = ~h(g) = −~g(h), hence, if g is a first integral for the Hamiltonian
system defined by h, we have

d

dt
g ◦ et~h =

d

dt
h ◦ et~g = 0. (5.1)

namely, g is preserved along the flow of ~h, and viceversa.
We want to show that the existence of a first integral for the Hamiltonian flow generated by

h permits to define a reduction of the symplectic space and to reduce to 2n − 2 dimensions. The
construction of the reduction is local, in general.

Fix a regular level set Ng,c = {x ∈ N | g(x) = c} of the function g. This means that dxg 6= 0
for every x ∈ Ng,c. Fix a point x0 in the level set and a neighborhood U of x0 such that ~g(x) 6= 0
for x ∈ U . Notice that this is possible since dx0g = σ(·, ~g(x0)), and we have dx0g 6= 0 and σ
non-degenerate. By continuity this holds in a neighborhood U .

The set Ng,c has the structure of smooth manifold of dimension 2n−1. Being odd dimensional,
the restriction of the symplectic form to the tangent space TxNg,c is necessarily degenerate, and
its kernel is one-dimensional. Indeed, following the same arguments as in the proof of Proposition
4.30, we have that

ker σ|TxNg,c = ~g(x),

135



and integral curves of ~g are tangent to the level set Ng,c. This means that the flow of ~g is well
defined on the level set. See Figure 5.1.

Next, consider on U ∩ Ng,c the equivalence relation x1 ∼ x2 if there exists s ∈ R such that

x2 = es~g(x1). We define Ñ as the set of orbits of the one parametric group {es~g}s∈R contained in
the fixed level set Ng,c of g. Up to restricting U , the quotient has the structure of smooth manifold

of dimension 2n − 2. To build a chart close to a point [x0] ∈ Ñ (with x0 ∈ Ng,c) it is enough to
find an hypersurface N ′

g,c ⊂ Ng,c passing through x0 and transversal to the orbit itself, namely

Tx0Ng,c = Tx0N
′
g,c ⊕ ~g(x0),

Then local coordinates on N ′
g,c, which has dimension 2n− 2, induces local coordinates on Ñ .

The construction of the above quotient is classical (see for instance [Arn89]). The restriction
of the symplectic structure σ to the quotient Ñ is necessarily non-degenerate (using that σ is
non-degenerate on the whole space N), and gives to Ñ the structure of symplectic manifold.

Coming back to the original Hamiltonian h in involution with g, we have that ~h is indeed well
defined on the quotient. Indeed since {h, g} = 0 we have (for every t, s such that the left and right
hand side are well-defined)

es~g ◦ et~h = et
~h ◦ es~g,

and ~h induces a well-defined Hamiltonian flow on Ñ . In particular every function f on N that
commutes with g, thanks to (5.1), is constant along the trajectories of ~g, hence defines a function
on the quotient Ñ .

Ng,c

on Ng,c

Ñ

integral curves of ~g

U

Figure 5.1: Symplectic reduction.

Exercise 5.2. Prove that given f1, f2 ∈ C∞(N) such that {f1, g} = {f2, g} = 0, one has that
{{f1, f2}, g} = 0. Deduce that the Poisson bracket defined on N descends to a well-defined Poisson
bracket defined on the quotient Ñ where C∞(Ñ) ≃ {f ∈ C∞(N) | {f, g} = 0}.

We end this section by showing that the construction of the space of orbits of an (Hamiltonian)
vector field is in general only local as the following classical example shows.

Example 5.3. Consider the torus1 T 2 ≃ [0, 1]2/∼, endowed with the canonical symplectic structure
σ = dp ∧ dx and the Hamitonian g(x, p) = −αx+ p. The vector field ~g is written as follows

~g(x, y) =
∂g

∂p

∂

∂x
− ∂g

∂x

∂

∂p
=

∂

∂x
+ α

∂

∂p
,

1with the equivalence relation (x, 0) ∼ (x, 1) and (0, p) ∼ (1, p).
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whose trajectories are given by

x(t) = x0 + t, p(t) = p0 + αt.

For α ∈ R \ Q, then every trajectory is an immersed one-dimensional submanifold of T 2 that is
dense in T 2. Hence the space of orbits (quotient with respect to the equivalence relation) has
globally even no structure of topological manifold (the quotient topology is not Hausdorff).

The next subsection describes an explicit situation where the symplectic reduction is globally
defined.

5.1.1 An example of symplectic reduction: the space of affine lines in Rn

In this section we consider an important example of symplectic reduction, that is going to be used
in what follows.

Let us consider the symplectic manifold N = T ∗Rn = Rn×Rn with coordinates (p, x) ∈ Rn×Rn
and canonical symplectic form

σ =
n∑

i=1

dpi ∧ dxi.

Define the Hamiltonian g : R2n → R given by

g(x, p) =
1

2
|p|2.

We want to prove the following result.

Proposition 5.4. For every c > 0 the level set Ng,c of g is globally diffeomorphic to Rn × Sn−1,

and its symplectic reduction Ñ is a smooth (symplectic) manifold of dimension 2n − 2 globally
diffeomorphic to the space of oriented affine lines in Rn.

Proof. For every c > 0 then we have that the level set

Ng,c = {(x, p) : g(x, p) = c} = {(x, p) : |p|2 = 2c},

is a smooth hypersurface of R2n of dimension 2n− 1, indeed globally diffeomorphic to Rn × Sn−1.
The Hamiltonian system for ~g is easily solved for every initial condition (x(0), p(0)) = (x0, p0)





ẋ =
∂g

∂p
(x, p) = p

ṗ = −∂g
∂x

(x, p) = 0

⇒
{
x(t) = x0 + tp0

p(t) = p0
, (5.2)

and its flow is globally defined, described by a straight line contained in the space Ng,c (notice that

c > 0 implies p0 6= 0). Hence it is clear that the quotient Ñ of Ng,c with respect to orbits of the
Hamiltonian vector field ~g is the space of oriented affine lines of Rn and is globally defined. The
proof is completed by Proposition 5.6.

Remark 5.5. It is important to consider oriented affine lines. For instance, when n = 1, the space
of orbits consists of two lines, being diffeomorphic to R× S0 = R× {−1, 1}. These is the space of
oriented lines on R.
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Proposition 5.6. The set A(n) of oriented affine lines in Rn has the structure of smooth (sym-
plectic) manifold of dimension 2n− 2.

Proof. We first fix some notation: denote by Hi := {xi = 0} ⊂ Rn the i-th coordinate hyperplane
and by U+

i = Sn−1 ∩ {xi > 0} and U−
i = Sn−1 ∩ {xi < 0} the open sets of the standard covering

of the sphere Sn−1, for every i = 1, . . . , n.

We define an open cover on A(n) in the following way: consider the open sets Wi ⊂ A(n) of
affine lines L of Rn that are not parallel to the hyperplane Hi. Then for every oriented line L ∈Wi

there exists a unique x̄ ∈ Hi and v̄ ∈ U+
i ∪U−

i such that L = {x̄+ tv̄ | t ∈ R}. We write accordingly
Wi =W+

i ∪W−
i . Then, for i = 1, . . . , n, we define the coordinate charts

φ±i : W±
i → Hi × U±

i , φ±i (L) = (x̄, v̄).

Using the standard identification Hi ≃ Rn−1 and the stereographic projection W±
i ≃ Rn−1, we

build coordinate maps φ±i :W±
i → R2n−2 for i = 1, . . . , n.

Exercise 5.7. Check that {Wi}i=1,...,n is an open cover of A(n), and that the change of coordinates
φ±i ◦ (φ±j )−1 : R2n−2 → R2n−2 is smooth for every i, j = 1, . . . , n.

5.2 Riemannian geodesic flow on hypersurfaces

The Riemannian geodesic flow on an hypersurface M of Rn is an Hamiltonian flow on the 2n − 2
dimensional submanifold T ∗M of T ∗Rn = R2n. The goal of this section is to interpret this flow
as the reduction (in the sense of the previous section 5.1.1) of the Hamiltonian flow of R2n to the
symplectic space of affine lines in Rn.

5.2.1 Geodesics on hypersurfaces

Let us consider now a smooth function a : Rn → R and consider the family of hypersurfaces defined
by the level sets of a

Mc := a−1(c) ⊂ Rn, c is a regular value of a,

endowed with the Riemannian structure induced by the ambient space Rn. Recall that, by classical
Sard’s Lemma for almost every c ∈ R, c is a regular value for a (in particular, Mc is a smooth
submanifold of codimension one in Rn).

An adaptation of the arguments of Proposition 1.3 in Chapter 1 to hypersurfaces, one can prove
the following characterization of geodesics.

Proposition 5.8. Let M be a smooth hypersurface of Rn and let γ : [0, T ] → M be a smooth
length-minimizer parametrized by arc length. Then γ̈(t) ⊥ Tγ(t)M for every t ∈ [0, T ].

Notice that all length-minimizers are smooth thanks to the results of Chapter 4.
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5.2.2 Riemannian geodesic flow and symplectic reduction

For a large class of functions a, we will find an Hamiltonian, defined on the ambient space T ∗Rn,
whose (reparametrized) flow generates the geodesic flow when restricted to each level set Mc.

Consider the standard symplectic structure on T ∗Rn

T ∗Rn = Rn × Rn = {(x, p) | x, p ∈ Rn}, σ =
n∑

i=1

dpi ∧ dxi,

For x, p ∈ Rn we will denote by x+ Rp the line {x+ tp | t ∈ R} ⊂ Rn .

Assumption. We assume that the function a : Rn → R satisfies the following assumptions:

(A1) the restriction of a : Rn → R to every affine line is strictly convex,

(A2) a(x)→ +∞ when |x| → +∞.

Under assumptions (A1)-(A2), the restriction of the function a to each affine line in Rn always
attains a minimum in a unique point, and we can define the Hamiltonian

h : Rn × Rn → R, h(x, p) = min
t∈R

a(x+ tp). (5.3)

By definition, the function h is constant on every affine line in Rn. If we define

g : Rn × Rn → R, g(x, p) =
1

2
|p|2. (5.4)

this implies the following (cf. proof of Proposition 5.4).

Lemma 5.9. The Hamiltonian h is constant along the flow of ~g, i.e., {h, g} = 0.

We can then apply the symplectic reduction technique explained in Section 5.1: the flow of ~h
induced a well defined flow on the reduced symplectic space of dimension 2n − 2 of affine lines in
Rn (cf. Section 5.1.1). We want to interpret this flow of affine lines as a flow on the level set Mc

and to show that this is actually the Riemannian geodesic flow.
For every x, p ∈ Rn let us define the functions

s : Rn ×Rn → R, ξ : Rn × Rn → Rn,

defined as follows

(a) s(x, p) is the point at which the scalar function t 7→ a(x+ tp) attains its minimum,

(b) ξ(x, p) = x+ s(x, p)p.

Notice that, by construction, we have h(x, p) = a(ξ(x, p)) for every x, p ∈ Rn.
The first observation is that the line x + Rp is tangent at ξ(x, p) to the level set a−1(c), with

c := a(ξ(x, p)). Indeed combining (a) and (b) we have

〈∇ξa | p〉 =
d

dt

∣∣∣∣
t=s(x,p)

a(x+ tp) = 0, (5.5)

where 〈· | ·〉 denotes the scalar product in Rn.
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Proposition 5.10. Let (x(t), p(t)), for t ∈ [0, T ], be a trajectory of the Hamiltonian vector field ~h
associated with (5.3). Then the curve

t 7→ ξ(t) := ξ(x(t), p(t)) ∈ Rn, (5.6)

(i) is contained in a fixed level set Mc = a−1(c), for some c ∈ R,

(ii) is a reparametrization of a geodesic on Mc.

In other words, if we follow the motion of the affine lines x(t)+Rp(t) along the flow (x(t), p(t))
of ~h, then the family of lines stay tangent to a fixed level set and the point of tangency ξ(t) describes
a geodesic on it. See Figure 5.2.

Mc

the geodesic ξ(t)

Figure 5.2: The line flow.

Proof. Property (i) is a simple consequence of Corollary 4.19, since every function is constant along
the flow of its Hamiltonian vector field. Indeed by construction h(x, p) = a(ξ(x, p)) and, denoting
by (x(t), p(t)) the Hamiltonian flow, one gets

a(ξ(t)) = a(ξ(x(t), p(t))) = h(x(t), p(t)) = const,

i.e., the curve ξ(t) is contained on a level set of a. Moreover by definition of ξ(t) we have (cf. (5.5))

〈
∇ξ(t)a

∣∣ p(t)
〉
= 0, ∀ t. (5.7)

The Hamiltonian system associated with h reads
{
ẋ(t) = s(t)∇ξ(t)a
ṗ(t) = −∇ξ(t)a

(5.8)

that immediately implies ẋ(t)+s(t)ṗ(t) = 0. Thus computing the derivative of ξ(t) = x(t)+s(t)p(t)
one gets

ξ̇(t) = ṡ(t)p(t),

it follows that ξ̇(t) is parallel to p(t). Notice that s = s(t) is a well-defined parameter on the curve
ξ(t). Indeed computing the derivative with respect to t in (5.7) we have that

ṡ(t)
〈
∇2
ξ(t)a p(t)

∣∣∣ p(t)
〉
− |∇ξ(t)a|2 = 0.
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The strict convexity of a implies
〈
∇2
ξ(t)a p(t)

∣∣∣ p(t)
〉
6= 0 for every t. Hence for every t ∈ [0, T ] one

has

ṡ(t) =
|∇ξ(t)a|2〈

∇2
ξ(t)a p(t)

∣∣∣ p(t)
〉 6= 0.

In particular p(t) denotes the velocity of the curve ξ(t), when reparametrized with the parameter
s = s(t), since |p(t)| = 1 implies |ξ̇(t)| = ṡ(t). With an abuse of notation we denote by ξ(s) the
curve s 7→ ξ(t−1(s)).

Finally, the second derivative of the reparametrized ξ(s) is ṗ(s) and, since ṗ(s) is parallel to
∇ξ(s)a = 0 by (5.8), the second derivative ξ̈(s) (i.e., the curve ξ reparametrized by the arc length)
is orthogonal to the level set, i.e., s 7→ ξ(s) is a geodesic on the level set.

Remark 5.11. Thus we can visualize the solutions of ~h as a motion of lines: the lines move in such
a way to be tangent to one and the same geodesic. The tangency point x on the line moves parallel
to this line in this process. We will also refer to this flow as the “line flow” associated with a.

To end this section let us prove the following result, that will be used later in Section 5.6.
Consider two functions a, b : Rn → R satisfying our assumptions (A1)-(A2). Following our notation,
we set

h(x, p) = a(ξ(x, p)), ξ(x, p) = x+ s(x, p)p

g(x, p) = b(η(x, p)), η(x, p) = x+ τ(x, p)p

where s(x, p) and τ(x, p) are defined as above, and ξ, η denote the tangency point of the line x+Rp
with the level set of a and b respectively. The following proposition computes the Poisson bracket
of these Hamiltonian functions

Proposition 5.12. Under the previous assumptions

{h, g} = (s − τ) 〈∇ξa | ∇ηb〉 . (5.9)

Proof. The coordinate expression of the Poisson bracket (4.19) can be rewritten as

{h, g} = 〈∇ph | ∇xg〉 − 〈∇xh | ∇pg〉 , (5.10)

and using equation (5.8) for both h and g one gets

{h, g} = (s − τ) 〈∇ξa | ∇ηb〉 . (5.11)

5.3 Sub-Riemannian structures with symmetries

LetM be a sub-Riemannian manifold and denote byH the associated sub-Riemannian Hamiltonian
(cf. Section 4.3.1).

Definition 5.13. Let M , N be two sub-Riemannian structures, and let x0 ∈M , y0 ∈ N . The two
structures are said to be locally isometric if there exists a local diffeomorphism φ : Ox0 → Oy0 such
that φ(x0) = y0 and such that φ∗ : Tx0M → Ty0N preserves the distribution and the inner product
on it.
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If in the previous definition the map φ can be chosen to be globally defined, then we say that
φ is a global isometry.

Definition 5.14. Let M be a sub-Riemannian manifold. We say that a complete smooth vector
field X ∈ Vec(M) is a Killing vector field if it generates a one parametric flow of local isometries,
i.e., etX :M →M is an isometry for all t ∈ R.

For every X ∈ Vec(M), we can define the function hX ∈ C∞(T ∗M) linear on fibers associated
with X by hX(λ) = 〈λ,X(q)〉, where q = π(λ).

The following lemma shows that X is a Killing vector field if and only if hX commutes with the
sub-Riemannian Hamiltonian H.

Lemma 5.15. Let M be a sub-Riemannian manifold and H be the sub-Riemannian Hamiltonian.
A vector field X ∈ Vec(M) is a Killing vector field if and only if {H,hX} = 0.

Proof. By definition a vector field X generates isometries if and only if the differential of its flow
etX∗ : TqM → TetX(q)M preserves the sub-Riemannian distribution and the norm on it, i.e., etX∗ v ∈
DetX(q) for every v ∈ Dq and ‖etX∗ v‖ = ‖v‖. By definition of H, this is equivalent to the identity

H((etX )∗λ) = H(λ), ∀λ ∈ T ∗M. (5.12)

Now, Proposition 4.10 implies that (e−tX )∗ = et
~hX , where hX is the Hamiltonian linear on fibers

related to X. Hence one obtains from (5.12) that H ◦ (e−t~hX ) = H. Differentiating with respect to
t, one obtains ~hXH = {H,hX} = 0.

In other words, with every 1-parametric group of isometries of M we can associate an Hamil-
tonian in involution with H. Let us show two classical examples where we have a sub-Riemannian
structure with symmetries.

Example 5.16 (Revolution surfaces in R3). Let M be a 2-dimensional revolution surface in R3.
Since rotations around the revolution axis are isometries, we have that the Hamiltonian HX asso-
ciated with the generator X of the rotations is a first integral of the geodesic flow.

Example 5.17 (Isoperimetric sub-Riemannian problem). Let us consider a sub-Riemannian struc-
ture associated with an isoperimetric problem defined on a 2-dimensional surface M (see Section
4.4.2). The sub-Riemannian structure on M × R is determined by the function b ∈ C∞(M) satis-
fying dA = bdV , where A ∈ Λ1(M) is the 1-form defining the isoperimetric problem and dV is the
volume form on M .

We have that

(i) By construction the problem is invariant by translations along the z-axis, then the linear
Hamiltonian hZ associated with the generator Z of the translations is a first integral of the
geodesic flow.

(ii) If M is a revolution surface and b is invariant by rotations around the revolution axis, then
the linear Hamiltonian hX associated with the generator X of the rotations is a first integral
of the geodesic flow, as in the previous example.
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5.4 Completely integrable systems

Definition 5.18. LetM be an n-dimensional smooth manifold and let h : T ∗M → Rn be a smooth
map defined by h = (h1, . . . , hn). We say that the map h is completely integrable if

a) {hi, hj} = 0, for i, j = 1, . . . , n.

b) the differentials dλh1, . . . , dλhn are independent on an open dense set of T ∗M .

The same terminology applies to any of the Hamiltonian system defined by one of the Hamiltonian
hi, for i = 1, . . . , n.

Lemma 5.19. Assume that h is completely integrable and let c ∈ Rn be a regular value of h. Then
the set h−1(c) is a n-dimensional submanifold in T ∗M and we have

Tλh
−1(c) = span{~h1(λ), . . . ,~hn(λ)}, ∀λ ∈ h−1(c). (5.13)

Proof. Since c is a regular value of h, by Remark 2.62 the set h−1(c) is a submanifold of dimension
n in T ∗M . In particular dimTλh

−1(c) = n for every λ ∈ h−1(c). Moreover, by Exercise 2.12, each
vector field ~hi is tangent to h

−1(c), since ~hihj = {hi, hj} = 0 by assumption. To prove (5.13) it is
then enough to show that these vector fields are linearly independent.

Since c is a regular value of h, the differentials of the functions hi are linearly independent on
h−1(c), namely

dim span{dλh1, . . . , dλhn} = n, ∀λ ∈ h−1(c). (5.14)

Moreover the symplectic form σ on T ∗M induces for all λ an isomorphism Tλ(T
∗M)→ T ∗

λ (T
∗M)

defined by w 7→ σλ(·, w). By nondegeneracy of the symplectic form, this implies that

dim span{~h1(λ), . . . ,~hn(λ)} = n, ∀λ ∈ h−1(c). (5.15)

hence they form a basis for Tλh
−1(c).

Remark 5.20. Notice that the symplectic form vanishes on Tλh
−1(c). Indeed this is a consequence

of the fact that σ(~hi,~hj) = {hi, hj} = 0 for all i, j = 1, . . . , n.

In what follows we denote by Nc = h−1(c) the level set of h. If h−1(c) is not connected, Nc will
denote a connected component of h−1(c).

Proposition 5.21. Assume that h is completely integrable and let c ∈ Rn be a regular value of h.
Assume moreover that the vector fields ~hi are complete and define the map

Ψ : Rn → Diff(Nc), Ψ(s1, . . . , sn) := es1
~h1 ◦ . . . ◦ esn~hn

∣∣∣
Nc

. (5.16)

For every λ ∈ Nc, the map Ψλ : Rn → Nc defined by Ψλ(s) := Ψ(s)λ defines a transitive action of
Rn onto Nc.

Proof. The complete integrability assumption together with Corollary 4.57 implies that the flows
of ~hi and ~hj commute for every i, j = 1, . . . , n since

[~hi,~hj ] =
−−−−−→{hi, hj} = 0.
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By Proposition 2.27, this is equivalent to

et
~hi ◦ eτ~hj = eτ

~hj ◦ et~hi , ∀ t, τ ∈ R. (5.17)

Since the vector fields are complete by assumption, we can compute for every s, s′ ∈ Rn

Ψ(s+ s′) = e(s1+s
′
1)
~h1 ◦ . . . ◦ e(sn+s′n)~hn

= es1
~h1 ◦ es′1~h1 ◦ . . . ◦ esn~hn ◦ es′n~hn

= es1
~h1 ◦ . . . ◦ esn~hn ◦ es′1~h1 ◦ . . . ◦ es′n~hn (by (5.17))

= Ψ(s) ◦Ψ(s′),

which proves that Ψ is a group action. Denote, for every point λ ∈ Nc, its orbit under the group
action, namely

Ωλ = imΨλ = {Ψλ(s) | s ∈ Rn}.
Applying the Rashevski-Chow theorem at the family {~h1, . . . ,~hn} of vector fields on Nc, and using
the fact that Nc is connected, it follows that Ωλ = Nc for every λ ∈ Nc.

Notice that, for every λ ∈ Nc, the map Ψλ is a smooth local diffeomorphism at every s ∈ Rn.
Indeed, using (5.17), one has (cf. also Exercice 2.32)

∂Ψλ

∂si
(Ψλ(s)) = ~hi(Ψλ(s)), i = 1, . . . , n,

and the partial derivatives are linearly independent at each point of Nc. However, in general, the
map Ψλ is not a global diffeomorphism, since it is possibly non injective (as for instance in the case
when M is compact).

Proposition 5.22. Assume that h is completely integrable and let c ∈ Rn be a regular value of h
such that Nc := h−1(c) is connected. Then Nc is diffeomorphic to T k × Rn−k for some 0 ≤ k ≤ n,
where T k denotes the k-dimensional torus. Fix coordinates θ ∈ T k × Rn−k, with (θ1, . . . , θk) ∈ T k
and (θk+1, . . . , θn) ∈ Rn−k, then we have

~hi =

n∑

j=1

bij(c)∂θj , (5.18)

for some constants bij(c) that are independent on λ ∈ Nc.

To prove Proposition 5.22, we need some preliminary considerations. Let us denote by Sλ the
stabiliser of the point λ, i.e., the set

Sλ = {s ∈ Rn | Ψλ(s) = λ}.

Exercise 5.23. Prove that Sλ is a discrete2 subgroup of Rn, independent on λ ∈ Nc.

We also need the following lemma.

2Recall that a subgroup G of Rn is discrete if and only if for every g ∈ G there exist an open set U ⊂ Rn containing
g and such that U ∩G = {g}.
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Lemma 5.24. Let G be a non trivial discrete subgroup of Rn. Then there exist k ∈ N with
1 ≤ k ≤ n and v1, . . . , vk ∈ Rn such that

G =

{
k∑

i=1

mivi, mi ∈ Z

}
.

Proof. We prove the claim by induction on the dimension n of the ambient space Rn.
(i). Let n = 1. Since G is a discrete subgroup of R, then there exists an element v1 6= 0 closest

to the origin 0 ∈ R. We claim that G = Zv1 = {mv1, m ∈ Z}. By contradiction assume that there
exists an element f ∈ G such that mv1 < f < (m + 1)v1 for some m ∈ Z. Then f̄ := f − mv1
belong to G and is closer to the origin with respect to v1, that is a contradiction.

(ii). Assume the statement is true for n − 1 and let us prove it for n. The discreteness of G
guarantees the existence of an element v1 ∈ G, closest to the origin. Moreover one can prove that
G1 := G ∩ Rv1 is a subgroup and, as in part (i) of the proof, that

G1 := G ∩ Rv1 = Zv1.

If G = G1 then the theorem is proved with k = 1. Otherwise one can consider the quotient G/G1.

Exercise 5.25. (i). Prove that there exists a nonzero element v2 ∈ G/G1 that minimize the
distance to the line ℓ = Rv1 in Rn.
(ii). Show that there exists a neighborhood of the line ℓ that does not contain elements of G/G1.

By Exercise 5.25 the quotient group G/G1 is a discrete subgroup in Rn/ℓ ≃ Rn−1. Hence, by
the induction step there exists v2, . . . , vk such that

G/G1 =

{
k∑

i=2

mivi, mi ∈ Z

}
.

Proof of Proposition 5.22. Let us consider the elements v1, . . . , vk ∈ Rn generators of the stabiliser
Sλ (independent on λ) given by Lemma 5.24 and complete it to a global basis v1, . . . , vn. Denote
by e1, . . . , en the canonical basis of Rn and by B : Rn → Rn an isomorphism such that Bei = vi for
i = 1, . . . , n. Notice that B does not depend on λ ∈ Nc and is thus a function of c only.

Then the map B ◦Ψλ : Rn → Nc is a local diffeomorphism and, due to the fact that Sλ is the
stabiliser of Ψλ, descends to a well-defined map on the quotient

B ◦Ψλ : T k × Rn−k → Nc

that is a global diffeomorphism. Introduce the coordinates (θ1, . . . , θn) in Rn induced by the choice
of the basis v1, . . . , vn.

Since (θ1, . . . , θn) are obtained by (s1, . . . , sn) by a linear change of coordinates on each level
set, the vector fields ~hi are constant in the s coordinates (indeed ~hi = ∂si) we have and the basis
∂θ1 , . . . , ∂θn can be expressed as follows

~hi = ∂si =
n∑

j=1

bij(c)∂θj , (5.19)

where bij are the coefficients of the operator B, depending only on c (i.e., are constant on each level
set Nc).
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Remark 5.26. In general, the set (c, θ) does not define local coordinates on T ∗M . If we assume
that (c, θ) define a set of local coordinates, then the Hamiltonian system defined by hi takes the
form (on the whole space T ∗M)

{
ċ = 0

θ̇j = bij(c)
, i = 1, . . . , n. (5.20)

Notice that, assuming that (c, θ) define local coordinates, the pair (c, θ′) where θ′i := θi + ψi(c) for
i = 1, . . . , n, still defines a set of cylindirical coordinates on each level set. However, since ċ = 0,
we have θ̇′j = θ̇j. This means that the vector fields ∂θi are well-defined, i.e., independent on this
choice.

5.5 Arnold-Liouville theorem

In this section we consider in detail the case when the level sets of a completely integrable system
defined by

h : T ∗M → Rn, h = (h1, . . . , hn),

are compact. More precisely we assume that for all c ∈ Rn, c is a regular values for h and the level
set h−1(c) is a smooth compact and connected manifold.

From Proposition 5.21 and the fact that T k ×Rn−k is compact if and only if k = n we have the
following corollary.

Corollary 5.27. If Nc is compact, then Nc ≃ T n.

Fix λ ∈ Nc and introduce the diffeomorphism

Fc : T
n → Nc, Fc(θ1, . . . , θn) = Ψλ(θ1 + 2πZ, . . . , θn + 2πZ).

Next we want to analyze the dependence of this construction with respect to c. Fix c̄ ∈ Rn and
consider a neighborhood O of the submanifold Nc̄ in the cotangent space T ∗M . Being Nc̄ compact,
in O we have a foliation of invariant tori Nc, for c close to c̄. In other words (c1, . . . , cn, θ1, . . . , θn)
is a well defined coordinate set on O.

Theorem 5.28 (Arnold-Liouville). Let us consider the map h : T ∗M → Rn associated with a
completely integrable system such that all c ∈ Rn are regular values for h and every level set Nc is
compact and connected. Then for every c̄ ∈ Rn there exists a neighborhood O of Nc̄ and a change
of coordinates

Φ : h(O)→ Rn × T n, Φ(c1, . . . , cn, θ1, . . . , θn) 7→ (I1, . . . , In, ϕ1, . . . , ϕn), (5.21)

such that

(i) I = Φ ◦ h,

(ii) σ =
∑n

j=1 dIj ∧ dϕj .

Definition 5.29. The coordinates (I, ϕ) defined in Theorem 5.28 are called action-angle coordi-
nates.
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Proof of Theorem 5.28. In this proof we will use the following notation: for c = (c1, . . . , cn) ∈ Rn,
j = 1, . . . , n and ε > 0 we set

(a) cj,ε := (c1, . . . , cj + ε, . . . , cn) ∈ Rn,

(b) γi(c) as the closed curve in the torus Nc parametrized by the i-th angular coordinate θi,
namely

γi(c) := {Fc(θ1, . . . , θi + τ, . . . , θn) ∈ Nc | τ ∈ [0, 2π]}.

(c) Cj,εi denotes the cylinder defined by the union of curves γi(c
j,τ ), for 0 ≤ τ ≤ ε.

Let us first define the coordinates Ii = Ii(c1, . . . , cn) by the formula

Ii(c) =
1

2π

∫

γi(c)
s,

where s is the tautological 1-form on T ∗M . Being σ|Nc ≡ 0, by Stokes Theorem the variable Ii
depends only on the homotopy class of γi.

3

Let us compute the Jacobian of the change of variables.

∂Ii
∂cj

(c) =
1

2π

∂

∂ε

∣∣∣∣
ε=0

(∫

γi(cj,ε)
s−

∫

γi(c)
s

)

=
1

2π

∂

∂ε

∣∣∣∣
ε=0

∫

∂Cj,ε
i

s

=
1

2π

∂

∂ε

∣∣∣∣
ε=0

∫

Cj,ε
i

σ (where σ = ds)

=
1

2π

∂

∂ε

∣∣∣∣
ε=0

∫ cj+ε

cj

∫

γi(cj,τ )
σ(∂cj , ∂θi)dθidτ

=
1

2π

∫

γi(c)
σ(∂cj , ∂θi)dθi.

Using that ∂θi =
∑n

j=1 b
ij(c)~hj (see (5.19)) (where bij are the entries of the inverse matrix of bij)

one gets

σ(·, ∂θi) =
n∑

j=1

bij(c)dhj . (5.22)

Moreover dhi = dci since they define the same coordinate set. Hence

∂Ii
∂cj

(c) =
1

2π

∫

γi(c)

n∑

k=1

bik(c) 〈dck, ∂ci〉 dθi

=
1

2π

∫

γi(c)
bij(c)dθi

= bij(c).

3Hence, in principle, we are free to choose any basis γ1, . . . , γn for the fundamental group of Tn.
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Combining the last identity with (5.22) one gets

σ(·, ∂θi) = dIi.

In particular this implies that the symplectic form has the following expression in the coordinates
(I, θ)

σ =

n∑

i,j=1

aij(I)dIi ∧ dIj +
n∑

i=1

dIi ∧ dθi, (5.23)

where the smooth functions aij depends only on the action variables, since the symplectic form σ
and the term

∑n
i=1 dIi ∧ dθi are closed form. Moreover it is easy to see that the first term of (5.23)

can be rewritten as
n∑

i,j=1

aij(I)dIi ∧ dIj = d

(
n∑

i=1

βi(I)

)
∧ dIi,

and σ can be rewritten as

σ =
n∑

i=1

dIi ∧ d(θi − βi(I)).

The proof is completed by setting ϕi := θi − βi(I).

Remark 5.30. This proves that there exists a regular foliation of the phase space by invariant
manifolds, that are actually tori, such that the Hamiltonian vector fields associated to the invariants
of the foliation span the tangent distribution.

In other words, there exist special sets of canonical coordinates on the phase space such that
the invariant tori are the level sets of the action variables. Moreover the angle variables are the
natural periodic coordinates on the tori. The motion on the invariant tori, expressed in terms of
these canonical coordinates, is linear in the angle variables. Indeed, since the hj are functions on
I variables only, we have

~hj =
n∑

i=1

∂hj
∂Ii

∂ϕi .

In other words, the Hamiltonian system defined by hj in the angle-action coordinate (I, ϕ) is written
as follows

İi = −
∂hj
∂ϕi

= 0, ϕ̇i =
∂hj
∂Ii

. (5.24)

This explains also why this property is called complete integrability. The Hamitonian equation in
these coordinates can indeed be solved explicitly.

5.6 Geodesic flows on quadrics

In this chapter we prove that the geodesic flow on an ellipsoid is completely integrable. To do this,
we specify the discussion of Section 5.2 to the case when the function a is a quadratic polynomial,
i.e., every level set of our function is a quadric in Rn.

Definition 5.31. Let A be an n×n non degenerate symmetrix matrix. The quadric Q associated
with A is the set

Q = {x ∈ Rn, 〈A−1x, x〉 = 1}. (5.25)
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For simplicity we deal with the case when A has simple distinct eigenvalues. We denote by
Λ = {α1, . . . , αn} the set of eigenvalues of A, ordered in such a way that α1 < . . . < αn. Define, for
every λ ∈ R \ Λ,

aλ(x) = 〈(A− λI)−1x, x〉, Qλ = {x ∈ Rn, aλ(x) = 1}.
We say that {Qλ}λ∈R\Λ is a family of confocal quadrics. Observe that, if A = diag(α1, . . . , αn) is a
diagonal matrix, then (5.25) reads

Q = {x ∈ Rn,
n∑

i=1

x2i
αi

= 1},

and Qλ represents the family of quadrics that are confocal to Q

Qλ =

{
x ∈ Rn,

n∑

i=1

x2i
αi − λ

= 1

}
, ∀λ ∈ R \ Λ,

Notice moreover that Qλ is an ellipsoid only if λ < α1, while Qλ = ∅ when λ > αn.

Note. In what follows by a “generic” point x for A we mean a point x that does not belong to
any proper invariant subspace of A. In the diagonal case it is equivalent to say that x = (x1, . . . , xn),
with xi 6= 0 for every i = 1, . . . , n.

Exercise 5.32. Let A be an n×n non degenerate symmetrix matrix. Denote by Aλ := (A−λI)−1.
Prove the two following formulas:

(i) d
dλAλ = A2

λ,

(ii) Aλ −Aµ = (µ− λ)AλAµ.
Lemma 5.33. Let x ∈ Rn be a generic point for A and let {Qλ}λ∈R\Λ be the associated family of
confocal quadrics. Then there exists exactly n distinct real numbers λ1, . . . , λn in R \ Λ such that
x ∈ Qλi for every i = 1, . . . , n. Moreover the quadrics Qλi are pairwise orthoghonal at the point x.

Proof. For a fixed x, the function λ 7→ aλ(x) = 〈Aλx, x〉 satisfies in R \ Λ
∂aλ
∂λ

(x) =
〈
A2
λx, x

〉
= |Aλx|2 ≥ 0,

as follows from part (i) of Exercise 5.32 and the fact that A (hence Aλ) is self-adjoint. Thus aλ(x)
is monotone increasing as a function of λ, and aλ(x) goes to zero for |λ| → ∞. In particular it
takes values from 0 to +∞ on the interval ]−∞, α1[, while it takes values from −∞ to +∞ in each
interval ]αi, αi+1[ for i = 1, . . . , n− 1. Notice that it is negative on ]αn,+∞[. See also Figure 5.3.

This implies that, for a fixed x, there exist exactly n values λ1, . . . , λn such that aλi(x) = 1
(i.e., x ∈ Qλi).

Next, using part (ii) of Exercise 5.32 (also known as resolvent formula) we can compute, for
two distinct values λi 6= λj and x ∈ Qλi ∩ Qλj :

〈
∇xaλi ,∇xaλj

〉
= 4

〈
Aλix,Aλjx

〉

= 4
〈
AλiAλjx, x

〉

=
4

λj − λi
(〈Aλix, x〉 −

〈
Aλjx, x

〉
) = 0,

where again we used the fact that Aλ is selfadjoint and 〈Aλx, x〉 = 1 for all λ.
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α1 α2 α3

λ

aλ(x)

λ1 λ2 λ3

Figure 5.3: A qualitative picture of the function λ 7→ aλ(x) for n = 3.

Next, we want to generalize the considerations of the previous sections to all quadrics associated
to λ ∈ R \ Λ, and not only to ellipsoids. Notice indeed that the family of Hamiltonians associated
with the confocal quadrics

hλ(x, p) = min
t
aλ(x+ tp) = aλ(ξλ(x, p)), (5.26)

are well-defined only if the corresponding quadric is an ellipsoid. Indeed in this case the minimum in
(5.27) is attained at a unique point ξλ(x, p), and the function aλ satisfies the assumptions (A1)-(A2)
introduced in Section 5.2.2.

To generalize this, we define the Hamiltonian hλ as the value

hλ(x, p) = aλ(ξλ(x, p)), (5.27)

of the function aλ at its critical point ξλ(x, p) along the affine line x + Rp, still defining hλ as an
Hamiltonian on the set of affine lines.

With this generalized definition, we prove an interesting “orthogonality” property of the fam-
ily. We show that if two confocal quadrics are tangent to the same line, then their gradient are
orthogonal at the tangency points.

Proposition 5.34. Assume that two confocal quadrics Qλ and Qµ are tangent to a given line, i.e.,
there exist x, p ∈ Rn such that

aλ(ξλ) = aµ(ξµ), where ξλ = x+ tλp, ξµ = x+ tµp.

Then 〈∇ξλaλ,∇ξµaµ〉 = 0. In particular {hλ, hµ} = 0.
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Proof. The condition that the quadric Qλ is tangent to the line x + Rp at ξλ is expressed by the
following two equality

〈Aλξλ, y〉 = 0, 〈Aλξλ, ξλ〉 = 1, (5.28)

and an analogue relations is valid for Qµ. Notice than from (5.28) one also gets 〈Aλξλ, ξµ〉 =
〈Aµξµ, ξλ〉 = 1. Then, with the same computation as before using (5.32)

〈
∇ξλaλ,∇ξµaµ

〉
= 4 〈Aλξλ, Aµξµ〉
= 4 〈AλAµξλ, ξµ〉

=
4

µ− λ(〈Aλξλ, ξµ〉 − 〈Aµξµ, ξλ〉) = 0.

This implies also {hλ, hµ} = 0, thanks to Proposition 5.12.

Proposition 5.35. A generic line in Rn is tangent to n− 1 quadrics of a confocal family.

Proof. Write Rn = L⊕L⊥ where L = x+Rp and L⊥ is the orthogonal hyperplane (passing through
x). Consider the orthogonal projection π : Rn → L⊥ in the direction of L. The following exercise
shows that the projection of a confocal family of quadrics in Rn is a confocal family of quadrics on
L⊥.

Exercise 5.36. (i). Show that the map x 7→ apλ(x) := 〈Aλ(x+ tλp), x+ tλp〉 is a quadratic form
and that p ∈ ker apλ. In particular this implies that apλ is well defined on the quotient Rn/Rp.
(ii). Prove that {apλ}λ is a family of confocal quadrics on the factor space (in n− 1 variables).

Applying then Lemma 5.33 to the family {apλ}λ we get that, for a generic choice of x, there
exists n − 1 quadrics passing through the point on the plane where the line is projected, i.e., the
line x+ Rp is tangent to n− 1 confocal quadrics of the family {aλ}λ.

Remark 5.37. Notice that this proves that every generic line in Rn is associated with an orthonormal
frame of Rn, being all the normal vectors to the n− 1 quadrics given by Proposition 5.35 mutually
orthogonal and orthogonal to the line itself.

Theorem 5.38. The geodesic flow on an ellipsoid is completely integrable. Moreover, for a given
geodesic on an ellipsoid, the set of lines are tangent to the geodesics ara tangent to the same set of
confocal quadrics, i.e., the set is independent on the point on the geodesic.

Proof. We want to show that the functions λ1(x, p), . . . , λn−1(x, p) (as functions defined on the set
of oriented affine lines in Rn) that assign to each line x+Rp in Rn the n− 1 values of λ such that
the line is tangent to Qλ are independent and in involution.

First notice that each level set {λi(x, p) = c} coincides with the level set {hc = 1}. Hence,
by Exercise 4.31, the two functions defines the same Hamiltonian flow on this level set (up to
reparametrization). We are then reduced to prove that the functions hc1 , . . . , hcn−1 are independent
and in involution, which is a consequence of Proposition 5.34.

Since the lines that are tangent to a geodesic on the ellipsoid Qλ form an integral curve of
the Hamiltonian flow of the associated function hλ, and all the Poisson brackets with the other
Hamiltonians are zero, it follows that the line remains tangent to the same set of n−1 quadrics.
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5.7 Bibliographical note

The notion of complete integrability introduced here is the classical one given by Liouville and
Arnold [Arn89]. Sometimes, complete integrability of a dynamical system is also referred to systems
whose solution can be reduced to a sequence of quadratures. This means that, even if the solution
is implicitly given by some inverse function or integrals, one does not need to solve any differential
equation. Notice that by Theorem 5.28 complete integrability implies integrability by quadratures
(see also Remark 5.30).

The complete integrability of the geodesic flow on the triaxial ellipsoid was established by Jacobi
in 1838. Jacobi integrated the geodesic flow by separation of variables, see [Jac39]. The appropriate
coordinates are called the elliptic coordinates, and this approach works in any dimension. Here
we give a different derivation, essentially due to Moser [Mos80b], as an application of the theory
developed in the first sections of the chapter. For further discussions on the geodesic flow on the
ellipsoids or quadrics, one can see [Mos80a, Aud94, Knö80].

The theory of integrable systems has become an independent and extremely rich direction of
research in dynamical systems. A discussion of all the aspects related to this beautiful theory goes
beyond the scope of this book.
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Chapter 6

Chronological calculus

In this chapter we develop a language, called chronological calculus, that will allow us to work in
an efficient way with flows of nonautonomous vector fields. In fact, one of the main goals of the
formalism, is to provide suitable tools to expand flows of nonautonomous vector fields in infinite
Volterra series. These series, at first introduced as formal asymptotic expansions, are then shown
to converge under certain assumptions.

The basic idea of chronological calculus is to replace a non-linear finite-dimensional object,
the manifold M , with a linear infinite-dimensional one, the commutative algebra C∞(M), cf. Sec-
tion 6.2.

6.1 Motivation

Classical formulas from calculus that are valid in Rn are often no more meaningful on a smooth
manifold, unless one consider them as written in coordinates.

Let us consider for instance a smooth curve γ : [0, T ] → Rn. The fundamental theorem of
calculus states that, for every t ∈ [0, T ], one has

γ(t) = γ(0) +

∫ t

0
γ̇(s) ds. (6.1)

Formula (6.1) has no meaning a priori if γ takes values on a smooth manifold M . Indeed, if
γ : [0, T ]→M , then γ̇(s) ∈ Tγ(s)M and one should integrate a family of tangent vectors belonging
to different tangent spaces. Moreover, since M has no affine space structure, one should define
what is the sum of a point on M with a tangent vector.

Saying that formula (6.1) is meaningful in coordinates means that, once we identify an open
set U on M with Rn through a coordinate map φ : U ⊂ M → Rn (a set of n independent scalar
functions φ = (φ1, . . . , φn)), we reduce (6.1) to n scalar identities.

In fact, it is not necessary to choose a specific set of coordinate functions to let (6.1) have a
meaning. The basic idea behind the formalism we introduce in this chapter is that formula (6.1)
has a meaning along any scalar function, treating this function as the object where the formula is
“evaluated”.

More formally, let us fix a smooth curve γ : [0, T ]→M and a smooth function a :M → R and
let us apply the fundamental theorem of calculus to the scalar function a ◦ γ : [0, T ]→ R. We get,
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for every t ∈ [0, T ] the identity

a(γ(t)) = a(γ(0)) +

∫ t

0

〈
dγ(s)a, γ̇(s)

〉
ds. (6.2)

Formula (6.2) is meaningful even if γ takes values on a manifold since it is a scalar identity. The
integrand is the duality product between dγ(s)a ∈ T ∗

γ(s)M and γ̇(s) ∈ Tγ(s)M .

If we think to a point on M as acting on a function by evaluating the function at that point,
and to a tangent vector as acting on a function by differentiating the function in the direction of
the vector, then we can think to (6.2) as formula (6.1) when “evaluated at a”, or at (6.2) as the
coordinate version of (6.1). If we choose as a the functions φi for i = 1, . . . , n we are writing the
coordinate version of the identity in the classical sense.

In what follows we develop in a formal way this flexible language that has the advantage of
computing things “as in coordinates” keeping track of the geometric meaning of the object we are
dealing with.

6.2 Duality

The set C∞(M) of smooth functions on M is an R-algebra with the usual operation of pointwise
addition and multiplication

(a+ b)(q) = a(q) + b(q),

(λa)(q) = λa(q), a, b ∈ C∞(M), λ ∈ R, q ∈M.

(a · b)(q) = a(q)b(q).

Any point q ∈M can be interpreted as the “evaluation” linear functional

q̂ : C∞(M)→ R, q̂(a) := a(q).

For every q ∈M , the functional q̂ is a homomorphism of algebras, i.e., it satisfies

q̂(a · b) = q̂(a)q̂(b).

A diffeomorphism P ∈ Diff(M) can be thought as the “change of variables” linear operator

P̂ : C∞(M)→ C∞(M), P̂ (a) := a ◦ P,

which is an automorphism of the algebra C∞(M).

Remark 6.1. One can prove that for every non-trivial homomorphism of algebras ϕ : C∞(M)→ R
there exists q ∈M such that ϕ = q̂. Analogously, for every automorphism of algebras Φ : C∞(M)→
C∞(M), there exists a diffeomorphism P ∈ Diff(M) such that P̂ = Φ. A proof of these facts is
contained in [AS04, Appendix A].

Next, we want to characterize tangent vectors as functionals on C∞(M). As explained in
Chapter 2, a tangent vector v ∈ TqM defines in a natural way the derivation in the direction of v,
i.e., the functional

v̂ : C∞(M)→ R, v̂(a) = 〈dqa, v〉 ,
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which satisfies the Leibniz rule

v̂(a · b) = v̂(a)b(q) + a(q)v̂(b), ∀ a, b ∈ C∞(M). (6.3)

If v ∈ TqM is the tangent vector of a curve q(t) such that q(0) = q, it is also natural to check
the identity as operators

v̂ =
d

dt

∣∣∣∣
t=0

q̂(t) : C∞(M)→ R. (6.4)

Indeed, it is sufficient to differentiate at t = 0 the following identity

q̂(t)(a · b) = q̂(t)a · q̂(t)b.

In the same spirit, a vector field X ∈ Vec(M) is characterized, as a derivation of C∞(M) (cf. again
the discussion in Chapter 2), as the infinitesimal version of a flow (i.e., family of diffeomorphisms
smooth w.r.t t) Pt ∈ Diff(M). Indeed if we set

X̂ =
d

dt

∣∣∣∣
t=0

P̂t : C
∞(M)→ C∞(M),

we find that X̂ satisfies (see (2.14))

X̂(ab) = X̂(a)b+ aX̂(b), ∀ a, b ∈ C∞(M).

6.2.1 On the notation

In the following we will identify any object with its dual interpretation as operator on functions and
stop to use a different notation for the same object when acting on the space of smooth functions.

If P is a diffeomorphism on M and q is a point on M the point P (q) is simply represented by
the usual composition q̂ ◦ P̂ of the corresponding linear operator.

Thus, when using the operator notation, composition works in the opposite side. To simplify
the notation in what follows we will remove the “hat” identifying an object with its dual, but use
the symbol ⊙ to denote the composition of these object, so that P (q) will be q ⊙ P .

Analogously, the composition X ⊙ P of a vector field X and a diffeomorphism P will denote the
linear operator a 7→ X(a ◦ P ).

6.3 Topology on the set of smooth functions

We introduce the standard topology on the space C∞(M). Denote by X1, . . . ,Xr a family of
globally defined vector fields such that

span{X1, . . . ,Xr}|q = TqM, ∀ q ∈M.

For α ∈ N and K ⊂M compact, define the following seminorms of a function f ∈ C∞(M)

‖f‖α,K = sup
q∈K
{|(Xiℓ

⊙ · · · ⊙Xi1f)(q)| : 1 ≤ i1, . . . , iℓ ≤ r, 0 ≤ ℓ ≤ α}. (6.5)

The family of seminorms ‖ · ‖α,K induces a topology on C∞(M) with countable local basis of
neighborhoods as follows: take an increasing family of compact sets {Kn}n∈N invading M , i.e.,
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Kn ⊂ Kn+1 ⊂ M for every n ∈ N and M = ∪n∈NKn. For every f ∈ C∞(M), a countable local
basis of neighborhoods of f is given by

Uf,n :=

{
g ∈ C∞(M) : ‖f − g‖n,Kn ≤

1

n

}
, n ∈ N. (6.6)

Exercise 6.2. (i) Prove that (6.6) defines a basis for a topology. (ii) Prove that this topology does
not depend neither on the family of vector fields X1, . . . ,Xr generating the tangent space to M nor
on the family of compact sets {Kn}n∈N invading M .

This topology turns C∞(M) into a Fréchet space, i.e., a complete, metrizable, locally convex
topological vector space, see [Hir76, Chapter 2].

Remark 6.3. In differential topology this is also called weak topology on C∞(M), in contrast with
the strong (or Whitney) topology that can be defined on C∞(M). The two topology coincide when
the manifold M is compact. For more details about different topologies on the spaces Ck(M,N)
of Ck maps among two smooth manifolds M and N we refer to [Hir76, Chapter 2].

Exercise 6.4. Prove that, given a diffeomorphism P ∈ Diff(M) and α ∈ N and a compact set
K ⊂M , there exists a constant Cα,P,K > 0 such that for all f ∈ C∞(M) one has

‖Pf‖α,K ≤ Cα,P,K‖f‖α,P (K). (6.7)

The previous exercice says that a diffeomorphism P , when interpreted as a linear operator on
C∞(M), is continuous in the Whitney topology. One can then define its seminorms

‖P‖α,K := sup{‖Pf‖α,K : ‖f‖α,P (K) ≤ 1}.

Similarly, given a smooth vector field X on M , one defines its seminorms by

‖X‖α,K := sup{‖Xf‖α,K : ‖f‖α+1,K ≤ 1}.

6.3.1 Family of functionals and operators

Once the structure of a Fréchet space on C∞(M) is given, one can define the regularity properties
of family of functions in C∞(M). In particular continuous and differentiable families of functions
t 7→ at are defined in a standard way. Moreover, we say that the family t 7→ at ∈ C∞(M) defined
on an interval [t0, t1] is

• measurable, if the map q 7→ at(q) is measurable on [t0, t1] for every q ∈M .

• locally integrable, if for every α ∈ N and K ⊂M compact one has

∫ t1

t0

‖at‖α,Kdt < +∞.

• absolutely continuous, if there exists a locally integrable family of functions bt such that

at = at0 +

∫ t

t0

bsds.
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• locally Lipschitz, if for every α ∈ N and K ⊂M compact there exists Cα,K > 0 such that

‖at − as‖α,K ≤ Cα,K |t− s|.

Analogous regularity properties for a family of linear functionals (or linear operators) on C∞(M)
are then naturally defined in a weak sense: we say that a family of operators t 7→ At is continuous
(differentiable, etc.) if the map t 7→ Ata has the same property for every a ∈ C∞(M).

Recall that a nonautonomous vector field, in the sense of Definition 2.13, is in particular a
family of smooth vector fields Xt that is measurable and locally bounded with respect to t, in the
sense explained above. A nonautonomous flow is a family of smooth diffeomorphisms Pt that is
absolutely continuous with respect to t. The flow generated by a nonautonomous vector field is a
particular case of nonautonomous flow. See also Section 2.1.4.

For any nonautonomous vector field Xt, the family of functions t 7→ Xta is locally integrable
for any a ∈ C∞(M). Similarly, for any nonautonomous flow Pt the family of functions t 7→ a ◦ Pt
is absolutely continuous for any a ∈ C∞(M).

Integrals of measurable locally integrable families, and derivative of differentiable families are
also defined in the weak sense: for instance, if Xt denotes some locally integrable nonautonomous
vector field we define ∫ t

0
Xs ds : a 7→

∫ t

0
Xsa ds,

d

dt
Xt : a 7→

d

dt
(Xta).

One can show that if At and Bt are continuous families of operators on C∞(M) which are differ-
entiable at t0, then the family At ⊙Bt is differentiable at t0 and satisfies the Leibniz rule

d

dt

∣∣∣∣
t=t0

(At ⊙Bt) =

(
d

dt

∣∣∣∣
t=t0

At

)
⊙Bt0 +At0 ⊙

(
d

dt

∣∣∣∣
t=t0

Bt

)
. (6.8)

The same result holds true for the composition of functionals with operators. For a proof of the
last fact one can see [AS04, Chapter 2 and Appendix A].

6.4 Operator ODEs and Volterra expansions

Consider a nonautonomous vector field Xt and the corresponding nonautonomous ODE on M

d

dt
q(t) = Xt(q(t)). (6.9)

Using the notation introduced in the previous section we can rewrite (6.9) in the following way

d

dt
q(t) = q(t) ⊙Xt. (6.10)

Indeed assume that q(t) satisfies (6.9) and let a ∈ C∞(M). Using the “hat” notation of Section 6.2.1
(
d

dt
q̂(t)

)
a =

d

dt
q̂(t)a =

d

dt
a(q(t)) =

〈
dq(t)a,Xt(q(t))

〉
= (X̂ta)(q(t)) = (q̂(t) ◦ X̂t)a. (6.11)
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which is then re-written in form (6.10) once we have removed the “hat” and replaced the compo-
sition sign by ⊙ , following Section 6.2.1. As discussed in Chapter 2, the solution to the nonau-
tonomous ODE (6.9) defines a flow, i.e., a family of diffeomorphisms Ps,t. Reasoning as in (6.11)
one immediately gets the following lemma.

Lemma 6.5. The flow Ps,t defined by (6.9) satisfies the operator differential equation

d

dt
Ps,t = Ps,t ⊙Xt, Ps,s = Id. (6.12)

Definition 6.6. We call Ps,t the right chronological exponential and use the notation

−→exp
∫ t

s
Xτdτ := Ps,t. (6.13)

6.4.1 Volterra expansion

In the following discussion we set for simplicity the initial time s = 0. In this case we use the short
notation Pt := P0,t. The operator differential equation (6.12) rewrites as

{
Ṗt = Pt ⊙Xt

P0 = Id
(6.14)

and can be rewritten as an integral operator equation as follows

Pt = Id +

∫ t

0
Ps ⊙Xsds. (6.15)

Replacing iteratively Ps in the right hand side of (6.15) with the equation (6.15) itself, we have

Pt = Id +

∫ t

0

(
Id +

∫ s1

0
Ps2 ⊙Xs2ds2

)
⊙Xs1ds1

= Id +

∫ t

0
Xsds +

∫∫

0≤s2≤s1≤t

Ps2 ⊙Xs2
⊙Xs1ds1ds2

...

= Id +

N−1∑

k=1

∫
· · ·
∫

0≤sk≤...≤s1≤t

Xsk
⊙ · · · ⊙Xs1ds1 · · · dsk +RN ,

where the remainder term is defined as follows

RN :=

∫
· · ·
∫

0≤sN≤...≤s1≤t

PsN ⊙XsN
⊙ · · · ⊙Xs1ds1 · · · dsN . (6.16)

Formally, letting N →∞ and assuming that RN → 0, we can write the flow Pt as the chronological
series

Pt =
−→exp

∫ t

0
Xsds ≃ Id +

∞∑

k=1

∫
· · ·
∫

∆k(t)

Xsk
⊙ · · · ⊙Xs1ds1 · · · dsk, (6.17)
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where ∆k(t) = {(s1, . . . , sk) ∈ Rk : 0 ≤ sk ≤ . . . ≤ s1 ≤ t} denotes the k-dimensional symplex.
A discussion about an estimate of the remainder term (6.16) and the convergence of the series

in the right hand side of (6.17) is contained in Section 6.6.

Remark 6.7. If we write expansion (6.17) when Xt = X is an autonomous vector field, we find that
the chronological exponential coincides with the exponential of the vector field

−→exp
∫ t

0
Xds ≃ Id +

∞∑

k=1

∫
· · ·
∫

∆k(t)

X ⊙ · · · ⊙X︸ ︷︷ ︸
k

ds1 · · · dsk

=

∞∑

k=0

vol(∆k(t))X
k =

∞∑

k=0

tk

k!
Xk = etX ,

since vol(∆k(t)) = tk/k!. In the nonautonomous case for different times Xs1 and Xs2 might not
commute, hence the order in which the vector fields appear in the composition is crucial.

Exercise 6.8. Prove that, in general, for a nonautonomous vector field Xt, one has

−→exp
∫ t

0
Xsds 6= e

∫ t
0
Xsds. (6.18)

Prove that, if [Xt,Xτ ] = 0 for all t, τ ∈ R, then the equality holds in (6.18).

Proposition 6.9. Assume that Pt satisfies (6.14) and consider the inverse flow Qt := (Pt)
−1.

Then Qt satisfies the Cauchy problem
{
Q̇t = −Xt ⊙Qt,

Q0 = Id.
(6.19)

Proof. By definition of inverse flow we have the identity for every t ∈ R

Pt ⊙Qt = Id. (6.20)

In particular Q0 = Id. Moreover, differentiating (6.20)with respect to t and using the Leibniz rule
one obtains

Ṗt ⊙Qt + Pt ⊙ Q̇t = 0. (6.21)

Using (6.14) then we get
Pt ⊙Xt ⊙Qt + Pt ⊙ Q̇t = 0. (6.22)

Multiplying both sides by Qt on the left, one gets (6.19).

The solution to the problem (6.19) will be denoted by the left chronological exponential

Qt :=
←−exp

∫ t

0
(−Xs)ds. (6.23)

By an analogous reasoning to what we did for the right chronological exponential, we find the
formal expansion

←−exp
∫ t

0
(−Xs)ds ≃ Id +

∞∑

k=1

∫
· · ·
∫

0≤sk≤...≤s1≤t

(−Xs1) ⊙ · · · ⊙ (−Xsk)ds1 · · · dsk. (6.24)
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Remark 6.10. The formal difference between right and left chronological exponential is in the order
of composition. Notice that the arrow over the exponential says in which “direction” the time
parameters are increasing in the chronological series (compare (6.12) and (6.24)), or, equivalently,
in which “position” the vector field appears when differentiating the flow (compare (6.14) and
(6.19)).

All the properties of the chronological exponential are summarized as follows

d

dt
−→exp

∫ t

0
Xsds =

−→exp
∫ t

0
Xsds ⊙Xt, (6.25)

d

dt
←−exp

∫ t

0
Xsds = Xt ⊙

←−exp
∫ t

0
Xsds, (6.26)

(
−→exp

∫ t

0
Xsds

)−1

=←−exp
∫ t

0
(−Xs)ds. (6.27)

6.4.2 Adjoint representation

Next, we study the action of diffeomorphisms on vectors and vector fields. Let v ∈ TqM and
P ∈ Diff(M). We claim that, as functionals on C∞(M), we have

P∗v = v ⊙ P.

Indeed consider a curve q(t) such that q̇(0) = v and compute

(P∗v)a =
d

dt

∣∣∣∣
t=0

a(P (q(t))) =

(
d

dt

∣∣∣∣
t=0

q(t)

)
⊙ Pa = v ⊙Pa.

Recall that, if X ∈ Vec(M) is a vector field we have P∗X
∣∣
q
= P∗(X

∣∣
P−1(q)

). Hence, the expression

for P∗X as derivation of C∞(M) is

P∗X = P−1
⊙X ⊙ P. (6.28)

Remark 6.11. We can reinterpret the pushforward of a vector field in a totally algebraic way in the
space of linear operator on C∞(M). Indeed

P∗X = (AdP−1)X, (6.29)

where
AdP : X 7→ P ⊙X ⊙P−1, ∀X ∈ Vec(M), (6.30)

is the adjoint action of P on the space of vector fields. Notice that (6.30) is the differential of the
conjugation Q 7→ P ⊙Q ⊙P−1, for Q ∈ Diff(M).

Assume now that Pt =
−→exp

∫ t
0 Xsds. We try to characterize the flow AdPt by looking for the

ODE it satisfies. Applying it to a vector field Y we have
(
d

dt
AdPt

)
Y =

d

dt
(AdPt)Y =

d

dt
(Pt ⊙ Y ⊙ P−1

t )

= Pt ⊙Xt ⊙ Y ⊙ P−1
t + Pt ⊙ Y ⊙ (−Xt) ⊙ P−1

t

= Pt ⊙ (Xt ⊙ Y − Y ⊙Xt) ⊙ P−1
t

= (AdPt)[Xt, Y ]

= (AdPt)(adXt)Y,
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where
adX : Y 7→ [X,Y ],

is the adjoint action on the Lie algebra of vector fields. This proves that AdPt is a solution to the
differential equation

Ȧt = At ⊙ adXt, A0 = Id.

Thus it can be expressed as a chronological exponential and we have the identity

Ad

(
−→exp

∫ t

0
Xsds

)
= −→exp

∫ t

0
adXsds. (6.31)

Notice that combining (6.31) and (6.29) in the case of an autonomous vector field, one gets

e−tX∗ = et adX . (6.32)

Exercise 6.12. Prove that, if [Xt, Y ] = 0 for all t, then (AdPt)Y = Y .

Remark 6.13. If Pt =
−→exp

∫ t
0 Xsds, we can write the following formal expansion

(AdPt)Y ≃ Y +
∞∑

k=1

∫
· · ·
∫

0≤sk≤...≤s1≤t

[Xsn , . . . , [Xs2 , [Xs1 , Y ]]ds1 · · · dsk, (6.33)

The latter generalizes (2.34) for nonautonomous vector fields. Indeed, if Pt = etX is the flow
associated with an autonomous vector field X, one gets (2.34)

(Ad etX)Y = e−tX∗ Y = Y +
∞∑

k=1

tk

k!
[X, . . . , [X,Y ]]

≃ Y + t[X,Y ] +
t2

2
[X, [X,Y ]] + o(t2).

Exercise 6.14. Prove the following, using the operator notation:

(a) Show that ad is the infinitesimal version of the operator Ad , i.e., if Pt is the flow generated
by the vector field X ∈ Vec(M) then

adX =
d

dt

∣∣∣∣
t=0

AdPt.

(b) Show that, if P ∈ Diff(M), then P∗ preserves Lie brackets, i.e., P∗[X,Y ] = [P∗X,P∗Y ].

(c) Show that the Jacobi identity in Vec(M) is the infinitesimal version of the identity proved in
question (b). (Hint: choose Pt = etZ for Z ∈ Vec(M).)

Exercise 6.15. Prove the following change of variables formula for a nonautonomous flow:

P ⊙
−→exp

∫ t

0
Xsds ⊙ P−1 = −→exp

∫ t

0
(AdP )Xsds. (6.34)

Notice that for an autonomous vector field this identity reduces to (2.26).
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6.5 Variations formulae

Consider the following ODE
q̇ = Xt(q) + Yt(q) (6.35)

where Yt is seen as a perturbation term of the equation (6.9). We want to describe the solution to
the perturbed equation (6.35) as the perturbation of the solution of the original one.

Proposition 6.16. Let Xt, Yt be two nonautonomous vector fields. Then, denoting Pt =
−→exp

∫ t
0 Xsds,

one has

−→exp
∫ t

0
(Xs + Ys)ds =

−→exp
∫ t

0

(
−→exp

∫ s

0
adXτdτ

)
Ysds ⊙

−→exp
∫ t

0
Xsds (6.36)

= −→exp
∫ t

0
(AdPs)Ysds ⊙ Pt. (6.37)

Proof. Our goal is to find a flow Rt such that

Qt :=
−→exp

∫ t

0
(Xs + Ys)ds = Rt ⊙Pt. (6.38)

By definition of right chronological exponential we have

Q̇t = Qt ⊙ (Xt + Yt). (6.39)

On the other hand, from (6.38), we also have

Q̇t = Ṙt ⊙Pt +Rt ⊙ Ṗt

= Ṙt ⊙Pt +Rt ⊙Pt ⊙Xt

= Ṙt ⊙Pt +Qt ⊙Xt. (6.40)

Comparing (6.39) and (6.40), one gets

Qt ⊙ Yt = Ṙt ⊙ Pt,

and the ODE satisfied by Rt is

Ṙt = Qt ⊙ Yt ⊙ P−1
t

= Rt ⊙ (AdPt)Yt.

Since R0 = Id, this implies that Rt is a chronological exponential and

−→exp
∫ t

0
(Xs + Ys)ds =

−→exp
∫ t

0
(AdPs)Ysds ⊙ Pt,

which is (6.37). Plugging (6.31) in (6.37) one gets (6.36).

Exercise 6.17. Prove the following versions of the variation formula:

(i). For every nonautonomous vector fields Xt, Yt on M

−→exp
∫ t

0
(Xs + Ys)ds =

−→exp
∫ t

0
Xsds ⊙

−→exp
∫ t

0

(
−→exp

∫ s

t
adXτdτ

)
Ysds. (6.41)
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(ii). For every autonomous vector fields X,Y ∈ Vec(M) prove that

et(X+Y ) = −→exp
∫ t

0
es adXY ds ⊙ etX = −→exp

∫ t

0
e−sX∗ Y ds ⊙ etX (6.42)

= etX ⊙
−→exp

∫ t

0
e(s−t) adXY ds. (6.43)

6.6 Appendix: Estimates and Volterra expansion

In this section we discuss the convergence of the Volterra expansion

Id +

∞∑

k=1

∫
· · ·
∫

∆k(t)

Xsk
⊙ · · · ⊙Xs1ds1 · · · dsk (6.44)

where ∆k(t) = {(s1, . . . , sk) ∈ Rk| 0 ≤ sk ≤ . . . ≤ s1 ≤ t} denotes the k-dimensional symplex.
Recall that if Xs = X is autonomous then the series (6.44) reduces to

∞∑

k=0

tk

k!
Xk. (6.45)

We prove the following result, saying that in general, if the vector field is not zero, the chronological
exponential is never convergent on the whole space C∞(M).

Proposition 6.18. Let X be a smooth vector field that is not identically zero. Then there exists
a ∈ C∞(M) such that the Volterra expansion

∞∑

k=0

tk

k!
Xka (6.46)

is not convergent at some point q ∈M .

Proof. Fix a point q ∈M such that X(q) 6= 0. By considering a smooth coordinate chart around q
such that X is rectified in this chart, we are then reduced to prove the statement in the case when
M = Rn and X = ∂x1 .

Fix then an arbitrary real sequence (cn)n∈N and let f : I → R be defined in a neighborhood
I of 0 such that f (n)(0) = cn, for every n ∈ N. The existence of such a function is guaranteed by
Lemma 6.19 below. Then define a(x) = f(x1), where x = (x1, x

′) ∈ Rn. In this case Xka(q) =
∂kx1f(0) = ck and

∞∑

k=0

tk

k!
Xka|q =

∞∑

k=0

tk

k!
ck (6.47)

which is not convergent for a suitable choice of the sequence (cn)n∈N.

Lemma 6.19 (Borel lemma). Let (cn)n∈N be a real sequence. Then there exist a C∞ function
f : I → R defined in a neighborhood I of 0 such that f (n)(0) = cn for every n ∈ N.

163



Proof. Fix a C∞ function φ : R→ R with compact support, such that φ(0) = 1 and φ(j)(0) = 0 for
every j ≥ 1. Then set for k ∈ N

gk(x) :=
ck
k!
xkφ

(
x

εk

)
. (6.48)

where (εk)k∈N will be fixed later. Notice that g
(j)
k (0) = δjkck, where δjk is the Kronecker symbol,

and |g(j)k (x)| ≤ Cj,kε
k−j
k for every x ∈ R and some constant Cj,k > 0. Then choose εk > 0 in such

a way that

|g(j)k (x)| ≤ 2−j, ∀ j ≤ k − 1,∀x ∈ R, (6.49)

and define the function

f(x) :=

∞∑

k=0

gk(x). (6.50)

The series (6.50) converges uniformly with all the derivatives by (6.49) and, by differentiating under
the sum, one obtains

f (j)(0) :=
∞∑

k=0

g
(j)
k (0) = aj .

Even if, in general, the Volterra expansion is not convergent, it gives a good approximation of
the chronological exponential. More precisely, if we denote by

SN (t) := Id +

N−1∑

k=1

∫
· · ·
∫

∆k(t)

Xsk
⊙ · · · ⊙Xs1ds1 · · · dsk,

the N -th partial sum, we have the following estimate.

Theorem 6.20. For every t > 0, α,N ∈ N, K ⊂M compact, we have
∥∥∥∥
(
−→exp

∫ t

0
Xsds− SN (t)

)
a

∥∥∥∥
α,K

≤ C

N !
eC

∫ t
0 ‖Xs‖α,K′ds

(∫ t

0
‖Xs‖α+N−1,K ′ds

)N
‖a‖α+N,K ′ , (6.51)

for some K ′ compact set containing K and some constant C = Cα,N,K ′ > 0.

The proof of this result is postponed to Appendix 6.7. Let us specify this estimate for a
nonautonomous vector field of the form

Xt =

m∑

i=1

ui(t)Xi,

whereX1, . . . ,Xm are smooth vector fields onM and u ∈ L2([0, T ],Rm). In this case it is convenient
to choose the seminorms ‖ · ‖α,K , defined in Section 6.3, in terms of a family X1, . . . ,Xr of smooth
vector fields on M which is a completion of X1, . . . ,Xm.

Theorem 6.21. For every t > 0, α,N ∈ N, K ⊂ M compact, we have (denoting ‖u‖1,t =
‖u‖L1([0,t],Rm))

∥∥∥∥∥

(
−→exp

∫ t

0

m∑

i=1

ui(t)Xi − SN (t)
)
a

∥∥∥∥∥
α,K

≤ C

N !
eC‖u‖1,t‖u‖N1,t‖a‖α+N,K ′ , (6.52)

for some K ′ compact set containing K and some constant C = Cα,N,K ′ > 0.
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Proof. It follows from the previous theorem and from the fact that for a vector field of the form
Xt =

∑m
i=1 ui(t)Xi we have the estimate

∫ t

0
‖Xs‖α,K ′ds ≤ ‖u‖L1([0,t],Rm). (6.53)

Indeed we have for every f such that ‖f‖α+1,K ′ ≤ 1 that

∥∥∥∥∥

m∑

i=1

ui(s)Xif

∥∥∥∥∥
α,K ′

≤ sup
x∈K ′

∣∣∣∣∣Xiℓ
⊙ · · · ⊙Xi1

(
m∑

i=1

ui(s)Xif

)∣∣∣∣∣ (6.54)

≤ sup
x∈K ′

m∑

i=1

|ui(s)||Xiℓ
⊙ · · · ⊙Xi1

⊙Xif | ≤
m∑

i=1

|ui(s)|. (6.55)

To complete the discussion, let us describe a case when the Volterra expansion is actually
convergent. One can prove the following result.

Proposition 6.22. Let Xt be a nonautonomous vector field, locally bounded with respect to t ∈ I.
Assume that there exists a Banach space (L, ‖ · ‖) ⊂ C∞(M) such that

(a) Xta ∈ L for all a ∈ L and all t ∈ I,

(b) sup{‖Xta‖ : a ∈ L, ‖a‖ ≤ 1, t ∈ I} <∞.

Then the Volterra expansion (6.44) converges on L for every t ∈ I.

Proof. It is sufficient to bound the general term of the Volterra series with respect to the norm ‖ · ‖
of L as follows

∥∥∥∥∥∥∥

∫
· · ·
∫

∆k(t)

Xsk
⊙ · · · ⊙Xs1a ds1 · · · dsk

∥∥∥∥∥∥∥
≤
∫
· · ·
∫

∆k(t)

‖Xsk‖ · · · ‖Xs1‖ds1 · · · dsk ‖a‖ (6.56)

=
1

k!

(∫ t

0
‖Xs‖ds

)k
‖a‖, (6.57)

The norm of the k-th term of the Volterra series is bounded above by an exponential series, thus
the Volterra expansion converges on L uniformly.

Remark 6.23. The assumption in Proposition 6.22 is satisfied in particular for every linear au-
tonomous vector field X on M = Rn, by choosing as L ⊂ C∞(Rn) the subset of linear functions.

If the manifoldM , the vector field Xt and the function a are real analytic, then it can be proved
that the Volterra expansion is convergent for small time. For a precise statement see [AG78, Prop.
2.1].
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6.7 Appendix: Remainder term of the Volterra expansion

In this Appendix we prove Theorem 6.20. We start with the following key result.

Proposition 6.24. Let Xt be a nonautonomous vector field and denote by Pt,s its flow. Then for
every t > 0, α ∈ N and K ⊂ M compact, there exists K ′ compact containing K and C > 0 such
that

‖P0,ta‖α,K ≤ Ce
∫ t
0 ‖Xs‖α,K′ds‖a‖α,K ′ . (6.58)

Proof. Define the compact set

Kt :=
⋃

s∈[0,t]
P0,s(K),

and the real function

β(t) := sup

{‖P0,tf‖α,K
‖f‖α+1,Kt

∣∣∣ f ∈ C∞(M), ‖f‖α+1,Kt 6= 0

}
. (6.59)

Notice that the function β is finite (cf. Exercice 6.4 and notice that ‖f‖α,Kt ≤ ‖f‖α+1,Kt). Moreover
β is measurable with respect to t since the supremum in the right hand side can be taken over
an arbitrary countable dense subset of C∞(M). We have the following lemma, whose proof is
postponed at the end of the proof of the proposition.

Lemma 6.25. For every t > 0, α ∈ N and K ⊂M compact, there exists C > 0 such that

‖P0,tf‖α,K ≤ Cβ(t)‖f‖α,Kt , ∀ f ∈ C∞(M). (6.60)

Let us now consider the identity

P0,ta = a+

∫ t

0
P0,s ⊙Xsa ds

which implies

‖P0,ta‖α,K ≤ ‖a‖α,K +

∫ t

0
‖P0,s ⊙Xsa‖α,Kds.

Appying Lemma 6.25 with f = Xsa we get

‖P0,ta‖α,K ≤ ‖a‖α,K + C

∫ t

0
β(s)‖Xsa‖α,Ktds

≤ ‖a‖α,K + C‖a‖α+1,Kt

∫ t

0
β(s)‖Xs‖α,Ktds,

where we used that Ks ⊂ Kt for s ∈ [0, t], hence ‖ · ‖α,Ks ≤ ‖ · ‖α,Kt . Dividing by ‖a‖α+1,Kt and
using ‖a‖α,Kt ≤ ‖a‖α+1,Kt we get

‖P0,ta‖α,K
‖a‖α+1,Kt

≤ 1 + C

∫ t

0
β(s)‖Xs‖α,Ktds.

From the definition of the function β, cf. (6.59), we have the inequality

β(t) ≤ 1 +C

∫ t

0
β(s)‖Xs‖α,Ktds. (6.61)
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Using Gronwall inequality, this implies

β(t) ≤ eC
∫ t
0
‖Xs‖α,Ktds. (6.62)

Then (6.58) follows combining the last inequality and (6.60) choosing f equal to a (for every
compact set K ′ containing Kt).

Now we complete the proof of the main result, namely Theorem 6.20. Recall that we can write

−→exp
∫ t

0
Xsds− SN (t) =

∫
· · ·
∫

0≤sN≤...≤s1≤t

P0,sN
⊙XsN

⊙ · · · ⊙Xs1ds,

hence

∥∥∥∥
(
−→exp

∫ t

0
Xsds− SN (t)

)
a

∥∥∥∥
α,K

≤
∫
· · ·
∫

0≤sN≤...≤s1≤t

‖P0,sN
⊙XsN

⊙ · · · ⊙Xs1a‖α,K ds.

Applying Proposition 6.24 to the function XsN
⊙ · · · ⊙Xs1a one obtains

∥∥∥∥
(
−→exp

∫ t

0
Xsds − SN (t)

)
a

∥∥∥∥
α,K

≤ Ce
∫ t
0 ‖Xs‖α,Kds

∫
· · ·
∫

0≤sN≤...≤s1≤t

‖XsN
⊙ · · · ⊙Xs1a‖α,K ′ ds, (6.63)

for some compact K ′ containing K. Now let us estimate the integral

∫
· · ·
∫

0≤sN≤...≤s1≤t

‖XsN
⊙ · · · ⊙Xs1a‖α,K ′ ds (6.64)

≤
∫
· · ·
∫

0≤sN≤...≤s1≤t

‖XsN ‖α,K ′

∥∥XsN−1

∥∥
α+1,K ′ · · · ⊙ ‖Xs1‖α+N−1,K ′ ‖a‖α+N,K ′ ds (6.65)

≤ ‖a‖α+N,K ′

∫
· · ·
∫

0≤sN≤...≤s1≤t

‖XsN‖α+N−1,K ′

∥∥XsN−1

∥∥
α+N−1,K ′ · · · ⊙ ‖Xs1‖α+N−1,K ′ ds

(6.66)

≤ ‖a‖α+N,K ′

1

N !

(∫ t

0
‖Xs‖α+N−1,K ′ ds

)N
. (6.67)

Combining this inequality with (6.63), the proof is completed.

Proof of Lemma 6.25. By Whitney theorem it is not restrictive to assume that M is a submanifold
of Rn for some n. We still denote by X1, . . . ,Xr the vector fields (now defined on Rn) spanning
the tangent space to M .

Notice that if ‖f‖α,Kt = 0 then also ‖P0,tf‖α,K = 0 and the identity is satisfied, hence we can
assume ‖f‖α,Kt 6= 0. Fix a point q0 ∈ K where the supremum in

‖P0,tf‖α,K = sup
q∈K
{|(Xiℓ

⊙ · · · ⊙Xi1
⊙ P0,tf)(q)| : 1 ≤ i1 ≤ . . . , iℓ ≤ r, 0 ≤ ℓ ≤ α},
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is attained (the existence of such a point is guaranteed by compactness of K). Let pf be the
polynomial in Rn of degree ≤ α that coincides with the Taylor polynomial of degree α of f at
qt = P0,t(q0). Let us prove that

‖pf‖α,{qt} ≤ ‖f‖α,Kt , ‖P0,tf‖α,K ≤ ‖P0,tpf‖α,K . (6.68)

The first identity easily follows noticing that ‖pf‖α,{qt} = ‖f‖α,{qt} ≤ ‖f‖α,Kt . To prove the second
one, notice that, by construction, there exist ℓ ≤ α and j1, . . . , jℓ such that

‖P0,tf‖α,K = |(Xjℓ
⊙ · · · ⊙Xj1

⊙ P0,tf)(q0)|
= |(Xjℓ

⊙ · · · ⊙Xj1
⊙ P0,tpf )(q0)| ≤ ‖P0,tpf‖α,K .

Notice that, on the vector space of polynomials in Rn of degree ≤ α, the two quantities ‖ · ‖α,Kt

and ‖ · ‖α,{qt} defines two norms. Since this vector space is finite-dimensional, every two norms are
equivalent and there exist C > 0 such that

‖pf‖α,Kt ≤ C‖pf‖α,{qt}. (6.69)

Combining (6.68) and (6.69) with ‖pf‖α,Kt = ‖pf‖α+1,Kt (since pf is a polynomial of degree α)
and the definition of β, we have

‖P0,tf‖α,K
‖f‖α,Kt

≤ ‖P0,tpf‖α,K
‖pf‖α,{qt}

≤ C ‖P0,tpf‖α,K
‖pf‖α,Kt

≤ C ‖P0,tpf‖α,K
‖pf‖α+1,Kt

≤ Cβ(t).

6.8 Bibliographical note

The chronological calculus was originally conceveid by A. Agrachev and R. Gamkrelidze in the
late 1970s, to investigate problems in optimization and control, in particular to extend Pontryagin
Maximum Principle. This formalism aims to generalize well-known formulas for stationary flows
to non-stationary ones, by overcoming the difficulty that the vector fields at different times do not
commute.

The name “chronological calculus” appeared first [AG78, AG80], and its origin come from
physics, where the term “chronological” is typically used in “nonstationary” situations. The pre-
sentation given here is very close to the one in [AS04, Chapter 2].

Chronological calculus have been successively and efficiently exploited to treat many problem of
geometric control theory, as in [Agr96, Sar04] and [Kaw99, KS97, Kaw02], or to generalize results
to non-smooth situations [RS07].

An extension to the case of infinite-dimensional manifolds have been recently proposed in
[KL15]. A survey on this topic can be found in [Kaw12], as part of the encyclopedia [Mey12].
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Chapter 7

Lie groups and left-invariant
sub-Riemannian structures

In this chapter we study normal Pontryagin extremals on left-invariant sub-Riemannian structures
on a Lie group G. Such structures provide most of the examples in which normal Pontryagin
extremals can be computed explicitly in terms of elementary functions.

We introduce Lie groups by studying subgroups of the group of diffeomorphisms of a manifold
M induced by a family of vector fields whose Lie algebra is finite dimensional.

We then define left-invariant sub-Riemannian structures. Such structures have always constant
rank and, if they are of rank m, they can be generated by exactly m linearly independent vector
fields defined globally. On these structures we have always global existence of length-minimizers.

We then discuss Hamiltonian systems on Lie groups with left-invariant Hamiltonians. They
always admit a certain number of first integrals (cf. Chapter 18 for the complete integrability of
left-invariant structures on three-dimensional Lie groups).

We study in details some classes of systems in which one can obtain the explicit expression of
normal Pontryagin extremals.

7.1 Subgroups of Diff(M) generated by a finite-dimensional Lie
algebra of vector fields

Let M be a connected smooth manifold of dimension n and let L ⊂ Vec(M) be a finite-dimensional
Lie algebra of vector fields of dimension dimL = ℓ. Assume that all elements of L are complete
vector fields. The set

G := {eX1 ◦ . . . ◦ eXk | k ∈ N,X1, . . . ,Xk ∈ L} ⊂ Diff(M), (7.1)

has a natural structure of subgroup of the group of diffeomorphisms of M , where the group law is
given by the composition. We want to prove the following result.

Theorem 7.1. The group G can be endowed with a structure of connected smooth manifold of
dimension ℓ = dimL. Moreover the group multiplication and the inversion are smooth with respect
to the differentiable structure.
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To prove this theorem, we build the differentiable structure on G by explicitly defining charts.
To this aim, for all P ∈ G let us consider the map

ΦP : L→ G, ΦP (X) = P ◦ eX .

Proposition 7.2. The following properties hold:

(i) there exists U ⊂ L neighborhood of 0 such that ΦP |U is invertible on its image, for all P ∈ G,

(ii) for every W neighborhood of 0 in U , and for all P ′ ∈ ΦP (W ), there exists V neighborhood of
0 in U such that ΦP ′(V ) ⊂ ΦP (W ), for all P ∈ G.

Thanks to the previous result, one can introduce the following basis of neighborhoods 1 on G:

B = {ΦP (W ) |P ∈ G,W ⊂ U, 0 ∈W}. (7.2)

where U is determined as in (i) of Proposition 7.2. Let now B1 = ΦP1(W1) and B2 = ΦP2(W2).
Assume B1∩B2 6= ∅. Then there exists Q ∈ B1∩B2 and, by part (ii) of Proposition 7.2, for i = 1, 2
there exists Vi ⊂ U neighborhoods of the origin with ΦQ(Vi) ⊂ ΦPi(Wi). Set B3 = ΦQ(V1 ∩ V2),
then

B3 = ΦQ(V1 ∩ V2) ⊂ ΦQ(V1) ∩ ΦQ(V2) = B1 ∩B2.

This proves that (7.2) satisfies the axioms of a basis for generates a unique topology on G.
Once the topology generated by B is introduced the map ΦP |U is automatically an homeo-

morphism, and this proves that G is a topological group, i.e., a group that is also a topological
manifold such that the multiplication and the inversion are continuous with respect to the topo-
logical structure. Indeed it can be shown that, if ΦP (W ) ∩ ΦP ′(W ′) 6= ∅, then the change of
chart

Φ−1
P ◦ ΦP ′ : Φ−1

P ′ (ΦP (W ) ∩ ΦP ′(W ′))→ Φ−1
P (ΦP (W ) ∩ ΦP ′(W ′))

is smooth with respect to the smooth structure defined on the vector space L (cf. Exercice 7.10
and Section 7.1.2). Hence G has the structure of smooth manifold.

The goal of the next few subsections is the proof of Proposition 7.2, which is based on a reduction
to a finite dimensional setting, which we now explain.

7.1.1 A finite-dimensional approximation

The finite-dimensional reduction is based on the following idea: we replace elements of G, that are
diffeomorphisms of M , with the evaluation of elements of G on a special set of ℓ points, where ℓ is
the dimension of the Lie algebra L.

To identify the “special set” of points where we shall evaluate diffeomorphisms, we first need a
general lemma.

1Recall that a collection B of subsets of a set X is a basis for a (unique) topology on X if and only if

(a) ∪B∈B = X,

(b) for every B1, B2 ∈ B and x ∈ B1 ∩B2, there exists nonempty B3 ∈ B such that x ∈ B3 and B3 ⊂ B1 ∩B2.
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Lemma 7.3. For every k ∈ N and F1, . . . , Fk : Rm → Rn a family of linearly independent functions,
there exist x1, . . . , xk ∈ Rm such that the vectors

(Fi(x1), Fi(x2), . . . , Fi(xk)), i = 1, . . . , k

are linearly independent as elements of Rn×k.

Here by linearly independent functions we mean that F1, . . . , Fk are linearly independent as
elements of the vector space of functions from Rm to Rn.

Proof. We prove the statement by induction on k.
(i). Since F1 is not the zero function then there exists x1 ∈ Rm such that F1(x1) 6= 0.
(ii). Assume that the statement is true for every set of k linearly independent functions and

consider a family F1, . . . , Fk+1 of linearly independent functions. Let x1, . . . , xk be the set of points
obtained by applying the inductive step to the family F1, . . . , Fk. If the claim is not true for k+1,
it means that for every x̄ ∈ Rm there exists a non zero vector (c1(x̄), . . . , ck+1(x̄)) such that

k+1∑

i=1

ci(x̄)Fi(x̄) = 0,

k+1∑

i=1

ci(x̄)Fi(xj) = 0, j = 1, . . . , k, (7.3)

By definition of x1, . . . , xk we have that ck+1(x̄) 6= 0, otherwise we get a contradiction with the
inductive assumption. Hence we can assume ck+1(x̄) = −1 and rewrite equations (7.3) as

k∑

i=1

ci(x̄)Fi(xj) = Fk+1(xj), j = 1, . . . , k, (7.4)

k∑

i=1

ci(x̄)Fi(x̄) = Fk+1(x̄), (7.5)

Treating (7.4) as a linear equation in the variables c1, . . . , ck, its matrix of coefficients has rank k
by assumption, hence its solution (that exists) is unique and independent on x̄. Let us denote it
by (c1, . . . , ck). Then (7.5) gives

k∑

i=1

ciFi(x̄) = Fk+1(x̄)

for every arbitrary x̄ ∈ Rm, which is in contradiction with the fact that F1, . . . , Fk+1 is a linearly
independent family of functions.

As an immediate consequence of the previous lemma one obtains the following property. Recall
that given two smooth n-dimensional smooth manifolds M,N we have T (M × N) = TM × TN
where the elements of TM × TN writes as products of vectors v × w (or vector fields X × Y ) as
defined in Section 2.4.1.

Proposition 7.4. Let X1, . . . ,Xℓ be a basis of L. Then there exists q1, . . . , qℓ ∈ M such that the
vectors

Xi(q1)× . . .×Xi(qℓ), i = 1, . . . , ℓ,

are linearly independent as elements of Tq1M × . . . × TqℓM .
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In the rest of this section, the points q1, . . . , qℓ are determined as in Proposition 7.4. The
following proposition defines the neighborhood U that appears in the statement of Proposition 7.2.

Proposition 7.5. There exists a neighborhood of the origin U ⊂ L such that the map

φ : U →M ℓ, φ(X) = (eX(q1), . . . , e
X(qℓ)) ∈M ℓ,

is an immersion at the origin.2

Proof. It is enough to show that the rank of φ∗ is equal to ℓ. Computing the partial derivatives at
0 ∈ L of φ in the directions X1, . . . ,Xℓ we have

∂φ

∂Xi
(0) =

d

dt

∣∣∣∣
t=0

(etXi(q1), . . . , e
tXi(qℓ)) = Xi(q1)× . . . ×Xi(qℓ), i = 1, . . . , ℓ,

and these are linearly independent as elements of Tq1M × . . .× TqℓM by Lemma 7.4.

We are now going to study L seen as a Lie algebra of vector fields on Mk. Given k ∈ N, we can
give Vec(Mk) = Vec(M)k the structure of a Lie algebra as follows (cf. Exercice 2.40):

[X1 × . . .×Xk, Y1 × . . .× Yk] = [X1, Y1]× . . .× [Xk, Yk].

Lemma 7.6. For every k ∈ N the map i : L→ Vec(M)k defined by i(X) = X × . . .×X defines an
involutive distribution on Mk.

Proof. It follows from the identity [i(X), i(Y )] = i([X,Y ]), since

[X × . . .×X,Y × . . .× Y ] = [X,Y ]× . . .× [X,Y ].

Lemma 7.7. If P ∈ G then P∗L = L.

Proof. Let us first prove that P∗L ⊂ L for every P ∈ G. Since elements in G are written as

P = eX1 ◦ . . . ◦ eXk , Xj ∈ L

it is enough to show that for every X,Y ∈ L we have that eX∗ Y ∈ L. By (6.32) we have the identity

eX∗ Y = e−adXY,

The Volterra exponential series of −adX converges, since L is a finite dimensional space. The N -th
term of the sum

Y +

N∑

k=1

(−1)k
k!

(adX)kY,

belongs to L for each N ∈ N, since L is a Lie algebra. Hence one can pass to the limit for N →∞
and e−adXY ∈ L. This proves that P∗L ⊂ L. Actually P∗L = L since P∗L is a Lie algebra and
dimP∗L = dimL, since P is a diffeomorphism.

2here M ℓ = M × . . .×M︸ ︷︷ ︸
ℓ times

.
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For every P ∈ G we introduce

φP : U →M ℓ, φP = P ◦ φ,
or, more explicitly

φP (X) = (P ◦ eX(q1), . . . , P ◦ eX(qℓ)), X ∈ U.
Thanks to Proposition 7.5 it follows that φP is an immersion at zero for all P ∈ G, since it is a
composition of an immersion with a diffeomorphism.

Proposition 7.8. For all P ∈ G we have that φP (U) belongs to the integral manifold in M ℓ of the
foliation defined by L (seen as distribution in Vec(M)ℓ) passing through the point (P (q1), . . . , P (qℓ)) ∈
M ℓ. Moreover for every P ∈ G, φP (U) belongs to the same leaf of the foliation.

Proof. The Lie algebra L, seen as a distribution in Vec(M)ℓ, is involutive. Thus it generates a
foliation by Frobenius theorem. The leaf of the foliation passing through (q1, . . . , qℓ) (that has
dimension ℓ) has the expression

N = {(P̂ (q1), . . . , P̂ (qℓ)) | P̂ = eX1 ◦ . . . ◦ eXk , k ∈ N,X1, . . . ,Xk ∈ L},
while for each P ∈ G,

φP (U) = {(P ◦ eX(q1), . . . , P ◦ eX(qℓ)) | P ∈ G,X ∈ U ⊂ L},
hence for each P ∈ G we have that φP (U) ⊂ N . The image φP (U) is an immersed submanifold
of dimension ℓ that is tangent to L thanks to Lemma 7.7, and passes through the point φP (0) =
(P (q1), . . . , P (qℓ)) ∈M ℓ.

Remark 7.9. The previous result implies that for every (q′1, . . . , q
′
ℓ) ∈ φP (U) ∩ φP ′(U) there exists

uniques X,X ′ ∈ U such that

(P ◦ eX(q1), . . . , P ◦ eX(qℓ)) = (P ′ ◦ eX′

(q1), . . . , P
′ ◦ eX′

(qℓ)) = (q′1, . . . , q
′
ℓ). (7.6)

Exercise 7.10. Prove that the maps that associates X 7→ X ′ defined in (7.6) is smooth.

The identity (7.6) is saying that the two diffeomorphisms P ◦ eX and P ′ ◦ eX′
coincide when

evaluated on the set of points {q1, . . . , qℓ}. The argument that is developed in the next section
shows that indeed P ◦ eX = P ′ ◦ eX′

as diffeomorphisms.

7.1.2 Passage to infinite dimension

In what follows, to study elements of G as diffeomorphisms and not only as acting on a finite set
of points, we use the following idea: we study diffeomorphisms on a set of ℓ+ 1 points, where the
first one is “free”.

Let q ∈M . Let us introduce

φ : U →M ℓ+1, φ(X) = (eX(q), eX (q1), . . . , e
X(qℓ)) ∈M ℓ+1.

Moreover, we define for every P ∈ G
φP : U →M ℓ+1, φP (X) = (P ◦ eX(q), P ◦ eX(q1), . . . , P ◦ eX(qℓ)) ∈M ℓ+1.

The following Proposition can be proved following the same arguments as the one of Proposi-
tion 7.8.
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Proposition 7.11. Let q ∈ M . For all P ∈ G we have that φP (U) is an integral manifold of
dimension ℓ in M ℓ+1 of a foliation defined by L (seen as distribution in Vec(M)ℓ+1) and passing
through the point (P (q), P (q1), . . . , P (qℓ)) ∈ M ℓ+1. Moreover, for every P ∈ G, φP (U) belong to
the same leaf of the foliation.

Notice that if π :M ℓ+1 →M ℓ denotes the projection π(q0, q1, . . . , qℓ) = (q1, . . . , qℓ) that forgets
about the first element we have φ = π ◦ φ and φP = π ◦ φP . Notice that by construction

π : φP (U)→ φP (U) (7.7)

is a diffeomorphism for every choice of P (in particular it is one-to-one).

7.1.3 Proof of Proposition 7.2

We can now complete the proof of the main result. Recall that ΦP is the map defined on L that
takes values in the group G, while φP is its ℓ finite-dimensional version taking values in M ℓ

ΦP (X) = P ◦ eX , φP (X) = (P ◦ eX(q1), . . . , P ◦ eX(qℓ)).

(i). It is enough to show that ΦP is injective on its image. In other words we have to show
that, if P ◦ eX = P ◦ eY for some X,Y ∈ U , then X = Y . The assumption implies that

φP (X) = (P ◦ eX(q1), . . . , P ◦ eX(qℓ)) = (P ◦ eY (q1), . . . , P ◦ eY (qℓ)) = φP (Y )

hence by invertibility of φP on U we have that X = Y .
(ii). Let W ⊂ U , with 0 ∈ W . Recall that, by construction, one has the following relation

between ΦP and its finite-dimensional representation φP

φP (W ) = {(Q(q1), . . . , Q(qℓ)) : Q ∈ ΦP (W )}, W ⊂ U.

For every V ⊂ W , with 0 ∈ V , one has that φP ′(V ) and φP (W ) are integral submanifold of M ℓ

belonging to the same leaf of the foliation, thanks to Proposition 7.8.
Since by assumption P ′ ∈ ΦP (W ), it follows that the intersection φP ′(V )∩ φP (W ) is open and

non empty in M ℓ and contains the point (P ′(q1), . . . , P ′(qℓ)). We can then choose V small enough
such that φP ′(V ) ⊂ φP (W ).

This inclusion of the finite-dimensional images implies the following: for every X ′ ∈ V there
exists a unique element X ∈ W such that P ′ ◦ eX′

= P ◦ eX when evaluated on the special set of
points, namely

(P ◦ eX(q1), . . . , P ◦ eX(qℓ)) = (P ′ ◦ eX′

(q1), . . . , P
′ ◦ eX′

(qℓ)). (7.8)

To complete the proof it is enough to show that P ′ ◦ eX′
= P ◦ eX at every point.

To this aim fix an arbitrary q ∈M and let us consider the extended finite-dimensional maps φP
and φP ′ . Let us first prove that, for V chosen as before, one has φP ′(V ) ⊂ φP (W ) (independently
on q). Assume that φP (W ) \ φP ′(V ) 6= ∅, then we have

π(φP ′(V )) = π(φP ′(V ) ∩ φP (W )) ∪ π(φP (U) \ φP ′(V )) (7.9)

= φP ′(V ) ∪ π(φP (W ) \ φP ′(V )) (7.10)
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This gives a contradiction since on one hand the left-hand is connected thanks to (7.7) (for P = P ′),
while on the other hand it is written as a union of nonempty disjoint sets.

This implies in particular: for every X ′ ∈ V there exists a unique element X̂ ∈ W (a priori

dependent on q) such that P ′ ◦ eX′
= P ◦ eX̂ when evaluated at {q, q1, . . . , qℓ}, namely

(P ◦ eX̂(q), P ◦ eX̂(q1), . . . , P ◦ eX̂(qℓ)) = (P ′ ◦ eX′

(q), P ′ ◦ eX′

(q1), . . . , P
′ ◦ eX′

(qℓ)). (7.11)

Combining (7.8) with (7.11) one obtains

φP (X̂) = (P ◦ eX̂(q1), . . . , P ◦ eX̂(qℓ)) = (P ◦ eX(q1), . . . , P ◦ eX(qℓ)) = φP (X).

By invertibility of φP on W ⊂ U , it follows that X̂ = X, independently on q. Thus by (7.11) and
the arbitrarity of q we have P ′ ◦ eX′

(q) = P ◦ eX(q) for every q, for every fixed X ′ ∈ V , as claimed.

7.2 Lie groups and Lie algebras

Definition 7.12. A Lie group is a group G that has a structure of smooth manifold such that the
group multiplication

G×G→ G, (g, h) 7→ gh

and inversion

G→ G, g 7→ g−1

are smooth with respect to the differentiable structure of G.

We denote by Lg : G→ G and Rg : G→ G the left and right translation respectively

Lg(h) = gh, Rg(h) = hg.

Notice that Lg and Rg are diffeomorphisms of G for every g ∈ G. Moreover Lg ◦Rg′ = Rg′ ◦Lg for
every g, g′ ∈ G.

Definition 7.13. A vector field X on a Lie group G is said to be left-invariant (resp. right-
invariant) if it satisfies (Lg)∗X = X (resp. (Rg)∗X = X) for every g ∈ G.

Remark 7.14. Every left-invariant vector field X on a Lie group G its uniquely identified with its
value at the origin 1 of the Lie group. Indeed if X is left-invariant, it satisfies the relation

X(g) = Lg∗X(1). (7.12)

On the other hand a vector field defined by the formula X(g) = Lg∗v for some v ∈ T
1

G, is
left-invariant.

Notice that left-invariant vector fields are always complete. Since the Lie bracket of two left-
invariant vector fields is left-invariant, we can give the following definition.

Definition 7.15. The Lie algebra associated with a Lie group G is the Lie algebra g of the left-
invariant vector fields on G, endowed with the Lie bracket.
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By Remark 7.14 the Lie algebra g associated with a Lie group G is a finite dimensional Lie
algebra, that is isomorphic to T

1

G as vector space. Hence g endows T
1

G with the structure of Lie
algebra. In particular dim g = dimG. Given a basis e1, . . . , en of T

1

G we will often consider the
induced basis of g given by

Xi(g) = (Lg)∗ei, i = 1, . . . , n.

When it is convenient we identify g with T
1

G and a left-invariant vector field X with its value at
the origin X(1).

Definition 7.16. Given a Lie group G and its Lie algebra g the group exponential map is the map

exp : T
1

G→ G, exp(X) = eX(1). (7.13)

It is important to remember that in general the exponential map (7.13) is not surjective.
If G1 and G2 are Lie groups, then a Lie group homomorphism φ : G1 → G2 is a smooth map

such that f(gh) = f(g)f(h) for every g, h ∈ G1. Two Lie groups are said to be isomorphic if there
exist a diffeomorphism φ : G1 → G2 that is also a Lie group homomorphism.

Two Lie groups G1 and G2 are said locally isomorphic if there exists neighborhoods U ⊂ G1

and V ⊂ G2 of the identity element and a diffeomorphism f : U → V such that f(gh) = f(g)f(h)
for every g, h ∈ U such that gh ∈ U .

Exercise 7.17 (Second theorem of Lie). Let Gi be a Lie group with Lie algebra Li, for i = 1, 2.
Prove that an isomorphism between Lie algebras i : L1 → L2 induces a local isomorphism of
groups.
(Hint: Prove that the set (X, i(X)) is a subalgebra L of the Lie algebra of the product group
G1 ×G2. Build the group G ⊂ G1 × G2 associated with this subalgebra, and then show that the
two projections pi : G1 ×G2 → Gi define p2 ◦ (p1|G)−1 : G1 → G2 a local isomorphism of groups.)

7.2.1 Lie groups as groups of diffeomorphisms

In Section 7.1 we have proved that given a manifold M and a finite dimensional Lie algebra L
of vector fields, the subgroup of Diff(M) generated by these vector fields has a structure of finite
dimensional differentiable manifold for which the groups operations are smooth. We call such a
subgroup GM,L. By Definition 7.12 we have

Proposition 7.18. GM,L is a connected Lie group.

We now want to prove a converse statement for connected groups, i.e., every connected Lie
group is isomorphic to a subgroup of the group of the diffeomorphisms of a manifold generated by
a finite dimensional Lie algebra of vector fields. Indeed this is true with M = G and L being the
Lie algebra of left-invariant vector fields on G. More precisely we have the following.

Theorem 7.19. Let G be a connected Lie group and g the Lie algebra of its left-invariant vector
fields. Then G is isomorphic to GG,g.
To prove Theorem 7.19, we give first the following definition.

Definition 7.20. Let G be a Lie group and let us define the group of its right translations as
GR = {Rg | g ∈ G}. On GR we give consider the group structure given by the operation (notice
the inverse order)

Rg1 · Rg2 := Rg2 ◦Rg1 .
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Then we need the following simple facts.

Lemma 7.21. G is isomorphic GR.

Proof. Clearly the map φ : g → Rg is a diffeomorphism. That is a group homomorphism follows
from the fact that Rg1g2h = h(g1g2) = (Rg2 ◦Rg1)h. Hence

φ(g1g2) = Rg1g2 = Rg2 ◦Rg1 = Rg1 ·Rg2 .

Similarly one obtains that a Lie group G is isomorphic to the group GL = {Lg | g ∈ G} of left
translations on G endowed with the group law given by the standard composition.

Lemma 7.22. The flow of a left-invariant vector field on a Lie group G commutes with left trans-
lations.

A similar statement holds for right-invariant vector fields.

Proof. If φ is a diffeomorphism and X a vector field we have that (see Lemma 2.21)

etφ∗X = φ ◦ etX ◦ φ−1.

Composing on the right with φ, we have

etφ∗X ◦ φ = φ ◦ etX .

Now choosing φ = Lg for some g, taking X a left-invariant vector field and using that Lg∗X = X,
we have that

etLg∗X ◦ Lg = Lg ◦ etX = Lg ◦ etLg∗X .

The conclusion follows from the arbitrarity of g.

Lemma 7.23. Let G be a Lie group. A diffeomorphism on G is a right translation if and only if
it commutes with all left translations.

Proof. Let P be the diffeomorphism. If P is a right translation then it commutes with left trans-
lation since for every g, h1, h2 ∈ G, we have Lh1Rh2g = h1gh2 = Rh2Lh1g. To prove the opposite,
let us define g = P (1). For every h ∈ G, we have

P (h) = P (Lh1) = LhP (1) = Lhg = hg,

hence P = Rg.

Remark 7.24. By Lemma 7.22 and Lemma 7.23 we have that the flow of a left-invariant vector field
is a right translation.

Proof of Theorem 7.19. By Lemma 7.21, it remains to prove that GG,g is isomorphic to GR. Indeed
we are going to prove that GG,g = GR.

To prove that GG,g ⊆ GR observe that every element of GG,g is a composition of the flow of
left-invariant vector fields and hence it is a right translation.

To prove that GG,g = GR, observe that by the argument above GG,g is a subgroup of GR.
Moreover since dim(GG,g) = dim(GR). It follows that GG,g contains an open neighborhood of the
identity. The conclusion of the Theorem is then a consequence of the following Lemma.
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Lemma 7.25. Let G be a connected Lie group. If H is a subgroup of G containing an open
neighborhood of the identity then H = G.

Proof. Since by hypothesis H is nonempty and open it remains to prove that H is closed.
To this purpose observe that if g ∈ G \H, then gH is disjoint from H (otherwise there exists

u ∈ H such that gu ∈ H which implies that guu−1 = g ∈ H). Hence

G \H =
⋃

g /∈H
gH.

Since each set gH is open, it follows that G \H is open and hence that H is closed.

�

7.2.2 Matrix Lie groups and the matrix notation

A very important example of Lie group is the group of all invertible n × n real matrices, with
respect to the matrix multiplication

GL(n) = {M ∈ Rn×n | det(M) 6= 0}.

Similarly one define
GL(n,C) = {M ∈ Cn×n | det(M) 6= 0}.

Exercise 7.26. Prove that GL(n,C) is connected while GL(n) is not. Prove that the Lie algebra
of GL(n) (resp. GL(n,C)) is gl(n) = {M ∈ Rn×n} (resp. gl(n,C) = {M ∈ Cn×n}).
Definition 7.27. A group of matrices is a subgroup of GL(n) or of GL(n,C).

Remark 7.28. The Lie algebra of a subgroup of GL(n) (resp. GL(n,C)) is a sub-algebra of gl(n)
(resp. gl(n,C)).

Group of matrices that we are going to meet along the book are

• The special linear group

SL(n) = {M ∈ Rn×n | det(M) = 1},

whose Lie algebra is sl(n) = {M ∈ Rn×n | trace(M) = 0}.

• The orthogonal group and the special orthogonal group

O(n) = {M ∈ Rn×n |MMT = 1},
SO(n) = {M ∈ Rn×n |MMT = 1,det(M) = 1}, (7.14)

for both the Lie algebra is so(n) = {M ∈ Rn×n | M = −MT }. SO(n) is the connected
component of O(n) containing the identity.

• The special unitary group

SU(n) = {M ∈ Cn×n |MM † = 1,det(M) = 1},

where M † is the transpose of the complex conjugate of M . The Lie algebra of SU(n) is
su(n) = {M ∈ Cn×n |M = −M †, trace(M) = 0}.
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• The group of (positively oriented) Euclidean isometries of Rn

SE(n) =








c1

M
...
cn

0 1


 |M ∈ SO(n), c1, . . . , cn ∈ R




. (7.15)

The name of this group comes from the fact that if we represent a point of Rn as a vector
(x1, . . . , xn, 1) then the action of a matrix of SE(n) produces a rotation and a translation.
The Lie algebra of SE(n) is

se(n) =








b1

A
...
bn

0 0


 | A ∈ so(n), b1, . . . , bn ∈ R




.

Exercise 7.29. Prove that so(3) and su(2) are isomorphic as Lie algebras.

Lemma 7.30. On group of matrices a left-invariant vector field X = Lg∗A = gA, A ∈ T
1

G.

Proof. By using the expression in coordinates Lg : h 7→
∑

k gikhkj we have that

(Lg∗A)ij =
∑

l,m,k

∂(gikhkj)

∂hlm
Alm =

∑

l,m,k

gikδklδjmAlm =
∑

k

gikAkj

Similarly one obtains that for Rg∗A = Ag for every A ∈ T
1

G.

Remark 7.31. Notice that the for a left-invariant vector field on a group of matrix X(g) = gA, the
integral curve ofX satisfying g(0) = g0 is g(t) = g0e

tA where etA is the standard matrix exponential.
Hence the integral curve of a left-invariant vector field, at a given t, is a right translation. This is
indeed a general fact as explained in the next section.

Exercise 7.32. (i). Let X(g) = gA and Y (g) = gB be two left-invariant vector on a group of
matrices. Prove that

[X,Y ](g) = g(AB −BA) = g[A,B].

(Hint: use the expression in coordinates: if Xij =
∑

k gikAkj and Yij =
∑

k gikBkj, then [X,Y ]ij =∑
kl

(
∂Yij
∂gkl

Xkl − ∂Xij

∂gkl
Ykl

)
.)

(ii). Prove that, given two right-invariant vector fields X(g) = Ag and Y (g) = Bg, we have

[X,Y ](g) = −[A,B]g.

Notation. For a left-invariant vector field on a group of matrices it is often convenient to abuse
notation and set X(g) = gX. This formula clarifies the identification of g with T

1

G. Here X(·) ∈ g

and X ∈ T
1

G.
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On the matrix notation

Given a vector field X on a manifold, one can consider (cf. Chapter 6 for the chronological notation)

• its integral curve on M , i.e., the solutions to q̇ = X(q),

• the equation for the flow of X, i.e., Ṗt = Pt ⊙X.

Let us write these equations for a left-invariant vector field X on a Lie group G,

ġ = X(g),

Ṗt = Pt ⊙X.

These two equations are indeed the same equation because:

• the flow of a left-invariant vector field is a right translation (see Remark 7.24);

• an element g of a Lie group G can be interpreted both as a point on G seen as a manifold
or as a diffeomorphism over G, once that G is identified with the group of right translations
GR.

This fact is particularly evident when written for left-invariant vector fields on group of matrices.
In this case the two equations take exactly the same form

ġ = gX

Ṗt = Pt ⊙X

In the following we take advantage of this fact to simplify the notation. We sometimes eliminate
the use of the symbols Lg and Lg∗: we write a left-invariant vector field in the form X(g) = gX,
thinking to gX as the matrix product when we are working with Lie groups of matrices (and in this
case we think to X ∈ T

1

G), or as the composition of the left translation g with the left-invariant
vector field X otherwise (and in this case we think to X ∈ g).

7.2.3 Bi-invariant pseudo-metrics and Haar measures

In this section we assume that the Lie group G is connected. Recall that a pseudo-Riemannian
metric is a family of non-degenerate, symmetric bilinear forms on each tangent space, smoothly
depending on the point.

Since a Lie group G is a smooth manifold as well as a group, it is natural to introduce the class
of pseudo-Riemannian metrics that respect the group structure of G.

Definition 7.33. Let 〈· | ·〉 be a pseudo-Riemannian metric on G. It is said to be left-invariant if

〈v |w〉 = 〈Lg∗v |Lg∗w〉 , ∀ v,w ∈ T
1

G, g ∈ G.

Similarly, 〈· | ·〉 is a right-invariant metric if

〈v |w〉 = 〈Rg∗v |Rg∗w〉 , ∀ v,w ∈ T
1

G, g ∈ G.

A bi-invariant metric is a pseudo-Riemannian metric that is at the same time left and right-
invariant.
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Exercise 7.34. Prove that for a bi-invariant pseudo-metric we have the following

〈[X,Y ] |Z〉 = 〈X | [Y,Z]〉 , ∀X,Y,Z ∈ g. (7.16)

Definition 7.35. A Lie algebra g is said to be compact if it admits a positive definite bi-invariant
pseudo-metric (hence a bi-invariant Riemannian metric).

One can prove that the Lie algebra of a compact Lie group is compact in the sense above. See
for instance [BR86]. Next we define the adjoint action of G onto g.

Definition 7.36. For every g ∈ G, the conjugation Cg : G→ G, is the map

Cg = Rg−1 ◦ Lg, Cg(h) = ghg−1.

The adjoint action Ad g : g→ g is defined as Ad g = Cg∗, namely

Ad g(X) = Rg−1∗Lg∗X = Rg−1∗X, X ∈ g.

In matrix notation
Ad g(X) = gXg−1, X ∈ T

1

G.

Recall that, given x ∈ g, its adjoint representation adx : g→ g is given by ad x(y) = [x, y]. Notice
that the map ad : x 7→ adx, as a map from g to the set of automorphisms of g, is the differential
of the map Ad : g 7→ Ad g from G to the set of automorphisms of g.

Definition 7.37. The Killing form on a Lie algebra g is the symmetric bilinear form

K : g× g→ R, K(x, y) = trace(ad x ◦ ad y). (7.17)

The Killing form has the associativity property

K([x, y], z) = K(x, [y, z]). (7.18)

Definition 7.38. A Lie algebra is said to be semisimple if the Killing form is non-degenerate.

Exercise 7.39. Prove that if g is semisimple then [g, g] = g. Show that the group of rototranslations
of R3 satisfies [g, g] = g, but is not semisimple.

Definition 7.40. An ideal of a Lie algebra l is a subspace i such that [l, i] ⊂ i. Given a Lie algebra
l, define the sequence of ideals l(0) = l, l(1) = [l, l(0)], . . . , l(n+1) = [l, l(n)]. The Lie algebra l is said
to be nilpotent if there exists n such that l(n) = 0.

Exercise 7.41. Prove that the Killing form of a nilpotent Lie algebra is identically zero.

Nilpotent algebras are particular cases of solvable algebras defined as follow.

Definition 7.42. Given a Lie algebra l, define the sequence of ideals l0 = l, l1 = [l0, l0], . . . ,
ln+1 = [ln, ln]. The Lie algebra l is said to be solvable if there exists n such that l(n) = 0.

Definition 7.43. Let ω be n-form, with n = dimG. The form is said to be left-invariant (resp.
right-invariant) if L∗

gω = ω (resp. R∗
gω = ω) for every g ∈ G.
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Notice that a left-invariant (resp. right-invariant) n-form on a Lie group G is uniquely deter-
mined by its value at the identity. It follows that the set of left-invariant (resp. right-invariant)
n-forms on a Lie group G is a 1-dimensional space and that one can always find a never vanishing
one. As a consequence, Lie groups are orientable and there exists a unique left-invariant (resp.
right-invariant) n-form up to a non-zero normalization constant.

Definition 7.44. A non-vanishing left-invariant (resp. right-invariant) n-form is called a left Haar
measure (resp. a right Haar measure) on G.

Definition 7.45. A Lie group G is said to be unimodular if left-invariant measures are also right-
invariant.

For unimodular groups one speaks of Haar measures (omitting left or right). Example of
unimodular Lie groups are: abelian, semisimple, compact. On a compact Le group, one can
normalize the Haar measure by requiring that the integral of ω over G is equal to 1.

Exercise 7.46. Prove that nilpotent Lie groups are unimodular.

7.2.4 The Levi-Malcev decomposition

A very important result in the theory of Lie algebras (see for instance [Che55, Ch. 4, Sect. 4, Thm.
4]) states that every Lie algebra can be decomposed as

g = r B s, (7.19)

where:

• r is the so called radical, i.e., the maximal solvable ideal of g.

• s is a semisimple sub-algebra.

• The symbol B indicates the semidirect sum of two Lie algebras defined in the following way.
Let T and M be two Lie algebras and D the homomorphism of M into the set of linear
operators in the vector space T such that every operator D(X) is a derivation of T . The Lie
algebra T B M is the vector space T ⊕M with a Lie algebra structure given by using the
given Lie brackets of T and M in each subspace and for the Lie brackets between the two
subspaces we set

[X,Y ] = D(X)Y, X ∈M,Y ∈ T.

Exercise 7.47. Prove that T B M is a well defined Lie algebra.

Product of Lie groups

Given two Lie groups G1 and G2 their direct product is the Lie group obtained by considering
G1 ×G2 with the multiplication rule

(g1, g2), (h1, h2) ∈ G1 ×G2 7→ (g1h1, g2h2) ∈ G1 ×G2.

One immediately verify that if g1 and g2 are the Lie algebras of G1 and G2, the Lie algebra of
G1 ×G2 is g1 ⊕ g2. In g1 ⊕ g2 we have that [g1, g2] = 0.
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7.3 Trivialization of TG and T ∗G

Lemma 7.48. The tangent bundle TG of a Lie group G is trivializable

Proof. Recall that the tangent bundle TM of a smooth manifold M is trivializable if and only if
there exists a basis of globally defined independent vector fields. In the case of the tangent bundle
TG of a Lie group G we can build a global family of independent vector field by fixing a basis
e1, . . . , en of T

1

G and considering the induced left-invariant vector fields given by

Xi(g) = (Lg)∗ei, i = 1, . . . , n,

that are linearly independent by construction.

We have then an isomorphism between TG and G× T
1

G. This isomorphism is given by Lg−1∗,
that is acting in the following way

TG ∋ (g, v) 7→ (g, ν) ∈ G× T
1

G,

where ν = Lg−1∗v.
Notice that given two left-invariant vector fields X(g) = Lg∗ν and Y (g) = Lg∗µ where ν, µ ∈

T
1

G, we have

[X,Y ](g) = Lg∗[ν, µ]

The isomorphism between TG and G × T
1

G extends to the dual. Hence T ∗G is isomorphic to
G× T ∗

1

G, the isomorphism being given by L∗
g, i.e.,

T ∗G ∋ (p, g) 7→ (ξ, g) ∈ G× T ∗
1

G,

where ξ = L∗
gp.

Notice that without an additional notion of scalar product, the Lie algebra structure on T
1

G
induced by g does not induce a Lie algebra structure on T ∗

1

G.
In the following it is often convenient to make computations in G× T

1

G and G× T ∗
1

G instead
than TG and T ∗G. It is then useful to recall that if v = Lg∗ν ∈ TgG and p = L∗

g−1ξ ∈ TgG, then

〈p, v〉g = 〈ξ, ν〉1.

7.4 Left-invariant sub-Riemannian structures

A left-invariant sub-Riemannian structure is a constant rank sub-Riemannian structure (G,D, 〈· | ·〉)
(cf. Section 3.1.3, Example 2) where

• G is a connected Lie group of dimensione n;

• the distribution is left-invariant, i.e., D(g) = Lg∗d, where d is a subspace of T ∗
1

G. Moreover
we assume that the distribution is bracket-generating or equivalently that the smallest Lie
sub-algebra of g containing D is g itself;

• 〈· | ·〉 is a scalar product on D(g) that is left-invariant, i.e., if v = Lg∗ν and w = Lg∗µ with
ν, µ ∈ d we have 〈v |w〉g = 〈ν |µ〉1 .
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Remark 7.49. Left-invariant sub-Riemannian structure are by construction free and constant rank.
If D has dimension m ≤ n then the local minimum bundle rank is constantly equal to m (cf.
Definition 3.21).

Given a left-invariant sub-Riemannian structure we can always find m linearly independent
vectors e1, . . . , em in T

1

G such that

(i) D(g) = {∑m
i=1 uiLg∗ei | u1, . . . um ∈ R} ,

(ii) 〈ei | ej〉
1

= δij .

The problem of finding the shortest curve connecting two points g1, g2 ∈ G can then be formulated
as the optimal control problem





γ̇(t) =
∑m

i=1 ui(t)Lg∗ei

∫ T
0

√∑m
i=1 ui(t)

2 dt→ min

γ(0) = g1, γ(T ) = g2,

(7.20)

Exercise 7.50. (i). Prove that if g ∈ G and γ : [0, T ] → G is an horizontal curve, then the
left-translated curve γg := Lg ◦ γ is also horizontal and ℓ(γg) = ℓ(γ).

(ii). Prove that d(Lgh1, Lgh2) = d(h1, h2) for every g, h1, h2 ∈ G. Deduce that for every g, h ∈ G
and r > 0 one has

Lg(B(h, r)) = B(gh, r),

where B(g, r) is the sub-Riemannian ball centered at g and of radius r.

Existence of minimizers

Proposition 3.47 immediately implies the following.

Corollary 7.51. Any left-invariant sub-Riemannian structure on a Lie group G is complete.

Proof. By Proposition 3.37 small balls are compact. Hence there exists ε > 0 such that the
ball B(1, ε) is compact, where 1 is the identity of G. By left-invariance (cf. Exercice 7.50)
B(g, ε) = Lg(B(1, ε)) is compact for every g ∈ G, independently on ε. By Proposition 3.47,
the sub-Riemannian structure is complete.

7.5 Example: Carnot groups of step 2

The Heisenberg sub-Riemannian structure H that we studied in Section 4.4.3 as an isoperimetric
problem is indeed a left-invariant sub-Riemannian structure on the group G = R3 endowed with
the product

(x, y, z) · (x′, y′, z′) .=
(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − x′y)

)
.

Such a group is called the Heisenberg group.
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Exercise 7.52. Prove that the Lie algebra of the Heisenberg group can be written as g = g1 ⊕ g2
where

g1 = span
{
∂x −

y

2
∂z , ∂y +

x

2
∂z

}
, and g2 = span{∂z}.

Notice that we have the commutation relations [g1, g1] = g2 and [g1, g2] = 0.

In this section we focus on Carnot groups of step 2, which are natural generalizations of the
Heisenberg group, namely Lie groups G on Rn such that its Lie algebra g satisfies

g = g1 ⊕ g2, [g1, g1] = g2, [g1, g2] = [g2, g2] = 0. (7.21)

G is endowed by the left-invariant sub-Riemannian structure induced by the choice of a scalar
product 〈· | ·〉 on the distribution g1, that is bracket-generating of step 2 thanks to (7.21). Notice
that g is a nilpotent Lie algebra and that we have the inequality

n ≤ m(m+ 1)

2
, m = dim g1, n = dim g.

We say that g is a Carnot algebra of step 2.
Let us now choose a basis of left-invariant vector fields (on Rn) of g such that

g1 = span{X1, . . . ,Xm}, g2 = span{Y1, . . . , Yn−m},

where {X1, . . . ,Xm} define an orthonormal frame for 〈· | ·〉 on the distribution g1. Such a basis will
be referred also as an adapted basis. We can write the commutation relations:




[Xi,Xj ] =

∑n−m
h=1 chijYh, i, j = 1, . . . ,m, where chij = −chji,

[Xi, Yj ] = [Yj , Yh] = 0, i = 1, . . . ,m, j, h = 1, . . . , n−m.
(7.22)

Define the the n−m skew-symmetric matrices (of size m) Ch = (chij), for h = 1, . . . , n−m. We

stress that, thanks to left-invariance, the structure functions chij are constant.
Given an adapted basis, we can associate with the family of matrices {C1, . . . , Cn−m} the

subspace
C = span{C1, . . . , Cn−m} ⊂ so(g1), (7.23)

of skew-symmetric operators on g1 that are represented by linear combinations of this family of
matrices.

Proposition 7.53 (2-step Carnot algebras and subspaces of so(g1)). For a given a 2-step Carnot
algebra g, the subspace C ⊂ so(g1) is independent on the choice of the adapted basis on g.

Proof. Assume that we fix another adapted basis

g1 = span{X ′
1, . . . ,X

′
m}, g2 = span{Y ′

1 , . . . , Y
′
n−m}.

where {X ′
1, . . . ,X

′
m} is orthonormal for the inner prodict. Then there exists A = (aij) an orthogonal

matrix and B = (bhl) an invertible matrix such that

X ′
i =

m∑

j=1

aijXj , Y ′
h =

n−m∑

l=1

bhlYl.
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A direct computation shows that, denoting B−1 = (bhl), we have

[X ′
i,X

′
j ] =

m∑

h,l=1

aihajl[Xh,Xl] =

m∑

h,l=1

aihajl

n−m∑

r=1

crhlYr (7.24)

=
n−m∑

s=1



n−m∑

r=1

m∑

h,l=1

aihajlc
r
hlb

rs


Y ′

s (7.25)

it follows that

C ′
s =

n−m∑

h=1

bhs(AChA
∗) (7.26)

Recall that two matrices C and C ′ represents the same element of so(g1) with respect to the two
basis if and only if C ′ = ACA∗. Then formula (7.26) implies that elements of C′ are written as
linear combination of elements of C that represents the same linear operator, as claimed.

Remark 7.54. We have the following basis-independent interpretation of Proposition 7.53. The Lie
bracket defines a well-defined skew-symmetric bilinear map

[·, ·] : g1 × g1 → g2.

If we compose this map with an element ξ ∈ g∗2 we get a skew-symmetric bilinear form [·, ·]ξ :=
ξ ◦ [·, ·] : g1 × g1 → R. For every ξ ∈ g∗2 the map [·, ·]ξ can be identified with an element of so(g1),
thanks to the inner product on g1. Hence with every Carnot algebra of step 2 we can associate a
well-defined linear map

Ψ : g∗2 → so(g1)

The subspace C introduced in (7.23) coincides with imΨ ⊂ so(g1).

Definition 7.55. Two Carnot algebras g and g′ are isomorphic if there exists a Lie algebra iso-
morphism φ : g→ g′ such that φ|g1 : g1 → g′1 preserves the scalar products, i.e.,

〈φ(v) | φ(w)〉′ = 〈v |w〉 , ∀ v,w ∈ g.

Following the same arguments one can prove the following result.

Corollary 7.56. The set of equivalence classes of 2-step Carnot algebras (with respect to isomor-
phisms) on g = g1 ⊕ g2 is in one-to-one correspondence with the set of subspaces of so(g1).

7.5.1 Normal Pontryagin extremals for Carnot groups of step 2

Let us fix a 2-step Carnot group G and let g its associated Lie algebra.
A basis of a Lie algebra of vector fields on Rn = Rm ⊕ Rn−m (using coordinates g = (x, z) ∈

Rm ⊕ Rn−m) and satisfying (13.11) is given by

Xi =
∂

∂xi
− 1

2

m∑

j=1

n−m∑

ℓ=1

cℓijxj
∂

∂zℓ
, i = 1, . . . ,m, (7.27)

Zℓ =
∂

∂zℓ
, ℓ = 1, . . . , n−m. (7.28)
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The group G is Rn = Rm ⊕ Rn−m endowed with the group law

(x, z) ∗ (x′, z′) =
(
x+ x′, z + z′ +

1

2
Cx · x′

)

where we denoted for the (n−m)-tuple C = (C1, . . . , Cn−m) of m×m matrices, the product

Cx · x′ = (C1x · x′, . . . , Cn−mx · x′) ∈ Rn−m.

and x · x′ denotes the Euclidean inner product in Rm. Let us introduce the following coordinates
on T ∗G

hi(λ) = 〈λ,Xi(g)〉 , wℓ(λ) = 〈λ,Zℓ(g)〉 .
Since the vector fields {X1, . . . ,Xm, Z1, . . . , Zn−m} are linearly independent, the functions (hi, wℓ)
defines a system of coordinates on fibers of T ∗G. In what follows it is convenient to use (x, z, h,w)
as coordinates on T ∗G.

Normal Pontryagin extremal trajectories are projections of integral curves of the sub-Riemannian
Hamiltonian in T ∗G

H =
1

2

m∑

i=1

h2i

Suppose now that λ(t) = (x(t), z(t), h(t), ω(t)) is a normal Pontryagin extremal. Then ui(t) =
hi(λ(t)) and the equation on the base is

ġ =

m∑

i=1

hiXi(g). (7.29)

that rewrites as {
ẋi = hi

żh = −1
2

∑m
i,j=1 c

ℓ
ijhixj

(7.30)

For the equations on the fiber we have (remember that along solutions ȧ = {H, a})
{
ḣi = {H,hi} = −

∑m
j=1{hi, hj}hj = −

∑n−m
ℓ=1

∑m
j=1 c

ℓ
ijhjwℓ

ẇℓ = {H,wℓ} = 0.
(7.31)

From (7.31) we easily get that ωh is constant and the vector h = (h1, . . . , hm) ∈ Rm satisfies the
linear equation

ḣ = −Ωwh, Ωw =
n−m∑

ℓ=1

wℓCℓ,

where we recall that the vector w = (w1, . . . , wn−m) is constant. It follows that

h(t) = e−tΩwh(0),

and

x(t) = x(0) +

∫ t

0
e−sΩwh(0)ds.

Notice that the vertical coordinates z can be always recovered, once h(t) and x(t) are computed,
by a simple integration.
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Proposition 7.57. The projection x(t) on the layer g1 ≃ Rm of a Pontryagin extremal such that
x(0) = 0 is the image of the origin through a one-parametric group of isometries of Rm.

The proof of the proposition uses the following observation.

Exercise 7.58. Recall that the group of (positively oriented) affine isometries on Rn can be iden-
tified with the matrix group SE(n) given by the formula (7.15). The Lie algebra of SE(n) is given
by

se(n) =

{(
A b
0 0

)
, A ∈ so(n), b ∈ Rn

}
.

Prove the following formula for the exponential of an element of the Lie algebra

exp

(
t

(
A b
0 0

))
=

(
etA

∫ t
0 e

sAbds
0 1

)
.

Proof of Proposition 7.57. The action of a 1-parametric group of isometries can be recovered by
exponentiating an element of its Lie algebra (cf. Exercice 7.58). This reduces to compute the
solution of the differential equation

ẋ = Ax+ b

where A is skew-symmetric and b ∈ Rm. Its flow is given by

φt(x̄) = etAx̄+

∫ t

0
esAbds

and it is easy to see that the projection x(t) on the layer g1 ≃ Rm of a Pontryagin extremal satisfies
this equation with x̄ = x(0) = 0, A = −Ωw and b = h(0).

Heisenberg group

The simplest example of 2-step Carnot group is the Heisenberg group, whose Lie algebra g has
dimension 3. It can be realized in R3 by the left-invariant vector fields

X1 =
∂

∂x1
− 1

2
x2

∂

∂z
, X2 =

∂

∂x2
+

1

2
x1

∂

∂z
, Z =

∂

∂z
,

satisfying the relation [X1,X2] = Z. In this case the set of matrices representing the Lie bracket is
reduced to a single matrix C, namely

C =

(
0 1
−1 0

)
,

and the projection x(t) on the layer g1 ≃ Rk of a Pontryagin extremal starting from the origin
satisfies the equation

x(t) =

∫ t

0
exp

(
0 −ws
ws 0

)
h(0)ds.

Computing ∫ t

0
exp

(
0 −ws
ws 0

)
ds =

1

w

(
sin(wt) cos(wt)− 1

− cos(wt) + 1 sin(wt)

)
,

188



and choosing h(0) = (− sin θ, cos θ) ∈ S1, we recovers the formulas already computed3 in Sec-
tion 4.4.3. We have

h(t) =

(
cos(wt) − sin(wt)
sin(wt) cos(wt)

)(
− sin θ
cos θ

)
=

(
− sin(wt+ θ)
cos(wt+ θ)

)
,

and

x(t) =
1

w

(
sin(wt) cos(wt) − 1

− cos(wt) + 1 sin(wt)

)(
− sin θ
cos θ

)
=

1

w

(
cos(wt+ θ)− cos θ
sin(wt+ θ)− sin θ

)
.

Notice that the z component is recovered simply by integrating the last equation, that in this case
gives

ż =
1

2
(−h1x2 + h2x1).

Integrating (and using z(0) = 0) one gets

z(t) =
1

2w

∫ t

0
sin(ws + θ)(sin(ws + θ)− sin θ) + cos(ws+ θ)(cos(ws+ θ)− cos θ)ds

=
1

2w

∫ t

0
1− sin(ws+ θ) sin θ − cos(ws+ θ) cos θds =

1

2w

∫ t

0
1− cos(ws)ds

=
1

2w2
(wt− sin(wt)).

Analogous computations are performed for higher-dimensional Heisenberg groups in Section 13.1.
See Figure 7.1.

7.6 Left-invariant Hamiltonian systems on Lie groups

In this section we study Hamiltonian systems non necessarily coming from a sub-Riemnnian prob-
lem.

7.6.1 Vertical coordinates in TG and T ∗G

Thanks to the isomorphism between TG and G× T
1

G, a basis {e1, . . . , en} of T1G induces global
coordinates on TG. Indeed a basis of TgG is Lg∗e1, . . . , Lg∗en and every element (v, g) of TG can
be written as

(v, g) =

(
n∑

i=1

viLg∗ei, g

)
.

The coordinates v1, . . . vn are called the vertical coordinates in TG and they are also coordinates in
the vertical part of G×T

1

G. Indeed if (v, g) = (
∑n

i=1 viLg∗ei, g) ∈ TG, then the corresponding point
in G× T

1

G is (ξ, g) = (
∑n

i=1 viei, ξ) hence, in coordinates, both are represented by (v1, . . . , vn, g).
If {e∗1, . . . , e∗n} is the dual basis in T ∗

1

G to {e1, . . . , en}, i.e., 〈e∗i , ej〉 = δi,j, then every element
(p, g) of T ∗G can be written as

(p, g) =

(
n∑

i=1

hiL
∗
g−1e

∗
i , g

)
.

3notice that in Section 4.4.3 we have set h(0) = (cos θ, sin θ). The final formulas are the same up to a rotation in
the horizontal plane.
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Figure 7.1: The set of end points of Pontryagin extremals of length 1 for the 3D Heisenberg group.
Notice the singularities accumulating at the origin.

The coordinates h1, . . . hn are called vertical coordinates in T ∗G. For the same reason as above, in
vertical coordinates (h1, . . . , hn, g) represents both a point in T ∗G and the corresponding point in
G× T ∗

1

G.

In other words, when using vertical coordinates it is not important to distinguish if we are
working in TG or G× T

1

G (the same holds for T ∗G or G× T ∗
1

G).

Remark 7.59. Notice that if Xi(g) = Lg∗ei then

hi(p, g) = 〈p,Xi(g)〉,

hence hi are the functions linear on fibers associated with Xi. Moreover if make the change of
variable (p, g)→ (ξ, g) where p(ξ, g) = L∗

g−1ξ where ξ ∈ T ∗
1

G, we have that hi becomes independent
from g. Indeed we can write

hi(p(ξ, g), g) = 〈ξ, ei〉1.

The vertical coordinates h1, . . . , hn are functions on T ∗G hence we can compute their Poisson
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bracket (cf. Section 4.1.2)

{hi, hj} = 〈p, [Xi,Xj ]〉g = 〈ξ, [ei, ej ]〉1. (7.32)

Remark 7.60. Note that the vertical coordinates hi are not induced by a system of coordinates
x1, . . . , xn on the base G (we have not fixed coordinates on G). If they were induced by coordinates
on G, we would have obtained zero in the right-hand side of (7.32) since [∂xi , ∂xj ] = 0.

7.6.2 Left-invariant Hamiltonians

Consider a Hamiltonian function H : T ∗G → R. Thanks to the isomorphism between T ∗G and
G× T

1

G we can interpret it as a function on G× T ∗
1

G, i.e., we can define

H(ξ, g) = H(g, L∗
g−1ξ), H : G× T ∗

1

G→ R.

We say that H is left-invariant if H(ξ, g) is independent from g. For a left-invariant Hamiltonian
we call the corresponding H the trivialized Hamiltonian.

Equivalently we can use the following definition

Definition 7.61. A Hamiltonian H : T ∗G→ R is said to be left-invariant if there exists a function
H : T ∗

1

G→ R such that

H(p, g) = H(L∗
gp).

Hence a left-invariant Hamiltonian can be interpreted as a function on T ∗
1

G.

Example 7.62. Given a set of left-invariant vector field fi(g) = Lg∗wi, wi ∈ T1G, i = 1, . . . ,m,
we have that H(p, g) = 1

2

∑m
i=1〈p, fi(g)〉2 is a left-invariant Hamiltonian. Indeed

H(ξ, g) = 1

2

m∑

i=1

〈L∗
g−1ξ, Lg∗wi〉2 =

1

2

m∑

i=1

〈ξ, wi〉2,

which is independent from g.

Remark 7.63. If we write p =
∑n

j=1 hjL
∗
g−1e

∗
j then

H(
∑

L∗
g−1hje

∗
j , g) = H(L∗

g

∑
hjL

∗
g−1e

∗
j ) = H(

∑
hje

∗
j ).

In other words in vertical coordinates h1, . . . hn, we have for a left-invariant Hamiltonian

H(h1, . . . , hn, g) = H(h1, . . . , hn).

and we can identify H and H.
Remark 7.64. In the context of Hamiltonian systems on Lie groups, it is convenient to avoid fixing
coordinates on G and use vertical coordinates on the fiber only. This permits to exploit better the
trivialization of T ∗G in G × T ∗

1

G and the left invariance of H. Since vertical coordinates hi do
not come, in general, from coordinates on G, we do not have equations of the form ẋi = ∂hiH,
ḣi = −∂xiH for a system of coordinates x1, . . . , xn on G.
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Consider a left-invariant Hamiltonian in vertical coordinates H(h1, . . . , hn, g). Let us write the
vertical part of the Hamiltonian equations. We are going to see that this equation is particularly
simple. We have

ḣi = {H,hi}, i = 1, . . . , n. (7.33)

Using Exercice 4.8 we have for i = 1, . . . , n,

ḣi =
n∑

j=1

∂H

∂hj
{hj , hi} =

n∑

j=1

∂H

∂hj
〈ξ, [ej , ei]〉 =

〈
ξ,




n∑

j=1

∂H

∂hj
ej , ei



〉
. (7.34)

Notice that since H is a function on the linear space T ∗
1

G, then dH(h1, . . . , hn) is an element
of (T ∗

1

G)∗ = T
1

G. If we write an element of T ∗
1

G as h1e
∗
1 + . . . + hne

∗
n, then an element of its

tangent at (h1, . . . , hn) is written as v1∂h1 + . . . + vn∂hn with the identification ∂hi = e∗i due to
the linear structure. An element of its cotangent space (T ∗

1

G)∗ at (h1, . . . , hn) is then written as
ω1dh1+ . . .+ωndhn with the identification dhi = (e∗i )

∗ = ei again due to the linear structure. Then

dH(h1, . . . , hn) =
n∑

j=1

∂H
∂hj

dhj =

n∑

j=1

∂H
∂hj

ej =

n∑

j=1

∂H

∂hj
ej. (7.35)

Hence the vertical part of the Hamiltonian equations can be written as

ḣi = 〈ξ, [dH, ei]〉
= 〈ξ, (ad dH)ei〉
= 〈(ad dH)∗ξ, ei〉 (7.36)

or more compactly recalling that ξ =
∑n

i=1 hie
∗
i ,

ξ̇ = (ad dH)∗ξ. (7.37)

For what concerns the horizontal part, let β ∈ C∞(G), i.e., a function in C∞(T ∗G) that is constant
on fibers. For every curve g(·) solution of the horizontal part of the Hamiltonian system on T ∗G
corresponding to H we have

d

dt
β(g(t)) = {H,β}(p(t),g(t)) =

n∑

j=1

∂H

∂hj
{hj , β}(p(t),g(t)) .

Now recalling that (cf. (4.17)) {〈p,X(g)〉+α(g), 〈p, Y (g)〉+β(g)} = 〈p, [X,Y ](g)〉+Xβ(g)−Y α(g)
we have {hj , β} = {〈p,Xj〉 , β} = Xjβ = (Lg∗ej)β. Hence

d

dt
β(g(t)) =

n∑

j=1

∂H

∂hj
(Lg∗ej)β

∣∣∣∣∣∣
g(t)

=


Lg∗

n∑

j=1

∂H

∂hj
ej


 β

∣∣∣∣∣∣
g(t)

= (Lg∗dH)β|g(t) .

Since the function β is arbitrary we have ġ = Lg∗dH.
We have then proved the following
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Proposition 7.65. Let H be a left-invariant Hamiltonian on a Lie group G, i.e., H(p, g) = H(L∗
gp)

where (p, g) ∈ T ∗G and H is a smooth function from T ∗
1

G to R. Let dH be the differential of H
seen as an element of T

1

G. Then the Hamiltonian equations d
dt(p, g) =

~H(p, g) are,

{
ġ = Lg∗dH
ξ̇ = (ad dH)∗ξ. (7.38)

Here ξ ∈ T ∗
1

G and p(t) = L∗
g−1ξ(t).

Notice that the second equation is decoupled from the first since dH is a function of ξ only (it does
not involve g).

When the space is endowed with a bi-invariant pseudometric, then equation (7.37) can be
written in a simpler form. Indeed in this case we can identify an element ξ ∈ T

1

G with M ∈ T ∗
1

G
by

〈M | v〉 = 〈ξ, v〉 , ∀v ∈ T
1

G. (7.39)

Using (7.37) and (7.16), for every v ∈ T
1

G let us compute

〈
dM

dt

∣∣∣∣ v
〉

=

〈
dξ

dt
, v

〉
= 〈(ad dH)∗ξ, v〉 = 〈ξ, (ad dH)v〉

= 〈ξ, [dH, v]〉 = 〈M | [dH, v]〉 = 〈[M,dH] | v〉 .

Hence the Hamiltonian equations for a left-invariant Hamiltonian, when we have a bi-invariant
pseudometric, are:

{
ġ = Lg∗dH
dM
dt = [M,dH]. (7.40)

7.7 Normal extremals for left-invariant sub-Riemannian structures

Consider a left-invariant sub-Riemannian structure of rank m (cf. (7.20)) for which an orthonormal
frame is given by a set of left-invariant vector fields Xi = Lg∗ei(g), i = 1, . . . ,m. The maximized
Hamiltonian is

H(p, g) =
1

2

m∑

i=1

〈p,Xi(g)〉2 =
1

2

m∑

i=1

〈p, Lg∗ei〉2 ,

hence it is left-invariant (cf. Example 7.62). The corresponding trivialized Hamiltonian is

H(ξ) = 1

2

m∑

i=1

〈ξ, ei〉2 .

Now 〈ξ, ei〉 = hi(p, g) hence in vertical coordinates we have

H(h1, . . . , hm) =
1

2

m∑

i=1

h2i .
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7.7.1 Explicit expression of normal Pontryagin extremals in the d⊕ s case

Explicit expressions of normal Pontryagin extremals can be obtained for left-invariant sub-Riemannain
structures when

• a bi-invariant pseudo-metric 〈· | ·〉 on G is given;

• T
1

G = d⊕ s where 〈· | ·〉|d is positive defined and s satisfies the following

i) s := d⊥ (where the orthogonality is taken with respect to 〈· | ·〉);
ii) s is a sub-algebra;

• The distribution is d and the metric is 〈· | ·〉|d.

We say that such a sub-Riemannian structure is of type d⊕ s.

Remark 7.66. A classical example of such a d ⊕ s sub-Riemannian structure is provided by the
group of matrices SO(n) in which the distribution at the identity d is given by any codimension
one subspace of T

1

SO(n) and the norm of a vector in d is the square root of the sum of squares of
its matrix elements.

Exercise 7.67. Prove that the distribution defined in Remark 7.66 is bracket-generating. Prove
that the metric induced by the norm defined above is induced (up to a negative proportionality
constant) by the Killing form.

Let us write an element of v ∈ T
1

G as v = x + y where x ∈ d and y ∈ s. Set m = dimd. Let
e1, . . . em be an orthonormal frame for the structure. In this case if M = x + y is the element in
T
1

G corresponding to ξ ∈ T ∗
1

G via 〈· | ·〉 (cf. (7.39)) we have

hi = 〈ξ, ei〉 = 〈M | ei〉 = xi.

Hence

H =
1

2

m∑

i=1

h2i =
1

2

m∑

i=1

x2i =
1

2
〈x |x〉 = 1

2
‖x‖2. (7.41)

Notice that (cf. (7.35)) dH =
∑n

i=1
∂H
∂hi
ei =

∑n
i=1

∂H
∂xi
ei =

∑n
i=1 xiei = x. Hence the vertical part

of the Hamiltonian equation dM/dt = [M,dH] become

ẋ+ ẏ = [x+ y, x] = [y, x]. (7.42)

Now for every v ∈ s one has

〈[y, x] | v〉 = 〈x | [y, v]〉 = 0,

where we have used equation (7.16) and, for the last equality, the fact that

• [y, v] ∈ s since s is a sub-algebra.

• d and s are orthogonal for 〈· | ·〉.
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We then conclude that [y, x] ∈ d. Hence (7.42) become

ẋ = [y, x]

ẏ = 0

Hence all y component are constant of the motion and we have (fixing x(0) = x0 and y(0) = y0)

y(t) = y0

ẋ = [y0, x] = (ad y0)x

The solution of the last equation is

x(t) = etad y0x0. (7.43)

Then for the horizontal part we have

ġ = Lg∗dH = Lg∗x(t) = Lg∗e
tad y0x0. (7.44)

Using the variation formula for smooth vector fields (cf. (6.42)),

et(Y+X) = −→exp
∫ t

0
es adYXds ⊙ etY , (7.45)

we have that the solution of (7.44) starting from g0 and corresponding to x0, y0 is 4

g(x0, y0; t) = g0e
t(x0+y0)e−ty0 (7.46)

The parameterization by arclength is obtained requiring H = 1/2. From (7.41) at t = 0 we
obtain that the normal Pontryagin extremals (7.46) are parametrized by arclength when 〈x0 |x0〉 =
‖x0‖2 = 1.

The controls whose corresponding trajectories starting from g0 are the normal Pontryagin ex-
tremals (7.46) are

ui(t) = 〈p(t),Xi(g(t))〉 = hi(p(t), g(t)) = xi(t) =
〈
etad y0x0

∣∣∣ ei
〉
, i = 1, . . . ,m.

Exercise 7.68. Study abnormal extremals for this problem.

7.7.2 Example: The d⊕ s problem on SO(3)

The Lie group SO(3) is the group of special orthogonal 3× 3 real matrices

SO(3) =
{
g ∈ Mat(3,R) | ggT = Id,det(g) = 1

}
.

To compute its Lie algebra, let us compute its tangent space at the identity. Consider a smooth
curve g : [0, ε]→ SO(3), such that g(0) = 1. Computing the derivative in zero of both sides of the
equation g(t)gT (t) = e, we have ġ(0)g(0) + g(0)gT (0) = 0 from which we deduce g(0) = −gT (0).

4For a group of matrices: formula (7.43) reads as ety0x0e
−ty0 , while (7.44) is gety0x0e

−ty0 .
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Hence the Lie algebra of SO(3) is the space of skew symmetric 3× 3 real matrices and it is usually
denoted by so(3). In other words

so(3) =








0 −a b
a 0 −c
−b c 0


 ∈ Mat(3,R)



 .

A basis of so(3) is {e1, e2, e3} where

e1 =




0 0 0
0 0 −1
0 1 0


 , e2 =




0 0 1
0 0 0
−1 0 0


 , e3 =




0 −1 0
1 0 0
0 0 0




whose commutation relations are [e1, e2] = e3 [e2, e3] = e1 [e3, e1] = e2. For so(3) the Killing
form is K(X,Y ) = trace(XY ) so, in particular, K(ei, ej) = −2δij . Hence

〈· | ·〉 = −1

2
K(·, ·)

is a (positive definite) bi-invariant metric on so(3). If we define

d = span{e1, e2}, s = span{e3}

and we provide d with the metric 〈· | ·〉 |d we get a sub-Riemannian structre of type d⊕ s.

Expression of normal Pontryagin extremals

Let us write an initial covector x0 + y0 such that 〈x0 |x0〉 = 1 in the following form

x0 + y0 = cos(θ)e1 + sin(θ)e2︸ ︷︷ ︸
x0

+ ce3︸︷︷︸
y0

, θ ∈ S1, c ∈ R.

Using formula (7.46), we have that the normal Pontryagin extremals starting from the identity are

g(θ, c; t) := e(cos(θ)e1+sin(θ)e2+ce3)te−ce3t = (7.47)

=




K1 cos(ct) +K2 cos(2θ + ct) +K3c sin(ct) K1 sin(ct) +K2 sin(2θ + ct)−K3c cos(ct) K4 cos(θ) +K3 sin(θ)
−K1 sin(ct) +K2 sin(2θ + ct) +K3c cos(ct) K1 cos(ct) −K2 cos(2θ + ct) +K3c sin(ct) −K3 cos(θ) +K4 sin(θ)

K4 cos(θ + ct)−K3 sin(θ + ct) K3 cos(θ + ct) +K4 sin(θ + ct)
cos

(√
1+c2t

)

+c2

1+c2




with K1 =
1+(1+2c2) cos(

√
1+c2t)

2(1+c2)
, K2 =

1−cos(
√
1+c2t)

2(1+c2)
, K3 =

sin(
√
1+c2t)√
1+c2

, K4 =
c(1−cos(

√
1+c2t))

1+c2
.

The end point of all normal Pontryagin extremals for t = 1 are plotted in Figure 7.2.

7.7.3 Further comments on the d⊕ s problem: SO(3) and SO+(2, 1)

The group SO(3) acts on the sphere S2 by isometries (in fact, by definition). We claim that the
induced action of SO(3) on the spherical bundle S S2 (see Definition 1.20) is a free transitive action.
In other words, if xi ∈ S2, and vi ∈ TxiS2 with |vi| = 1 for i = 1, 2, then there exists a unique
g ∈ SO(3) such that gx1 = x2, gv1 = v2. Indeed, v is a tangent vector of length 1 at a point x ∈ S2

if and only if {v, x} is a couple of mutually orthogonal vectors of length 1 in R3. Obviously, such a
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Figure 7.2: The set of end points of normal Pontryagin extremals of length 1 for the d ⊕ s sub-
Riemannian problem on SO(3). In the picture the x-axis is the element (g)23, the z-axis is the
element (g)13, the z-axis is the element (g)12. Notice the singularities accumulating at the origin.
This picture looks very similar to the one of the Heisenberg group (cf. Figure 7.1). Indeed it is
possible to prove (cf. Chapter 10) that the two pictures become more and more similar if one
considers end points of normal Pontryagin extremals of length r going to zero. For r big enough,
the two pictures become very different due to the different topology of R3 and SO(3).

couple can be transformed to any other couple of this type by a unique orthogonal transformation
of R3 preserving the orientation.

Let g(t) be a geodesic for our sub-Riemannian structure on SO(3). Then g(t)
(

0
0
1

)
is a circle, a

curve of the constant geodesic curvature on the sphere. This is not occasional; if you think about it,
you see that this sub-Riemannian problem is similar to isoperimetric problems studied in Section
4.4.2.

Exercise 7.69. Show that the differential of the map

SO(3)→ S S2, g 7→
(
g
(

0
0
1

)
, g
(

1
0
0

))
, (7.48)
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transforms the left-invariant distribution d into the kernel of the Levi-Civita connection (cf. Defi-
nition 1.54) on the spherical bundle S S2.

Let ω be the Levi-Civita connection and π : S S2 → S2 the standard projection; then π∗
∣∣
kerωξ

is an isomorphism of kerωξ onto Tπ(ξ)S
2, ξ ∈ S S2. We can lift Riemannian structure on S2

by this isomorphism and obtain a sub-Riemannian structure on S S2. It is easy to see that the
diffeomorphism described in the exercise induces an isometry of this sub-Riemannian structure and
the “d⊕ s” structure on SO(3).

Recall that an isoperimetric problem on a Riemannian surface M is equivalent to a sub-
Riemannian problem on the trivial bundle R×M →M ; the problem is defined by a non-vanishing
differential 1-form ω on R×M , where ω is invariant under translations of R and kerω is transversal
to the fibers (see Section 4.4.2). In this case, dω is the pullback of a 2-form on M . Moreover, the
2-form is the product of the area form and a function b on M , and normal geodesics are horizontal
lifts to R×M of the curves on M whose geodesic curvature is proportional to b.

Of course, one gets the same characteristic of normal geodesic if we consider the bundle S1 ×
M →M instead of the bundle R×M →M and a non-vanishing form ω on S1×M that is invariant
under translations in the group S1 and whose kernel is transversal to the fibers. Moreover, we may

equally consider an only locally trivial bundle N
S1

−→ M such that the group S1 acts freely on
N and the orbits of this action are exactly the fibers of the bundle. Such a structure is called a
principal bundle with the structural group S1. An invariant under the action of S1 non-vanishing
1-form on N whose kernel is transversal to the fibers is called a connection on the principal bundle.
The differential of the connection is the pullback of a 2-form on M that is called the curvature of
the connection.

Now consider the spherical bundle SM →M of a Riemannian surface. Rotations of the fibers
with a constant velocity introduce a structure of the principal bundle on SM , and the Levi-Civita
connection ω is a connection on this principal bundle. The curvature of the Levi-Civita connection
equals the area form multiplied by the Gaussian curvature of the surface.

The sub-Riemannian structure defined by the Levi-Civita connection has a nice geometric in-
terpretation: horizontal curves are parallel transports of tangent vectors along curves in M and
their length is just the length of these curves in M . Normal geodesics are parallel transports along
the curves whose geodesic curvature is proportional to the Gaussian curvature. As we explained,
in the case of M = S2 we obtain an interpretation of the “d⊕ s” structure on SO(3).

Group SO(3) is the group of linear transformations of of R3 that preserve the orientation and
Euclidean inner product. Similarly, we may consider the group SO+(2, 1) of linear transformations
that preserve the orientation, the Minkowski inner product 〈· | ·〉h and, moreover, preserve the
connected components of the hyperboloid defined by the equation 〈q | q〉h = −1 (see Section 1.4).
The matrices

f1 =



0 0 0
0 0 1
0 1 0


 , f2 =



0 0 1
0 0 0
1 0 0


 , f3 =



0 −1 0
1 0 0
0 0 0


 = e3

form a basis of the Lie algebra of this group. This Lie algebra is denoted by so(2, 1) and it is
isomorphic to sl(2). We set 〈X|Y 〉 = −1

2trace(XY ), a bi-invariant pseudo-metric on so(2, 1). If we
define

d = span{f1, f2}, s = span{f3}
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and we equip d with the metric 〈·|·〉|d we obtain a sub-Riemannian structure of type d⊕ s.
The group SO+(2, 1) acts on the surface

H2 = {(x, y, z) ∈ R3 : z2 − x2 − y2 = 1, z > 0},

in the Minkowski space by isometries (cf. Section 1.5.3). Moreover, the induced action of SO+(2, 1)
on the spherical bundle SH2 is a free transitive action.

Exercise 7.70. Show that the differential of the map

SO+(2, 1)→ SH2, g 7→
(
g
(

0
0
1

)
, g
(

1
0
0

))
, (7.49)

transforms the left-invariant distribution d into the kernel of the Levi-Civita connection on the
spherical bundle SH2.

The transformation (7.49) sends geodesics of the “d ⊕ s” sub-Riemannian structure to the
parallel transports along the curves of constant geodesic curvature in H2. Recall that, when
considered as Riemannian surface, H2 has constant Gaussian curvature equal to −1, this is a
model of the Lobachevsky hyperbolic plane.

The constructions described above have important multidimensional generalizations; some of
them will be discussed later in this chapter.

7.7.4 Explicit expression of normal Pontryagin extremals in the k⊕ z case

Another case in which one can get an explicit expression of normal Pontryagin extremals is when

• G = Gk ×Gz where Gk has a compact algebra k and Gz is abelian. In other words the Lie
algebra at the origin of G can be written as T

1

G = k ⊕ z where k is a compact subalgebra
and z is contained in the center of T

1

G, i.e., [v, y] = 0 for every v ∈ T
1

G and y ∈ z. In the
following we write an element of v ∈ T

1

G as v = x+ y where x ∈ k and y ∈ z. Moreover we
assume that a bi-invariant metric 〈· | ·〉

k
on k is given (this is always possible by definition of

compact Lie algebra);

• we assume that the distribution (that we assume to be bracket-generating) projects well on
k, that is if π : T

1

G → k is the canonical projection induced by the splitting, we have π|D
is 1:1 over k. Under this condition, there exists a linear operator A : k → z such that
d = {x+Ax | x ∈ k} ⊂ k⊕ z = T

1

G.

• we assume that the metric on d is induced by the projection, i.e.,

〈w1 |w2〉d = 〈π(w1) | π(w2)〉k , for every w1, w2 ∈ d,

or equivalently that if v1, v2 ∈ d, v1 = (x1, Ax1), v2 = (x2, Ax2) with x1, x2 ∈ k, then

〈v1 | v2〉d = 〈x1 | x2〉k .

See Figure 7.3.

Let us fix any scalar product on 〈· | ·〉
z
on z and define the scalar product 〈· | ·〉 on T

1

G by

〈v1 | v2〉 = 〈x1 | x2〉k + 〈y1 | y2〉z , where v1 = x1 + y1, v2 = x2 + y2.

Notice that if x ∈ k and y ∈ z then 〈x | y〉 = 0.
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k

z

d

Figure 7.3: The k⊕ z problem

z2

z1

u1

u2

u3

(z1, z2)

X ∈ SO(3)

z3

Figure 7.4: Rolling sphere with twisting.

Exercise 7.71. Prove that 〈· | ·〉 is bi-invariant as a consequence of the bi-invariance of 〈· | ·〉
k
and

of the fact that z is in the center of T
1

G.

The metric 〈· | ·〉T
1

G is used to identify vectors and covectors, to use the simpler form (7.40)
of the Hamiltonian equations for normal Pontryagin extremals. The resulting normal Pontryagin
extremals will be independent on the choice of the scalar product 〈· | ·〉

z
.

Remark 7.72. An example of such a structure is provided by the problem of rolling without slipping
a sphere of radius 1 in R3 on a plane. Its state is described by a point in R2 giving the projection
of its center on the plane and by an element of SO(3) describing its orientation. Given an initial
and final position in SO(3)× R2 one would like to roll the sphere on the plane in such a way that

the initial and final conditions are the given ones and
∫ T
0

√∑3
i=1 ui(t)

2 dt is minimal, where u1, u2
and u3 are the three controls corresponding to the rolling of the sphere along the two axes of the
plane and to the twist. See Figure 7.4. Why this problem gives rise to a k ⊕ z sub-Riemannian
structure is described in detail in the next section.

Let us write the maximized Hamiltonian. Let e1, . . . , em be an orthonormal frame for k. Then
an orthonormal frame for d is e1 +Ae1, . . . , em +Aem. We have

H(p, g) =
1

2

m∑

i=1

〈p, Lg∗(ei +Aei)〉2 .
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The corresponding trivialized Hamiltonian is

H(ξ) = 1

2

m∑

i=1

〈ξ, (ei +Aei)〉2 , ξ ∈ T ∗
1

G.

Now using the metric 〈· | ·〉T
1

G we can identify T
1

G with T ∗
1

G and write ξ = x+ y. Then

H(x, y) = 1

2

m∑

i=1

〈x+ y | (ei +Aei)〉2T
1

G =
1

2

m∑

i=1

(〈x | ei〉+ 〈y |Aei〉)2. (7.50)

Here we have used the the fact that x, ei ∈ k and y,Aei ∈ z and we have used the orthogonality of
k and z with respect to 〈· | ·〉. Now 〈y |Aei〉 = 〈A∗y | ei〉 = 〈A∗y | ei〉k, where A∗ is the adjoint of A.
Hence

H(x, y) = 1

2

m∑

i=1

(〈x | ei〉+ 〈A∗y | ei〉k)2 =
1

2
‖x+A∗y‖2k. (7.51)

The vertical part of the Hamiltonian equations are (cf. the second equation of (7.40) with M
replaced by x+y)

ẋ+ ẏ = [x+ y, dH]. (7.52)

The let us compute
dH = x+A∗y︸ ︷︷ ︸

∈k

+Ax+AA∗y︸ ︷︷ ︸
∈z

Now since z is in the center, the second part of dH disappear in the commutator in (7.52) and we
get

ẋ+ ẏ = [x+ y, x+A∗y] = [x,A∗y],

from which we deduce

ẋ = [x,A∗y],

ẏ = 0.

Hence all y components are constant of the motion and we have

y(t) = y0

ẋ = [x,A∗y0] = −[A∗y0, x] = −(ad (A∗y0))x

The solution of the last equation is

x(t) = e−tad (A∗y0)x0. (7.53)

For the horizontal part of the Hamiltonian equations we have

ġ(t) = Lg(t)∗dH(x(t), y(t)) = Lg(t)∗(x(t) +A∗y0︸ ︷︷ ︸
∈k

+Ax(t) +AA∗y0︸ ︷︷ ︸
∈z

). (7.54)

Using the fact that G = Gk ×Gz, it is convenient to write an element of G as g = (g1, g2) where
g1 ∈ Gk and g2 ∈ Gz. Then equation (7.54) splits in the following way

ġ1 = Lg1∗(x(t) +A∗y0) (7.55)

ġ2 = Ax(t) +AA∗y0 (7.56)
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In the second equation we have used the fact that Lg2∗(Ax(t) + AA∗y0) = Ax(t) + AA∗y0, since
we are in an Abelian group. Moreover if g(0) = (g01, g02), then for (7.55) and (7.55) we have the
initial conditions g1(0) = g01 and g2(0) = g02.

Let us solve (7.55). Using (7.53) this equation is reduced to

ġ1 = Lg1∗(e
−t ad (A∗y0)x0 +A∗y0) = Lg1∗e

−t ad (A∗y0)(x0 +A∗y0), (7.57)

where in the last formula we have used the fact that e−t ad (A∗y0)A∗y0 = A∗y0. Using the variation
formula (cf. (6.42)),

et(Y +X) = −→exp
∫ t

0
es adYXds ◦ etY , (7.58)

with Y → −A∗y0 and X → x0 +A∗y0, we get

g1(t) = g01e
t x0et A

∗y0 . (7.59)

For (7.56), using (7.53) and using the fact that Gz is Abelian, we have

g2(t) = g02 +

∫ t

0
(Ax(s) +AA∗y0) ds = g02 +

∫ t

0

(
Ae−sad (A∗y0)x0 +AA∗y0

)
ds. (7.60)

The parameterization by arclength is obtained requiring H = 1
2 . From (7.51) we obtain that

the normal Pontryagin extremals are parametrized by arclength when 〈x0 +A∗y0 |x0 +A∗y0〉 =
‖x0 +A∗y0‖2 = 1.

The controls corresponding to the normal Pontryagin extremals (g1(t), g2(t)) are (cf. Formula
7.50):

ui(t) = 〈x(t) + y0 | ei +Aei〉 = 〈x(t) | ei〉+ 〈y0 |Aei〉 (7.61)

= 〈x(t) +A∗y0 | ei〉 =
〈
e−tad (A∗y0)x0 +A∗y0

∣∣∣ ei
〉
. (7.62)

Exercise 7.73. Study abnormal extremals for this problem.

7.8 Rolling spheres

7.8.1 Rolling with twisting

Consider a sphere of radius 1 in R3 rolling on a plane without slipping. At every time the state of
the system is described by a point on the plane (the projection of its center) and the orientation
of the sphere.

We represent a point on the plane as z = (z1, z2) ∈ R2 and the orientation of the sphere by a
point X ∈ SO(3) representing the orientation of an orthonormal frame attached to the sphere with
respect to the standard orthonormal frame in R3.

Let {e1, e2, e3} be the following basis of the Lie algebra so(3) of SO(3),

e1 =




0 0 0
0 0 −1
0 1 0


 , e2 =




0 0 1
0 0 0
−1 0 0


 , e3 =




0 −1 0
1 0 0
0 0 0


 . (7.63)
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The condition that the sphere is rolling without slipping can be expressed by saying that the
only admissible trajectories in SO(3) × R2 are the horizontal trajectories of the following control
system (here ui(·) ∈ L∞([0, T ],R), for i = 1, 2, 3).





ż1 = u1(t)
ż2 = u2(t)

Ẋ = X(u2(t)e1 − u1(t)e2 + u3(t)e3).

(7.64)

The controls u1(·) and u2(·) correspond to the two rotations of the sphere that produce a movement
in the plane, while the control u3(·) correponds to a twist of the sphere (that produces no movement
in the plane). See Figure 7.4. We would like to solve the following problem.

P: Given an initial and final position in SO(3) × R2, roll the sphere on the plane in such a way

that the initial and final conditions are the given ones and
∫ T
0

√∑3
i=1 ui(t)

2 dt is minimal.

We have the following result.

Proposition 7.74. The projection on the plane (z1, z2) of normal Pontryagin extremals is (up to
time reparameterization) the set of sinusoids on the plane:

{(
z01
z02

)
+

(
cos(a0) − sin(a0)
sin(a0) cos(a0)

)(
f(φ0, b, r, t)

t

)
| a0, φ0 ∈ S1, b, r ≥ 0, z01, z02 ∈ R

}
,

where

f(φ0, b, r, t) =

{
b sin(rt+ φ0) if r > 0
b t if r = 0.

To prove Proposition 7.74 we first prove that the problem define a k⊕ z sub-Riemannian struc-
ture and then we study its normal Pontryagin extremals.

Claim. The problem above is a problem of type k⊕ z.

To prove the claim let us set G = SO(3) × R2. We have T
1

G = so(3) ⊕ R2. Now let f1 = (1, 0)T

and f2 = (0, 1)T be the generators of R2 and define

d = span{f1 − e2, f2 + e1, e3} ⊂ so(3)× R2.

Given a vector v = u1(f1−e2)+u2(f2+e1)+u3e3 ∈ d we define its norm as ‖v‖ =
√
u21 + u22 + u23.

If π : so(3)×R2 → so(3) is the canonical projection, this norm coincides with the norm of ‖π(v)‖so(3),
where ‖·‖so(3) is the standard norm for which {e1, e2, e3} is an orthonormal frame. This norm comes
from a bi-invariant metric as explained in Section 7.7.2.

The corresponding sub-Riemannian problem is then

ġ = g
(
u1(t)(f1 − e2) + u2(t)(f2 + e1) + u3e3

)
, (7.65)

g(0) = g0, g(T ) = g1, (7.66)

∫ T

0

√√√√
3∑

i=1

ui(t)2 dt → min, (7.67)
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where g0, g1 ∈ SO(3) × R2. Writing elements in SO(3) × R2 as pairs g = (X, z), this problem
become exactly (7.64).

If we define the linear application A : so(3)→ R2 via

Ae1 = f2, Ae2 = −f1, Ae3 = 0,

we can write

d = {x+Ax | x ∈ so(3)}.

Remark 7.75. Notice that if we write an element of so(3) as x1e1 + x2e2 + x3e3 and an element of
R2 as y1f1 + y2f2, we can think to A and to its adjoint A∗ as to the rectangular matrices

A =

(
0 −1 0
1 0 0

)
, A∗ =




0 1
−1 0
0 0


 .

Notice that AA∗ = 12×2 while A∗A 6= 13×3. From the expression of A∗ we also get

A∗f1 = −e2, A∗f2 = e1. (7.68)

The problem P is then a k⊕z problem with k = so(3), z = R2. Moreover d, A and the bi-invariant
metric on k, are defined as above.

Normal Pontryagin extremals

Normal Pontryagin extremals are parametrized by arclength if we take x0 ∈ so(3) and y0 ∈ R2

satisfying

‖x0 +A∗y0‖ = 1. (7.69)

Now writing y0 = y01f1 + y02f2 and using (7.68) we have

A∗y0 = A∗(y01f1 + y02f2) =




0 0 −y01
0 0 −y02
y01 y02 0


 .

Hence writing x0 = x01e1 + x02e2 + x03e3, equation (7.69) become

‖(x01 + y02)e1 + (x02 − y01)e2 + x03e3‖ = 1.

It is then convenient to parametrize normal Pontryagin extremals with

y01 ∈ R, y02 ∈ R, θ ∈ [0, π], ϕ ∈ [0, 2π], (7.70)

taking

x01 = −y02 + cos(θ) cos(ϕ)

x02 = y01 + cos(θ) sin(ϕ)

x03 = sin(θ)
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The z part of the normal Pontryagin extremal is given by the formula (7.60), with g2 → (z1, z2)
T ,

i.e.,

(
z1(t)
z2(t)

)
=

(
z01
z02

)
+

∫ t

0

(
Ae−sad (A∗y0)x0 +AA∗y0

)
ds.

=

(
z01
z02

)
+

∫ t

0

(
Ae−s(A

∗y0)x0e
s(A∗y0) +

(
y01
y02

))
ds.

(7.71)

If we fix y01 = y02 = 0, we get

z1(t) = z01 − t cos(θ) sin(ϕ),
z2(t) = z02 + t cos(θ) cos(ϕ).

Otherwise if we set y01 = r cos(a) and y02 = r sin(a), we obtain for r 6= 0,

z1(t) = z01−
1

r
(rt cos2(a) cos(θ) sin(ϕ) + sin(a) cos(a) cos(θ) cos(ϕ)(sin(rt)− rt)+

sin(a)(sin(a) cos(θ) sin(ϕ) sin(rt) + sin(θ) + sin(θ)(− cos(rt)))),

z2(t) = z02+
1

r
(cos(θ)

(
cos(ϕ)

(
rt sin2(a) + cos2(a) sin(rt)

)
+ sin(a) cos(a) sin(ϕ)(sin(rt)− rt)

)
−

cos(a) sin(θ)(cos(rt)− 1).

that is a combination of sinus and cosinus. See Figure 7.5.

Exercise 7.76. Prove that each trajectory (z1(t), z2(t)) is a rototranslation of a sinusoid and that
ϕ determines its initial direction, r its frequence, θ its amplitude and a its rotation on the plane.

The k part of the normal Pontryagin extremal can be obtained with the formula

X(t) = et x0et A
∗y0 .

7.8.2 Rolling without twisting

We now consider a sphere rolling on a plane without slipping and without twisting. Similarly
to what done in Section 7.8, the state space is the group G = SO(3) × R2 whose Lie algebra is
T
1

G = so(3) × R2 and the distribution is still defined by equation (7.65) with the difference that
now we have u3 ≡ 0.

More precisely, the condition that the sphere is rolling without slipping and twisting can be
expressed by saying that the only admissible trajectories in SO(3)×R2 are the horizontal trajectories
of the following control system

ġ = g
(
u1(t)(f1 − e2) + u2(t)(f2 + e1)

)
. (7.72)

Here f1, f2 are the generators of R2 and e1, e2, e3 are given by (7.63). The controls u1(·) and u2(·)
belonging to L∞([0, T ],R) correspond to the rotations of the sphere along the z1 and z2 axis.
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Figure 7.5: A Pontryagin extremals for the rolling sphere with twist

The commutators between f1, f2, e1, e2, e3 are

[f1, f2] = 0

[fi, ej ] = 0, i = 1, 2, j = 1, 2, 3, (7.73)

[e1, e2] = e3, [e2, e3] = e1, [e3, e1] = e2.

We would like to solve the following problem.

P: Given an initial and final position in SO(3) × R2, roll the sphere on the plane in such a way

that the initial and final conditions are the given ones and
∫ T
0

√∑2
i=1 ui(t)

2 dt is minimal.

Remark 7.77. Notice that solving problem P corresponds to find the shortest path on the plane such
that the sphere rolling along that path goes from the prescribed initial condition to the prescribed
final condition. See Figure (7.6).

Contrarily to what happens to the problem of rolling a sphere with twisting (Section 7.8.1),
this time the problem is not of the form k ⊕ z. Indeed the distribution is two dimensional and
it is not projecting well on the compact sub-algebra so(3). We are going to use the general equations.

Normal extremals are solutions of the Hamiltonian system associated with the following Hamil-
tonian

H(p, g) =
1

2

(
〈p, Lg∗(f1 − e2)〉2 + 〈p, Lg∗(f2 + e1)〉2

)
.

The trivialized Hamiltonian is

H(ξ) = 1

2

(
〈ξ, (f1 − e2)〉2 + 〈ξ, (f2 + e1)〉2

)
, ξ ∈ T ∗

1

G.
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shortest path on the plane

u1
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u2
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X ∈ SO(3)

z1

Figure 7.6: The sub-Riemannian problem of rolling a sphere without slipping and twisting.

It is convenient to use the following coordinates,

hf1 = 〈ξ, fi〉 , i = 1, 2, hej = 〈ξ, ej〉 , j = 1, 2, 3.

Notice that, using (7.73) we have

{hf1 , hf2} = 〈ξ, [f1, f2]〉 = 0,

{hfi , hej} = 〈ξ, [fi, ej ]〉 = 0, i = 1, 2, j = 1, 2, 3,

{he1 , he2} = 〈ξ, [e1, e2]〉 = 〈ξ, e3〉 = he3 , {he2 , he3} = he1 , {he3 , he1} = he2 .

Then

H =
1

2

(
(hf1 − he2)2 + (hf2 + he1)

2
)
.

The Hamiltonian equations are

ḣfi = {H, hfi}, i = 1, 2, ḣej = {H, hej}, j = 1, 2, 3. (7.74)

Let us start with the first one

ḣf1 = {H, hf1} =
2∑

i=1

∂H
∂hfi
{hfi , hf1}+

3∑

i=1

∂H
∂hei
{hei , hf1} = 0,

where we have used that hf1 commutes (for the Poisson brackets) with everything. Similarly

ḣf2 = 0,

ḣe1 = (hf1 − he2)he3 ,
ḣe2 = (hf2 + he1)he3 ,

ḣe3 = −hf1he1 − hf2he2 .
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Now if we consider normal Pontryagin extremals parametrized by arc length, i.e., if we work on the
level set {H = 1/2} ≃ S1 × R3, it is convenient to use the coordinates r, α, θ, c defined by

hf1 = r cos(α)

hf2 = r sin(α)

hf1 − he2 = cos(θ + α),

hf2 + he1 = sin(θ + α),

he3 = c.

Normal Pontryagin extremals starting from a given initial condition, are parametrized by points
in {H = 1/2}, i.e., by θ0 ∈ S1, c0 ∈ R and (r0, α0) parametrizing R2 in polar coordinates
(r0 ≥ 0, α ∈ S1).

The Hamiltonian equations are then

ṙ = 0 ⇒ r = r0, (7.75)

α̇ = 0 ⇒ α = α0, (7.76)

θ̇ = c, (7.77)

ċ = −r0 sin(θ). (7.78)

Once that equations (7.77) and (7.78) are solved in function of the initial conditions (r0, θ0, c0),
i.e., once that one gets θ(t; r0, θ0, c0), the controls are given by

u1(t; r0, θ0, c0, α0) = 〈ξ, f1 − e2〉 = hf1 − he2 = cos(θ(t; r0, θ0, c0) + α0)

u2(t; r0, θ0, c0, α0) = 〈ξ, f2 + e1〉 = hf2 + he1 = sin(θ(t; r0, θ0, c0) + α0). (7.79)

Once u1(·) and u2(·) are known, one can compute the corresponding trajectory by integrating
(7.72). However here we are only interesting to the planar part of the normal Pontryagin extremals
starting from z01 and z02, that is given by

z1(t; θ0, c0, α0) = z01 +

∫ t

0
u1(s)ds = z01 +

∫ t

0
cos(θ(s; θ0, c0) + α0)ds, (7.80)

z2(t; θ0, c0, α0) = z02 +

∫ t

0
u2(s)ds = z02 +

∫ t

0
sin(θ(s; θ0, c0) + α0)ds. (7.81)

In the following we refer to (z1(·), z2(·)) as the z-geodesics.

Qualitative analysis of the trajectoris
Equations (7.77) and (7.78) are the equation of a planar pendulum of mass 1, length 1, where r0
represent the gravity. These equations admits an explicit solution in terms of elliptic functions.
However their qualitative behaviour can be understood easily.

First notice that if we consider only z-geodesics starting from the origin and with z′1(0) = 1
and z′2(0) = 0, we can fix z01 = z02 = 0, α0 = −θ0. All other z-geodesics can be obtained by
rototranslations of these ones.

Equation (7.77) and (7.78) admit a first integral that up to a constant is the energy of the
pendulum:

Hp =
1

2
c2 − r0 cos(θ).
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ℓ = 1

θ

g = r0

M = 1

θ

c

−π π

Hp > r0

Hp = r0

Hp = 0

Hp = −r0

c = 2
√
r0

Figure 7.7: Level set of the pendulum for r0 6= 0. The vertical line θ = π is identified with the
veritical line θ = −π. We have also indicated the direction of parameterization that one gets from
the equation θ̇ = c. Notice that the only critical points are (θ, c) = (0, 0) (stable equilibrium) and
(θ, c) = (π, 0) (unstable equilibrium).

Fixed (r0, c0), one compute Hp and the corresponding trajectory in the (θ, c) plane should stay on
this set.

Now let us compute the curvature of the z-geodesics. We have

K =
z′1z

′′
2 − z′2z′′1

((z′1)
2 + (z′2)

2)3/2
= θ′(t; r0, θ0, c0) = c(t; r0, θ0, c0).

Hence c is precisely the curvature of the z-geodesic. Inflection points of z-geodesics corresponds to
times in which c changes sign.

The case r0 = 0. In this case ċ = 0 and θ(t) = θ0 + c0t. The z-geodesic is a circle (if c0 6= 0) or a
straight line (if c0 = 0).

The case r0 > 0. The level sets of Hp are shown in Figure 7.7. There are several types of
trajectories:

• Hp > r0. In this case the pendulum is rotating and θ(·) is monotonic increasing (no inflection
points).

• Hp = r0. We have two cases:
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– If θ0 6= ±π. The pendulum is on the separatrix. The z-geodesic has an inflection point
at infinity.

– If θ0 = ±π. The pendulum stays at the unstable equilibrium (θ, c) = (±π, 0). The
z-geodesic is a straight line.

• Hp ∈ (−r0, r0). In this case the pendulum is oscillating and θ(·) too. The z-geodesic present
inflection points. Such z-geodesics are called “inflectional”.

• Hp = −r0. The pendulum stays at the stable equilibrium (θ, c) = (0, 0). The z-geodesic is a
straight line.

See Figure 7.8.

Evaluating when these normal Pontryagin extremals lose optimality is not an easy problem and it
is outside the purpose of this book. See the bibliographical note.

Exercise 7.78. Find all abnormal extremals for this problem.

7.8.3 Euler’s “cvrvae elasticae”

The z-geodesics for the rolling ball withouting twisting are called Euler’s cvrvae elasticae, since
they are obtained via (7.80) and (7.81) from the solution of equations (7.75), (7.76), (7.77), (7.78),
that are the same equation that one gets while looking for the configurations of an elastic rod on
the plane having a stationary point of elastic energy. See [Eul].

For convenience we re-write the equations here:

ż1 = cos(θ + α0) (7.82)

ż2 = sin(θ + α0) (7.83)

θ̇ = c (7.84)

ċ = −r0 sin(θ) (7.85)

These equations contains several parameters: r0 > 0, α0, and the initial conditions θ(0) = θ0,
c(0) = c0, z1(0) = z01, z2(0) = z02, having the following meaning:

• (z01, z02) is the starting point of the curba elastica;

• θ0 + α0 is the starting angle of the curba elastica;

• θ0 gives the “starting point” of the solution of the pendulum that it is used in the interval
[0, T ];

• r0 and c0 establish the gravity of the pendulum and the level of the Hamiltonian Hp. This
has consequences on the type of curba elastica (inflection, non inflectional etc,. . . ) and on
their “size” on the plane.

We have the following interesting characterization of cvrvae elasticae.

Proposition 7.79. The set of cvrvae elasticae coincides with the set of planar curves parametrized
by planar arclength for which the curvature is an affine function of the coordinates.
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r0 = 0

Hp > 0 Hp = 0

Hp > r0 > 0 non inflectional geodesics

Hp = r0 > 0

separatrice θ0 6= ±π unstable critical point (θ0 = ±π)

Hp ∈ (−r0, r0) inflectional geodesics

Hp = −r0 stable critical point

Figure 7.8: A picture of the z-geodesics. Notice the presence of a periodic trajectory.
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Proof. Let us make the following change of coordinates z1, z2 → x1, x2 where

(
x1
x2

)
=

(
cos(α0) sin(α0)
− sin(α0) cos(α0)

)(
z1
z2

)
.

Then equations (7.82)–(7.85) become

ẋ1 = cos(θ),

ẋ2 = sin(θ),

θ̇ = c,

ċ = −r0 sin(θ).

Hence
ċ = −r0 sin(θ) = −r0ẋ2.

Integrating we obtain
c(t)− c0 = −r0(x2(t)− x2(0)).

Hence

c(t) = c0 − r0(− sin(α0)z1 + cos(α0)z2) + r0(− sin(α0)z01 + cos(α0)z02) = a0 + a1z1 + a2z2.

where
a0 = c0 + r0(− sin(α0)z01 + cos(α0)z02), a1 = r0 sin(α0), a2 = −r0 cos(α0).

One immediately verify that the Jacobian of the transformation c0, r0, α0 → a0, a1, a2 is equal to
r0. However this singularity is only due to the choice of polar coordinates.

Exercise 7.80. Consider the Engel sub-Riemannian problem, i.e., the sub-Riemannian structure
on R4 for which an orthonormal frame is given by the vector fields

X1 = ∂x1 , X2 = ∂x2 − x1∂x3 +
x21
2
∂x4 .

Prove that the Lie algebra generated by X1 and X2 is finite dimensional. Using Theorem 7.1 deduce
that this problem define a sub-Riemannian structure on a Lie group. Find the group law. Study
its normal Pontryagin extremals. Do the same for the Cartan sub-Riemannian problem, i.e., the
sub-Riemannian structure on R5 for which an orthonormal frame is given by the vector fields

X1 = ∂x1 , X2 = ∂x2 − x1∂x3 +
x21
2
∂x4 + x1x2∂x5 .

7.8.4 Rolling spheres: further comments

A regular curve in the Euclidean plane is an elastica if and only if its curvature is an affine function
of the coordinates. In other words, a plane curve is an elastica if and only if it is a normal Pontryagin
extremal of a plane isoperimetric problem with an affine “magnetic field” (see Section 4.4.2).

One can realize that the rolling without slipping or twisting problem looks somehow similar to
the isoperimetric one. The state space is R × R2 for the isoperimetric problem and is SO(3)× R2

for the rolling problem. The horizontal distribution is a complement to the tangent space to R× ·
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and is invariant under translations of the additive group R for the isoperimetric problem; it is a
compliment to the tangent space to SO(3)×· and is invariant under (left) translations of the group
SO(3). The sub-Riemannian length is induced by the Riemannian length in R2 for both problems.
The general framework that contains both problems as well as the problems discussed in Section
7.7.4 is as follows.

Let G be a Lie group. A principal bundle with a structure group G is a locally trivial bundle

N
G−→M where the group G acts freely on N and the orbits of this action are exactly the fibers of

the bundle. The typical example is the bundle of orthonormal frames on a Riemannian manifold
and traditionally a right action of G is considered. In the case of the bundle of oriented orthonormal
frames on an n-dimensional Riemannian manifold the structure group is SO(n); if (v1, . . . , vn) is a
frame and A = {aij}ni,j=1 ∈ SO(n), then the action is defined as

(v1, . . . , vn) · A =

(
n∑

i=1

ai1vi, . . . ,

n∑

i=1

ainvi

)
.

Let g be the Lie algebra of the group G. A connection on the principal bundle N
G−→ M is a

vector distribution on N that is a complement to the tangent spaces to the fibers and is invariant
under the action of G. Recall that right translations of the Lie group are generated by left-invariant
vector fields; hence the tangent space to the fiber at any point is naturally identified with g. Let
Dq ⊂ TqN, q ∈ N be a connection. We have TqN = g⊕Dq; a linear projection ωq : TqN → g such
that kerωq = Dq defines a non-degenerate G-invariant g-valued vector differential form ω on N .

Of course, the construction can be inverted. According to another equivalent definition, a
connection on the principal bundle is a non-degenerate G-invariant g-valued differential form. The
kernel of such a form is the connection in the sense of the first definition.

Let π : N
G−→M be the canonical projection to the base of the bundle and γ : [0, 1]→M be a

smooth curve. Given a point q0 ∈ π−1(γ(0)) there exists a unique horizontal lift qt of γ(t) starting
at q0, i.e., q̇t ∈ Dqt, 0 ≤ t ≤ 1. The point q1 ∈ π−1(γ(1)) is called the parallel transport of q0 along
γ. The parallel transport commutes with the action of G; thus the transport of a point determines
the transport of the whole fiber.

Assume that M is equipped with a Riemannian structure. The length-minimization problem
on the set of curves in M that provide a parallel transport from q0 to the given point q1 is a
isoholonomic problem. The two-dimensional isoperimetric problems, their modification considered
in Section 7.7.4, and the rolling without slipping or twisting problem are just very special cases.
Isoholonomic problems link sub-Riemannian geometry with numerous applications: dynamics of a
particle in a gauge field, optimal shape transformation, and many others.

7.9 Bibliographical note

A basic result in Lie groups theory states that, given a Lie group G with Lie algebra g, there is
a one-to-one correspondence between subalgebras of g and subgroups of G. Theorem 7.1 together
with Proposition 7.18 is a generalization of the above result for finite-dimensional subgroups of the
group of diffeomorphisms (which is not a Lie group). Such a result is certainly known, but we could
not find a reference for that. The proof given here does not use functional analysis tools and it is
original.
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The geodesics for the Heisenberg group were computed first in [Gav77]. The picture of their
end-points at time 1 were shown first in [Bro82] (optimal geodesics) and in [Nac82, GV88] (all
geodesics). The geodesics for free Carnot groups of step 2 were computed first in [Gav77, Bro82].

The double exponential formula (7.46) for geodesics in the d ⊕ s problem was found inde-
pendently by Agrachev [Agr95] and Brockett [Bro99] (this last paper is based on previous works
[Bro73]). It was then intensively studied in [Jur99, Jur01, Jur16, BCG02a, BR08] and in [Mon02]
(see p. 200). A nice geometrical interpretation of these formulas was given in [BZ15b, BZ15a, BZ16].

The formula for geodesics in the k⊕z case is original, although it was used implicitly in [Bes14].
The problem of rolling with twisting was studied by [Bes14]. The problem of rolling without

twisting was formulated in [Ham83] and then studied in [AW86, Jur93]. See also [AS04, Jur97].
Euler’s curvae elasicae were introduced by Euler in [Eul]. The local stability was studied

first by Max Born in [Bor06]. Local and global optimality, in the context of optimal control was
studied in a series of papers by Yuri Sachkov [Sac08b, Sac08a, SS14]. The fact that the set cvrvae
elasticae coincides with the set of planar curves parametrized by planar arclength for which the
curvature is an affine function of the coordinates was first noticed by Vladimir Zakalyukin (personal
communication).

Left-invariant sub-Riemannian structures as defined in this chapter are indeed quite general
thanks to the following result proved by Berestovskii [Ber88]: given a geodesic length space X
such that its isometry group acts transitively on X, then the associated distance is a sub-Finsler
one. More precisely the metric space X is an homogeneous space G/H and there is a left-invariant
distribution D and a left-invariant norm on D such that the distance on the metric space coincides
with the sub-Finsler one.

Classical references for sub-Riemannian problems on Lie groups, or, more in general, for optimal
control problems on Lie groups are [Jur97, Jur16, Blo15].
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Chapter 8

End-point map and exponential map

In Chapter 4 we started to study necessary conditions for the length-minimality of a horizontal
trajectory. First order conditions split candidates into two classes, namely normal and abnormal
extremals. We proved that normal extremal trajectories are indeed geodesics, i.e., short arcs realize
the sub-Riemannian distance.

In this chapter we go further and we study second order conditions. To this purpose, we
introduce the end-point map Eq0 that associates a control u with the final point Eq0(u) of the
admissible trajectory associated with u and starting from q0. Next, we consider the problem of
minimizing the energy J among horizontal curves joining two fixed points q0, q1 ∈ M , written as
the constraint variational problem

min J |E−1
q0

(q1)
, q1 ∈M. (8.1)

It is then natural to introduce Lagrange multipliers. First order conditions recover Pontryagin
extremals, while second order conditions give new information. This viewpoint permits to interpret
candidate abnormal length-minimizers as critical points of the map Eq0 defining the constraint.

Taking advantage of the invariance by reparametrization, when useful, we assume that all the
horizontal trajectories are defined on the same interval I = [0, 1]. Also, since the energy of a
horizontal curve coincides (up to a normalization factor) with the L2-norm of the corresponding
control, it is natural to take L2([0, 1],Rm) as class of admissible controls (cf. the discussion in
Section 3.6), which has a natural Hilbert space structure.

In this chapter we use some classical results of nonlinear analysis on Hilbert and Banach spaces.
We refer the reader to the classical references [Die60] and [Car67].

8.1 The end-point map

In this chapter we always assume that the sub-Riemannian structure is free, i.e., U =M ×Rm for
some m ∈ N. In the following {f1, . . . , fm} denotes a global generating family (recall that every
sub-Riemannian manifold (M,U, f) is equivalent to a free one, cf. Section 3.1.4).

Fix q0 ∈ M . Recall that, for every control u ∈ L2([0, 1],Rm), the corresponding trajectory γu
is the unique maximal solution of the Cauchy problem

γ̇(t) =

m∑

i=1

ui(t)fi(γ(t)), γ(0) = q0. (8.2)
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Let Uq0 ⊂ L2([0, 1],Rm) the set of controls u such that the corresponding trajectory γu starting at
q0 is defined on the interval [0, 1].

Exercise 8.1. (i). Prove that Uq0 is an open subset of L2([0, 1],Rm).
(ii). Let r0 > 0 such that the closed sub-Riemannian ball Bq0(r0) is compact (cf. Corollary 3.37),

and denote by BL2(r0) the ball of radius r0 in L2. Prove that BL2(r0) ⊂ Uq0 .

Definition 8.2. Let (M,U, f) be a free sub-Riemannian manifold, and fix q0 ∈M . The end-point
map based at q0 is the map

Eq0 : Uq0 →M, Eq0(u) = γu(1). (8.3)

where γu : [0, 1]→M is the unique solution of the Cauchy problem (8.2).

Remark 8.3. Similarly one can define the end-point map at time t ∈ R based at q0, denoted by
Etq0 : U tq0 → M and defined by the identity Etq0(u) := γu(t) on the set U tq0 of controls u for which
the corresponding trajectory γu is defined on [0, t].

A first property of the end-point map, which is a consequence of the Chow-Raschevskii theorem,
is its openness.

Exercise 8.4. Prove that Eq0 : Uq0 → M is open at every u ∈ Uq0 . Hint: combine the flow
associated with the control u with the map ψ defined in the proof of Chow-Raschevskii theorem.

We now prove that the end-point map smooth in the Fréchet sense, and we compute explicitly
its first differential.

Proposition 8.5. The end-point map Eq0 is smooth on Uq0. For every u ∈ Uq0 the differential
DuEq0 : L2([0, 1],Rm)→ Tγu(1)M satisfies

DuEq0(v) =

∫ 1

0
(P ut,1)∗fv(t)

∣∣
γu(1)

dt, v ∈ L2([0, 1],Rm). (8.4)

Here P ut,s denotes the flow generated by u and fv(t) =
∑m

i=1 vi(t)fi(q).

From the geometric viewpoint, the differential DuEq0(v) is the integral mean of the vector field
fv(t) defined by v along the trajectory γu, where all the vectors are pushed forward to the same
tangent space Tγu(1)M by P ut,1 (see Figure 8.1). It should be noted that, since Uq0 is an open set of the

vector space L2([0, 1],Rm), the differential is defined on the tangent space TuUq0 ≃ L2([0, 1],Rm).

8.1.1 Regularity of the end-point map: proof of Proposition 8.5.

The smoothness of the end-point map Eq0 : Uq0 → M is equivalent to the smoothness of the map
a ◦Eq0 : Uq0 → R for every smooth scalar function a :M → R. This is equivalent to prove that the
end-point map is smooth in coordinates, adopting the viewpoint of chronological calculus.

Let fu(q) :=
∑m

i=1 uifi(q). The end-point map from q0 can be rewritten as the right chronolog-
ical exponential (cf. Chapter 6)

Eq0(u) = q0 ⊙
−→exp

∫ 1

0
fu(t) dt. (8.5)
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q0

γu(t)

fv(t)

(Pu
t,1)∗

(Pu
t,1)∗fv(t)

γu(1)

Tγu(1)M

Figure 8.1: Differential of the end-point map.

We will show that for every control u in the set Uq0 we can write a Taylor expansion for Eq0 around
u and control the remainder at the corresponding order.

Step 1. Let us first compute the Taylor expansion of Eq0 at the control u = 0. We omit the
subscript q0 and write

E(v(·)) = −→exp
∫ 1

0
fv(t) dt. (8.6)

Using the Volterra series expansion (cf. Section 6.4), let us split it into the sum of the two terms

E(v(·)) = SN (v) +RN (v), (8.7)

where, for fixed N ≥ 1

SN (v) = Id +

N−1∑

k=1

∫
· · ·
∫

∆k(1)

fv(sk) ⊙ · · · ⊙ fv(s1)ds,

RN (v) =

∫
· · ·
∫

∆N (1)

P v0,sN ⊙ fv(sN ) ⊙ · · · ⊙ fv(s1)ds.

By linearity of fv with respect to v, the integrand in the k-th term in the sum SN is k-linear as
a function of v(s1), . . . , v(sk). Moreover, applying Theorem 6.20 with t = 1, for every α ∈ N and
compact set K ⊂M

‖RN (v)a‖α,K ≤
C

N !
eC‖v‖2‖v‖N2 ‖a‖α+N,K ′ , (8.8)

for some K ′ compact set containing K and some constant C = Cα,N,K ′ > 0. We stress that the
previous inequality holds (for suitable values of the constants) for every N ∈ N. In the particular
case when N = 2 it gives

∥∥∥∥
(
E(v(·)) −

∫ 1

0
fv(t)dt

)
a

∥∥∥∥
α,K

≤ CeC‖v‖2‖v‖22‖a‖α+1,K ′ . (8.9)

Since a is arbitrary, choosing α = 0 and a compact set K containing the point q0 one has, for v
sufficiently small ∣∣∣∣Eq0(v(·)) −

∫ 1

0
fv(t)(q0)dt

∣∣∣∣ ≤ CeC‖v‖2‖v‖22, (8.10)
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the inequality being meaningful in coordinates. Since the map v 7→
∫ 1
0 fv(t)(q0)dt is linear and the

right hand side is o(‖v‖2), the end-point map is differentiable at u = 0 and (8.4) holds.

Estimates proving higher order differentiability at u = 0 are proved in a similar way.

Step 2. To compute the Taylor expansion at an arbitrary u ∈ Uq0 , let us consider the expansion
in a neighborhood of v = 0 of the map

v 7→ Eq0(u+ v) = q0 ⊙
−→exp

∫ 1

0
f(u+v)(t)dt.

Using the variation formula (6.36), one can write

−→exp
∫ 1

0
f(u+v)(t)dt =

−→exp
∫ 1

0
fu(t) + fv(t)dt

= −→exp
∫ 1

0

(
−→exp

∫ t

0
ad fu(s)ds

)
fv(t)dt ⊙

−→exp
∫ 1

0
fu(t)dt (8.11)

= −→exp
∫ 1

0
(P u0,t)

−1
∗ fv(t)dt ⊙ P u0,1.

We can then rewrite

Eq0(u+ v) = Guq0(v) ⊙ P u0,1, (8.12)

where Guq0 : Uq0 →M is the map defined as follows (notice that P u0,1 is a fixed diffeomorphism that
does not depend on v)

Guq0(v) := q0 ⊙
−→exp

∫ 1

0
(P u0,t)

−1
∗ fv(t)dt.

Then, the expansion of (8.12) at v = 0 is obtained by the Volterra expansion of the map Guq0
with respect to v. Using the same computations and estimates as in Step 1, replacing fv(t) with
(P u0,t)

−1
∗ fv(t), one obtains

D0G
u
q0(v) = q0 ⊙

∫ 1

0
(P u0,t)

−1
∗ fv(t)dt =

∫ 1

0
(P u0,t)

−1
∗ fv(t)(q0)dt, (8.13)

and, by composition (recall that G ⊙P = P ◦G in chronological notation)

DuEq0(v) = (P u0,1)∗ ◦D0G
u
q0(v) = (P u0,1)∗

∫ 1

0
(P u0,t)

−1
∗ fv(t)(q0)dt

=

∫ 1

0
(P ut,1)∗fv(t)(q1)dt.

where we denote q1 := Eq0(u). By similar computations one obtains higher order Taylor polynomial
and a control on the corresponding remainder.

Remark 8.6. Notice that the decomposition of the non-autonomous flow associated with u + v
into the flow associated with u and a correction term obtained via the variation formula in (8.11)
translates in “chronological terms” the change of variables argument used in the ODE proof of
Proposition 3.59 (cf. Section 3.4.2).
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8.2 Lagrange multipliers rule

Let U be an open set of an Hilbert space H, and let M be a smooth n-dimensional manifold.
Consider two smooth maps

ϕ : U → R, F : U →M. (8.14)

In this section we discuss the Lagrange multipliers rule for the minimization of the function ϕ under
the constraint defined by F . More precisely, we want to write a necessary condition satisfied by
the solutions of the problem

min ϕ
∣∣
F−1(q)

, q ∈M. (8.15)

Theorem 8.7. Assume u ∈ U is solution of the minimization problem (8.15). Then there exists
(λ, ν) ∈ T ∗

qM × R such that (λ, ν) 6= (0, 0) and

λDuF + νDuϕ = 0. (8.16)

We explicitly remark that formula (8.16) means that for every v ∈ H = TuU one has

〈λ,DuF (v)〉+ νDuϕ(v) = 0.

The compact notation in (8.16) will be used in the sequel, with analogous meaning.

Proof. Let us prove that if u ∈ U is solution of the minimization problem (8.15), then u is a critical
point for the extended map Ψ : U →M ×R defined by Ψ(v) = (F (v), ϕ(v)).

Indeed, if u is not a critical point for Ψ, then DuΨ is surjective (notice that target space is finite-
dimensional). By (a corollary of) the inverse function theorem, this implies that Ψ is locally open
at u. In particular, for every neighborhood V of u, there exists v ∈ V such that F (v) = F (u) = q
and ϕ(v) < ϕ(u), that contradicts that u is a constrained minimum.

HenceDuΨ = (DuF,Duϕ) is not surjective and there exists a non zero covector (λ, ν) ∈ T ∗
qM×R

annihilating the image of DuΨ, i.e., such that λDuF + νDuϕ = 0.

8.3 Pontryagin extremals via Lagrange multipliers

Applying the previous result to the case when F = Eq0 is the end-point map based at q0 and ϕ = J
is the sub-Riemannian energy, one immediately obtains the following result.

Corollary 8.8. Assume that a control u ∈ U is a solution of the minimization problem (8.1), then
there exists (λ, ν) ∈ T ∗

qM × R such that (λ, ν) 6= (0, 0) and

λDuEq0 + νDuJ = 0. (8.17)

Recall that, since J(u) = 1
2‖u‖2L2 , then DuJ(v) = (u, v)L2 and, identifying L2([0, 1],Rm) with

its dual, we have DuJ = u.
We now prove that these necessary conditions are equivalent to those obtained in Chapter 4.

Proposition 8.9. We have the following:

(N) (u(t), λ(t)) is a normal extremal if and only if there exists λ1 ∈ T ∗
q1M , where q1 = Eq0(u),

such that λ(t) = (P ut,1)
∗λ1 for all t, and u satisfies (8.17) with (λ, ν) = (λ1,−1), namely

λ1DuEq0 = u. (8.18)
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(A) (u(t), λ(t)) is an abnormal extremal if and only if there exists λ1 ∈ T ∗
q1M , where q1 = Eq0(u),

such that λ(t) = (P ut,1)
∗λ1 for all t, and u satisfies (8.17) with (λ, ν) = (λ1, 0), namely

λ1DuEq0 = 0. (8.19)

Proof. Let us prove (N). The proof of (A) is similar.

Recall that the pair (u(t), λ(t)) is a normal extremal if the curve λ(t) satisfies λ(t) = (P ut,1)
∗λ(1)

(that is equivalent to say that λ(t) is a solution of the Hamiltonian system, cf. Chapter 4) and
〈λ(t), fi(γ(t))〉 = ui(t) for every i = 1, . . . ,m, where γ(t) = π(λ(t)).

Assume that u satisfies (8.18) for some λ1, let us prove that the curve defined by λ(t) := (P ut,1)
∗λ1

is a normal extremal. Condition (8.18) means that for every v ∈ L2([0, T ],Rm) we have

〈λ1,DuEq0(v)〉 = (u, v)L2 . (8.20)

Using (8.4), the left hand side is rewritten as follows

〈λ1,DuEq0(v)〉 =
∫ 1

0

〈
λ1, (P

u
t,1)∗fv(t)(q1)

〉
dt =

∫ 1

0

〈
(P ut,1)

∗λ1, fv(t)(γ(t))
〉
dt

=

∫ 1

0

〈
λ(t), fv(t)(γ(t))

〉
dt =

∫ 1

0

m∑

i=1

〈λ(t), fi(γ(t))〉 vi(t)dt,

where we used that γ(t) = (P ut,1)
−1(q1). Then (8.20) becomes

∫ 1

0

m∑

i=1

〈λ(t), fi(γ(t))〉 vi(t)dt =
∫ 1

0

m∑

i=1

ui(t)vi(t)dt. (8.21)

Since v is arbitrary, this implies 〈λ(t), fi(γ(t))〉 = ui(t) for a.e. t ∈ [0, 1] and every i = 1, . . . ,m.
Following the same computations in the oppposite direction we have that if (u(t), λ(t)) is a normal
extremal then the identity (8.18) is satisfied.

Exercise 8.10. Prove that if γ is a length-minimizer associated with the minimal control u, which
admits two different normal lifts, then it also admits an abnormal lift.

8.4 Critical points and second order conditions

In this section, we develop second order conditions for constrained critical points, when the con-
straint is defined by a submersion (at least locally). In the Section 8.5 we will apply this results
in the sub-Riemannian case, obtaining second order conditions for normal extremals (that are not
abnormal).

In what follows H denotes a separable Hilbert space. Recall that a smooth submanifold of H is
a subset V ⊂ H such that for every point v ∈ V there is an open neighborhood Y of v in H and a
smooth diffeomorphism φ : V → W to an open subset W ⊂ H such that φ(V ∩ Y) = W ∩ U for U
a closed linear subspace of H.

We now recall the implicit function theorem in this setting.

220



Proposition 8.11 (Implicit function theorem). Let M be a smooth manifold, H be an Hilbert
space and let F : H → M be a smooth map. Fix q ∈ M and set Vq = F−1(q). If the Fréchet
differential DuF : H → TqM is surjective for every u ∈ Vq, then Vq is a smooth submanifold whose
codimension is equal to the dimension of M . Moreover TuVq = kerDuF .

We now define critical points.

Definition 8.12. Let ϕ : H → R be a smooth function and N ⊂ H be a smooth submanifold.
Then u ∈ N is called a critical point of ϕ

∣∣
N

if Duϕ
∣∣
TuN

= 0.

We start with a geometric version of the Lagrange multipliers rule, which characterizes con-
strained critical points. This construction is then used later to develop a second order analysis.

Proposition 8.13 (Lagrange multipliers rule). Let U be an open subset of H and assume that
u ∈ U is a regular point of the smooth map F : U → M . Let q = F (u). Then u is a critical point
of ϕ

∣∣
F−1(q)

if and only if it exists λ ∈ T ∗
qM such that

λDuF = Duϕ. (8.22)

Proof. Recall that the differential of F is the map

DuF : TuU → TqM, where q = F (u).

Since u is a regular point, DuF is surjective and, by implicit function theorem, the level set Vq :=
F−1(q) is a smooth submanifold (of codimension n = dimM), with u ∈ Vq and TuVq = kerDuF .
By definition, u is a critical point of ϕ

∣∣
Vq

if and only if Duϕ
∣∣
TuVq

= Duϕ
∣∣
kerDuF

= 0, i.e.,

kerDuF ⊂ kerDuϕ. (8.23)

Using Exercice 8.14, (8.23) is equivalent to the existence a linear map λ : TqM → R (namely
λ ∈ T ∗

qM) that makes the following diagram commutative.

U ≃ TuU

duϕ
%%❑

❑❑
❑❑

❑❑
❑❑

❑❑

DuF // TqM

λ
��
R

(8.24)

Exercise 8.14. Let V be a separable Hilbert spaces and W be a finite-dimensional vector space.
Let G : V → W and φ : V → R two linear maps such that kerG ⊂ ker φ. Then show that there
exists a linear map λ :W → R such that λ ◦G = φ.

Next we consider second order derivatives. Let U be an open set of an Hilbert space H. Recall
that, for a smooth function ϕ : U → R, the first and second differential are defined in the following
way, respectively

Duϕ(v) =
d

ds

∣∣∣∣
s=0

ϕ(u+ sv), D2
uϕ(v, v) =

d2

ds2

∣∣∣∣
s=0

ϕ(u+ sv). (8.25)
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For a smooth map F : U →M whose range is a smooth finite-dimensional manifold M , the similar
formulas

DuF (v) =
d

ds

∣∣∣∣
s=0

F (u+ sv), D2
uF (v, v) =

d2

ds2

∣∣∣∣
s=0

F (u+ sv). (8.26)

give a well-defined first differential DuF : H → TF (u)M , while the second differential D2
uF depends

on the choice of a set of coordinates on M , in general.
For a smooth function ψ defined on a submanifold V of H, we can no longer use the linear

structure to define differentials as in (8.25)-(8.26). The first differential of a smooth function
ψ : V → R at a point u ∈ V is well-defined as

Duψ : TuV → R, Duψ(v) =
d

ds

∣∣∣∣
s=0

ψ(w(s)),

where w : (−ε, ε)→ V is a curve that satisfies w(0) = u, ẇ(0) = v.
For the second differential things are more delicate. Indeed the similar formula

v ∈ TuV 7→
d2

ds2

∣∣∣∣
s=0

ψ(w(s)), (8.27)

where w : (−ε, ε) → V is a curve that satisfies w(0) = u, ẇ(0) = v, is well-defined (i.e., the right
hand side depends only on v) only if u is a critical point of ψ. If this is not the case, the quantity
(8.27) depends also on the second derivative of w, as it is easily checked.

In conclusion, if u is a critical point of ψ : V → R (i.e., Duψ = 0) the second order differential
(8.27) is a well-defined quadratic form TuV, that is called the Hessian of ψ at u:

Hessu ψ : TuV → R, v 7→ d2

ds2

∣∣∣∣
s=0

ψ(w(s)). (8.28)

Remark 8.15. If ψ = ϕ|V is the restriction on V of a function ϕ : H → R defined globally on H,
then Duψ coincides with the restriction of the differential defined on the ambient space H, namely
Duψ = Duφ|TuV .

On the other hand, the Hessian of ψ = ϕ|V (defined at a critical point u) does not coincide, in
general, with the restriction of the second differential of ϕ to the tangent space TuV, as we now
discuss.

Let F : U → M and ϕ : U → R be smooth, and consider the restriction ψ = ϕ
∣∣
Vq

where

Vq = F−1(q) is a smooth submanifold of H. Using that TuF
−1(q) = kerDuF , the Hessian (at a

critical point u) is the well-defined quadratic form

Hessu

(
ϕ
∣∣
F−1(q)

)
: kerDuF → R

that is computed in terms of the second differentials of ϕ and F (defined as in (8.25)-(8.26)) as
follows.

Proposition 8.16. Let ϕ : U → R and F : U → M be smooth. Fix q ∈ M and assume that F is
a submersion on F−1(q). Assume u is a critical point for ϕ

∣∣
F−1(q)

. Then for all v ∈ kerDuF we

have
Hessu

(
ϕ
∣∣
F−1(q)

)
(v) = D2

uϕ(v, v) − λD2
uF (v, v), (8.29)

where λ ∈ T ∗
qM satisfies the identity λDuF = Duϕ.
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Remark 8.17. We stress that in (8.29), while the left hand side is a well-defined object, in the right
hand side D2

uϕ is well-defined thanks to the linear structure of H, while D2
uF needs also a choice

of coordinates in the manifold M .

Proof of Proposition 8.16. By assumption F−1(q) ⊂ U is a smooth submanifold in a Hilbert space.
Fix u ∈ F−1(q) and consider a smooth path w(s) in U such that w(0) = u and w(s) ∈ F−1(q) for
all s. Fixing some local coordinates in a neighborhood of q in M , and differentiating twice with
respect to s the identity F (w(s)) = q, we have

DuF (u̇) = 0, D2
uF (u̇, u̇) +DuF (ü) = 0. (8.30)

where we denoted by u̇ = ẇ(0) and ü = ẅ(0). Analogous computations for ϕ gives

Hessu

(
ϕ
∣∣
F−1(q)

)
(u̇) =

d2

ds2

∣∣∣∣
s=0

ϕ(w(s))

= D2
uϕ(u̇, u̇) +Duϕ(ü)

= D2
uϕ(u̇, u̇) + λDuF (ü) (by λDuF = Duϕ)

= D2
uϕ(u̇, u̇)− λD2

uF (u̇, u̇) (by (8.30))

8.4.1 The manifold of Lagrange multipliers

As before, let us consider two smooth maps ϕ : U → R and F : U → M defined on an open set U
of a separable Hilbert space H.

Definition 8.18. We say that a pair (u, λ), with u ∈ U and λ ∈ T ∗M , is a Lagrange point for the
pair (F,ϕ) if λ ∈ T ∗

F (u)M and Duϕ = λDuF . We denote the set of all Lagrange points by CF,ϕ.
More precisely

CF,ϕ = {(u, λ) ∈ U × T ∗M | F (u) = π(λ), Duϕ = λDuF}. (8.31)

The set CF,ϕ is a well-defined subset of the vector bundle F ∗(T ∗M) on U , that we recall is defined
as follows (cf. also Definition 2.54)

F ∗(T ∗M) = {(u, λ) ∈ U × T ∗M | F (u) = π(λ)}. (8.32)

Under the following regularity conditions on the pair (F,ϕ), the set CF,ϕ is a smooth subman-
ifold.

Definition 8.19. The pair (F,ϕ) is said to be a Morse pair (or a Morse problem) if 0 is a regular
value for the smooth map

θ : F ∗(T ∗M)→H∗ ≃ H, θ(u, λ) = Duϕ− λDuF. (8.33)

where we are using the standard identification of H with its dual H∗.

Remark 8.20. Notice that, if M is a single point, then F is the trivial map and with this definition
we have that (F,ϕ) is a Morse pair if and only if ϕ is a Morse function. Indeed in this case DuF = 0,
and 0 is a regular value for θ if, by definition, the second differential D2

uϕ is non-degenerate.
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Proposition 8.21. If (F,ϕ) defines a Morse problem, then CF,ϕ is a smooth manifold in F ∗(T ∗M).
Moreover dimCF,ϕ = dimM = n.

Notice that CF,ϕ = θ−1(0) and, by definition of Morse pair, 0 is a regular value of θ. The fact
that CF,ϕ is a smooth manifold follows from the following version of the implicit function theorem.

Lemma 8.22. Let N be a smooth Hilbert manifold and H a Hilbert space. Consider a smooth map
f : N →H and assume that 0 is a regular value of f . Then f−1(0) is a smooth submanifold of N .

If the dimension of U , the target space of θ, were finite, a simple dimensional argument would
permit to compute the dimension of CF,ϕ = θ−1(0) (cf. Proposition 8.11). Indeed, since the
differential of θ is surjective we would have that

dim F ∗(T ∗M)− dim CF,ϕ = dim U ,

so we could compute the dimension of CF,ϕ

dim CF,ϕ = dim F ∗(T ∗M)− dim U
= (dim U + rankT ∗M)− dim U
= rankT ∗M = n.

However, in the case dim U = +∞, the above argument is not valid, so we need the following
explicit argument.

Proof of Proposition 8.21. To prove the statement, let us choose a set of coordinates λ = (ξ, x) in
T ∗M . Then a triple (u, ξ, x) in F ∗(T ∗M) belongs to CF,ϕ if and only if it satisfies the following
equations {

Duϕ− ξDuF = 0

F (u) = x
(8.34)

where here ξ is thought as a row vector (which we denote by Rn∗). To compute dimCF,ϕ, it will be
enough to compute the dimension of its tangent space T(u,ξ,x)CF,ϕ at a every point (u, ξ, x). The
tangent space T(u,ξ,x)CF,ϕ is described in coordinates by the set of points (u′, ξ′, x′) satisfying the
equations1 {

D2
uϕ(u

′, ·)− ξD2
uF (u

′, ·)− ξ′DuF (·) = 0

DuF (u
′) = x′

(8.35)

where here D2
uϕ and D2

uF are the bilinear maps associated with the quadratic forms defined in
(8.25)-(8.26). Let us denote Q : H → H∗ ≃ H the linear map defined by

Q(u′) = D2
uϕ(u

′, ·)− ξD2
uF (u

′, ·). (8.36)

Since Q is defined by second derivatives of the maps F and ϕ, which are smooth, it is a symmetric
operator on the Hilbert space H.

The definition of Morse problem is immediately rewritten as follows: the pair (F,ϕ) defines a
Morse problem if and only if the following map is surjective.

Θ : H× Rn∗ → H∗ ≃ H, Θ(u′, ξ′) = Q(u′)−B(ξ′). (8.37)

1if a submanifold C of a manifold Z is described as the set {z ∈ Z | Ψ(z) = 0}, then its tangent space TzC at a
point z ∈ C is described by the linear equation {z′ ∈ Z | DzΨ(z′) = 0}.
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where we denoted with B : Rn∗ →H∗ ≃ H the linear map

B(ξ′) = ξ′DuF (·).

Notice that the first equation in (8.35) coincides with Θ = 0. As a result, for each (u′, ξ′) ∈ kerΘ
there exists a unique (u′, ξ′, x′) ∈ T(u,ξ,x)CF,ϕ by setting x′ = DuF (u

′). It follows that dimCF,ϕ =
dimkerΘ. Since Q is self-adjoint, we have

H = kerQ⊕ imQ, dimkerQ = codim imQ.

Using that Θ is surjective and dim(imB) ≤ n we get that

dimkerQ = codim imQ ≤ dim imB ≤ n.

Then kerQ is finite dimensional (in particular imQ is closed in H and H = kerQ⊕ imQ).
If we denote with πker : H → kerQ and πim : H → imQ the orthogonal projection onto the

two subspaces, it is easy to see that

Θ(u′, ξ′) = 0 ⇐⇒
{
πkerB(ξ′) = 0,

πimB(ξ′) = Q(u′).

Moreover πkerB : Rn∗ → kerQ is a surjective linear map between finite-dimensional spaces (the
surjectivity is a consequence of the fact that Θ is surjective, and the symmetry of Q as operator
on H). In particular we have dimker (πkerB) = n− dimkerQ. Then we get the identity

dimkerΘ = dimkerQ+ dimker (πkerB) = dimkerQ+ (n− dimkerQ) = n,

since πkerB : Rn → kerQ is a surjective map. It follows that dimCF,ϕ = n.

As a consequence of Proposition 8.21, we have a convenient criterion to check whether a pair
(F,ϕ) defines a Morse problem.

Lemma 8.23. The pair (F,ϕ) defines a Morse problem if and only if for every u ∈ U we have

(i) imQ is closed,

(ii) kerQ ∩ kerDuF = {0},
where Q denotes the operator defined in (8.36).

Proof. Assume that (F,ϕ) is a Morse problem. Then, arguing as in the proof of Proposition 8.21,
imQ has finite codimension, hence is closed, and (i) is proved. Moreover, let w ∈ kerQ ∩ kerDuF .
Then Q(w) = 0 and DuF (w) = 0. Hence, for every u′, ξ′ one has

(u′, Q(w))H − ξ′DuF (w) = 0, ∀ (u′, ξ′).

Since Q is self-adjoint, we can rewrite the previous identity as

(Q(u′), w)H − ξ′DuF (w) = 0, ∀ (u′, ξ′),

This implies that w ∈ U is orthogonal to imΘ. Since (F,ϕ) is a Morse problem, then the image
of the differential of the map (8.37) is surjective, hence w = 0. This implies (ii). The converse
implications are proved similarly.
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Definition 8.24. Let M,N be n-dimensional manifolds. An immersion F : N → T ∗M is said to
be a Lagrange immersion if F ∗σ = 0, where σ denotes the standard symplectic form on T ∗M .

Let us consider now the projection map Fc : CF,ϕ −→ T ∗M defined by:

Fc(u, λ) = λ.

Proposition 8.25. If the pair (F,ϕ) defines a Morse problem, then Fc is a Lagrange immersion.

Proof. First prove that (i) Fc is an immersion and then (ii) F ∗
c σ = 0.

(i). Recall that Fc : CF,ϕ → T ∗M where

CF,ϕ = {(u, ξ, x) | equations (8.34) hold}.

The differential D(u,λ)Fc : T(u,λ)CF,ϕ → TλT
∗M is defined by the linearization of equations (8.34),

and in a coordinate set where λ = (ξ, x) we have

T(u,λ)CF,ϕ = {(u′, ξ′, x′) | equations (8.35) hold},

and D(u,λ)Fc(u
′, ξ′, x′) = (ξ′, x′). By (8.35), it easily seen that

D(u,λ)Fc(u
′, ξ′, x′) = 0 iff Q(u′) = DuF (u

′) = 0.

Since (F,ϕ) defines a Morse problem we have by Lemma 8.23 that u′ = 0. This proves that the
differential of Fc is injective at every point, i.e., Fc is an immersion.

(ii). Since σ = ds, where s is the tautological form, and since the pullback commutes with
the differential, we have F ∗

c σ = dF ∗
c s, it is sufficient to show that F ∗

c s is closed. Let us show the
identity

F ∗
c s = D(ϕ ◦ πU)

∣∣
CF,ϕ

.

where πU denotes the canonical projection of CF,ϕ over U . By definition of the map Fc and
F ∗(T ∗M), the following diagram is commutative:

CF,ϕ

πU
��

Fc // T ∗M

π

��
U

F
//M

(8.38)

Moreover, notice that if φ : M → N is smooth and ω ∈ Λ1(N), by definition of pull-back we have
(φ∗ω)q = ωφ(q) ◦Dqφ. Hence we have

(F ∗
c s)(u,λ) = sλ ◦D(u,λ)Fc

= λ ◦ π∗ ◦D(u,λ)Fc (by sλ = λ ◦ π∗)
= λ ◦DuF ◦ πU∗ (by (8.38))

= Du(ϕ ◦ πU ) (by (8.22), for (u, λ) ∈ CF,ϕ)
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Definition 8.26. The set LF,ϕ ⊂ T ∗M of Lagrange multipliers associated with the pair (F,ϕ) is
the image of CF,ϕ under the map Fc. More precisely

LF,ϕ = {λ ∈ T ∗M | ∃u ∈ U : λDuF = Duϕ}. (8.39)

From Proposition 8.25 it follows that, if LF,ϕ is a smooth submanifold, then it is a Lagrangian
submanifold of T ∗M , i.e., σ|LF,ϕ

= 0.
Collecting the results obtained above, we have the following proposition.

Proposition 8.27. Let (F,ϕ) be a Morse pair and assume (u, λ) is a Lagrange point such that u
is a regular point for F . Let q = F (u) = π(λ). Then the following properties are equivalent:

(i) Hessu

(
ϕ
∣∣
F−1(q)

)
is degenerate,

(ii) (u, λ) is a critical point for the map π ◦ Fc : CF,ϕ →M ,

Moreover, if LF,ϕ is a submanifold, then (i) and (ii) are equivalent to

(iii) λ is a critical point for the map π
∣∣
LF,ϕ

: LF,ϕ →M .

Notice that the map π ◦ Fc can be regarded as a restriction F
∣∣
CF,ϕ

in the sense of diagram

(8.38).

Proof. Recall that F−1(q) is a smooth submanifold and Tu(F
−1(q)) = kerDuF . From Proposi-

tion 8.16 that we have the following expression for the Hessian of the restriction

Hessu

(
ϕ
∣∣
F−1(q)

)
(v) = (Q(v), v)H, ∀ v ∈ kerDuF.

Here Q is the linear operator defined in (8.36), and (·, ·)H denotes the inner product in H. Assume

that Hessu

(
ϕ
∣∣
F−1(q)

)
is degenerate, i.e., there exists a non zero u′ ∈ kerDuF such that

(Q(u′), v)H = 0, ∀ v ∈ kerDuF.

This means that Q(u′) is orthogonal (with respect to the inner product in H) to kerDuF . In other
words Q(u′) is a linear combination of the rows of the Jacobian matrix of F , namely there exists a
row vector ξ′ such that

(Q(u′), ·)H = ξ′DuF (·).
Hence (u′, ξ′) is in the kernel of the map Θ defined in (8.37), hence the differential of the map
π ◦ Fc : CF,ϕ →M is not surjective, and (i) implies (ii). The converse is proved similarly.

Notice finally that, if LF,ϕ is a submanifold, then π
∣∣
LF,ϕ

is well-defined and (ii) is equivalent to

(iii) since Fc is an immersion.

Remark 8.28. Notice that, even without requiring that (F,ϕ) is a Morse problem, the previous
arguments shows the inclusion

kerQ ∩ kerDuF ⊂ ker Hessu(ϕ|F−1(q)). (8.40)

Then, if one can prove that Hessu(ϕ|F−1(q)) is non-degenerate, one proves at the same time that
the corresponding pair (F,ϕ) is a Morse pair.
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8.5 Sub-Riemannian case

In this section we want to specify the theory of Morse problems to the case of sub-Riemannian
normal extremal. Hence, in the language of the previous section, we consider the pair (F,ϕ) where
ϕ is the energy functional J defined by J(u) = 1

2

∫ 1
0 |u(t)|2dt and F is the end-point map Eq0 .

We already characterized critical points by means of Lagrange multipliers, now we want to
consider second order informations. We start by computing the Hessian of the restriction J

∣∣
E−1

q0
(q1)

.

In what follows we assume q0 to be fixed and we write E = Eq0 .

Lemma 8.29. Let q1 ∈M and (u, λ) be a critical point of J
∣∣
E−1(q1)

. Then for every v ∈ kerDuF

Hessu

(
J
∣∣
E−1(q1)

)
(v) = ‖v‖2L2 −

〈
λ,D2

uE(v, v)
〉
, (8.41)

where

D2
uE(v, v) = 2

∫∫

0≤s≤t≤1

[(P us,1)∗fv(s), (P
u
t,1)∗fv(t)](q1) dsdt. (8.42)

and P ut,s denotes the non-autonomous flow defined by the control u.

Proof. By Proposition 8.16 we have

Hessu

(
J
∣∣
E−1(q1)

)
(v) = D2

uJ(v, v) − λD2
uE(v, v).

It is easy to compute derivatives of J . Indeed we can rewrite it as J(u) = 1
2(u, u)L2 , hence

DuJ(v) = (u, v)L2 , D2
uJ(v, v) = (v, v)L2 = ‖v‖2L2 , ∀ v ∈ kerDuE.

It remains to compute the second derivative of the end-point map. Following the arguments con-
tained in the proof of Proposition 8.5 and considering the Volterra expansion up to second order
one gets

D2
uE(v, v) = 2 q1 ⊙

∫∫

0≤s≤t≤1

(P us,1)∗fv(s) ⊙ (P ut,1)∗fv(t)dsdt. (8.43)

To end the proof we use the following lemma on chronological calculus, which we will use to
symmetrize the right hand side of (8.43).

Lemma 8.30. Let Xt be a non-autonomous vector field on M . Then

∫∫

0≤s≤t≤1

Xs ⊙Xtdsdt =
1

2

∫ 1

0
Xsds ⊙

∫ 1

0
Xtdt+

1

2

∫∫

0≤s≤t≤1

[Xs,Xt]dsdt. (8.44)
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Proof of the Lemma. We have

2

∫∫

0≤s≤t≤1

Xs ⊙Xtdsdt =

∫∫

0≤s≤t≤1

Xs ⊙Xtdsdt+

∫∫

0≤s≤t≤1

Xs ⊙Xtdsdt

−
∫∫

0≤s≤t≤1

Xt ⊙Xsdsdt+

∫∫

0≤s≤t≤1

Xt ⊙Xsdsdt

=

∫∫

0≤s≤t≤1

Xs ⊙Xtdsdt+

∫∫

0≤s≤t≤1

[Xs,Xt]dsdt+

∫∫

0≤s≤t≤1

Xt ⊙Xsdsdt

=

∫ 1

0

∫ 1

0
Xs ⊙Xtdsdt+

∫∫

0≤s≤t≤1

[Xs,Xt]dsdt

=

∫ 1

0
Xsds ⊙

∫ 1

0
Xtdt+

∫∫

0≤s≤t≤1

[Xs,Xt]dsdt.

Using Lemma 8.30 we obtain from (8.43)

D2
uE(v, v) = q1 ⊙ 2

∫∫

0≤s≤t≤1

[(P us,1)∗fv(s), (P
u
t,1)∗fv(t)]dsdt (8.45)

where we used that q1 ⊙

∫ 1
0 (P

u
t,1)∗fv(t)dt = 0 since v ∈ kerDuE.

Proposition 8.31. The pair (E, J) defined by the sub-Riemannian problem is a Morse pair.

Proof. We use the characterization of Lemma 8.23. We have to show that

im
(
Id− λD2

uE
)
is closed, ker

(
Id− λD2

uE
)
∩ ker (DuE) = {0}. (8.46)

Using the notation of Lemma 8.29, and defining gtv := (P ut,1)∗fv, we can write

DuE(v) = q1 ⊙

∫ 1

0
gtv(t)dt.

Fix any smooth function a such that dq1a = λ. Then

λD2
uE(v, v) = 2q1 ⊙

∫∫

0≤s≤t≤1

gsv(s) ⊙ gtv(t)dsdt ⊙ a (8.47)

= q1 ⊙

∫∫

0≤s≤t≤1

gsv(s) ⊙ gtv(t)dsdt ⊙ a+

∫∫

0≤t≤s≤1

gtv(t) ⊙ gsv(s)dsdt ⊙ a (8.48)

= q1 ⊙

∫ 1

0

∫ t

0
gsv(s) ⊙ gtv(t)dsdt ⊙ a+

∫ 1

0

∫ 1

t
gtv(t) ⊙ gsv(s)dsdt ⊙ a (8.49)
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The kernel of the bilinear form is, by definition, the kernel of the symmetric linear operator
associated to it through the scalar product, i.e., the unique symmetric operator Q satisfying

λD2
uE(v, v) = (Qv, v)L2 =

∫ 1

0
(Qv)(t)v(t)dt.

Then it follows that Q has the following expression

(Qv)(t) =

(∫ t

0
gsv(s)ds ⊙ gt + gt ⊙

∫ 1

t
gsv(s)ds

)
⊙ a (8.50)

where gt denotes the vector (gt1, . . . , g
t
m) and we recall that for each i = 1, . . . ,m the vector field gti

is defined by gti = (Pt,1)∗fi.
Since (8.50) is a compact integral operator, then I − Q is Fredholm, and the closedness of

im (I − Q) follows from the fact that it is of finite codimension. On the other hand, when we
restrict to controls v ∈ kerDuE we have the identity (cf. (8.4))

q1 ⊙

∫ t

0
gsv(s)ds = −q1 ⊙

∫ 1

t
gsv(s)ds.

Hence, v belongs to the intersection in (8.46) if and only if it satisfies the integral equation

v(t)− λ
∫ t

0

[
gsv(s), g

t
]
(q1)ds = 0.

Thanks to Lemma 8.32, the unique solution to this equation in L2([0, T ],Rm) is v = 0. This proves
that ker

(
Id− λD2

uE
)
∩ ker (DuE) = {0} and that the sub-Riemannian problem (E, J) is a Morse

pair.

Lemma 8.32. Let K(t, s) be a function in L∞([0, 1] × [0, 1],Rm). Then the integral equation

v(t) =

∫ t

0
K(t, s)v(s)ds, (8.51)

has the unique solution v = 0 in L2([0, 1],Rm).

Proof. Let v ∈ L2([0, 1],Rm) be a solution to the equation

v(t) =

∫ t

0
K(t, s)v(s)ds, (8.52)

Notice that v is absolutely continuous. Denoting by ‖K‖∞ the L∞ norm of K we have

|v(t)| ≤ ‖K‖∞
∫ t

0
|v(s)|ds, t ∈ [0, 1]. (8.53)

Iterating this inequality

|v(t)| ≤ ‖K‖n∞
∫ t

0

∫ s1

0
· · ·
∫ sn−1

0
|v(sn)|dsn · · · ds1

=
‖K‖n∞
(n − 1)!

∫ t

0
(t− sn)n−1|v(sn)|dsn ≤

‖K‖n∞
(n− 1)!

‖v‖L1 ,
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where we used Fubini theorem and the fact that, given 0 ≤ sn ≤ t ≤ 1, one has

meas{(s1, . . . , sn−1) : sn ≤ sn−1 ≤ · · · ≤ s1 ≤ t} =
(t− sn)n−1

(n− 1)!
.

By integrating and using ‖v‖L1 ≤ ‖v‖L2 , one obtains in particular the L2 estimate

‖v‖L2 ≤ ‖K‖
n
∞

(n − 1)!
‖v‖L2 , (8.54)

which, for n large enough, implies v = 0.

Combining the last result with Proposition 8.25 we obtain the following corollary.

Corollary 8.33. The manifold of Lagrange multilpliers of the sub-Riemannian problem (E, J)

L(E,J) := {λ1 ∈ T ∗M |λ1 = e
~H(λ0), λ0 ∈ T ∗

q0M}

is a smooth n-dimensional submanifold of T ∗M .

8.6 Exponential map and Gauss’ Lemma

A key object in sub-Riemannian geometry is the exponential map, that is the map that associates
normal extremals with their initial covectors.

Definition 8.34. Let q0 ∈M . The sub-Riemannian exponential map (based at q0) is the map

expq0 : Aq0 ⊂ T ∗
q0M →M, expq0(λ0) = π ◦ e ~H(λ0). (8.55)

defined on the domain Aq0 of covectors such that the corresponding solution of the Hamiltonian
system is defined on the interval [0, 1]. When there is no confusion on the base point, we might use
the simplified notation exp.

The homogeneity of the sub-Riemannian Hamiltonian H yields the following homogeneity prop-
erty of the flow associated with ~H.

Lemma 8.35. Let H be the sub-Riemannian Hamiltonian. Then, for every λ ∈ T ∗M we have

et
~H(αλ) = αeαt

~H (λ), (8.56)

for any α > 0 and t > 0 such that both sides of the identity are defined.

Proof. By Remark 4.26 we know that if λ(t) = et
~H(λ0) is a solution of the Hamiltonian system

associated with H, then also λα(t) := αλ(αt) is a solution. The identity (8.56) follows from the
uniqueness of the solution and the fact that λα(0) = αλ(0).

The homogeneity property (8.56) permits to recover the whole extremal trajectory as the image
of the ray joining 0 to λ0 in the fiber T ∗

q0M .
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Corollary 8.36. Let λ(t), for t ∈ [0, T ], be the normal extremal that satisfies the initial condition

λ(0) = λ0 ∈ T ∗
q0M.

Then the normal extremal path γ(t) = π(λ(t)) satisfies

γ(t) = expq0(tλ0), t ∈ [0, T ].

Proof. Using (8.56) we get

expq0(tλ0) = π(e
~H(tλ0)) = π(et

~H(λ0)) = π(λ(t)) = γ(t).

Remark 8.37 (Unit speed normal extremals). Thanks to the homogeneity property one can intro-
duce the cylinder Λq0 of normalized covectors

Λq0 = {λ ∈ T ∗
q0M | H(λ) = 1/2},

and consider the exponential map as follows (notice the two arguments)

expq0 : R+ × Λq0 →M, exp(t, λ0) := expq0(tλ0)

In other words one restricts to length parametrized extremal paths, considering the time as an
extra variable. In what follows, with an abuse of notation, we set

exptq0(λ0) := expq0(tλ0), λ0 ∈ Λq0 ,

whenever the right hand side is defined.

Proposition 8.38. If the metric space (M,d) is complete, then Aq0 = T ∗
q0M . Moreover, if there

are no strictly abnormal length-minimizers, the exponential map expq0 is surjective.

Proof. To prove that Aq0 = T ∗
q0M , it is enough to show that any normal extremal λ(t) starting from

λ0 ∈ T ∗
q0M with H(λ0) = 1/2 is defined for all t ∈ R. Assume that the extremal λ(t) is defined on

[0, T [, and assume that it is not extendable to some interval [0, T+ε[. The projection γ(t) = π(λ(t))
defined on [0, T [ is a curve with unit speed, thus for any sequence tj → T the sequence (γ(tj))j is
a Cauchy sequence on M since

d(γ(ti), γ(tj)) ≤ |ti − tj|.
The sequence (γ(tj))j is then convergent to a point q1 ∈M by completeness. Let us now consider
coordinates around the point q1 and show that, in coordinates λ(t) = (p(t), x(t)), the curve p(t) is
uniformly bounded. This contradicts the fact that λ(t) is not extendable. By Hamilton equations
(4.38)

ṗ(t) = −∂H
∂x

(p(t), x(t)) = −
m∑

i=1

〈p(t), fi(γ(t))〉 〈p(t),Dxfi(γ(t))〉 .

Since H(λ(t)) = 1
2

∑m
i=1 〈p(t), fi(γ(t))〉2 = 1/2 then | 〈p(t), fi(γ(t))〉 | ≤ 1 for every i = 1, . . . ,m.

Moreover by smoothness of fi, the derivatives |Dxfi| ≤ C are locally bounded and one gets the
inequality

|ṗ(t)| ≤ C|p(t)|,
which by Gronwall’s lemma implies that |p(t)| is uniformly bounded on a bounded interval. The
second part of the statement follows from the existence of length-minimizers on a complete sub-
Riemannian manifold, cf. Proposition 3.47 and Corollary 3.49.
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Corollary 8.39. If the metric space (M,d) is complete, then every normal extremal trajectory is
extendable on [0,+∞[.

Next, we discuss an elementary but important observation on the behavior of the exponential
map in a neighborhood of zero.

Proposition 8.40. The sub-Riemannian exponential map expq0 : T ∗
q0M → M is a local diffemor-

phism at 0 if and only if Dq0 = Tq0M . More precisely im (D0expq0) = Dq0 .

Proof. Fix any element ξ ∈ T ∗
q0M . By definition of differential

D0expq0(ξ) =
d

dt

∣∣∣∣
t=0

expq0(0 + tξ) =
d

dt

∣∣∣∣
t=0

γξ(t) = γ̇ξ(0). (8.57)

where γξ is the horizontal curve associated with initial covector ξ ∈ T ∗
q0M . This proves that

imD0expq0 = Dq0 . To prove the equality let us notice that from (4.39) one has

γ̇ξ(0) =

m∑

i=1

〈ξ, fi(q0)〉 fi(q0). (8.58)

Since ξ ∈ T ∗
q0M is arbitrary, the proof is completed.

Remark 8.41. In the Riemannian case expq0 gives local coordinates to M around q0, being a
diffeomorphism of a small ball in T ∗

q0M onto a small geodesic ball in M , where geodesics are images
of straight lines in the cotangent space. Moreover there is a unique length-minimizer joining q0
to every point of the (sufficiently small) ball and the distance from q0 is a smooth function in a
neighborhood of q0 itself.

This is no more true as soon as Dq0 6= Tq0M and, as we will show in Corollary 11.6 and Theorem
12.17, singularities appear naturally.

We end this section with a Hamiltonian version of Gauss’ Lemma. Recall that the sub-
Riemannian Hamiltonian H : T ∗M → R is fiberwise-quadratic. We denote by the same symbol H
the symmetric bilinear form associated with it. If f1, . . . , fm is a generating family and λ, η ∈ T ∗

qM
then we have

H(λ, η) =
1

2

m∑

i=1

〈λ, fi(q)〉 〈η, fi(q)〉 . (8.59)

Proposition 8.42 (Cotangent Gauss’ Lemma). Let q0 ∈ M , λ0 ∈ T ∗
q0M and set λ1 := e

~H(λ0).
Then for every w ∈ T ∗

q0M ≃ Tλ0(T ∗
q0M) one has the identity

〈
λ1,Dλ0 expq0(w)

〉
= 2H(λ0, w). (8.60)

Proof. Let us consider a smooth variation ηs ∈ T ∗
q0M , for s ∈ (−ε, ε), of initial covectors such that

η0 = λ0 and d
ds

∣∣
s=0

ηs = w.

For t ∈ [0, 1], let ηs(t) := et
~H(ηs) and γs(t) = π(ηs(t)) be the corresponding trajectory. Define

the family of controls us(·) satisfying for a.e. t ∈ [0, 1]

usi (t) := 〈ηs(t), fi(γs(t))〉 , i = 1, . . . ,m, (8.61)

233



where f1, . . . , fm denotes as usual a generating family. By definition (8.61) of us we have expq0(η
s) =

Eq0(u
s), hence we can compute

Dλ0 expq0(w) =
d

ds

∣∣∣∣
s=0

expq0(η
s) =

d

ds

∣∣∣∣
s=0

Eq0(u
s) = DuEq0(v), (8.62)

where we denoted v := d
ds

∣∣
s=0

us. We have
〈
λ1,

d

ds

∣∣∣∣
s=0

expq0(η
s)

〉
= 〈λ1,DuEq0(v)〉 = (u, v)L2 , (8.63)

where the second identity follows from the condition (8.18). On the other hand recall that, thanks
to Theorem 4.25, for every fixed s ∈ [0, 1] the sum of the squares of the quantities in (8.61) is
constant with respect to t ∈ [0, 1], and

1

2

∫ 1

0

m∑

i=1

usi (t)
2dt =

1

2

m∑

i=1

〈ηs(t), fi(γs(t))〉2 = H(ηs(t)).

Differentiating the last identity at s = 0 one gets

(u, v)L2 =

∫ 1

0

m∑

i=1

ui(t)vi(t)dt = 2H

(
η0(t),

d

ds

∣∣∣∣
s=0

ηs(t)

)
= 2H(λ0, w)

where the last equality follows from the fact that t 7→ ∂
∂sH(ηs(t)) is also constant in t (hence we

evaluate at t = 0).

An immediate corollary is that the final covector of a normal extremal trajectory annihilates
the tangent space to the front (assuming the front is locally a smooth manifold). More precisely
we have the following.

Corollary 8.43. Fix q0 ∈M . Let λ0 ∈ Λq0 that is not a critical point for expq0. Let U be a small

neighborhood of λ0 ∈ Λq0 and set F := expq0(U). Then λ1 := e
~H(λ0) annihilates the tangent space

TqF to F at q := expq0(λ0).

Exercise 8.44. Deduce from Corollary 8.43 and the homogeneity property of the Hamiltonian

that if λ0 ∈ Λq0 is not a critical point for exptq0 , then λt := et
~H (λ0) annihilates the tangent space

TqtFt to Ft := exptq0(U) at qt := exptq0(λ0).

8.7 Conjugate points

In this section we introduce conjugate points and we discuss a basic result on the structure of
the set of conjugate points along an extremal trajectory. Recall that given q0 ∈ M we denote by
Λq0 = {λ ∈ T ∗

q0M | H(λ) = 1/2}, where H is the sub-Riemannian Hamiltonian.

Definition 8.45. Fix q0 ∈M . A point q ∈M is conjugate to q0 if there exists s > 0 and λ0 ∈ Λq0
such that q = expq0(sλ0) and sλ0 is a critical point of expq0 .

In this case we say that q is conjugate to q0 along γ(t) = expq0(tλ0). Moreover we say
that q is the first conjugate point to q0 along γ(t) = expq0(tλ) if q = γ(s) and s = inf{τ >
0 | τλ is a critical point of expq0}.

We denote by Conq0 the conjugate locus to q0, that is the set of all first conjugate points to q0
along some normal extremal trajectory starting from q0.
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Remark 8.46. Let γ : [0, 1] → M be a normal extremal trajectory defined by γ(t) = expq0(tλ0).
Notice that if γ admits an abnormal lift, then γ(1) is conjugate to γ(0). Indeed by definition
of abnormal, this means that the control u associated with γ is a critical point for Eq0 , i.e.,
the differential DuEq0 is not surjective. Since, by definition of the exponential map, one has
im (Dλ0expq0) ⊂ im (DuEq0), it follows that Dλ0expq0 is not surjective as well.

Since the restriction of an abnormal extremal is still abnormal, Remark 8.46 implies that all
points belonging to an abnormal segment are conjugate points. The following theorem discuss
somehow a converse statement.

Theorem 8.47. Let γ : [0, T ] → M be a normal extremal path. Assume that there exists t0 > 0
such that γ(t0) is a limit of a decreasing (resp. increasing) sequence of points that are conjugate to
γ(t0) along γ. Then there exists ε > 0 such that

(a) for all τ ∈ [t0, t+ ε] (resp. [t0 − ε, t0]), the point γ(τ) is conjugate to γ(t0) along γ,

(b) γ|[t0,t0+ε] (resp. γ|[t0−ε,t0]) is an abnormal extremal path.

Proof. We shall consider only the case of a decreasing convergent sequence and leave to the reader
to make necessary modifications in the case of an increasing one.

Let (u(t), λ(t)), for 0 ≤ t ≤ T , be a normal extremal, where γ(t) = π(λ(t)) and

γ̇(t) = fu(t)(γ(t)) =
m∑

i=1

ui(t)fi(γ(t)). (8.64)

We set P0,t :=
−→exp

∫ t
0 fu(τ) dτ , and we consider the maps

Ft : U ⊂ T ∗M →M, Ft(λ) = π ◦ P ∗
0,t ◦ e

~H(tλ), (8.65)

defined on a neighborhood U of λ0 = λ(0) in T ∗
q0M , where q0 = γ(0). According to this construction,

we have Ft(λ(t)) = q0 for all t. We claim that, given t ∈ (0, T ], γ(t) is conjugate to γ(0) along
γ if and only if λ0 is a critical point of the map Ft. Indeed, according to the definition, γ(t) is

conjugate to γ(0) if and only if tλ0 is a critical point of the map expq0 = π ◦ e ~H
∣∣
T ∗
q0
M
, i.e., if

Tλ(t)e
~H(T ∗

q0M) ∩ Tλ(t)(T ∗
γ(t)M) 6= 0, where the diffeomorphism P ∗

0,t maps T ∗
γ(t)M into T ∗

q0M .

Recall that (P ∗
0,t)

−1 = −→exp
∫ t
0
~hu(t) dt, where hu(λ) = 〈λ, fu〉 (cf. Chapter 4). The variations

formula (see Section 6.5) and formula (4.86) imply that the depending on t ∈ [0, T ] family of
diffeomorphisms

λ 7→ P ∗
0,t ◦ e

~H(tλ) = tP ∗
0,t ◦ et

~H(λ), λ ∈ T ∗M,

is the Hamiltonian flow generated by the time-dependent Hamiltonian gt : T
∗M → R defined by

gt := (H − hu(t)) ◦ (P ∗
0,t)

−1.

Since H is the maximized Hamiltonian (cf. (4.34)), then gt is everywhere non-negative and gt(λ0) =
0. It follows that dλ0gt = 0 and d2λ0gt is a non-negative quadratic form on the symplectic space
Tλ0(T

∗M). We introduce the following notations:

Σ := Tλ0(T
∗M), Π := Tλ0(T

∗
q0M), Qt :=

1

2
d2λ0gt. (8.66)
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The linear Hamiltonian flow −→exp
∫ t
0
~Qτ dτ on Σ is the linearization of the flow −→exp

∫ t
0 ~gτ dτ at the

equilibrium λ0. Moreover, γ(t) is conjugate to γ(0) if and only if

Π ∩ Jt 6= 0, where Jt :=
−→exp

∫ t

0

~Qτ dτ(Π).

Recall that Lagrange subspaces of the 2n-dimensional symplectic space Σ are n-dimensional
subspaces on which the symplectic form σ vanishes identically. In particular, Π is a Lagrange
subspace. Jt is also a Lagrange subspace because symplectic flows preserve the symplectic form. A
Darboux basis for Σ is a basis e1, . . . , en, f1, . . . , fn satisfying

σ(ei, fj) = δij , σ(fi, fj) = σ(ei, ej) = 0, i, j = 1, . . . , n. (8.67)

We need the following lemma:

Lemma 8.48. Let Λ0,Λ1 be Lagrange subspaces of Σ, with dim(Λ0 ∩ Λ1) = k. Then there exist a
Darboux basis e1, . . . , en, f1, . . . , fn in Σ such that

Λ0 = span{e1, . . . , en}, Λ1 = span{e1, . . . , ek, ek+1 + fk+1, . . . , en + fn}.

Proof. Consider any arbitrary basis e1, . . . , en of Λ0 satisfying

Λ0 ∩ Λ1 = span{e1, . . . , ek}.

The nondegeneracy of σ implies the existence of f1 ∈ Σ such that

σ(e1, f1) = 1, σ(e2, f1) = · · · = σ(en, f1) = 0.

Fix such an f1, the nondegeneracy of σ implies the existence of f2 ∈ Σ such that

σ(e2, f2) = 1, σ(f1, f2) = σ(e1, f2) = σ(e3, f2) = · · · = σ(en, f2) = 0.

Iterating one obtains linearly independent f1, . . . , fk such that

σ(ei, fj) = δij , σ(fi, fj) = σ(el, fj) = 0, i, j = 1, . . . , k, l = k + 1, . . . , n.

Let us introduce the space

Γ = {v ∈ Λ1 | σ(f1, v) = · · · = σ(fk, v) = 0}.

By construction Λ1 = Γ⊕ (Λ0 ∩ Λ1). The linear map Ψ : Γ→ Rn−k defined by

Ψ(v) := (σ(ek+1, v), . . . , σ(en, v)),

is invertible, hence there exist vk+1, . . . , vn ∈ Γ such that σ(ei, vj) = δij , for i, j = k + 1, . . . , n.
Setting fi := vi − ei, for i = k + 1, . . . , n, one obtains the Darboux basis e1, . . . , en, f1, . . . , fn.

We apply the Lemma 8.48 to the pair of Lagrange subspaces Π and Jt0 , working in the coordi-
nates (p, x) ∈ Rn × Rn induced by the Darboux basis. We have:

Jt0 = {(p, x) ∈ Rn ×Rn | x = St0p},
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where St0 =
(

0k 0
0 In−k

)
is a non-negative symmetric matrix.

The subspace of Σ = {(p, x) ∈ Rn×Rn} defined by the equation {x = 0} is called vertical and the
one defined by the equation {p = 0} is called horizontal. Any n-dimensional subspace Λ close to Jt0
is transversal to the horizontal subspace, and can be presented in the form Λ = {(p,Ap) : p ∈ Rn}
for some n × n-matrix A. Moreover, Λ is a Lagrange subspace if and only if A is a symmetric
matrix. Indeed,

σ((p1, Ap1), (p2, Ap2)) = p∗1Ap2 − p∗2Ap1 = p∗1(A−A∗)p2.

where v∗ denotes the transpose of a vector v (and similarly for matrices). Let Jt = {(p, Stp) | p ∈
Rn} for t close to t0; then St is a symmetric matrix smoothly depending on t. Moreover, one has

Π ∩ Jt = {(p, 0) ∈ Rn × Rn | Stp = 0}.

Lemma 8.49. For every p ∈ Rn one has p∗Ṡtp ≥ 0.

Proof. Recall that Qt is a non-negative quadratic form on Σ. We denote by the same symbol the
matrix respresenting Qt in coordinates. Recall that ~Qt is the vector field on Σ ≃ R2n associated
with Qt. Let t 7→ λt be a solution of the equation λ̇t = ~Qtλt; then

σ(λt, λ̇t) = σ(λt, ~Qtλt) = 2〈Qtλt, λt〉 ≥ 0.

We apply this inequality to λt = (pt, Stpt) and obtain:

σ((p, Stp), (ṗ, Stṗ) + (0, Ṡtp)) = p∗Ṡtp ≥ 0.

Lemma 8.50. If St1 p̄ = 0 for some t1 > t0 and p̄ ∈ Rn, then Stp̄ = 0, ∀t ∈ [t0, t1].

Proof. This statement is an easy corollary of Lemma 8.49. Indeed,

0 ≤ p̄∗St0 p̄ ≤ p̄∗Stp̄ ≤ p̄∗St1 p̄ = 0.

Hence p̄∗Stp̄ = 0. Since p 7→ p∗Stp is a non-negative quadratic form, we obtain that Stp̄ = 0.

Lemma 8.50 implies claim (a) of the theorem. Let us prove claim (b), whose proof is also based
on Lemma 8.50.

The fiber T ∗
q0M is a vector space, it is naturally identified with its tangent space Π, and the

coordinates p ∈ Rn on Π introduced above serve as coordinates on T ∗
q0M . The restriction of the

Hamiltonian gt to T
∗
q0M has the form:

gt(p) =
1

2

m∑

i=1

〈p, ((P−1
0,t )∗fi)(q0)〉2 − 〈p, ((P−1

0,t )∗fu(t))(q0)〉.

Hence, we have

〈Qt(p, 0), (p, 0)〉 =
1

2

m∑

i=1

〈p, (P−1
0,t∗fi)(q0)〉2. (8.68)

Moreover, if s 7→ λs = (ps, xs) is a solution of the system λ̇ = ~Qτλ, and xt = 0, then 〈p, ẋt〉 =
〈(p, 0), Qt(pt, 0)〉, for all p ∈ Rn. In particular, under conditions of Lemma 8.50, we get:

〈(p̄, 0), Qt(p̄t, 0)〉 = 0, t ∈ [t0, t1],

237



and, according to the identity (8.68),

〈p̄, (P−1
0,t∗fi)(q0)〉 = 0, i = 1, . . . , k, t ∈ [t0, t1].

Let η(t) = (P ∗
0,t)

−1(p̄, q0) ∈ T ∗
γ(t)M . We obtain that (u(t), η(t)) for t ∈ [t0, t1] is an abnormal

extremal, thanks to characterization of Proposition 8.9.

We deduce from Theorem 8.47 the following important corollary.

Corollary 8.51. Let γ : [0, 1]→M be a normal extremal trajectory that does not contain abnormal
segments. Define the set of conjugate times to zero

Tc := {t > 0 | γ(t) is conjugate to γ(0)}.
Then the set Tc is discrete.

8.8 Minimizing properties of extremal trajectories

In this section we study the relation between conjugate points and length-minimality properties of
extremal trajectories. The space of horizontal trajectories on M can be endowed with two different
topologies:

• the W 1,2 topology, also called weak topology. This is the topology induced on the space of
horizontal trajectories by the L2 topology on the space of controls,

• the C0 topology, also called strong topology. This is the usual uniform topology on the space
of continuous curves on M .

The main result of this section is the following.

Theorem 8.52. Let γ : [0, 1]→M be a normal extremal trajectory that does not contain abnormal
segments. Then,

(i) tc := inf{t > 0 | γ(t) is conjugate to γ(0)} > 0.

(ii) for every τ < tc the curve γ|[0,τ ] is a local length-minimizer in the W 1,2 topology among
horizontal trajectories with same endpoints.

(iii) for every τ > tc the curve γ|[0,τ ] is not a length-minimizer.

Claim (i) of Theorem 8.52 is a direct consequence of Corollary 8.51. Nevertheless we will give
in this section an independent proof.

The proof of part (ii) and (iii) need some preliminary results. Some of these preliminary
results hold true under weaker assumptions. For simplicity, in this section, we state them under
the assumption that γ does not contain abnormal segments. See Exercice 8.56 for more general
assumptions.

The proof of Theorem 8.52 is then contained in Section 8.8.1. We conclude this discussion by
stating explicitly the following consequence of Theorem 8.52.

Corollary 8.53. Let γ : [0, 1]→M be a normal extremal trajectory that does not contain abnormal
segments. Assume that the trajectory does not contain conjugate points. Then γ is a local miminum
for the length with respect to the W 1,2 topology on the space of admissible trajectories with the same
endpoints.
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8.8.1 Local length-minimality in the W 1,2 topology. Proof of Theorem 8.52.

Let s ∈ (0, 1]. Given a normal extremal trajectory γu : [0, 1] →M , let us denote by us(t) := su(st)
the reparametrized control associated with the reparametrized trajectory γs(t) := γu(st), both
defined for t ∈ [0, 1]. Notice that if λ ∈ T ∗

γu(1)
M is a Lagrange multiplier associated with u, then

λs = s(P ∗
s,1)λ ∈ T ∗

γu(s)
M , is a Lagrange multiplier associated with us.

The first result concerns the characterisation of conjugate points through the second variation
of the energy.

Proposition 8.54. Let s ∈ (0, 1] and assume that the normal extremal trajectory γu : [0, 1] →
M contains no abnormal segments. Then γu(s) is conjugate to γu(0) along γu if and only if

Hessus
(
J |E−1

q0
(γs(1))

)
is a degenerate quadratic form, where q0 = γu(0).

Proof. Since the curve γu contains no abnormal segments, the control us(t) = su(st) is a regular
point for the end-point map. Hence, thanks to Proposition 8.27 combined with Proposition 8.31
and Corollary 8.33, one has that γu(s) is conjugate to γu(0) if and only if λs is a critical point of

the exponential map, that is equivalent to the fact that Hessus
(
J
∣∣
E−1

q0
(γs(1))

)
is degenerate.

The following lemma, on the family of quadratic forms s 7→ Hessus
(
J
∣∣
E−1

q0
(γs(1))

)
, is crucial in

what follows.

Lemma 8.55. Assume that a normal extremal trajectory γu : [0, 1] → M contains no abnormal
segments. Define the function α : (0, 1]→ R as follows

α(s) := inf
{
‖v‖2L2 −

〈
λs,D2

usEq0(v, v)
〉
| ‖v‖2L2 = 1, v ∈ kerDusEq0

}
. (8.69)

Then α is continuous and has the following properties:

(a) α(0) := lims→0 α(s) = 1;

(b) α(s) = 0 implies that HessusJ
∣∣
E−1

q0
(γs(1))

is degenerate;

(c) α is monotone decreasing;

(d) if α(s̄) = 0 for some s̄ > 0, then α(s) < 0 for s > s̄.

Proof of Lemma 8.55. We start with some preliminary observations. Notice that one can write

‖v‖2L2 − λs ◦D2
usEq0(v, v) = 〈(I −Qs)(v)|v〉L2 , (8.70)

where Qs : L
2([0, 1],Rm)→ L2([0, 1],Rm) is a compact and symmetric operator.

Let us prove that the infimum in (8.69) is always attained. Indeed, fix s ∈ (0, 1] and let
vn ∈ kerDusEq0 be a sequence with ‖vn‖ = 1 and such that ‖vn‖2L2 − 〈Qs(vn)|vn〉L2 → α(s) for
n →∞. Since the unit ball is weakly compact in L2, up to extraction of a sub-sequence, we have
that vn is weakly convergent to some v̄, with ‖v̄‖2L2 ≤ 1. By compactness of Qs, we deduce that
〈Qs(v̄)|v̄〉L2 = 1− α(s). Then

‖v̄‖2L2 − 〈Qs(v̄)|v̄〉L2 ≤ 1− (1− α(s)) = α(s). (8.71)

Since α(s) is the infimum, it follows that ‖v̄‖2L2 = 1 and we have the equality in (8.71).
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Observe now that since every restriction γ|[0,s] is not abnormal, the rank of DusEx is maxi-
mal, equal to n, for all s ∈ (0, 1]. Then, by Riesz representation Theorem, we find a continuous
orthonormal basis {vsi }i∈N for kerDusEx, yielding a continuous one-parameter family of isometries
φs : kerDusEx → H on a fixed Hilbert space H. Since also s 7→ Qs is continuous (in the operator
norm topology), we reduce (8.69) to

α(s) = 1− sup{〈φs ◦Qs ◦ φ−1
s (w)|w〉H | w ∈ H, ‖w‖H = 1}, (8.72)

where the composition Q̃s := φs ◦Qs ◦ φ−1
s is a continuous one-parameter family of symmetric and

compact operators on a fixed Hilbert space H. The supremum coincides with the largest eigenvalue
of Q̃s, which is well known to be continuous as a function of s if Q̃s is (see [Kat95, V Thm. 4.10]).
This proves that α is continuous.

Let us recall the formulas for the first and second differentials

DusEq0(v) =

∫ s

0
(Pt,1)∗fv(t)|γu(s)dt, (8.73)

D2
usEq0(v, v) =

∫∫

0≤τ≤t≤s

[(Pτ,1)∗fv(τ), (Pt,1)∗fv(t)]|γu(s)dτdt. (8.74)

Recalling that us = su(s·), by a change of variables one can see that

DusEq0(v) = s

∫ 1

0
(Pst,1)∗fv(st)|γu(s)dt, (8.75)

D2
usEq0(v, v) = s2

∫∫

0≤τ≤t≤1

[(Psτ,1)∗fv(sτ), (Pst,1)∗fv(st)]|γu(s)dτdt. (8.76)

Taking the limit s→ 0, one can show that Qs → 0, hence Q̃s → 0, proving (a).

To prove (b), notice that α(s̄) = 0 means that I − Qs̄ ≥ 0, and since the infimum is attained
there exists v̄ of norm one such that 〈(I −Qs̄)(v̄)|v̄〉L2 = 0. Being I −Qs̄ a bounded, non-negative
symmetric operator, and since v̄ 6= 0, this implies that I −Qs̄ is degenerate. 2

To prove (c) let us fix 0 ≤ s ≤ s′ ≤ 1 and v ∈ kerDusEx. Define

v̂(t) :=





√
s′

s
v

(
s′

s
t

)
, 0 ≤ t ≤ s

s′
,

0,
s

s′
< t ≤ 1.

It follows that ‖v̂‖2L2 = ‖v‖2L2 , v̂ ∈ kerDus′Ex, and D2
usEx(v) = D2

us′
Ex(v̂). As a consequence,

α(s) ≥ α(s′).
To prove (d), assume by contradiction that there exists s1 > s̄ such that α(s1) = 0. By

monotonicity of point (c), α(s) = 0 for every s̄ ≤ s ≤ s1. This implies that every point in the image
of γ|[s̄,s1] is conjugate to γ(0). Arguing as in the proof of Theorem 8.47, the segment γ|[s̄,s1] is also
abnormal, contradicting the assumption on γ.

2 Let V be a vector space and Q : V × V → R be a quadratic form on V . Recall that Q is degenerate if there
exists a non-zero v̄ ∈ V such that Q(v̄, ·) = 0. Moreover a non negative quadratic form is degenerate if and only if
there exists v̄ 6= 0 such that Q(v̄, v̄) = 0.
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Proof of Theorem 8.52. Thanks to Lemma 8.55 there exists ε > 0 such that α(s) > 0 on the segment
[0, ε]. This implies that this segment does not contain conjugate points thanks to Proposition 8.54.
This proves claim (i).

To prove claim (ii) notice that if γ|[0,s] does not contain conjugate points, by Proposition 8.54 it
follows that Hessus J

∣∣
E−1(γs(1))

is non degenerate for every s ∈ [0, τ ], hence HessuτJ
∣∣
E−1(γτ (1))

> 0

using items (b) and (c) of Lemma 8.55.

Let τ > tc and assume by contradiction that the trajectory is a length-minimizer. Then,
using the terminology of Lemma 8.55, one has α(tc) = 0 and α(τ) < 0 thanks to properties (c)
and (d). This implies that the Hessian has a negative eigenvalue, hence we can find a variation
joining the same end-points and shorter than the original geodesic, contradicting the minimality
assumption.

Exercise 8.56. Introduce the following definitions: a normal extremal trajectory γ : [0, 1]→M is
said to be

- left strongly normal, if for every s ∈ (0, 1] the curve γ|[0,s] does not admit abnormal lifts.

- right strongly normal, if for every s ∈ [0, 1) the curve γ|[s,1] does not admit abnormal lifts.

- strongly normal, if γ is both left and right strongly normal.

Prove that a normal extremal trajectory γ : [0, 1]→M does not contain abnormal segments if and
only if γ|[0,τ ] is strongly normal for every τ ∈ [0, 1].

Prove that Theorem 8.52 claim (i)-(ii), Proposition 8.54 and claims (a)-(b)-(c) of Lemma 8.55
hold under the weaker assumption that the normal extremal trajectory γ is left strongly normal.

8.8.2 Local length-minimality in the C0 topology

In the previous section we proved, among other results, that a normal extremal trajectory that
does not contain abnormal segments is a local miminum for the length with respect to the W 1,2

topology on the space of admissible trajectories with the same endpoints.

The goal of this section is to prove that the same conclusion holds true, but with respect to the
uniform topology. The proof of this result, which is based upon the arguments of Theorem 4.62,
requires a preliminary discussion on the free endpoint problem.

Free initial point problem

In all our previous discussions the initial point q0 ∈M has always been fixed from the very begin-
ning. Clearly, if the initial point q0 is not fixed, and given a final point q1 ∈ M , the minimization
problem

min
q∈M,u∈E−1

q (q1)
J(u), (8.77)

has only the trivial solution (q, u) = (q1, 0).

In this case, it is convenient to introduce a penalty function a ∈ C∞(M), and consider the
minimization problem

min
q∈M,u∈E−1

q (q1)
(J(u) + a(q)) . (8.78)
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Let us introduce the extendend end-point map

E :M × U →M, (q, u) 7→ Eq(u),

where Eq is the end-point map based at q. It is not restrictive to assume that U is a fixed open
set on the Hilber space L2([0, 1],Rm). Notice that E is a submersion at every point. First, notice
that for every q ∈ M , one has E(q, 0) = q. Moreover, denoting by P ut,s the non-autonomous flow
associated with u, one has

E
∣∣
{q0}×U = Eq0 , E

∣∣
M×{u} = P u0,1. (8.79)

The minimization problem (8.78) is then rewritten as

min
E−1(q1)

ϕ (8.80)

where ϕ :M ×U → R is defined by ϕ(q, u) := J(u)+ a(q). This constrained minimization problem
is of the type studied in Section 8.4, with F = E.3

Notice that every level set E−1(q1) is regular since the map E is a submersion. The Lagrange
multipliers rule (Proposition 8.13) is rewritten as follows: if the point (q0, u) ∈M ×U is a solution
of (8.78) (or, equivalently, (8.80)), then there exists λ1 ∈ T ∗M such that

λ1D(q0,u)E = D(q0,u)(J + a). (8.81)

The differentials D(q0,u)E and D(q0,u)(J + a) are defined on the product space T(q0,u)(M × U) ≃
Tq0M × L2([0, T ],Rm). Thanks to the identities

D(q0,u)E = (DuEq0 , (P
u
0,1)∗), D(q0,u)(J + a) = (DuJ, dq0a),

equation (8.81) splits into the following system
{
λ1DuEq0 = DuJ = u

λ1(P
u
0,1)∗ = dq0a

In other words, with every solution of the problem (8.80) we can associate a normal extremal

λ(t) = (P−1
0,t )

∗λ0,

where the initial condition is defined by the formula λ0 = dq0a.

Proposition 8.57. To every pair (q0, u) ∈M × U that is a solution of the problem (8.80) we can
associate an horizontal trajectory γu(t) that is a normal extremal trajectory associated with initial
covector λ0 = dq0a, namely γ(t) = expq0(tdq0a) for t ∈ [0, 1].

We end this subsection with an analogous statement for the free endpoint problem, where one
does not restrict to a sublevel E−1(q1), but considers a penalty in the functional at the end-point.

Exercise 8.58. Fix q0 ∈ M and a ∈ C∞(M). Prove that with every solution ū ∈ U of the free
endpoint problem

min
u∈U

J(u)− a(Eq0(u)), (8.82)

we can associate a normal extremal trajectory whose final covector λ1 ∈ T ∗
F (ū)M satisfies

λ1DūEq0 = ū, λ = dEq0 (ū)
a.

3To be precise, here the problem is defined on a Hilbert manifold and not on a subspace a Hilbert space, but since
M is finite dimensional, the theory applies with essentially no modifications.
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Local length-minimality in the C0 topology.

To prove the main result we first need the following lemma.

Lemma 8.59. Let γ : [0, 1] → M be a normal extremal trajectory that does not contain abnormal
segments. If γ does not contain points that are conjugate to γ(0), then there exists a ∈ C∞(M)
such that for s ∈ [0, 1]

λ0 = dq0a, Hess(q0,us)

(
J + a

∣∣∣
E−1(γ(s))

)
> 0

where us is the control associated with γs(t) = γ(st), for t ∈ [0, 1].

Proof. Recall that E : M × U → M is the free end-point map E(q, u) = Eq(u), where Eq is the
end-point based at q ∈M . We have

ker(D(q0,u)E) ⊂ Tq0M ⊕ L2([0, 1],Rm).

In what follows we denote elements of Tq0M ⊕ L2([0, 1],Rm) by (ξ, v) where ξ ∈ Tq0M and v ∈
L2([0, 1],Rm). Notice that we have the isomorphism

ker(D(q0,u)E) ∩ (0⊕ L2([0, 1],Rm)) ≃ ker (DuEq0).

It follows that for s ∈ (0, 1]

Hess(q0,us) (J + a)
∣∣∣
0⊕ker (DusEq0 )

= Hessus

(
J
∣∣∣
E−1

q0
(γ(s))

)
> 0. (8.83)

where the inequality follows since the curve γ contains no conjugate points. We define the subspace
(we omit the restriction in the Hessian to avoid heavy notations)

Ws := {(ξ, v) ∈ kerD(q0,us)E | Hess(J + a)
(
(ξ, v), 0 ⊕ kerDusEq0

)
= 0}.

Notice that, by construction, Ws depends on a only through its first derivative and

kerD(q0,us)E = (0⊕ kerDusF )⊕Ws. (8.84)

Moreover, it follows from (8.83) that, if there is some non-zero pair (ξ, v) ∈Ws, then ξ 6= 0. Hence
there exists a map Bs : TqM → L2([0, 1],Rm), which depends on a only through its first derivative,
such that

Ws = {(ξ,Bsξ) | ξ ∈ TqM}.
We can now show that the Hessian on the full space kerD(q0,us)E in terms of the decomposition
(8.84) as follows

Hess(q0,us)(J + a)
(
(ξ,Bsξ) + (0, v), (ξ,Bsξ) + (0, v)

)
= (8.85)

= HessusJ(v, v) + Hess(q0,us)(J + a)
(
(ξ,Bsξ), (ξ,Bsξ)

)
, (8.86)

where we used that mixed terms give no contribution thanks to the definition of Ws. Notice that
the first term in the sum is positive for every s ∈ [0, 1], thanks to (8.83), and is independent on ξ.
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The second term can be computed in coordinates as follows

Hess(q0,us)(J + a)
(
(ξ,Bsξ), (ξ,Bsξ)

)
= D2

q0a(ξ, ξ) + 2J(Bsξ,Bsξ), (8.87)

where we denote by D2
q0a the second differential of a. Notice that, by construction, J(Bsξ,Bsξ) is

a quadratic form that does not depend on second derivatives of a, but only on first ones (through
the map Bs). In particular, we can choose a with second derivatives large enough in such a way
that (8.87) is positive for all s ∈ [0, 1] and all ξ. This implies that (8.86) is the sum of two positive
terms, hence positive.

We can now prove the main result.

Proposition 8.60. Let γ : [0, 1] → M be a normal extremal trajectory that does not contain
abnormal segments. If γ does not contain points that are conjugate to γ(0), then γ is a local
miminum for the length with respect to the C0 topology on the space of admissible trajectories with
the same endpoints.

Proof. Assume that γ is associated with an initial covector λ0 ∈ T ∗
qM , i.e.,

γ(t) = π ◦ et ~H(λ0), λ0 ∈ T ∗
qM.

Combining Lemma 8.59 and Remark 8.28, one obtains that (E, J + a) is a Morse problem (locally
in a neighborhood of (q0, u

s), for s ∈ [0, 1]). By the general argument of Section 8.4.1 we have that

L(E,J+a) = {e
~H(dqa) | q ∈M} ⊂ T ∗M.

Moreover, for s ∈ [0, 1], then sλ0 is a regular point of the map π ◦e ~H
∣∣
L0
, where as usual L0 = {dqa |

q ∈ M} denotes the graph of the differential of a. Using the homogeneity property (8.56) we can
rephrase this property by saying that

π ◦ es ~H
∣∣
L0

is an immersion at λ0, ∀ s ∈ [0, 1],

In particular, being a map between manifolds of the same dimensions, it is a local diffeomorphism.
Hence the assumptions of the local version of Theorem 4.62 are satisfied and γ is local miminum
for the length with respect to the C0 topology on the space of admissible trajectories with the same
endpoints.

Combining the results obtained in the previous sections we have the following result.

Theorem 8.61. Let γ : [0, 1]→M be a normal extremal trajectory that does not contain abnormal
segments.

(i) if γ has no conjugate point to γ(0) then its a local length-minimizer with respect to the C0

topology on the space of admissible trajectories with the same endpoints,

(ii) if γ has at least a conjugate point to γ(0) then its not a local length-minimizer with respect to
the W 1,2 topology on the space of admissible trajectories with the same endpoints.

The first statement is Proposition 8.60. The second one follows from Lemma 8.55. Indeed if
there exists s̄ ∈ (0, 1) such that γ(s̄) is conjugate to γ(0), then α(s) < 0 for s > s̄ from claim (d) in
Lemma 8.55. This implies that the Hessian of the energy restricted to the level set defined by the
end-point map has a negative eigenvalue, hence γ|[0,s] is not a local length-minimizer in the W 1,2

topology on the space of admissible trajectories with the same endpoints.
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8.9 Compactness of length-minimizers

In this section we reinterpret in terms of the end-point map some results already obtained in
Section 3.3, in order to prove compactness of length-minimizers. For simplicity of presentation we
assume throughout this section that M is complete with respect to the sub-Riemannian distance.

Fix a point q0 ∈ M and denote by Eq0 : L2([0, 1],Rm) → M the end-point map. Notice that
Eq0 is globally defined thanks to the completeness assumption and Exercice 8.1.

Furthermore, by the reparametrization invariance of the length, we assume that trajectories are
parametrized by constant speed on the interval [0, 1]. In this case, if γu is the horizontal curve
corresponding to a control u, one has ℓ(γu) = ‖u‖L1 = ‖u‖L2 , where

‖u‖L1 =

∫ 1

0
|u(t)|dt, ‖u‖L2 =

(∫ 1

0
|u(t)|2dt

) 1
2

,

and | · | denotes the standard norm on Rm.

Proposition 8.62. The end-point map Eq0 : L2([0, 1],Rm) → M is weakly continuous, namely if
un ⇀ u in the weak topology of L2, then Eq0(un)→ Eq0(u).

Proof. First notice that, since un ⇀ u in the weak topology of L2, then there exists r0 > 0 such
that ‖un‖L2 ≤ r0. Denote by B the compact ball Bq0(r0). The unique solution γn of the Cauchy
problem

γ̇(t) = fun(t)(γ(t)), γ(0) = q0

satisfies the integral identity

γn(t) = q0 +

∫ t

0
fun(τ)(γn(τ))dτ, (8.88)

Since ‖un‖ ≤ r0 for every n, all trajectories γn are contained in the compact ball B, they are
Lipschitzian with the same Lipchitz constant. In particular, thanks to the classical Ascoli-Arzelà
theorem, the set {γn}n∈N has compact closure in the space of continuous curves in M with respect
to the C0 topology.

Then, by compactness, there exists a convergent subsequence (which we still denote γn) and a
limit continuous curve γ such that γn → γ uniformly. Let us show that γ is the horizontal trajectory
associated to u.

Since un weakly converges to u we have that
∫ t
0 fun(τ)(γn(τ))dτ →

∫ t
0 fu(τ)(γ(τ))dτ , since this

can be seen as a product between a strongly and a weakly convergent sequence.4 Passing to the
limit for n→∞ in (8.88), one finds that

γ(t) = q0 +

∫ t

0
fu(τ)(γ(τ))dτ,

namely that γ is the trajectory associated to u. This completes the proof.

Remark 8.63. Notice that in the proof one obtains the uniform convegence of trajectories and not
only of their end-points.

The previous proposition given another proof of the existence of length-minimizers, cf. Theorem
3.43.

4writing the coordinate expression
∑m

i=1 un,ifi(γn(t)).
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Corollary 8.64 (Existence of length-minimizers). Let M be a complete sub-Riemannian manifold
and q0 ∈M . For every q ∈M there exists u ∈ L2([0, 1],Rm) such that the corresponding horizontal
trajectory γu joins q0 and q and is a length-minimizer, i.e., ℓ(γu) = d(q0, q).

Proof. Consider a point q in the compact ball B. Then take a minimizing sequence, i.e., a sequence
un such that Eq0(un) = q and ‖un‖L2 → d(q0, q). The real sequence (‖un‖L2)n is bounded, hence
by weak compactness of balls in L2 there exists a subsequence, that we still denote by the same
symbol, such that un ⇀ u for some u. By Proposition 8.62, we have Eq0(u) = q. Moreover the
semicontinuity of the L2 norm with respect to weak convergence proves that u corresponds to a
length-minimizer joining q0 to q. Indeed

‖u‖L2 ≤ lim inf
n→∞

‖un‖L2 = d(q0, q).

Definition 8.65. A control u is called a minimizer if it satisfies ‖u‖L2 = d(q0, Eq0(u)). We denote
byMq0 ⊂ L2([0, 1],Rm) the set of all minimizing controls from q0.

Theorem 8.66 (Compactness of minimizers). Let K ⊂ M be compact. The set of all minimal
controls associated with trajectories reaching K

MK = {u ∈ Mq0 | Eq0(u) ∈ K},
is compact in the strong topology of L2.

Proof. Consider a sequence (un)n∈N contained MK . Since K is compact, the sequence of norms
(‖un‖L2)n∈N is bounded. Since bounded sets in L2 are weakly compact, up to extraction of a
subsequence, we can assume that un ⇀ u.

From Proposition 8.62 it follows that Eq0(un) → Eq0(u) in M and the continuity of the sub-
Riemannian distance implies that d(q0, Eq0(un))→ d(q0, Eq0(u)). Moreover since un ∈ M we have
that ‖un‖ = d(q0, Eq0(un)) and by weak semicontinuity of the L2 norm we get

‖u‖L2 ≤ lim inf
n→∞

‖un‖L2 = lim inf
n→∞

d(q0, Eq0(un)) = d(q0, Eq0(u)). (8.89)

Since by definition of distance d(q0, Eq0(u)) ≤ ℓ(γu) ≤ ‖u‖L2 we have that all inequalities are
equalities in (8.89), hence u is a minimizer and ‖un‖L2 → ‖u‖L2 , which implies that un → u
strongly in L2.

Theorem 8.66 implies the following continuity property.

Proposition 8.67. Let M be a complete sub-Riemannian manifold and assume that q ∈ M is
reached by a unique length-minimizer starting from q0 associated with u. If un is any sequence of
minimizing controls such that Eq0(un)→ q, then un → u in the strong L2 topology.

Proof. Fix an arbitrary subsequence ukn of the original sequence un. Consider the compact set
K := {q} in M . By construction ukn ∈ MK for all n ∈ N. Hence by Theorem 8.66 ukn admit a
convergent subsequence ukn → û, for some control û ∈ MK , and the trajectory corresponding to û
is a length-minimizer joining q0 to q. By uniqueness û = u.

This proves that every subsequence of un admits a subsequence converging to the same element
u. This implies that the whole sequence un converges to u.

Remark 8.68. If M is not complete, all the results of this section hold true by restricting the
end-point map to a ball BL2(r0) ⊂ L2([0, 1],Rm), where r0 > 0 is chosen in such a way that the
sub-Riemannian ball Bq0(r0) is compact. See also Exercice 8.1.
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8.10 Cut locus and global length-minimizers

In this section we discuss some global properties of length-minimizers. We assume throughout the
section that M is a complete sub-Riemannian manifold.

Definition 8.69. An admissible trajectory γ : [0, T ]→M is called a geodesic if it is parametrized
by constant speed and for every t ∈ [0, T ] there exists ε > 0 such that ℓ(γ|[t−ε,t+ε]) is equal to the
distance between its end-points.

A geodesic γ : [0, T ] → M is said to be maximal if it is not the restriction of a geodesic
γ′ : [0, T ′]→M to a smaller interval, meaning that γ = γ′|[0,T ]. In this section a geodesic is always
assumed to be maximal.

By Theorem 4.65, a normal extremal trajectory parametrized by unit speed is a geodesic. When
M is complete, every normal extremal is extendable to [0,+∞[ thanks to Corollary 8.39.

Exercise 8.70. Let γ be a geodesic. Introduce the set A = {t > 0 : γ|[0,t] is length-minimizing}.
Prove that A is an interval of the form (0, t∗] or (0,+∞).

Definition 8.71. Let γ be a geodesic. Define

t∗(γ) := sup{t > 0 : γ|[0,t] is length-minimizing}.

If t∗(γ) < +∞ we say that γ(t∗) is the cut point to γ(0) along γ. If t∗(γ) = +∞ we say that γ
has no cut point. We denote by Cutq0 the set of all cut points of geodesics starting from a point
q0 ∈M .

The following is the fundamental property of cut locus along normal extremal trajectories.

Theorem 8.72. Let M be a complete sub-Riemannian manifold and γ : [0, T ] → M be a normal
extremal trajectory that does not contain abnormal segments.

Assume that γ(t0) is the cut point to γ(0) along γ, for some t0 ∈ (0, T ). Then

(a) either γ(t0) is the first conjugate point to γ(0) along γ,

(b) or there exists a length-minimizer γ̂ 6= γ joining γ(0) and γ(t0) with ℓ(γ̂) = ℓ(γ|[0,t0]).

Conversely, if there exists t0 ∈ (0, T ) such that either (a) or (b) is satisfied, then there exists
t∗ ∈ (0, t0] such that γ(t∗) is the cut point along γ.

We stress that the two cases (a) and (b) are not mutually exclusive.

Proof. Assume first that γ(t0) is the cut point to γ(0) along γ, and that (a) does not hold, i.e., the
segment [0, t0] contains no conjugate points. Let us show that in this case (b) holds.

Fix a sequence tn → t0 such that tn > t0 for all n ∈ N. Since the manifold is complete, for every
n ∈ N there exists a length-minimizer γn joining γ(0) to γ(tn), namely ℓ(γn) = d(γ(0), γ(tn)).

By compactness of length-minimizers there exists (up to extraction of a convergent subsequence)
a limit length-minimizer γ̂ such that γn → γ̂ uniformly, and the curve γ̂ joins γ(0) and γ(t∗).
Moreover ℓ(γ̂|[0,t∗]) = d(γ(0), γ(t∗)) = ℓ(γ|[0,t∗]).

On the other hand, since the segment γ|[0,t∗] contains no conjugate points, the curve γ|[0,t∗] is
a local length-minimizer in the C0 topology. Thus γ̂ cannot be contained in a neighborhood of γ
and γ̂ 6= γ, ending the proof.
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Let us now prove the converse. Assume first that there exists t0 > 0 such that (a) is satisfied
and, by contradiction, that the cut time t∗ is strictly bigger than t0. This implies that γ|[0,t∗] is a
length-minimizer contradicting claim (ii) of Theorem 8.61.

Assume now that there exists t0 > 0 such that assumption (b) is satisfied, namely there exists a
length-minimizer γ̂ 6= γ such that γ̂(t0) = γ(t0). From this it follows that the concatenation of the
two curves γ̂|[0,t0] and γ|[t0,T ] is also a length-minimizer, hence it satisfies the first-order necessary
conditions. This defines two different normal lifts of the normal extremal trajectory γ|[t0,T ], hence
γ|[t0,T ] would be an abnormal segment (cf. Exercise 8.10), contradicting our assumption on γ.

Theorem 8.73. Let M be a complete sub-Riemannian manifold. Let γ : [0, 1] → M be a normal
extremal trajectory that does not contain abnormal segments. Assume that for some t0 ∈ (0, 1)

(i) γ|[0,t0] is a length-minimizer,

(ii) there exists a neighborhood U of γ(t0) such that every point of U is reached by a unique
length-minimizer from γ(0), which is not abnormal.

Then γ(t0) is not conjugate to γ(0). Moreover there exists ε > 0 such that γ|[0,t0+ε] is a length-
minimizer.

Proof. It is enough to show that there exists ε > 0 such that the segment [0, t0+ε] does not contain
conjugate points to γ(0). Indeed this fact, together with assumptions (i) and (ii), imply that the
cut time t∗ along γ satisfies t∗ ≥ t0 + ε (cf. Theorem 8.72).

Fix a neighborhood U of γ(t0) and, for each q ∈ U , let us denote by γq (resp. uq) the minimizing
length-parametrized trajectory (resp. control) joining γ(0) to q. Thanks to Proposition 8.67 the
map q 7→ uq is continuous in the strong topology in L2.

Hence we can consider the family λq1 of normal final covectors associated with uq, i.e., satisfying
the Lagrange multipliers rule

λq1DuqF = uq, ∀ q ∈ U.
By the smoothness of the end-point map Eq0 , the map q 7→ DuqEq0 is continuous. Moreover
DuqEq0 is surjective for every q since the normal extremal trajectory associated with uq is not
abnormal. The adjoint map (DuqF )

∗ : T ∗
qM → L2([0, 1],Rm) is then injective and λq1 is the unique

solution to the linear equation (DuqF )
∗ξ = uq (the uniqueness of covector is guaranteed since the

trajectory is not abnormal by assumption (ii)). Since the coefficients of the linear equation are
continuous with respect to q, this implies that the map Φ1 : q 7→ λq1 is continuous, as well as the
map Φ0 : q 7→ λq0 that associates with every q the initial covector λq0 of the trajectory joining q0
with q, since Φ0(q) = (P u

q

0,1)
∗ ◦ Φ1(q).

Moreover, by construction, we have expq0(Φ
0(q)) = q for every q ∈ U , i.e, Φ0 is a continuous

right inverse of the exponential map expq0 . Thus the map Φ0 is injective on U and, by the Brouwer
invariance of domain theorem, Φ0 is an open map and Φ0 : U → A := Φ0(U) is an homeomorphism,

with λ
γ(t0)
0 ∈ A ⊂ T ∗

q0M .

Fix δ0 > 0 small enough such that (1 + δ)λ
γ(t0)
0 ∈ A for |δ| < δ0. By homogeneity (1 +

δ)λ
γ(t0)
0 = λ

γ((1+δ)t0)
0 . This means that the unique length-minimizer joining q0 with γ((1 + δ0)t0) is

γ|[0,(1+δ0)t0]. Thus γ deos not contain conjugate points in the segment [0, t0 + ε] for every ε < δ0t0
(cf. Theorem 8.72).
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We end this section by explicitly stating the converse of Theorem 8.73, in the case when the
structure admits no abnormal length-minimizers.

Corollary 8.74. Assume that the sub-Riemannian structure admits no abnormal length-minimizer.
Let γ : [0, 1]→M be a horizontal curve such that for some t0 ∈ (0, 1)

(i) γ|[0,t0] is a length-minimizer,

(ii) γ(t0) is conjugate to γ(0).

Then any neighborhood of γ(t0) contains a point reached from γ(0) by at least two distinct length-
minimizers.

Remark 8.75. Thanks to Theorem 8.72, if a sub-Riemannian structure admits no abnormal length-
minimizer, then points where geodesics lose global optimality can be of two types: (a) (first)
conjugate points, or (b) points reached by two distinct length-minimizers.

Corollary 8.74 says that, if there are no abnormal length-minimizers, cut points of type (a)
always appears as accumulation points of those of type (b). Hence to compute the cut locus is is
enough to consider the closure of points reached by at least two length-minimizers.

To end this chapter we prove a regularity property for the cut time function when abnormal
length-minimizers are absent. Notice that in this case all unit speed geodesic are parametrized
through the initial covector, belonging to H−1(1/2) ⊂ T ∗M .

Given ξ ∈ H−1(1/2), we denote by γξ the corresponding geodesic and we define c(ξ) := t∗(γξ).

Proposition 8.76. LetM be a complete sub-Riemannian structure that admits no abnormal length-
minimizer. Then the cut time function c : H−1(1/2)→ R is continous.

We stress that we regard here H−1(1/2) as a subset of T ∗M and we do not restrict here to a
single fiber. Hence the continuity is both in the base point and the covector.

Proof. We prove separately (i) the upper semicontinuity and (ii) the lower semicontinuity.

(i) Fix ξ ∈ H−1(1/2), and let (ξn)n be a sequence in H−1(1/2) such that ξn → ξ for n → ∞.
In particular qn := π(ξn) tends to q := π(ξ). We have to prove that

lim sup
n→+∞

c(ξn) ≤ c(ξ). (8.90)

Denote by cn := c(ξn). Assume that cn is unbounded. Up to subsequences, we can assume
cn → +∞. Hence for every T > 0 we have limj→∞ γξn(T ) = γξ(T ) and, by continuity of the
sub-Riemannian distance,

d(q, γξ(T )) = lim
j→∞

d(qn, γξn(T )) = T,

which proves c(ξ) = +∞. If the left hand side of (8.90) is finite the it is not restrictive to assume
that cn is convergent to some c∗ > 0. Then for every ε < c∗ one has

d(q, γξ(c∗ − ε)) = lim
n→∞

d(qn, γξn(cn − ε)) = lim
n→∞

cn − ε = c∗ − ε (8.91)

This proves c(ξ) ≥ c∗ and completes the proof of (i).
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(ii) Let us now show that if ξn → ξ in H−1(1/2) for n→∞ we have

lim inf
n→+∞

c(ξn) ≥ c(ξ). (8.92)

It is enough to consider the case when c(ξn) is convergent to some c∗ > 0. We want to show that
the limit curve γξ is not minimizing after γξ(c∗). By passing to a subsequence, if necessary, we may
assume that either (a) γξn(cn) is conjugate to qn along γξn for all n, or (b) that for each n there
exists ξ′n ∈ H−1(1/2), with π(ξ′n) = π(ξn) and ξ

′
n 6= ξn, such that γξn(cn) = γξ′n(cn).

In case (a), by smoothness of the exponential map both in the base point and in the argument,
the point γξ(c∗) is certainly conjugate to q along γξ, hence c(ξ) ≤ c∗. In case (b), it is not restrictive
to assume that ξ′n also converges to some ξ′. If ξ 6= ξ′, then there exists two different arclength
parametrized length-minimizers (starting from π(ξ) = π(ξ′)) reaching the same point in time c∗. If
ξ = ξ′ then, again by smoothness of the exponential map in both argument, the exponential map
based at π(ξ) is not a local diffeomorphism, hence again γξ(c∗) is conjugate to q along γξ. In both
cases we have c(ξ) ≤ c∗.

Remark 8.77. Notice that removing the assumptions of completeness and absence of abnormal
length-minimizers, the part (i) of the proof of Proposition 8.76 still holds, hence the cut time
function c : H−1(1/2) → R is always upper semicontinuous.

8.11 An example: the first conjugate locus on perturbed sphere

In this section we prove that a C∞ small perturbation of the standard metric on S2 has a first
conjugate locus with at least 4 cusps. See Figure 8.2. Recall that geodesics for the standard metric
on S2 are great circles, and the first conjugate locus from a point q0 coincides with its antipodal
point q̂0. Indeed all geodesics starting from q0 meet there and lose their optimality at q̂0.

Denote H0 the Hamiltonian associated with the standard metric on the sphere and let H be an
Hamiltonian associated with a Riemannian metric on S2 such that H is sufficiently close to H0,
with respect to the C∞ topology for smooth functions in T ∗M .

Fix a point q0 ∈ S2. Normal extremal trajectories starting from q0 and parametrized by
length (with respect to the Hamiltonian H) can be parametrized by covectors λ ∈ T ∗

q0M such that
H(λ) = 1/2. The set H−1(1/2) is diffeomorphic to a circle S1 and can be parametrized by an angle
θ. For a fixed initial condition λ0 = (q0, θ), where q0 ∈M and θ ∈ S1 we write

λ(t) = et
~H(λ0) = (p(t, θ), γ(t, θ)),

and we denote by exp = expq0 the exponential map based at q0

expq0(t, λ0) = π ◦ et ~H(λ0) = γ(t, θ).

For every initial condition θ ∈ S1 denote by tc(θ) the first conjugate time along γ(·, θ), i.e., tc(θ) =
inf{τ > 0 | γ(τ, θ) is conjugate to q0 along γ(·, θ)}.

Proposition 8.78. The first conjugate time tc(θ) is characterized as follows

tc(θ) = inf

{
t > 0

∣∣∣∣
∂exp

∂θ
(t, θ) = 0

}
. (8.93)

250



Proof. First notice that ∂exp
∂t (t, θ) = γ̇(t, θ) 6= 0. Hence conjugate points correspond to critical

points of the exponential map, i.e., points exp(t, θ) such that

rank

{
∂exp

∂t
(t, θ),

∂exp

∂θ
(t, θ)

}
= 1. (8.94)

Let us show that condition (8.94) occurs only if ∂exp
∂θ (t, θ) = 0. Indeed, by Proposition 8.42, one

has that 〈
p(t, θ),

∂exp

∂t
(t, θ)

〉
= 1,

〈
p(t, θ),

∂exp

∂θ
(t, θ)

〉
= 0,

thus, whenever ∂exp
∂θ (t, θ) 6= 0, the two vectors appearing in (8.94) are always linearly independent.

Lemma 8.79. The function θ 7→ tc(θ) is of class C1.

Proof. By Proposition 8.78, tc(θ) is a solution to the equation (in the variable t)

∂exp

∂θ
(t, θ) = 0. (8.95)

Let us first remark that, for the exponential map exp0 associated with the Hamitonian H0 we have

∂exp0
∂θ

(t0c(θ), θ) = 0,
∂2exp0
∂t∂θ

(t0c(θ), θ) 6= 0, (8.96)

where t0c(θ) is the first conjugate time with respect to the metric induced by H0, as it is easily
checked.

Since H is close to H0 in the C∞ topology, by continuity with respect to the data of solution
of ODEs, we have that exp is close to exp0 in the C∞ topology too. Moreover the condition (8.96)
ensures the existence of a solution tc(θ) of (8.95) that is close to t0c(θ). Hence we have that

∂2exp

∂t∂θ
(tc(θ), θ) 6= 0 (8.97)

By the implicit function the function θ 7→ tc(θ) is well-defined and of class C1.

Let us introduce the function β : S1 → M defined by β(θ) = exp(tc(θ), θ). The first conjugate
locus, by definition, is the image of the map β. The cuspidal point of the conjugate locus are
by definition those points where the function θ 7→ t′c(θ) change sign. By continuity (cf. proof of
Lemma 8.79) the map β takes value in a neighborhood of the point q̂0 antipodal to q0. Let us
considr stereographic coordinates around this point and consider β as a function from S1 to R2.
By the chain rule and (8.95), we have

β′(θ) = t′c(θ)
∂exp

∂t
(tc(θ), θ) +

∂exp

∂θ
(tc(θ), θ)

︸ ︷︷ ︸
=0

. (8.98)

Let us define g, g0 : S1 → R2 by g(θ) := ∂exp
∂t (tc(θ), θ) and g0(θ) :=

∂exp0
∂t (t0c(θ), θ). The set

C0 = {ρg0(θ) | θ ∈ S1, ρ ∈ [0, 1]},
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is strictly convex, since

g0(θ) =

(
cos θ
sin θ

)
.

By assumption, the perturbation of the metric is small in the C∞-topology, hence

C = {ρg(θ) | θ ∈ S1, ρ ∈ [0, 1]}, (8.99)

remains strictly convex.

Theorem 8.80. The conjugate locus of the perturbed sphere has at least 4 cuspidal points.

Proof. Notice that the function θ 7→ t′c(θ) can change sign only an even number of times on
S1 = R/2πZ. Moreover ∫ 2π

0
t′c(θ)dθ = tc(2π)− tc(0) = 0. (8.100)

A continuous function with zero integral mean on [0, 2π], which is not identically zero, changes sign
at least twice on the interval. Notice also that

∫ 2π

0
t′c(θ)g(θ)dθ =

∫ 2π

0
β′(θ)dθ = β(2π) − β(0) = 0. (8.101)

Let us now assume by contradiction that the function θ 7→ t′c(θ) changes sign exactly twice at
θ1, θ2 ∈ S1. Then, by convexity of C, there exists a covector η ∈ (R2)∗ such that 〈η, g(θi)〉 = 0 for
i = 1, 2 and such that t′c(θ) 〈η, g(θ)〉 > 0 if θ 6= θi for i = 1, 2. This implies in particular

〈
η,

∫ 2π

0
t′c(θ)g(θ)dθ

〉
=

∫ 2π

0
t′c(θ) 〈η, g(θ)〉 dθ 6= 0,

which contradicts (8.101).

Remark 8.81. A careful analysis of the proof shows that the statement remains true if one considers
a small perturbation of the Hamiltonian (or equivalently, the metric) in the C4 topology. Indeed
the key point is that g is close to g0 in the C2 topology, to preserve the convexity of the set C
defined by (8.99).

The same argument can be applied for every arbitrary small C∞ (and actually C4) perturbation
H of the Riemannian Hamiltonian H0 associated with the standard Riemannian structure on S2,
without requiring that H comes from a Riemannian metric.

8.12 Bibliographical note

The study of Lagrange multipliers through the theory of Morse problems have been initiated in
[AG98], see also the survey [Agr08]. The presentation given here is inspired by those references,
where a more general setting is considered. Compactness of length-minimizers have been proved in
[Agr98a].

The study of the cut and conjugate loci on surfaces is a classical topic in Riemannian geometry
[Cha06, GHL90].
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conjugate locus

Figure 8.2: Perturbed sphere or ellipsoid

One of the first general results is due to S. B. Myers, who proved that the cut locus from a point
in a two-dimensional, real analytic, complete Riemannian manifold form a one-dimensional graph
[Mye36]. More recently the fact that every graph can be a cut locus have been proved in [IV15].

The fact that the conjugate locus on every ellipsoid has exactly four cusps has been proved only
recently in [IK04], and it is known as the Last geometric statement of Jacobi.

In the sub-Riemannian case the cut locus and the conjugate locus have been widely studied
in the literature. In this chapter we prove that, in absence of abnormal length-minimizers, the
properties that hold in Riemannian geometry extends to the sub-Riemannian context.
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Chapter 9

2D Almost-Riemannian Structures

Almost-Riemannian structures are examples of sub-Riemannian structures such that the local min-
imum bundle rank (cf. Definition 3.21) is equal to the dimension of the manifold at each point (cf.
Section 3.1.3). They are the prototype of rank-varying sub-Riemannian structures. In this chapter
we study the 2-dimensional case, that is very simple since it is Riemannian almost everywhere (see
Theorem 9.14), but presents already some interesting phenomena as for instance the presence of
sets of finite diameter but infinite area and the presence of conjugate points even when the curva-
ture is always negative (where it is defined). Also the Gauss-Bonnet theorem has a surprising form
in this context.

9.1 Basic definitions and properties

Thanks to Exercise 3.29, given a structure having constant local minimum bundle rank m one can
find an equivalent one having bundle rank m. In dimension 2, due to the Lie bracket-generating
assumption, also the opposite holds true in the following sense: a structure having bundle rank 2
has local minimal bundle rank 2. Hence we can define a 2D almost-Riemannian structure in the
following simpler way.

Definition 9.1. Let M be a 2-D connected smooth manifold. A 2D almost-Riemannian structure
on M is a pair (U, f) as follows:

• U is an Euclidean bundle over M of rank 2. We denote each fiber by Uq, the scalar product
on Uq by (· | ·)q and the norm of u ∈ Uq as |u| =

√
(u |u)q.

• f : U → TM is a smooth map that is a morphism of vector bundles i.e., f(Uq) ⊆ TqM and
f is linear on fibers.

• D = {f(σ) | σ :M → U smooth section}, is a bracket-generating family of vector fields.

Let us recall some definitions and notations (already introduced for general sub-Riemannian struc-
tures).

• The distribution is defined as D(q) = {X(q) | X ∈ D} = f(Uq) ⊆ TqM .

• The step of the structure at q ∈ M is the minimal s ∈ N, s ≥ 1 such that Ds(q) = TqM ,
where D1 := D, Di+1 := Di + [D1,Di], for i ≥ 1.
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• The (almost-Riemannian) norm of a vector v ∈ Dq is

‖v‖ := min{|u|, u ∈ Uq s.t. v = f(q, u)}.

• An admissible curve is a Lipschitz curve γ : [0, T ] → M such that there exists a measurable
and essentially bounded function u : [0, T ] ∋ t 7→ u(t) ∈ Uγ(t), called control function, such
that γ̇(t) = f(γ(t), u(t)), for a.e. t ∈ [0, T ]. Recall that there may be more than one control
corresponding to the same admissible curve.

• The minimal control of an admissible curve γ is

u∗(t) := argmin{|u|, u ∈ Uγ(t) s.t. γ̇(t) = f(γ(t), u)}

(for all t differentiability point of γ). Recall that the minimal control is measurable (cf.
Section 3.5).

• The (almost-Riemannian) length of an admissible curve γ : [0, T ]→M is

ℓ(γ) :=

∫ T

0
‖γ̇(t)‖dt =

∫ T

0
|u∗(t)|dt.

• The (almost-Riemannian) distance between two points q0, q1 ∈M is

d(q0, q1) = inf{ℓ(γ) | γ : [0, T ]→M admissible, γ(0) = q0, γ(T ) = q1}. (9.1)

Recall that thanks to the bracket-generating condition, the Chow-Rashevskii theorem (The-
orem 3.31) guarantees that (M,d) is a metric space and that the topology induced by (M,d) is
equivalent to the manifold topology.

In this chapter we use the terminology “orthonormal frame” in a slightly generalized sense.

Definition 9.2. An orthonormal frame for the 2D almost-Riemannian structure on Ω is the pair
of vector fields {F1, F2} := {f ◦ σ1, f ◦ σ2} where {σ1, σ2} is an orthonormal frame for (· | ·)q on a
local trivialization Ω× R2 of U.

On a local trivialization Ω × R2, the map f can be written as f(q, u) = u1F1(q) + u2F2(q).
As usual, when this can be done globally (i.e., when U is the trivial bundle) we say that the 2D
almost-Riemannian structure is free.

Notice that orthonormal frames in the sense of Definition 9.2 in the Riemannian sense out of
the singular set (cf. Proposition 9.6).

In this chapter we do not work with an equivalent structure of larger bundle rank that is free
(cf. Section 3.1.4). Technically such a structure fits Definition 3.21 (i.e., that local minimum bundle
rank is equal to the dimension of the manifold at each point) but not Definition 9.1. This point of
view permits to understand how global properties of U (as its orientability and its topology) are
transferred in properties of the almost-Riemannian structure.

Definition 9.3. A 2D almost-Riemannian structure (U, f) over M is said to be orientable if U is
orientable. It is said to be fully orientable if both U and M are orientable.
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Observe that free 2D almost-Riemannian structures are always orientable.

Given an orientable 2D almost-Riemannian structure, if {F1, F2} and {G1, G2} are two positively
oriented orthonormal frames defined respectively on two open subsets Ω and Ξ, then on Ω∩Ξ there
exists a smooth function θ :M → S1 such that

(
G1(q)
G2(q)

)
=

(
cos(θ(q)) sin(θ(q))
− sin(θ(q)) cos(θ(q))

)(
F1(q)
F2(q)

)
.

As shown by the following examples, one can construct orientable 2D almost-Riemannian structures
on non-orientable manifolds and viceversa.

An orientable 2D almost-Riemannian structure on the Klein bottle. Let M be the Klein
bottle seen as the square [−π, π] × [−π, π] with the identifications (x1,−π) ∼ (x1, π), (−π, x2) ∼
(π,−x2).

Let U = M × R2 with the standard Euclidean metric and consider the morphism of vector
bundles given by

f : U→ TM, f(x1, x2, u1, u2) =
(
x1, x2, u1, u2 sin

(x1
2

))
.

This structure is Lie bracket-generating and the two vector fields

F1(x1, x2) =

(
1
0

)
, F2(x1, x2) =

(
0

sin
(
x1
2

)
)
,

which are well defined on M , provide a global orthonormal frame. This structure is orientable since
U is trivial.

Exercise 9.4. Construct a non-orientable almost-Riemannian structure on the 2D-torus.

Definition 9.5. The singular set Z of a 2D almost-Riemannian structure (U, f) over M is the set
of points q of M such that f is not fiberwise surjective, i.e., such that the rank of the distribution
r(q) := dim(Dq) is less than 2.

Notice if q ∈ Z then r(q) = 1. Indeed r(q) = 0 at some point q, then the structure is not
bracket-generating at q.

Since outside the singular set Z, f is fiberwise surjective, the following property holds.

Proposition 9.6. A 2D almost-Riemannian structure is a Riemannian structure on M \ Z.

A point q ∈M \Z is called a Riemannian point. On Riemannian points, the Riemannian metric
is reconstructed with the polarization identity (see Exercice 3.9). It follows that if {F1, F2} is a
local orthonormal frame, v = v1F1(q) + v2F2(q) ∈ TqM and w = w1F1(q) + w2F2(q) ∈ TqM then
the Riemannian metric at q is given by

gq(v,w) = v1w1 + v2w2.

By construction, at Riemannian points, {F1, F2} is an orthonormal frame in the usual sense

gq(Fi(q), Fj(q)) = δij , i, j = 1, 2.
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Exercise 9.7. Assume that in a local system of coordinates an orthonormal frame is given by

F1 =

(
F 1
1

F 2
1

)
, F2 =

(
F 1
2

F 2
2

)
and let F = (F ji )i,j=1,2 =

(
F 1
1 F 1

2

F 2
1 F 2

2

)
.

Prove that at Riemannian points the Riemannian metric is represented by the matrix g = t(F−1)F−1.

The following proposition is very useful to study local properties of 2D almost-Riemannian
structures.

Proposition 9.8. Consider a 2D almost-Riemannian structure over M . For every point q0 of M
there exists a neighborhood Ω of q0, a local orthonormal frame {F1, F2} defined in Ω and a system
of coordinates {x1, x2} in Ω such that q0 = (0, 0), and F1, F2 can be written in these coordinates
as:

F1(x1, x2) =

(
1
0

)
, F2(x1, x2) =

(
0

f(x1, x2)

)
, (9.2)

where f : Ω→ R is a smooth function. Moreover

(i) the integral curves of F1 are normal Pontryagin extremals;

(ii) let s be the step of the structure at q0. If s = 1 then f(0, 0) 6= 0. If s ≥ 2, we have f(0, 0) = 0,
∂rx1f(0, 0) = 0 for r = 1, 2, . . . , s− 2 and ∂s−1

x1 f(0, 0) 6= 0.

Remark 9.9. Notice that using the system of coordinates and the orthonormal frame given by
Proposition 9.8, we have that Z ∩ Ω = {(x1, x2) ∈ Ω | f(x1, x2) = 0}.

Before proving Proposition 9.8, let us prove the following Lemma.

Lemma 9.10. Consider a 2D almost-Riemannian structure and let W be a smooth embedded
one-dimensional submanifold of M . Assume that W is transversal to the distribution D, i.e.,
D(q) + TqW = TqM for every q ∈W . Then, for every q ∈W there exists an open neighborhood Ω
of q such that for every ε > 0 small enough, the set

{q′ ∈ Ω | d(q′,W ) = ε}, (9.3)

is a smooth embedded one-dimensional submanifold of Ω.

Proof. Let H : T ∗M → R be the sub-Riemannian Hamiltonian (cf. (4.32)) and consider a smooth
regular parametrization α 7→ w(α) of W . Let α 7→ λ0(α) ∈ T ∗

w(α)M be a smooth map satisfying

H(λ0(α)) = 1/2 and λ0(α) ⊥ Tw(α)W .
Let E(t, α) be the solution at time t of the Hamiltonian system with Hamiltonian H and with

initial condition λ(0) = λ0(α). Fix q ∈W and define ᾱ by q = w(ᾱ). Now let us prove that E(t, α)
is a local diffeomorphism around the point (0, ᾱ). To this purpose let us show that the two vectors

v1 =
∂E

∂α
(0, ᾱ) and v2 =

∂E

∂t
(0, ᾱ) (9.4)

are linearly independent. On one hand, since v1 is equal to dw
dα (ᾱ), then it spans TqW . On the

other hand, being H quadratic in λ,

〈λ0(ᾱ), v2〉 = 〈λ0(ᾱ),
∂H

∂λ
(λ0(ᾱ))〉 = 2H(λ0(ᾱ)) = 1. (9.5)
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normal Pontryagin extremals

W

D(q)q0

Figure 9.1: Normal Pontryagin extremals starting from the singular set

Thus v2 does not belong to the orthogonal to λ0(ᾱ), that is, to TqW .
Therefore for a small enough neighborhood Ω of q, using the fact that small arcs of normal

extremal paths are minimizers, we have that for ε > 0 small enough, the set A = {q′ ∈ Ω |
d(q′,W ) = ε} contains the intersection of Ω with the images of E(ε, ·) and E(−ε, ·). By possibly
restricting Ω, we are in the situation of Figure 9.1 and the set A coincides with the intersection of
Ω with the images of E(ε, ·) and E(−ε, ·).

Remark 9.11. Notice that in this proof we did not make any hypothesis on abnormal extremals. In
Section 9.1.3 we are going to see that for 2D almost-Riemannian structures there are no nontrivial
abnormal extremals.

Proof of Proposition 9.8. Following the notation of the proof of Lemma 9.10 let us parametrize W
in such a way that q0 = w(0). Take (t, α) as a system of coordinates on Ω and define the vector
field F1 by

F1(t, α) =
∂E(t, α)

∂t
. (9.6)

Notice that, by construction, for every point in Ω the vector F1 belongs to the distribution and
its almost-Riemannian norm is equal to 1. In the coordinates (t, α) we have F1 = (1, 0) and by
construction its integral curves are normal Pontryagin extremals. Let F2 be a vector field on Ω
such that {F1, F2} is an orthonormal frame for the 2D almost-Riemannian structure in Ω.

We claim that the first component of F2 is identically equal to zero. Indeed, were this not the
case, the norm of F1 would not be equal to one.

We are left to prove (ii). We have

F3 := [F1, F2] =

(
0

∂x1f(x1, x2)

)
(9.7)

Notice that the only iterated brackets between F1, F2 that could be different from zero are of the
form

[F1, . . . , [F1,︸ ︷︷ ︸
r times

F2]] =

(
0

∂rx1f(x1, x2)

)
.
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Hence if the structure has step 1 at q0 = (0, 0) we have f(0, 0) 6= 0. If the structure has step s, with
s ≥ 2 at q0 = (0, 0) we have f(0, 0) = 0, ∂rx1f(0, 0) = 0 for r = 1, 2, . . . , s− 2 and ∂s−1

x1 f(0, 0) 6= 0.

Remark 9.12. Notice that, in the coordinate system constructed in the proof of Lemma 9.10 and
Proposition 9.8, the submanifold W has equation W = {(x1, x2) ∈ Ω | x1 = 0}.

Proposition 9.8 is very useful to express the Riemannian quantities on M \ Z. In fact one has

Lemma 9.13. Assume that on an open set Ω ⊂ M an orthonormal frame for the 2D almost-
Riemannian is given in the form (9.2). Then on Ω ∩ (M \ Z) the Riemannian metric, the element
of Riemannian area and the Gaussian curvatures are given by

g(x1,x2) =

(
1 0
0 1

f(x1,x2)2

)
, (9.8)

dA(x1,x2) =
1

|f(x1, x2)|
dx1 dx2, (9.9)

K(x1, x2) =
f(x1, x2)∂

2
x1f(x1, x2)− 2 (∂x1f(x1, x2))

2

f(x1, x2)2
. (9.10)

Proof. Formula (9.8) is a direct consequence of (9.1). Formula (9.9) comes from the definition of
the Riemannian area dA(F1, F2) = 1 where {F1, F2} is a local orthonormal frame. Formula (9.10)
comes from the formula (see Corollary 4.40):

K(q) = −α2
1 − α2

2 + F1α2 − F2α1,

where α1 and α2 are the two functions defined by [F1, F2] = α1F1 + α2F2.

Hence in a 2D almost-Riemannian structure all Riemannian quantities bow up when approach-
ing Z.

9.1.1 How big is the singular set?

A natural question is how big could be the singular set. The answer is given by the following
Lemma.

Theorem 9.14. Let µ be a smooth area on M . Then Z has zero µ-measure.

A direct consequence is the following statement.

Corollary 9.15. Consider a system of coordinates (x1, x2) defined on an open set Ω and let dx1 dx2
be the corresponding Lebesgue area. Then Z ∩ Ω has zero dx1 dx2-measure.

As a consequence of Theorem 9.14, since Z is closed, we have the following.

Corollary 9.16. For a 2D almost Riemannian structure, the set of Riemannian points is open and
dense.

Proof of Theorem 9.14. Let us cover M with a countable union of open coordinate neighborhoods
{Ui}i∈I having the following properties:
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• each Ui it is the product of two non-empty intervals:

Ui = (ai, bi)× (ci, di),

• on Ui we have an orthonormal frame of the form

F i1(x1, x2) =

(
1
0

)
, F i2(x1, x2) =

(
0

fi(x1, x2)

)
, (9.11)

• on Ui the maximal step of the structure is si.

Moreover on Ui let us write µ(x1, x2) = hi(x1, x2)dx1dx2, where hi is a smooth and never vanishing
function. Since the measure is countably additive, it is enough to show that the µ-area of each of
Z ∩ Ui is zero. For simplicity of notation, we prove then the statement for one of the open set Ui
of the covering, that we denote U , and we remove the i from the notation.

Let 1Z : M → {0, 1} be the characteristic function of Z. Using Fubini’s theorem the µ-area of
Z ∩ U is
∫

Z∩U
h(x1, x2)dx1dx2 =

∫

U
1Z(x1, x2)h(x1, x2)dx1dx2 =

∫ d

c

(∫ b

a
1Z(x1, x2)h(x1, x2)dx1

)
dx2.

We now prove that for every fixed x̄2 ∈ (c, d), we have
∫ b
a 1Z(x1, x̄2)h(x1, x̄2)dx1 = 0. Recall that

Z = {(x1, x2) | f(x1, x2) = 0}. By possibly restricting U , we have that (ii) of Proposition 9.8
guarantees that for every x1 ∈ (a, b) there exists r(x1) ≤ s − 1 such that ∂rx1f(x1, x̄2) 6= 0. Hence

f(·, x̄2) has only isolated zeros and
∫ b
a 1Z(x1, x̄2)h(x1, x2)dx1 = 0.

Exercise 9.17. Use the proof of Theorem 9.14 to show that the singular set is locally the countable
union of zero- and one-dimensional submanifolds and hence that it is rectifiable.

Remark 9.18. Notice that we cannot use the Riemannian area dA to measure Z since dA is not
defined on Z.

9.1.2 Genuinely 2D almost-Riemannian structures have always infinite area

Theorem 9.19. Let U be an open set such that U ∩ Z 6= ∅. Then
∫

U\Z
dA = +∞,

where dA is the Riemannian area on U \ Z associated with the almost-Riemannian structure.

To prove Theorem 9.19, we need the following preliminary results.

Lemma 9.20. Let Ω be an open neighborhood of the origin in R and let f ∈ C∞(Ω,R) such that
f(0) = 0. Then there exists g ∈ C∞(Ω,R) such that f(x) = x g(x). Moreover f ′(0) 6= 0 if and only
if g(0) 6= 0,

Proof. For x ∈ Ω, let us define h : [0, 1]→ R by h(t) := f(tx). We have

f(x) = f(x)− f(0) = h(1)− h(0) =
∫ 1

0
h′(t)dt =

∫ 1

0
f ′(tx)x dt = x

∫ 1

0
f ′(tx) dt.

Since the function g(x) :=
∫ 1
0 f

′(tx) dt is smooth, the result follows.
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The extension of Lemma 9.20 to dimension 2 is straightforward.

Lemma 9.21. Let Ω ⊂ R2 be an open neighorhood of the origin and let f ∈ C∞(Ω,R) such that
f(0, x2) = 0 for every x2. Then there exists g ∈ C∞(Ω,R) such that f(x1, x2) = x1g(x1, x2).
Moreover ∂x1f(0, 0) 6= 0 if and only if g(0, 0) 6= 0.

Proof of Theorem 9.19. Take a point q0 ∈ U ∩ Z. Thanks to Proposition 9.8, we can find a
neighborhood Ω ⊂ U of q0 and a system of coordinates (x1, x2) in Ω such that q0 = (0, 0) and an
orthonormal frame for the 2D almost-Riemannian structure can be written in Ω as:

F1(x1, x2) =

(
1
0

)
, F2(x1, x2) =

(
0

f(x1, x2)

)
, f(0, 0) = 0.

We have that ∫

U\Z
dA ≥

∫

Ω\Z
dA =

∫

Ω\Z

1

|f(x1, x2)|
dx1dx2 =: IΩ(f). (9.12)

We prove next that IΩ(f) is infinity. Let ∇f be the Euclidean gradient of f. We have two cases.

Case 1. ∇f(0, 0) 6= 0. In this case, possibly restricting Ω, we can assume that Z|Ω = {x ∈ Ω |
f(x) = 0} is a submanifold of Ω.

Up to a change of coordinates we can assume that Z|Ω = {(x1, x2) ∈ Ω | x1 = 0}. By Lemma
9.21, we can write in Ω

f(x1, x2) = x1 g(x1, x2),

where g(x1, x2) is a smooth function, that we can assume (possibly restricting Ω) to satisfy M1 ≤
|g(x1, x2)| ≤M2 for some 0 < M1 < M2. It follows that

IΩ(f) =

∫

Ω\Z

1

|x1|
1

|g(x1, x2)|
dx1dx2 ≥

1

M2

∫

Ω\Z

1

|x1|
dx1dx2 = +∞. (9.13)

Case 2. ∇f(0, 0) = 0. In this case the Taylor expansion of f (in both variables) at x0 is

f(x1, x2) = b x21 + c x22 + dx1x2 +O(‖x‖3).

Here ‖x‖ is the Euclidean norm of (x1, x2). Hence in Ω \ {(0, 0)} we can write

f(x1, x2) = ‖x‖2 g(x1, x2),

where g(x1, x2) := b
x21

‖x‖2 + c
x22

‖x‖2 + dx1x2‖x‖2 +O(‖x‖) is a smooth function defined in Ω \ {(0, 0)}, that
we can assume (possibly restricting Ω) to satisfy |g(x1, x2)| ≤M for some M > 0. It follows that

IΩ(f) =

∫

Ω\Z

1

‖x‖2
1

|g(x1, x2)|
dx1dx2 ≥

1

M

∫

Ω\Z

1

‖x‖2 dx1dx2 =
1

M

∫

Ω\{x0}

1

‖x‖2 dx1dx2 = +∞.

(9.14)

Here we have used that Z has zero Lebesgue measure.

Remark 9.22. Notice that if in Theorem 9.19 we take U compactly contained inM then diam(U) <
+∞ and

∫
U\Z dA = +∞.
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9.1.3 Pontryagin extremals

Since 2D almost-Riemannian structures are particular cases of sub-Riemannian structures, there
are two kind of candidate optimal trajectories: normal and abnormal extremal trajectories.

If we fix a local orthonormal frame {F1, F2}, in an open set Ω and an admissible trajectory q(·)
taking values in Ω, by definition we have (cf. Theorems 4.20 and 4.25).

• q(·) is normal extremal trajectory if there exists a Lipschitz covector p(·) such that (q(·), p(·))
is solution to the Hamiltonian system corresponding to

H(q, p) =
1

2

(
〈p, F1(q)〉2 + 〈p, F2(q)〉2

)
.

Remark 9.23. Notice that for a system of coordinates and a choice of an orthonormal frame
as those of Proposition 9.8, we have

H(x1, x2, p1, p2) =
1

2

(
p21 + p22 f(x1, x2)

2
)
. (9.15)

• q(·) is an abnormal extremal trajectory if there exists a never vanishing Lipschitz covector
p(·) such that

〈p(t), F1(q(t))〉 ≡ 0, 〈p(t), F2(q(t))〉 ≡ 0.

Recall that nontrivial normal extremal trajectories are geodesics while nontrivial abnormal
extremal trajectories could be geodesics or not (see Section 4.7.2). For 2D almost-Riemannian
structures, the situation is particularly simple.

Theorem 9.24. For a 2D almost-Riemannian structure, an extremal trajectory γ admits an ab-
normal lift if and only if γ is a constant curve contained in Z.

Proof. It is immediate to verify that if γ is a constant curve contained in Z, then γ admits an
abnormal lift.

Let γ : [a, b] → M , (a < b) be the projection of an abnormal extremal and let us prove that γ
is a constant curve contained in Z.

Let us first prove that γ([a, b]) ⊂ Z. By contradiction assume that there exists t̄ ∈]a, b[ such that
γ(t̄) /∈ Z. By continuity there exists a nontrivial interval [c, d] ⊂]a, b[ such that γ([c, d]) ∩ Z = ∅.
Then γ[c,d] is a Riemannian extremal trajectory and hence cannot be abnormal. Recall that if an
arc of an extremal trajectory is not abnormal, then the extremal trajectory is not abnormal too,
hence it follows that γ is not abnormal. This contradicts the hypothesis that γ is the projection of
an abnormal extremal.

Let us now prove that γ is a constant curve. Let us fix a local system of coordinates and an
orthonormal frame as in Proposition 9.8. If this is not possible globally on a neighborhood of
γ([a, b]), one can repeat the proof chart by chart. Let us write in coordinates γ(t) = (γ1(t), γ2(t)).
We have different cases.

• If (γ1(t), γ2(t)) = (c1, c2) for every t ∈ [a, b] we already know that γ admits an abnormal lift.

• If γ1 is not constant and γ2 = c in [a, b], then γ̇2 = 0 in [a, b] and Z contains a set of the type

Z̄ = {(x1, c) | x1 ∈ [xA1 , x
B
1 ]} with xA1 < xB1 .
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Since f = 0 on Z and hence on Z̄, it follows that ∂rx1f ≡ 0 on Z̄, for every r = 1, 2, . . .. As in
the proof of Theorem 9.14, it follows that all brackets between F1 and F2 are zero on Z̄ and
that the bracket-generating condition is violated. Hence this case is not possible.

• There exists t̄ ∈]a, b[ such that γ̇2(t̄) is defined and γ̇2(t̄) 6= 0. Now since

γ̇(t̄) =

(
v1

v2f(γ(t̄))

)
,

for some v1, v2 ∈ R, we have f(γ(t̄)) 6= 0 and hence γ(t̄) /∈ Z violating the condition γ([a, b]) ⊂
Z. Hence this case is not possible as well.

As a consequence we have

Corollary 9.25. For 2D almost-Riemannian structures, the set of geodesics coincides with the set
of non-trivial normal Pontryagin extremals.

As a consequence of the fact that normal Pontryagin extremals are projections of solutions of
a smooth Hamiltonian system and of Corollary 9.25, we have

Proposition 9.26. In 2D almost-Riemannian geometry all geodesics are smooth.

Notice, moreover, that since our structure is Riemannian on M \ Z, we have that almost-
Riemannian geodesics coincide with Riemannian geodesics on each connected component of M \Z.
The only particular property of almost-Riemannian geodesics is that on the singular set their
velocity is constrained to belong to the distribution (otherwise their length is infinite). All this is
illustrated in the next section for the Grushin plane.

9.2 The Grushin plane

The Grushin plane is the simplest example of genuinely almost-Riemannian structure. It is the free
almost-Riemannian structure on R2 for which a global orthonormal frame is given by

F1(x1, x2) =

(
1
0

)
, F2(x1, x2) =

(
0
x1

)
.

In the sense of Definition 9.1, it can be seen as the pair (U, f) where U = R2 × R2 and
f(x1, x2, u1, u2) = (x1, x2, u1, u2x1).

Here the singular set Z is the x2-axis (see Figure 9.2) and on R2 \ Z the Riemannian metric,
the Riemannian area and the Gaussian curvature are given respectively by:

g =

(
1 0
0 1

x21

)
, dA =

1

|x1|
dx1 dx2, K = − 2

x21
. (9.16)

From the expression of dA, it follows that the (almost-Riemannian) area of an open set intersecting
Z is always infinite. This was prescribed in full generality by Theorem 9.19.
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Z =
x1

x2

F1 =

F2 =

D =

Figure 9.2: The Grushin plane

9.2.1 Geodesics on the Grushin plane

In this section we compute geodesics for the Grushin plane, with the purpose of stressing that they
can cross the singular set with no singularities.

In this case the Hamiltonian (9.15) is given by

H(x1, x2, p1, p2) =
1

2
(p21 + x21p

2
2) (9.17)

and the corresponding Hamiltonian equations are:

ẋ1 = p1, ṗ1 = −x1p22,
ẋ2 = x21p2, ṗ2 = 0.

Arc length geodesics are projections on the (x1, x2) plane of solutions of these equations, lying
on the level set H = 1/2. We study arc length geodesics starting from: i) a point on Z, e.g., (0, 0);
ii) a Riemannian point, e.g., (−1, 0).

Case (x1(0), x2(0)) = (0, 0)
In this case the condition H(x1(0), x2(0), p1(0), p2(0)) = 1/2 implies that we have two families of
arc length geodesics corresponding respectively to p1(0) = ±1 and p2(0) =: a ∈ R. Their expression
can be easily obtained and it is given by:





x1(t) = ±t, x2(t) = 0, if a = 0,

x1(t) = ±
sin(at)

a
, x2(t) =

2at− sin(2at)

4a2
, if a 6= 0.

(9.18)

Some geodesics are plotted in Figure 9.3 together with the “front” at time 1, i.e., the set of end-
points of all arc length geodesics at time t = 1. Notice that all geodesics start horizontally. The
particular form of the front shows the presence of a conjugate locus accumulating to the origin
(compare also with the properties discussed in Chapter 19).
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Figure 9.3: Arc length geodesics and the front for the Grushin plane, starting from the singular
set.

Case (x1(0), x2(0)) = (−1, 0)
In this case the conditionH(x1(0), x2(0), p1(0), p2(0)) = 1/2 becomes p21+p

2
2 = 1 and it is convenient

to set p1 = cos(θ), p2 = sin(θ), and θ ∈ S1. The expression of arc length geodesics is given by:




x1(t) = t− 1, x2(t) = 0, if θ = 0

x1(t) = −t− 1, x2(t) = 0, if θ = π

x1(t) = −
sin(θ − t sin(θ))

sin(θ)
,

x2(t) =
2t− 2 cos(θ) + sin(2θ−2t sin(θ))

sin(θ)

4 sin(θ)





if θ /∈ {0, π}

Some arc length geodesics are plotted in Figure 9.4 together with the “front” at time t = 4.8.
Notice that all geodesics pass horizontally through Z, with no singularities. The particular form of
the front shows the presence of a conjugate locus (compare again with Chapter 19). Geodesics may
have conjugate times only after intersecting Z. Before it is impossible since they are Riemannian
and the curvature is negative, see Theorem 16.34.

The optimality of geodesics for the Grushin plane will be studied in Section 13.5.

9.3 Riemannian, Grushin and Martinet points

In 2D almost-Riemannian structures there are 3 kinds of important points: Riemannian, Grushin
and Martinet points. As we are going to see in Section 9.4, these points are relevant in the following
sense: if a system has only these type of points, then this remains true also after a small perturbation
of it. Moreover arbitrarily close to any system there is a system where only these types points are
present. Also we will see that Grushin points form 1D submanifolds of M and Martinet points are
isolated.
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Figure 9.4: Arc length geodesics and the front for the Grushin plane, starting from a Riemannian
point.

First we study under which conditions Z has the structure of a 1D submanifold of M . To this
purpose we are going to study Z as the set of zeros of a function.

Definition 9.27. Let {F1, F2} be a local orthonormal frame on an open set Ω and let ω be a
volume form on Ω. On Ω define the function Φ = ω(F1, F2).

Exercise 9.28. Prove that Φ is invariant by a positively oriented change of orthonormal frame
defined on the same open set Ω.

Since a volume form can be globally defined whenM is orientable we have that Φ can be globally
defined on fully orientable 2D almost-Riemannian structures (cf. Definition 9.3), just defining it as
above on positively oriented orthonormal frames.

For structure that are not fully orientable, Φ can be defined only locally and up to a sign.
(notice however that |Φ| is always well defined). This is what should be taken in mind every time
that the function Φ appears in the following.

If in a system of coordinates (x1, x2), we write

F1 =

(
F 1
1

F 2
1

)
, F2 =

(
F 1
2

F 2
2

)
, ω(x1, x2) = h(x1, x2)dx1 ∧ dx2

then

Φ(x1, x2) = h(x1, x2) det

(
F 1
1 (x1, x2) F 1

2 (x1, x2)
F 2
1 (x1, x2) F 2

2 (x1, x2)

)
.

Remark 9.29. For a system of coordinates and a choice of an orthonormal frame as those of Propo-
sition 9.8, taking ω = dx1 ∧ dx2, we have Φ(x1, x2) = f(x1, x2).
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The function Φ permits to write

Z = {q ∈M | Φ(q) = 0}.

We are now going to consider the following assumptions

(H0)q0 : if Φ(q0) = 0, then dΦ(q0) 6= 0.

(H0): the condition (H0)q0 holds for every q0 ∈M .

Exercise 9.30. Prove that the above conditions are independent on the choice of the volume ω.

By definition of submanifold, we have an immediate consequence.

Proposition 9.31. Assume that (H0) holds. Then Z is a one-dimensional embedded submanifold
of M .

Recall that D1 = D, Di+1 = Di + [D1,Di], for i ≥ 1. We are now ready to define Riemannian,
Grushin and Martinet points.

Definition 9.32. Consider a 2D almost Riemannian structure. Fix q0 ∈M .

• If D1(q0) = Tq0M (equivalently if q0 /∈ Z) we say that q0 is a Riemannian point.

• If D1(q0) 6= Tq0M (equivalently if q0 ∈ Z), then

– if D2(q0) = TqM we say that q0 is a Grushin point.

– if D2(q0) 6= TqM and (H0)q0 holds we say that q0 is a Martinet point.

Remark 9.33. Notice that at Riemannian, Grushin and Martinet points, the step of the structure
is respectively 1, 2, s with s ≥ 3.

Notice that at Riemannian points (H0)q0 is automatically satisfied. This is true also at Grushin
points. Indeed using the normal form (9.2) and taking as volume form dx ∧ dy one gets that
Φ(x1, x2) = f(x1, x2). Hence the condition that the structure is step 2 at q0 = (0, 0) implies that
∂x1f(0, 0) 6= 0 hence dΦ(0, 0) 6= 0. In other words we have the following.

Proposition 9.34. Under (H0), every point is either a Riemannian or a Grushin or a Martinet
point.

Exercise 9.35. By using the system of coordinate given by Proposition 9.8 prove the following:

(a) q0 is a Grushin point if and only if q0 ∈ Z and LvΦ(q0) 6= 0 for v ∈ D(q), ‖v‖ = 1.

(b) q0 is a Martinet point if and only if q0 ∈ Z, dΦ(q0) 6= 0, and for v ∈ D(q0), ‖v‖ = 1, we have
LvΦ(q0) = 0.

The following proposition describes properties of Grushin and Martinet points (see Figure 9.5).

Proposition 9.36. We have the following:

(i) Z is an embedded 1D submanifold of M around Grushin or Martinet points;

(ii) if q0 is a Grushin point then D(q0) is transversal to Tq0Z;
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Figure 9.5: Grushin and Martinet points

(iii) if q0 is a Martinet point then D(q0) coincides with Tq0Z;
Proof. We use the system of coordinates and an orthonormal frame as those given by Proposition
9.8,

F1 =

(
1
0

)
, F2 =

(
0
f

)
.

If we take ω = dx ∧ dy, we have Φ = f, dΦ = (∂x1 f, ∂x2f).

To prove (i), it is sufficient to notice that dΦ 6= 0 at Grushin and Martinet points.
To prove (ii), notice thatD(q0) = span(F1(q0)) = (1, 0) while Tq0Z = span{(−∂x2f(q0), ∂x1 f(q0))}

that are transversal since ∂x1f(q0) 6= 0.
To prove (iii), notice that D(q0) = span(F1(q0)) = (1, 0) while Tq0Z = span{(−∂x2f(q0, 0)} since

the condition D2(q0) 6= Tq0M implies ∂x1f(q0) = 0.

Examples

• All points on the x2-axis for the Grushin plane are Grushin points.

• The origin of the following structure is the simplest example of Martinet point

F1 =

(
1
0

)
, F2 =

(
0

x2 − x21

)
.

• The origin of the following example

F1 =

(
1
0

)
and F2 =

(
0

x22 − x21

)
,

is not a Martinet point since the condition dΦ(0, 0) 6= 0 is not satisfied. Outside the origin
all points are either Riemannian or Grushin points, but at the origin Z is not a manifold.

• The x2-axis of the following example

F1 =

(
1
0

)
and F2 =

(
0
x21

)
,

is not made by Grushin points since D2((0, x2)) 6= T(0,x2)M and it is not made by Martinet
points since dΦ(0, x2) 6= 0 is not satisfied (although in this case Z is a manifold). In this case
D((0, x2)) is transversal to Z.
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9.3.1 Normal forms

Theorem 9.37. Let q0 be a Riemannian, Grushin or a Martinet point. There exists a neighborhood
Ω of q0 and a system of coordinates (x1, x2) in Ω such that q0 = (0, 0) an orthonormal frame for
the 2D almost-Riemannian structure can be written in Ω as:

(NF1) if q0 is a Riemannian point, then

F1(x1, x2) = (1, 0), F2(x1, x2) = (0, eφ(x1,x2)),

(NF2) if q0 is a Grushin point, then

F1(x1, x2) = (1, 0), F2(x1, x2) = (0, x1e
φ(x1,x2)),

(NF3) if q0 is a Martinet point, then

F1(x1, x2) = (1, 0), F2(x1, x2) = (0, (x2 − xs−1
1 ψ(x1))e

ξ(x1,x2)),

where φ, ξ and ψ are smooth real-valued functions such that φ(0, x2) = 0 and ψ(0) 6= 0. Moreover
s ≥ 3 is an integer, that is the step of the structure at the Martinet point.

To prove Theorem 9.37 we need two preliminary results. The first is the following Lemma that
can be obtained by induction from Lemma 9.20.

Lemma 9.38. Let Ω be an open neighborhood of the origin in R and let f ∈ C∞(Ω,R). Assume
there exists an integer k such that f(0) = f ′(0) = . . . = f (k−1)(0) = 0, and f (k)(0) 6= 0. Then there
exists g ∈ C∞(Ω,R) such that f(x) = xkg(x) with g(0) 6= 0.

The second is the following Lemma that can be obtained from Lemma 9.21 with a change of
variables.

Lemma 9.39. Let Ω ⊂ R2 be an open neighorhood of the origin and let f ∈ C∞(Ω,R) such that
f vanishes on the graph of a smooth function x1 = Γ(x2) such that Γ(0) = 0. Then there exists
g ∈ C∞(Ω,R) such that f(x1, x2) = (x1 − Γ(x2))g(x1, x2). Moreover ∂x1f(0, 0) 6= 0 if and only if
g(0, 0) 6= 0.

Remark 9.40. Notice that if Lemma 9.39 applies, ∂x1f(0, 0) 6= 0, and f has no zeros out of the set
{(x1, x2) ∈ Ω | x1 = Γ(x2)} then (up to restricting Ω) f can be written in the form f(x1, x2) =
±(x1 − Γ(x2))e

ξ(x1,x2), where ξ is a smooth function defined on Ω.

Proof of Theorem 9.37. By Proposition 9.8 we know that there exists a neighborhood Ω of q0 and
a system of coordinates (x1, x2) in Ω such that q0 = (0, 0) and an orthonormal frame for the 2D
almost-Riemannian structure can be written in Ω as:

F1(x1, x2) =

(
1
0

)
, F2(x1, x2) =

(
0

f(x1, x2)

)
, (9.19)

where f : Ω→ R is a smooth function.
Now if q0 is a Riemannian point, we can assume (possibly restricting Ω) f(x1, x2) 6= 0 for every

(x1, x2) ∈ Ω.
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By applying a smooth coordinate transformation of the type x̄1 = x1, x̄2 = ν(x2) we get the
new expressions for the vector fields

F1 =

(
1
0

)
, F2 =

(
0

ν ′(ν−1(x̄2))f(x̄1, ν
−1(x̄2))

)
,

where ν ′ denotes the derivative of ν. A normal form of type (NF1) is obtained choosing ν in such
a way that ν ′(x2)f(0, x2) = 1 and setting eφ(x̄1,x̄2) = ν ′(ν−1(x̄2))f(x̄1, ν

−1(x̄2)).
Now if q0 is a Grushin point, we already know that Z is a 1D submanifold in a neighborhood of

q0 transversal to D(q0) = span{(1, 0)}. If the normal form (9.19) is built using Z in place of W (the
1D submanifold transversal to the distribution, cf. Lemma 9.10), we have that (possibly restricting
Ω), Z = {(x1, x2) ∈ Ω | x1 = 0}. Hence the zeros of f coincide with the x2-axis. The condition that
q0 is a Grushin point implies that the step at q0 is 2. Hence ∂x1f(0, 0) 6= 0. Using Lemma 9.21 (and
possibly restricting Ω), we have that f admits a representation of the type f(x1, x2) = ±x1eφ(x1,x2),
with φ smooth. The sign can be set to be + since the vector fields of an orthonormal frame are
defined up to their sign. Again, a change of coordinates x1 → x1, x2 → ν(x2) can be used in order
to ensure that φ(0, x2) = 0. The normal form (NF2) is obtained.

If q0 is a Martinet point we already know that Z is a manifold around (0, 0) such that T(0,0)Z =
span{(1, 0)}. By possibly restricting Ω, we can identify Z with the graph of a smooth function
x2 = Γ(x1). Using Lemma 9.39 and Remark 9.40 (with the change of notation x1 ↔ x2), f(x1, x2)
can be written in the form (x2−Γ(x1))eξ(x1,x2) with ξ smooth. Denote by s the step of the structure,
and recall that at Martinet points s ≥ 3. Then f(0, 0) = 0, ∂x1f(0, 0) = 0, . . . , ∂s−2

x1 f(0, 0) = 0,
∂s−1
x1 f(0, 0) 6= 0. As a consequence Γ(0) = 0, ∂x1Γ(0) = 0, . . . , ∂s−2

x1 Γ(0) = 0, ∂s−1
x1 Γ(0) 6= 0. Using

Lemma 9.38, we can write Γ(x1) = xs−1
1 ψ(x1) with ψ(0) 6= 0. The normal form (NF3) is obtained.

We can now prove the following statement.

Proposition 9.41. Martinet points are isolated.

Proof. At Martinet points, we can use the normal form (NF3).

F1(x1, x2) =

(
1
0

)
, F2(x1, x2) =

(
0

f(x1, x2)

)
,

where f = (x2 − xs−1
1 ψ(x1))e

ξ(x1,x2), with s ≥ 3 and ψ(0) 6= 0.

In such normal form, the singular set is given by the equation Z = {(x1, x2) | x2 = xs−1
1 ψ(x1)}.

We are going to prove that there exists a neigborhood U of (0, 0) such that every point of Z̄ :=
U ∩Z \ {(0, 0)} is a Grushin point, i.e., that on Z̄ we have that F3 := [F1, F2] is not parallel to F1.
We have

F3 = (0, ∂x1 f), where ∂x1f(x1, x2) = eξ
(
(x2 − xs−1

1 ψ(x1))∂x1ξ − ((s− 1)xs−2
1 ψ + xs−1

1 ψ′)
)
.

Let us see that this cannot be zero on Z̄ for U sufficiently small. Indeed on Z̄ we have that

∂x1f(x1, x2) = −eξxs−2
1

(
(s− 1)ψ + x1ψ

′),

that for x1 6= 0, sufficiently small, is not zero since ψ(0) 6= 0.
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9.4 Generic 2D almost-Riemannian structures

Recall hypothesis (H0)q0 and (H0):

(H0)q0 : If Φ(q0) = 0 then dΦ(q0) 6= 0.

(H0): The condition (H0)q0 holds for every q0 ∈M .

Recall that hypotheses (H0)q0 and (H0) are independent from the volume form used to define
the function Φ. We have seen (cf. Proposition 9.34) that under hypothesis (H0) every point is
either a Riemannian or a Grushin or a Martinet point. In this section we are going to prove that
hypothesis (H0) holds for most of the systems. More precisely we are going to prove that hypothesis
(H0) is generic in the following sense.

Definition 9.42. Fix a rank 2 Euclidean bundle U over a 2D compact manifold M . Let F be the
set of all morphism of bundle from U to TM such that (U, f), f ∈ F is a 2D almost-Riemannian
structure. Endow F with the C1 norm. We say that a subset F ′ of F is generic if it is open and
dense in F .

Theorem 9.43. Under the same hypothesis of Definition 9.42, let F ′ ⊂ F the subset of morphisms
satisfying (H0). Then F ′ is generic.

Remark 9.44. In Theorem 9.43 we have assumed that M is compact. A similar result holds also in
the case in which M is not compact. However, in the non compact case, one should use a suitable
topology (Whitney’s one) and one gets that F ′ is a countable union of open and dense subsets of
F . In this book we have decided not to enter inside transversality theory and we have provided a
statement that can be proved easily via the Sard lemma.

Remark 9.45. As a consequence of Theorem 9.43, and of Proposition 9.34, a generic 2D almost-
Riemannian structure has only Riemannian, Grushin and Martinet points.

9.4.1 Proof of the genericity result

Recall that, fixed M and U, any morphism any f : U → TM such that (U, f), is a 2D almost-
Riemannian structure can be seen locally as the data of two vector fields representing an orthonor-
mal frame. Hence coverM with a finite number of compact coordinate neighborhood Ui, i = 1 . . . N ,
in such a way that an orthonormal frame for the almost-Riemannian structure in Ui is given by

Fi(x
i
1, x

i
2) =

(
1
0

)
, Gi(x

i
1, x

i
2) =

(
0

fi(x1, x2)

)
. (9.20)

Let us consider the following hypothesis

(H0)i: The condition (H0)q0 holds for every q0 ∈ Ui.

Proposition 9.46. Let Fi be the subset of F satisfying (H0)i. Then Fi is generic.

Once Proposition 9.46 is proved, the conclusion of Theorem 9.43 follows immediately. Indeed Fi is
open and dense in F and the open and dense set F ′ := ∩Ni=1Fi is made by systems satisfying (H0)
in the whole M .
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Proof of Proposition 9.46. Since the map that to (Fi, Gi) associates Φ is continuous in the C1

topology, a small perturbation of (Fi, Gi) will induce a small perturbation of Φ. Hence, fixed q0,
the condition (H0)q0 is open in the set of pair of vector fields defined in Ui for the C1×C1 topology.
As a consequence of the compactness of Ui, condition (H0)i is open as well.

We are now going to prove that (H0)i is dense. To this purpose we construct an arbitrarily
small perturbation in the C1 norm (F εi , G

ε
i ) of (Fi, Gi) for which (H0)i is satisfied.

Lemma 9.47. There exists C > 0 such that for every ε ∈ R, there exists a perturbation (F εi , G
ε
i ) of

(Fi, Gi) such that ‖F εi − Fi‖C1 ≤ C|ε|, ‖Gεi −Gi‖C1 ≤ C|ε| and on Ui we have Φε := ω(F εi , G
ε
i ) =

Φ + ε.

Once Lemma 9.47 is proved, the density of Fi follows easily. Indeed let now apply the Sard
Lemma to the C∞ function Φ in Ui. We have that the set

{c ∈ R such that there exists q ∈ Ui such that Φ(q) = c and dΦ(q) = 0}

has measure zero. As a consequence, since Φε = Φ+ ε, we have that the set

{ε ∈ R such that there exists q ∈ Ui such that Φε(q) = 0 and dΦε(q) = 0}

has measure zero. It follows that, for almost every ε, condition (H0)i is realized for (F εi , G
ε
i ).

Proof of Lemma 9.47. In Ui let us write in coordinates

ω = hi(x
i
1, x

i
2)dx

i
1 ∧ dxi2.

(Recall that ω is a volume form and hence hi is never vanishing.) Then

Φ = ω(Fi, Gi) = hi(x
i
1, x

i
2)fi(x

i
1, x

i
2).

Consider now a perturbation Gεi of Gi of the form

Gεi (x
i
1, x

i
2) =

(
0

fi(x
i
1, x

i
2) +

ε
hi(xi1,x

i
2)

)
. (9.21)

and let us define F εi = Fi. It follows that in Ui,

Φε = ω(F εi , G
ε
i ) = hi(x

i
1, x

i
2)

(
fi(x

i
1, x

i
2) +

ε

hi(xi1, x
i
2)

)
= hi(x

i
1, x

i
2)fi(x

i
1, x

i
2) + ε = Φ+ ε.

The Lemma is proved with C = ‖1/hi‖C1 .

9.5 A Gauss-Bonnet theorem

For a compact orientable 2D-Riemannian manifold, the classical Gauss-Bonnet theorem asserts
that the integral of the curvature is a topological invariant that is the Euler characteristic of the
manifold (see Section 1.3).

This theorem admits an interesting generalization in the context of 2D almost-Riemannian
structures that are fully orientable. This generalization is nontrivial since one needs to integrate
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the Gaussian curvature (that in general is diverging while approaching to the singular set) on the
manifold (that has always infinite volume).

This generalization holds under certain natural assumptions on the 2D almost-Riemannian
structure, that we sum up in the following condition.

(HG) : The base manifold M is compact. The 2D almost-Riemannian structure is fully orientable
and every point of Z is a Grushin point.

The hypothesis that the structure is fully orientable is crucial and it is the almost-Riemannian
version of the classical orientability hypothesis that one needs in Riemannian geometry. The hy-
pothesis that every point is a Grushin point is a technical and can indeed be removed. A version
of a Gauss-Bonnet theorem in presence of Martinet points holds true. However its formulation and
proof is more complicated and outside the purpose of this book. See the Bibliographical note.

Notice that (HG) implies (H0). With an argument similar to the one of the beginning of Section
9.4.1, one gets the following.

Theorem 9.48. Hypothesis (HG) is open in the set of morphisms f : U→ TM (such that (U, f)
is a 2D almost-Riemannian structure) endowed with C1 topology.

Hypothesis (HG) is not dense. Indeed it is not hard to build Martinet points that do not
disappear for small C1 perturbations of the system.

It is important to notice that (HG) is not empty. Indeed we have

Proposition 9.49. Every oriented compact surface can be endowed with a free almost-Riemannian
structure such that every point of Z is a Grushin point.

We are going to prove Proposition 9.49 in Section 9.5.4.

9.5.1 Integration of the curvature

Definition 9.50. Consider a fully orientable 2D almost-Riemannian structure (U, f) over M and
assume that (HG) holds.

Let ν a volume form for the Euclidean structure on U, i.e., a never vanishing 2-form s.t.
ν(σ1, σ2) = 1 on every positively oriented local orthonormal frame for (· | ·)q . Let Ξ be an orientation
on M . We introduce the following objects:

• The signed area form dAs on M as the two-form on M \ Z given by the pushforward of ν
along f . Notice that the Riemannian area dA on M \ Z is the density associated with the
volume form dAs.

• M+ = {q ∈M \ Z, s.t. the orientation given by dAsq and Ξq are the same }.1

• M− = {q ∈M \ Z, s.t. the orientation given by dAsq and Ξq are opposite }.

Notice that given a measurable function h : Ω ⊂M± → R, we have

∫

Ω
h dAs = ±

∫

Ω
h dA (if it exists). (9.22)

1i.e., dAs
q(F1, F2) = αΞ(F1, F2) with α > 0
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Definition 9.51. Under the same hypotheses of Definition 9.50, define

• Mε = {q ∈M | d(q,Z) > ε} where d(·, ·) is the 2D almost-Riemannian structure on M .

• M±
ε =Mε ∩M±.

• Given a measurable function h :M \ Z → R, we say that it is AR-integrable if

lim
ε→0

∫

Mε

h dAs (9.23)

exists and is finite. In this case we denote such a limit by
∫
hdAs.

Remark 9.52. Notice that (9.23) coincides with limε→0

(∫
M+

ε
h dA−

∫
M−

ε
h dA

)
.

9.5.2 The Euler number

We now define the Euler number of a fully orientable 2D almost-Riemannian structure on a compact
manifold. It measure how the vector bundle U is far from the trivial one.

Definition 9.53. The Euler number a fully orientable 2D almost-Riemannian structure (U, f) on
a compact manifold M is the Euler number e(U) of U. It is the self-intersection number of M
in U, where M is identified with the zero section. To compute e(U), consider a smooth section
σ :M → U transverse to the zero section. Then, by definition,

e(U) =
∑

p|σ(p)=0

i(p, σ),

where i(p, σ) = 1, respectively −1, if dpσ : TpM → Tσ(p)U preserves, respectively reverses, the
orientation. Notice that if we reverse the orientation onM or on U then e(U) changes sign. Hence,
the Euler number of an orientable vector bundle U is defined up to a sign, depending on the
orientations of both U and M .

Remark 9.54. Take a section σ ofU that has only isolated zeros, i.e., such that the set {p | σ(p) = 0}
is finite. Since U is endowed with a smooth scalar product (· | ·)q we can define σ̃ :M \ {p | σ(p) =
0} → SU by σ̃(q) = σ(q)√

(σ |σ)q
(here SU denotes the spherical bundle of U). If σ(p) = 0, then

i(p, σ̃) = i(p, σ) is equal to the degree of the map ∂B → S1 that associates with each q ∈ ∂B
the value σ̃(q), where B is a neighborhood of p diffeomorphic to an open ball in Rn that does not
contain any other zero of σ.

Notice that if i(p, σ) 6= 0, the limit limq→p σ̃(q) does not exist.

Remark 9.55. Notice that U is trivial if and only if e(U) = 0.

Remark 9.56. Since reversing the orientation on M also reverses the orientation of TM , the Euler
number of TM is defined unambiguously.

Exercise 9.57. Let M be a compact orientable surface. Prove that the Euler number of TM is
equal to χ(M), the Euler characteristic of M as defined in (1.42). Hint: take a surface of genus g
and construct a vector field for which it is easy to compute the sum of the indices of its zeros. A
possibility is to project orthogonally on the surface a constant vector field in R3. Recall that the
sum of the indices of the zeros a vector field on a surface is independent from the vector field itself.
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Remark 9.58. Consider a 2D almost-Riemannian structure (U, f) on a 2D manifold M . Let σ be a
section of U and zσ the set of its zeros. As in Remark 9.54, define onM \zσ the normalization σ̃ of σ
and let σ̃⊥ (still defined onM \zσ) its orthogonal with respect to (· | ·)q . Then the original structure
is free when restricted to M \ zσ and {σ̃, σ̃⊥} is a global orthonormal frame for (· | ·)q . The global
orthonormal frame for the corresponding 2D almost-Riemannian structure is then (f ◦ σ̃, f ◦ σ̃⊥).

9.5.3 Gauss-Bonnet theorem

The main result of this section is the following.

Theorem 9.59. Consider a 2D almost-Riemannian structure satisfying hypothesis (HG). Let dAs

be the signed area form and K be the Riemannian curvature, both defined on M \ Z. Then K is
AR-integrable and we have ∫

K dAs = 2πe(U),

where e(U) denotes the Euler number of the 2D almost-Riemannian structure. Moreover we have

e(U) = χ(M+)− χ(M−),

where χ(M±) denotes the Euler characteristic of M±.

Notice that in the Riemannian case
∫
K dAs is the standard integral of the Riemannian curva-

ture and e(U) = χ(M) since U = TM . Hence Theorem 9.59 contains the classical Gauss-Bonnet
theorem for compact surfaces (cf. Section 1.3).

In a sense, in Riemannian geometry the topology of the surface gives a constraint on the total
curvature, while in 2D almost-Riemannian geometry such constraint is determined by the topology
of the bundle U.

For a free almost-Riemannian structure we have that U is a rank 2 trivial bundle over M . As
a consequence we get that

∫
K dAs = 0, generalizing the Riemannian Gauss-Bonnet theorem on

the torus. We could interpret this result in the following way. Take a metric that is determined
by a single pair of vector fields. In the Riemannian context M is forced to be parallelizable (i.e.,
M must be the torus). In the AR context, M could be any compact orientable manifold, but the
metric is forced to be singular somewhere. In any case, the integral of the curvature is zero.

Proof of Theorem 9.59

The proof is divided in two steps. First we prove that
∫
K dAs = χ(M+)−χ(M−). Then we prove

that e(U) = χ(M+)− χ(M−).

Step 1

As a consequence of the compactness of M and of Lemma 9.10 one has:

Lemma 9.60. Assume that (HG) holds. Then the set Z is the union of finitely many curves
diffeomorphic to S1. Moreover, there exists ε0 > 0 such that, for every 0 < ε < ε0, we have that
∂Mε is smooth and the set M \Mε is diffeomorphic to Z × [0, 1].
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Figure 9.6: Proof of Step 1 of the Gauss-Bonnet theorem

Under (HG) the almost-Riemannian structure can be described, around each point of Z, by a
normal form of type (NF2).

Take ε0 as in the statement of Lemma 9.60. For every ε ∈ (0, ε0), let M
±
ε = M± ∩Mε. By

definition of dAs and M±,
∫

Mε

KdAs =

∫

M+
ε

KdA−
∫

M−
ε

KdA.

The classical Gauss-Bonnet theorem (see Theorem 1.37) asserts that for every compact oriented
Riemannian manifold (N, g) with smooth boundary ∂N , we have

∫

N
KdA+

∫

∂N
kgds = 2πχ(N), (9.24)

where K is the curvature of (N, g), dA is the Riemannian density, kg is the geodesic curvature of
∂N (whose orientation is induced by the one of N), and ds is the length element.

Applying (9.24) to the Riemannian manifolds (M+
ε , g) and (M−

ε , g) (the smoothness of the
boundary is guaranteed by Lemma 9.60), we have

∫

Mε

KdAs = 2π(χ(M+
ε )− χ(M−

ε ))−
∫

∂M+
ε

kgds+

∫

∂M−
ε

kgds. (9.25)

Thanks again to Lemma 9.60, χ(M±
ε ) = χ(M±). We are left to prove that

lim
ε→0

(∫

∂M+
ε

kgds−
∫

∂M−
ε

kgds

)
= 0. (9.26)

Fix q ∈ Z and a (NF2)-type local system of coordinates (x1, x2) in a neighborhood Uq of q. We
can assume that Uq is given, in the coordinates (x1, x2), by a rectangle [−a, a] × [−b, b], a, b > 0.
Assume that ε < a < ε0. Notice that Z ∩ Uq = {0} × [−b, b] and ∂Mε ∩ Uq = {−ε, ε} × [−b, b].

We are going to prove that

∫

∂M+
ε ∩Uq

kgds−
∫

∂M−
ε ∩Uq

kgds = O(ε). (9.27)
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Then (9.26) follows from the compactness of Z. (Indeed, [−a, a] × {−b} and [−a, a] × {b}, the
horizontal edges of ∂Uq, are the support of normal extremals trajectories minimizing the length
from Z. Therefore, Z can be covered by a finite number of neighborhoods of type Uq whose pairwise
intersections have empty interior.)

Without loss of generality, we can assume that M+ ∩ Uq = (0, a] × [−b, b]. Therefore, M+
ε

induces on ∂M+
ε = {ε} × [−b, b] a downward orientation (see Figure 9.6). First notice that the

kg = 0 on the two segments (0, ε]× {−b} and (0, ε]× {b} (since they are the support of geodesics).
The curve s 7→ c(s) = (ε, x2(s)) satisfying

ċ(s) = −F2(c(s)) , c(0) = (ε, 0) ,

is an oriented parametrization by arc length of ∂M+
ε , making a constant angle with F1. Let {θ1, θ2}

be the dual basis to {F1, F2} on Uq ∩M+, i.e., θ1 = dx1 and θ2 = x−1
1 e−φ(x1,x2)dx2. According to

the results of Section 4.4.1 (cf. in particular Remark 4.41), the geodesic curvature of ∂M+
ε at c(s)

is equal to η(ċ(s)), where η ∈ Λ1(Uq) is the unique one-form satisfying

dθ1 = η ∧ θ2 , dθ2 = −η ∧ θ1 .

A simple computation shows that

η = ∂x1(x
−1
1 e−φ(x1,x2))dx2 .

Thus (recall that c(s) makes a constant angle with F1 hence θ̇ = 0 in Remark 4.41)

kg(c(s)) = −∂x1(x−1
1 e−φ(c(s))) (dx2(F2))(c(s)) =

1

ε
+ ∂x1φ(ε, x2(s)) .

Denote by L1 and L2 the almost-Riemannian lengths of the segments {ε}× [0, b] and {ε}× [−b, 0],
respectively. Then,

∫

∂M+
ε ∩Uq

kgds =

∫ L2

−L1

kg(c(s))ds

=

∫ L2

−L1

(
1

ε
+ ∂x1φ(ε, x2(s))

)
ds

=

∫ b

−b

(
1

ε
+ ∂x1φ(ε, x2)

)
1

εeφ(ε,x2)
dx2 ,

where the last equality is obtained taking x2 = x2(−s) as the new variable of integration.

With a similar reasoning on ∂M−
ε ∩ Uq, on which M−

ε induces the upward orientation. An
orthonormal frame on M− ∩ Uq, oriented consistently with M , is given by {F1,−F2}, whose dual
basis is (θ1,−θ2). The same computations as above lead to

∫

∂M−
ε ∩Uq

kgds =

∫ b

−b

(
1

ε
− ∂x1φ(−ε, x2)

)
1

εeφ(−ε,x2)
dx2 .

Define

F (ε, x2) = (1 + ε∂x1φ(ε, x2))e
−φ(ε,x2). (9.28)

278



Then ∫

∂M+
ε ∩Uq

kgds−
∫

∂M−
ε ∩Uq

kgds =
1

ε2

∫ b

−b
(F (ε, x2)− F (−ε, x2)) dx2.

By Taylor expansion with respect to ε we get

F (ε, x2)− F (−ε, x2) = 2∂εF (0, x2)ε+O(ε3) = O(ε3)

where the last equality follows from the relation ∂εF (0, x2) = 0 (see equation (9.28)). Therefore,

∫

∂M+
ε ∩Uq

kgds−
∫

∂M−
ε ∩Uq

kgds = O(ε),

and (9.27) is proved.

Step 2

The idea of the proof is to find a section σ of SU (the spherical bundle of U) with isolated
singularities p1, . . . , pm such that

∑m
j=1 i(pj , σ) = χ(M+) − χ(M−). In the sequel, we consider Z

to be oriented with the orientation induced by M+.
We start by defining σ on a neighborhood of Z. Let W be a connected component of Z.

Since M is oriented, there exists an open tubular neighborhood W of W and a diffeomorphism
Ψ : S1 × (−1, 1) → W that preserves the orientation and Ψ|S1×{0} is an orientation-preserving
diffeomorphism between S1 and W . Remark that f : U|

W+ → TW+ is an orientation-preserving
isomorphism of vector bundles, while f : U|

W− → TW− is an orientation-reversing isomorphism
of vector bundles, where W± = W∩M±. For every s 6= 0, lift the tangent vector to θ 7→ Ψ(θ, s) to
U using f−1, rotate it by the angle π/2 and normalize it: σ is defined as this unit vector (belonging
to UΨ(θ,s)) if s > 0, its opposite if s < 0. In other words, σ : W \W → SU is given by

σ(q) = sign(s)
Rπ/2f

−1(∂Ψ∂θ (θ, s))√
〈f−1(∂Ψ∂θ (θ, s)), f

−1(∂Ψ∂θ (θ, s))〉
, (θ, s) = Ψ−1(q), (9.29)

where Rπ/2 denotes the rotation (with respect to the Euclidean structure) in U by angle π/2 in
the counterclockwise sense. The following lemma shows that σ can be extended to a continuous
section from W \ T to SU.

Lemma 9.61. σ can be continuously extended to every point q ∈W .

Proof. Let q ∈ W , U be a neighborhood of q in M and (x1, x2) be a system of coordinates on U
centered at q such the almost-Riemannian structure has the form (NF2) (see Theorem 9.37 and
recall that by hypotheses we have no Martinet points). Assume, moreover, that U is a trivializing
neighborhood of both U and TM and the pair of vector fields {F1, F2} is the image under f of
a positively-oriented local orthonormal frame of U. Then W ∩ U = {(x1, x2) | x1 = 0}. Since
∂Ψ
∂θ (θ, 0) is non-zero and tangent to W , ∂Ψ

∂θ (θ, 0) is tangent to the x2-axis. Hence, thanks to the
Malgrange Preparation Theorem, there exist h2 : R → R, h1, h3 : R2 → R smooth functions such
that h2(x2) 6= 0 for every x2 ∈ R and for Ψ(θ, s) ∈ U

∂Ψ

∂θ
(θ, s) = (x1h1(x1, x2), h2(x2) + x1h3(x1, x2)),
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where (x1, x2) are the coordinates of the point Ψ(θ, s). Let us compute σ at a point p ∈ (W∩U)\W .
Since

x1
∂Ψ

∂θ
(θ, s) = x1h1(x1, x2)F1(x1, x2) +

h2(x2) + x1h3(x1, x2)

x1eφ(x1,x2)
F2(x1, x2),

then

f−1

(
∂Ψ

∂θ
(θ, s)

)
= x1h1(x1, x2)ζ(x1, x2) +

h2(x2) + x1h3(x1, x2)

x1eφ(x1,x2)
ρ(x1, x2),

where (ζ, ρ) is the unique local orthonormal basis of U|U such that f ◦ ζ = F1 and f ◦ ρ = F2.
Notice that U ∩M+ = {(x1, x2) | x1 > 0} and U ∩M− = {(x1, x2) | x1 < 0}. Using formula (9.29),
for (x1, x2) = Ψ(θ, s) ∈ U \W one easily gets

σ(x1, x2) =
sign(x1)

l(x1, x2)

(
−h2(x2) + x1h3(x1, x2)

x1eφ(x1,x2)
ζ + x1h1(x1, x2)ρ

)
,

where

l(x1, x2) =

√
x21h1(x1, x2)

2 +
(h2(x2) + x1h3(x1, x2))2

x21e
2φ(x1,x2)

.

Since

lim
x1→0

sign(x1)(h2(x2) + x1h3(x1, x2))

l(x1, x2)x1eφ(x1,x2)
=

h2(x2)

|h2(x2)|
and lim

x1→0

sign(x1)x1h1(x1, x2)

l(x1, x2)
= 0,

σ can be continuously extended to the set {x1 = 0} =W ∩ U .

Let C(Z) denote the set of connected component of Z. Let Z̃ =
∐
W∈C(Z) S

1 and consider

an orientation-preserving diffeomorphism Ψ : Z̃ × (−1, 1) → ∐
W∈C(Z)W such that Ψ|Z̃×{0} is

an orientation-preserving diffeomorphism onto Z. Applying Lemma 9.61 to every W ∈ C(Z) and
reducing, if necessary, the cylinders W, we can assume that on U =

∐
W∈C(Z)W, σ is continuous

and has no singularities. Extend σ to M \U. We can assume that the extended section has only
isolated singularities {p1, . . . , pk} ∈M \ Z. We are left to prove that

k∑

j=1

i(pj , σ) = χ(M+)− χ(M−). (9.30)

To this aim, consider the vector field F = f ◦σ. Notice that by construction the set of singularities
of F is exactly {p1, . . . , pk}. Let us compute the index of F at a singularity p ∈ {p1, . . . , pk}. Since
f : U|M+ → TM+ preserves the orientation and f : U|M− → TM− reverses the orientation, it
follows that i(p, F ) = ±i(p, σ), if p ∈M±. Therefore,

k∑

j=1

i(pj , σ) =
∑

j|pj∈M+

i(pj , F )−
∑

j|pj∈M−

i(pj , F ). (9.31)

The theorem is proved if we show that

∑

j|pj∈M+

i(pj , F ) = χ(M+),
∑

j|pj∈M−

i(pj , F ) = χ(M−). (9.32)
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To deduce equation (9.32), define N+ = M+ \ Ψ(Z̃ × (0, 1/2)). Notice that, by construction,
σ|Ψ(Z̃×{1/2}) is non-singular, hence the same is true for F |Ψ(Z̃×{1/2}). Moreover, the almost-

Riemannian angle between Tq(∂N
+) and span(F (q)) is constantly equal to π/2. Hence F |∂N+

points towards N+ and applying the Hopf’s Index Formula to every connected component of N+

we conclude that ∑

j|pj∈M+

i(pj, F ) =
∑

j|pj∈N+

i(pj, F ) = χ(N+) = χ(M+).

Similarly, we find ∑

j|pj∈M−

i(pj , F ) = χ(M−).

�

Example: the Grushin sphere

The Grushin sphere is the free 2D almost Riemannian structure on the sphere S2 = {y21+y22+y23 = 1}
for which an orthonormal frame is given by two orthogonal rotations for instance

Y1 =




0
−y3
y2


 (rotation along the y1-axis) (9.33)

Y2 =



−y3
0
y1


 (rotation along the y2-axis) (9.34)

In this case Z = {y3 = 0, y21 + y22 = 1}. Passing in spherical coordinates

y1 = cos(x) cos(φ)

y2 = cos(x) sin(φ)

y3 = sin(x)

and letting

F1 = cos(φ− π/2)Y1 + sin(φ− π/2)Y2
F2 = − sin(φ− π/2)Y1 + cos(φ− π/2)Y2

we get that an orthonormal frame in coordinates (x, φ) is given by

F1 =

(
0

tan(x)

)
, F2 =

(
1
0

)
.

Notice that the singularity at x = π/2 is due to the spherical coordinates, whereas Z = {x = 0}
and all points of Z are Grushin points. In this case we have

dA =
1

| tan(x)|dx dφ, dAs =
1

tan(x)
dx ∧ dφ, K =

−2
sin(x)2

The loci Z, M±, are illustrated in Figure 9.7. In this case using the symmetries of the system one
immediately verify that ∫

K dAs = 0,

in accordance with Theorem 9.59 and the fact that this almost-Riemannian structure is free.
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Figure 9.7: The Grushin sphere

9.5.4 Every compact orientable 2D manifold can be endowed with a free almost-
Riemannian structure with only Riemannian and Grushin points

In this section we prove Proposition 9.49, by showing how to construct on every connected compact
orientable two-dimensional manifold a free almost-Riemannian structure such that every point of
Z is a Grushin point.

For the torus, an example of such structure is provided by the standard Riemannian one. The
case of a connected sum of two tori can be treated by gluing together two copies of the pair of
vector fields F1 and F2 represented in Figure 9.8A, which are defined on a torus with a hole cut out.
In the figure the torus is represented as a square with the standard identifications on the boundary.
The vector fields F1 and F2 are parallel on the boundary of the disk which has been cut out. Each
vector field has exactly two zeros and the distribution spanned by F1 and F2 is transversal to the
singular locus. Examples on the connected sum of three or more tori can be constructed similarly
by induction. The resulting singular locus is represented in Figure 9.8B.

We are left to check the existence of a free almost-Riemannian structure with only Riemannian
and Grushin points on the 2D sphere. But such a structure is provided by the Grushin sphere
described above.

9.6 Bibliographical note

The first examples of almost-Riemannian structures have been discovered as generalized Rieman-
nian structures underlying certain degenerate elliptic operators [Bao67, FL83, Gru70]. A systematic
study of almost-Riemannian structures has been pursued in [ABS08, BCGS13, ABC+10, BCG13,
BCGJ11] (see also [Bel96, BP05]). In this series of papers:

• Riemannian points are called ordinary points;

• instead of Martinet points, tangency points are introduced. Comparing the normal form
(NF3) and the normal form for tangency points (see (F3) in [ABS08, Theorem 1]), one sees
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F1 =
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D =

Figure 9.8: Construction of a free almost-Riemannian structure such that every point of Z is a
Grushin point, on a compact orientable surface.

that tangency points are Martinet points of step exactly 3;

• the study of generic structures is more sophisticated than the one presented in this chapter
(using Thom’s transversality theorem instead than Sard’s lemma). In particular, in [ABS08]
it is proven that Grushin and tangency points do not disappear for small C1-perturbations
of the system;

• free almost-Riemannian structures are called trivializable structures.

A first version of a Gauss Bonnet theorem in the context of almost Riemannian structures was
studied in [ABS08], while a version in presence of tangency points were studied in [ABC+10].

Almost-Riemannian structures in dimension 3 were studied in [BCGM15].
The blow up of the area while approaching to the singular set and the Lebesgue and Hausdorff

dimension of the singular set has been studied in a more general context in [GJ14, GJ15].
Almost-Riemannian structures appear also in applications: in space mechanics [BC14] and

in problems of control of quantum mechanical systems [BCC05, BCG+02b, BC14] (the Grushin
sphere).
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Chapter 10

Nonholonomic tangent space

In this chapter we introduce the notion of nonholomic tangent space, that can be regarded as the
“principal part” of the structure defined on the manifold by the distribution in a neighborhood of
a point. This notion is indeed independent on the inner product defined on the distribution.

When the distribution is endowed with an inner product, this process defines a metric tangent
space (in the sense of Gromov) to the sub-Riemannian structure, that is itself a sub-Riemannian
manifold. When the manifold is Riemannian one recovers on the tangent space the Euclidean
structure induced by the Riemannian metric at the point. In the general case, the nonholonomic
tangent space of a sub-Riemannian manifold at a point is endowed with a structure of Carnot
group (cf. Section 10.1 for the definition) for an open dense subset of points on the manifold and
homogeneous spaces of Carnot groups on the other points. In this sense Carnot groups play an
analogous role of the Euclidean space in Riemannian geometry.

In this chapter we give an intrinsic construction of the nonholonomic tangent space through
the theory of jets of curves and the notion of smooth admissible variation. We then prove the
existence of privileged coordinates, i.e., special sets of coordinates where the nonholonomic tangent
space writes conveniently to perform computations. Finally we provide both a geometric and an
algebraic interpretation of this construction.

This chapter also contains some fundamental distance estimates, known in the literature as the
Ball-Box theorem, and a classification of nonholonomic tangent space in low dimension.

10.1 Flag of the distribution and Carnot groups

Let us consider a distribution D associated with a structure (M,U, f), that is defined by a gener-
ating family {f1, . . . , fm}. If the distribution is bracket generating, we have a well-defined flag as
follows.

Definition 10.1. Let us consider a bracket generating distribution D with generating family
f1, . . . , fm and fix q ∈ M . The flag of the sub-Riemannian structure at the point q is the se-
quence of subspaces {Diq}i∈N of TqM defined by

Diq := span{[fj1 , . . . , [fjl−1
, fjl]](q), ∀ l ≤ i}. (10.1)

Notice that D1
q = Dq is the set of admissible directions. Moreover, by construction, Diq ⊂ Di+1

q for
every i ≥ 1.
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The bracket generating assumption implies that for every q ∈M there exists a minimal integer

k = k(q) such that Dk(q)q = TqM . The integer k(q) is called the step of the sub-Riemannian
structure at q.

The sub-Riemannian structure is said to be equiregular if for every i ≥ 1 the integer di(q) =
dimDiq does not depend on q.

Exercise 10.2. (a). Prove that the filtration defined by the subspaces Diq, for i ≥ 1, and the value
k(q) depend only on the modulus of horizontal vector fields, i.e., are independent on the generating
family (or equivalently, on the trivialization of the vector bundle U defining D).

(b). Prove that the map q 7→ k(q) is upper semicontinuous.

Notice that in general we have only a well-defined filtration (i.e., sequence of increasing sub-
spaces) of the tangent space

D1
q ⊂ D2

q ⊂ . . . ⊂ Dkq = TqM. (10.2)

but no canonical gradation (i.e., splitting of the tangent space into sum of complementary subspaces)
is defined. The object that is well defined is the graded vector space

grq(D) = Dq ⊕D2
q/Dq ⊕ . . .⊕Dmq /Dm−1

q . (10.3)

If the sub-Riemannian structure is equiregular in a neighborhood of a point q, the graded vector
space (10.3) inherits the structure of a Lie algebra from the Lie brackets of vector fields. This is
by construction a homogeneous and stratified Lie algebra, whose corresponding Lie group is what
is called a Carnot group.

Carnot groups play a crucial role in sub-Riemannian geometry: these are left-invariant sub-
Riemannian structures arising as metric tangent space of equiregular sub-Riemannian manifolds.

Definition 10.3 (Carnot Groups). A Carnot group G is a connected and simply connected Lie
group whose Lie algebra g admits a decomposition

g = g1 ⊕ g2 ⊕ . . . ⊕ gr (10.4)

satisfying the following properties

[g1, gi] = gi+1, [g1, gr] = 0, i = 1, . . . , r − 1. (10.5)

The smallest integer r such that (10.4)-(10.5) are satisfied is called the step of the Carnot group.

When the first layer g1 of the Lie algebra g is endowed with an inner product, then G is
automatically endowed with a left-invariant sub-Riemannian structure (cf. Chapter 7), where the
distribution is defined by left-invariant vector fields whose value at the identity belongs to g1. This
distribution is bracket generating thanks to (10.5).

Notice that Carnot groups of step 2 as defined in Section 7.5 are included in Definition 10.3.

Remark 10.4. Carnot groups are also known in the literature as homogeneous and stratified Lie
group. Indeed the Lie agebra g of a Carnot group G admits the stratification (10.4) and thanks to
the property (10.5) they posses a family {δα}α∈R of authomorphisms on g (called dilations) defined
by

δα(v) =

r∑

i=1

αivi, if v =

r∑

i=1

vi, vi ∈ gi.
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When the structure is not equiregular in a neighborhood of a point q, then the graded vector
space (10.3) does not inherits the structure of a Lie algebra, thus it is not possible to extract directly
from (10.3) all the algebraic informations on the distribution. In this case the nonholonomic tangent
space is a homogeneous space of a Carnot group, and its intrinsic construction is more sophisticated
and requires the theory of jet spaces, that we not introduce.

10.2 Jet spaces

10.2.1 Jets of curves

In what follows, given a point q ∈ M , the symbol Ωq denotes the set of smooth curves γ on M
defined on some open interval I containing 0 and based at q, that is γ(0) = q. In fact, we work
with germs of smooth curves at 0 and sometimes it will be convenient to think to those curves γ
to be defined on I = R.

Fix q in M and a curve γ ∈ Ωq. In every coordinate chart one can write the Taylor expansion

γ(t) = q + γ̇(0)t+O(t2). (10.6)

The tangent vector v ∈ TqM to γ at t = 0 is by definition the equivalence class of curves in Ωq such
that, in some coordinate chart, they have the same 1-st order Taylor polynomial. This requirement
indeed implies that the same is true for every coordinate chart, by the chain rule.

In the same spirit one can consider, given a smooth curve γ ∈ Ωq, its k-th order Taylor polyno-
mial at q

γ(t) = q + γ̇(0)t+ γ̈(0)
t2

2
+ . . . + γ(k)(0)

tk

k!
+O(tk+1), (10.7)

and define analogously an equivalence class on higher order Taylor polynomial.

Exercise 10.5. Let γ, γ′ ∈ Ωq. We say that γ is equivalent up to order k at q to γ′, writing
γ ∼q,k γ′, if their Taylor polynomial at q of order k coincide in some coordinate chart. Prove that
∼q,k is a well-defined equivalence relation on the set of curves based at q.

Definition 10.6. Let k > 0 be an integer and q ∈ M . We define the set of k-th jets of curves
at point q ∈ M as the equivalence classes of Ωq with respect to ∼q,k. We denote by Jkq γ the
equivalence class of a curve γ and we set

JkqM := {Jkq γ | γ ∈ Ωq}.

Exercise 10.7. Prove that JkqM has a structure of smooth manifold of dimension kn, where
n = dimM . (Hint : use the coordinates representation (10.7) and the fact that the k-th order
Taylor polynomial is characterized by the n-dimensional vectors γ(i)(0) for i = 1, . . . , k.)

In the following we always assume that q ∈M is fixed and when working in a coordinate chart
we always assume that q = 0. Identifying the jet of a curve γ ∈ Ωq, with its Taylor polynomial in
some coordinate chart, we can write (recall that γ(0) = q = 0)

Jkq γ =

k∑

i=1

γ(i)(0)
ti

i!
.
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When k = 1, we have easily from the definition that J1
qM = TqM . To study more in detail the

structure of jet space for k ≥ 2, let us introduce the map Πkk−1 which “forgets” the k-th derivative

Πkk−1 : J
k
qM −→ Jk−1

q M, Πkk−1

(
k∑

i=1

γ(i)(0)
ti

i!

)
:=

k−1∑

i=1

γ(i)(0)
ti

i!
.

Proposition 10.8. Let k ≥ 2. Then JkqM is an affine bundle over Jk−1
q M with projection Πkk−1,

whose fibers are affine spaces over TqM .

Proof. Fix an element j ∈ Jk−1
q M . The fiber (Πkk−1)

−1(j) is the set of all kth-jets with fixed (k−1)th
jet equal to j. To show that it is an affine space over TqM it is enough to define the sum of a
tangent vector and a kth-jet, with (k − 1)th-jet fixed, in such a way that the resulting kth-jet has
the same (k − 1)th-jet.

Let j = Jkq γ be the kth-jet of a smooth curve in M and let v ∈ TqM . Consider a smooth vector
field V ∈ Vec(M) such that V (q) = v and define the sum

Jkq γ + v := Jkq (γ
v), γv(t) = et

kV (γ(t)) (10.8)

It is easy to see that, due to the presence of the factor tk, the (k− 1)th Taylor polynomial of γ and
γv coincide. Indeed

Jkq (e
tkV (γ(t))) = Jkq γ + tkV (q)

Hence the sum (10.8) gives to (Πkk−1)
−1(j) the structure of an affine space over TqM . Notice that

this definition does not depend on the representative curve γ defining j.

Roughly speaking, the fact that JkqM is an affine bundle (and not a vector bundle) is saying

that one cannot complete in a canonical way a (k−1)th-jet to a kth-jet, i.e., we cannot fix an origin
in the fibers. On the other hand there exists a sort of “global” origin on the space JkqM , that is
the jet of the constant curve equal to q.

Now we introduce dilations on jet spaces, analogous to homotheties in Euclidean spaces. This
is done via time rescaling.

Definition 10.9. Let α ∈ R and define γα(t) := γ(αt) for every t such that the right hand side is
defined. Define the dilation of factor α on JkqM as

δα : JkqM → JkqM, δα(J
k
q γ) = Jkq (γα).

One can check that this definition does not depend on the representative and, in coordinates,
it is written as a quasi-homogeneous multiplication

δα

(
k∑

i=1

tiξi

)
=

k∑

i=1

tiαiξi.

Next we extend the notion of jets also for vector fields. To start with we consider flows on the
manifold. All flows we consider in what follows are a priori defined locally. To simplify the
discussion, we work as if they are globally defined.

Definition 10.10. A flow on M is a family of diffeomorphisms P = {Pt ∈ Diff(M), t ∈ R} that
is smooth with respect to t and such that P0 = Id.
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Notice that we do not require the family to be a one parametric group (i.e., the group law
Pt ⊙Ps = Pt+s is not necessarily satisfied). Its infinitesimal generator is the nonautonomous vector
field

Xt :=
d

dε

∣∣∣∣
ε=0

Pt+ε ⊙ P−1
t . (10.9)

The set of all flows on M is a group with the point-wise product, i.e., the product of the flows
P = {Pt} and Q = {Qt} is given by

(P ⊙Q)t := Pt ⊙Qt

The action of a flow (in the sense of Definition 10.10) on a smooth curve γ is defined as

(Pγ)(t) := Pt(γ(t)). (10.10)

Proposition 10.11. Let P be a smooth flow on M . Then P induces a well-defined map P :
JkqM → JkqM defined as follows

Pj := Jkq (Pγ), if j = Jkq γ. (10.11)

Moreover (P ⊙Q)j = P (Qj) for every j ∈ JkqM

Proof. Notice that, since P0 = Id, then Pγ ∈ Ωq for every γ ∈ Ωq. By the chain rule, Jkq (Pγ)

depends only on first k derivatives of γ at q, i.e., on Jkq γ. Hence this action is well-behaved with
respect to equivalence relations ∼k,q. The last part of the statement is an easy check and is left to
the reader.

10.2.2 Jets of vector fields

As explained in the proof of Proposition 10.11, a flow on M induces a diffeomeorphism in Ωq, and
thus in the space of jets JkqM . In particular, given a vector field V ∈ Vec(M), the flow associated

with V , i.e. the 1-parametric group PV = {etV }, acts on curves

(PV γ)(t) = etV (γ(t)),

and this action passes to the quotient on jets.
A vector field on a manifold is the infinitesimal generator of a family of diffeomorphism, hence

an element of Vec(JkqM) is the infinitesimal generator of a family of diffeomorphism of JkqM .
A natural contstruction, given V ∈ Vec(M), is to consider the 1-parametric group of flows (in-

dexed by s) defined by P sV = {estV } and to define the k-th jet of the vector field as the infinitesimal
generator of this family of diffeomorphism of JkqM .

Definition 10.12. For every V ∈ Vec(M), the vector field Jkq V ∈ Vec(JkqM) is the smooth section

Jkq V : JkqM → TJkqM defined as follows

(Jkq V )(Jkq γ) :=
∂

∂s

∣∣∣∣
s=0

P sV (J
k
q γ) =

∂

∂s

∣∣∣∣
s=0

Jkq (e
tsV (γ(t))). (10.12)

Exercise 10.13 (1-jet of vector fields). Prove that J1
qM = TqM . Moreover, if V ∈ Vec(M) then

J1
q V = V (q) is the constant vector field on the vector space TqM defined by the value of V at q.

289



Exercise 10.14. Prove the following formula for every V ∈ Vec(M)

(Jkq V )(Jkq γ) =
k∑

i=1

ti

i!

di

dti

∣∣∣
t=0

(tV (γ(t))),

where V is identified with a vector function V : Rn → Rn in coordinates.

To end this section we study the interplay between dilations and jets of vector fields. Since δα
is a map on JkqM its differential (δα)∗ acts on elements of Vec(JkqM), and in particular on jets of
vector fields on M . Surprisingly, its action on these particular vector fields is linear with respect
to α.

Proposition 10.15. For every α ∈ R and V ∈ Vec(M) one has

(δα)∗(Jkq V ) = Jkq (αV ) = αJkq V.

Proof. By definition of the differential of a map (see also Chapter 2). we have

((δα)∗Jkq V ))(Jkq γ) =
∂

∂s

∣∣∣∣
s=0

Jkq (δα e
tsV δ1/α(γ(t)))

=
∂

∂s

∣∣∣∣
s=0

Jkq (δα e
tsV (γ(t/α)))

=
∂

∂s

∣∣∣∣
s=0

Jkq (e
αtsV (γ(t)))

= Jkq (αV ) = αJkq V

10.3 Admissible variations and nonholonomic tangent space

The goal of this section is to define the appropriate notion of tangent vector, or more precisely to
define the “tangent structure” to a distribution at a point.

As usual, we assume that the distribution D associated with a structure (M,U, f) is defined by
a generating family {f1, . . . , fm} and admissible curves on M are maps γ : [0, T ] → M such that
there exists a control function u ∈ L∞ satisfying

γ̇(t) = fu(t)(γ(t)) =
m∑

i=1

ui(t)fi(γ(t)).

To build a notion of “tangent structure” as a first order approximation of the structure, thus
encoding informations about all directions, we cannot restrict to study family of admissible curves,
since these are all tangent to the distribution.

We shall reinterpret a “tangent vector” as the principal term of a “variation of a point”. To
give a precise meaning to this, we introduce the notion of smooth admissible variation.
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10.3.1 Admissible variations

Definition 10.16. A curve γ : [0, T ] → M in Ωq is said a smooth admissible variation if there
exists a family of controls {u(t, s)}s∈[0,τ ] such that

(i) u(t, ·) is measurable and essentially bounded for all t ∈ [0, T ], uniformly in s ∈ [0, τ ],

(ii) u(·, s) is smooth with bounded derivatives, for all s ∈ [0, τ ], uniformly in t ∈ [0, T ],

(iii) u(0, s) = 0 for all s ∈ [0, τ ],

(iv) γ(t) = −→exp
∫ τ
0 fu(t,s)(q)ds.

In other words γ is a smooth admissible variation (or, shortly, admissible variation) if it can be
parametrized as the final point of a smooth family of admissible curves.

Remark 10.17. Notice that from the property (iii) of the definition of admissible variation, we can
rewrite u(t, s) = tū(t, s) for some suitable family of controls ū(t, s) that are still smooth with respect
to t but do not necessarily satisfy ū(0, s) = 0.

The following example shows that admissible variations are not admissible curves, in general.

Example 10.18. Consider two vector fields X,Y ∈ Vec(M) and the curve

γ : [0, T ]→M, γ(t) = e−tY ◦ e−tX ◦ etY ◦ etX(q).

If we set fu := u1X + u2Y and u : [0, T ]× [0, 4]→ R2 defined by

u(t, s) =





(t, 0), if s ∈ [0, 1],

(0, t), if s ∈ [1, 2],

(−t, 0), if s ∈ [2, 3],

(0,−t), if s ∈ [3, 4].

It is easily seen that γ is an admissible variation since

γ(t) = −→exp
∫ 4

0
fu(t,s)(q)ds

and it admits the expansion in coordinates γ(t) = q + t2[X,Y ](q) + o(t2).

Iterating the previous construction one can actually build smooth admissible variations whose
tangent vector at t = 0 is any element in Diq\Di−1

q (cf. Lemmas 10.36-10.37 for a precise statement).

Proposition 10.19. Equivalent distributions admits the same admissible variations. In partic-
ular the class of smooth admissible variation is independent on the inner product defined on the
distribution.

Proof. Recall that two distributions D,D′ are equivalent (see also Definitions 3.3 and 3.18) if and
only if the corresponding modulus of horizontal vector fields are isomorphic where

D = span{f(σ), σ smooth section of U}.
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It is not restrictive to assume that D and D′ are finitely generated by f1, . . . , fm and f ′1, . . . , f
′
m′

(we stress that a priori m 6= m′).
By definition, for any admissible variation γ(t) there exists a family q(t, s), for s ∈ [0, τ ], such

that γ(t) = q(t, τ) and q(t, s) solves

∂

∂s
q(t, s) =

m∑

i=1

ui(t, s)fi(q(t, s)), s ∈ [0, τ ], (10.13)

Assume that f ′1, . . . , f
′
m′ is another set of local generators of the modulus. Then there exist functions

aij ∈ C∞(M) for i = 1, . . . ,m and j = 1, . . . ,m′, such that

fi(q) =

m∑

j=1

aij(q)f
′
j(q), ∀ q ∈M, ∀ i = 1, . . . ,m. (10.14)

Next we prove that there exist a family ũ(t, s) of controls such that γ is an admissible variation for
the frame f ′1, . . . , f

′
m′ . From (10.14) we get

m∑

i=1

ui(t, s)fi(q) =
m∑

i=1

m′∑

j=1

ui(t, s)aij(q)f
′
j(q). (10.15)

Then we could define, through the solution q(t, s) of (10.13), the new family of controls

u′j(t, s) :=
m∑

i=1

ui(t, s)aij(q(t, s)), j = 1, . . . ,m′,

and we see from identities above that

∂

∂s
q(t, s) =

m′∑

j=1

u′j(t, s)f
′
j(q(t, s)), s ∈ [0, τ ]. (10.16)

Since the role of f1, . . . , fm and f ′1, . . . , f
′
m′ can be exchanged, this prove the equivalence.

Assumption. In what follows D denotes a distribution associated with the datum (M,U, f).
Here the vector bundle U is not necessarily endowed with an Euclidean structure. We fix a point
q ∈M and we assume that the distribution on M is bracket generating of step k at the point q.

Definition 10.20. Let D be a bracket generating distribution on M . The set of admissible jets is

JfqM := {Jkq γ, γ ∈ Ωq is an admissible variation}

where k is the step of the distribution at q, i.e., Dkq = TqM .

10.3.2 Nonholonomic tangent space

To define the nonholonomic tangent space in a coordinate-free way, we need to introduce the group
of flows of admissible variations.
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Definition 10.21. Let D be a bracket generating distribution on M . The group of flows of
admissible variations is

Pf :=

{
−→exp

∫ τ

0
fu(t,s)ds, u(t, s) smooth variation

}
,

where the group structure on Pf is given by the following identity:

−→exp
∫ τ1

0
fu1(t,s)ds ⊙

−→exp
∫ τ2

0
fu2(t,s)ds =

−→exp
∫ τ1+τ2

0
fv(t,s)ds

where we set

v(t, s) :=

{
u1(t, s), 0 ≤ s ≤ τ1,
u2(t, s− τ1), τ1 ≤ s ≤ τ1 + τ2.

Remark 10.22. Any admissible variation is given by γ(t) = Pt(q) for some P ∈ Pf , where we

identify q with the constant curve. Hence JfqM is exactly the orbit of q under the action of the
group Pf

JfqM = {Jkq (P (q)) | P ∈ Pf}.

The nonholonomic tangent space will be defined as the quotient of Pf with respect to the action
of the subgroup of “slow flows”.

Definition 10.23. A smooth admissible variation u(t, s) for D is said to be a slow variation if

u(0, s) =
∂u

∂t
(0, s) = 0, ∀ s ∈ [0, τ ]. (10.17)

A flow associated with a slow variation is said to be purely slow. The subgroup of slow flows Pf0 is
the normal subgroup of Pf generated by flows associated with slow variations, namely

Pf0 :=
{
(Pt)

−1
⊙Qt ⊙ Pt | P ∈ Pf , Q purely slow

}
. (10.18)

Remark 10.24. By definition of slow variation and the linearity of f , a purely slow flow Qt is
associated with a family of control that can be written in the form u(t, s) = tv(t, s), where v(0, s) = 0
(cf. also Remark 10.17). Moreover we have

Qt =
−→exp

∫ τ

0
fu(t,s)ds =

−→exp
∫ τ

0
ftv(t,s)ds =

−→exp
∫ τ

0
tfv(t,s)ds.

Heuristically, a flow Qt is purely slow if the first nonzero jet J iqγ of the trajectory γ(t) = q ⊙Qt

belongs to a subspace Djq, with j < i. In particular γ̇(0) = 0.

Being equivalent up to a slow flow is a well-defined equivalence relation on the space of jets.

Exercise 10.25. Let j = Jkq γ and j′ = Jkq γ
′ for some γ, γ′ ∈ Ωq. Prove that

Jkq γ ∼ Jkq γ′, if γ′(t) = Pt(γ(t)) (10.19)

for some slow flow P ∈ Pf0 is a well defined equivalence relation on JfqM .
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This permits us to introduce the main object of the section.

Definition 10.26. The nonholonomic tangent space T fq M is defined as

T fq M := JfqM/ ∼

where ∼ is the equivalence relation defined in (10.19).

Every horizontal vector field on the sub-Riemannian manifold induces a vector field on the
noholonomic tangent space.

Proposition 10.27. Let D be a bracket-generating distribution on M of step k at q and X be
a horizontal vector field. Then the jet JkqX is tangent to the submanifold JfqM . Moreover JkqX

induces a well defined vector field X̂ on the nonholonomic tangent space T fq M .

Proof. By definition of JkqX, its action on a jet of an admissible variation Jkq γ is given by

(JkqX)(Jkq γ) :=
∂

∂s

∣∣∣∣
s=0

P sX(J
k
q γ) =

∂

∂s

∣∣∣∣
s=0

Jkq (e
tsX(γ(t))). (10.20)

It is easily seen that, if γ(t) is an admissible variation, then for every s the curve t 7→ etsV (γ(t)) is

an admissible variation as well, thus JkqX is tangent to the submanifold JfqM .

To prove that the action is well defined on the quotient, assume that γ(t) ∼ γ′(t), i.e., γ′(t) =
γ(t) ⊙Qt for a slow flow Q ∈ Pf0 . Then we compute, using chronological notation

γ′(t) ⊙ estX = γ(t) ⊙Qt ⊙ estX

= γ(t) ⊙ estX ⊙ e−stX ⊙Qt ⊙ estX

= (γ(t) ⊙ estX) ⊙ Q̃st

where Q̃st := e−tsX ⊙Qt ⊙ etsX is a slow flow for every fixed s and smooth with respect to s. This
means that for every s we have etsXγ(t) ∼ etsXγ′(t) through a slow flow Q̃st . Hence J

k
qX defines a

vector field X̂ on the quotient T fq M .

10.4 Nonholonomic tangent space and privileged coordinates

In this section we discuss some special set of coordinates, called privileged, respecting the flag and
in which we have an explicit and nice description of the nonholonomic tangent space T fq M .

10.4.1 Privileged coordinates

Consider non negative integers n1, . . . , nk such that n = n1 + . . .+ nk and the splitting

Rn = Rn1 ⊕ . . .⊕ Rnk , x = (x1, . . . , xk)

where xi = (x1i , . . . , x
ni
i ) ∈ Rni for i = 1, . . . , k.

The space Der(Rn) of all differential operators in Rn with smooth coefficients form an associative
algebra with composition of operators as multiplication. The differential operators with polynomial
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coefficients form a subalgebra of this algebra with generators 1, xji ,
∂

∂xji
, where i = 1, . . . , k; j =

1, . . . , ni. We define weights of generators as follows

ν(1) := 0, ν(xji ) := i, ν

(
∂

∂xji

)
:= −ν(xji ) = −i.

This defines by additivity the weight of any monomial

ν

(
y1 · · · yα

∂β

∂z1 · · · ∂zβ

)
=

α∑

i=1

ν(yi)−
β∑

j=1

ν(zj).

We say that a polynomial differential operator D is homogeneous if it is a sum of monomial terms
of the same weight. We stress that this definition depends on the coordinate set and the choice of
the weights.

Lemma 10.28. Let D1,D2 be two homogeneous differential operators. Then D1 ◦D2 is homoge-
neous and

ν(D1 ◦D2) = ν(D1) + ν(D2). (10.21)

Proof. By linearity, it is sufficent to check formula (10.21) for monomials of the form

D1 =
∂

∂xj1i1

, D2 = xj2i2 .

Then we have

D1 ◦D2 =
∂

∂xj1i1

◦ xj2i2 = xj2i2
∂

∂xj1i1

+
∂xj2i2

∂xj1i1

,

and formula (10.21) is easily checked in this case.

A special case is when we consider first order differential operators, namely vector fields.

Corollary 10.29. If V1, V2 ∈ Vec(Rn) are homogeneous vector fields then [V1, V2] is homogeneous
and ν([V1, V2]) = ν(V1) + ν(V2).

With these properties we can define a filtration in the space of all smooth differential operators
Indeed we can write (in the multi-index notation)

D =
∑

α

ϕα(x)
∂|α|

∂xα
.

Considering the Taylor expansion at 0 of every coefficient we can splitD as a sum of its homogeneous
components

D ≈
∞∑

i=−∞
D(i),

and define the filtration {F (h)}h∈Z of Der(Rn) as follows

F (h) := {D ∈ Der(Rn) : D(i) = 0,∀ i < h}, h ∈ Z.
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It is easy to see that it is a decreasing filtration, i.e., F (h) ⊂ F (h−1) for every h ∈ Z. Moreover, if
we restrict our attention to vector fields, we get

V ∈ Vec(Rn) ⇒ V (i) = 0, ∀ i < −k.

Indeed every monomial of a N th-order differential operator has weight not smaller than −kN . In
other words we have

(i) Vec(Rn) ⊂ F (−k),

(ii) V ∈ Vec(Rn) ∩ F (0) implies V (0) = 0.

In particular every vector field that does not vanish at the origin belongs at least to F (−1). This
motivates the following definition.

Definition 10.30. (i). A system of coordinates near the point q is said linearly adapted to the
flag D1

q ⊂ D2
q ⊂ . . . ⊂ Dkq if, in coordinates,

Diq = Rn1 ⊕ . . .⊕ Rni , ∀ i = 1, . . . , k. (10.22)

(ii). A system of coordinates near the point q is said privileged if it is linearly adapted to the flag
and X ∈ F (−1) for every X ∈ D.

Notice that condition (i) can always be satisfied after a suitable linear change of coordinates.
Condition (ii) says that each horizontal vector field has no homogeneous component of degree less
than −1.
Example 10.31 (On privileged coordinates). We discuss which coordinate systems are privileged
in the case k = 1, 2, 3.

(i) For k = 1 all sets of coordinates are privileged. In fact ν(∂xi) = −1 for all i easyly implies
Vec(M) ⊂ F (−1).

(ii) For k = 2 all systems of coordinates that are linearly adapted to the flag are also privileged.
Indeed, we have ν(∂

xj1
) = −1 and ν(∂

xj2
) = −2. Thus a vector field belonging to F (−2) \F (−1)

contains a monomial vector field of the kind ∂
xj2
, with constant coefficients. On the other

hand a vector field X ∈ D cannot contain such a monomial since, by our assumption X(0) ∈
D1

0 = Rn1 .

(iii) For k = 3, let us show an example of coordinates that are linearly adapted but not privileged.
Consider the following set of vector fields in R3 = R⊕ R⊕ R

X1 = ∂x1 + x1∂x3 , X2 = x1∂x2 , X3 = x2∂x3

and set ν(xi) = i for i = 1, 2, 3. The nontrivial commutators between these vector fields are

[X1,X2] = ∂x2 , [X2,X3] = x1∂x3 , [[X1,X2],X3] = ∂x3 .

Then the flag (computed at x = 0) is given by

D1
0 = span{∂x1}, D2

0 = span{∂x1 , ∂x2}, D3
0 = span{∂x1 , ∂x2 , ∂x3}.

These coordinates are then linearly adapted to the flag but they are not privileged since
ν(x1∂x3) = −2, thus X1 ∈ F (−2) \ F (−1).
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The following theorem is the main result of this section and states the existence of privileged
coordinates.

Theorem 10.32. Let D be a bracket generating distribution on a smooth manifold M and q ∈M .
There always exists a system of privileged coordinates around q.

The proof of this theorem is postponed to Section 10.4.3.

10.4.2 Description of the nonholonomic tangent space in privileged coordinates

We showed in Proposition 10.27 that given a horizontal vector field X it induces a well defined
vector field X̂ on the nonholonomic tangent space T fq M at q ∈ M . The goal of this section is

to discuss the peculiar structure of the vector field X̂ in privileged coordinates and deduce the
corresponding description of T fq M .

We start with a description of the space of jets JkqM and the equivalence relation defining the

nonholonomic tangent space T fq M .

Theorem 10.33. Let D be a bracket generating distribution on a smooth manifold M and q ∈M .
In privileged coordinates we have the following

(i) JfqM = {∑k
i=1 t

iξi | ξi ∈ Diq} and dimJfqM = kn1 + (k − 1)n2 + . . .+ nk.

(ii) Let j1, j2 ∈ JfqM . Then j1 ∼ j2 if and only if j1 − j2 =
∑k

i=1 t
iηi, where ηi ∈ Di−1

q .

Proof of Theorem 10.33, Claim (i), part 1. We start by proving the following inclusion

JfqM ⊂
{

k∑

i=1

tiξi | ξi ∈ Diq

}
. (10.23)

For any smooth variation γ(t) = q ⊙
−→exp

∫ τ
0 fu(t,s)ds, we can write the Volterra expansion

γ(t) = q +

k∑

i=1

∫
· · ·
∫

0≤si≤...≤s1≤τ

q ⊙ fu(t,s1) ⊙ . . . ⊙ fu(t,si) ds1 . . . dsi +O(tk+1). (10.24)

Let us write (cf. Remark 10.17) the controls u(t, si) = tū(t, si) for some suitable families ū(t, si).
Then (10.24) becomes, using the fact that f is linear in u, as follows

γ(t) = q +

k∑

i=1

ti
∫
· · ·
∫

0≤si≤...≤s1≤τ

q ⊙ fū(t,s1) ⊙ . . . ⊙ fū(t,si) ds1 . . . dsi +O(tk+1). (10.25)

By definition of privileged coordinates we have fu(t,si) ∈ F (−1) for each i, hence fū(t,si) ∈ F (−1) and

fū(t,s1) ⊙ . . . ⊙ fū(t,si) ∈ F (−j) (10.26)

Let us apply the differential operator (10.26) to a coordinate function xβα, with α = 1, . . . , k and

β = 1, . . . , nα. Since ν(x
β
α) = α we have

fū(t,s1) ⊙ . . . ⊙ fū(t,si)x
β
α ∈ F (−i+α) (10.27)

Therefore, for every α > i, this function has positive weight and vanishes when evaluated at x = 0.
In privileged coordinates satisfying (10.22), this says that, for every i = 1, . . . , k, the sum in

(10.24) up to the ith-term contains only element in Diq.
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To prove the converse inclusion we have to show that, given arbitrary elements ξi ∈ Diq for
i = 1, . . . , k, we can find a smooth variation that has these vectors as elements of its jet. The proof
is constructive and we start with some preliminary lemmas.

Lemma 10.34. Let m,n be two integers. Assume that we have two flows such that, as operators

Pt = Id + V tn +O(tn+1),

Qt = Id +Wtm +O(tm+1).

Then PtQtP
−1
t Q−1

t = Id + [V,W ]tn+m +O(tn+m+1).

Proof. Define R(t, s) := PtQsP
−1
t Q−1

s . We are interested in the expansion of R(t, t) with respect to
t. Since P0 = Q0 = Id, we have R(0, s) = R(t, 0) = Id, for every t, s ∈ R. This implies that, when
writing the Taylor expansion of PtQsP

−1
t Q−1

s , only mixed derivatives in t and s give contribution.
Using that

P−1
t = Id− tnV +O(tn+1), Q−1

s = Id− smW +O(sm+1).

one gets, denoting ‖(t, s)‖ =
√
t2 + s2,

(Id + tnV +O(tn+1))(Id + smW+O(sm+1))(Id − tnV +O(tn+1))(Id − smW +O(sm+1)) =

= Id + tnsm(V W −WV ) +O(‖(t, s)‖n+m+1)

= Id + tnsm[V,W ] +O(‖(t, s)‖n+m+1)

and the lemma is proved.

Exercise 10.35. Assume that the flow Pt satisfies Pt = Id + V tn + O(tn+1). Show that the
nonautonomous vector field Vt associated with Pt satisfies Vt = ntn−1V +O(tn).

Lemma 10.36. For all i1, . . . , ih ∈ {1, . . . , k} and l ≥ h, there exists an admissible variation
u(t, s), depending only on the Lie bracket structure, such that

q ⊙
−→exp

∫ τ

0
fu(t,s)ds = q + tl[fi1 , . . . , [fih−1

, fih ]](q) +O(tl+1). (10.28)

Proof. The lemma is proved by induction on h.
(i) For all i = 1, . . . , k and l ≥ 1 there exists an admissible variation u(t, s) such that

q ⊙
−→exp

∫ τ

0
fu(t,s)ds = q + tlfi(q) +O(tl+1).

In fact, it is sufficient to take u = (u1, . . . , uk) such that ui = tl and uj = 0 for all j 6= i.
(ii) For all i, j ∈ {1, . . . , k} and l ≥ 2, we have to show that there exists an admissible variation

u(t, s) such that

q ⊙
−→exp

∫ τ

0
fu(t,s)ds = q + tl[fi, fj](q) +O(tl+1).

In fact, it is sufficient to apply Lemma 10.34 where Pt and Qt are the flows generated by the
nonautonomous vector fields Vt = tl−1fi1 and Wt = tfi2 , respectively.

An iteration of this argument completes the proof.
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In other words we proved that every bracket monomial of degree i can be presented as the i-th
term of a jet of some admissible variation. Now we prove that we can do the same for any linear
combination of such monomials (recall that Di is the linear span of all i-th order brackets).

Lemma 10.37. Let π = π(f1, . . . , fm) be a bracket polynomial of degree deg π ≤ l. There exists
an admissible variation u(t, s), depending only on the Lie bracket structure, such that

q ⊙
−→exp

∫ τ

0
fu(t,s)ds = q + tlπ(f1, . . . , fm)(q) +O(tl+1). (10.29)

Proof. Let π(f1, . . . , fm) =
∑N

j=1 Vj(f1, . . . , fm) where Vj are monomials. By our previous argu-

ment we can find uj(t, s), for s ∈ [0, τj ] such that

q ⊙
−→exp

∫ τj

0
fuj(t,s)ds = q + tlVj(f1, . . . , fm)(q) +O(tl+1).

Then (10.29) is obtained choosing as u(t, s), where s ∈ [0, τ ] and τ :=
∑N

j=1 τj the concatenation
of controls defined as follows

u(t, s) = uj

(
t, s −

j−1∑

i=1

τi

)
, if

j−1∑

i=1

τi ≤ s <
j∑

i=1

τi, 1 ≤ j ≤ N,

where the sum is understood to be zero for j = 1.

Exercise 10.38. Complete the proof by showing that the flow associated with u has as main term
in the Taylor expansion

∑
j Vj at order l. Then prove, by using a time rescaling argument, that

also any monomial of type αV for α ∈ R can be presented in this way.

We are now in position to complete the proof of Claim (i) of Theorem 10.33.

Proof of Theorem 10.33, Claim (i), part 2. We have to prove the remaining inclusion

{
k∑

i=1

tiξi | ξi ∈ Diq

}
⊂ JfqM. (10.30)

Let us consider a k-th jet j =
∑k

i=1 t
iξi, with ξi ∈ Diq. We prove the statement by steps: at i-th

step we built an admissible variation whose i-th Taylor polynomial coincide with the one of j.

- Thanks to Lemma 10.37, there exists a smooth admissible variation γ1(t) such that

γ1(t) = q ⊙
−→exp

∫ τ

0
fu(t,s)ds, γ̇(t) = ξ1

Then we will have γ1(t) = tξ1 + t2η2 +O(t3) where η2 ∈ D2
q from the first part of the proof.

- Thanks to Lemma 10.37, there exists a smooth admissible variation γ̃2(t) such that

γ̃2(t) = q ⊙
−→exp

∫ τ

0
fv(t,s)ds, γ̃2(t) = t2(ξ2 − η2) +O(t3)
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Defining1 the product γ2(t) := (γ̃2 ∗ γ1)(t) we have

γ2(t) = tξ1 + t2η2 + t2(ξ2 − η2) + t3η3 +O(t4)

= tξ1 + t2ξ2 + t3η3 +O(t4)

where η3 ∈ D3
q .

At every step we can correct the right term of the jet and after k steps we have the inclusion.

Proof of Theorem 10.33, Claim (ii). We have to prove that

j ∼ j′ ⇐⇒ j − j′ =
k∑

i=1

tiηi, ηi ∈ Di−1
q .

(⇒). Assume that j ∼ j′, where j = Jkq γ =
∑
tiξi and j

′ = Jkq γ
′ =

∑
tiξ′i. Then γ′ = γ ⊙Qt for

some slow flow Qt ∈ Pf0 of the form

Qt = Q1
t

⊙ · · · ⊙Qht ,

Qit = P it ⊙
−→exp

∫ τ

0
ftvi(t,s)ds ⊙ (P it )

−1,

for some P i ∈ Pf and some admissible variations vi(t, s), for i = 1, . . . , h. It is sufficient to prove
it for the case h = 1. By formula (6.34) we have that

Qt = Pt ⊙
−→exp

∫ τ

0
ftv(t,s)ds ⊙ P−1

t = −→exp
∫ τ

0
(AdPt)ftv(t,s)ds,

then by linearity of f we have

Qt =
−→exp

∫ τ

0
t(AdPt)fv(t,s)ds.

Now recall that Pt =
−→exp

∫ τ
0 fw(t,θ)dθ for some admissible variation w(t, θ) and from (6.31) we get

Qt =
−→exp

∫ τ

0
t −→exp

∫ s

0
adfw(t,θ)dθ fv(t,s)ds.

Finally, if γ(t) = q ⊙
−→exp

∫ τ
0 fu(t,s)ds we can write

γ′(t) = q ⊙
−→exp

∫ τ

0
fu(t,s)ds ⊙

−→exp
∫ τ

0
t −→exp

∫ s

0
adfw(t,θ)dθ fv(t,s)ds.

Expanding with respect to t we have Qt ≃ (Id + t
∑
tiVi) = Id +

∑
ti+1Vi where Vi is a bracket

polynomial of degree ≤ i. Due to the presence of t it is easy to see that in the expansion of γ′ we
will find the same terms of γ plus something that belong to Di−1.

1we define the product of two curves γ(t) = q ⊙ Pt and γ′(t) = q ⊙ P ′
t as follows: (γ′ ∗ γ)(t) := q ⊙ Pt ⊙ P ′

t .
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(⇐). Assume now that j = Jkq γ =
∑
tiξi and j

′ = Jkq γ
′ =

∑
tiξ′i, with

j − j′ =
k∑

i=1

tiηi, ηi ∈ Di−1
q .

We need to find a slow flow Qt such that γ′ = γ ⊙Qt. In other words it is sufficient to prove that
we can realize with a slow flow every jet of type

∑k
i=1 t

iηi, ηi ∈ Di−1
q . To this purpose one just

adapts arguments from the proof of part (i), using the following crucial observation, which given
an adaptation of Lemma 10.34.

Lemma 10.39. Let Pt, Qt be two flows with Pt ∈ Pf and Qt ∈ Pf0 (or Pt ∈ Pf0 and Qt ∈ Pf ).
Then PtQtP

−1
t Q−1

t ∈ Pf0 .

Proof. If Qt ∈ Pf0 then Q−1
t ∈ Pf0 . Moreover from the definition of Pf0 we have that PtQtP

−1
t ∈ Pf0 .

Hence also their composition is in Pf0 .

We have the following corollary of Theorem 10.33, part (i).

Corollary 10.40. In privileged coordinates (x1, . . . , xk) defined by the splitting Rn = Rn1⊕. . .⊕Rnk

we have

JfqM =








tx1 +O(t2)
t2x2 +O(t3)

...
tkxk


 : xi ∈ Rni , i = 1, . . . , k




. (10.31)

Proof. Indeed we know that Di = Rn1 ⊕ . . .⊕ Rni and writing

ξi = xi,1 + . . .+ xi,i, xi,j ∈ Rnj

we have, expanding and collecting terms

k∑

i=1

tiξi = tξ1 + t2ξ2 + . . .+ tkξk

= tx1,1 + t2(x2,1 + x2,2) + . . . + tk(xk,1 + . . .+ xk,k)

= (tx1,1 + t2x2,1 + . . .+ tkxk,1, t
2x2,2 + . . .+ tkxk,2, t

kxk,k)

We can finally deduce the structure of the nonholonomic tangent space in privileged coordinates

Theorem 10.41. The nonholonomic tangent space T fq M is a smooth manifold and dimT fq M =
dimM . In privileged coordinates we have

T fq M =








tx1
t2x2
...

tkxk


 : xi ∈ Rni , i = 1, . . . , k




, (10.32)
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and dilations {δα}α>0 acts on T fq M in the following quasi-homogeneous way

δα(tx1, . . . , t
kxk) = (αtx1, . . . , α

ktkxk).

Proof. It follows directly from Corollary 10.40 that two elements j and j′ can be written in coor-
dinates as

j = (tx1 +O(t2), t2x2 +O(t3), . . . , tkxk),

j′ = (ty1 +O(t2), t2y2 +O(t3), . . . , tkyk).

Moreover, thanks to Theorem 10.33, claim (ii), we have that j ∼ j′ if and only if xi = yi for all
i = 1, . . . , k. Notice finally that

dimT fq M =

k(q)∑

i=1

ni(q) = n = dimM.

Remark 10.42. Notice that a polynomial differential operator homogeneous with respect to ν (i.e.,
whose monomials are all of same weight) is homogeneous with respect to dilations δt : Rn → Rn

defined by
δt(x1, . . . , xk) = (tx1, t

2x2, . . . , t
kxk), t > 0. (10.33)

In particular for a homogeneous vector field X of weight h it holds δt∗X = t−hX.

Now we can improve Proposition 10.27 and see that actually the jet of a horizontal vector field
is a vector field on the tangent space and belongs to F (−1) (in privileged coordinates).

Lemma 10.43. Fix a set of privileged coordinates. Let V ∈ F (−1), then the vector field V̂ ∈
Vec(T fq M) induced on the nonholonomic tangent space writes as follows

V =




v1(x)
v2(x)
...

vk(x)


 =⇒ V̂ =




v̂1(x)
v̂2(x)
...

v̂k(x)


 , (10.34)

where v̂i is the homogeneous term of order i− 1 of vi.

Proof. Let V ∈ F (−1) and γ(t) be an admissible variation. When expressed in coordinates we have

V =




v1(x)
v2(x)

...
vk(x)


 , γ(t) =




tx1 +O(t2)
t2x2 +O(t3)

...
tkxk,


 .

Thanks to Exercise 10.14, the coordinate representation of (Jkq V )(Jkq γ) is given as the k-th jet of
tV (γ(t)). Hence we compute

(Jkq V )(Jkq γ) =




tv1(tx1 +O(t2), . . . , tkxk)
tv2(tx1 +O(t2), . . . , tkxk)

...
tvk(tx1 +O(t2), . . . , tkxk)


 . (10.35)
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Notice that V ∈ F (−1) means exactly that decomposing V in coordinates as follows

V =

k∑

i=1

vi(x)
∂

∂xi
=

k∑

i=1

ni∑

j=1

vji (x)
∂

∂xji
,

every vi is a function of order ≥ i−1, since ν(∂/∂xji ) = −i. Let us denote with v̂i the homogeneous

part of vi of order i−1. To compute the value of V̂ then we have to restrict its action on admissible
variations from T fq M , then evaluate and neglect the higher order part (that corresponds to the
projection on the factor space) in order to have

vi(tx1 +O(t2), . . . , tkxk) = ti−1v̂i(x1, . . . , xk) +O(ti),

and using identity 10.35 we have

(Jkq V )
∣∣∣
T f
q M

=




tv1(tx1 +O(t2), . . . , tkxk)
tv2(tx1 +O(t2), . . . , tkxk)

...
tvk(tx1 +O(t2), . . . , tkxk)


 =




tv̂1 +O(t2)
t2v̂2 +O(t3)

...
tkv̂k +O(tm+1)


 , (10.36)

from which (10.34) follows.

Remark 10.44. Notice that, since v̂i is a homogeneous function of weight i − 1, it depends only
on variables x1, . . . , xi−1 of weight smaller or equal than its weight. Hence V̂ has the following
triangular form

V̂ (x) =




v̂1
v̂2(x1)

...
v̂k(x1, . . . , xk−1)


 . (10.37)

A triangular vector field of the kind (10.37) is complete and its flow can be easily computed by a
step by step substitution.

10.4.3 Existence of privileged coordinates: proof of Theorem 10.32.

Fix a generating family {f1, . . . , fm} of the distribution D. Assume that D is bracket generating of
step k at the point q

D1
q ⊂ D2

q ⊂ . . . ⊂ Dkq = TqM. (10.38)

Denote by dj := dimDjq the dimension of the elements of the flag, for j = 1, . . . , k.

Definition 10.45. A set V1, . . . , Vn of n vector fields on M is said to be a privileged frame for D
at q if it satisfies the following properties:

(a) Vi = πi(f1, . . . , fm), where πi is some bracket polynomial, for i = 1, . . . , n,

(b) deg πi ≤ j for every i ≤ dj ,

(c) Djq = span{V1(q), . . . , Vdj (q)}, for j = 1, . . . , k.
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A privileged frame can be constructed as follows: choose V1, . . . , Vd1 among the vector fields
{f1, . . . , fm} in such a way that Dq = span{V1(q), . . . , Vd1(q)}, then fix Vd1+1, . . . , Vd2 among the
set {[fi, fj ] : i, j = 1, . . . ,m} in such a way that D2

q = span{V1(q), . . . , Vd2(q)}, and so on.

Remark 10.46. Given a privileged frame V1, . . . , Vn, one can introduce on TqM the weight on the
coordinates (y1, . . . , yn) induced by the flag. In other words we write every element v in TqM along
the basis V1(q), . . . , Vn(q) and set

v = (y1, . . . , yn) =

n∑

i=1

yiVi(q), where ν(yi) = wi := j if dj−1 < i ≤ dj .

Identifying v ∈ TqM with a constant vector field, it makes sense to consider the value of a polynomial
bracket X = π(f1, . . . , fm) at the point q and consider its weight ν(X).

Privileged coordinates are then easily build in terms of a privileged frame.

Theorem 10.47. Let V1, . . . , Vn be a privileged frame at q. Then the map

Ψ : Rn →M, Ψ(s1, . . . , sn) = q ⊙ es1V1 ⊙ . . . ⊙ esnVn , (10.39)

is a local diffeomorphism at s = 0 and its inverse Ψ−1 defines privileged coordinates around q.

Proof. The map (20.46) is a local diffeomorphism at s = 0 since

∂Ψ

∂si

∣∣∣
s=0

= Vi(q), i = 1, . . . , n, (10.40)

and these vectors are linearly independent by property (c) of privileged frame. To complete the
proof we have to show that:

(i) Ψ−1
∗ (Djq) = span

{
∂

∂s1
, . . . ,

∂

∂sdj

}
, for every j = 1, . . . , k,

(ii) Ψ−1
∗ fi ∈ F (−1) for every i = 1, . . . ,m.

Claim (i), that is Ψ defines linearly adapted coordinates, easily follows from property (c) of privi-
leged frame and (10.40). On the other hand, claim (ii) is not trivial since it requires the computation
of the differential of Ψ at every point, and not only at s = 0.

We prove the following preliminary result.

Lemma 10.48. Let X = π(f1, . . . , fm)(q) ∈ Vec(TqM) be a bracket polynomial with ν(X) ≤ h.
Given a polynomial vector field on TqM

Y (y) :=
∑

yil · · · yi1(adVil ⊙ · · · ⊙ adVi1X)(q), (10.41)

there exists polynomials pi(y) ∈ F (wi−h) for i = 1, . . . , n such that

Y (y) :=
n∑

i=1

pi(y)Vi(q).

We stress that the weight of the polynomial pi in the previous Lemma is independent on the
degree of the polynomial vector field.
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Proof of Lemma 10.48. It easily follows from definition of weights that

adVil ⊙ · · · ⊙ adVi1(X) ∈ F (−w), w =
l∑

j=1

wij + h.

By additivity, every term in the sum (10.41) belongs to F (−h). Then if we rewrite the sum (10.41)
in terms of the basis Vi(q), for i = 1, . . . , n we have that every coefficient pi(y) must belong to
F (wi−h), since ν(Vi(q)) = wi.

The proof of existence of privileged coordinates is completed by the following proposition,
applied in the particular case h = 1.

Proposition 10.49. Let X = π(f1, . . . , fm) be a bracket polynomial with ν(X) ≤ h and Ψ be the
map defined in (20.46). Then Ψ−1

∗ X ∈ F (−h).

Proof. Writing the vector field Ψ−1
∗ X in coordinates

Ψ−1
∗ X =

n∑

i=1

ai(s)
∂

∂si
, (10.42)

the statement is proved if we show that ai ∈ F (wi−h). We compute the differential of Ψ (cf. also
Exercice 2.32)

Ψ∗
∂

∂si
=

∂

∂ε

∣∣∣∣
ε=0

q ⊙ es1V1 ⊙ · · · ⊙ e(si+ε)Vi ⊙ · · · ⊙ esnVn

= q ⊙ es1V1 ⊙ · · · ⊙ esiVi ⊙ Vi ⊙ esi+1Vi+1 ⊙ · · · ⊙ esnVn

= q ⊙ es1V1 ⊙ · · · ⊙ esnVn︸ ︷︷ ︸
Ψ(s)

⊙ e−snVn ⊙ · · · ⊙ e−si+1Vi+1 ⊙ Vi ⊙ esi+1Vi+1 ⊙ · · · ⊙ esnVn .

In geometric notation we can write

Ψ∗
∂

∂si
= esnVn∗ · · · esi+1Vi+1

∗ Vi

∣∣∣
Ψ(s)

. (10.43)

Remember that, as operator on functions, etY∗ = e−t ad Y . This implies that in (10.43) we have a
series of bracket polynomials. Applying Ψ∗ to (10.42) one gets

X
∣∣∣
Ψ(s)

=
n∑

i=1

ai(s)e
snVn
∗ · · · esi+1Vi+1

∗ Vi

∣∣∣
Ψ(s)

.

Now we apply e−s1V1∗ · · · e−snVn∗ to both sides to compute the vector field at the point q

e−s1V1∗ · · · e−snVn∗ X
∣∣∣
q
=

n∑

i=1

ai(s)e
−s1V1∗ · · · e−si−1Vi−1

∗ Vi

∣∣∣
q
. (10.44)

Rewriting the last identity in the basis V1(q), . . . , Vn(q) we have

n∑

i=1

bi(s)Vi(q) =

n∑

i,j=1

ai(s)(Vi(q) + ϕij(s)Vj(q)), (10.45)
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for some smooth functions bi, ϕij such that ϕij(0) = 0. Applying Lemma 10.48 to X and Vi, for
i = 1, . . . , n, we have

bi ∈ F (wi−h), ϕij ∈ F (wj−wi).

On the other hand we can rewrite relation between coefficients as follows

B(s) = A(s)(I +Φ(s)),

where we denote B(s) = (b1(s), . . . , bn(s)), A(s) = (a1(s), . . . , an(s)) and Φ(s) = (ϕij(s))ij . Notice
that I +Φ(s) is invertible. Thus we get

A(s) = B(s)(I +Φ(s))−1

=
∑

p≥0

(−1)p(BΦp)(s),

and we observe that

(B)i = bi ∈ F (wi−h),

(BΦ)i =
n∑

j=1

bjϕji ∈ F (wj−h+wi−wj) = F (wi−h).

Iterating the argument it follows that (BΦp)i ∈ F (wi−h) for every p ≥ 0. Hence ai ∈ F (wi−h).

Remark 10.50. The previous proof can be rewritten in purely algebraic way through chronological
notation. In the above proof nothing changes if we consider some permutation σ = (i1, . . . , in) of
(1, . . . , n) and work with the map

Ψσ : (s1, . . . , sn) 7→ q ⊙ esinVin ⊙ . . . ⊙ esi1Vi1 .

We stress that, even if we are allowed to switch the position of the vector fields in the composition,
the coordinate si has to correspond to the vector field Vi, for i = 1, . . . , n.

We summarize the previous considerations in the next corollary.

Corollary 10.51. Let V1, . . . , Vn be a privileged frame at q and σ = (i1, . . . , in) a permutation of
{1, . . . , n}. Then the map

Ψσ : Rn →M, Ψσ(s1, . . . , sn) = q ⊙ esinVin ⊙ . . . ⊙ esi1Vi1 , (10.46)

is a local diffeomorphism at s = 0 and its inverse Ψ−1
σ defines privileged coordinates around q.

Remark 10.52. As a particular case of Corollary 10.51 we can consider the coordinate map

Φ : (x1, . . . , xn) 7→ q ⊙ exnVn ⊙ . . . ⊙ ex1V1 .

Computing the differential Φ∗ (cf. also Exercice 2.32) it is easy to see that for every i = 1, . . . , n

Φ−1
∗ Vi

∣∣∣
x1=···=xi−1=0

= ∂xi . (10.47)
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This implies in particular that for i = 1, . . . , d1, we have in coordinates

Vi = ∂xi +
∑

j≥d1
aij(x1, . . . , xd1)∂xj , (10.48)

for some functions aij depending only on the coordinates of the first layer. Indeed the set of vector
fields {Vi}i=1,...,d1 are chosen among f1, . . . , fm, (generating Dq) and have weight −1.

Exercise 10.53. Let V1, . . . , Vn be a privileged frame at q. Prove that the map

Ψ+ : Rn →M, Ψ+(s1, . . . , sn) = q ⊙ e
∑n

i=1 siVi , (10.49)

is a local diffeomorphism at s = 0 and its inverse Ψ−1
+ defines privileged coordinates around q.

Equiregular case and uniform privileged coordinates

In a neighbourhood Oq of a point q ∈ M where the structure is equiregular, we can fix a frame
V1, . . . , Vn which is privileged at every point in a neighborhood of p.

A continuous (actually smooth) system of privileged coordinates in a neighborhood Ω of a point
p ∈M is given by the map

Ψ : Ω× Rn →M, Ψ(q, s1, . . . , sn) = q ⊙ es1V1 ⊙ . . . ⊙ esnVn , (10.50)

Exercise 10.54. Given a sub-Riemannian structure {f1, . . . , fm} that is equiregular and fix a frame
V1, . . . , Vn which is privileged at every point in a neighborhood of p defining privileged coordinates
as in (10.50). Denote by {f̂ q1 , . . . , f̂

q
m} the nilpotent approximation at the point q. Prove that the

family {f̂ q1 , . . . , f̂ qm} is smooth with respect to q, seen as a family of vector fields in Rn.

Notice that the existence of a continuous system of privileged coordinates, in general, is not
ensured in a neighborhood of a singular point.

10.4.4 Nonholonomic tangent spaces in low dimension

In Riemannian geometry the above procedure becomes very easy since when k = 1 we have that
J1
qM = TqM and moreover every admissible variation is an admissible trajectory. This implies

that if (M,U, f) is a Riemannian manifold and X is a vector field on M , then the vector field

X̂ induced on the tangent space T fq M = TqM is simply the constant vector field defined on TqM
defined by the value of X at q. Moreover, every local basis of the tangent space is a privileged
frame and defines privileged coordinates

As soon as the structure is not Riemannian, the structure of the noholonomic tangent space
can depend on the point q and on the growth vector (d1, . . . , dk) of the distribution D at q. Let us
study the low dimensional cases.

If we consider regular sub-Riemannian distributions, namely when the dimension of Dq is con-
stant with respect to q, then the simplest case is obtained in dimension n = 3 for a distribution of
rank 2.

If the distribution is also equiregular, i.e, the dimension of all Djq is constant with respect to q,
then the growth vector is necessarily (2, 3) at every point. In this case the nonholonomic tangent
space is unique and given by the Heisenberg group.
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Example 10.55 (Heisenberg group). Assume n = 3 and that the growth vector is (2, 3). Then we
consider coordinates (x1, x2, x3) and weights (w1, w2, w3) = (1, 1, 2). Since we work locally around
the point q, it is not restrictive to assume that D is locally generated by two vector fields f1, f2 and
that we can choose as a privileged frame

V1 = f1, V2 = f2, V3 = [f1, f2]. (10.51)

Using privileged coordinates defined in Remark 10.52, we have that

V1 = f1 = ∂x1 , V2 = f2 = ∂x2 + αx1∂x3 , (10.52)

for some α ∈ R. On the other hand since

V3 = [f1, f2] = α∂x3 (10.53)

and V3(0) = ∂x3 from (10.47) we get α = 1. This gives the following normal form for the generating
family of the nonholonomic tangent space

f1 = ∂x1 , f2 = ∂x2 + x1∂x3 . (10.54)

If we admit the regular distribution D of rank 2 in dimension n = 3 to be not equiregular, then
the growth vector can be of the form (2, . . . , 2, 3) at some singular points. In the simplest case, for
a growth vector (2, 2, 3), the nonholonomic tangent space is the Martinet flat space.

Example 10.56 (Martinet flat). Assume n = 3 and that growth vector is (2, 2, 3). This means
that we have coordinates (x1, x2, x3) with corresponding weights (w1, w2, w3) = (1, 1, 3). Since we
work locally around the point q, it is not restrictive to assume that D is locally generated by two
vector fields f1, f2 and that we can choose as a privileged frame

V1 = f1, V2 = f2, V3 = [f1, [f1, f2]]. (10.55)

Indeed if the three vector fields above are not linearly independent then we can choose V3 =
[f2, [f2, f1]] and we reduce to the previous case by switching the role of f1 and f2. Moreover denote
fu := u1f1 + u2f2 and consider the linear map

ϕ : R2 → TqM/Dq, ϕ(u1, u2) := [fu, [f1, f2]](q) mod Dq.

Since ϕ is surjective (by bracket-generating assumption) and dimTqM/Dq = 1, then kerϕ is one
dimensional. Thus, up to a rotation of constant angle of the generating family f1, f2 (which does
not change the value [f1, f2]), we can assume that f2 ∈ kerϕ. In particular this implies

[f2, [f1, f2]] = 0. (10.56)

Using privileged coordinates defined in Remark 10.52, we have that

V1 = f1 = ∂x1 , V2 = f2 = ∂x2 + x1a(x1, x2)∂x3 , (10.57)

for some smooth function a(x1, x2). Since ν(f2) = −1 then a(x1, x2) = αx1+βx2 for some α, β ∈ R
and we get the coordinate representation

f1 = ∂x1 , f2 = ∂x2 + (αx21 + βx1x2)∂x3 . (10.58)
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Since [f1, [f1, f2]] = 2α∂x3 , the requirement V3|x=0 = ∂x3 in (10.55) gives α = 1/2. Moreover for
this value o α we have [f2, [f1, f2]] = β∂x3 and the condition (10.56) gives β = 0. We have then the
normal form for the generating family of the nonholonomic tangent space

f1 = ∂x1 , f2 = ∂x2 +
1

2
x21∂x3 , f3 = ∂x3 . (10.59)

If we consider non-regular distributions, then the simplest case is obtained as the nonholonomic
tangent space to a distribution D in dimension n = 2 in some singular point. Analogously to the
previous case the growth vector can be of the form (1, . . . , 1, 2) and the simplest case is obtained
when the growth vector is (1, 2). In this case the nonholonomic tangent space is the Grushin plane.

Example 10.57 (Grushin plane). Assume n = 2 and that the growth vector is (1, 2). Then we
consider coordinates (x1, x2) and weights (w1, w2) = (1, 2). Let {f1, f2} be a generating family for
D. It is not restrictive to assume that

V1 = f1, V2 = [f1, f2]

By properties of privileged coordinates defined in Remark 10.52, we have that

V1 = f1 = ∂x1 , V2 = [f1, f2] = ∂x2 .

Moreover f2 should be a vector field of weight −1 that vanishes at x = 0 so it is necessarily of the
form

f2 = αx1∂x2 ,

for some α ∈ R. The condition [f1, f2] = ∂x2 gives α = 1 and we obtain the normal form for the
generating family of the nonholonomic tangent space

f1 = ∂x1 , f2 = x1∂x2 . (10.60)

10.5 Metric meaning

In this section we study the interplay between the nonholonomic tangent space and the sub-
Riemannian distance.

Given a sub-Riemannian structure (M,U, f), with dimM = n, and let us denote by {f1, . . . , fm}
a generating family and fix a point q where the sub-Riemannian distribution is bracket generating
of step k.

Once we fix a privileged coordinate chart in a neigborhood of q, we can treat the vector fields
{f1, . . . , fm} as vector fields defined on (an open set of) Rn, and introduce the corresponding family
of dilations {δα}α>0 defined in (10.33).

Then one can consider the family {f̂1, . . . , f̂m} of vector fields defined by the nilpotent approx-
imation of the generating family.

The next lemma explains in more geometric terms, once given a vector field V , in which sense
the vector field V̂ defined on T fq M is an approximation of V .
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Lemma 10.58. Let V be a horizontal vector field on M and let V̂ be its nilpotent approximation.
In privileged coordinates around q we have equality

εδ 1
ε
∗V = V̂ + εW ε, (10.61)

where {δα}α>0 denotes the family of dilations defined in (10.33) and W ε depends smoothly on the
parameter ε. In particular V̂ is characterized as follows

V̂ = lim
ε→0

εδ 1
ε
∗V. (10.62)

Proof. Recall that in privileged coordinates any horizontal vector fields V belongs to F (−1) and V̂
is its homogeneous part of degree −1. Let us write V = V̂ +W and apply the dilation δ 1

ε
∗ to both

sides of the equality. We have

δ 1
ε
∗V = δ 1

ε
∗V̂ + δ 1

ε
∗W =

1

ε
V̂ + δ 1

ε
∗W, (10.63)

where we used the homogeneity of V̂ (cf. Remark 10.42). Noting that W ∈ F (0), hence setting
W ε := εδ 1

ε
∗W we have that W ε is smooth with respect to ε and εW ε → 0 for ε→ 0.

Geometrically this procedure means that if we consider a small neighborhood of the point q
and we make a nonisotropic dilation (with scaling related to the local structure of the Lie bracket)
then V̂ catches the principal terms of V . This is a nonholonomic analogous of the linearization of
a vector field in the Euclidean case.

10.5.1 Convergence of the sub-Riemannian distance and the Ball-Box theorem

Following the above construction, given a sub-Riemannian structure (M,U, f), with dimM = n,
and {f1, . . . , fm} as a generating family we can introduce the vector fields on a neigborhood of q
where we fixed privileged coordinates

f εi := εδ 1
ε
∗fi, i = 1, . . . ,m. (10.64)

and define on Rn the following sub-Riemannian structures

a) the ε-approximation f ε whose generating family is {f ε1 , . . . , f εm}, for every ε > 0,

b) the nilpotent approximation f̂ whose generating family is {f̂1, . . . , f̂m}.

Thanks to Lemma 10.58 we have that f εi → f̂i for every i = 1, . . . ,m.

Moreover, from the definition (10.64) of the vector fields f εi , it follows directly that the flag
of the sub-Riemannian structure defined by f ε is the same as the one of the original one, since
they are related by a change of coordinates. We have also the following basic observation on the
structure of the Lie algebra generated by {f̂1, . . . , f̂m}.

Proposition 10.59. The Lie algebra Lie{f̂1, . . . , f̂m} is a finite-dimensional nilpotent Lie algebra,
which is bracket generating of step k, where k is the nonholonomic degree of the sub-Riemannian
structure at q.
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Proof. Consider privileged coordinates in a neighborhood of the point q. Then f̂i has weight −1
and is homogeneous with respect to the dilation {δα}α>0. Moreover, for any bracket monomial of
length j we have

ν([f̂i1 , . . . , [f̂ij−1 , f̂ij ]]) = −j.

Since every vector field V satisfies ν(V ) ≥ −k, it follows that every bracket of length j ≥ k is
necessarily zero.

Next, we investigate on the convergence of the corresponding sub-Riemannian distances. Let us
start with the following identity, relating the original sub-Riemannian distance to the ε-approxima-
ting one. The proof is left as an exercice for the reader.

Proposition 10.60. Let dε and d be the sub-Riemannian distances on Rn associated with the
sub-Riemannian structures f ε and f , respectively. Then for every x, y ∈ Rn we have

dε(x, y) =
1

ε
d(δε(x), δε(y)). (10.65)

Proposition 10.60 is saying that dε is d when we “blow-up” the space near the point q and
rescale the distances. This relations rewrites as follows in terms of balls.

Corollary 10.61. Let B(x, r) (resp. Bε(x, r)) be the sub-Riemannian ball with respect to the dis-
tance d (resp. dε). Then for every r > 0 and ε > 0 one has

δε(B
ε(x, r)) = B(δεx, εr). (10.66)

In particular δε(B
ε(0, 1)) = B(0, ε) for every ε > 0.

Exercise 10.62. Prove Corollary 10.61.

The previous results relate the original distance d with the approximating one dε. Next we
move to the convergence of dε for ε→ 0.

We start from an auxiliary proposition, studying the convergence of the end-point maps. Denote
Eεx and Êx the end-point map of the approximating frame and of the nilpotent one based at a point
x ∈ Rn.

Proposition 10.63. Let x ∈ Rn. Then Eεx → Êx uniformly on balls in L2([0, 1],Rk).

Proof. Fix a control u ∈ L2([0, 1],Rk) and consider the solution xε(t) and x̂(t) of the two systems

ẋ =

m∑

i=1

ui(t)f
ε
i (x), ẋ =

m∑

i=1

ui(t)f̂i(x), (10.67)

with fixed initial condition x(0) = x ∈ Rn. Using Lemma 10.58, we write f εi = f̂i + εW ε
i and the

first equation in (10.67) becomes

ẋ =

m∑

i=1

ui(t)f̂i(x) + ε

m∑

i=1

ui(t)W
ε
i (x). (10.68)
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In the right hand side the term

W ε
t (x) := ε

m∑

i=1

ui(t)W
ε
i (x), (10.69)

is a non-autonomous vector field smoothly depending on the parameter ε. Moreover W ε
t (x) → 0

uniformly for ε→ 0. From classical result in ODE theory (continuity with respect to parameters)
it follows that the solution xε(t) converges uniformly on [0, T ] to the solution x̂(t). In particular
the final points converge. Notice that, since nilpotent vector fields are complete (cf. Remark 10.44),
the solution x̂(t) is defined for all t ∈ R.

We notice that actually, thanks to the smoothness of the end-point map, the convergence in
Proposition 10.63 holds in the C∞ sense.

We now prove a key uniform Hölder estimate (with respect to ε) for the approximating sub-
Riemannian distance.

Proposition 10.64. For every compact K ⊂ Rn there exists ε0, C > 0, depending on K, such that

dε(x, y) ≤ C|x− y|1/k, ∀ ε ∈ (0, ε0), ∀x, y ∈ K. (10.70)

where k is the degree of nonholonomy of the sub-Riemannian structure.

Proof. Let V̂1, . . . , V̂n be a privileged frame for the nilpotent system f̂ at the origin (cf. Defini-
tion 10.45), such that V̂i = πi(f̂1, . . . , f̂m) for some bracket polynomials πi, where i = 1, . . . , n. By
construction we have

V̂1(0) ∧ . . . ∧ V̂n(0) 6= 0. (10.71)

By continuity, this implies that they are linearly independent also in a small neighborhood of the
origin and, thanks to quasi-homogeneity, this implies

V̂1(x) ∧ . . . ∧ V̂n(x) 6= 0, ∀x ∈ Rn. (10.72)

Let V ε
i := πi(f

ε
1 , . . . , f

ε
k) denote vector fields defined by the same bracket polynomials, written in

terms of the vector fields of the approximating system. Fix a compact K ⊂ Rn and let ε0 = ε0(K)
be chosen such that

V ε
1 (x) ∧ . . . ∧ V ε

n (x) 6= 0, ∀x ∈ K, ∀ ε ≤ ε0. (10.73)

Recall that by Lemma 10.37, given a bracket polynomial πi(g1, . . . , gk), with deg πi = wi, there
exists an admissible variation ui(t, s), depending only on πi, such that

−→exp
∫ 1

0
gui(t,s)ds = Id + twiπi(g1, . . . , gk) +O(twi+1).

If we apply this lemma for gi := f εi we find ui(t, s) such that

−→exp
∫ 1

0
f εui(t,s)ds = Id + twiV ε

i +O(twi+1), ∀ ε > 0,

where we recall wi = deg πi. Next we define the map for ε > 0

Φε(t1, . . . , tn, x) := x ⊙
−→exp

∫ 1

0
f ε
u1(t

1/w1
1 ,s)

ds ⊙ . . . ⊙
−→exp

∫ 1

0
f ε
un(t

1/wn
n ,s)

ds. (10.74)
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Notice that we have the expansion

x ⊙
−→exp

∫ 1

0
f ε
ui(t

1/wi
i ,s)

ds = x+ tiV
ε
i (x) +O(t

wi+1

wi
i ). (10.75)

In particular (10.75) is a C1 map in a neighborhood of t = 0 but, in general, it is not C2 as soon
as wi > 1.

From this observation it follows that Φε is C1 as a function of t, being a composition of C1

maps. Clearly Φε is smooth as a function of x. Combining the contributions of (10.75) we obtain
the expansion

Φε(x; t1, . . . , tn) = x+

n∑

i=1

tiV
ε
i (x) + o(|t|), (10.76)

This implies that the partial derivatives

∂Φε

∂ti

∣∣∣
t=0

= V ε
i (x), (10.77)

are linearly independent at the origin thanks to (10.73) and Φε is a local diffeomorphism at t =
(t1, . . . , tn) = 0. Applying classical Implicit Function Theorem (see Corollary 2.58) we have that
there exists a constant c > 0 satifying

B(x, cr) ⊂ Φε(x;B(0, r)), x ∈ K, (10.78)

where here B(x, r) denotes the ball in Rn and c is independent of x, ε and the parameter r is small
enough.

Let us denote now with Ex the end-point map based at the point x ∈ Rn (with analogous
meaning for Eεx, Êx), and with B the unit ball in L2([0, 1],Rm).

We claim that (10.78) implies that there exists a constant c′ such that for all r > 0 and ε > 0
small enough

B(x, c′r) ⊂ Eεx(r
1
kB), (10.79)

Since t 7→ ui(t, ·) is a smooth map for every i, and ui(0, ·) = 0 we have that there exist a
constant ci such that

t ∈ B(0, r)⇒ ui(t, ·) ∈ cirB, (10.80)

⇒ ui(t
1/wi , ·) ∈ cir1/wiB, (10.81)

for all r > 0 small enough.
For such values of r > 0 we have thanks to the inclusion (10.79) that for every x, y ∈ K such

that |x − y| ≤ cr then we have also dε(x, y) ≤ r1/k. Here we used the fact that dε is the infimum
of norm of u such that Eεx(u) = y. From this it follows the inequality for every x, y ∈ K

dε(x, y) ≤ c− 1
k |x− y| 1k . (10.82)

We are now ready to prove the main result of this section.

Theorem 10.65. dε → d̂ uniformly on compacts sets in Rn × Rn.
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Proof. By Proposition 10.64 it is sufficient to prove the pointwise convergence

lim
ε→0+

dε(x, y) = d̂(x, y). (10.83)

for every fixed x, y ∈ Rn. But (10.83) is a consequence of Theorem 3.56 and the fact that the vector
fields f εi converge to f̂i thanks to Lemma 10.58.

Combining Proposition 10.64 and Theorem 10.65 we obtain the following corollary.

Corollary 10.66. For every compact K ⊂ Rn there exists C > 0, depending on K, such that

d̂(x, y) ≤ C|x− y|1/k, ∀x, y ∈ K, (10.84)

where k is the degree of nonholonomy of the sub-Riemannian structure.

The uniform convergence given in Theorem 10.65 permits us to prove an important quantitative
estimate on the shape of sub-Riemannian balls. Let us introduce the box Box(ε) of size ε > 0
defined, in privileged coordinates x = (x1, . . . , xk) ∈ Rn1 ⊕ . . .⊕ Rnk = Rn, as follows

Box(ε) := {x ∈ Rn : |xi| ≤ εi, i = 1, . . . , k}. (10.85)

Theorem 10.67 (Ball-Box Theorem). There exists constants ε0 > 0, and c1, c2 > 0 such that

c1Box(ε) ⊂ B(x, ε) ⊂ c2Box(ε), ∀ ε ≤ ε0

where B(x, ε) is the sub-Riemannian ball in privileged coordinates.

Notice that this statement is weaker with respect to Theorem 10.65.

Proof. We work in privileged coordinates (x1, . . . , xk) ∈ Rn1 ⊕ . . .⊕Rnk = Rn where the base point
is identified with the origin. Consider the unit ball B̂(0, 1) for the nilpotent approximation and fix
two constants c1, c2 > 0 such that there exists a cube [−c1, c1]n ⊂ B̂(0, 1) ⊂ [−c2, c2]n. Thanks to
Theorem 10.65 there exists ε0 > 0 such that for all ε ≤ ε0 we have

[−c1, c1]n ⊂ Bε(0, 1) ⊂ [−c2, c2]n,

where Bε(0, 1) is the unit ball defined by the metric dε. Applying the dilation δε to all sets we get
that

δε[−c1, c1]n ⊂ δεBε(0, 1) ⊂ δε[−c2, c2]n

but for c > 0 we have that δε[−c, c]n = cBox(ε). Moreover by definition of dε we have that
δε(B

ε(0, 1)) = B(0, ε) (cf. also Corollary 10.61).

10.6 Algebraic meaning

In this last section we discuss the algebraic structure induced on the nonholonomic tangent space
and in particular how one can recover it in purely algebraic terms from the data of the vector fields.

Recall that given a generating family {f1, . . . , fm} for the sub-Riemannian structure and a point

q ∈M , there are well defined vector field {f̂1, . . . , f̂m} on the nilpotent tangent space T fq M .
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The Lie algebra of vector fields L := Lie{f̂1, . . . , f̂m} is finite-dimensional and nilpotent thanks
to Proposition 10.59. Denote by G the Lie group of associated flows (cf. Section 7.1)

G = {et1 f̂i1 ⊙ . . . ⊙ etj f̂ij : ti ∈ R, j ∈ N}. (10.86)

endowed with the product ⊙ . Notice that by construction G is connected and simply connected,
whose Lie algebra L nilpotent and stratified.

Proposition 10.68. G is a Carnot group and Lie(G) = L.

The group G naturally acts on T fq M = JkqM/ ∼. Denote by [j] ∈ JkqM/ ∼ the equivalence class

of a jet j = Jkq γ ∈ JkqM . The action of an generator of G on T fq M is defined follows

etf̂i · [j] := [γ ⊙ etf̂i ], j = Jkq γ ∈ JkqM. (10.87)

Notice that this is a right action. Let us denote by G0 the isotropy sub-group of the trivial element
of T fq M under the action of G.

Collecting the results proved in Section 10.4, and in particular Theorem 10.33, we have the
following result

Theorem 10.69. The nilpotent approximation T fq M has the structure of a smooth manifold of

dimension dimT fq M = dimM , diffeomorphic to the homogeneous space G/G0 of the Carnot group
G defined in (10.86).

Remark 10.70. The diffeomorphism given by Theorem 10.69 was built explicitly thanks to privileged
coordinates in in Section 10.4.

Notice that this could also be seen as a consequence of the theory of Lie groups. Indeed it is
not difficult to see that in the proof of Theorem 10.33 we proved that the action of the Lie group
G on T fq M is transitive, hence T fq M is diffeomorphic to the quotient of G with the isotropy group
of the identity, that is G0. See for instance [Lee13].

Next we give a purely algebraic interpretation of this construction at the level of Lie algebras.
Let us first recall some definitions.

Definition 10.71. The free associative algebra Am (or A(x1, . . . , xm)) generated by x1, . . . , xm is
the associative algebra of linear combinations of words of its generators, where the product of two
element is defined by juxtaposition.

The free Lie algebra Liem or Lie{x1, . . . , xm} is the algebra of elements of Am, where the product
of two elements xi, xj is defined by the commutator [xi, xj ] = xixj − xjxi.

The free nilpotent Lie algebra of step k on m generators, denoted Liekm or Liek{x1, . . . , xm}, is
the quotient Liekm = Liem/Ik+1 of the free Lie algebra Liem by the ideal Ik+1 defined through the
iterative formula

I1 = Liem, Ij = [Ij−1,Liem], j > 1.

Let Liek{x1, . . . , xm} be the free Lie algebra nilpotent of step k generated by the elements
x1, . . . , xm. Notice that with every element π ∈ Liek{x1, . . . , xm} we can associate a vector field
π(X1, . . . ,Xm) (defined on Rn) by replacing generators with vector fields X1, . . . ,Xm .

315



Definition 10.72. Given a sub-Riemannian structure defined by the generating family {f1, . . . , fm}
that is bracket generating of step k at a point q, we define the core algebra

Cq := {π ∈ Liek{X1, . . . ,Xm} |π(f1, . . . , fm)(q) ∈ Ddeg π−1
q }. (10.88)

Exercise 10.73. (i). Prove that Cq is a subalgebra. (ii). Consider the subset

Nq := {π ∈ Liek{X1, . . . ,Xm} |π(f1, . . . , fm)(x) ∈ Ddeg π−1
x ,∀x ∈ Oq}.

Prove that Nq is an ideal contained in Cq.

Denote by Gkm the connected and simply connected Lie group generated by the free nilpotent
Lie algebra Liekm and exp : Liekm → Gkm its exponential map. Let Cq = exp(Cq).

Theorem 10.74. There exists a canonical isomorphism

φ : Gkm/Cq → T fq M.

Its differential φ∗ sends the generators X1, . . . ,Xm to f̂1, . . . , f̂m.

Remark 10.75. The core algebra can be rewritten in privileged coordinates in terms of the nilpotent
approximation {f̂1, . . . , f̂m} of the generators as follows:

Cq := {π ∈ Liek{X1, . . . ,Xk} |π(f̂1, . . . , f̂m)(0) = 0}

Exercise 10.76 (Grushin plane). Let us analyze this algebraic construction in the case of the
simplest non-holonomic tangent space arising as the tangent space to a non-regular structure in
R2: the Grushin plane described in the Example 10.57.

We have shown that the nonholonomic tangent space has the following normal form

f̂1 = ∂x1 , f̂2 = x1∂x2 . (10.89)

In these coordinates indeed the two vector fields have weight one and are homogeneous with respect
to the weights ν(x1) = 1 and ν(x2) = 2. In this case m = k = 2.

Since [f̂1, f̂2] =: f̂3 = ∂x2 it is easy to see that

Lie{f̂1, f̂2} = span{f̂1, f̂2, f̂3} (10.90)

On the other hand the core algebra at the origin C0 contains f̂2 since it has weight one, but it
vanishes at zero (it does not belong to D1

0). Hence C0 = span{f̂2}.

10.6.1 Nonholonomic tangent space: the equiregular case

The last two statements concerns the case of an equiregular distribution. In this case one can show
that the subgroup G0 of G is trivial.

Proposition 10.77. Assume that the sub-Riemannian structure is equiregular, i.e., for every i ≥ 1
the integer di(q) = dimDiq does not depend on q. Then Cq is an ideal. In particular G0 = {0} and
T fq M is a Carnot group.
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Proof. To prove that the core subalgebra Cq is an ideal, it is sufficient to prove that X ∈ Cq implies
[fi,X] ∈ Cq for every i = 1, . . . ,m.

Thanks to the characterization (10.88), this is equivalent to prove the following claim: for
every X = π(f1, . . . , fm) bracket polynomial of degree deg π ≤ h such that X(q) ∈ Dh−1

q , we have

[fi,X](q) ∈ Dhq for every i = 1, . . . ,m.
Since the structure has constant growth vector, we can consider a frame V1, . . . , Vn that is

privileged at every point in neighborhood Oq of q. In particular for every x ∈ Oq we have

Dix = span{V1(x), . . . , Vdi(x)}. (10.91)

Let X = π(f1, . . . , fm) be a bracket polynomial of degree deg π ≤ h. Then there exist smooth
functions aj such that

X(x) =
∑

j:wj≤h
aj(x)Vj(x), ∀x ∈ Oq. (10.92)

Thanks to (10.91), X(q) ∈ Dh−1
q is equivalent to require that aj(q) = 0 for every j such that wj = h.

Let us compute

[fi,X] =


fi,

∑

wj≤h
ajVj


 =

∑

wj≤h
aj[fi, Vj ] + fi(aj)Vj . (10.93)

Evaluating (10.93) at the point q and using that aj(q) = 0 for every j such that wj = h, it follows
that [fi,X](q) ∈ Dhq for every i = 1, . . . ,m, that is our claim.

The next result explains how to find a generating family of the nilpotent sub-Riemannian
structure on the Carnot group, once given a generating family of the original structure.

Corollary 10.78. Assume that the sub-Riemannian structure is equiregular and {f1, . . . , fm} is a

generating family. Then f̂1, . . . , f̂m are a generating family of left-invariant vector fields on T fq M .

Proof. This is a consequence of the following two general facts: (i). Given a right action of a Lie
group on a homogeneous space G/H, then a left-invariant vector field on X induces a well-defined
vector field π∗X on G/H through the projection π : G → G/H. (ii). If the Lie subgroup H is
normal and G/H is a Lie group, then π∗X is also left-invariant.

Exercise 10.79. Prove the two statements contained in the proof of Corollary 10.78.

10.7 Carnot groups: normal forms in low dimension

In this section we provide normal forms for Carnot groups in dimension smaller or equal than 5.
Recall that Carnot groups arise as nonholonomic tangent spaces to equiregular sub-Riemannian
structures.

For an equiregular sub-Riemannian structure the integer di = dimDiq are independent on q.
Denote by k the step of the sub-Riemannian structure, in particular dk = dimM . The sequence of
integers (d1, . . . , dk) is called growth vector of the sub-Riemannian structure.

Exercise 10.80. Assume that the structure is equiregular of step k. Prove that the sequence
(d1, . . . , dk) is strictly increasing. (Hint : prove that if di = di+1 for some i < k, then di = dk =
dimM , contradicting the minimality of k.)
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From Exercice 10.80 it easily follows that the possibilities for the growth vector in dimension
smaller or equal than 5 are listed as follows:

• (2, 3), if dim(M) = 3,

• (2, 3, 4) and (3, 4), if dim(M) = 4,

• (2, 3, 4, 5), (2, 3, 5), (3, 4, 5), (3, 5) and (4, 5), if dim(M) = 5.

The following theorem gives normal forms for Carnot groups of given growth vector in the previous
list. In every case but the last one, the normal form is unique.

Theorem 10.81. Let (M,U, f) be an equiregular sub-Riemannian manifold, with dimM ≤ 5.
Its nonholonomic tangent space at a point is isomorphic to one of the following sub-Riemannian
structures:

- (Heisenberg). If the growth vector is (2, 3), then the orthonormal frame can be chosen as

f1 = ∂x1 ,

f2 = ∂x2 + x1∂x3 .

- (Engel). If the growth vector is (2, 3, 4), then the orthonormal frame can be chosen as

f1 = ∂x1 ,

f2 = ∂x2 + x1∂x3 + x1x2∂x4 .

- (Quasi-Heisenberg). If the growth vector is (3, 4), then the orthonormal frame can be chosen
as

f1 = ∂x1 ,

f2 = ∂x2 + x1∂x4 ,

f3 = ∂x3 .

- (Cartan rank 2). If the growth vector is (2, 3, 5), then the orthonormal frame can be chosen
as

f1 = ∂x1 ,

f2 = ∂x2 + x1∂x3 +
1

2
x21∂x4 + x1x2∂x5 .

- (Goursat rank 2). If the growth vector is (2, 3, 4, 5), then the orthonormal frame can be chosen
as

f1 = ∂x1 ,

f2 = ∂x2 + x1∂x3 +
1

2
x21∂x4 +

1

6
x31∂x5 .
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- (Cartan rank 3). If the growth vector is (3, 5), then the orthonormal frame can be chosen as

f1 = ∂x1 −
1

2
x2∂x4 ,

f2 = ∂x2 +
1

2
x1∂x4 −

1

2
x3∂x5 ,

f3 = ∂x3 +
1

2
x2∂x5 .

- (Goursat rank 3). If the growth vector is (3, 4, 5), then the orthonormal frame can be chosen
as

f1 = ∂x1 −
1

2
x2∂x4 −

1

3
x1x2∂x5 ,

f2 = ∂x2 +
1

2
x1∂x4 +

1

3
x21∂x5 ,

f3 = ∂x3 .

- (Bi-Heisenberg). If the growth vector is (4, 5), then there exists α ∈ R such that the orthonor-
mal frame can be chosen as

f1 = ∂x1 −
1

2
x2∂x5 ,

f2 = ∂x2 +
1

2
x1∂x5 ,

f3 = ∂x3 −
α

2
x4∂x5 ,

f4 = ∂x4 +
α

2
x3∂x5 .

Proof. Recall that given a basis X1, . . . ,Xm of a Lie algebra g, the coefficients cℓij satisfying

[Xi,Xj ] =
∑

ℓ c
ℓ
ijXℓ are called structural constant of g. To prove the theorem we will show that,

for every choice of the growth vector, we can choose an orthonormal basis of the Lie algebra such
that the structural constants are uniquely determined by the sub-Riemannian structure.

We give a sketch of the proof for the (3, 4, 5), (2, 3, 4, 5) and (4, 5) cases. The other cases can
be treated in a similar way. Since we deal with sub-Riemannian structures (M,U, f) that are left-
invariant on a nilpotent Lie group, we can identify the distribution D with its value at the identity
of the group D0.

(a). Growth vector equal to (3, 4, 5). Let (M,U, f) be a nilpotent (3, 4, 5) sub-Riemannian
structure. Let {X1,X2,X3} be a basis for D0, as a vector subspace of the Lie algebra. By our
assumption on the growth vector we know that

dim span{[X1,X2], [X1,X3], [X2,X3]}/D0 = 1. (10.94)

In other words, we can define the skew-symmetric bilinear map

Φ(·, ·) : D0 ×D0 → T0G/D0, Φ(v,w) = [V,W ](0) mod D0 (10.95)

where V,W are smooth vector fields such that V (0) = v and W (0) = w. The condition (10.94)
implies that there exists a one dimensional subspace in the kernel of this map, namely a non-zero
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vector v such that Φ(v, ·) = 0. Let f3 be a vector in ker Φ ∩ D0 with norm one, and consider its
orthogonal subspace f⊥3 ⊂ D0 with respect to the inner product on the distribution D0. For every
positively oriented orthonormal basis {X1,X2} on f⊥3 it is easy to see that f4 := [X1,X2] is well
defined, i.e., it does not depend on rotation of X1,X2 within f⊥3 . Then, reasoning as in the proof
of Example 10.56, we can choose a rotation of the original orthonormal frame, denoted {f1, f2},
such that [f2, f4] = 0. Defining f5 := [f1, f4], this gives a choice of a canonical basis {f1, . . . , f5}
for the Lie algebra where the only non trivial commutator relations are the following

[f1, f2] = f4, [f1, f4] = f5.

(b). Growth vector equal to (2, 3, 4, 5). Let (M,U, f) be a nilpotent (2, 3, 4, 5) sub-Riemannian
structure. Consider any orthonormal basis {X1,X2} for the two dimensional subspace D0. By our
assumption on the growth vector we have that

dim span{X1,X2, [X1,X2]} = 3

dim span{X1,X2, [X1,X2], [X1, [X1,X2]], [X2, [X1,X2]]} = 4. (10.96)

As in part (a) of the proof, it is easy to see that there exists a suitable rotation of {X1,X2} on D0,
which we denote {f1, f2}, such that [f2, [f1, f2]] = 0. Using the Jacobi identity we get

[f2, [f1, [f1, f2]]] = −[f1, [f2, [f1, f2]]− [[f1, f2], [f1, f2]] = 0.

Then we set f3 := [f1, f2], f4 := [f1, [f1, f2]] and f5 := [f1, [f1, [f1, f2]]]. Relations (10.96) imply
that these vectors are linearly independent. Hence we have a canonical basis for the Lie algebra,
where the only nontrivial commutator relations are the folllowing:

[f1, f2] = f3, [f1, f3] = f4, [f1, f4] = f5.

(c). Growth vector equal to (4, 5). In this case let us consider again the map

Φ(·, ·) : D0 ×D0 → T0G/D0, Φ(v,w) = [V,W ](0) mod D0 (10.97)

where V,W are smooth vector fields such that V (0) = v and W (0) = w. Since dimT0G/D0 = 1,
the map (10.97) is represented by a single 4×4 skew-simmetric matrix L. By skew-symmetricity its
eigenvalues are purely imaginary±iα1,±iα2, one of which is different from zero since the structure is
bracket generating. Up to relabelling indices, we can assume that α1 6= 0. Then choose f1, f2, f3, f4
be a basis that puts the matrix L in the normal form for skew-symmetric matrices

L =




0 α1

−α1 0
0 α2

−α2 0




Defining f5 := [f1, f2] and setting α := α2/α1 we have that [f3, f4] = αf5.

Remark 10.82. In the proof of Theorem 10.81 we showed that the structure of Lie brackets is
uniquely determined by the choice of a suitable orthonormal frame (in the last example it is unique
modulo a real parameter α).
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Of course the coordinate representation of the vector fields satisfying these structural equations
is not unique (compare for instance the vector fields in the case of the Heisenberg group given here
with respect to those used in the previous chapters). Nevertheless, all of them can be obtained
from the one described here with a change of variable. We refer the reader to the Nagano principle
[Nag66] for more details.

Exercise 10.83. Prove that in the three examples described in Section 10.4.4 there is a unique
normal form for the generating family, even if the distribution is endowed with an inner product.

10.8 Bibliographical note

The nonholonomic tangent space appeared in the literature in different contexts, and with different
names.

The first appearence is in the 70s, in relation to the study of hypoelliptic Hörmander opera-
tors. In this context, the main ideas behind the notion of nilpotent approximation and privileged
coordinates were used, in the regular case, to approximate the differential operators by homoge-
neous invariant operators on nilpotent groups [FS74, Fol75]. A more general case has been treated
by Rothschild and Stein [RS76]; their techniques involves “lifting” the differential operators to a
(regular) higher-dimensional manifold and then approximating the lifted operators by operators
on a group. These techniques have been also developed and refined by Goodman and Métivier in
[Goo76, M7́6].

Some years later in [NSW85] the authors proved a first version of the Ball-Box theorem for
metrics defined by vector fields.

A more geometric language have been developed later. A general notion of “metric tangent
cone” has been introduced in the work of Gromov [Gro81] and then Mitchell in [Mit85] considered
the sub-Riemannian case, stating that this tangent cone is, for equiregular structures, what in
this Chapter is called a Carnot group. The arguments of Mitchell deeply relies on the previous
works [Goo76, M7́6]. A definition of “tangent cone” for sub-Riemannian manifolds is also given
in [MM95], and then refined in [MM00], to let the tangent cone at a point to be unique, up to
isomorphism. A survey on this can be found on the celebrated paper of Belläıche [Bel96].

Starting from the pioneering work of Pansu [Pan89], Lie groups equipped with a certain explicit
left-invariant sub-Finsler metrics also appear in geometric group theory, as asymptotic cones of
nilpotent finitely generated groups.

“Nilpotent approximation” played also a prominent role in Control Theory. In this context,
a proof of existence of privileged coordinates is given in [AGS89, AS87, Bel96, BS90]. The book
of F. Jean [Jea14] provides a modern approach to nonholonomic tangent space in the language of
Control Theory and shows some of its interesting applications to motion planning.

The construction of nonholonomic tangent space presented here is inspired by the ideas devel-
oped in the paper [AM03]. It is more intrinsic than previous approaches: the nilpotent approxima-
tion of the distribution at a point depends only on the point and the distribution itself, it does not
depend on the metric or local coordinates. We also recover the intrinsic meaning of the dilation:
it is induced by the parameter rescaling of smooth curves.
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Chapter 11

Regularity of the sub-Riemannian
distance

In this chapter we investigate on the regularity properties of the sub-Riemannian distance from a
fixed point. In particular, besides the Hölder continuity already discussed in Chapter 10, we prove
that the sub-Riemannian distance is smooth on an open and dense subset of every compact ball.

On the other hand if one considers the squared sub-Riemannian distance from a fixed point, this
function is never smooth in a neighborhood of the base point unless the structure is Riemannian.
Moreover, as soon as the distribution is not full-dimensional at the point, every level set of the
distance contains a non-differentiability point of the distance itself. This is an obstruction for
sub-Riemannian spheres to be smooth hypersurfaces.

In absence of abnormal minimizers, one can show that the sub-Riemannian distance is locally
Lipschitz outside the diagonal and, using a non-smooth version of the Sard Lemma, we show that
almost every sphere is a Lipschitz submanifold.

11.1 Regularity of the sub-Riemannian squared distance

Let us consider a free sub-Riemannian structure (M,U, f) with generating family f1, . . . , fm and
fix a point q ∈ M . Recall that the flag of the sub-Riemannian structure at the point q is the
sequence of increasing subspaces {Diq}i∈N defined by

Diq := span{[fj1 , . . . , [fjl−1
, fjl]](q), ∀ l ≤ i}, (11.1)

The step of the sub-Riemannian structure at q is the minimal integer k(q) such that Dk(q)q = TqM .

In Chapter 10 we already proved that the sub-Riemannian distance is Hölder continuous, with
Hölder exponent that is related to the step of the sub-Riemannian structure at the point. For the
reader’s convenience, we recall here the statement.

Proposition 11.1. Let M be a sub-Riemannian structure, fix q ∈ M and denote by k = k(q) is
the step of the sub-Riemannian structure at q. There exists a neighborhood Oq such that for every
coordinate map φ : Oq → Rn there exists C > 0 such that for q0, q1 ∈ Oq one has

d(q0, q1) ≤ C|φ(q0)− φ(q1)|1/k.
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We investigate next the differentiability properties of the distance function. More precisely we
want to charachterize the set where the function d is C∞.

Throughout this section, we fix a base point q0 ∈ M and we denote by f the squared sub-
Riemannian distance from q0

f :M → R, f(q) =
1

2
d2(q0, q). (11.2)

The main result of this chapter is the following.

Theorem 11.2. Assume that the closed ball B := Bq0(r0) is compact. Then the function f
∣∣
B

:
B → R is smooth on a open dense subset of B.

For a complete sub-Riemannian structure all closed balls are compact (cf. Proposition 3.47).
Hence we immediately obtain the following corollary.

Corollary 11.3. Assume that M is a complete sub-Riemannian manifold. Then f is smooth on
an open and dense subset of M .

Thanks to the existence theorem (Corollary 8.64), for each q ∈ B there exists a length-minimizer
joining q0 and q. We start by looking for necessary conditions for f to be C∞ in a neighborhood of
the point q.

Proposition 11.4. Let q ∈ B and assume that f is C∞ in a neighborhood of q. Then

(i) there exists a unique length minimizer γ : [0, 1] → M joining q0 with q. Moreover γ is not
abnormal and q is not conjugate to q0 along γ.

(ii) dqf = λ(1), where λ : [0, 1]→ T ∗M is the unique normal lift of γ.

Proof. Denote by Eq0 the end-point map based at q0 and by J the energy functional. Let us
introduce the functional

Ψ : L∞([0, T ],Rm)→ R, Ψ(v) = J(v)− f(Eq0(v)), (11.3)

By the smoothness assumption on f, the map Ψ is smooth in a neighborhood of every control
associated with a length-minimizer joining q0 and q. Moreover Ψ is non negative by construction.

Let γ : [0, 1] → M be any optimal trajectory associated with an optimal control u, joining q0
and q. Then we have

0 = duΨ = duJ − dqf ◦DuEq0 . (11.4)

Thus, γ is a normal extremal trajectory, with Lagrange multiplier λ1 = dqf. By Theorem 4.25,

we can recover γ by the formula γ(t) = π ◦ e(t−1) ~H (λ1). Then, γ is the unique minimizer of J
connecting its endpoints, and is normal. Morever λ1 is also the final point of its normal lift, by
construction.

Next we show that γ is not abnormal and not conjugate. For y in a neighborhood Oq of q, let
us consider the map

Φ : Oq 7→ T ∗
q0M, Φ(y) = e−

~H(dyf). (11.5)

Thanks to the smoothness assumption on f, the map Φ is C∞. Moreover Φ is a right inverse for
the exponential map, since for every y ∈ Oq one has

expq0(Φ(y)) = π ◦ e ~H(e− ~H(dyf)) = π(dyf) = y. (11.6)
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This implies that q is a regular value for the exponential map and, a fortiori, u is a regular point
for the end-point map. This proves that u corresponds to a trajectory that is at the same time
strictly normal and not conjugate.

Remark 11.5. The conclusion of Proposition 11.4 holds, with the same proof, even if the function
f is only of class C2 in a neighborhood of q. Indeed in this case the map Φ introduced in the proof
is of class C1 and this is sufficient to conclude.

When f is only differentiable at q, one can still repeat the first part of the argument, proving
that there exists a unique minimizer γ : [0, 1] → M joining q0 to q, that admits at least a normal
lift.

Before going further in the study of the smoothness properties of the distance function, we are
already able to prove an important corollary of this result.

For every r > 0, denote by Sr := f
−1( r

2

2 ) the sub-Riemannian sphere of radius r centered at q0.

Corollary 11.6. Assume that the closed ball B := Bq0(r0) is compact and that Dq0 6= Tq0M . For
every r ≤ r0, the sphere Sr contains a point where the function f is not smooth.

Proof. Since r ≤ r0, the sphere Sr is non empty and contained in the compact ball B. Assume, by
contradiction, that f is smooth at every point of Sr. Then Sr is a level set defined by f and dqf 6= 0 for
every q ∈ Sr (indeed dqf is the covector attached at the final point of a normal Pontryagin extremal,
hence it is non vanishing, cf. Proposition 11.4). This implies that Sr is a smooth submanifold of
dimension n − 1, without boundary. Moreover, being the level set of a continuous function, Sr is
closed, hence compact. Let us consider the map

Φ : Sr → T ∗
q0M, Φ(q) = e−

~H(dqf), (11.7)

By assumption f is smooth, hence Φ is a smooth right inverse of the exponential map (see also
(11.6)). In particular the differential of Φ is injective at every point. Moreover by construction
H(Φ(q)) = r2/2, for every q ∈ Sr (cf. Theorem 4.25). It follows that Φ defines a smooth immersion

Φ : Sr → H−1(r2/2) ∩ T ∗
q0M, (11.8)

of the sub-Riemannian sphere Sr into the set

Cr := H−1(r2/2) ∩ T ∗
q0M =

{
λ ∈ T ∗

q0M |
1

2

m∑

i=1

〈λ, fi(q0)〉2 =
r2

2

}
. (11.9)

where f1, . . . , fm is a generating family. Since we work at a fixed point, it is not restrictive to
assume that m = dimDq0 is the rank of the structure at the point q0. Notice that Cr is a smooth
connected n−1 dimensional submanifold of the fiber T ∗

q0M , indeed diffeomorphic to Sm−1×Rn−m.
Since by assumption m < n, the manifold Cr is not compact.

By continuity of Φ, the image Φ(Sr) is closed in Cr. Moreover, since every immersion is a local
submersion and dimSr = dimCr, the set Φ(Sr) is also open in Cr. Hence it is connected. Since
Φ(Sr) has no boundary, it is a connected component of Cr, which proves Φ(Sr) = Cr. This gives a
contradiction since, by continuity, Φ(Sr) is compact, while Cr is not.

Next we move to the proof of the main result, namely Theorem 11.2. Following Proposition
11.4, we introduce the following set.
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Definition 11.7. Let q0 ∈ M . The set of smooth point from q0 is the subset Σ ⊂ M of points
q ∈M such that there exists a unique lenght-minimizer γ joining q0 to q, which is strictly normal,
and such that q is not conjugate to q0 along γ.

If f is C∞ in a neighborhood of a point q, then q ∈ Σ by Proposition 11.4 (cf. also Remark
11.5). Indeed, the converse also holds.

Theorem 11.8. The set Σ is open and dense in B. Moreover, f is C∞ on Σ.

Proof. We split the proof into three parts: (a) the set Σ is open, (b) the function f is C∞ on Σ, (c)
the set Σ is dense in B.

(a). To prove that Σ is open we have to show that for every q ∈ Σ there exists a neighborhood
Oq of q such that Oq ⊂ Σ.

Let us start by proving the following claim: there exists a neighborhood of q in B such that
every point in this neighborhood is reached by exactly one length-minimizer.

By contradiction, if this is not true, there exists a sequence qn of points in B converging to q
admitting (at least) two length-minimizers γn and γ′n joining q0 and qn. Let us denote by un and
vn the corresponding minimizing controls.

By Proposition 8.66, the set of controls associated with length-minimizers whose endpoint is in
the compact ball B is compact in the L2 strong topology. Then, up to extraction of a subsequence,
there exists two controls u, v such that un → u and vn → v. Moreover, u and v are both associated
with length-minimizers joining q0 with q. Since, by assumption, there is a unique length-minimizer
γ joining q0 with q, this implies u = v.

By smoothness of the end point map both DunEq0 and DvnEq0 converge to DuEq0 . Moreover
DuEq0 has full rank (recall that u is strictly normal, hence is not a critical point for Eq0). This
implies that, for n big enough, both DunEq0 and DvnEq0 are surjective and the corresponding
controls un and vn are strictly normal. Thus we can build the sequences λn1 and ξn1 of corresponding
final covectors in T ∗

qnM satisfying the identities

λn1DunEq0 = un, ξn1DvnEq0 = vn. (11.10)

These relations can be rewritten in terms of the adjoint linear maps as follows

(DunEq0)
∗λn1 = un, (DvnEq0)

∗ξn1 = vn.

Since both (DunEq0)
∗ and (DvnEq0)

∗ are a family of injective linear maps converging to (DuEq0)
∗,

with un and vn converging to u, it follows that the corresponding (unique) solutions of the linear
systems λn1 and ξn1 also converge to the solution of the limit problem (DuEq0)

∗λ1 = u, i.e, both
sequences λn1 and ξn1 converge to the final covector λ1 corresponding to γ. Composing with the flow
defined by the corresponding controls we can deduce the convergence of the sequences λn0 and ξn0 of
the initial covectors associated to un and vn to the unique initial covector λ0 corresponding to γ.

Finally, since λ0 by assumption is a regular point of the exponential map, i.e., the unique
minimizer γ joining q0 to q is not conjugate, it follows that the exponential map is invertible in a
neighborhood Vλ0 of λ0 onto its image Oq := exp(Vλ0), that is a neighborhood of q. This proves
our initial claim.

In other words, we have proved that for every point q′ ∈ Oq there exists a unique minimizer
joining q0 to q′, whose initial covector λ′ ∈ Vλ is a regular point of the exponential map. This
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implies that every q′ ∈ Oq is a smooth point, and Σ is open.

(b). Now we prove that f is smooth in a neighborhood of each point q ∈ Σ. From the part (a)
of the proof it follows that if q ∈ Σ there exists a neighborhood Vλ0 of λ0 and Oq of q such that
exp|Vλ0 : Vλ0 → Oq is a smooth invertible map. Denote by Φ : Oq → Vλ0 its smooth inverse. Since
for every q′ ∈ Oq there is only one minimizer joining q0 to q′ with initial covector Φ(q′) it follows
that,

f(q′) =
1

2
d2(q0, q

′) = H(Φ(q′)),

that is a composition of smooth functions, hence smooth.

(c). Our next goal is to show that Σ is a dense set in B. We start by a preliminary definition.

Definition 11.9. A point q ∈ B is said to be

(i) a fair point if there exists a unique minimizer joining q0 to q, that is normal.

(ii) a good point if it is a fair point and the unique minimizer joining q0 to q is strictly normal.

We denote by Σf and Σg the set of fair and good points, respectively.

We stress that a fair point can be reached by a unique minimizer that is both normal and
abnormal. From the definition it is immediate that Σ ⊂ Σg ⊂ Σf . The proof of (c) relies on the
following four steps:

(c1) Σf is a dense set in B,

(c2) Σg is a dense set in B,

(c3) f is locally Lipschitz in a neighborhood of every point of Σg,

(c4) Σ is a dense set in B.

(c1). Fix an open set O ⊂ B and let us show that Σf ∩ O 6= ∅. Consider a smooth function
a : O → R such that a−1([s,+∞[) is compact for every s ∈ R. Then consider the function

ψ : O → R, ψ(q) = f(q)− a(q)

The function ψ is continuous on O and, since f is nonnegative, the set ψ−1(]−∞, s[) are compact
for every s ∈ R due to the assumption on a. It follows that ψ attains its minimum at some point
q1 ∈ O. Let u1 be a control associated with a length-minimizer γ joining q0 and q1 = Eq0(u1).

Since J(u) ≥ f(Eq0(u)) for every control u, it is easy to see that the map

Φ : L∞([0, 1],Rm)→ R, Φ(u) = J(u)− a(Eq0(u))

attains a local minimum at u1. In particular it holds

0 = Du1Φ = u1 − (dq1a)Du1Eq0 .

The last identity implies that u1 is normal and λ1 = dq1a is the final covector associated with the
trajectory. By Theorem 4.25, the corresponding trajectory γ is uniquely recovered by the formula
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γ(t) = π◦e(t−1) ~H (dq1a). In particular γ is the unique minimizer joining q0 to q1 ∈ O, and is normal,
namely q1 ∈ Σf ∩O.

(c2). As in the proof of (c1), we shall prove that Σg ∩O 6= ∅ for any open O ⊂ B. By (c1) the
set Σf ∩ O is nonempty. For any q ∈ Σf ∩ O we can define rank q := rankDuEq0 , where u is the
control associated to the unique minimizer γ joining q0 to q. To prove (c2) it is sufficient to prove
that there exists a point q′ ∈ Σf ∩ O such that rank q′ = n (i.e., Du′Eq0 is surjective, where u′ is
the control associated to the unique minimizer joining q0 and q′). Assume by contradiction that

kO := max
q∈Σf∩O

rank q < n,

and consider a point q̂ where the maximum is attained, i.e., such that rank q̂ = kO.
We claim that all points of Σf ∩O that are sufficiently close to q̂ have the same rank (we stress

that the existence of points in Σf ∩O arbitrary close to q̂ is also guaranteed by (c1)).
Assume that the claim is not true, i.e., there exists a sequence of points qn ∈ Σf ∩ O such

that qn → q̂ and rank qn ≤ kO − 1. Reasoning as in the proof of (a), using uniqueness and
compactness of the minimizers, one can prove that the sequence of controls un associated to the
unique minimizers joining q0 to qn satisfies un → û strongly in L2, where û is the control associated
to the unique minimizer joining q0 with q̂. By smoothness of the end-point map Eq0 it follows that
DunEq0 → DûEq0 which, by semicontinuity of the rank, implies the contradiction

rank q̂ = rankDûEq0 ≤ lim inf
n→∞

rankDunEq0 ≤ kO − 1.

Thus, without loss of generality, we can assume that rank q = kO < n for every q ∈ Σf ∩ O
(maybe by restricting our neighborhood O). We introduce the following set

Πq = e−
~H{ξ ∈ T ∗

qM | ξDuEq0 = λ1DuEq0} ⊂ T ∗
q0M.

The set Πq is the set of initial covector λ0 ∈ T ∗
q0M whose image via the exponential map is the

point q.

Lemma 11.10. Πq is an affine subset of T ∗
q0M such that dimΠq = n − kO. Moreover the map

q 7→ Πq is continuous.

Proof. It is easy to check that the set Π̂q = {ξ ∈ T ∗
qM | ξDuEq0 = λ1DuEq0} is an affine subspace

of T ∗
q0M . Indeed ξ ∈ Πq if and only if (DuEq0)

∗(ξ − λ1) = 0, that is

Π̂q = {ξ ∈ T ∗
qM | ξDuEq0 = λ1DuEq0} = λ1 + ker (DuEq0)

∗,

Moreover dimker (DuEq0)
∗ = n− dim imDuEq0 = n− kO. Since all elements ξ ∈ Π̂q are associated

with the same control u, we have that Πq = e− ~H(Π̂q) = P ∗
0,t(Π̂q), hence Πq is an affine subspace of

T ∗
q0M .
Let us now show that the map q 7→ Πq is continuous on Σf ∩O. Consider a sequence of points

qn in Σf ∩O such that qn → q ∈ Σf ∩O. Let un (resp. u) be the unique control associated with the
minimizing trajectory joining q0 and qn (resp. q). By the uniqueness-compactness argument already
used in the previous part of the proof we have that un → u strongly and moreover DunEq0 → DuEq0 .
Since rank DunEq0 is constant, it follows that ker (DunEq0)

∗ → ker (DuEq0)
∗, as subspaces.
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Consider now A ⊂ T ∗
q0M a kO-dimensional ball that contains λ0 = e− ~H(λ1) and is transversal to

Πq. By continuity A is transversal also to Πq′ , for q
′ ∈ Σf ∩O close to q. In particular Πq′ ∩A 6= ∅.

Since exp(Πq) = q, this implies that Σf ∩ O ⊂ exp(A). By (c1), Σf ∩ O is a dense set, hence
exp(A) is also dense in O. On the other hand, since exp is a smooth map and A is a compact ball
of positive codimension (kO < n), by Sard Lemma it follows that exp(A) is a closed dense set of O
that has measure zero, that is a contradiction.

Remark 11.11. If the structure is Riemannian, then Σf = Σg since there are no abnormal extremal.

(c3) The proof of this claim relies on the following result, which is of independent interest.

Theorem 11.12. Let K ⊂ B a compact such that any length-minimizer connecting q0 to q ∈ K is
strictly normal. Then f = 1

2d
2(q0, ·) is Lipschitz on K.

Proof of Theorem 11.12. Let us first notice that, since K is compact, it is sufficient to show that f
is locally Lipschitz on K.

Fix a point q ∈ K and some control u associated with a minimizer joining q0 and q (it may be
not unique). By our assumptions DuEq0 is surjective, since u is strictly normal. Thus, by inverse
function theorem, there exist neighborhoods V of u in U and Oq of q in K, together with a smooth
map Φ : Oq → V that is a local right inverse for the end-point map, namey Eq0(Φ(q

′)) = q′ for all
q′ ∈ Oq (cf. also Theorem 2.58).

Fix then local coordinates around q. Since Φ is smooth, there exists R > 0 and C0 > 0 such
that

Bq(C0r) ⊂ Eq0(Bu(r)), ∀ 0 ≤ r < R, (11.11)

where Bu(r) is the ball of radius r in L2 and Bq(r) is the ball of radius r in coordinates on M . Let
us also observe that, since J is smooth on, there exists C1 > 0 such that for every u, u′ ∈ Bu(R)
one has

J(u′)− J(u) ≤ C1‖u′ − u‖L2 (11.12)

Pick then any point q′ ∈ K such that |q′ − q| = C0r, with 0 ≤ r ≤ R. By (11.11), there exists
u′ ∈ Bu(R) with ‖u′ − u‖L2 ≤ r such that Eq0(u

′) = q′. Using that f(q′) ≤ J(u′) and f(q) = J(u),
since u is a minimizer, we have

f(q′)− f(q) ≤ J(u′)− J(u) ≤ C1‖u′ − u‖L2 ≤ C ′|q′ − q|,

where C ′ = C1/C0. Notice that the above inequality is true for all q′ such that |q′ − q| ≤ C0R.

Since K is compact, and the set of control u associated with minimizers that reach the compact
set K is also compact, the constants R > 0 and C0, C1 can be chosen uniformly with respect to
q ∈ K. Hence we can exchange the role of q′ and q in the above reasoning and get

|f(q′)− f(q)| ≤ C ′|q′ − q|,

for every pair of points q, q′ such that |q′ − q| ≤ C0R.

To end the proof of (c3) it is sufficient to show that if q ∈ Σg there exists a (compact) neigh-
borhood Oq of q such that every point in Oq is reached by only strictly normal minimizers (we
stress that no uniqueness is required here). By contradiction, assume that the claim is not true.
Then there exists a sequence of points qn converging to q and a choice of controls un, such that
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the corresponding minimizers are abnormal. By compacness of minimizers there exists u such that
un → u and by uniqueness of the limit u is abnormal for the point q, that is a contradiction.

(c4). We have to prove that Σ ∩O is non empty for every open neighborhood O in B. By (c3)
we can choose q′ ∈ Σg ∩ O and fix O′ ⊂ O neighborhood of q such that f is Lipschitz on O′. It is
then sufficient to show that Σ ∩O′ 6= ∅.

By Proposition 11.4 (see also Remark 11.5) every differentiability point of f is reached by a
unique minimizer that is normal, hence is a fair point. Since we know that f is Lipschitz on O′,
it follows by Rademacher Theorem that almost every point of O′ is fair, namely meas(Σf ∩O′) =
meas(O′).

Let us also notice that the set Σf ∩O′ of fair points of O′ is also contained in the image of the
exponential map. Thanks to the Sard Lemma, the set of regular values of the exponential map in
O′ is also a set of full measure in O′. Since by definition a point in Σf that is a regular value for
the exponential map is in Σ, this implies that meas(Σ ∩O′) = meas(Σf ∩O′) = meas(O′). This in
particular proves that Σ ∩O′ is not empty.

As a corollary of this result we can prove that if there are no abnormal minimizers, then the
set of smooth points has full measure

Corollary 11.13. Assume that M is a complete sub-Riemannian structure and that there are no
abnormal minimizers. Then meas(M \ Σ) = 0.

The conclusion of Corollary 11.13 remains true in absence of stricly abnormal minimizers,
since in this case the squared sub-Riemannian distance is locally Lipschitz outside the diagonal,
cf. Theorem 12.12.

We end this section by stating explicitly a result on the regularity of the squared distance on
the diagonal, which is a direct consequence of the previous analysis.

Proposition 11.14. Let M be a sub-Riemannian structure. Then there exists a neighborhood Oq0
of q0 such that f is smooth on Oq0 if and only if dimDq0 = dimM .

11.2 Locally Lipschitz functions and maps

If S is a subset of a vector space V , we denote by conv(S) the convex hull of S, that is the smallest
convex set of V containing S. It is characterized as the set of v ∈ V such that there exists a finite
number of elements v0, . . . , vℓ ∈ S and real numbers λ0, . . . , λℓ such that

v =
ℓ∑

i=0

λivi, λi ≥ 0,
ℓ∑

i=0

λi = 1.

Let ϕ : M → R be a function defined on a smooth manifold M . We say that ϕ is locally
Lipschitz if ϕ is locally Lipschitz in any coordinate chart, as a function defined on Rn.

The classical Rademacher theorem implies that a locally Lipschitz function ϕ : M → R is
differentiable almost everywhere. Still one can introduce a weak notion of differential, that is
defined at every point.

If ϕ : M → R is locally Lipschitz, any point q ∈ M is the limit of differentiability points. In
what follows, whenever we write dqϕ, it is implicitly understood that q ∈ M is a differentiability
point of ϕ.
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Definition 11.15. Let ϕ : M → R be a locally Lipschitz function. The (Clarke) generalized
differential of ϕ at the point q ∈M is the set

∂qϕ := conv{ξ ∈ T ∗
qM | ξ = lim

qn→q
dqnϕ} (11.13)

The set ∂qϕ is a compact subset of the vector space T ∗
qM . In fact, it is closed by definition, and

bounded since the function is locally Lipschitz.

Exercise 11.16. (i). Show that the map q 7→ ∂qϕ is upper semicontinuous. In other words prove
that for every sequence qn → q in M , and every sequence ξn ∈ ∂qnϕ such that ξn → ξ in T ∗M , one
has ξ ∈ ∂qϕ.

(ii). We say that q is a regular point for ϕ if 0 /∈ ∂qϕ. Prove that the set of regular points for
ϕ is open in M .

From the very definition of generalized differential we have the following result.

Lemma 11.17. Let ϕ :M → R be a locally Lipschitz function and q ∈M . The following statements
are equivalent:

(i) ∂qϕ = {ξ} is a singleton,

(ii) dqϕ = ξ and the map x 7→ dxϕ is continuous at q in the following sense: for every sequence
of differentiability points qn → q we have dqnϕ→ dqϕ.

Remark 11.18. Let A be a subset of Rn of measure zero and, given q ∈ Rn, consider the set
Lv = {q + tv, t ≥ 0} of half-lines emanating from q and parametrized by v ∈ Sn−1. It follows from
Fubini’s theorem that for almost every v ∈ Sn−1 the one-dimensional measure of the intersection
A ∩ Lv is zero.

If we apply this fact to the case when A is the set at which a locally Lipschitz function ϕ : Rn →
R fails to be differentiable, we deduce that, given q ∈ Rn, for almost every v ∈ Sn−1 the function
t 7→ ϕ(q + tv) is differentiable a.e. on [0,+∞[.

Example 11.19. Let ϕ : R→ R defined by

(i) ϕ(x) = |x|. Then ∂0ϕ = [−1, 1],

(ii) ϕ(x) = x, if x < 0 and ϕ(x) = 2x, if x ≥ 0. In this case ∂0ϕ = [1, 2].

In particular in the first example 0 is a minimum for ϕ and 0 ∈ ∂0ϕ. In the second case the function
is locally invertible near the origin and ∂0ϕ is separated from zero. In what follows we will prove
that these fact corresponds to general results (cf. Proposition 11.23 and Theorem 11.27).

The following is a classical hyperplane separation theorem for closed convex sets in Rn.

Lemma 11.20. Let K and C be two disjoint, closed, convex sets in Rn, and suppose that K is
compact. Then there exists ε > 0 and a vector v ∈ Sn−1 such that

〈x, v〉 > 〈y, v〉+ ε, ∀x ∈ K, ∀ y ∈ C. (11.14)

We also recall here another useful result from convex analysis.
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Lemma 11.21 (Carathéodory). Let S ⊂ Rn and x ∈ conv(S). Then there exist x0, . . . , xn ∈ S
such that x ∈ conv{x0, . . . , xn}.

The notion of generalized gradient permits to extend some classical properties of critical points
of smooth functions to locally Lipschitz ones.

Proposition 11.22. Let ϕ :M → R be a locally Lipschitz function and q be a local minimum for
ϕ. Then 0 ∈ ∂qϕ.

Proof. Since the claim is a local property we can assume without loss of generality thatM = Rn. As
usual we will identify vectors and covectors with elements of Rn and the duality covectors-vectors
is given by the Euclidean scalar product, that we still denote 〈·, ·〉.

Assume by contradiction that 0 /∈ ∂qϕ and let us show that q cannot be a minimum for ϕ. To
this aim, we prove that there exists a direction w in Sn−1 such that the scalar map t 7→ ϕ(q + tw)
has no minimum at t = 0.

The set ∂qϕ is a compact convex set that does not contain the origin, hence by Lemma 11.20,
there exist ε > 0 and v ∈ Sn−1 such that

〈ξ, v〉 < −ε, ∀ ξ ∈ ∂qϕ.

By definition of generalized differential, one can find open neighborhoods Oq of q in Rn and Vv of
v in Sn−1 such that for all differentiability point q′ ∈ Oq of ϕ one has

〈
dq′ϕ, v

′〉 ≤ −ε/2, ∀ v′ ∈ Vv.

Fix q′ ∈ Oq where ϕ is differentiable and a vector w ∈ Vv such that the set of differentiable points
of the restriction of ϕ to the line {q + tw} has full measure (cf. Remark 11.18). Then we can
compute for t > 0

ϕ(q + tw)− ϕ(q) =
∫ t

0
〈dq+swϕ,w〉 ds ≤ −εt/2.

Thus ϕ cannot have a minimum at q.

The following proposition gives an estimate for the generalized differential of a special class of
functions.

Proposition 11.23. Let ϕω : M → R be a family of C1 functions, with ω ∈ Ω a compact set.
Assume that the following maps are continuous:

(ω, q) 7→ ϕω(q), (ω, q) 7→ dqϕω (11.15)

Then the function a(q) := min
ω∈Ω

ϕω(q) is locally Lipschitz on M and

∂qa ⊂ conv{dqϕω | ∀ω ∈ Ω s.t. ϕω(q) = a(q)}. (11.16)

Proof. As in the proof of Proposition 11.22 we can assume that M = Rn. Notice that, if we denote
by Ωq = {ω ∈ Ω | ϕω(q) = a(q)} we have by compactness of Ω that Ωq is non empy for every q ∈M
and we can rewrite the claim as follows

∂qa ⊂ conv{dqϕω | ω ∈ Ωq}. (11.17)
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We divide the proof into two steps. In step (i) we prove that a is locally Lipschitz and then in (ii)
we show the estimate (11.17).

(i). Fix a compact K ⊂M . Since every ϕω is Lipschitz on K and Ω is compact, thanks to the
continuity of the map (11.15), there exists a common Lipschitz constant CK > 0, i.e. the following
inequality holds

ϕω(q)− ϕω(q′) ≤ CK |q − q′|, ∀ q, q′ ∈ K, ω ∈ Ω,

Clearly we have

min
ω∈Ω

ϕω(q)− ϕω(q′) ≤ CK |q − q′|, ∀ q, q′ ∈ K, ω ∈ Ω,

and since the last inequality holds for all ω ∈ Ω we can pass to the min with respect to ω in the
left hand side and

a(q)− a(q′) ≤ CK |q − q′|, ∀ q, q′ ∈ K.
Since the constant CK depends only on the compact setK we can exchange in the previous reasoning
the role of q and q′, that gives

|a(q)− a(q′)| ≤ CK |q − q′|, ∀ q, q′ ∈ K.

(ii). Define Dq := conv{dqϕω| ∀ω ∈ Ωq}. Let us first prove prove that dqa ∈ Dq for every
differentiability point q of a.

Fix any ξ /∈ Dq. By Lemma 11.20 applied to the pair Dq and {ξ}, there exist ε > 0 and
v ∈ Sn−1 such that

〈dqϕω, v〉 > 〈ξ, v〉 + ε, ∀ω ∈ Ωq,

By continuity of the map (ω, q) 7→ dqϕω, there exists a neighborhood Oq of q and V neighborhood
of Ωq such that 〈

dq′ϕω′ , v
〉
> 〈ξ, v〉 + ε/2, ∀ q′ ∈ Oq, ∀ω′ ∈ V,

An integration argument let us to prove that there exists δ > 0 such that for ω ∈ V
1

t
(ϕω(q + tv)− ϕω(q)) > 〈ξ, v〉+ ε/4, ∀ 0 < t < δ.

Clearly we have
1

t
(ϕω(q + tv)− a(q)) ≥ 〈ξ, v〉+ ε/4, ∀ 0 < t < δ.

and since the minimum in a(q+ tv) = minω∈Ω ϕω(q+ tv) is attained for ω in Ωq+tv ⊂ V for t small
enough, we can pass to the minimum w.r.t. ω ∈ V in the left hand side, proving that there exists
t0 > 0 such that

1

t
(a(q + tv)− a(q)) ≥ 〈ξ, v〉 + ε/4, ∀ 0 < t < t0.

Passing to the limit for t→ 0 we get

〈dqa, v〉 ≥ 〈ξ, v〉 + ε/4 (11.18)

If dqa /∈ Dq we can choose ξ = dqa in the above reasoning and (11.18) gives the contradiction
〈dqa, v〉 ≥ 〈dqa, v〉+ ε/4. Hence dqa ∈ D for every differentiability point q of a.

Now suppose that one has a sequence qn → q, where qn are differentiability points of a. Then
dqna ∈ Dqn for all n from the first part of the proof. We want to show that, whenever the limit
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ξ = limn→∞ dqna exists, then ξ ∈ Dq. This is a consequence of the fact that the map (ω, q) 7→ dqϕω
is continuous (in particular upper semicontinuous in the sense of Exercise 11.16) and the fact that
Ω is compact.

Exercise 11.24. Complete the second part of the proof of Proposition 11.23. (Hint: use Carathéodory
lemma.)

11.2.1 Locally Lipschitz map and Lipschitz submanifolds

As for scalar functions, a map f :M → N between smooth manifolds is said to be locally Lipschitz
if for any coordinate chart in M and N the corresponding function from Rn to Rm is locally
Lipschitz.

For a locally Lipschitz map between manifolds f :M → N the (Clarke) generalized differential
is defined as follows

∂qf := conv{L ∈ Hom(TqM,Tf(q)N)|L = lim
qn→q

Dqnf, qn diff. point of f},

The following lemma shows how the standard chain rule extends to locally Lipschitz maps.

Lemma 11.25. Let M,N,W be smooth manifolds and f :M → N be a locally Lipschitz map.

(a) If φ :M →M is a diffeomorphism and q ∈M we have

∂q(f ◦ φ) = ∂φ(q)f ·Dqφ. (11.19)

(b) If ϕ : N →W is a map of class C1, and q ∈M we have

∂q(ϕ ◦ f) = Df(q)ϕ · ∂qf. (11.20)

Moreover the generalized differential is upper semicontinuous as a set-valued function. Namely, for
every neighborhood Ω ∈ Hom(TqM,Tf(q)N) of ∂qf there exists a neighborhood Oq of q such that
∂q′f ∈ Ω, for every q′ ∈ Oq.

Sketch of the proof. For a detailed proof of this result see [Cla90, Sect. 2.3]. Here we only give the
main ideas.

Claim (a). Since φ is a diffeomorphism, it sends every differentiability point q of f ◦ φ to a
differentiability point φ(q) for f . Then (11.19) is true at differentiability point and passing to the
limit it is also valid for sub-differential (one proves both inclusions using φ and φ−1). Claim (b)
can be proved along the same lines. The upper semicontinuity property can be proved by using the
hyperplane separation theorem and the Carathéodory lemma.

Definition 11.26. Let f :M → N be a locally Lipschitz map. A point q ∈M is said critical point
for f if ∂qf contains a non-surjective map. If q ∈ M is not a critical point, then it is said regular
point.

Notice that by the semicontinuity property of Lemma 11.25, it follows that the set of regular
points of a locally Lipschitz map f is open.
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Theorem 11.27. Let f : Rn → Rn be a locally Lipschitz map and q ∈ M be a regular point for
f . Then there exist neighborhoods Oq and Of(q) of q and f(q) respectively, and a locally Lipschitz
map g : Of(q) → Rn such that f ◦ g = IdOf(q)

and g ◦ f |Oq = IdOq .

Remark 11.28. The classical C1 version of the inverse function theorem can be proved from Theorem
11.27 and the chain rule (Lemma 11.25). Indeed Theorem 11.27 implies that there exists a locally
Lipschitz inverse g and using the chain rule it is easy to show that the sub-differential of g contains
only one element (this implies that it is differentiable at that point) and the differential of g is the
inverse of the differential of f .

Before proving Theorem 11.27 we need the following technical lemma.

Lemma 11.29. Let f : Rn → Rn be a locally Lipschitz map and q ∈ M be a regular point. Then
there exist a neighborhood Oq of q and ε > 0 such that

∀ v ∈ Sn−1, ∃ ξv ∈ Sn−1 s.t. 〈ξv, ∂xf(v)〉 > ε, ∀x ∈ Oq. (11.21)

Moreover |f(x)− f(y)| ≥ ε|x− y|, for all x, y ∈ Oq.

We stress that (11.21) means that the inequality 〈ξv, L(v)〉 > ε holds for every x ∈ Oq and every
element L ∈ ∂xf .

Proof. Notice that, since q is a regular point, the set ∂qf contains only invertible linear maps. For
every v ∈ Sn−1, the set ∂qf(v) is compact and convex, and does not contain the zero linear map. By
the hyperplane separation theorem we can find ξv such that 〈ξv, ∂qf(v)〉 > ε(v). The map x 7→ ∂xf
is upper semicontinuous, hence there exists a neighborhood Oq of q such that 〈ξv, ∂xf(v)〉 > ε(v)
for all x ∈ Oq. Since Sn−1 is compact, there exists a uniform ε = min{ε(v), v ∈ Sn−1} that satisfies
(11.21).

To prove the second statement of the Lemma, write y = x+sv, where s = |x−y| and v ∈ Sn−1.
Consider a vector v′ ∈ Sn−1 close to v such that almost every point in the direction of v′ is a
point of differentiability (cf. Remark 11.18), and set y′ = x + sv′ and ξv′ the vector associated to
v′ defined by (11.21). Then we can write

f(y′)− f(x) =
∫ s

0
(Dx+tv′f)v

′dt.

and we have the inequality

|f(y′)− f(x)| ≥
〈
ξv′ , f(y

′)− f(x)
〉

=

∫ s

0

〈
ξv′ , (Dx+tv′f)v

′〉 dt

≥ ε|y′ − x|

Since ε does not depend on v, we can pass to the limit for v′ → v in the above inequality (in
particular y′ → y) and the Lemma is proved.

Proof of Theorem 11.27. The inequality proved in Lemma 11.29 implies that f is injective in the
neighborhood Oq of the point q. If we show that f(Oq) covers a neighborhood Of(q) of the point
f(q), then the inverse function g : Of(q) → Rn is well defined and locally Lipschitz.
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Without loss of generality, up to restricting the neighborhood Oq, we can assume that every
point in Oq is regular for f and moreover that the estimate of the Lemma 11.29 holds also on the
topological boundary ∂Oq. Lemma 11.29 also implies that

dist(f(q), ∂f(Oq)) ≥ εdist(q, ∂Oq) > 0, (11.22)

where dist(x,A) = infy∈A |x − y| denotes the Euclidean distance from x to the set A. Thanks
to the continuity of f and (11.22), there exists a neighborhood W ⊂ f(Oq) of f(q) such that
|y − f(q)| < dist(y, ∂f(Oq)), for every y ∈ W . Fix an arbitrary ȳ ∈ W and let us show that the
equation f(x) = ȳ has a solution. Define the function

ψ : Oq → R, ψ(x) = |f(x)− ȳ|2. (11.23)

By construction ψ(q) < ψ(x), for all x ∈ ∂Oq, hence by continuity ψ attains the minimum at some
point x̄ ∈ Oq. By Proposition 11.22, we have 0 ∈ ∂x̄ψ. Moreover, using the chain rule

∂x̄ψ = (f(x̄)− ȳ)T · ∂x̄f. (11.24)

Since x̄ is a regular point of f , the linear map ∂x̄f is invertible. Thus 0 ∈ ∂x̄ψ implies f(x̄) = ȳ.

We say that c ∈ R is a regular value of a locally Lipschitz function ϕ : M → R if ϕ−1(c) 6= ∅
and every x ∈ ϕ−1(c) is a regular point.

Corollary 11.30. Let ϕ :M → R be locally Lipschitz and assume that c ∈ R is a regular value for
ϕ. Then ϕ−1(c) is a Lipschitz submanifold of M of codimension 1.

Proof. We show that in any small neighborhood Ox of every x ∈ ϕ−1(c) the set Ox ∩ ϕ−1(c) can
be described as the zero locus of a locally Lipschitz function. Since ∂xϕ does not contain 0, by the
hyperplane separation theorem there exists v1 ∈ Sn−1, such that 〈∂xϕ, v1〉 > 0 for every x in the
compact neighborhood Ox ∩ ϕ−1(y).

Let us complete v1 to an orthonormal basis {v1, v2, . . . , vn} of Rn and consider the map

f : Ox → Rn, f(x′) =




ϕ(x′)− c
〈v2, x′〉

...
〈vn, x′〉




By construction f is locally Lipschitz and x is a regular point of f . By Theorem 11.27 there exists
a Lipschitz inverse g of f . In particular the inverse map is a Lipschitz function that transforms the
hyperplane {y1 = 0} into ϕ−1(c). Hence the level set ϕ−1(c) is a Lipschitz submanifold.

11.2.2 A non-smooth version of Sard Lemma

In this section we prove a Sard-type result for the special class of Lipschitz functions we considered
in the previous section.

We first recall the statement of the classical Sard lemma. We denote by Cf the critical point
of a smooth map f : M → N , i.e., the set of points x in M at which the differential of f is not
surjective.
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Theorem 11.31 (Sard lemma). Let f : Rn → Rm be a Ck function, with k ≥ max{n−m+ 1, 1}.
Then the set f(Cf ) of critical values of f has measure zero in Rm.

Notice that the classical Sard Lemma does not apply to C1 functions ϕ : Rn → R, whenever
n ≥ 1. The following version of Sard lemma is due to Rifford.

Theorem 11.32. Let M be a smooth manifold and ϕω : M → R a family of smooth functions,
with ω ∈ Ω. Assume that

(i) Ω =
⋃
i∈NNi is the union of smooth submanifold, and is compact,

(ii) the maps (ω, q) 7→ ϕω(q) and (ω, q) 7→ dqϕω are continuous on Ω×M ,

(iii) the maps ψi : Ni ×M → R, (ω, q) 7→ ϕω(q) are smooth.

Then the set of critical values of the function a(q) = min
ω∈Ω

ϕω(q) has measure zero in R.

Proof. We are going to define a countable set of smooth functions Φα indexed by α = (α0, . . . , αn) ∈
Nn+1 (here n = dimM), such that for every critical point q of a there exists a critical point zq of
Φα, for some α, such that Φα(zq) = a(q).

Denote by Λn = {(λ0, . . . , λn) | λi ≥ 0,
∑n

i=0 λi = 1}. For every α = (α0, . . . , αn) ∈ Nn+1 let us
consider the map

Φα : Nα0 × . . .×Nαn × Λn ×M → R

Φα(ω0, . . . , ωn, λ0, . . . , λn, q) =
n∑

i=0

λiϕωi(q). (11.25)

By computing partial derivatives, it is easy to see that a point z = (ω0, . . . , ωn, λ0, . . . , λn, q) is
critical for Φα if and only if it satisfies the following relations:





∑n
i=0 λi

∂ψαi

∂ω
(ωi, q) = 0, i = 0, . . . , n,

∑n
i=0 λidqϕωi = 0, i = 0, . . . , n,

ϕω0(q) = . . . = ϕωn(q)

(11.26)

Recall that ψi is the restriction of the map (ω, q) 7→ ϕω(q) to Ni ×M .

Let us now show that every critical point q of a can be associated with a critical point zq of
some Φα. By Proposition 11.23, the function a is locally Lipschitz. Assume that q is a critical
point of a, then we have

0 ∈ ∂qa ⊂ conv{dqϕω | ∀ω ∈ Ω s.t. ϕω(q) = a(q)}.

By Carathéodory lemma there exist n+ 1 element ω̄0, . . . , ω̄n and n+ 1 scalars λ̄0, . . . , λ̄n such
that λ̄i ≥ 0,

∑n
i=0 λ̄i = 1 and

0 =

n∑

i=0

λ̄idqϕω̄i , ϕω̄i(q) = a(q), ∀ i = 0, . . . , n.

337



Moreover, let us choose for every i = 0, . . . , n an index ᾱi ∈ N such that ω̄i ∈ Nᾱi . Since ϕω̄i(q) =
a(q) = minΩ ϕω(q), ω̄i is critical for the map ψαi , namely we have

∂ψαi

∂ω
(ω̄i, q) = 0.

This implies that zq = (ω̄0, . . . , ω̄n, λ̄0, . . . , λ̄n, q) satisfies the relations (11.26) for the function Φᾱ,
with ᾱ = (ᾱ0, . . . , ᾱn). Moreover it is easy to check that Φᾱ(zq) = a(q) since

Φᾱ(zq) =

n∑

i=0

λ̄iϕω̄i(q) =

(
n∑

i=0

λ̄i

)
a(q) = a(q).

Then if Ca denotes the set of critical points of a and Cα the set of critical points of Φα we have

meas(a(Ca)) ≤ meas


 ⋃

α∈Nn+1

Φα(Cα)


 ≤

∑

α∈Nn+1

meas(Φα(Cα)) = 0,

since meas(Φα(Cα)) = 0 for every fixed α ∈ Nn+1, by the classical Sard lemma for C∞ functions.

We want to apply the previous result in the case of functions that are infimum of smooth
functions on level sets of a submersion.

Theorem 11.33. Let F : N → M be a smooth map between finite dimensional manifolds and
ϕ : N → R be a smooth function. Assume that

(i) F is a submersion

(ii) for all q ∈M the set Nq = {x ∈ N, ϕ(x) = min
y∈F−1(q)

ϕ(y)} is a non empty compact set.

Then the set of critical values of the function a(q) = min
x∈F−1(q)

ϕ(x) has measure zero in R.

Proof. Denote by Ca the set of critical points of a and a(Ca) is the set of its critical values. Let
us first show that for every point q ∈ M there exist an open neighborhood Oq of q such that
meas(a(Ca) ∩Oqn) = 0.

From assumption (i), it follows that for every q ∈ M the set F−1(q) is a smooth submanifold
in N . Let us now consider an auxiliary non negative function ψ : N → R such that

(A0) Aα := ψ−1([0, α]) is compact for every α > 0.

and select moreover a constant c > 0 such that the following assumptions are satisfied:

(A1) Nq ⊂ intAc,

(A2) c is a regular level of ψ
∣∣
F−1(q)

.

The existence of such a c > 0 is guaranteed by the fact that (A1) is satisfied for all c big enough
since Nq is compact and Ac contains any compact as c→ +∞. Moreover, by classical Sard lemma
(cf. Theorem 11.31), almost every c is a regular value for the smooth function ψ

∣∣
F−1(q)

.
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By continuity, there exists a neighborhood Oq of the point q such that assumptions (A0)-(A2)
are satisfied for every q′ ∈ Oq, for c > 0 and ψ fixed. We observe that (A2) is equivalent to require
that level set of F are transversal to level of ψ. We can infer that F−1(Oq)∩Ac is a smooth manifold
with boundary that has the structure of locally trivial bundle. Maybe restricting the neighborhood
of q then we can assume

F−1(q) ∩Ac = Ω, F−1(Oq) ∩Ac ≃ Oq × Ω,

where Ω is a smooth manifold with boundary. In this neighborhood we can split variables in N as
follows x = (ω, q) with ω ∈ Ω and q ∈M and the restriction a|Oq is written as

a|Oq : Oq → R, a(q) = min
ω∈Ω

ϕ(ω, q).

Notice that Ω is compact and is the union of its interior and its boundary, which are smooth by
assumptions (A0)-(A2). We can then apply the Theorem 11.32 to a|Oq , that gives meas(a(Ca∩Oq) =
0 for every q ∈M .

We have built a covering of M =
⋃
q∈M Oq. Since M is a smooth manifold, from every covering

it is possible to extract a countable covering, i.e., there exists a sequence qn of points in M such
that

M =
⋃

n∈N
Oqn

In particular this implies that

meas(a(Ca)) ≤
∑

n∈N
meas(a(Ca) ∩Oqn) = 0

since meas(a(Ca ∩Oq) = 0 for every q.

Remark 11.34. Notice that we do not assume that N is compact. In that case the proof is easier
since every submersion F : N →M with N compact automatically endows N with a locally trivial
bundle structure.

11.3 Regularity of sub-Riemannian spheres

We end this chapter by applying the previous theory to get information about the regularity of
sub-Riemannian spheres. Before proving the main result we need two lemmas.

Lemma 11.35. Let K ⊂ T ∗M \H−1(0) be a compact set of T ∗M such that all normal extremals
associated with λ0 ∈ K are not abnormal. Then there exists ε = ε(K) such that tλ0 is a regular
point for expπ(λ0), for every λ0 ∈ K and 0 < t ≤ ε.

Proof. Let Π : T ∗M \H−1(0)→ H−1(1/2) be the continuous map defined by

Π(λ) =
λ√

2H(λ)
.

The set K1 := Π(K) is compact in H−1(1/2). Applying Proposition 8.76 to K1, there exists
ε′ = ε′(K1) such that the cut time t∗(γλ0) ≥ ε′ for every normal trajectory γλ0 associated with
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λ0 ∈ K1. Hence tλ0 is a regular point for the expπ(λ0) for all λ0 ∈ K1 and 0 < t ≤ ε′. Since H
is bounded on the compact set K, by homogeneity of the exponential map (cf. Lemma 8.35) the
existence of ε follows.

We already proved that the set of controls associated to minimizers reaching a compact is
compact in the L2 topology. If there are no abnormal minimizer, the compactness transfers to the
set of covectors parametrizing them.

Lemma 11.36. Let q0 ∈ M and K ⊂ M be a compact set such that every point of K is reached
from q0 by only strictly normal minimizers. Define the set

C = {λ0 ∈ T ∗
q0M | λ0 minimizer, expq0(λ0) ∈ K}.

Then C is compact.

Proof. The set C is closed since if λn → λ0 with λn ∈ C then we have a sequence γn of corresponding
minimizers converges uniformly, and the limit curve is necessary a minimizer associated with λ0.

It is then enough to show that C is bounded. Assume by contradiction that there exists a
sequence λn ∈ C of covectors (and the associate sequence of minimizing trajectories γn, associated
with controls un) such that |λn| → +∞, where | · | is some norm in T ∗

q0M . Since these minimizers
are normal they satisfy the relation

λnDunEq0 = un, ∀n ∈ N. (11.27)

and dividing by |λn| one obtains the identity

λn
|λn|

DunEq0 =
un
|λn|

, ∀n ∈ N. (11.28)

Using compactness of minimizers whose endpoints stay in a compact region (cf. Theorem 8.66),
we can assume that un → u. Morever the sequence λn/|λn| is bounded and we can assume that
λn/|λn| → λ for some final covector λ. Using that DunEq0 → DuEq0 and the fact that |λn| → +∞,
passing to the limit for n → ∞ in (11.28) we obtain λDuEq0 = 0. This implies in particular that
the minimizers γn converge to a minimizer γ (associated to λ) that is abnormal and reaches a point
of K that is a contradiction.

Theorem 11.37. Let M be a sub-Riemannian manifold, q0 ∈M and r0 > 0 such that every point
different from q0 in the compact ball Bq0(r0) is not reached by abnormal minimizers. Then the
sphere Sq0(r) is a Lipschitz submanifold of M for almost every r ≤ r0.

Proof. Let us fix δ > 0 and consider the annulus Aδ = Br0(q0) \Bδ(q0). Define the set

C0 = {λ0 ∈ T ∗
q0M | λ0 minimizer, expq0(λ0) ∈ Aδ}.

By Lemma 11.36 the set C0 is compact.

For every λ0 ∈ T ∗M , let us consider the control uλ0 associated with γ(t) = expq0(tλ0) and
denote by

Φλ0 := (P−1
0,1 )

∗ : T ∗
q0M → T ∗

expq0
(λ0)

M,
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the pullback of the corresponding flow associated with and uλ0 , computed at q0. Define the set

K :=
⋃

λ0∈C0

Φλ0(C0).

The set K is compact in T ∗M . By applying Lemma 11.35 to K, there exists ε0 > 0 such that,
defining

C1 := C0 ∩H−1([0, ε0]),

every λ1 ∈ C1 is a regular point for expπ(λ1). Notice that C1 is also compact.

Let now N0 and N1 be small neighborhoods of C0 and C1 respectively. Define the following
map

Ψ : N0 ×N1 →M, Ψ(λ0, λ1) = expexpq0
(λ0)(Φλ0(λ1)).

By construction, Ψ is defined on a smooth manifold and is surjective on Aδ. Moreover Ψ is a
submersion at every point of Aδ. Indeed notice that for every fixed λ0 ∈ C0, defining Ψλ0 : λ1 7→
Ψ(λ0, λ1), then D0Ψλ0 is surjective.

We want to apply Theorem 11.33 to the submersion Ψ and the scalar function

H : N0 ×N1 → R, H(λ0, λ1) = H(λ0) +H(λ1).

Let us show that the assumptions of Theorem 11.33 are satisfied. We have to show that the set

Nq = {(λ0, λ1) ∈ N0 ×N1 |H(λ0, λ1) = min
Ψ(λ0,λ1)=q

H(λ0, λ1)}, ∀ q ∈ Aδ,

is non empty and compact. Let us first notice that

Ψ(λ0, sλ0) = expq0((1 + s)λ0), H(λ0, sλ0) = (1 + s2)H(λ0).

By definition of N0, for each q ∈ Aδ there exists λ̄0 ∈ N0 such that expq0(λ̄0) = q and such that
the corresponding trajectory is a minimizer. Moreover we can always write this unique minimizer
as the union of two minimizers. It follows that

min
Ψ(λ0,λ1)=q

H(λ0, λ1) = min
expq0

(λ0)=q
H(λ0) = f(q), ∀ q ∈ Aδ.

This implies that Nq is non empty for every q. Moreover one can show that Nq is compact. By
applying Theorem 11.33 one gets that the function

a(q) = min
Ψ(λ0,λ1)=q

H(λ0, λ1) = f(q),

is locally Lipschitz in Aδ and the set of its critical values has measure zero in Aδ. Since δ > 0
is arbitrary we let δ → 0 and we have that f is locally Lipschitz in Bq0(r0) \ {q0} and the set of
its critical values has measure zero. In particular almost every r ≤ r0 is a regular value for f.
Then, applying Corollary 11.30, the sphere f

−1(r2/2) is a Lipschitz submanifold for almost every
r ≤ r0.
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11.4 Geodesic completeness and Hopf-Rinow theorem

In this section we prove a sub-Riemannian version of the Hopf-Rinow theorem. Namely, in absence
of abnormal minimizers, the geodesic completeness of M implies the completeness of M as a metric
space.

Theorem 11.38 (sub-Riemannian Hopf-Rinow). Let M be a sub-Riemannian manifold that does
not admit abnormal length minimizers. If there exists a point x ∈ M such that the exponential
map expx is defined on the whole T ∗

xM , then M is complete with respect to the sub-Riemannian
distance.

Proof. Given x ∈M , let us define

A := {r > 0 | B(x, r) is compact }, R := supA. (11.29)

Arguing as in the proof of Theorem 3.47, one can show that A 6= ∅ and that A is open (by using the
local compactness of the topology and repeating the proof of (ii.a)). Assume now by contradiction
that R < +∞ and let us show that R ∈ A. By openness of A this will give a contradiction and
A =]0,+∞[.

We are then reduced to show that B(x,R) is compact, i.e., every sequence {yi} in B(x,R)
admits a convergent subsequence. Define ri := d(yi, x). It is not restrictive to assume that ri → R
(if it is not the case, then sequence is contained in a compact ball, and the existence of a convergent
subsequence is clear). Since the ball B(x, ri) is compact, by Theorem 3.43 there exists a length
minimizing trajectory γi : [0, ri]→M joining x and yi, parametrized by unit speed. Each curve γi
is normal and parametrized by length: there exist λi ∈ H−1(1/2) ∩ TxM such that

γi(t) = expx(tλi) = π ◦ et ~H(λi).

By assumption we can extend each trajectory to the common interval [0, R]. Notice that the image
of each trajectory is contained in the compact set B(x,R). Since there is no abnormal minimizer, by
Lemma 11.36 the sequence {λi} is bounded in T ∗

xM , thus there exists a subsequence λin converging
to λ ∈ H−1(1/2) ∩ TxM . Then rinλin → Rλ and by continuity of expx we have that {yi} has a
convergent subsequence

yin = γin(rin) = expx(rinλin)→ expx(Rλ) =: y.

This proves that an arbitrary Cauchy sequence in B(x,R) admits a convergent subsequence.

As an immediate corollary we have the following version of geodesic completeness theorem.

Corollary 11.39. Let M be a sub-Riemannian manifold that does not admit abnormal length
minimizers. If the vector field ~H is complete on T ∗M , then M is complete with respect to the
sub-Riemannian distance.

11.5 Bibliographical note

Corollary 11.6 is well-known to experts, but it is not easy to find a proof in the literature.
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The proof of Theorem 11.8 is an adaptation of the arguments from [Agr09, RT05]. Similar
arguments have been generalized later to affine optimal control problems with quadratic cost in
[BB18].

The fact whether the set of smooth points has full measure (cf. Corollary 11.13) is not known in
general, and it is indeed relate to one of the main conjecture of sub-Riemannian geometry: is the set
of points reached by abormal trajectories (resp. abnormal minimizers ) starting from a fixed point
a subset of measure zero? This is known as the Sard conjecture (resp. minimizing Sard conjecture),
since it is related to a Sard-like property for the end-point map, see the questions in [Mon02, Sec.
10.2] and [Agr14, Problem III].

This question has been investigated in detail in the three-dimensional case, first in [ZZ95] and
subsequently in [BdSR18]. In the three-dimensional case case it is easier to see that the set has
measure zero, and the question can be refined by asking if the above set has Hausdorff 2-dimensional
measure equal to zero. Another setting where this question has been widely investigated is that of
Carnot groups, see for instance [LDMO+16, OV17].

Besides the very general smoothness property, in absence of abnormal minimizers some finer
properties have also been proved: the squared sub-Riemannian distance is semi-concave thanks to
the results of [CR08], while the sub-analiticity (of the sub-Riemannian distance, balls and spheres)
and its relation to absence of abnormals have been studied in [Agr98a, Jac99, AG01a, ABCK97],
see also [AG01b] and [Tré00] for a survey and some extension to control affine systems.

A comprehensive introduction to generalized gradients for locally Lipschitz functions, we refer
the reader to [Cla90]. In this chapter we develop a Sard-type result for a special class of Lipschitz
functions that is taken from [Rif04]. This result is applied to show that, under the assumption
that there are no abnormal minimizers, almost every sphere is a Lipschitz submanifold, proved by
Rifford in [Rif06].

The result contained in the final part of the chapter about geodesic completeness is a counterpart
of Proposition 8.38, and it is inspired by the general arguments of [BBI01]. A discussion on geodesic
completeness in the literature is already present in [Str86, Str89].
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Chapter 12

Abnormal extremals and second
variation

This chapter is devoted to the analysis of the second order conditions for length-minimizers and of
abnormal extremals. After a first result on the regularity of the squared sub-Riemannian distance
from a fixed point, showing that Lipschitz regularity is lost at those points reached by only abnormal
length-minimizers, we move to second order conditions, known as Goh and generalized Legendre
conditions.

We then specify these results to the case of rank 2 distributions, where we analyse in detail a
class of abnormal extremals, called nice. These are smooth abnormal extremals that are solution of
an autonomous Hamiltonian system, which is different from the one defining normal extremals. We
show in particular that short arcs of nice abnormal extremals trajectories are length-minimizers.

In the final part of the chapter we discuss the notion of conjugate points along abnormal ex-
tremals, and the equivalence, for smooth horizontal trajectories, of the notion of length-minimality
with respect to the two natural topologies one can consider on the set of the horizontal curves
joining two fixed points (namely the C0 and the W 1,2 topology).

We end this chapter with a proof of the fact that corners, namely horizontal trajectories that
are piecewise C∞, are not length-minimizers if the trajectory is not C1.

12.1 Second variation

Let us introduce the notion of Hessian (and second derivative) for smooth maps between manifolds,
cf. also Section 8.4. We start by recalling the definition of the second differential of a map defined
on a linear space.

Let F : V → M be a smooth map from a linear space V on a smooth manifold M . The first
differential of F at a point x ∈ V

DxF : V → TF (x)M, DxF (v) =
d

dt

∣∣∣∣
t=0

F (x+ tv), v ∈ V,

is a well-defined linear map, independent on the linear structure on V . This is not true for the
second differential. The second order derivative

D2
xF (v) =

d2

dt2

∣∣∣∣
t=0

F (x+ tv) (12.1)
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has not an invariant meaning if DxF (v) 6= 0. Indeed in this case the curve γ : (−ε, ε)→M defined
by γ(t) = F (x+ tv) is a smooth curve in M with nonzero tangent vector. By the inverse function
theorem, there exist local coordinates on M such that the curve γ is a straight line. Hence the
second derivative D2

xF (v) vanish in these coordinates.
In general, the linear structure on V permits to define the second differential of F as a quadratic

map
D2
xF : kerDxF → TF (x)M (12.2)

in the sense that, for v ∈ kerDxF , the quantity in (12.3) depends only on v. On the other hand,
the map (12.2) is not independent on the choice of the linear structure on V , and this construction
cannot be used if the source of F is a smooth manifold.

Assume now that F : N →M is a map between smooth manifolds. The first differential is the
linear map between the tangent spaces

DxF : TxN → TF (x)M, x ∈ N.

while the definition of second order derivative should be modified using smooth curves with fixed
tangent vector, belonging to the kernel of DxF

D2
xF (v) =

d2

dt2

∣∣∣∣
t=0

F (γ(t)), γ(0) = x, γ̇(0) = v ∈ kerDxF, (12.3)

A computation in coordinates gives

d2

dt2

∣∣∣∣
t=0

F (γ(t)) =
d2F

dx2
(γ̇(0), γ̇(0)) +

dF

dx
γ̈(0), (12.4)

showing that the right hand side of (12.4) is defined only mod imDxF .
Thus is intrinsically defined only a certain part of the second differential, which is called the

Hessian of F, i.e., the quadratic map

HessxF : kerDxF → TF (x)M/ imDxF

12.2 Abnormal extremals and regularity of the distance

One of the main results of the previous chapter states that the squared sub-Riemannian distance
f = 1

2d
2(q0, ·) from a fixed point q0 is smooth on an open and dense subset Σ of every compact ball

containing q0 (cf. Theorem 11.2).
The characterization of the smooth set Σ implies in particular that f is not smooth at those

points q when there exists abnormal length-minimizers joining q0 and q.
If, moreover, we assume that all length-minimizers joining q0 and q are strictly abnormal, we

can prove that the squared sub-Riemannian distance it is not even Lipschitz.

Proposition 12.1. Let M be a sub-Riemannian manifold. Let q0 ∈M and f = 1
2d

2(q0, ·). Assume
that there are no normal length-minimizers joining q0 to q̄. Then f is not locally Lipschitz in any
neighborhood of q̄, namely

lim
q→q̄
q∈Σ

|dqf| = +∞. (12.5)

where | · | denotes an arbitrary norm of the fibers of T ∗M .
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Proof. Fix a compact ball B containing q0 and consider a sequence of smooth points qn ∈ Σ ∩ B
such that qn → q̄. Since qn are smooth points, for every n there exists a unique minimizing control
un and a corresponding unique final covector λn such that the following identity holds

λnDunEq0 = un, λn = dqn f.

Assume, by contradiction, that |dqn f| ≤ M for some M > 0. Then, by compactness of length-
minimizers, we may assume that the sequence of controls is convergent to a some limit un → u.
Moreover, this implies that λn → λ for some λ ∈ T ∗M satisfying λDuEq0 = u. This implies that
the corresponding length-minimizer joins q0 with q̄. In other words, we have proved that there
exists a normal length-minimizer joining q0 with q̄, which is a contradiction.

Let us now consider the end-point map Eq0 : U → M , which we recall is defined on an open
subset U of L2([0, 1],Rm).

Let u ∈ U be a critical point for Eq0 . Then we can associate with it the quadratic form

HessuEq0 : kerDuEq0 → CokerDuEq0 = TEq0 (u)
M/imDuEq0 .

Remark 12.2. Recall that λDuEq0 = 0 if and only if λ ∈ (imDuEq0)
⊥. Then, for every abnormal

extremal, there is a well-defined scalar quadratic form

λHessuEq0 : kerDuEq0 → R.

Notice that the dimension of the space (imDuEq0)
⊥ of such covectors coincides with dimCokerDuEq0 .

Definition 12.3. Let Q : V → R be a quadratic form defined on a vector space V . The index (or
negative index ) of Q is the maximal dimension of a negative subspace of Q:

ind−Q = sup{dimW | Q
∣∣
W\{0} < 0}. (12.6)

Recall that in the finite-dimensional case, the negative index coincides with the number of negative
eigenvalues in the diagonal form of Q.

The following notion of index of a map will be also useful:

Definition 12.4. Let F : U → M be a map defined on an open subset of a Hilbert space H, and
let u ∈ U be a critical point for F . The index of F at u is

InduF = min
λ∈imDuF⊥

λ 6=0

{
ind−(λHessuF )− codim imDuF

}
.

Remark 12.5. If codim imDuF = 1, then there exists a unique (up to scalar multiplication) non
zero λ ⊥ imDuF , hence InduF = ind−(λHessuF )− 1.

Given a control u associated with an abnormal extremal trajectory, the index InduEq0 is well-
defined.

Theorem 12.6. Let u ∈ U be a control associated with an abnormal extremal trajectory. If
InduEq0 ≥ 1, then u is not a strictly abnormal length-minimizer.

We need the following technical lemma, which we state without proof (see [AS04, Lemma 20.8]).
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Lemma 12.7. Let Q : RN → Rn be a vector valued quadratic form. Assume that Ind0Q ≥ 0. Then
there exists a regular point x ∈ Rn of Q such that Q(x) = 0.

We introduce now the definition of solid map.

Definition 12.8. Let Φ : E → Rn be a smooth map defined on a linear space E and r > 0. We
say that Φ is r-solid at a point x ∈ E if there exist a constant C > 0, ε̄ > 0 and a neighborhood U
of x such that for all ε < ε̄ there exists δ(ε) > 0 satisfying

BΦ̂(x)(Cε
r) ⊂ Φ̂(Bx(ε)), (12.7)

for all maps Φ̂ ∈ C0(E,Rn) such that ‖Φ̂ − Φ‖C0(U,Rn) < δ.

Exercise 12.9. Prove that if x is a regular point of Φ : E → Rn, then Φ is 1-solid at x. (Hint: use
implicit function theorem to prove that Φ satisfies (12.7) and Brower fixed point theorem to show
that the same holds for some small perturbation)

The following proposition relates index and solidness.

Proposition 12.10. Let Φ : E → Rn be a smooth map defined on a linear space E and x ∈ E.
Assume that IndxΦ ≥ 0. Then Φ is 2-solid at x.

Proof. We can assume that x = 0 and that Φ(0) = 0. We divide the proof in two steps: first
we prove that there exists a finite dimensional subspace E′ ⊂ E such that the restriction Φ

∣∣
E′

satisfies the assumptions of the theorem. Then we prove the proposition under the assumption
that dimE < +∞.

(i). Denote k := dimCokerD0Φ and consider the Hessian

Hess0Φ : kerD0Φ→ CokerD0Φ.

We can rewrite the assumption on the index of Φ as follows

ind−λHess0Φ ≥ k, ∀λ ∈ (imD0Φ)
⊥ \ {0}. (12.8)

Since the property (12.8) is invariant by multiplication of the covector by a positive scalar, it is
sufficient to consider unit covectors1

λ ∈ Sk−1 ≃ {λ ∈ (imD0Φ)
⊥, |λ| = 1}.

By definition of index, for every λ ∈ Sk−1, there exists a subspace Eλ ⊂ E, dimEλ = k such that

λHessuΦ
∣∣
Eλ\{0} < 0.

By the continuity of the form with respect to λ, there exists a neighborhood Oλ of λ such that
Eλ′ = Eλ for every λ′ ∈ Oλ. By compactness, we can choose a finite covering of Sk−1 made by
open subsets

Sk−1 = Oλ1 ∪ . . . ∪OλN .
1this can be defined by fixing an auxiliary metric on the set of covectors, otherwise one can more formally consider

the quotient of (imD0Φ)
⊥ with respect to multiplication by a positive scalar.
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Then it is sufficient to introduce the finite-dimensional subspace

E′ =
N⊕

j=1

Eλj .

(ii). Assume dimE < +∞ and split

E = E1 ⊕ E2 E2 := kerD0Φ.

The Hessian is a map

Hess0Φ : E2 → Rn/D0Φ(E1).

According to Lemma 12.7, there exists e2 ∈ E2 a regular point of Hess0Φ, such that

Hess0Φ(e2) = 0 =⇒ D2
0Φ(e2) = D0Φ(e1), for some e1 ∈ E1.

Define the map Q : E → Rn by the formula

Q(v1 + v2) := D0Φ(v1) +
1

2
D2

0Φ(v2), v = v1 + v2 ∈ E = E1 ⊕ E2,

and set e := −e1/2 + e2. From our assumptions it follows that e is a regular point of Q and
Q(e) = 0. In particular there exists c > 0 such that

B0(c) ⊂ Q(B0(1)),

and the same property holds for some perturbation of the map Q (see Exercice 12.9). Consider
then the map

Φε : v1 + v2 7→
1

ε2
Φ(ε2v1 + εv2). (12.9)

Using that v2 ∈ kerD0Φ, we compute the Taylor expansion with respect to ε

Φε(v1 + v2) = Q(v1 + v2) +O(ε). (12.10)

It follows that, for small ε > 0, the image of Φε contains a ball around 0, hence

BΦ(0)(cε
2) ⊂ Φ(B0(ε)). (12.11)

and the same estimate (12.11) holds for small perturbations of Φ.

Actually from the proof one has the following statement, which is a more quantitative version
of 2-solidness of Φ.

Lemma 12.11. Under the assumptions of the Theorem 12.10, there exists C > 0 such that for
every ε > 0 small enough

BΦ(0)(Cε
2) ⊂ Φ(B′

0(ε
2)×B′′

0 (ε)), (12.12)

where B′ and B′′ denotes the balls in E1 and E2 respectively.
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The key point is that, in the subspace where the differential of Φ vanishes, the ball of radius
ε is mapped into a ball of radius ε2, while the restriction on the other subspace “preserves” the
order, as the estimates (12.9) and (12.10) show. Indeed

B0(c) ⊂ Φε(B0(1))⇔ B0(cε
2) ⊂ Φ(ε2v1 + εv2), vi ∈ Bi

0(1)

⇔ B0(cε
2) ⊂ Φ(B′

0(ε
2)×B′′

0 (ε)).

Proof of Theorem 12.6. We prove that if u is a control associated with a strictly abnormal extremal
trajectory such that InduEq0 ≥ 1, then u cannot be associated with a length-minimizer. In this
proof we denote by E = Eq0 the end-point based at q0.

To prove the claim, we consider the “extended” end-point map

Φ : U → R×M, Φ(u) =

(
J(u)
E(u)

)
.

and we show that Φ is locally open at u.
Recall that DuJ = λDuE, for some λ ∈ TE(u)M , if and only if DuJ

∣∣
kerDuE

= 0 (see also
Proposition 8.13). Since u is strictly abnormal, it follows that

DuJ
∣∣
kerDuE

6= 0. (12.13)

Moreover from the definition of Φ and (12.13) one has

kerDuΦ = kerDuJ ∩ kerDuE, dim(imDuJ) = 1.

Moreover, a covector λ̄ = (α, λ) in R × T ∗
E(u)M annihilates the image of DuΦ if and only if α = 0

and λ ∈ (imDuE)⊥, indeed if
0 = λ̄DuΦ = αDuJ + λDuE,

with α 6= 0, this would imply that u is also normal. In other words we proved the equality

(imDuΦ)
⊥ = {(0, λ) ∈ R× T ∗

E(u)M |λ ∈ (imDuE)⊥}. (12.14)

Combining (12.13) and (12.14) one obtains for every λ̄ = (0, λ) ∈ (imDuΦ)
⊥

λ̄HessuΦ = λHessuE
∣∣
kerDuJ∩kerDuE

. (12.15)

Moreover codim (imDuΦ) = codim (imDuE) since dim(imDuΦ) = dim(imDuE) + 1 by (12.13)
and DuΦ takes values in R× TE(u)M . Then for every λ̄ = (0, λ) ∈ imDuΦ

⊥

ind−(λ̄HessuΦ)− codim (imDuΦ) = ind−(λHessuE
∣∣
kerDuJ∩kerDuE

)− codim (imDuE)

≥ ind−(λHessuE)− 1− codim (imDuE).

Passing to the infimum with respect to λ̄, one gets

InduΦ ≥ InduE − 1 ≥ 0.

By Proposition 12.10, this implies that Φ is locally open at u. Hence u cannot be associated with
a length-minimizer.
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Now we prove that the sub-Riemannian squared distance is locally Lipschitz in a neighborhood
of a point if the abnormal length-minimizers reaching these points have index bigger than one.

Theorem 12.12. Let K ⊂ Bq0(r0) be a compact and assume that InduEq0 ≥ 1 for every control u
associated with abnormal length-minimizers such that Eq0(u) ∈ K. Then f = 1

2d
2(q0, ·) is Lipschitz

on K.

Proof. Recall that if there are no abnormal minimizers reaching K, Theorem 11.37 ensures that
f is Lipschitz on K. Then, using compactness of the set of length-minimizers reaching K, it is
sufficient to prove the estimate in the neighborhood of a point q = Eq0(u), where u is associated
with an abnormal length-minimizer.

Since InduEq0 ≥ 1 by assumption, Theorem 12.6 implies that every abnormal minimizer u is
not strictly abnormal, i.e., has also a normal lift. We have

HessuEq0 : kerDuEq0 → CokerDuEq0 , with InduEq0 ≥ 1.

and, since u is also normal, it follows that DuJ = λDuEq0 for some λ ∈ T ∗
Eq0 (u)

M , hence

kerDuEq0 ⊂ kerDuJ . The assumption of Lemma 12.11 are satisfied, hence splitting the the space
of controls as

L2([0, 1],Rm) = E1 ⊕ E2, E2 := kerDuEq0 ,

we have that there exists C0 > 0 and R > 0 such that for 0 ≤ ε < R we have

Bq(C0ε
2) ⊂ Eq0(Bε), Bε := B′u(ε2)× B′′u(ε), q = Eq0(u), (12.16)

where B′u(r) and B′′u(r) are the ball of radius r in E1 and E2 respectively, and Bq(r) is the ball of
radius r in coordinates on M .

Let us also observe that, since J is smooth on B′u(ε2)× B′′u(ε), with DuJ = 0 on E2, by Taylor
expansion we can find constants C1, C2 > 0 such that for every u′ = (u′1, u

′
2) ∈ Bε one has (we write

u = (u1, u2))

J(u′)− J(u) ≤ C1‖u′1 − u1‖+ C2‖u′2 − u2‖2

Pick then any point q′ ∈ K such that |q′−q| = C0ε
2, with 0 ≤ ε < R. Then (12.16) implies that

there exists u′ = (u′1, u
′
2) ∈ Bε such that Eq0(u

′) = q′. Using that f(q′) ≤ J(u′) and f(q) = J(u),
since u is a minimizer, we have

f(q′)− f(q) ≤ J(u′)− J(u) ≤ C1‖u′1 − u1‖+ C2‖u′2 − u2‖2 (12.17)

≤ Cε2 = C ′|q′ − q| (12.18)

where we have set C = max{C1, C2} and C ′ = C/C0.

Since K is compact, and the set of control u associated with minimizers that reach the compact
set K is also compact, the constants R > 0 and C0, C1, C2 can be chosen uniformly with respect to
q ∈ K. Hence we can exchange the role of q′ and q in the above reasoning and get

|f(q′)− f(q)| ≤ C ′|q′ − q|,

for every pair of points q, q′ such that |q′ − q| ≤ C0R
2.
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12.3 Goh and generalized Legendre conditions

In this section we present some necessary conditions for the index of the quadratic form along an
abnormal extremal to be finite.

Theorem 12.13. Let M be a sub-Riemannian manifold and f1, . . . , fm be a generating family.
Let u be an abnormal minimizer and let λ1 ∈ T ∗

Eq0 (u)
M satisfy λ1DuEq0 = 0. Assume that

ind−λ1HessuEq0 < +∞. Then the following conditions are satisfied:

(i) 〈λ(t), [fi, fj](γ(t))〉 ≡ 0, for t ∈ [0, 1], ∀ i, j = 1, . . . ,m, (Goh condition)

(ii)
〈
λ(t), [[fu(t), fv], fv](γ(t))

〉
≥ 0, for a.e. t, ∀ v ∈ Rm, (Generalized Legendre condition)

where λ(t) = e(t−1) ~H (λ1) for t ∈ [0, 1] and γ(t) = π(λ(t)) are respectively the extremal and the
trajectory associated with the final covector λ1.

We will refer to abnormal minimizers satisfying ind−λ1HessuEq0 < +∞ as abnormal minimizers
with finite index.

Remark 12.14. Notice that, in the statement of the previous theorem, if λ1 satisfies the as-
sumption λ1DuF = 0, then also −λ1 satisfies the same assumption. Since ind−(−λ1HessuF ) =
ind+λ1HessuF , this implies that the statement holds also under the assumption ind+λ1HessuF <
+∞. Indeed, as is proved in the proof, as soon as the Goh condition is not satisfied, both the
positive and the negative index of this form are infinity.

Notice that these conditions are related to the properties of the distribution of the sub-Rieman-
nian structure and not to the metric. Indeed recall that the extremal λ(t) is an abnormal extremal
if and only if it satisfies

λ̇(t) =

m∑

i=1

ui(t)~hi(λ(t))

〈λ(t), fi(γ(t))〉 = 0, ∀ i = 1, . . . ,m.

Notice that the first equation is satisfied for a.e. t ∈ [0, 1], while the second one is valid for every
t ∈ [0, 1], since the functions t 7→ 〈λ(t), fi(γ(t))〉 are absolutely continuous. Geometrically the
solution λ(t) to the Hamiltonian equation belongs to D⊥

γ(t). The Goh condition is equivalent to

require that λ(t) ∈ (D2
γ(t))

⊥ for every t ∈ [0, 1].

Corollary 12.15. Let M be a complete sub-Riemannian structure, bracket generating of step 2,
i.e., D2

q = TqM for all q ∈M . Then there are no strictly abnormal length-minimizers. In particular

f = 1
2d

2(q0, ·) is locally Lipschitz on M .

Proof. Since D2
q = TqM implies (D2

γ(t))
⊥ = 0 for every q ∈ M , no abnormal extremal can satisfy

the Goh condition. Hence by Theorem 12.13 it follows that InduEq0 = +∞ for any control u
associated with an abnormal length-minimizer (starting from q0). In particular, from Theorem
12.6 it follows that the length-minimizer cannot be strictly abnormal. Hence f is locally Lipschitz
on M by Theorem 12.12.
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Remark 12.16. Notice that f is locally Lipschitz on M if and only if the sub-Riemannian structure
is 2-generating. Indeed if the structure is not 2-generating at a point q0, then from the Ball-Box
Theorem (Theorem 10.67) it follows that the squared sub-Riemannian distance from q0 is not locally
Lipschitz in a neighborhood of the base point q0.

Before going into the proof of the Goh conditions (Theorem 12.13) we discuss the folllowing
result.

Theorem 12.17. Let M be a sub-Riemannian manifold and fix q0 ∈M such that Dq0 6= D2
q0 . Then

for every ε > 0 small enough, there exists a normal extremal trajectory γ starting from q0 such that
ℓ(γ) = ε and γ is not a length-minimizer.

Let us first discuss the strategy of the proof: fix a non zero element ξ ∈ D⊥
q0 \ (D2

q0)
⊥, which

is non empty by assumption. We want to build an abnormal minimizing trajectory that has ξ as
initial covector and that is the limit of a sequence of stricly normal lenth-minimizers. In this way
this abnormal would have finite index (the abnormal quadratic form would be the limit of positive
ones) and then by Goh condition ξ annihilates D2

q00, which is a contradiction.

Proof. Assume by contradiction that there exists T > 0 such that all normal extremal paths γλ
associated with initial covector λ ∈ H−1(1/2) ∩ T ∗

q0M and defined on the interval [0, T ] are length-
minimizers. Since the restriction of a length-minimizer is still a length-minimizer, up to reducing
T we can assume that there exists a compact set K such that {γλ(T ) |λ ∈ H−1(1/2)} ⊂ K.2

Fix an element ξ ∈ D⊥
q0\(D2

q0)
⊥, which is non empty by assumption. Given any λ0 ∈ H−1(1/2)∩

T ∗
q0M , consider the family of normal extremal paths (and corresponding normal trajectories)

λs(t) = et
~H(λ0 + sξ), γs(t) = π(λs(t)), t ∈ [0, T ].

and let us be the control associated with γs, and defined on [0, T ]. Due to Theorem 11.2, there exists
a positive sequence sn → +∞ such that qn := γsn(T ) is a smooth point for the squared distance
from q0, for every n ∈ N. By compactness of minimizers reaching K, there exists a subsequence of
sn, that we still denote by the same symbol, and a minimizing control ū such that usn → ū, when
n → ∞. In particular, thanks to the characterization of smooth points (cf. Chapter 11), γsn is a
strictly normal length-minimizer for every n ∈ N.

Denote Φnt = P
usn
0,t the non autonomous flow generated by the control usn . The family λsn(t)

satisfies

λsn(t) = et
~H(λ0 + snξ) = (Φnt )

∗(λ0 + snξ).

Moreover, by continuity of the flow with respect to the convergence of controls, we have that
Φnt → Φt for n→∞, where Φt denotes the flow associated with the control ū. Hence we have that
the rescaled family

1

sn
λsn(t) = (Φnt )

∗
(

1

sn
λ0 + ξ

)

converges for n → ∞ to the limit extremal λ̄(t) = Φ∗
t ξ. Notice that λ̄(t) is, by construction, an

abnormal extremal associated with the minimizing control ū, and with initial covector ξ.

2it is enough to fix an arbitrary compact K with q0 ∈ int(K) such that the corresponding δK defined by Lemma
3.36 is smaller than T .
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The fact that usn is a strictly normal minimizer says that the Hessian of the energy J restricted
to the level set E−1

q0 (qn) is non negative. Indeed, recall that

HessuJ |E−1
q0

(q) = I − λ1D2
uEq0 ,

where λ1 ∈ TEq0
(u)M is the final covector of the extremal lift. In particular we have, for every

n ∈ N and every control v, the following inequality

‖v‖2 − λsn(T )D2
usn

Eq0(v, v) ≥ 0.

This implies
1

sn
‖v‖2 − 1

sn
λsn(T )D

2
usn

Eq0(v, v) ≥ 0,

and passing to the limit for n→∞ (recall that sn → +∞) one gets

−λ̄(T )D2
ūEq0(v, v) ≥ 0.

In particular one has that

ind+λ̄(T )HessūEq0 = ind−(−λ̄(T )D2
ūEq0) = 0.

Hence the abnormal extremal has finite (positive) index and we can apply Goh conditions (see
Theorem 12.13 and Remark 12.14). Thus ξ annihilates D2

q0 , which is a contradiction since ξ ∈
D⊥
q0 \ (D2

q0)
⊥.

Remark 12.18 (About the assumption of Theorem 12.17). Assume that the sub-Riemannian struc-
ture is bracket-generating and is not Riemannian in an open set O ⊂M , i.e., Dq0 6= Tq0M for every
q ∈ O. Then there exists a dense set D ⊂ O such that Dq0 6= D2

q0 for every q ∈ D.
Indeed assume that Dq = D2

q for all q in an open set A, then it is easy to see that Diq = Dq 6= TqM
for all q ∈ A and i ≥ 1. Hence the structure is not bracket-generating on A, which gives a
contradiction.

12.3.1 Proof of Goh condition - (i) of Theorem 12.13

Proof of Theorem 12.13. Denote by u the abnormal control and by P u0,t =
−→exp

∫ t
0 fu(s)ds the nonau-

tonomous flow generated by u. Following the argument used in the proof of Proposition 8.5 we can
write the end-point map as the composition

E(u+ v) = P u0,1(G(v)), DuE = (P u0,1)∗ ◦D0G,

and reduced the problem to the expansion of G, which is easier. Indeed denoting gti := (P u0,t)
−1
∗ fi,

the map G can be interpreted as the end-point map for the system

q̇(t) = gtv(t)(q(t)) =
m∑

i=1

vi(t)g
t
i(q(t)),

and the Hessian of Eq0 can be computed easily starting from the Hessian of G at v = 0 (notice that
kerDuEq0 = kerD0G)

HessuEq0 = (P u0,1)∗Hess0G,
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from which we get, using that λ0 = (P u0,1)
∗λ1,

λ1HessuEq0 = λ1(P
u
0,1)∗Hess0G = λ0Hess0G.

Moreover computing

〈λ(t), [fi, fj](γ(t))〉 =
〈
λ0, (P

u
0,t)

−1
∗ [fi, fj](γ(t))

〉

=
〈
λ0, [g

t
i , g

t
j ](γ(0))

〉
,

the Goh and generalized Legendre conditions can also be rewritten as
〈
λ0, [g

t
i , g

t
j ](γ(0))

〉
≡ 0, for a.e. t ∈ [0, 1], ∀ i, j = 1, . . . ,m, (G.1)

〈λ0, [[gtu(t), gti ], gti ]](γ(0))〉 ≥ 0, for a.e. t ∈ [0, 1], ∀ i = 1, . . . ,m. (L.1)

Now we want to compute the Hessian of the map G. Using the Volterra expansion computed
in Chapter 6 we have

G(v(·)) = q0 ◦


Id +

∫ 1

0
gtv(t)dt+

∫∫

0≤τ≤t≤1

gτv(τ) ◦ gtv(t)dτdt


 +O(‖v‖3),

where we used that gtv is linear with respect to v to estimate the remainder.
This expansion let us to recover immediately the linear part, i.e., the expressions for the first

differential, which can be interpreted geometrically as the integral mean

D0G(v) =

∫ 1

0
gtv(t)(q0)dt.

On the other hand the expression for the quadratic part, i.e., the second differential

D2
0G(v) = 2 q0 ◦

∫∫

0≤τ≤t≤1

gτv(τ) ◦ gtv(t)dτdt.

has not an immediate geometrical interpretation. Recall that the second differential D2
0G is defined

on the set

kerD0G = {v ∈ L2([0, 1],Rm) |
∫ 1

0
gtv(t)(q0)dt = 0} (12.19)

and, for such a v, D2
0G(v) belong to the tangent space Tq0M . Indeed, using Lemma 8.30, and that

v belong to the set (12.19), we can write the second derivative as

D2
0G(v) =

∫∫

0≤τ≤t≤1

[gτv(τ), g
t
v(t)](q0)dτdt,

which shows that the second differential is computed by the integral mean of the commutator of the
vector field gtv(t) for different times. Now consider an element λ0 ∈ (imD0G)

⊥, i.e., that satisfies
〈
λ0, g

t
v(q0)

〉
= 0, for a.e. t ∈ [0, 1],∀ v ∈ Rm.

Then we can compute the Hessian

λ1HessuEq0(v) = λ0Hess0G(v) =

∫∫

0≤τ≤t≤1

〈λ0, [gτv(τ), gtv(t)](q0)〉dτdt. (12.20)

355



Remark 12.19. Denoting, for τ, t ∈ [0, 1], by K(τ, t) : Rm × Rm → R the bilinear form

K(τ, t)(v,w) =
〈
λ0, [g

τ
v , g

t
w](q0)

〉
,

the Goh and generalized Legendre conditions are rewritten respectively as follows:

K(t, t)(v,w) = 0, ∀ v,w ∈ Rm, for a.e. t ∈ [0, 1], (G.2)

∂K

∂τ
(τ, t)

∣∣∣∣
τ=t

(v, v) ≥ 0, ∀ v ∈ Rm, for a.e. t ∈ [0, 1]. (L.2)

The first one easily follows from (G.1). Moreover, notice that gtv = (P u0,t)
−1
∗ fv, hence the map

t 7→ gtv is Lipschitz for every fixed v. By definition of P u0,t =
−→exp

∫ t
0 fu(t)dt, it follows that

∂

∂t
gtv = [gtu(t), g

t
v ].

This shows that (L.2) is equivalent to (L.1).

Finally we want to express the Hessian of G in Hamiltonian terms. To this end, we consider
the family of functions on T ∗M which are linear on fibers, associated to the vector fields gtv:

htv(λ) :=
〈
λ, gtv(q)

〉
, λ ∈ T ∗M, q = π(λ).

We define, for a fixed element λ0 ∈ (imD0G)
⊥:

ηtv :=
~htv(λ0) ∈ Tλ0T ∗M. (12.21)

Using the identities

σλ(~h
t
v ,
~htw) = {htv , htw}(λ) =

〈
λ, [gtv , g

t
w](q)

〉
, q = π(λ),

and computing at the point λ0 ∈ T ∗
q0M we find

σλ0(η
t
v , η

t
w) =

〈
λ0, [g

t
v , g

t
w](q0)

〉
.

Hence we get the final expression for the Hessian

λ0Hess0G(v(·)) =
∫∫

0≤τ≤t≤1

σλ0(η
τ
v(τ), η

t
v(t))dtdτ, (12.22)

where the control v ∈ kerD0G satisfies the relation (notice that π∗ηtv = gtv(q0))

π∗

∫ 1

0
ηtv(t)dt =

∫ 1

0
π∗η

t
v(t)dt = 0.

Moreover the Goh and Legendre conditions are expressed in Hamiltonian terms as follows:

σλ0(η
t
v, η

t
w) = 0, ∀ v,w ∈ Rm, for a.e. t ∈ [0, 1], (G.3)

σλ0(η̇
t
v, η

t
v) ≥ 0, ∀ v ∈ Rm, for a.e. t ∈ [0, 1]. (L.3)
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We are reduced to prove, under the assumption ind−λ0Hess0G < +∞, that (G.3) and (L.3) hold.
Actually we will prove that Goh and generalized Legendre conditions are necessary conditions for
the restriction of the quadratic form to the subspace of controls in kerD0G that are concentrated
on small segments [t, t+ s].

In what follows we fix once for all t ∈ [0, 1[. Consider an arbitrary vector control function
v : [0, 1]→ Rm with compact support in [0, 1] and build, for s > 0 small enough, the variation

vs(τ) = v

(
τ − t
s

)
, supp vs ⊂ [t, t+ s]. (12.23)

The idea is to apply the Hessian to this particular control functions and then compute the asymp-
totics for s→ 0.

Notice that the index of a quadratic form is finite if and only if the same holds for the restriction
of the quadratic form to a subspace of finite codimension. Hence we can restrict to the subspace
of controls of zero integral mean

Es := {vs ∈ kerD0G | vs defined by (12.23),

∫ 1

0
v(τ)dτ = 0}.

Notice that this space depends on the choice of s, while codimEs does not.

Remark 12.20. We will use the following identity (writing σ for σλ0), which holds for arbitrary
control functions v,w : [0, 1]→ Rm

∫∫

α≤τ≤t≤β

σ(ητv(τ), η
t
w(t))dtdτ =

∫ β

α
σ(

∫ t

α
ητv(τ)dτ, η

t
w(t))dt =

∫ β

α
σ(ητv(τ),

∫ β

τ
ηtw(t)dt)dτ. (12.24)

For the specific choice w(t) =
∫ t
0 v(τ)dτ we have also the integration by parts formula

∫ β

α
ηtv(t)dt = ηβw(β) − ηαw(α) −

∫ β

α
η̇tw(t)dt. (12.25)

Combining (12.22) and (12.24), we rewrite the Hessian applied to vs as follows

λ0Hess0G(vs(·)) =
∫ t+s

t
σ(

∫ τ

t
ηθvs(θ)dθ, η

τ
vs(τ)

)dτ. (12.26)

Notice that the control vs is concentrated on the segment [t, t + s], thus we have restricted the
extrema of the integral.

The integration by parts formula (12.25), using our boundary conditions, gives

∫ τ

t
ηθvs(θ)dθ = ητws(τ)

−
∫ τ

t
η̇θws(θ)

dθ, (12.27)

where we defined

ws(θ) =

∫ θ

t
vs(τ)dτ, θ ∈ [t, t+ s].
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Combining (12.26) and (12.27) one has

λ0Hess0G(vs(·)) =
∫ t+s

t
σ(ητws(τ)

, ητvs(τ))dτ −
∫ t+s

t
σ(

∫ τ

t
η̇θws(θ)

dθ, ητvs(τ))dτ

=

∫ t+s

t
σ(ητws(τ)

, ητvs(τ))dτ −
∫ t+s

t
σ(η̇τws(τ)

,

∫ t+s

τ
ηθvs(θ)dθ)dτ, (12.28)

where the second equality uses (12.24).
Next consider the second term in (12.28) and apply again the integration by parts formula

(recall that ws(t+ s) = 0)
∫ t+s

t
σ(η̇τws(τ)

,

∫ t+s

τ
ηθvs(θ)dθ)dτ = −

∫ t+s

t
σ(η̇τws(τ)

, ητws(τ)
)dτ

−
∫ t+s

t
σ(η̇τws(τ)

,

∫ t+s

τ
η̇θws(θ)

dθ)dτ.

Collecting together all these results one obtains

λ0Hess0G(vs(·)) =
∫ t+s

t
σ(ητws(τ)

,ητvs(τ))dτ

+

∫ t+s

t
σ(η̇τws(τ)

, ητws(τ)
)dτ

+

∫ t+s

t
σ(η̇τws(τ)

,

∫ t+s

τ
η̇θws(θ)

dθ)dτ.

This is indeed a homogeneous decomposition of λ0Hess0G(vs(·)) with respect to s, in the fol-
lowing sense: since

ws(θ) = sw

(
θ − t
s

)
,

we can perform the change of variable

ζ =
τ − t
s

, τ ∈ [t, t+ s],

and obtain the following expression for the Hessian in terms of the original function w defined on
the interval [0, 1]:

λ0Hess0G(vs(·)) = s2
∫ 1

0
σ(ηt+sθw(θ) ,η

t+sθ
v(θ) )dθ

+s3
∫ 1

0
σ(η̇t+sθw(θ) , η

t+sθ
w(θ) )dθ (12.29)

+ s4
∫ 1

0
σ(η̇t+sθw(θ) ,

∫ 1

θ
η̇t+sζw(ζ)dζ)dθ.

We recall that here vs is defined through a control v compactly supported in [0, 1] by (12.23) and
w is the primitive of v, that is also compactly supported on [0, 1]. In particular we can write

λ0Hess0G(vs(·)) = s2
∫ 1

0
σ(ηtw(θ), η

t
v(θ))dθ +O(s3). (12.30)

358



By assumption ind−λ0Hess0G < +∞. This implies that the quadratic form given by its principal
part

w(·) 7→
∫ 1

0
σ(ηtw(θ), η

t
ẇ(θ))dθ, (12.31)

has also finite index. Indeed, assume that (12.31) has infinite negative index. Then by continuity
every sufficiently small perturbation of (12.31) would have infinite index as well. Hence, for s small
enough, the quadratic form λ0Hess0G would also have infinite index, contradicting our assumption
on (12.30).

To prove Goh condition, it is then sufficient to show that if (12.31) has finite index then the
integrand is zero, which is guaranteed by the following

Lemma 12.21. Let A : Rm × Rm → R be a skew-symmetric bilinear form and define the qudratic
form

Q : U → R, Q(w(·)) =
∫ 1

0
A(w(t), ẇ(t))dt,

where U := {w(·) ∈ Lip([0, 1],Rm) : w(0) = w(1) = 0}. Then ind−Q < +∞ if and only if A = 0.

Proof. Clearly if A = 0, then Q = 0 and ind−Q = 0. Assume then that A 6= 0 and let us prove
that ind−Q = +∞. We divide the proof into steps

(i). The bilinear form B : U × U → R defined by

B(w1(·), w2(·)) =
∫ 1

0
A(w1(t), ẇ2(t))dt,

is symmetric. Indeed, integrating by parts and using the boundary conditions we get

B(w1, w2) =

∫ 1

0
A(w1(t), ẇ2(t))dt

= −
∫ 1

0
A(ẇ1(t), w2(t))dt

=

∫ 1

0
A(w2(t), ẇ1(t))dt = B(w2, w1).

(ii). Q is not identically zero. Since Q is the quadratic form associated to B and from the
polarization formula

B(w1, w2) =
1

4
(Q(w1 + w2)−Q(w1 − w2)),

it easily follows that Q ≡ 0 if and only if B ≡ 0. Then it is sufficient to prove that B is not zero.
Since A 6= 0, there exists x, y ∈ Rm such that A(x, y) 6= 0, and consider a smooth non-constant

function
α : R→ R, s.t. α(0) = α(1) = α̇(0) = α̇(1) = 0.

Then α̇(t)z, α(t)z ∈ U for every z ∈ Rm and we can compute

B(α̇(·)x, α(·)y) =
∫ 1

0
A(α̇(t)x, α̇(t)y)dt

= A(x, y)

∫ 1

0
α̇(t)2dt 6= 0.
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(iii). Q has the same number of positive and negative eigenvalues. Indeed it is easy to see that
Q satisfies the identity

Q(w(1 − ·)) = −Q(w(·)),
from which (iii) follows.

(iv). Q is non vanishing on a infinite dimensional subspace. Consider some w ∈ U such that
Q(w) = α 6= 0. For every x = (x1, . . . , xN ) ∈ RN one can build the function

wx(t) = xiw(Nt− i), t ∈
[
i

N
,
i+ 1

N

]
, i = 1, . . . , N.

An easy computations shows that

Q(wx) = α

N∑

i=1

x2i .

In particular there exists a subspace of arbitrary large dimension where Q has the same sign.

12.3.2 Proof of generalized Legendre condition - (ii) of Theorem 12.13

Applying Lemma 12.21 for any t we prove that the s2 order term in (12.29) vanish and we get to

λ0Hess0G(v(·)) = s3
∫ 1

0
σ(η̇t+sθw(θ) , η

t+sθ
w(θ) )dθ +O(s4)

= s3
∫ 1

0
σ(η̇t+sθw(θ) , η

t
w(θ))dθ +O(s4)

where the last equalily follows from the fact that ηtv is Lipschitz with respect to t (see also (12.21)),
i.e.,

ηt+sθv = ηtv +O(s).

Remark 12.22. Notice that the quantity η̇tv is only measurable bounded in t. On the other hand
we have

ηtv =
~htv(λ0), htv(λ) =

m∑

i=1

vi
〈
λ, (P u0,t)

−1
∗ fi

〉
.

hence the set of Lebesgue points of the control u is contained in the set of Lebesgue points of η̇tv,
for every v (here u is the control where we compute the Hessian of the end-point map).

If t is a Lebesgue point of t 7→ η̇tv, the quantity η̇tw(·) is well-defined and we can write

λ0Hess0G(v(·)) = s3
∫ 1

0
σ(η̇tw(θ), η

t
w(θ))dθ

− s3
(∫ 1

0
σ(η̇t+sθw(θ) , η

t
w(θ))− σ(η̇tw(θ), ηtw(θ))dθ

)
+O(s4).

Using the linearity of σ and the boundedness of the vector fields we can estimate
∣∣∣∣
∫ 1

0
σ(η̇t+sθw(θ) , η

t
w(θ))− σ(η̇tw(θ), ηtw(θ))dθ

∣∣∣∣ ≤ C
∫ 1

0
|η̇t+sθw(θ) − η̇tw(θ)|dθ

≤ C sup
|v|≤1

1

s

∫ s

0
|η̇t+τv − η̇tv|dτ −→

s→0
0,
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where the last term tends to zero by definition of Lebesgue point (this set is independent on v, cf.
Remark 12.22). Hence we get

λ0Hess0G(v(·)) = s3
∫ 1

0
σ(η̇tw(θ), η

t
w(θ))dθ + o(s3). (12.32)

To prove the generalized Legendre condition we have to prove that the integrand is a non
negative quadratic form. This follows from the following lemma, which can be proved similarly to
Lemma 12.21.

Lemma 12.23. Let Q : Rm → R be a quadratic form on Rm and

U := {w(·) ∈ Lip([0, 1],Rm) | w(0) = w(1) = 0}.

The quadratic form

Q : U → R, Q(w(·)) =
∫ 1

0
Q(w(t))dt,

has finite index if and only if Q is non negative.

12.3.3 More on Goh and generalized Legendre conditions

If Goh condition is satisfied, the generalized Legendre condition can also be characterized as an
intrinsic property of the module. Indeed one can see that the quadratic map defined on the fibers
Uq of the control bundle U defining the sub-Riemannian structure

Uγ(t) → R, v 7→
〈
λ(t), [[fu(t), fv], fv ](γ(t))

〉
,

is well-defined and does not depend on the extension of fv to a vector field fv(t) on the vector
bundle U (or, more concretely, on the choice of the generating family).

Let us introduce the notation hv(λ) = 〈λ, fv(q)〉. An abnormal extremal λ(t) satisfies

hv(λ(t)) ≡ 0, ∀ v ∈ Rm.

Recall that the Poisson bracket between linear functions on T ∗M is computed in terms of the Lie
bracket

{hv, hw}(λ) = 〈λ, [fv, fw](q)〉 ,
We can reformulate Goh and generalized Legendre condition in Hamiltonian terms as follows.

Theorem 12.24. Let M be a sub-Riemannian manifold and let λ(t) be an abnormal extremal with
finite index, whose corresponding trajectory is a length-minimizer. Then the following conditions
are satisfied:

(i) {hv , hw}(λ(t)) ≡ 0, for t ∈ [0, 1],∀ v,w ∈ Rm, (Goh condition)

(ii) {{hu(t), hv}, hv}(λ(t)) ≥ 0, a.e. t ∈ [0, 1],∀ v ∈ Rm. (Generalized Legendre condi-
tion)
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Exercise 12.25. Use the Jacobi identity of the Poisson bracket to show that the bilinear form

Bt : R
m × Rm → R, Bt(v,w) := {{hu(t), hv}, hw}(λ), (12.33)

is well-defined and symmetric.

The generalized Legendre condition in Theorem (12.24) says that the quadratic form associated
to the bilinear form Bt given in (12.33) is nonnegative.

Next we want to characterize in Hamiltonian terms the trajectories that satisfy these conditions.
Let λ(t) be an abnormal extremal and let u(t) be the associated control. Then

λ̇(t) = ~hu(t)(λ(t)), hi(λ(t)) ≡ 0, 0 ≤ t ≤ 1. (12.34)

where ~hu(t) =
∑m

i=1 ui(t)
~hi(t). Let us denote the iterated Poisson brackets as follows

hi1...ik(λ) = {hi1 , . . . , {hik−1
, hik}}(λ) (12.35)

=
〈
λ, [fi1 , . . . , [fik−1

, fik ]](q)
〉
, q = π(λ) (12.36)

Recall that for any smooth function a : T ∗M → R

d

dt
a(λ(t)) = {hu(t), a}(λ(t)) =

m∑

i=1

ui(t){hi, a}(λ(t)).

Proposition 12.26. Let M be a sub-Riemannian structure and let λ(t) be an abnormal extremal
with finite index, whose corresponding trajectory is a length-minimizer associated with the control
u(t). Then the pair (u(t), λ(t)) satisfies the system

m∑

ℓ=1

uℓ(t)hℓij(λ(t)) = 0, (12.37)

for a.e. t ∈ [0, 1] and every i, j = 1, . . . ,m.

Proof. The trajectory satisfies the Goh conditions, hence for every t ∈ [0, 1] and every i, j =
1, . . . ,m, one has

hji(λ(t)) = 0. (12.38)

If we differentiate equations (12.38) with respect to t, we find

m∑

ℓ=1

uℓ(t)hℓij(λ(t)) = 0. (12.39)

for a.e. t ∈ [0, 1] and every i, j = 1, . . . ,m.

Remark 12.27. Notice that, without requiring a priori that the abnormal extremal satisfies the
Goh condition, differentiating the identities hi(λ(t)) = 0 for every i = 1, . . . ,m, one finds the set
of m(m− 1)/2 equations in the m variables u1, . . . , um.

m∑

j=1

uj(t)hij(λ(t)) = 0. (12.40)
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When m is odd, one always has a non-constant solution of the system. When m is even, this is
possible only for those λ such that det(hij(λ))i,j 6= 0. This is never the case when Goh conditions,
are satisfied since the matrix is identically zero. Hence one cannot solve the the linear system
(12.40) with respect to u, and has to differentiate once more to arrive to (12.39). About the last
set of equations, notice that

(i) If m = 2, then (12.39) defines 1 equation in 2 variables, and we can recover the control u1, u2
up to a scalar multiplier, when at least one of the coefficients does not vanish. Since we can
always deal with length-parametrized minimizers, this uniquely determine the control u.

(ii) If m ≥ 3, then the system is always overdetermined (in the sense that the number of variables
is bigger than the number of equations).

12.4 Rank 2 distributions and nice abnormal extremals

Consider a rank 2 distribution generated by a local generating family f1, f2 and let h1, h2 be the
associated linear Hamiltonians. An abnormal extremal λ(t) associated with a control u(t) satisfies
the system of equations

λ̇(t) = u1(t)~h1(λ(t)) + u2(t)~h2(λ(t)),

h1(λ(t)) = h2(λ(t)) = 0. (12.41)

In this case the Goh condition is automatically satisfied by every abnormal extremal.

Lemma 12.28. Every non-constant abnormal extremal on a rank 2 sub-Riemannian structure
satisfies the Goh condition.

Proof. Let λ(t), for t ∈ [0, 1], be an abnormal extremal on a rank 2 sub-Riemannian structure.
Define the linear Hamiltonian associated with their Lie bracket h12(λ(t)) = 〈λ, [f1, f2](q)〉. Notice
that, in this special framework, the Goh condition λ(t) ∈ (D2)⊥ is equivalent to

h1(λ(t)) = h2(λ(t)) = h12(λ(t)) = 0, for t ∈ [0, 1]. (12.42)

The first two identities are satisfied since λ(t) ∈ D⊥, hence

h1(λ(t)) = h2(λ(t)), for t ∈ [0, 1].

Differentiating these identities one gets (we omit t in the notation for simplicity)

u2{h2, h1} = −u2h12(λ) = 0,

u1{h1, h2} = u1h12(λ) = 0.

Since at least one among the controls u1 and u2 is not identically zero (the trajectory is non-
constant), we have that h12(λ(t)) ≡ 0 for every t ∈ [0, 1], that is (12.42).

In what follows we focus on a special class of abnormal extremals.

Definition 12.29. An abnormal extremal λ(t) is called nice if, for every t ∈ [0, 1], it satisfies

λ(t) ∈ (D2)⊥ \ (D3)⊥.
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Remark 12.30. Notice that, as soon as the distribution is bracket-generating and has rank 2 on
a manifold with dimM > 3, the set (D2

q)
⊥ \ (D3

q )
⊥ is nonempty for an open dense set of points

q ∈ M . Indeed assume that we have D2
q = D3

q for any q in a open neighborhood Oq0 of a point q0
in M . Then it follows that

D2
q0 = Diq0

for every i > 1. Hence structure cannot be bracket generating, since dimDiq0 ≤ 3 < dimM . The
case n = 3 is discussed later, see 12.6.1.

Theorem 12.31. Let λ(t), for t ∈ [0, 1], be an abnormal extremal on a rank 2 sub-Riemannian
structure. Then λ(t) is a nice abnormal extremal if and only if it is a reparametrization of a solution
of

λ̇(t) = ~H0(λ(t)), λ(0) ∈ (D2)⊥ \ (D3)⊥, (12.43)

where H0 : T
∗M → R is the smooth function defined by

H0 = h221h1 + h112h2. (12.44)

Proof. Recall that, by Lemma 12.28, the Goh condition is automatically satisfied, hence every
abnormal extremal satisfies λ(t) ∈ (D2)⊥, hence

h1(λ(t)) = h2(λ(t)) = h12(λ(t)) = 0, for every t ∈ [0, 1]. (12.45)

Notice moreover that, on the subset {h1 = h2 = 0} ⊂ T ∗M , we have

~H0 = h221~h1 + h112~h2. (12.46)

Assume first that λ(t) is a nice abnormal extremal. Differentiating twice the last equation in
(12.45) one obtains the identity

u1(t)h112(λ(t)) = u2(t)h221(λ(t)). (12.47)

If the abnormal is nice, then (h112(λ(t)), h221(λ(t)) 6= (0, 0), and we can uniquely recover the control
u = (u1, u2) up to a scalar as follows

u1(t) = h221(λ(t)), u2(t) = h112(λ(t)). (12.48)

If we plug this control into the original equation, we find that λ(t) is a solution of

λ̇ = h221(λ)~h1(λ) + h112(λ)~h2(λ). (12.49)

Moreover, since λ(t) is nice, we have λ(0) ∈ (D2)⊥ \ (D3)⊥.
It remains to prove that every solution to the equation

λ̇(t) = ~H0(λ(t)), λ0 ∈ (D2)⊥ \ (D3)⊥, (12.50)

satisfies λ(t) ∈ (D2)⊥ \ (D3)⊥ for every t ∈ [0, 1]. First notice that a non-constant solution cannot
intersect the set (D3)⊥ since these are equilibrium points of the system (12.50) (at those points the
Hamiltonian has a root of order two).

We are reduced to prove that (D2)⊥ is an invariant subset for ~H0. We show that the three func-
tions h1, h2, h12 are constantly zero when computed on the extremal. Let us write the differential
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equations satisfied by these functions. Recall that, for any smooth function a : T ∗M → R and any

solution of the Hamiltonian system λ(t) = et
~Hλ0, we have ȧ = {H, a}. Hence we get

ḣ12 = {h221h1 + h112h2, h12}
= {h221, h12}h1 + {h112, h12}h2 + h112h221 + h212h112︸ ︷︷ ︸

=0= c1h1 + c2h2

for some smooth coefficients c1 and c2. Similarly, we see that there exist smooth functions a1, a2, a12
and b1, b2, b12 such that 




ḣ1 = a1h1 + a2h2 + a12h12

ḣ2 = b1h1 + b2h2 + b12h12

ḣ12 = c1h1 + c2h2

(12.51)

If we plug the solution λ(t) into the equation of (12.50), i.e., if we consider it as a system of differen-
tial equations for the scalar functions hi(t) := hi(λ(t)), with variable coefficients ai(λ(t)), bi(λ(t)),
ci(λ(t)), we find that h1(t), h2(t), h12(t) satisfy a nonautonomous homogeneous linear system of
differential equation with zero initial condition, since λ0 ∈ (D2)⊥, i.e.

h1(λ0) = h2(λ0) = h12(λ0) = 0. (12.52)

Hence by uniqueness we have

h1(λ(t)) = h2(λ(t)) = h12(λ(t)) = 0, ∀ t ∈ [0, 1].

Remark 12.32. Notice that from the proof it follows that the control u(t) associated to a nice
abnormal extremal is smooth.

We also prove that nice abnormals satisfy the generalized Legendre condition. Recall that if
λ(t) is an abnormal extremal, then −λ(t) is also an abnormal extremal.

Lemma 12.33. Let λ(t) be a nice abnormal extremal. Then λ(t) or −λ(t) satisfy the generalized
Legendre condition.

Proof. Let u(t) be the control associated with the extremal λ(t). It is sufficient to prove that the
quadratic form

Qt : R
2 → R, Qt(v) =

〈
λ(t), [[fu(t), fv], fv]

〉
, (12.53)

is non-negative. We already proved (cf. Exercice 12.25) that this is the quadratic form associated
with the symmetric bilinear form

Bt : R
2 ×R2 → R, Bt(v,w) =

〈
λ(t), [[fu(t), fv], fw]

〉
. (12.54)

From the explicit expression (12.54) it is easy to see that u(t) ∈ kerBt for every t ∈ [0, 1]. Hence
Qt is degenerate quadratic form, for every t ∈ [0, 1]. On the other hand, the quadratic form is not
identically zero. Indeed in this case we have λ(t) ∈ (D3)⊥, which is a contradiction.

Hence we have proved that the quadratic form has rank 1 and is semi-definite, we can then
choose the sign in ±λ0 in such a way that (12.53) is positive at t = 0. Since the quadratic form is
continuous with respect to t (the control u(t) is continuous, cf. Remark 12.32) and cannot vanish
along the curve, then it is positive for all t ∈ [0, 1].
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12.5 Minimality of nice abnormal in rank 2 structures

Up to now we proved that every nice abnormal extremal in a rank 2 sub-Riemannian structure
automatically satisfies the necessary condition for optimality. Now we prove that actually they are
strict local minimizers.

Theorem 12.34. Let λ(t) be a nice abnormal extremal, defined for t ∈ [0, 1], and let γ(t) be the
corresponding abnormal extremal trajectory. Then there exists s > 0 such that γ|[0,s] is a strict local
length-minimizer in the the W 1,2 topology for horizontal trajectories joining the same endpoints.

Remark 12.35. Recall that being a nice abnormal extremal trajectory is a property that is indepen-
dent on the metric, and depends only on the distribution. In particular it turns out that the value
of s given in Theorem (12.34) is independent on the metric structure chosen on the distribution.

With similar arguments than those used in the proof of Theorem 4.65 (cf. Section 4.7) one
can prove that, as soon as the metric is fixed, short arcs of nice abnormal are also global length-
minimizers.

We now prove the following result, which should highlight the strategy we develop later to prove
Theorem 12.34.

Lemma 12.36. Let Φ : E → Rn be a smooth map defined on a Hilbert space E such that Φ(0) = 0,
where 0 is a critical point for Φ

λD0Φ = 0, λ ∈ Rn∗, λ 6= 0.

Assume that λHess0Φ is a positive definite quadratic form. Then for every v such that 〈λ, v〉 < 0,
there exists a neighborhood of zero O ⊂ E such that

Φ(x) /∈ R+v, ∀x ∈ O,x 6= 0, R+ = {α ∈ R | α > 0}.

In particular the map Φ is not locally open, and x = 0 is an isolated point on its level set.

Proof. In the first part of the proof we build some particular set of coordinates that simplifies the
proof, exploiting the fact that the Hessian is well-defined independently on the coordinates.

Fix v as in the statement and split the domain and the range of the map Φ as follows

E = E1 ⊕ E2, E2 = kerD0Φ, (12.55)

Rn = Rk1 ⊕ Rk2 , Rk1 = imD0Φ, (12.56)

where we select the complement Rk2 in such a way that v ∈ Rk2 (notice that by our assumption
v /∈ Rk1). Accordingly to the notation introduced, let us write

Φ(x1, x2) = (Φ1(x1, x2),Φ2(x1, x2)), xi ∈ Ei, i = 1, 2.

Since Φ1 is a submersion by construction, the Implicit function theorem implies that by a smooth
change of coordinates we can linearize Φ1 and assume that Φ has the form

Φ(x1, x2) = (D0Φ(x1),Φ2(x1, x2)),

since x2 ∈ E2 = kerD0Φ. Notice that, by construction of the coordinate set, the function x2 7→
Φ2(0, x2) coincides with the restriction of Φ to the kernel of its differential, modulo its image.
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Hence for every scalar function a : Rk2 → R such that d0a = λ we have the equality

λHess0Φ = Hess0(a ◦Φ2(0, ·)) > 0.

In particular the function a ◦ Φ2(0, y) is positive in a neighborhood of 0 and 0 is an isolated point
in its level set. Assume now that Φ(x1, x2) = sv for some s ≥ 0. Since v ∈ Rk2 , by construction of
our coordinates, it follows that

D0Φ(x1) = 0 =⇒ x1 = 0, and Φ2(0, x2) = sv.

In particular we have

d

ds

∣∣∣∣
s=0

a(Φ2(0, x2)) =
d

ds

∣∣∣∣
s=0

a(sv) = 〈λ, v〉 < 0 ⇒ a(sv) < 0 for s > 0,

which is a contradiction.

12.5.1 Proof of Theorem 12.34

Let λ(t) be an abnormal extremal and let γ(t) the be corresponding abnormal trajectory.

γ̇(t) = u1(t)f1(γ(t)) + u2(t)f2(γ(t)), t ∈ [0, 1]. (12.57)

In what follows we always assume that the support of the curve supp(γ)
.
= {γ(t) | t ∈ [0, 1]} is a

smooth one-dimensional submanifold of M , with or without border. Then either the curve γ has
no self-intersection or supp(γ) is diffeomorfic to S1. In both cases we can choose a basis f1, f2 in a
neighborhood of supp(γ) in such a way that γ is the integral curve of the vector field f1 (in such a
way that γ is the solution of (12.57) with associated control u = (1, 0))

γ̇(t) = f1(γ(t)), t ∈ [0, 1].

Notice that a change of the frame on M corresponds to a smooth change of coordinates on the
end-point map. With analogous reasoning as in the previous section, we describe the end point
map

Eq0 : U →M, Eq0(u1, u2) = γ(1),

for u = (u1, u2) in a neighborhood U of u = (1, 0), as the composition

Eq0 = ef1 ◦G,

where G is the end point map for the modified system

q̇ = (u1 − 1)e−tf1∗ f1 + u2e
−tf1∗ f2. (12.58)

Since e−tf1∗ f1 = f1, denoting gt := e−tf1∗ f2 and defining the primitives

w(t) =

∫ t

0
(1− u1(τ))dτ, v(t) =

∫ t

0
u2(τ)dτ, (12.59)

then G is the end-point map for the system

q̇ = −ẇf1(q) + v̇gt(q).
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Notice that (ẇ, v̇) = (0, 0) means u = u. The Hessian of G is rewritten as a map of ẇ, v̇ as follows

λ0Hess0G(ẇ, v̇) =

∫ 1

0
〈λ0, [

∫ t

0
−ẇ(τ)f1 + v̇(τ)gτdτ,−ẇ(t)f1 + v̇(t)gt](q0)〉dt. (12.60)

Recall that

D0G(ẇ, v̇) =

∫ 1

0
−ẇ(t)f1(q0) + v̇(t)gt(q0)dt

= −w(1)f1(q0) +
∫ 1

0
v̇(t)gt(q0)dt,

and the condition λ0 ∈ (imD0G)
⊥ is rewritten as

〈λ0, f1(q0)〉 = 〈λ0, gt(q0)〉 = 0, ∀ t ∈ [0, 1]. (12.61)

Since equality (12.61) is valid for all t ∈ [0, 1] then by differentiating we get

〈λ0, ġt(q0)〉 = 〈λ0, [f1, gt](q0)〉 = 0, ∀ t ∈ [0, 1]. (12.62)

Then we can rewrite our quadratic form only as a function of v̇. Indeed plugging (12.61)-(12.62)
in (12.60) one gets

λ0Hess0G(v̇) =

∫ 1

0
〈λ0, [

∫ t

0
v̇(τ)gτdτ, v̇(t)gt](q0)〉dt, (12.63)

where v that satifies the extra condition
∫ 1

0
v̇(t)gt(q0)dt = w(1)f1(q0). (12.64)

Now we rearrange these formulas, using integration by parts, rewriting the Hessian as a quadratic
form on the space of primitives (which are in particular continuous functions)

v(t) =

∫ t

0
v̇(τ)dτ.

Using the equality ∫ t

0
v̇(τ)gτdτ = v(t)gt −

∫ t

0
v(τ)ġτdτ, (12.65)

we have

λ0Hess0G(v̇) =

∫ 1

0
〈λ0, [v(t)gt, v̇(t)gt](q0)〉dt

−
∫ 1

0
〈λ0, [

∫ t

0
v(τ)ġτdτ, v̇(t)gt](q0)〉dt.

The first term in the sum is zero since [gt, gt] = 0. Exchanging the order of integration in the
second term

∫ 1

0
〈λ0, [

∫ t

0
v(τ)ġτdτ, v̇(t)gt](q0)〉dt =

∫ 1

0
〈λ0, [v(t)ġt,

∫ 1

t
v̇(τ)gτdτ ](q0)〉dt,
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and then integrating by parts

∫ 1

t
v̇(τ)gτdτ = v(1)g1 − v(t)gt −

∫ 1

t
v(τ)ġτdτ,

we get to

λ0Hess0G(v̇) =

∫ 1

0
〈λ0, [ġt, gt](q0)〉v(t)2dt

+

∫ 1

0
〈λ0, [

∫ t

0
v(τ)ġτ , v(t)ġt − v(1)g1](q0)〉dt. (12.66)

The last expression can also be rewritten as follows

λ0Hess0G(v̇) =

∫ 1

0
〈λ0, [ġt, gt](q0)〉v(t)2 dt

+

∫ 1

0
〈λ0, [

∫ t

1
v(τ)ġτ dτ + v(1)g1, v(t)ġt](q0) dt. (12.67)

Integrating by parts the extra condition (12.64), we find

∫ 1

0
v(t)ġt(q0)dt = −w(1)f1(q0) + v(1)g1(q0). (12.68)

The vectors f1(q1) and f2(q1) are linearly independent, then the vectors

f1(q0) = e−f1∗ (f1(q1)), and g1(q0) = e−f1∗ (f2(q1)),

are linearly independent. From (12.68) and Cauchy-Scwartz inequality, it follows that for every
pair (w, v) in the kernel there exists C > 0 such that

|w(1)| ≤ C‖v‖L2 , |v(1)| ≤ C‖v‖L2 . (12.69)

Remark 12.37. Notice that we cannot plug in the expression (12.68) directly into the formula of
the Hessian since (12.68) is valid only at the point q0, while in (12.66) we have to compute a Lie
bracket.

Theorem 12.38. Let γ : [0, 1]→M be an abnormal trajectory and assume that the quadratic form
(12.66) satisfies

λ0Hess0G(v̇) ≥ α‖v‖2L2 , (12.70)

for some α > 0. Then the curve is locally minimizer in the L2 topology of controls.

Remark 12.39. Notice that the estimate (12.70) depends only on v, while the map G is a smooth
map of v̇ (and ẇ). Hence Lemma 12.36 does not apply directly to G.

Moreover, the statement of Lemma 12.36 violates for the end-point map, since the end-point
map is always locally open thanks to the bracket generating condition (see Exercise 8.4). The final
point of the trajectory is never isolated in the level set.

What we are going to use is a similar idea than one contained in the proof of this Lemma,
to show that the statements holds for the restriction of the end-point map to a suitable subset of
controls.

369



Proof of Theorem 12.38. In this proof we use all the notation introduced in Section 12.5.1. In
particular λ(t) is an abnormal extremal path in a rank 2 sub-Riemannian structure. We fix the
sub-Riemannian structure on M whose generating family f1, f2 is chosen in such a way that the
corresponding abnormal extremal trajectory is associated with the control u = (1, 0).

Our goal is to prove, under the assumption 12.70, that there are no horizontal curves with
controls close to u that are shorter than γ and joining q0 to q1 = γ(1). Recall that

λ1HessuEq0 = λ0Hess0G (12.71)

We can moreover assume that the length of our reference trajectory is exactly 1 (we can always
dilate all the distances on our manifold, and the local optimality of the curve is not affected). We
split the proof into two steps: (a) it is sufficient to show the optimality in the subset of controls
of constant modulus (namely, curves of constant speed) (b) proof of the minimality in the in the
subset of controls of constant modulus.

(a) Let us consider the reparametrization map θ : L2([0, 1],R2) → L2([0, 1],R2) that maps
every control v to the control θ(v) defined on [0, 1] with constant modulus (and associated with the
reparametrized trajectory with constant speed, cf. Lemma 3.15 and 3.16). First notice that from
Lemma 3.64

‖θ(v)‖2L2 = 2J(γθ(v)) = ℓ(γθ(v))
2 = ℓ(γv)

2 ≤ 2J(γv) = ‖v‖2L2 . (12.72)

Let us now prove that for u = (1, 0) (it is sufficient that ū is constant)

‖u− θ(v)‖L2 ≤ ‖u− v‖2L2 (12.73)

Indeed

‖u− θ(v)‖2L2 =

∫ 1

0
|u(t)− θ(v)(t)|2dt

=

∫ 1

0
|u(t)|2dt− 2

∫ 1

0
〈u(t), θ(v)(t)〉R2 dt+

∫ 1

0
|θ(v)(t)|2dt

≤
∫ 1

0
|u(t)|2dt− 2

∫ 1

0
〈u(t), v(t)〉R2 dt+

∫ 1

0
|v(t)|2dt = ‖u− v‖2L2

where in the last inequality we used (12.72) and the fact that u is constant to estimate the mixed
term. The inequality (12.73) says that θ(Bū(r)) ⊂ Bū(r), where Bū(r) is a ball centered in u in L2,
hence it is enough to prove minimality in the subset of controls of constant modulus.

(b) The set of curves of constant speed and length less or equal than 1 can be parametrized,
using Lemma 3.16, by the set of controls

{(u1, u2)|u21 + u22 ≤ 1}.

Following the notation (12.59), notice that

{(u1, u2)|u21 + u22 ≤ 1} ⊂ {(w, v)| ẇ ≥ 0}.

Let now E = Eq0 . We now fix a function a ∈ C∞(M) and a smooth map b : M → ImDuE such
that

a(q1) = 0, dq1a = λ1 ∈ (ImDuE)⊥, b(q1) = 0, Dq1b
∣∣
ImDuE

= id.
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We want to show that

a ◦ E
∣∣
D
(ẇ, v̇) = λ1HessuE(ẇ, v̇) +R(ẇ, v̇), where

R(w, v)

‖v‖2
L2

−→
‖(ẇ,v̇)‖→0

0, (12.74)

in the domain

D = {(ẇ, v̇) | b(E(ẇ, v̇)) = 0, ẇ ≥ 0}.
Notice that the at the denominator in (12.74) we have not ‖v̇‖ but ‖v‖. This is necessary to apply
inequality (12.70). Indeed if we prove (12.74) we have that the point (ẇ, v̇) = (0, 0) is locally
optimal for E. This means that the curve γ, i.e., the curve associated with control u = (1, 0), is
locally optimal.

Using the identity

−→exp
∫ t

0
v̇(τ)f2dτ = ev(t)f2 ,

and applying the variations formula (6.36) to the end-point map E we get

E(ẇ, v̇) = q0 ⊙
−→exp

∫ 1

0
(1− ẇ(t))f1 + v̇(t)f2 dt

= q0 ⊙
−→exp

∫ 1

0
(1− ẇ(t))e−v(t)f2∗ f1 dt ⊙ ev(1)f2

Hence we can express the end-point map as a smooth function of the pair (ẇ, v).

Now, to compute (12.74), we can assume that the function a is constant on the trajectories of
f2 (since we only fix its differential at one point) so that

ev(1)f2 ⊙ a = a,

which simplifies our estimates:

a ◦E(ẇ, v̇) = q0 ⊙
−→exp

∫ 1

0
(1− ẇ(t))e−v(t)f2∗ f1 dt a.

Writing

(1− ẇ(t))e−v(t)f2∗ f1 = f1 +X0(v(t)) + ẇ(t)X1(v(t)), (12.75)

and using the variation formula (6.37), setting Y i
t = e

(t−1)f1
∗ Xi for i = 0, 1, we get (recall that

q1 = ef1(q0))

a ◦E(ẇ, v̇) = q1 ◦ −→exp
∫ 1

0
Y 0
t (v(t)) + ẇ(t)Y 1

t (v(t))dt a, Y 0
t (0) = 0,

Expanding the chronological exponential we find that

(a) the zero order terms vanish since Y 0
t (0) = 0,

(b) all first order terms vanish since λ1 = dq1a is orthogonal to the subspace ImDuE spanned by

the vectors f1(q1) and
(
etf1∗ f2

)
(q1).

371



(c) the second order terms are in the Hessian. Indeed, b ◦E is a submersion and kerDu(b ◦E) =
kerDuE. Intersection of (b ◦ E)−1(0) with a small neighborhood of 0 is a smooth Hilbert
submanifold of the domain of E whose tangent space at u is equal to kerDuE. Hence D has
a smooth local parameterization by the elements of kerDuE such that the linear part of the
parameterization is just the identity map. Only this linear part appears in the second order
terms of the expansion of a ◦E

∣∣
D

at 0.

The remainder depends on v, ẇ and has the order at least 3. If we show that it can be estimated
with o(‖v‖2) (where o(‖v‖2) have the same meaning as in (12.74)), then we can apply estimate
(12.70) and conclude that the function a ◦ E

∣∣
D

has constant sign for ‖v̇‖ and ‖ẇ‖ small, i.e., the
control u is optimal.

The detailed estimate is rather long, boring and not so instructive, it can be found in [AS95].
Here we explain only key estimates, about integral of monomials of order 3. We are going to prove
that:

∫ 1

0
ẇ(t)v2(t)dt = o(‖v‖2),

∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)v(τ)dτdt = o(‖v‖2),

∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)

∫ τ

0
ẇ(s)dsdτdt = o(‖v‖2).

Using that ẇ ≥ 0, which is the key assumption, and the fact that (ẇ, v̇) ∈ D, which gives the
estimates (12.69), we compute

∣∣∣∣
∫ 1

0
ẇ(t)v2(t)dt

∣∣∣∣ ≤
∫ 1

0
|ẇ(t)|v2(t)dt

=

∫ 1

0
ẇ(t)v2(t)dt

= w(1)v2(1)−
∫ 1

0
w(t)v(t)v̇(t)dt

≤ ‖v‖3 + ε‖v‖2,

where the estimate for the second term follows from

∣∣∣∣
∫ 1

0
w(t)v(t)v̇(t)dt

∣∣∣∣ ≤ (max |w(t)|)
∣∣∣∣
∫ 1

0
v(t)v̇(t)dt

∣∣∣∣
≤ w(1)‖v‖‖v̇‖
≤ C‖v̇‖‖v‖2.

The second integral can be rewritten

∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)v(τ)dτdt = w(1)

∫ 1

0
ẇ(t)v(t)dt −

∫ 1

0
w(t)v(t)ẇ(t)dt
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and then we estimate

∣∣∣∣
∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)v(τ)dτdt

∣∣∣∣ ≤ 2|w(1)|
∫ 1

0
v(t)ẇ(t)dt

≤ C‖ẇ‖‖v‖2.

Finally, the last integral is very easy to estimate using the equality

∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)

∫ τ

0
ẇ(s)dsdτdt =

1

6

∫ 1

0
ẇ(t)3dt

≤ C‖ẇ‖‖v‖2.

Starting from these estimates it is easy to show that any mixed monomial of order greater that
three and the whole remainder satisfy the desired estimate as well.

Applying these results to a small piece of abnormal trajectory we can prove that small pieces
of nice abnormals are minimizers

Proof of Theorem 12.34 . If we apply the arguments above to a small piece γs = γ|[0,s] of the curve
γ it is easy to see that the Hessian rescales as follows,

λ0Hess0Gs(v̇) =

∫ s

0
〈λ0, [gt, ġt](q0)〉v(t)2dt

+

∫ s

0
〈λ0, [

∫ t

0
v(τ)ġτdτ, v(t)ġt − v(s)gs](q0)〉dt.

Since the generalized Legendre condition ensures that (see also Lemma 12.33)

〈λ0, [gt, ġt](q0)〉 ≥ C > 0

(we know that the corresponding quadratic form is semidefinite and that f1 is in the kernel), then
the norm

‖v‖g =
(∫ s

0
〈λ0, [gt, ġt](q0)〉v(t)2dt

)1/2

(12.76)

is equivalent to the standard L2-norm. Hence the Hessian can be rewritten as

λ0Hess0Gs(v̇) = ‖v‖2g + 〈Tv, v〉 , (12.77)

where T is a compact operator in L2 of the form

(Tv)(t) =

∫ s

0
K(t, τ)v(τ)dτ

Since ‖T‖2 = ‖K‖2L2 → 0 for s → 0, it follows that the Hessian satisfy the estimate in the
assumptions of Theorem 12.38, for s small enough.

373



12.6 Conjugate points along abnormals

In this section, we give an effective way to check the inequality (12.70), that implies local minimality
of nice abnormal extremal trajectories according to Theorem 12.38.

Following the notation of the previous section, given a nice abnormal extremal we define the
quadratic form Q1(v) := λ0Hess0G(v̇). The quadratic form Q1 is continuous in the topology defined
by the norm ‖v‖L2 . The closure of the domain of Q1 in this topology, is the space

D(Q1) =

{
(v, v1) ∈ L2([0, 1],Rm)× R |

∫ 1

0
v(t)ġt(q0) dt+ v1g1(q0) ∈ span{f1(q0)}

}
.

The extension of Q1 to D(Q1) is denoted by the same symbol Q1. We define

l(t) = 〈λ0, [ġt, gt](q0)〉, Xt = v1g1 +

∫ t

1
v(τ)ġτ dτ,

and we rewrite the form Q1 in these more compact notations:

Q1(v) =

∫ 1

0
l(t)v(t)2 dt+

∫ 1

0
〈λ0, [Xt, Ẋt](q0)〉 dt.

Notice that

Ẋt = v(t)ġt, X1 ∧ g1 = 0, X0(q0) ∧ f1(q0) = 0. (12.78)

Moreover, we introduce the family of quadratic forms Qs, for 0 < s ≤ 1, as follows

Qs(v) :=

∫ s

0
l(t)v(t)2 dt+

∫ s

0
〈λ0, [Xt, Ẋt](q0)〉 dt.

Recall that l(t) is a strictly positive continuous function. In particular the formula

‖v‖2l :=
∫ 1

0
l(t)v(t)2 dt, (12.79)

is the square of a norm on L2([0, 1],Rm) that is equivalent to the standard L2 norm. The next
statement is proved by the same arguments as those used in Proposition 8.54 and Lemma 8.55. We
leave details to the reader.

Proposition 12.40. The form Q1 is positive definite if and only if kerQs = 0 for all s ∈ (0, 1].

Definition 12.41. A time moment s ∈ (0, 1] is called conjugate to 0 for the abnormal extremal γ
if kerQs 6= 0.

We are going to characterize conjugate times in terms of an appropriate “Jacobi equation”.

Let ξ1 ∈ Tλ0(T ∗M) and ζt ∈ Tλ0(T ∗M) be the values at λ0 of the Hamiltonian lifts of the vector
fields f1 and gt. Recall that the Hamiltonian lift of a field f ∈ Vec(M) is the Hamiltonian vector
field associated to the Hamiltonian function λ 7→ 〈λ, f(q)〉, λ ∈ T ∗

qM, q ∈M . We have:

Qs(v) =

∫ s

0
l(t)v(t)2 dt+

∫ s

0
σ(x(t), ẋ(t)) dt,

374



ẋ(t) = v(t)ζ̇t, x(s) ∧ ζs = 0, π∗x(0) ∧ π∗ξ1 = 0,

where σ is the standard symplectic product on Tλ0(T
∗M) and π : T ∗M → M is the standard

projection. Moreover
l(t) = σ(ζ̇t, ζt), 0 ≤ t ≤ 1. (12.80)

Let E = span{ξ1, ζt | 0 ≤ t ≤ 1}. We use only the restriction of σ to E in the expression of Qs
and we are going to get rid of unnecessary variables. Namely, we set: Σ := E/(ker σ|E).

Lemma 12.42. Let d := dim span{f1(q0), gt(q0) | 0 ≤ t ≤ 1}. Then dimΣ ≤ 2d− 2.

Proof. The dimension of Σ is equal to twice the codimension of a maximal isotropic subspace
of σ|E . We have: σ(ξ1, ζt) = 〈λ0, [f1, gt](q0)]〉 = 0, ∀t ∈ [0, 1], hence ξ1 ∈ ker σ|E . Moreover,
π∗(E) = span{f1(q0), gt(q0), 0 ≤ t ≤ 1} and E ∩ kerπ∗ is an isotropic subspace of σ|E .

We denote by ζ
t
∈ Σ the projection of ζt to Σ and by Π ⊂ Σ the projection of E ∩ kerπ∗. Note

that the projection of ξ1 to Σ is 0. Moreover, equality (12.80) implies that ζ
t
6= 0, ∀t ∈ [0, 1]. The

final expression of Qs is as follows:

Qs(v) =

∫ s

0
l(t)v(t)2 dt+

∫ s

0
σ(x(t), ẋ(t)) dt,

ẋ(t) = v(t)ζ̇
t
, x(s) ∧ ζ

s
= 0, x(0) ∈ Π.

We have: v ∈ kerQs if and only if
∫ s

0

(
l(t)v(t) + σ(x(t), ζ̇

t
)
)
w(t) dt = 0,

for any w(·) such that ∫ s

0
ζ̇
t
w(t) dt ∈ Π+ Rζ

s
.

We obtain that v ∈ kerQs if and only if there exists ν ∈ Π∠ ∩ ζ∠
s
such that

l(t)v(t) + σ(x(t), ζ̇
t
) = σ(ν, ζ̇

t
), 0 ≤ t ≤ s.

We set y(t) = x(t)− ν and obtain the following:

Theorem 12.43. A time moment s ∈ (0, 1] is conjugate to 0 if and only if there exists a non-
constant solution of the equation

l(t)ẏ = σ(ζ̇
t
, y)ζ̇

t
, (12.81)

that satisfies the following boundary conditions:

∃ ν ∈ Π∠ ∩ ζ∠
s

such that (y(s) + ν) ∧ ζ
s
= 0, (y(0) + ν) ∈ Π. (12.82)

Remark 12.44. Notice that identity (12.80) implies that y(t) = ζ
t
for t ∈ [0, 1] is a solution to the

equation (12.81). However this solution may violate the boundary conditions.

Let us consider the special case when dim span{f1(q0), gt(q0) | 0 ≤ t ≤ 1} = 2.

Corollary 12.45. If dim span{f1(q0), gt(q0), 0 ≤ t ≤ 1} = 2, then the segment [0, 1] does not
contain conjugate time moments and the assumption of Theorem 12.38 is satisfied.
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Indeed, under the assumption of the corollary, one has dimE = 2 and dimΠ = 1. Hence
Π∠ = Π, ζ∠

s
= Rζ

s
and Π∠ ∩ ζ∠

s
= 0. Then ν in the boundary conditions (12.82) must be 0 and

y(s) = cζ
s
, where c is a nonzero constant. Thus y(t) = cζ

t
for 0 ≤ t ≤ 1 and y(0) = cζ

0
/∈ Π, which

proves the statement.

Remark 12.46. Notice that, denoting d := dim span{f1(q0), gt(q0) | 0 ≤ t ≤ 1}, then 2 ≤ d <
dimM , since the trajectory is abnormal. Hence the assumption of Corollary 12.45 is automatically
satisfied for abnormal extremal in a 3-dimensional sub-Riemannian manifold.

12.6.1 Abnormals in dimension 3

In the three-dimensional case, thanks to Remark 12.46, we have the following result.

Theorem 12.47. Let M be a sub-Riemannian manifold, dimM = 3, and let γ : [0, 1] → M be
a nice abnormal geodesic. Then γ is a strict local length-minimizer in the the W 1,2 topology for
horizontal trajectories joining the same endpoints.

We recall that nice abnormals are integral curves of a smooth vector fields on M , hence they
are smooth. In the particular case of the isoperimetric problem studied in Section 4.4.2, the
characterization can be made more precise.

Nice abnormals for the isoperimetric problem on surfaces

Recall the isoperimetric problem: given two points q0, q1 on a 2-dimensional Riemannian manifold
M , a 1-form A ∈ Λ1M and c ∈ R, we have to find (if it exists) the minimum:

min{ℓ(γ) | γ(0) = q0, γ(T ) = q1,

∫

γ
A = c}. (12.83)

As shown in Section 4.4.2, this problem can be reformulated as a sub-Riemannian problem on the
extended manifold

M =M × R = {(q, z) | q ∈M,z ∈ R},
where the sub-Riemannian structure is defined by the contact form

D = ker (dz −A),

and the sub-Riemannian length of a curve coincides with the Riemannian length of its projection
on M . If we write dA = b dV , where b is a smooth function and dV denote the Riemannian volume
on M , we have that the Martinet set is defined by the cilynder

M = R× b−1(0).

Corollary 12.48. Assume that the set b−1(0) is a regular level of b. Then the Martinet set M is
a smooth surface and all abnormal extremals are nice. Moreover the projection on M of abnormal
extremal trajectories on M are contained in the connected components of the set b−1(0).

The projection π :M →M satisfies π∗D = TM , by construction. It follows that the distribution
is always transversal to the Martinet set and all abnormal extremals are nice, since D3

q = TqM for

all (q, z) ∈M .
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Notice that one can recover the whole abnormal extremal integrating the 1-form A to find the
missing component. In other words the abnormal extremals are spirals on M with step equal to∫
Ω dV , (if dV is the volume form on M , it coincides with the area of the region Ω inside the curve
defined on M by the connected component of b−1(0)).

Consider now a compact connected component of b−1(0); this is a smooth closed curve. Corol-
lary 12.48 together with Theorem 12.38 implies that this closed curve passed once, twice, three
times or an arbitrary number of times is a locally optimal solution of the isoperimetric problem
(12.83). Moreover, this is true for any choice of the Riemannian metric on the surface M !

A non-nice abnormal extremal

In this section we give an example of non nice (and indeed not smooth) abnormal extremal.

Consider the isoperimetric problem on R2 = {(x1, x2) | xi ∈ R} defined by the 1-form A such
that

A = −x
2
2

4
x1dx1 +

x21
4
x2dx2, dν = x1x2dx1dx2.

Here the function b defined above is expressed as b(x1, x2) = x1x2 and the set b−1(0) consists of
the union of the two axes, with moreover db|0 = 0. Notice that the level set is not smooth and
Corollary 12.48 does not apply.

Exercise 12.49. Prove that the corresponding sub-Riemannian structure on R3 = {(x1, x2, z)} is
defined by the orthonormal frame

f1 = ∂x1 + x1
x22
4
∂z, f2 = ∂x2 − x2

x21
4
∂z.

Compute the step of the structure at every point and show in particular that it is equal to 4 at
every point of the form (0, 0, z).

Let us fix x̄1, x̄2 > 0 and consider the curve joining the points (0, x̄2) and (x̄1, 0) in R2 defined
by the union of two segments contained in the coordinate axes:

γ : [−x̄2, x̄1]→ R2, γ(t) =

{
(0,−t), t ∈ [−x̄2, 0],
(t, 0), t ∈ [0, x̄1].

The curve γ is a projection of an abnormal extremal that is not nice, since it is not smooth.

Proposition 12.50. The curve γ is a projection of an abnormal extremal that is not a length-
minimizer.

Proof of Proposition 12.50. Let us build a family of admissible variations γε,δ of the curve γ defined
as in Figure 12.1. Namely, γε,δ we cut a corner of size ε at the origin and we turn around a small
circle of radius δ before reaching the same end-point of γ. Denoting by Dε and Dδ the two regions
enclosed by the curve, it is easy to see that the isoperimetric condition rewrites as follows

0 =

∫

γε,δ

ν =

∫

Dε

dν −
∫

Dδ

dν.
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It is then easy using that dν = x1x2dx1dx2 to show that there exists c1, c2 > 0 such that

∫

Dε

dν = c1ε
4,

∫

Dδ

dν = c2δ
3,

while
ℓ(γε,δ)− ℓ(γ) = 2πδ − (2−

√
2)ε. (12.84)

Choosing ε > 0 in such a way that c1ε
4 = c2δ

3, it is an easy exercise to show that the quantity
(12.84) is negative for δ > 0 small.

Remark 12.51. (i) If one considers some planar curve γ̃ that is a projection of a normal extremal
trajectory having the same end-points than γ and contained in the set {(x1, x2) ∈ R2, x1 > 0, x2 >
0}, then γ̃ must have self intersections. Indeed it is easy to see that, if it is not the case, then the
isoperimetric condition ∫

γ̃
ν = 0

cannot be satisfied.
(ii) It is still an open problem to determine which is the length-minimizer joining these two

points. We know that it exists and it is a projection of a normal extremal (hence smooth) but for
instance we do not know how many self-intersection it has.

Dε

Dδ

x2

x1

Figure 12.1: Non minimality of a non-nice abnormal extremal trajectory

The general 3D case

As we discussed in Section 4.3, ona general 3D sub-Riemannian manifold abnormal extremals are
contained in the annichilator of the distribution D⊥. If h1, h2 are the Hamiltonians linear on fibers
associated to the vector fields of a canonical frame f1, f2 for the sub-Riemannian structure, we can
write

D⊥ = {λ ∈ T ∗M, h1(λ) = h2(λ) = 0},

By definition nice abnormal extremal trajectories, that are projections of nice abnormal extremals,
live in the subset of M where the step is equal to 3. So non-nice abnormal extremal trajectories
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necessary pass through a point where the step is at least 4 (cf. also the previous section and
Exercice 12.49).

Recall that abnormal extremal trajectories are contained in the Martinet set, which is the set
of points where the step is at least three

M = {q ∈M | D2
q 6= TqM}.

Equivalently, denoting by a the smooth function such that dν = adV , where dV is the volume form
of the Riemannian manifold M , we have that M = a−1(0).

In what follows we always assume that M defines a smooth submanifold in M (of dimension 2)

Exercise 12.52. Assume that M defines a smooth submanifold in M (of dimension 2). Prove
that (D2

q )
⊥ 6= (D3

q )
⊥ if and ony if the Martinet set (which is a smooth surface) is transversal to the

distribution at the point q.

Let us write the equations for abnormal extremals on M. We have to find controls u1, u2 such
that the vector field fu = u1f1 + u2f2 is tangent to the surface M, i.e., they have to satisfy

fu(a) = u1f1(a) + u2f2(a) = 0.

It means that the vector field

V = (f2b)f1 − (f1b)f2. (12.85)

is globally defined on M and its equilibrium points are exactly the points where the Martinet set
is tangent to the distribution (equivalently, the points where the step is larger than three)

At a points q where the Martinet set is tangent to the distribution, it is well-defined the
linearization DqV of the vector field V and its trace, which is the divergence of V satisfies div V = 0.

Exercise 12.53. Prove that the divergence of the vector field defined in (12.85) satisfies div V = 0.

Generically these critical points are isolated and the linearization DqV : TqM → TqM is a
well-defined operator which has two opposite non-zero real or imaginary eigenvalues.

(a) If the eigenvalues are imaginary, then the portrait of the dynamical system is a focus. One
can prove that the horizontal trajectories on M that spiral to the critical point have infinte
length since div V (q) = 0. The argument is based on the following exercice.

Exercise 12.54. Let V be a smooth vector field on R2 such that div V (0) = 0 such that DV (0)
has imaginary eigenvalues. Prove that the spirals through the origin have infinite Euclidean length.

(b) If the eigenvalues are real and opposite, then the portrait of the dynamical system is a saddle
point. In this case one can always build a non-smooth and non-nice abnormal by considering
a horizontal trajectory by joining the two separatrices.

Exercise 12.55. Prove that the sub-Riemannian structure described in the previous section (Ex-
ercise 12.49) is the nilpotent approximation of the generic case described in (b) above.
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12.6.2 Higher dimension

Now consider another important special case that is typical if the dimension of the ambient manifold
is greater than 3. Namely, assume that, for some k ≥ 2, the vector fields

f1, f2, (adf1)f2, . . . , (adf1)
k−1f2, (12.86)

are linearly independent in any point of a neighborhood of our nice abnormal extremal trajectory γ,
while (adf1)

kf2 is a linear combination of the vector fields (12.86) in any point of this neighborhood;
in other words,

(adf1)
kf2 =

k−1∑

i=0

ai(adf1)
if2 + αf1,

where ai, α are smooth functions. In this case, all solutions of the equation q̇ = f1(q) that are close
to γ are abnormal extremal trajectories.

A direct calculation based on the fact that 〈λ(t), (adf i1)f2)(γ(t)〉 = 0, 0 ≤ t ≤ 1, gives the
identity:

ζ
(k)
t =

k−1∑

i=0

ai(γ(t))ζ
(i) + α(γ(t))ξ1. 0 ≤ t ≤ 1. (12.87)

Identity (12.87) implies that dimE = k and Π = 0. The boundary conditions (12.82) take the
form:

y(0) ∈ ζ∠
s
, (y(s)− y(0)) ∧ ζ

s
= 0. (12.88)

Engel-type distributions

The caracterization of conjugate points is especially simple and geometrically clear if the ambient
manifold has dimension 4. Let D be a rank 2 equiregular distribution in a 4-dimensional manifold
(Engel-type distributions). Notice that the equiregularity forces the growth vector associated with
the distribution to be (2, 3, 4).

Then abnormal extremal trajectories form a 1-dimensional foliation of the manifold and condi-
tion (12.86) is satisfied with k = 2. Moreover, dimE = 3, dimΣ = 2 and ζ∠

s
= Rζ

s
. Recall that

y(t) = ζ
t
, for 0 ≤ t ≤ s, is a solution to (12.81). Hence boundary conditions (12.88) are equivalent

to the condition

ζ
s
∧ ζ

0
= 0. (12.89)

It is easy to re-write relation (12.89) in an intrinsic way without the special notations we used
to simplify calculations. We have the following characterization of conjugate times.

Lemma 12.56. Let D be an Engel-type distribution. A time moment t along an abnormal extremal
trajectory γ is conjugate to 0 if and only if

etf1∗ Dγ(0) = Dγ(t).

The flow etf1 preserves D2 and f1, but does not preserve D. The plane etf1∗ D rotates around
the line Rf1 inside D2 with a nonvanishing angular velocity. A conjugate time is when the plane
makes a complete revolution. Collecting all the information we obtain:
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Theorem 12.57. Let D be a Engel-type distribution, f1 be a horizontal vector field such that
[f1,D2] = D2 and γ̇ = f1(γ). Then γ is an abnormal extremal trajectory. Moreover

(i) if etf1∗ Dγ(0) 6= Dγ(t), ∀t ∈ (0, 1], then γ is a local length-minimizer for any sub-Riemannian
structure on D,

(ii) if etf1∗ Dγ(0) = Dγ(t) for some t ∈ (0, 1) and γ is not a normal geodesic, then γ is not a local
length-minimizer.

12.7 Equivalence of local minimality with respect to W 1,2 and C0

topology

In this section we prove that, under the assumption that our trajectory is smooth, it is equivalent
to be locally optimal with respect to the W 1,2 topology or in the C0 uniform topology for the
trajectories.

Recall that a curve γ̄ is called a C0 local length-minimizer if ℓ(γ̄) ≤ ℓ(γ) for every curve γ that
is C0 close to γ satisfying the same boundary conditions, while it is called a W 1,2 local length-
minimizer if ℓ(γ̄) ≤ ℓ(γ) for every curve γ such that the control u corresponding to γ is close in
the L2 topology to the control ū associated with γ̄ and γ satisfies the same boundary conditions.

Any C0 local length minimizer is automatically a W 1,2 local length minimizer. Indeed it is
possible to show that for every v,w in a neighborhood of a fixed control u there exists a constant
C > 0 such that

|γv(t)− γw(t)| ≤ C‖v − w‖L2 , ∀ t ∈ [0, T ],

where γv and γw are the trajectories associated to controls v,w respectively.

Theorem 12.58. LetM be a sub-Riemannian structure that is the restriction to D of a Riemannian
structure (M,g). Assume γ̄ is of class C∞ and has no self intersections. If γ̄ is a (strict) local
minimizer in the W 1,2 topology then γ̄ is also a (strict) local minimizer in the C0 topology.

Proof. Since γ̄ has no self intersections, we can look for a preferred system of coordinates on an
open neighborhood Ω in M of the set V = {γ̄(t) : t ∈ [0, 1]}. For every ε > 0, define the cylinder
in Rn = {(x, y) : x ∈ R, y ∈ Rn−1} as follows

Iε ×Bn−1
ε = {(x, y) ∈ Rn : x ∈ (−ε, 1 + ε), y ∈ Rn−1, |y| < ε}, (12.90)

We need the following technical lemma.

Lemma 12.59. There exists ε > 0 and a coordinate map Φ : Iε × Bn−1
ε → Ω such that for all

t ∈ [0, 1]

(a) Φ(t, 0) = γ̄(t),

(b) the Riemannian metric Φ∗g is the identity matrix at (t, 0),i.e., along γ̄.

Proof of the Lemma. For every ε > 0 we can find coordinates in the cylinder Iε ×Bn−1
ε such that,

in these coordinates, our curve γ̄ is rectified γ̄(t) = (t, 0) and has length one.
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Our normalization of the curve γ̄ implies that for the matrix representing the Riemannian metric
Φ∗g in these coordinates satisfies

Φ∗g =

(
G11 G12

G21 G22

)
, with G11(x, 0) = 1,

where Gij , for i, j = 1, 2, are the blocks of Φ∗g corresponding to the splitting Rn = R × Rn−1

defined in (12.90). For every point (x, 0) let us consider the orthogonal complement T (x, 0) of the
tangent vector e1 = ∂x to γ̄ with respect to G. It can be written as follows (here we denote by 〈· | ·〉
the Euclidean product in Rn)

T (x, 0) =
{
(〈vx | y〉 , y) | y ∈ Rn−1

}
,

for some family of vectors vx ∈ Rn−1, depending smoothly with respect to x. Indeed it is easily
checked that vx = −G1

21(x, 0), where G
1
21 denotes the first column of the (n − 1) × (n − 1) matrix

G21.

Let us consider now the smooth change of coordinates

Ψ : Rn → Rn, Ψ(x, y) = (x− 〈vx | y〉 , y).

Fix ε > 0 small enough such that the restriction of Ψ to Iε × Bn−1
ε is invertible. Notice that this

is possible since

detDΨ(x, y) = 1− 〈∂xvx | y〉 .

It is not difficult to check that, in the new variables (that we still denote by the same symbol), one
has

G(x, 0) =

(
1 0
0 M(x, 0)

)
,

where M(x, 0) is a positive definite matrix for all x ∈ Iε. With a linear change of cooordinates in
the y space

(x, y) 7→ (x,M(x, 0)1/2y),

we can finally normalize the matrix in such a way that G(x, 0) = Id for all x ∈ Iε.

We are now ready to prove the theorem. We check the equivalence between the two notions of
local minimality in the coordinate set, denoted (x, y), defined by the previous lemma. Notice that
the notion of local minimality is independent on the coordinates.

Given an admissible curve γ(t) = (x(t), y(t)) contained in the cylinder Iε×Bn−1
ε and satisfying

γ(0) = (0, 0) and γ(1) = (1, 0) and denoting the reference trajectory γ̄(t) = (t, 0) we have that

‖γ − γ̄‖2W 1,2 =

∫ 1

0
|ẋ(t)− 1|2 + |ẏ(t)|2dt

=

∫ 1

0
|ẋ(t)|2 + |ẏ(t)|2dt− 2

∫ 1

0
ẋ(t)dt+ 1

=

∫ 1

0
|ẋ(t)|2 + |ẏ(t)|2dt− 1,
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where we used that x(0) = 0 and x(1) = 1 since γ satisfies the boundary conditions. If we denote
by

J(γ) =

∫ 1

0
〈G(γ(t))γ̇(t), γ̇(t)〉 dt, Je(γ) =

∫ 1

0
|ẋ(t)|2 + |ẏ(t)|2dt (12.91)

respectively the energy of γ and the “Euclidean” energy, we have ‖γ − γ̄‖2W 1,2 = Je(γ)− 1 and the
W 1,2-local minimality can be rewritten as follows:

(∗) there exists ε > 0 such that for every γ admissible and Je(γ) ≤ 1 + ε one has J(γ) ≥ 1.

Next we build the following neighborhood of γ̄: for every δ > 0 define Aδ as the set of admissible
curves γ(t) = (x(t), y(t)) in Iε × Bn−1

ε such that the dilated curve γδ(t) = (x(t), 1δy(t)) is still
contained in the cylinder. This implies that in particular that γ is contained in Iε ×Bn−1

δε . Notice
that Aδ ⊂ Aδ′ whenever δ < δ′. Moreover, every curve that is εδ close to γ̄ in the C0-topology is
contained in Aδ.

It is then sufficient to prove that, for δ > 0 small enough, for every γ ∈ Aδ one has ℓ(γ) ≥ ℓ(γ̄).
Indeed it is enough to check that J(γ) ≥ J(γ̄). Let us consider two cases

(i) γ ∈ Aδ and Je(γ) ≤ 1 + ε. In this case (∗) implies that J(γ) ≥ 1.

(ii) γ ∈ Aδ and Je(γ) > 1 + ε. In this case we have G(x, 0) = Id and, by smoothness of G, we
can write for (x, y) ∈ Iε ×Bn−1

δε and δ → 0

〈G(x, y)v, v〉 = (1 +O(δ)) 〈v, v〉 ,

where O(δ) is uniform with respect to (x, y). Since γ ∈ Aδ implies that γ is contained in
Iε ×Bn−1

δε we can deduce for δ → 0

J(γ) = Je(γ)(1 +O(δ)) ≥ (1 + ε)(1 +O(δ))

and one can choose δ̄ > 0 small enough such that the last quantity is strictly bigger than one.

This proves that there exists δ̄ > 0 such every admissible curve γ ∈ Aδ̄ is longer than γ̄.

Remark 12.60. Notice that this result implies in particular Theorem 4.62, since normal extremals
are always smooth. Nevertheless, the argument of Theorem 4.62 can be adapted for more general
coercive functional (see [AS04]), while this proof use specific estimates that hold only for our explicit
cost (i.e., the distance).

12.8 Non-minimality of corners

Is every sub-Riemannian length-minimizer smooth? We still do not know if this is always true.
We proved that normal Pontryagin extremals are smooth, as well as nice abnormals. It is easy
to construct non-smooth abnormal extremal trajectories, but all known examples are not length-
minimizers. An example of non-smooth abnormal is given in Section 12.6.1. The trajectory is a
local length-minimizer in the L∞-topology for controls but it is not a length-minimizer (and not a
local length-minimizer in the Lp-topology, for every p <∞).

The following important regularity result says that length-minimizers cannot have “corner”
singularities. For simplicity, we state it for piecewise smooth horizontal curves. The full statement
can be found in [HLD16].
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Theorem 12.61. Any piecewise smooth length-minimizer parametrized by arclength is of class C1.

Proof. Assume that γ : [−T, T ] → M is a length-minimizer that is piecewise smooth but it is not
of class C1. It is not restrictive, by taking a suitable restriction of the curve, to assume that γ
is the concatenation of two smooth horizontal curves, i.e., there exist γ1, γ2 : [0, T ] → M smooth
horizontal curves parametrized by arclength such that

γ(t) =

{
γ1(−t), t ∈ [−T, 0]
γ2(t), t ∈ [0, T ]

, γ̇1(0) + γ̇2(0) 6= 0. (12.92)

We have to prove that, for every ε > 0, the horizontal curve γ|[−ε,ε] is not a length-minimizer.
Notice that this is equivalent to show that d(γ1(ε), γ2(ε)) < 2ε, where d denotes the sub-Riemannian
distance.

We split the proof into two parts: (a) first we consider the case of linearly independent γ̇1(0)
and γ̇2(0), (b) we then explain the simpler case γ̇1(0) = γ̇2(0), when the concatenation of the curves
has a cusp. The proof of the main case (a) is divided in several steps.

(a.1) Let f1, f2 be two smooth and horizontal vector fields such that for t ∈ [0, T ] and i = 1, 2
one has

γ̇i(t) = fi(γi(t)).

Assume by contradiction that d(γ1(t), γ2(t)) = 2t for all sufficiently small t > 0. We are going to
show that this assumption leads to a contradiction.

Let q = γ1(0) = γ2(0) and fix a neighborhood Oq together with a set of privileged coordinates.
Let δε : Oq → Oq, for ε > 0, be the associated dilation (see Chapter 10). We set

f εi = εδ 1
ε
∗fi, i = 1, 2;

and by dε the corresponding distance for every q1, q2 ∈ Oq given by

dε(q1, q2) :=
1

ε
d(δε(q1), δε(q2)).

Finally we set γεi (t) = etf
ε
i . It follows that dε(γ

ε
1(t), γ

ε
2(t)) = 2t for every ε > 0. Moreover, thanks

to the results of Section 10.5, f εi converges to f̂i in the C∞-topology and dε uniformly converges to

d̂ as ε→ 0, where the vector fields f̂1 and f̂2, are two of generators of the Carnot algebra acting on
the nonholonomic tangent space at q and d̂(·, ·) is the metric on the nonholonomic tangent space
at q. We obtain that for all t one has

d̂
(
etf̂1(q), etf̂2(q)

)
= 2t.

(a.2) The nonholonomic tangent space is a homogeneous space G/H of a Carnot group G,
and the distance d̂(q̂1, q̂2) is, by definition, the minimum of the distances in the Carnot group H
between elements of the stable subgroups of the points q̂1, q̂2 for this action. We keep symbol d̂ for
the distance in the Carnot group G. It follows that

d̂
(
etf̂1 , etf̂2

)
= 2t.

The equality follows since the concatenation of the curves τ → e(t−τ)f̂1 and τ → eτ f̂2 , 0 ≤ τ ≤ t,
equals 2t.

384



(a.3) The Carnot algebra may have more than two generators. Let us consider the subalgebra
generated by f̂1, f̂2 and the correspondent Carnot subgroup. Given two points in the subgroup, the
distance between the points in the subgroup is greater or equal than the distance in the ambient
group.

(a.4) This is the key step of the proof and we would like to simplify the notations. Let G be a
Carnot group with a Carnot algebra g. We assume that g is a Carnot algebra with step k and two
generators, namely

g = g1 ⊕ · · · ⊕ gk, g = Lie{g1}, g1 = span{x1, x2}.

We also assume that |x1| = |x2| = 1, but x1 might not be orthogonal to x2. We denote the sub-
Riemannian distance in G by d(·, ·) (without “hat”). To prove the statement in the no-cusp case it
is then sufficient to prove the next claim

Proposition 12.62. The horizontal curve in G defined by

γ̂(t) =

{
e−tx1 , t ∈ [−1, 0]
etx2 , t ∈ [0, 1]

(12.93)

is not a length-minimizer, i.e., d(ex1 , ex2) < 2.

Proof. We prove this statement by induction on the step k of G. For k = 2, G is unique and
isomorphic to the Heisenberg group, where we already computed all length-minimizers, and they
are smooth.

Assume now that the statement is valid for every (k − 1)-step Carnot group and let us prove
it for every Carnot group of step k. Note that gk is contained in the center of g and egk takes
part of the center of G. Then G/egk is a Carnot group with a step (k − 1) Carnot algebra g1 ⊕
· · ·⊕ gk−1. Moreover, the sub-Riemannian distance between two points in G/egk is by construction
the minimum of the distances between the points of the correspondent residue classes. Taking into
account the left-invariance of the distance, we can write:

d(egkq1, e
gkq2) = min

z∈gk
d(ezq1, q2).

Our induction assumption implies that there exists z ∈ gk and ν > 0 such that

d(ezex1 , ex2) = 2− ν,

Moreover, left-invariance of the distance implies that

d(ezex1 , ex2) = d(1, e−x1e−zex2).

The trick is to show explicitly a competitor by playing with horizontal curves. We start by adding
a short piece of the form t 7→ e−tε

kz, 0 ≤ t ≤ 1, as in Figure 12.2.
We claim that, for ε > 0 small enough, one has

d(ex1 , e−ε
kzex2) ≤ 2− εν. (12.94)

Indeed, again by left-invariance, we have

d(ex1 , e−ε
kzex2) = d(1, e−x1e−ε

kzex2) (12.95)
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−εkzx1 x2

ex1 ex2

1

x1

x2

Figure 12.2: Adding one piece

and we can rewrite
e−x1e−ε

kzex2 = e(ε−1)x1
(
e−εx1e−ε

kzeεx2
)
e(1−ε)x2 . (12.96)

Notice now that
e−εx1e−ε

kzeεx2 = δε
(
ex1e−zex2

)
, (12.97)

where δε is the dilation of the Carnot group of factor ε > 0. Moreover, d(1, δε(q)) = εd(1, q), for
every q ∈ G. The triangle inequality for left-invariant metrics reads:

d(1, ab) ≤ d(1, a) + d(1, b), a, b ∈ G. (12.98)

Combining the previous identities from (12.95) to (12.98) one finally gets

d(1, e−x1e−zex2) ≤ d(1, e(ε−1)x1) + ε(2 − ν) + d(1, e(1−ε)x2)

= (1− ε) + ε(2 − ν) + (1− ε) = 2− εν.

which proves (12.94).
Next we would like to compensate the deviation of the end-point of the curve produced by the

inserted piece e−ε
kz. To this end, we insert some pieces of the form eε

kyi , where yi ∈ gk−1. Each

piece increases the final distance between end-points by O(ε
k

k−1 ) since eε
kyi = δ

ε
k

k−1
(eyi). Hence the

distance between the end-points of the resulting curve remains smaller than 2 if ε is small enough,
since k

k−1 > 1.
It is actually sufficient to add three pieces as in Figure 12.3. More precisely, we want to find

y1, y2, y3 ∈ gk−1 such that

ex1eε
ky1e−x1e−ε

kze
1
2
x2eε

ky2e
1
2
x2eε

ky3 = ex2 , (12.99)

for all ε > 0. To find a solution to equation (12.99) we use the fact that e−ε
kz commutes with all

elements of the group and re-write (12.99) in the form:

(
ex1eε

ky1e−x1
)(

e
1
2
x2eε

ky2e−
1
2
x2
)(

ex2eε
ky3e−x2

)
= eε

kz. (12.100)

Now we use a universal identity

exeye−x = e(e
adxy).
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εky2

x1

−εkz

x2
2

x2
2

εky3εky1

Figure 12.3: Adding more pieces

Moreover, since g is a step k nilpotent Lie algebra and yi ∈ gk−1, we obtain:

eadxjyi = yi +
1

2
[xj, yi], i = 1, 2, 3, j = 1, 2.

Notice that all elements in the set {yi, [xj , yi] : i = 1, 2, 3, j = 1, 2} are mutually commuting because
[yi, yj] ∈ g2k−2, and g2k−2 = {0} since k ≥ 3. It follows that the product of the exponentials is
equal to the exponential of the sum. This permits finally to rewrite (12.101) as

e
εk

(
3∑

i=1
yi+

1
2
[x1,y1]+

1
4
[x2,y2]+

1
2
[x2,y3]

)

= eε
kz, (12.101)

that is equivalent to the following system, obtained by separating the part in gk−1 and the one in
gk.

3∑

i=1

yi = 0, [x1, y1] +
1

2
[x2, y2] + [x2, y3] = 2z.

Replacing y3 = −y1 − y2 in the second equation, it is sufficient to find y1, y2 ∈ gk−1 such that

[x1 − x2, y1]−
1

2
[x2, y2] = 2z. (12.102)

The existence of a pair y1, y2 satisfying (12.102) now follows from the fact that z ∈ gk and the
relations

g1 = span{x1, x2} = span{x1 − x2, x2}, [g1, gk−1] = gk.

(b). Now we prove Theorem 12.61 in the case of a cusp:

γ(t) =

{
γ1(−t), t ∈ [−T, 0]
γ2(t), t ∈ [0, T ]

, γ̇1(0) = γ̇2(0). (12.103)

Under these assumptions, there exist a horizontal smooth vector field f1 and smooth control t 7→
u(t) such that

γ̇1(t) = f1(γ1(t)), γ̇2(t) = f1(γ2(t)) + tfu(t)(γ2(t)).

387



where fu = u1f1+u2f2. If the curve γ is a length-minimizer, then d(γ1(t), γ2(t)) = 2t, for all t > 0.
Applying the blow-up procedure and the lift to the Carnot group as in steps (a.1) and (a.2) of the
proof in the no-cusp case, one obtains that

d̂

(
etf̂1 , −→exp

∫ t

0
f̂1 + τ f̂u(τ) dτ

)
= 2t.

where d̂ is the left-invariant distance on the Carnot group. In particular

d̂

(
etf̂1 , −→exp

∫ t

0
f̂1 + τ f̂u(τ) dτ

)
= d̂

(
1, e−tf̂1−→exp

∫ t

0
f̂1 + τ f̂u(τ) dτ

)

Moreover, setting gtτ := τe(t−τ)adf̂1 f̂u(τ), we have

e−tf̂1−→exp
∫ t

0
f̂1 + τ f̂u(τ) dτ = −→exp

∫ t

0
gtτ dτ,

according to the variations formula (see Proposition 6.16 and Exercice 6.17). Hence, combining the
above computations, we have for all t > 0

d̂

(
1, −→exp

∫ t

0
gtτ dτ

)
= 2t. (12.104)

If the Carnot group is of step k, then:

gtτ =

k−1∑

i=0

τ(t− τ)i
i!

(adf̂1)
if̂u(τ).

The i-th term of the sum defining gtτ belongs to the (i+ 1)-th stratum of the Carnot algebra, and
has order ti+1 for t→ 0 (notice that 0 ≤ τ ≤ t). Hence the i-th level component of −→exp

∫ t
0 g

t
τ dτ in

a privileged coordinates on the Carnot group has order ti+1 as t → 0. Indeed, this component is
the value at t of a solution of the ordinary differential equation starting from the origin and whose
right-hand side has order ti as t→ 0.

The ball-box estimates imply that there exists a constant C > 0 such that

d̂

(
1, −→exp

∫ t

0
gtτ dτ

)
≤ Ct k

k+1 .

which contradicts (12.104) for t small enough, since k
k+1 < 1.

12.9 Bibliographical note

The theory of the second variation and its relation to the study of abnormal extremal trajecto-
ries for control systems, including Goh and Legendre conditions, have been initiated in [Goh66,
KKM67, Kre73, Kre77, AG76, Agr77]. The existence of strictly abnormal length-minimizers in
sub-Riemannian geometry is due to Montgomery [Mon94], for a discussion see also [Mon02, Rif14].

The results contained in Theorems 12.6 and 12.12 have been proved in [AL09].
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When the rank of the distribution is larger or equal than 3, Goh conditions are not satisfied for
generic distributions as proved in [CJT06]. On the other hand, in the case of Carnot groups, for
big codimension of the distribution, abnormal minimizers satisfying Goh conditions always appear
[AG01a].

The definition of nice abnormals was introduced in [LS95]. The proof of the smoothness and
minimality of nice abnormals is contained in [LS95] and [AS95]. The equivalence between C0 and
W 1,2 local length-minimality is discussed in [Agr98c].

The non-minimality of corners have been proved in [HLD16], refining a “cut-and-adjust” tech-
nique first used in [LM08] to exclude corners in some class of sub-Riemannian structures. More
recently, some results have been obtained about the C1 regularity of non-nice abnormal length-
minimizers [Mon14, BFPR18, BCJ+19].

The question whether all length-minimizers are smooth (or at least of class C1) is still open.
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Chapter 13

Some model spaces

In this chapter we are going to construct explicitly the full set of optimal arclength geodesics (the
so-called optimal synthesis) starting from a point for certain relevant sub-Riemannian structures.

We start with a class of problems in which all computations can be done explicitly, namely
Carnot groups of step 2. In this setting we give a general formula for Pontryagin extremals and
we explicitly compute them in the case of multi-dimensional Heisenberg groups, together with the
optimal synthesis. For free Carnot groups of step two we provide a description of the intersection
of the cut locus with the vertical space and we give an explicit formula for the sub-Riemannian
distance from the origin to those points.

Then we present a technique to identify the cut locus, that generalizes a classical technique used
in Riemannian geometry due to Hadamard. We then apply in full detail this technique to compute
the optimal synthesis for two cases: (i) the Grushin plane; (ii) the left-invariant sub-Riemannian
structure on SU(2) with the metric induced by the Killing form. The same technique can be applied
to study SO(3) and SL(2) (again with the metric induced by the Killing form). These last two
cases are left as exercises. The optimal synthesis for SO(3) together with the one for SO+(2, 1)
is then obtained using an alternative (and more geometric) approach based on the Gauss-Bonnet
Theorem.

We conclude by treating two relevant cases, namely the left-invariant sub-Riemannian structure
on SE(2) and the Martinet flat sub-Riemannian structure. For these cases we compute geodesics
(that can be obtained explicitly in terms of elliptic functions) and we state the results concerning
the cut locus. Their proof require an estimation of the conjugate locus that can be obtained via a
fine analysis of properties of elliptic functions and it is outside the purpose of this book.

Let us recall the definition of cut time and cut locus.

Definition 13.1. Consider a sub-Riemannian manifold M that is complete as metric space. Let
γ be an arclength maximal (i.e., non extendable) geodesic. The cut time along γ is

tcut := sup{t > 0 : γ|[0,t] is length-minimizing}.

If tcut < +∞ we say that γ(tcut) is the cut point of γ(0) along γ. If tcut = +∞ we say that γ has no
cut point. We denote by Cutq0 the set of all cut points of geodesics starting from a point q0 ∈M .

Remark 13.2. Notice that with this definition, the starting point is never included in the cut locus.
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Definition 13.3. Consider a sub-Riemannian manifold complete as metric space and fix a point
q0 ∈M . The optimal synthesis from q0 is the collection of all arclength geodesics starting from q0
together with their cut time.

Given a sub-Riemannian manifold, constructing explicitly the optimal synthesis from a point
q0 is in general a very difficult problem. The main difficulties are the following:

(A) the integration of the Hamiltonian equations giving normal Pontryagin extremals. In most
cases such equations are not integrable;

(B) the identification of abnormal extremals and the study of their optimality;

(C) the evaluation of the cut time for every Pontryagin extremal. Such problem is particularly
difficult since in principle for every point of M one should find all Pontryagin extremals
reaching that point (and hence in particular one should be able to invert the exponential
map) and then one should choose the one having the smaller cost (i.e., the smaller distance
from q0).

For the reasons explained above, only few optimal syntheses are known in sub-Riemannian geom-
etry. Such examples all concern left-invariant sub-Riemannian structures on Lie groups or their
projections to homogenous spaces.

13.1 Carnot groups of step 2

A Carnot group of step 2 is a Lie group structure G on Rn such that its Lie algebra g satisfies (cf.
also Section 7.5)

g = g1 ⊕ g2, [g1, g1] = g2, [g1, g2] = [g2, g2] = 0. (13.1)

The group G is endowed by the left-invariant sub-Riemannian structure induced by the choice of a
scalar product 〈· | ·〉 on the distribution g1, that is bracket-generating of step 2 thanks to (13.1).

Consider a basis of left-invariant vector fields (on Rn) of g such that

g1 = span{X1, . . . ,Xm}, g2 = span{Z1, . . . , Zn−m},

where {X1, . . . ,Xm} define an orthonormal frame for 〈· | ·〉 on the distribution g1. Such a basis will
be referred also as an adapted basis. We can write the commutation relations as follows




[Xi,Xj ] =

∑n−m
ℓ=1 cℓijZℓ, i, j = 1, . . . ,m, with cℓij = −cℓji,

[Xi, Zj ] = [Zj , Zℓ] = 0, i = 1, . . . ,m, j, ℓ = 1, . . . , n−m.
(13.2)

Given an adapted basis, we can introduce the family of skew-symmetric matrices {C1, . . . , Cn−m}
encoding the structure constants of the Lie algebra, defined by Cℓ = (cℓij), for ℓ = 1, . . . , n − m,
and the corresponding subspace of skew-symmetric operators on g1 that are represented by linear
combination of this family of matrices

C := span{C1, . . . , Cn−m} ⊂ so(g1) (13.3)

We stress that, since the vector fields of the basis are left-invariant, then cℓij are constant.
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Definition 13.4. A Carnot algebra of step 2 is called free if C = so(g1) and the matrices Cℓ = (cℓij),
for ℓ = 1, . . . , n−m, define a basis of C.

A representation of the Lie algebra defined above is given by the family of vector fields on
Rn = Rm ⊕ Rn−m (using coordinates g = (x, z) ∈ Rm ⊕ Rn−m)

Xi =
∂

∂xi
− 1

2

m∑

j=1

n−m∑

ℓ=1

cℓijxj
∂

∂zℓ
, i = 1, . . . ,m, (13.4)

Zℓ =
∂

∂zℓ
, ℓ = 1, . . . , n−m. (13.5)

The group law on G, when identified with Rn = Rm ⊕ Rn−m, reads as follows

(x, z) ∗ (x′, z′) =
(
x+ x′, z + z′ +

1

2
Cx · x′

)
,

where we denoted for the (n−m)-tuple C = (C1, . . . , Cn−m) of m×m matrices, the product

Cx · x′ = (C1x · x′, . . . , Cn−mx · x′) ∈ Rn−m.

and a ·b denotes here the Euclidean inner product between two vectors a, b ∈ Rm. The choice of the
linearly independent vector fields {X1, . . . ,Xm, Z1, . . . , Zn−m} induce corresponding coordinates on
T ∗G

hi(λ) = 〈λ,Xi(g)〉 , wℓ(λ) = 〈λ,Zℓ(g)〉 .
The functions {hi, wℓ} defines a system of global coordinates on the fibers of T ∗G. In what follows
it is convenient to use (x, y, h,w) as global coordinates on the whole T ∗G, identified with R2n.

Normal extremal trajectories are projections on M of integral curves of the sub-Riemannian
Hamiltonian in T ∗G:

H =
1

2

m∑

i=1

h2i . (13.6)

Suppose now that λ(t) = (x(t), z(t), h(t), w(t)) ∈ T ∗G is a normal Pontryagin extremal. The
equation λ̇(t) = ~H(λ(t)) is rewritten as follows

{
ẋi = hi

żℓ = −1
2

∑m
i,j=1 c

ℓ
ijhixj

{
ḣi = −

∑n−m
ℓ=1

∑m
j=1 c

ℓ
ijhjwℓ

ẇℓ = 0
(13.7)

where we used the relation ui(t) = hi(λ(t)) satisfied by normal extremals and the property ȧ =
{H, a} for the derivative of a smooth function a along solutions of the Hamiltonian vector field ~H,
giving {

ḣi = {H,hi} = −
∑m

j=1{hi, hj}hj = −
∑n−m

ℓ=1

∑m
j=1 c

ℓ
ijhjwℓ

ẇℓ = {H,wℓ} = 0.
(13.8)

Recall moreover that H is constant along solutions, in particular H = 1/2 along extremals
parametrized by arclength. From (13.8) we easily get that wℓ is constant for every ℓ = 1, . . . , n−m,
hence the first equation rewrites as an autonomous linear equation for h = (h1, . . . , hm) ∈ Rm

ḣ = −
(
n−m∑

ℓ=1

wℓCℓ

)
h,
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It follows that

h(t) = e−tΩwh(0), Ωw :=
n−m∑

ℓ=1

wℓCℓ. (13.9)

From this expression one finds the x-component

x(t) = x(0) +

∫ t

0
e−sΩwh(0)ds.

Finally, injecting the above expression in the equation of z, one can recover the full normal extremal
trajectory by integration.

13.2 Multi-dimensional Heisenberg groups

In this section we specify the previous analysis and provide explicit computation for the case of
multidimensional Heisenberg groups. These are step-2 Carnot group structures on R2l+1 where

g = g1 ⊕ g2, dim g1 = 2l, dim g2 = 1. (13.10)

In particular the subspace C has dimension one and is spanned by a unique nonzero element in
so(g1). Choosing a suitable basis

g1 = span{X1, . . . ,X2l}, g2 = span{Z},

where {X1, . . . ,X2l} is chosen as an orthonormal basis for the scalar product 〈· | ·〉 on the distribu-
tion g1, we have that there exists a matrix C = (cij) satisfying





D = span{X1, . . . ,X2l},
[Xi,Xj ] = cijZ, i, j = 1, . . . , 2l, where cij = −cji,
[Xi, Z] = 0, i = 1, . . . , 2l.

(13.11)

Notice that this structure is free if and only if l = 1 and is contact if and only if C is non-degenerate.

Recall that C is a real skew-symmetric matrix, hence there exist α1, . . . , αl ∈ R such that

spec(C) = {±iα1, . . . ,±iαl}.

Up to an orthogonal transformation in the distribution, we can choose the orthonormal basis of g1 in
such a way that the matrix C has the following (block-diagonal) canonical form for skew-symmetric
matrices

C =



A1 0

. . .

0 Al


 , where Ai :=

(
0 αi
−αi 0

)
, αi ≥ 0. (13.12)

Remark 13.5. Notice that αi > 0 for at least one value of i, otherwise the matrix C would be zero.
In what follows we restrict our attention to the case when all coefficients αi are strictly positive.
This is equivalent to require that the structure is of contact type. This implies that there are no
non trivial abnormal extremals (cf. Section 4.3.3).
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According to this decomposition we denote by {X1, . . . ,Xl, Y1, . . . , Yl, Z} the orthonormal basis
of g1, where the vector fields satisfy the relations





g1 = span{X1, . . . ,Xl, Y1, . . . , Yl},
[Xi, Yi] = αiZ, i = 1, . . . , l,

[Xi, Yj ] = 0, i 6= j,

[Xi, Z] = [Yi, Z] = 0, i = 1, . . . , l,

(13.13)

Denoting points q = (x, y, z) ∈ R2l+1, the group law is written in coordinates as follows

q · q′ =
(
x+ x′, y + y′, z + z′ +

1

2

l∑

i=1

αi(xix
′
i − yiy′i)

)
. (13.14)

Finally, from (13.14), we get the coordinate expression of the left-invariant vector fields of the Lie
algebra, namely

Xi = ∂xi −
1

2
αiyi∂z, i = 1, . . . , l,

Yi = ∂yi +
1

2
αixi∂z, i = 1, . . . , l, (13.15)

Z = ∂z.

where x = (x1, . . . , xl), y = (y1, . . . , yl) ∈ Rl and z ∈ R.

13.2.1 Pontryagin extremals in the contact case

Next we compute the exponential map expq0 where q0 is the origin. Thanks to left-invariance of
the structure this permits to recover normal Pontryagin extremals starting from every point. With
an abuse of notation, we define the Hamiltonians (linear on fibers)

ui(λ) = 〈λ,Xi(q)〉 , vi(λ) = 〈λ, Yi(q)〉 , w(λ) = 〈λ,Z(q)〉 .

Suppose now that λ(t) = (x(t), y(t), z(t), u(t), v(t), w(t)) ∈ T ∗G is a normal Pontryagin extremal.
The equation λ̇(t) = ~H(λ(t)) is rewritten as follows





ẋi = ui

ẏi = vi

ż = −1
2

∑l
i=1 αi(uiyi − vixi)





u̇i = −αiwvi
v̇i = αiwui

ẇ = 0

(13.16)

Remark 13.6. Notice that from (13.16) it follows that the sub-Riemannian length of a geodesic co-
incide with the Euclidean length of its projection on the horizontal subspace (x1, . . . , xn, y1, . . . , yn).

ℓ(γ) =

∫ T

0

(
l∑

i=1

(u2i (t) + v2i (t))

)1/2

dt.
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Now we solve (13.16) with initial conditions (corresponding to arclength parametrized trajec-
tories starting from the origin)

(x0, y0, z0) = (0, 0, 0), (13.17)

(u0, v0, w0) = (u01, . . . , u
0
l , v

0
1 , . . . , v

0
l , w

0) ∈ S2l−1 × R. (13.18)

Notice that w = w0 is constant along the trajectory. We consider separately the two cases:

(a). If w 6= 0, we have

ui(t) = u0i cos(αiwt)− v0i sin(αiwt),
vi(t) = u0i sin(αiwt) + v0i cos(αiwt), (13.19)

w(t) = w.

From (13.16) one easily gets

xi(t) =
1

αiw
(u0i sin(αiwt) + v0i cos(αiwt)− v0i ),

yi(t) =
1

αiw
(−u0i cos(αiwt) + v0i sin(αiwt) + u0i ), (13.20)

z(t) =
1

2

l∑

i=1

αi
(u0i )

2 + (v0i )
2

α2
iw

2
(αiwt− sin(αiwt)).

(b). If w = 0, we find equations of horizontal straight lines in direction of the vector (u0, v0):

xi(t) = u0i t, yi(t) = v0i t, z(t) = 0.

To recover symmetry properties of the exponential map it is useful to rewrite (13.20) in polar
coordinates, using the following change of variables

u0i = −ri sin θi, v0i = ri cos θi, i = 1, . . . , l. (13.21)

In these new coordinates (13.20) becomes (case w 6= 0)

xi(t) =
ri
αiw

(cos(αiwt+ θi)− cos(θi)),

yi(t) =
ri
αiw

(sin(αiwt+ θi)− sin(θi)), (13.22)

z(t) =
1

2

l∑

i=1

r2i
αiw2

(αiwt− sin(αiwt)),

and the condition (u0, v0) ∈ S2l−1 implies that r = (r1, . . . , rl) ∈ Sl. This permits also to rewrite
the z component as follows

z(t) =
1

2w2

(
wt−

l∑

i=1

r2i
αi

sin(αiwt)

)
. (13.23)
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z(t) = α1A1(t) + α2A2(t)

(x1(t), y1(t))

(x2(t), y2(t))

A1(t)

A2(t)

Figure 13.1: Projection of a non-horizontal geodesic: case l = 2 and 0 < α2 < α1.

Remark 13.7. From equations (13.22) we easily see that the projection of a geodesic on every
2-plane (xi, yi) is a circle, with radius ρi, center ci, and period Ti, given by

ρi =
ri

αi|w|
ci = −

ri
αiw

(cos θi, sin θi), Ti =
2π

αi|w|
, ∀ i = 1, . . . , l (13.24)

Moreover, generalizing the analogous property of the 3D Heisenberg group, from (13.16) one
can see that the z component of the geodesic at time t is the weighted sum (with coefficients αi)
of the areas Ai(t) of the circles spanned by the vectors (xi(t), yi(t)) in R2 (see Figure 13.1). More
precisely we have the identities

z(t) =

l∑

i=1

αiAi(t), Ai(t) :=
r2i

2α2
iw

2
(αiwt− sin(αiwt)). (13.25)

Remark 13.8. Prove the following simmetry identity for the exponential map on multi-dimensional
Heisenberg groups: exp0(t, r, θ,−w) = exp(−t, r, θ + π,w).

13.2.2 Optimal synthesis

In this section we assume αi > 0 for every i = 1, . . . , l. In particular the structure is contact and
there are no non trivial abnormal extremal (see Remark 13.5). It is then sufficient to compute the
optimal synthesis to consider normal Pontryagin extremals.

We start the analysis of the optimal synthesis with the following general lemma.

Lemma 13.9. Let γ(t) = exp0(r, θ, w) be an arclength parametrized normal trajectory starting
from the origin. The cut time t∗(γ) along γ is equal to the first conjugate time and satisfies

t∗(γ) =
2π

|w|maxi αi
, (13.26)

with the understanding that t∗(γ) = +∞, if w = 0.
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Proof. The case w = 0 is trivial. Indeed the geodesic is a straight line and, by Remark 13.6, the
trajectory is optimal for all times hence t∗(γ) = +∞. We can assume then w 6= 0. Moreover,
thanks to Remark 13.8, and up to relabeling coordinates, it is not restrictive to assume that w > 0
and α1 ≥ α2 ≥ . . . ≥ αl > 0.

Since all αi > 0 are strictly positive, there are no abnormal minimizers. First we prove that at
the point γ(t∗) there is at least a one parametric family of trajectory reaching this point and with
the same length. Thanks to Theorem 8.72, this will impy that the cut time is less or equal than t∗(γ)
given in (13.26). Then we prove that for every t < tc the restriction γ|[0,t] a is length-minimizer,
proving that the formula given in (13.26) is the cut time.

(i). By our assumption, α1 = maxi αi. From (13.22) it is easily seen that the projection on the
(x1, y1)-plane of the trajectory γ satisfies

x1(t∗) = y1(t∗) = 0.

Define the variation θφ := (θ1 + φ, θ2, . . . , θl) for φ ∈ [0, 2π], and consider the trajectories

γφ(t) = exp0(t, r, θφ, w), φ ∈ [0, 2π].

It is easily seen from equation (13.22) that all these curves have the same endpoints. Indeed neither
(xi, yi), for i > 1, nor z depends on this variable. Then it follows that t∗ is a conjugate time.

(ii). Since w > 0, our geodesic is not contained in the hyperplane {z = 0}. Moreover, for every
i = 1, . . . , l, the projection of every non horizontal geodesic on on the plane (xi, yi) is a circle. In
particular, the distance from the origin of the projected curve is easily computed by

ηi(t) :=
√
xi(t)2 + yi(t)2 = sinc

(
αiwt

2

)
rit, where sinc(x) :=

sinx

x
.

Let now t0 < t∗. We want to show that there is no length-parametrized geodesic starting from the
origin γ̃ 6= γ reaching the point γ(t0) in time t0.

Assume by contradiction that there exists γ̃(t) = exp0(t, r̃, θ̃, w̃) with r̃ ∈ Sl such that γ(t0) =
γ̃(t0). Then for every i = 1, . . . , l we have ηi(t0) = η̃i(t0) which means

sinc

(
αiwt0
2

)
rit0 = sinc

(
αiw̃t0
2

)
r̃it0 i = 1, . . . , l. (13.27)

Notice that, once w̃ is fixed, r̃i are uniquely determined by (13.27) (here t0 is fixed). Moreover, θ̃i
also are uniquely determined (mod 2π) by relations (13.24). Finally, from the assumption that γ̃
reaches optimally the point γ̃(t0) as well, it follows that

t0 < t∗(γ̃) =
2π

α1w̃
=⇒ αiw̃t0

2
< π ∀ i = 1, . . . , l. (13.28)

Assume w̃ > w. Since sinc(x) is a strictly decreasing function on [0, π], this implies r̃i > ri for every
i = 1, . . . , l. In particular

l∑

i=1

r̃2i >

l∑

i=1

r2i = 1

contradicting the fact that r̃ ∈ Sl. Then, since all αi are positive there are no abnormal extremals,
Theorem 8.72 and Corollary 8.74 permit to conclude that γ(t0) is not a cut point. The case w̃ < w
is analogous.

398



In the next proposition we compute the sub-Riemannian distance from the origin to a point
contained in the vertical axis, which is always contained in the cut locus.

Proposition 13.10. Let (0, z) ∈ R2l ×R ≃ R2l+1, and let α1, α2, · · · , αl be the (possibly repeated)
frequences of the Heisenberg sub-Riemannian structure. Then (0, z) ∈ Cut0 and

d((0, 0), (0, z))2 =
4π|z|

maxi αi
. (13.29)

Proof. Without loss of generality we can assume α1 ≥ α2 ≥ · · · ≥ αr > 0. Consider the trajectory
γ(t) = exp0(r, θ, w) with r = (r1, r2) = (1, 0, . . . , 0) ∈ Sl and θ = (θ1, . . . , θl), w > 0 arbitrary.
Then by Lemma 13.9 the curve γ|[0,t∗] is a length-minimizer for t∗ given by (13.26). It follows that

d(γ(0), γ(t∗)) = t∗. (13.30)

Thanks to (13.22) it follows easily that

x1(t∗) = y1(t∗) = x2(t∗) = y2(t∗) = 0, z(t∗) =
π

α1w2
=
α1

4π
t2∗. (13.31)

Plugging the last formula in (13.30) and writing t∗ as a function of z one gets (13.29).

The exact computation of the cut locus is possible thanks to the characterization of the cut
time for every geodesic.

Exercise 13.11. Prove the folllowing facts

(a) Assume that α1 = . . . = αl. Then Cut0 = {(0, z) ∈ R2l+1 : z ∈ R \ {0}}.

(b) Assume that l = 2 and 0 < α2 < α1. Prove that

Cut0 = {(0, 0, x2, y2, z) ∈ R5 : |z| ≥ (x22 + y22)K(α1, α2), (x2, y2, z) ∈ R3 \ {0}}, (13.32)

where K(α1, α2) is a positive constant satisfying K(α1, α2)→ 0 for α2 → 0 and K(α1, α2)→
+∞ for α2 → α1.

(c) Assume that l = 2 and 0 = α2 < α1. Compute Cut0.

Generalize the previous formulas to all other cases for 0 = αl ≤ . . . ≤ αl, and compute the dimension
of Cut0 in terms of the frequences α1, α2, · · · , αl.

13.3 Free Carnot groups of step 2

Recall from Definition 13.4 that a Carnot group of step 2 is free if the matrices C1, . . . , Cn−m define

a basis of the space of skew-symmetric matrices. In particular n = m+ m(m−1)
2 and it is convenient

to treat Rn = Rm ⊕ Rn−m as the sum

Rn = Rm ⊕ (Rm ∧Rm).

In what follows we denote by Gm := Rm ⊕ ∧2Rm the free Carnot groups of step 2 and we identify
∧2Rm with the vector space of skew-symmetric real matrices, that is v ∧ w = vw∗ − wv∗ for
v,w ∈ Rm.
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It is convenient to employ the following notation: we denote points (x,Z) ∈ Gm, where x ∈ Rm

and Z is a skew-symmetric matrix. We fix the canonical basis {Eℓj}1≤ℓ<j≤m of so(Rm) and we
write Z =

∑
ℓ<j ZℓjEℓj .

As discussed in Section 13.1 we can choose a suitable basis in such a way that the sub-
Riemannian structure is generated by the set of global orthonormal vector fields:

Xi := ∂xi −
1

2

∑

1≤ℓ<j≤m
(ei ∧ x)ℓj∂Zℓj

, i = 1, . . . ,m, (13.33)

where {e1, . . . , em} is the standard basis of Rm. More precisely, the horizontal distribution is defined
by D := span{X1, . . . ,Xm} and the sub-Riemannian metric by g(Xi,Xj) = δij .

For all i < j, we have [Xi,Xj ] = ∂Zij . In particular, the vector fields (13.33) generate the free,
nilpotent Lie algebra of step 2 with m generators:

g = g1 ⊕ g2, where g1 = span{X1, . . . ,Xm}, g2 = span{∂Zij}i<j . (13.34)

The Lie group structure on Gm such that the vector fields Xi are left-invariant is given by the
polynomial product law

(x,Z) ⋆ (x′, Z ′) =
(
x+ x′, Z + Z ′ +

1

2
x ∧ x′

)
. (13.35)

Notice, moreover, that the matrices C1, . . . , Cn−m coincide in this case with the standard basis of
so(m). Hence the matrix Ωw defined in (13.9) is simply an arbitrary skew-symmetric matrix and
the w component of the initial covector are coordinates on the space so(m)

Ωw =
∑

1≤ℓ<j≤m
wℓjCℓj =

∑

1≤ℓ<j≤m
wℓjEℓj.

For this reason in what follows we drop the w from the notation and simply write Ω for Ωw.

Example 13.12. The case m = 2 is the well-known Heisenberg group. Indeed, we can identify
(x,Z) ∈ R2 ⊕ ∧2R2 with (x, z) ∈ R2 ⊕ R, so that the generating vector fields (13.33) read

X1 = ∂x1 −
x2
2
∂z, X2 = ∂x2 +

x1
2
∂z. (13.36)

Example 13.13. The case m = 3 can be dealt with by identifying (x,Z) ∈ R3 ⊕ ∧2R3 with
(x, t) ∈ R3 ⊕ R3. More precisely, any 3 × 3 skew-symmetric matrix can be written as Z = v ∧ w,
and is identified with the cross product z = v×w. Notice that v×w does not depend on the choice
of the representatives v,w such that Z = v ∧ w.

Under this identification, the tautological action of Z on R3 reads

Zx = (v ∧w)x = x× (v × w) = x× z, ∀x ∈ R3, (13.37)

and the generating vector fields (13.33) are

X1 = ∂x1 +
x3
2
∂z2 −

x2
2
∂z3 , X2 = ∂x2 +

x1
2
∂z3 −

x3
2
∂z1 , X3 = ∂x3 +

x2
2
∂z1 −

x1
2
∂z2 . (13.38)
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The goal of this section is to compute the intersection of the cut locus from the origin with the
vertical space V = {(0, Z) | Z ∈ ∧2Rm}. In particular we give the explicit formula of the distance
from the origin to every point of V .

Remark 13.14. Since the sub-Riemannian structure has step 2, then there exists no strictly abnor-
mal length-minimizer thanks to Corollary 12.15. In particular to compute the optimal synthesis
and the sub-Riemannian distance it is sufficient to consider only normal Pontryagin extremals.

Suppose now that λ(t) = (x(t), z(t), h(t), w(t)) ∈ T ∗G is a normal Pontryagin extremal. Then,
thanks to the previous analysis we have

h(t) = e−tΩh(0), Ω ∈ so(m).

From this expression one finds the x-component

x(t) =

∫ t

0
e−sΩh(0)ds.

The vertical part of the horizontal trajectory can be recovered integrating the equation

Ż(t) =
1

2
x(t) ∧ h(t). (13.39)

Then we the obtain the following formula (recall Z(0) = 0)

Z(t) =
1

2

∫ 1

0

∫ t

0
e−sΩh(0) ∧ e−tΩh(0)ds dt, (13.40)

=
1

2

∫ 1

0

∫ t

0
(e−sΩPetΩ − e−tΩPe−sΩ)ds dt, (13.41)

where we denoted by P the symmetric matrix h(0)h(0)∗.
For a fixed geodesic, there exists a good set of coordinates such that the matrix Ω is written in

normal form. The main linear algebra ingredient is given by the following lemma.

Lemma 13.15. Let Ω ∈ so(n), x0 ∈ Rn and define the set

Θ := {Ω′ ∈ so(n) | etΩ′

x0 = etΩx0, for all t ≥ 0}.

There exists Ω ∈ Θ with all nonzero eigenvalues that are simple and such that ker Ω has maximal
dimension.

Proof. Since Ω is skew-symmetric, there exist α1, . . . , αr such that spec(Ω) = {±iα1, . . . ,±iαr, 0}.
Let us decompose Rn in real eigenspaces

Rn = E0 ⊕
r⊕

j=1

Ej , E0 = ker Ω, Ej = ker(Ω + iαj)⊕ ker(Ω − iαj),

and work in an adapted basis inducing coordinates adapted to the splitting. In this basis Ω has a
block-diagonal form Ω = diag{Ω1, . . . ,Ωr, 0} and we similarly decompose x0 = (x0,1, . . . , x0,r, x0,0).
Notice that, thanks to the block structure, we have etΩx0 = (etΩ1x0,1, . . . , e

tΩrx0,r, 0). The existence
of the matrix Ω is obtained by applying the following algorithm.
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Assume that x0,j = 0 for some j > 0. Then one can replace the corresponding block Ωj with a
zero block, without changing the value of etΩx0.

Assume that dimEj > 2 for some j > 0, i.e., there exists a block with multiple eigenvalues.
Then, thanks to Exercice 13.16, we have dim span{etΩjx0,j | t ∈ R} = dim span{x0,Ωx0} = 2, thus
we can write

Ej = span{x0,j,Ωjx0,j} ⊕ span{x0,j ,Ωjx0,j}⊥. (13.42)

Choosing a basis in Ej corresponding to the splitting (13.42), we can replace the block of Ωj
corresponding to span{x0,j ,Ωjx0,j}⊥ with a zero block. The restriction of the matrix that one
obtains to Ej has ±iαj as simple eigenvalues, and a kernel of dimension dim(Ej)− 2.

Exercise 13.16. Let Ω ∈ so(n) and assume spec(Ω) = {±iα}. Then for x0 ∈ Rn

span{etΩx0 | t ∈ R} = span{x0,Ωx0}.

From the previous discussion it follows that, for a given geodesic, there exists a linear change
of coordinates in the space such that the matrix Ω is presented as a block-diagonal matrix

Ω = (Ω1, . . . ,Ωℓ,O),

where O is a block zero matrix and

Ωi =

(
0 αi
−αi 0

)
= αJ,

where J denotes the 2× 2 symplectic matrix J =

(
0 1
−1 0

)
.

13.3.1 Intersection of the cut locus with the vertical subspace

First we prove that every vertical points in Gm is contained in the cut locus. More precisely we
have the following.

Lemma 13.17. The set of points {(0, Z) ∈ Rm ⊕ ∧2Rm | Z 6= 0} is contained in Cut0(Gm).

Proof. Fix a point (0, Z) ∈ Gm with Z 6= 0. Thanks to Exercice13.18 there exists a non zero
orthogonal matrix M ∈ SO(m) such that MZM∗ = Z and M equal to the identity on kerZ. Let
now γ(t) = (x(t), Z(t)) be a length-minimizer joining the origin to (0, Z). The existence of such a
geodesic is guaranteed by completeness of the sub-Riemannian structure. Let us show that there
exist (at least) two length-minimizers reaching (0, Z).

Consider the curve γ(t) = (Mx(t),MZ(t)M∗). Notice that γ(0) = (0, 0) and, by properties of
M , one has γ(1) = (0,MZM∗) = (0, Z). Moreover ℓ(γ) = ℓ(γ). Since M 6= I we have γ 6= γ.
Thus γ and γ are two horizontal length-minimizers joining the same end-points. This proves the
claim.

Exercise 13.18. Let Z ∈ so(m) be a non zero skew-symmetric matrix.

(a). Prove that there exists an orthogonal matrix M ∈ SO(m),M 6= I, such that MZM∗ = Z.

(b). Prove that the matrix M can be chosen to be the identity on kerZ.
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(c). Show that the set of matrices satisfying properties (a) and (b) is a Lie group and compute
its dimension.

Now we compute the sub-Riemannian distance from the origin of vertical points in Gm.

Proposition 13.19. Let (0, Z) ∈ Gm, and let α1 ≥ α2 ≥ · · · ≥ αr > 0 be the (possibly repeated)
absolute values of the non-zero eigenvalues of Z. Then,

d((0, 0), (0, Z))2 = 4π
r∑

j=1

jαj . (13.43)

Proof. Without loss of generality, Let γ(t) = (x(t), Z(t)) be a geodesic from the origin such that
x(1) = 0 and Z(1) = Z, with h(t) = e−Ωth0, where we set h0 := h(0). By (13.40), we have

∫ 1

0
e−tΩh0 dt = x(1) = 0. (13.44)

Thus, the non-zero eigenvalues of Ω are of the form ±i2πφ, with φ ∈ N. By Lemma 13.15, and up to
an orthogonal transformation, we may assume that Ω = (2πφ1J, . . . , 2πφℓJ, 0m−2ℓ), with all simple
eigenvalues, 2ℓ = rank (Ω), and with distinct φi ∈ N. We split accordingly h0 = (h0,1, . . . , h0,ℓ, h0,0),
with h0,i ∈ R2 for i = 1, . . . , ℓ and h0,0 ∈ Rm−2ℓ. Using the canonical form and the fact that φ ∈ N,
it is not difficult to explicitly integrate the vertical part of the geodesic equations (13.40). We
obtain

Z(1) =

( |h0,1|2
4πφ1

J, . . . ,
|h0,ℓ|2
4πφℓ

J, 0m−2ℓ

)
. (13.45)

Then |h0,j |2 = 4πφjαj for all j = 1, . . . , r. The squared length of γ is

ℓ(γ)2 =

(∫ 1

0
|u(t)|dt

)2

= |h0|2 =
r∑

j=1

|h0,j |2 = 4π
r∑

j=1

φjαj . (13.46)

The minimum of this quantity over all choice of φj ∈ N and all distinct is obtained when φj = j,
for all j = 1, . . . , r.

13.3.2 The cut locus for the free step-two Carnot group of rank three

Lemma 13.17 shows that the cut locus Cut0(Gm) always contains the vertical points, i.e., those of
the form {(0, Z) ∈ Rm ⊕∧2Rm, Z 6= 0}.

In the case of the Heisenberg group, that is G2 in the notation of this chapter, the cut locus
has been previously computed, and it indeed coincides with the vertical space

Cut0(G2) = {(0, Z) ∈ R2 ⊕ ∧2R2, Z 6= 0}.

Nevertheless, in general, the cut locus is bigger than the vertical set. In this section, we give
the explicit expression of the cut locus Cut0(Gm) when m = 3, also called free Carnot group of
growth vector (3, 6).

The detailed computations of the cut time and cut locus for the case m = 3 are much harder,
and we do not give them here. We only state the following characterization.
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Theorem 13.20. The cut locus for the step 2 free Carnot groups of rank 3 is given by

Cut0(G3) = {(x,Z) ∈ R3 ⊕ ∧2R3 | Z = v ∧w 6= 0, Zx = 0}. (13.47)

A proof of this fact was first given in [Mya02] (cf. also [MM17]). The following (strict) inclusion
holds for general m > 3

{(x,Z) ∈ Rm ⊕ ∧2Rm | Z = v ∧ w 6= 0, Zx = 0} ⊂ Cut0(Gm), (13.48)

Indeed in [RS17] the authors prove that there exists a set of codimension 2 that is contained in
the cut locus. It is still an open problem to characterize exactly the set Cut0(Gm) and we refer to
[RS17] for more details.

13.4 An extended Hadamard technique to compute the cut locus

Let us consider a sub-Riemannian structure, complete as a metric space and fix q0 ∈ M . Assume
that we are able to solve the problems (A) and (B) stated after Definition 13.3. This usually is not
so hard when one is considering left-invariant structures on Lie groups of small dimension. More
precisely assume that:

• we are able to get the explicit expression of normal geodesics;

• we are able to prove that all strict abnormal extremals are not optimal.

Let expq0(t, θ) be the standard exponential map providing geodesic parametrized by arclength
(here θ ∈ Λq0 = T ∗

q0M ∩H−1(1/2)). With a slight abuse of notation, let expq0(λ) be the exponential
map at time 1 (here λ ∈ T ∗

q0M). Notice that expq0(t, θ) = expq0(λ) with λ = t θ.
A useful method to evaluate the cut time for every normal extremal consists in a suitable use

of a classical result stating that if a smooth map between two connected manifolds of the same
dimension is proper and its differential is nowhere singular then it is a covering.

Definition 13.21. A continuous map f :M1 →M2 between smooth manifold is proper if f−1(K)
is compact in M1 for any K compact in M2.

To prove that a continuous map is proper it is sufficient to show that a sequence escaping out
from any compact in M1 escapes out from any compact in M2. When M1 and M2 are subsets of
two compact manifolds with the induced topologies, then to prove that f is proper, it is sufficient
to prove that ∂M1 is mapped in ∂M2 through f .

Definition 13.22. A continous (resp. smooth) map f : M1 → M2 between connected smooth
manifolds is a continuous (resp. smooth) covering map if for every y ∈ M2, there exists an open
neighborhood V of y, such that f−1(V ) is a union of disjoint open sets in M1, each of which is
mapped homeomorphically (resp. diffeomorphically) onto V .

We recall some important properties of covering maps:

P1: The preimage of a point is a discrete set, whose cardinality is independent from the point.

P2: Given a continuous curve γ : [0, 1] → M2 and a point q1 in M1 such that f(q1) = γ(0), then
there exists a unique continuous curve Γq1 : [0, 1]→M1 such that Γq1(0) = q1 and f(Γq1) = γ
(see Figure 13.2). The curve Γq1 is called the lift of γ (through q1).
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M2

M1

f

q1
Γq1

γ

Figure 13.2: Uniqueness of the lift for a covering map.

P3: Consider two homotopic loops γ, γ′ : [0, 1] → M2 and a point q1 in M1 such that f(q1) =
γ(0) = γ′(0). Let Γq1 and Γ′

q1 the corresponding lifts. Then the final points of Γq1 and Γ′
q1

are the same, namely Γq1(1) = Γ′
q1(1).

Theorem 13.23. Let M1 and M2 two smooth connected differentiable manifolds and f :M1 →M2

be smooth. Assume that f is proper and that its differential is nowhere singular. Then f is a
covering.

Proof. We recall that any proper continuous map f :M1 →M2 between smooth manifold is closed,
i.e., f(C) is closed in M2 for every closed set C ⊂M1.

Since f is a local diffeomorphism, it is open. Since f is proper, it is closed. Hence f(M1) is
open and closed in M2 and, by connectedness, f is surjective. Fix y ∈ M2. Since f is a local
diffeomorphism, each point of f−1(y) has a neighborhood on which f is injective, so f−1(y) is a
discrete set. Since the singleton {y} is compact and f is proper, then f−1(y) is compact, hence
finite. Set f−1(y) = {x1, . . . , xk}. Fix Ui a neighborhood of xi where f is a diffeomorphism.
It is not restrictive to suppose that Ui ∩ Uj = ∅ for i 6= j. Set V = ∩ki=1f(Ui). Since each
f(Ui) is a neighborhood of y, V is a neighborhood of y also. By replacing V with the connected
component of V \ f(M1 \ ∪iUi) (which is open since f is closed) containing y, we can moreover
assume that V is connected and f−1(V ) ⊂ ∪iUi. Hence if one set U i := Ui ∩ f−1(V ) one can
check that f−1(V ) = ∪iU i, disjoint union of its connected components, and that f : U i → V is a
diffeomorphism, as desired.

Often one would like to prove that f is indeed a diffeomorphism (at least this is what we will
need later, with the exponential map playing the role of f). Once it is known that the map f is a
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covering map, to show that it is injective one should prove that it is a 1-sheet covering, i.e., that
the preimage of each point is a single point. The following corollary provides a criterium.

Corollary 13.24 (of Theorem 13.23). Under the assumptions of Theorem 13.23, if M2 is simply
connected, then f :M1 →M2 is a diffeomorphism.

Proof. It is enough to show that the map f is injective. Let x1 6= x2 inM1 such that f(x1) = f(x2).
Take a continuous curve α : [0, 1] →M1 such that α(0) = x1 and α(1) = x1 homotopic to a point.
Its image γ := f ◦ α : [0, 1] → M2 is a closed loop in M2 such that γ(0) = γ(1) = y. Since M2 is
simply connected there exists a continous map

Γ : [0, 1] × [0, 1]→M2

such that Γ(0, t) = y and Γ(1, t) = γ(t). For s sufficiently closed to 0 the curve γs(t) = Γ(s, t) stays
in the set V where f is a covering hence f−1(γ) is the union on k closed loop and it should be
homotopic to a point. This gives a contradiction.

Another criterium, when M2 is not simply connected, is given by the following result.

Corollary 13.25 (of Theorem 13.23). Under the assumptions of Theorem 13.23, if M2 is home-
omorphic to S1 ×N , where N is simply connected, and there exists a loop in M1 whose image via
f is a loop in M2 that is homotopic to S1 × {x}, for some x ∈ N , then f : M1 → M2 is a global
diffeomorphism.

Proof. Assume by contradiction that the number of pre-images of a point is not one. Let Γ :
[0, 1]→M1 be a loop in M1, where q1 = Γ(0), and let γ = f(Γ) its image in M2, that is homotopic
to S1 × {x}, for some x ∈ N . Let q1 ∈ f−1(γ(0)) with q1 6= q1. We refer to Figure 13.3.

Consider a continuous curve Γ : [0, 1] → M1 connecting q1 and q1 (this is possible since M1 is
connected a manifold and hence path connected). Consider its image onM2 that is γ := f(Γ). Since
M2 is homeomorphic to S1 × N , it is defined the winding number of a loop in M2. In particular
it is defined the winding number w of γ. Notice that w is an integer, defined up to a sign up to a
sign since there is no orientation.

If w = 1, i.e., γ is homotopic to S1 × {y}, for some y ∈ N , then γ is homotopic to γ since
N is simply connected. Hence since Γ(0) = Γ(0) = q1 and thanks to property P3 we have that
Γ(1) = Γ(1). As a consequence q1 = q1.

If w > 1, then we consider the loop Γn : [0, n] → M1 obtained by concatenating n times the
curve Γ. Let us denote γn its image on M2. We have that γ is homotopic to γn. This implies
q1 = q1, as above.

If w = 0, i.e., if γ is contractible, we consider a contractible loop Γ0 : [0, 1] → M1 such that
Γ0(0) = Γ0(1) = q1. Let γ0 be its image. Since a covering is a continuous map, the image of a
contractible loop is a contractible loop. Hence γ0 is contractible and we have that γ and γ0 are
homotopic. The same reasoning as before gives again q1 = q1.

Remark 13.26. More in general, if f : M1 → M2 is a covering map, then the induced map on the
fundamental groups [f ] : π1(M1) → π1(M2) is injective. Moreover the number of preimages of a
point via f coincides with the index of the subgroup [f ](π1(M1)) in π1(M2). If one assumes that
[f ] is surjective, then it follows that the cardinality of preimages of points is one, hence f is a global
diffeomorphism. We refer to [Hat02, Prop. 1.31, 1.32] for a proof of these statements.
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Figure 13.3: Proof of Corollary 13.25

In the special case of Corollary 13.25 one has π1(M2) ≃ Z and the existence of a loop satisfying
the above assumption is equivalent to require that [f ] is surjective.

Finding the cut locus via Theorem 13.23 consists in the following steps. Notice that the method
is slightly different if the structure is Riemannian at the starting point (i.e., if the rank of the sub-
Riemannian structure at q0 is equal to dimM = n) or not. Recall that if the structure is Riemannian
at q0, then Λq0 has the topology of Sn−1 while if the structure has rank m < n at q0 then Λq0 has
the topology of Sm−1 × Rn−m.

Step 1 Study the symmetries of the problem to identify points that are reached at the same time
by more than one geodesic. This analysis has the purpose of having a guess about the cut
locus and hence of the cut time for each geodesic.

Let us call the conjectured cut locus Cut∗q0 and the conjectured cut times t∗cut(θ), for θ ∈ Λq0
(notice that it may happen that t∗cut(θ) is +∞).

Notice that if Cut∗q0 has a boundary then the points on the boundary are expected to be
conjugate points (since the set Cut∗q0 comes from the symmetries of the problem it is usually
not difficult to verify that the points on his boundary are conjugate points). Conjugate points
on the boundary of Cut∗q0 must be included in Cut∗q0 .

We have two cases:

• If the structure is Riemannian at q0 define N1 = {t θ | θ ∈ Λq0 , t ∈ [0, t∗cut(θ))} ⊂ T ∗
q0M .

Notice that in this case N1 is an open star-shaped set always covering a neighborhood
of the origin in T ∗

q0M .

• If the structure is not Riemannian at q0 define N1 = {t θ | θ ∈ Λq0 , t ∈ (0, t∗cut(θ))};
Notice that in this case N1 is an open set that looks like a star-shaped set to which it
was removed the starting point and the annihilator of the distribution.

Define N2 = expq0(N1). Verify that N2 = M \ Cut∗q0 . If this is not the case then the
conjectured cut locus and cut times were wrong. Indeed, if there exists q ∈ N2 \ (M \Cut∗q0),
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then q is reached by a geodesic at its conjectured cut time and by another geodesic before its
conjectured cut time. On the other side if there exists q ∈ (M \ Cut∗q0) \N2 then expq0 |N1 is
not covering M up to the conjectured cut locus. These facts are clarified by the following
example.

Example 13.27. Consider the problem of finding the optimal synthesis starting from 0 for
standard Riemannian metric on the circle S1 = [−π, π]/ ∼ where ∼ is the identification of
−π and π. We have only two geodesics parametrized by arclength: q+(t) = t and q−(t) = −t.
By symmetry the two geodesics meet at t = 0, π, 2π, 3π, . . . etc. Assume that we make the
(false) conjecture that the cut time is t∗cut = 3π (instead than t∗cut = π). In this case Step 1
fails because N2 = S1 6= S1 \ {π} = S1 \ Cut∗0.

Remark 13.28. Notice that if the structure is Riemannian at q0 and the conjectured cut locus
is the right one, then N2 is contractible (can be contracted to q0 along the geodesics) and
hence it is simply connected.

Step 2 Prove that the differential of expq0 is invertible at every point in N1 (i.e., there are no
conjugate points in N2 for exp|N1). In the following, for simplicity, we assume that there are
no non-trivial abnormal extremals. If there are non-strict abnormal extremals (that moreover
are non trivial) then there are always conjugate points (cf. Remark 8.46). In this case one
can apply the technique explained here to the larger subset of N1 not containing points
mapped to the support of the abnormal. In this way one can obtain the optimal synthesis
outside the support of the abnormal and one should study the abnormal separately. See the
bibliographical note for some references.

Step 3 Prove that expq0 |N1 is proper.

Step 4 (R) If the structure is Riemannian at q0 and the conjectured cut locus is the right one,
then N2 should be simply connected (cf. Remark 13.28). After having verified that N2 is
simply connected, Corollary 13.24 (with N1, N2, expq0 playing the role of M1,M2, f) permits
to conclude that expq0 |N1 is a diffeomorfism and hence that the conjectured cut times and
cut locus are the true ones.

Step 4 (SR) If the structure is not Riemannian at q0, Theorem 13.23 permits to prove that
expq0 |N1 is a covering but one cannot conclude that f is a diffeomorphism using Corollary
13.24 unless N2 is simply connected. If N2 is not simply connected, to conclude that expq0 |N1

is a diffeomorphism one could for instance try to apply Corollary 13.25. Notice that if n = 3
and the structure is not Riemannian at q0 then N2 is never simply connected.

Writing γθ(·) = expq0(·, θ)|[0,t∗cut(θ)] the optimal synthesis is then the collection of trajectories

{
γθ(·) | θ ∈ H−1(1/2)

}
.

Remark 13.29. The main difference between the case in which q0 is a Riemannian point and when
it is not, is that in the second case q0 should be removed from N1. This should be done to satisfy
the hypothesis of Theorem 13.23 and in particular to guarantee that i) N1 is a manifold ii) there
are no conjugate points in N1 (the starting point is always a conjugate point when the structure is
not Riemannian at the starting point itself).
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Notice that when q0 is a Riemannian point, the starting point is not a conjugate point. Moreover
N1 is a manifold even without removing q0. Thanks to the fact that in this case N1 is star-shaped,
it is enough to verify that N2 is simply connected and one obtain directly that if there are no
conjugate points in N2 for exp|N1 then exp|N1 is a diffeomorphism.

We are now going to apply this technique to a structure that is Riemannian at the starting
point and to a structure that is not Riemannian at the starting point.

13.5 The Grushin structure

The Grushin plane is the free almost-Riemannain structure on R2, with coordinates (x, y), for which
a global orthonormal frame is given by (cf. Section 9.2)

F1 =

(
1
0

)
, F2 =

(
0
x

)
.

Such a structure is Riemannian out of the y axis that is called the singular set. The only abnormal
extremals are the trivial ones lying on the singularity. Indeed out of the singularity we are in
the Riemannian setting and a curve whose support is entirely contained in the singular set is not
admissible. We are then reduced to study normal Pontryagin extremals.

Writing p = (p1, p2), the maximized Hamiltonian is given by

H(x, y, p1, p2) =
1

2
(〈p, F1〉2 + 〈p, F2〉2) =

1

2
(p21 + x2p22), (13.49)

and the corresponding Hamiltonian equations are:

ẋ = p1, ṗ1 = −x p22,
ẏ = x2p2, ṗ2 = 0.

Normal Pontryagin extremals parameterized by arclength are projections on the (x, y) plane of
solutions of these equations, lying on the level set H = 1/2.

13.5.1 Optimal synthesis starting from a Riemannian point

Let us construct the optimal synthesis starting from a point (x0, 0), x0 6= 0 (taking the second
coordinate zero is not restrictive due to the invariance of the structure by y-translations). In this
case the condition H(x(0), y(0), p1(0), p2(0)) = 1/2 becomes p21 + x20 p

2
2 = 1 and it is convenient to

set p1 = cos(θ), p2 = sin(θ)/x0, for θ ∈ S1. The expression of the normal Pontryagin extremals
parameterized by arclenght is q(t, θ) = exp(x0,0)(t, θ) = (x(t, θ), y(t, θ)) where





x(t, 0) = t+ x0, y(t, 0) = 0,

y(t, π) = −t+ x0, y(t, π) = 0,

x(t, θ) = x0
sin(θ + t sin(θ)

x0
)

sin(θ)
,

y(t, θ) = x0
2t+ 2x0 cos(θ)− x0

sin
(
2θ+2

t sin(θ)
x0

)

sin(θ)

4 sin(θ)
,





if θ /∈ {0, π}.

(13.50)
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Theorem 13.30. The cut time for the geodesic q(·, θ) is

tcut(θ) =

∣∣∣∣x0
π

sin(θ)

∣∣∣∣ .

For θ = 0 or θ = π this formula should be interpreted in the sense that the corresponding geodesic
q(·, 0) and q(·, π) are optimal in [0,∞).

Let us fix θ ∈ (0, π) (being the case θ ∈ (π, 2π) symmetric). For θ /∈ π/2, the cut point
q(tcut(θ), θ) is reached exactly by two optimal geodesics. Namely the geodesics: q(·, θ) and the
geodesics q(·, π − θ).

For θ = π/2 the cut point q(tcut(θ), θ) is reached exactly by one optimal geodesic for which
tcut(θ) is also a conjugate point.

By direct computation one gets

Corollary 13.31. The cut locus starting from (x0, 0) is

Cutx0 =
{
(−x0, y) ∈ R2 | y ∈ (−∞,−π

2
x20] ∪ [

π

2
x20,∞)

}
.

the points (−x0,±π
2x

2
0) are also conjugate points.

The optimal synthesis for Grushin plane with x0 = −1 is depicted in Figure 13.4.

Proof of Theorem 13.30

We are going to apply the extended Hadamard technique. Recall that in this case the starting
point is Riemannian.

Step 1: Construction of the conjectured cut locus and of the sets N1 and N2.

By a direct computation one immediately obtains:

Lemma 13.32. For θ 6= {0, π}, we have

q

(∣∣∣∣x0
π

sin(θ)

∣∣∣∣ , θ
)

= q

(∣∣∣∣x0
π

sin(θ)

∣∣∣∣ , π − θ
)

=

(
−x0,

π

2
x20

1

sin(θ)2

)
.

Moreover the determinant of the differential of the exponential map is:

D(t, θ) :=

(
∂tx(t, θ) ∂θx(t, θ)
∂ty(t, θ) ∂θy(t, θ)

)
=





t2 + t3

3x0
+ tx0 if θ = 0,

−t2 + t3

3x0
+ tx0 if θ = π,

x0



x0
sin

(

t sin(θ)
x0

)

sin(θ)
−t cos(θ) cos

(
θ+ t sin(θ)

x0

)




sin2(θ)
, if θ /∈ {0, π}.

In particular D(|x0π|, π/2) = 0.

We then conjecture that the cut time of the geodesic q(t, θ) is t∗cut(θ) =
∣∣∣x0 π

sin(θ)

∣∣∣ and that the cut

locus is

Cut∗x0 = {(−x0, y) ∈ R2 | y ∈ (−∞,−π
2
x20] ∪ [

π

2
x20,∞)}.
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starting point

cut point that
is also conjugate
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Figure 13.4: A: the optimal synthesis for the Grushin plane starting from the point (−1, 0), together
with the sub-Riemannian sphere of radius 4. B: all geodesics up to length 6 with the corresponding
wave front.
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We have then in polar coordinates

N1 = {(ρ, θ) | ρ <
∣∣∣∣x0

π

sin(θ)

∣∣∣∣}.

In cartesian coordinates

N1 = {(p1, p2) ∈ T ∗R2 : |p2| < π},
N2 = exp(N1) = {(x, y) ∈ R2 | (x, y) /∈ Cut∗x0}.

Step 2: Study of the conjugate points

In this step we have to prove that there are no conjugate points in N1. In other words we have to
prove the following Lemma:

Lemma 13.33. The geodesic q(·, θ) has no conjugate points in [0, t∗cut(θ)).

Proof. Since the zeros of D(·, θ) are not explicitly computable we proceed in the following way. By
symmetry we can assume x0 > 0 and θ ∈ [0, π]. We have that

• D(0, θ) = 0. Notice however that this does not mean that t = 0 is a conjugate time. Indeed
in x0 the structure is Riemannian and D(0, θ) vanishes only as a consequence of the choice of
polar coordinates.

• D(t∗cut(θ), θ) = πx20
cos2 θ
sin3 θ

. This quantity is always larger than zero except for θ = π/2 where
it is zero.

• ∂tD(t, θ) =
(x0 + t cos θ)

(
sin(θ + t sin θ

x0
)
)

sin θ
. Notice that this function is positive in t = 0. Let

us study when this function is zero in the interval (0, t∗cut(θ)). We have two type of zeros.

– Type one when x0 + t cos θ = 0, which means t = − x0
cos θ . This value belongs to

(0, t∗cut(θ)) when θ ∈ (θ̄, π] where θ̄ = − arctan(π) ≃ 1.88. One immediately verifies that
this zero corresponds to a minimum of D(·, θ) and that the value of this minimum is
positive.

– Type two when θ + t sin θ
x0

= kπ with k = 0, 1, 2, . . . which means t = x0
sin θ (kπ − θ). This

value belongs to (0, t∗cut(θ)) if and only if k = 1. One immediately verifies that this zero
corresponds to a maximum of D(·, θ) and that the value of this maximum is positive.

By this analysis it follows that D(·, θ) is a function that is zero in zero; it has positive derivative in
zero; it is positive at t∗cut(θ) (zero only when θ = π/2); it has a maximum and a minimum (possible
only a maximum) in which it is positive.

It follows that D(·, θ) is never zero in (0, t∗cut(θ)). Since t = 0 is not a conjugate point, it follows
that there are no conjugate points in [0, t∗cut(θ)).

Step 3 We are now going to prove that the map exp : N1 → N2 is proper. But this is obvious since

• all points of the form (p1,±π) are mapped in points of Cut∗x0 ;
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• the image of any sequence in N1 with p1 → ∞ (resp. p1 → −∞) is mapped in a sequence
tending to the point (0,∞) (resp. (0,−∞)).

Step 4 (R) Since N2 is simply connected, the application of Corollary 13.24 permits to conclude
that exp is a diffeomorphism between N1 to N2. As a consequence the conjectured cut locus and
cut times are the true ones.

13.5.2 Optimal synthesis starting from a singular point

Let us construct the optimal synthesis starting from a singular point. By invariance of the structure
by y-translations we can assume that the starting point is the origin. In this case the condition
H(x(0), y(0), p1(0), p2(0)) = 1/2 becomes p21 = 1. We have then p1 = ±1. Setting p2(0) =
a, the expression of the normal Pontryagin extremals parameterized by arclenght is q±(t, a) =
(x±(t, a), y(t, a)) where





x±(t, 0) = ±t, y(t, 0) = 0,

x±(t, a) = ±sin(at)

a
, y(t, a) =

2at− sin(2at)

4a2
, for a 6= 0.

(13.51)

Theorem 13.34. The cut time for the geodesic q±(·, a) is

tcut(a) =
π

|a| .

For a = 0 this formula should be interpreted in the sense that the corresponding geodesics q±(·, 0)
are optimal in [0,+∞). The cut locus is

Cut(0,0) = {(0, y) ∈ R2 | y 6= 0},
and each point of the cut locus is reached exactly by two optimal geodesics.

The optimal synthesis starting from the origin for Grushin plane is depicted in Figure 13.5.

Proof of Theorem 13.34

We give a proof of Theorem 13.34 by making a direct computation, without using the extended
Hadamard technique. See also Exercise 13.35.

Due to the fact that the family of geodesics {q−(·, a)}a∈R can be obtained from the family
{q+(·, a)}a∈R by reflection with respect to the y axis, any geodesic starting from the origin has lost
its optimality after intersection with the y axis. From the expression of x±(t, a) one gets that for
a given value of a, the first intersection with the y axis occurs at time t = π/|a|.

Moreover the family {q±(·, a)}a∈R+ can be obtained from the family {q±(·, a)}a∈R− by reflection
with respect to the x axis. Notice that the positive (resp. negative) part of the x axis is the support
of the geodesic q+(·, 0) (resp. q−(·, 0)) and no other geodesic starting from the origin can intersect
again the x axis since y(t, a) is monotone in t.

Then we can restrict ourself to the octant x ≥ 0 y ≥ 0 and we would like to prove the following:

Claim. For every x̄ > 0 and ȳ ≥ 0 there exists a unique a ≥ 0 and t ∈ (0, π/a] such that

x+(t, a) = x̄ (13.52)

y(t, a) = ȳ. (13.53)
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A

B

Figure 13.5: A: the optimal synthesis for the Grushin plane starting from the origin, together with
the sub-Riemannian sphere for t = 1. B: all geodesics up to time 1 with the corresponding wave
front.
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Proof of the Claim. Fix a. Let us try to find t(a) from equation (13.52). We have that such an
equation has no solutions if 1/a < x̄ and has two (possibly coinciding) solutions if 1/a ≥ x̄. Such
solutions are

t1(a) =
arcsin(ax̄)

a
,

t2(a) =
π − arcsin(ax̄)

a
.

Notice that t1(a) ≤ t2(a) and t1(a) = t2(a) if and only if 1/a = x̄.

Let us compute y(t1(a), a) and y(t2(a), a). We have

y(t1(a), a) =
1

4a2
(
2 arcsin(ax̄)− sin(2 arcsin(ax̄))

)
.

Using the formula sin(2 arcsin ξ) = 2ξ
√

1− ξ2, we have

y(t1(a), a) =
1

4a2
(
2 arcsin(ax̄)− 2ax̄

√
1− a2x̄2

)
.

It is not difficult to check that such function is continuous and monotone increasing in the interval
a ∈ [0, 1x̄ ]. It takes all values from 0 to πx̄2/4. Similarly

y(t2(a), a) =
1

4a2
(
2π − 2 arcsin(ax̄) + 2ax̄

√
1− a2x̄2

)
.

It is not difficult to check that such function is continuous and monotone decreasing in the interval
a ∈ [0, 1x̄ ]. It takes all values from πx̄2/4 to +∞. The functions y(t1(a), a) and y(t2(a), a) are
pictured in Figure 13.6.

Concluding, given x̄ and ȳ, we have two cases.

• If ȳ ≤ πx̄2/4 then it is in the image of y(t1(a), a). Since y(t1(a), a) is monotone, one can
invert it and getting the required unique value of a. The corresponding value of t is then
obtained from t1(a).

• If ȳ > πx̄2/4 then it is in the image of y(t2(a), a). Since y(t2(a), a) is monotone, one can
invert it and getting the required unique value of a. The corresponding value of t is then
obtained from t2(a).

Exercise 13.35. Prove Theorem 13.34 using the extended Hadamard technique. Notice that in this
case N1 is not connected, hence one should apply twice the technique to its connected components.

13.6 The standard sub-Riemannian structure on SU(2)

The Lie group SU(2) is the group of unitary unimodular 2× 2 complex matrices

SU(2) =

{(
α β

−β α

)
∈ Mat(2,C) | |α|2 + |β|2 = 1

}
.
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a

y(t2(a), a)

Figure 13.6: Proof of Theorem 13.34.

The Lie algebra of SU(2) is the algebra of antihermitian traceless 2× 2 complex matrices

su(2) =

{(
iα β

−β −iα

)
∈ Mat(2,C) | α ∈ R, β ∈ C

}
.

A basis of su(2) is {p1, p2, k} where

p1 =
1

2

(
0 1
−1 0

)
, p2 =

1

2

(
0 i
i 0

)
, k =

1

2

(
i 0
0 −i

)
, (13.54)

whose commutation relations are [p1, p2] = k, [p2, k] = p1, [k, p1] = p2.
For su(2) we have Kil(X,Y ) = 4Tr(XY ). In particular, Kil(pi, pj) = −2δij , Kil(pi, k) = 0,

Kil(k, k) = −2. Hence

〈· | ·〉 = −1

2
Kil(·, ·)

is a positive definite bi-invariant metric on su(2) (cf. Section 7.2.3).
If we define

d = span{p1, p2}, s = span{k}
and we provide d with the metric 〈· | ·〉 |d we get a sub-Riemannian structure of the type d⊕ s (cf.
7.7.1).

Notice that since we are in dimension 3 and with one bracket one gets the Lie algebra su(2),
this problem is a contact sub-Riemannian problem and hence there are no non-trivial abnormal
extremals.

Remark 13.36. Observe that all the d⊕ s structures that one can define on SU(2) are equivalent.
For instance, one could set d = span {p2, k} and s = span {p1}.
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Recall that SU(2) ≃ S3 =

{(
α
β

)
∈ C2 | |α|2 + |β|2 = 1

}
via the map

φ :

SU(2) → S3
(

α β

−β α

)
7→

(
α
β

)
.

In the following we often write elements of SU(2) as pairs of complex numbers.
Notice that in this representation the sub-group eRk is

{(
α
0

)
| |α|2 = 1

}
.

and the identity of the group is

(
1
0

)
.

Expression of geodesics

Let us write an initial covector in su(2) as x0+y0, where x0 ∈ d and y0 ∈ s. To parametrize geodesics
by arclength, i.e., to be on the level set 1

2 of the Hamiltonian, we have to require 〈x0 |x0〉 = 1. It
is then convenient to write

x0 + y0 = cos(θ)p1 + sin(θ)p2︸ ︷︷ ︸
x0

+ ck︸︷︷︸
y0

, θ ∈ S1, c ∈ R.

Using formula (7.46), we have that the normal Pontryagin extremals starting from the identity are
(here λ = (θ, c))

expId(t, λ) = g(θ, c; t) := et(x0+y0)e−ty0 = e(cos(θ)p1+sin(θ)p2+ck)te−ckt =

=




c sin( ct
2
) sin(

√
1+c2 t

2
)√

1+c2
+ cos( ct2 ) cos(

√
1 + c2 t2 ) + i

(
c cos( ct

2
) sin(

√
1+c2 t

2
)√

1+c2
− sin( ct2 ) cos(

√
1 + c2 t2)

)

sin(
√
1+c2 t

2
)√

1+c2

(
cos( ct2 + θ) + i sin( ct2 + θ)

)


 .

Remark 13.37. We have the following cylindrical symmetry reflecting the invariance of the sub-
Riemannan structure with respect to rotations along the k axis.

g(θ, c; t) =

(
1 0
0 eiθ

)
g(0, c, t);

Theorem 13.38. The cut time for the geodesic g(θ, c, t) coincides with its first conjugate time. It
is independent from θ and it is given by the formula

tcut(c) =
2π√
1 + c2

.

Moreover g(θ, c; tcut(c)) is independent from θ. Hence each cut point is reached by an infinite
number of geodesics (a one parameter family parameterized by θ).

Since the largest cut time is obtained for c = 0 we have

417



Corollary 13.39. The diameter of SU(2) with the standard sub-Riemannian structure is 2π.

By a direct computation one gets

Corollary 13.40. The cut locus starting from the identity is

Cutid = eRk \ {id} =
{(

α
0

)
| |α|2 = 1, α 6= 1

}
.

Moreover each cut point is also a conjugate point.

Remark 13.41. Notice that with our definition of cut locus, the starting point is never a cut point.

Proof of Theorem 13.38. We are going to apply the extended Hadamard technique.

Step 1: Construction of the conjectured cut locus and of the sets N1 and N2.

By a direct computation one immediately obtains:

Lemma 13.42. For every θ1, θ2 ∈ S1, we have

g

(
θ1, c;

2π√
1 + c2

)
= g

(
θ1, c;

2π√
1 + c2

)
=

(
− cos

(
πc√
c2+1

)
+ i sin

(
πc√
c2+1

)

0

)

Moreover the determinant of the differential of the exponential map is zero if and only if

sin

(√
1 + c2

t

2

)(
2 sin

(√
1 + c2

t

2

)
−
√
1 + c2t cos

(√
1 + c2

t

2

))
= 0. (13.55)

In particular 2π√
1+c2

is a conjugate time for the geodesic g (θ, c; ·).

We then conjecture that the cut time of the geodesic g(θ, c; ·) is t∗cut(c) =
2π√
1+c2

and that the

cut locus is

Cut∗id = eRk =

{(
α
0

)
| |α|2 = 1, α 6= 1

}
.

We define

N1 = {ap1 + bp2 + ck ∈ su(2) | (a, b) 6= (0, 0), |c| ≤
√
2π − 1},

and

N2 = exp(N1) = {g ∈ SU(2) | g /∈ Cut∗Id}.
Step 2: Study of the conjugate points
We are going to prove that the differential of the exponential map never vanishes in N1 and hence
that there are no conjugate points in N2 for expId|N1 . Conjugate times are given by formula (13.55).
The first term vanishes at times 2mπ√

1+c2
, where m = 1, 2, . . .. The second term vanishes at times

2xm√
1+c2

where {x1, x2, . . .} is the ordered set of the strictly positive solutions of x = tan(x). Since

x1 ∼ 4.49 > π, the first positive time at which the geodesic g(θ, c; ·) is conjugate is t∗cut(c), Hence
the differential of the exponential map never vanishes in N1.
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Step 3 We are now going to prove that the map exp : N1 → N2 is proper. But this is obvious
since all points of ∂N1 are mapped in points of ∂N2.

Step 4 (SR) By Theorem 13.23 we know that exp : N1 → N2 is a covering. It remains to prove
that it is a 1-covering. As already mentioned we cannot apply Corollary 13.24 since N2 is not
simply connected. Let us show that the hypotheses of Corollary 13.25 are verified. We have that
N2 is homeomorphic to S1×R2. We are left to find a loop in N1 that is mapped via the exponential
map in a loop homotopic to S1. Indeed as we know from Chapter 10, the nilpotent approximation
of every 3D-contact structure is the Heisenberg group. For the Heisenberg group a loop ℓ2 winding
once the cut locus is the image through the exponential map of a loop ℓ1.

Since for regular maps, the structure of the preimage of a set does not change for small per-
turbation of the map it follows that for SU(2) a small loop winding Cut∗id is the image through
the exponential map of a loop ℓ1. Then Corollary 13.25 permits to conclude that exp|N1 is a
diffeomorphism. As a consequence the conjectured cut locus and cut times are the true ones.

Remark 13.43. The argument above apply to any 3 dimensional structure that is genuinely sub-
Riemannian at the starting point.

Exercise 13.44. Corollary 13.39 says that the diameter of SU(2) for the standard sub-Riemannian
structure is 2π. Prove that the diameter of SU(2) for the standard Riemannian structure (i.e., the
structure for which {p1, p2, k} is an orthonormal frame) is 2π as well.

A representation of the cut locus for SU(2) is given in Figure 13.7.

Exercise 13.45. Consider the d ⊕ s sub-Riemannian structure on SO(3) introduced in Section
7.7.2. By using the techniques presented in this chapter construct the optimal synthesis. Represent
SO(3) as a full three dimensional ball with opposite points on the boundary identified. Call
this “boundary” RP 2. Prove that the cut locus is the union of the subgroup eRe3 = es without
the identity and RP 2. Compute the diameter of SO(3) for this structure. Compare it with the
diameter of SO(3) for the standard Riemannian structure (i.e., the structure for which {e1, e2, e3}
is an orthonormal frame). An alternative technique to compute this optimal synthesis is provided
in Section 13.7.

Exercise 13.46. Let G = SL(2) and consider the left-invariant sub-Riemannian structure for
which an orthonormal frame is given by

X1(g) = Lg∗

(
1 0
0 −1

)
, X2(g) = Lg∗

(
0 1
1 0

)
.

Prove that this structure is of type d⊕ s for the metric induced by the Killing form. Construct the
optimal synthesis starting from the identity.

13.7 Optimal synthesis on the groups SO(3) and SO+(2, 1).

In this section we find the time optimal synthesis for the structures on SO(3) and SO+(2, 1)
introduced in Section 7.7.3. Here, instead of using the extended Hadamard technique, we use a
more geometric approach using the Gauss-Bonnet theorem.

To describe these synthesis it is very convenient to use the interpretation of geodesics as parallel
transports along curves of a constant geodesic curvature in the unit sphere S2 and the Lobachevsky
plane H (see Section 7.7.3).
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Figure 13.7: We recall a standard construction for representing S2 in a two dimensional space and
S3 in a three dimensional one. Consider S2 ⊂ R3 and flatten it on the equator plane, pushing
the northern hemisphere down and the southern hemisphere up, getting two disks D2 joined along
their circular boundaries. The construction is drawn in the up-left side of the figure. Similarly,
consider S3 ⊂ C2 ≃ R4: it can be viewed as two balls joined along their boundaries. In this case
the boundaries are two spheres S2. A picture of S3 is drawn in the up-right side of the figure. In
this representation, the cut locus is given by the great circle passing through the identity, the north
and the south pole (the identity should then be removed, cf. Remark 13.2).
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According to the general scheme, we use nontrivial symmetries of the structure that preserve the
endpoints of the geodesics in order to characterize the cut locus. In the cases under consideration,
the sub-Riemannian space is identified with the spherical bundle of the surface. This allows us to
give a nice and clear description of the cut locus in terms of natural symmetries of the surface. As
we’ll see, the Gauss-Bonnet formula plays a key role. Here we give a brief description of the cut
locus; detailed proofs can be found in [BZ15b, BZ15a, BZ16] but we advise the reader to recover
them by him/herself.

The projection of a geodesic to the surface is a curve of a constant geodesic curvature. First
we describe symmetries of the surface that preserve endpoints of the curve. We use two essentially
different types of symmetries. The first one concerns the case when the curve is closed, i.e., the
initial point is equal to the final one. In this case, the initial and final velocities are also equal.
The symmetries are just rotations of the surface around the initial point of the curve. We obtain
a one-parametric family of symmetries where the angle of rotation is the parameter of the family.

The second type concerns any curve. If the endpoints of the curve are different then the
symmetry is the reflection of the surface with respect to the geodesic (of the Riemannian surface)
that contains both endpoints. If the endpoints are equal (the curve is closed) then the symmetry is
the reflection of the surface with respect to the geodesic that is tangent to the curve at the initial
point.

Now we turn to the parallel transport. Let γ : [0, 1] → M be a curve of constant geodesic
curvature ρ ∈ R and the length ℓ > 0. Let v0 ∈ Sγ(0)M and let θ0 be the angle between γ̇(0) and
v0. Then the parallel transport of v0 along γ is a vector v1 ∈ Sγ(1)M such that the angle between
γ̇(1) and v1 equals θ0 + ρℓ.

A rotation around a point does not change neither the geodesic curvature nor the length of the
curve; hence the parallel transport along the curve does not change as well. Let γ(1) = γ(0) and
Γ ⊂M be a compact domain such that γ = ∂Γ. The Gauss-Bonnet formula implies a relation:

ρℓ = 2π ±Area(Γ).

Let q ∈M ; it follows that the rotation of the circle SqM on any angle can be realized as the parallel
transport along a closed curve of constant geodesic curvature (recall that angles are defined modulo
2π). We see that for any v0, v1 ∈ SqM there exists a one-parametric family of sub-Riemannian
geodesics of the same length that connect v0 with v1.

Now we consider reflections. Let ξ be the shortest path connecting γ(1) with γ(0) and φ be the
angle between γ̇(0) and ξ̇(1). Then the angle between γ̇(1) and ξ̇(0) equals −φ (see Figure 13.8).

The reflection of M with respect to the geodesic changes the sign of the geodesic curvature and
the sign of φ.

To compute the parallel transport along the curve γ and along the reflected curve we choose
the directions of ξ̇(1) and ξ̇(0) as the origins in the circles Sγ(0)M and Sγ(1)M . Then the direction

of γ̇(0) is −φ and the direction of γ̇(1) is +φ. Hence the parallel transport of ξ̇(1) along γ has the
direction

φ+ ρℓ+ φ = ρℓ+ 2φ.

The parallel transport of the same vector along the reflected curve has the direction −ρℓ−2φ. The
parallel transports along the two curves coincide if and only if

2(ρℓ+ 2φ) ≡ 0 mod 2π.
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γ(1)

γ

φ

γ(0)

ξ

−φ

Figure 13.8: Construction of the optimal synthesis on SO(3) and SO+(2, 1). Definition of the angle
φ. (The picture refers to SO(3))

Let us consider the curve γ̄ = γ ∪ ξ and the domain Γ ⊂M such that γ̄ = ∂Γ (see the figure).
The Gauss-Bonnet formula (1.33) applied to Γ gives the relation:

ρℓ+ 2φ±Area(Γ) = 2π.

If M is the unit sphere, then ρℓ + 2φ = 2π − Area(Γ). Hence ρℓ + 2φ = π provides a natural
candidate to the cut locus. If M is the Lobachevsky plane, then ρℓ + 2φ = 2π + Area(Γ) and a
natural candidate to the cut locus is provided by ρℓ + 2φ = 3π. Both cases are characterized by
the identity:

Area(Γ) = π.

We are now ready to describe the optimal synthesis. Let M be either the unit sphere in the
three-dimensional Euclidean space or the hyperbolic plane in the Minkowski space.

1. Geodesics are curves in SM that are parallel transports along curves of a constant geodesic
curvature inM , and curves of constant geodesic curvature are just the intersections ofM ⊂ R3

with affine planes.

2. Let t 7→ γ(t) be a parameterized curve of constant geodesic curvature in M and Γt ⊂ M be
the smaller domain between the two domains whose boundary is the concatenation of γ|[0,t]
and the shortest path connecting γ(t) with γ(0). We assume that γ is oriented in such a way
that Γt stays to the right from γ (as in the figure). The cut time tγ for the parallel transport
along γ:

tγ = min{t > 0 : γ(t) = γ(0) or Area(Γt) = π}.
If M = S2, then the maximal length until the cut point (the sub-Riemannian diameter of

SO(3)) is equal to
√
3π and is achieved when the equations γ(t) = γ(0) and Area(Γt) = π happen

simultaneously. If M = H, then the surface is not compact and the diameter is equal to +∞.
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13.8 Synthesis for the group of Euclidean transformations of the

plane SE(2)

The group of (positively oriented) Euclidean transformations of the plane is

SE(2) =








cos(θ) − sin(θ) x1
sin(θ) cos(θ) x2

0 0 1


 , θ ∈ S1, x1, x2 ∈ R



 .

The name of this group comes from the fact that if we represent a point of R2 as a column vector
(y1, y2, 1)

t then the action of a matrix of SE(2) produces a rotation of angle θ and a translation of
(x1, x2) (cf. Section 7.2.2). The Lie algebra of SE(2) is

se(2) = span {e1, e2, er} ,

where

e1 =




0 0 1
0 0 0

0 0 0


 , e2 =




0 0 0
0 0 1

0 0 0


 , er =




0 −1 0
1 0 0

0 0 0


 .

The commutation relations are:

[e1, e2] = 0, [e1, er] = −e2, [e2, er] = e1. (13.56)

The sub-Riemannian problem on SE(2) is obtained by declaring {e1, er} to be an orthonormal
frame. In this way the sub-Riemannian problem can be written as (here T > 0 and g0, g1 are two
fixed points in SE(2)),

ġ = g(ue1 + ver), (13.57)
∫ T

0

√
u(t)2 + v(t)2 dt,→ min, (13.58)

g(0) = g0, g(T ) = g1. (13.59)

Notice that since we are in dimension 3 and with one bracket one gets the Lie algebra se(2),
this problem is a contact sub-Riemannian problem and hence there are no non-trivial abnormal
extremals.

In coordinates q = (x1, x2, θ) this problem becomes

q̇ = uX1(q) + vXr(q), (13.60)
∫ T

0

√
u(t)2 + v(t)2 dt→ min, (13.61)

q(0) = q0, q(T ) = q1. (13.62)

where

X1 =




cos(θ)
sin(θ)

0


 , Xr =




0
0
1


 . (13.63)
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u v

x1

θ

x2

x1

x2

θ

x2

x1

orientation of the car
orientation of the parameterization

Figure 13.9: Mechanical interpretation of the problem on SE(2).

Notice that if we define

−X2 = [X1,Xr] =




sin(θ)
− cos(θ)

0


 ,

the commutation relations are the same as (13.56) i.e., [X1,X2] = 0, [X1,Xr] = −X2 and [X2,Xr] =
X1.

Exercise 13.47. Prove that every left-invariant sub-Riemannian structure on SE(2) is isometric
to the structure presented above, modulus a dilation in the (x1, x2) plane.

13.8.1 Mechanical interpretation

Recall that a point (x1, x2, θ) ∈ SE(2) can be represented as a unit vector on the plane applied
to the point (x1, x2) with an angle θ with respect to the x1 axis (see Figure 13.9 (A)). Then the
optimal control problem (13.60)-(13.63) can be interpreted as the problem of controlling a car with
two wheels on the plane. More precisely x1 and x2 are the coordinates of the center of the car, θ is
the orientation of the car with respect to the x1 direction (see Figure 13.9 (B)). The first control
u makes the two wheels rotating in the same directions and makes the car going forward with
velocity u; the second control v makes the two wheels rotating in opposite direction and makes
the car rotating with angular velocity v (see Figure 13.9 (C)). An admissible trajectory in SE(2)
can be represented as a planar trajectory with two type of arrows: an “empty” arrow giving the
direction of the parameterization of the curve and a “bold” arrow indicating the orientation of the
car (see Figure 13.9 (D)). Notice that in the drawn trajectory there is a cusp point where the car
stops to go forward and starts to go backward. Indeed a smooth admissible trajectory in SE(2)
can have cusp points in this representation.

13.8.2 Geodesics

The maximized Hamiltonian for the problem (13.60), (13.61), (13.62), (13.63) is

H(p, q) =
1

2

(
〈p,X1〉2 + 〈p,X2〉2

)
.
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M = 1

θ̄

ℓ = 1

gravity = P 2

Figure 13.10: The inverted pendulum

Setting p = (p1, p2, pθ), p1 = P cos(pa), p2 = P sin(pa) we have

H =
1

2

(
(p1 cos θ + p2 sin θ)

2 + p2θ
)
=

1

2

(
P 2 cos2(θ − pa) + p2θ

)
.

The Hamiltonian equations are then

ẋ1 =
∂H

∂p1
= P cos(θ − pa) cos θ, ṗ1 = −

∂H

∂x1
= 0,

ẋ2 =
∂H

∂p2
= P cos(θ − pa) sin θ, ṗ2 = −

∂H

∂x2
= 0,

θ̇ =
∂H

∂pθ
= pθ, ṗθ = −

∂H

∂θ
=

1

2
P 2 sin(2(θ − pa)).

Notice that this Hamiltonian system is completely integrable in the sense of Chapter 5, since we
have three first integrals independent and in involution (i.e., H, p1, p2 or equivalently H,P, θ). The
last two equations give rise to

θ̈ =
1

2
P 2 sin(2(θ − pa)).

Now setting θ̄ = 2(θ − pa) ∈ 2S1 = R/(4πZ) that is the double covering of the standard circle
S1 = R/(2πZ), we get the equation

¨̄θ = P 2 sin θ̄. (13.64)

This is the equation of a planar pendulum of mass 1, length 1, where P 2 represents the gravity (see

Figure 13.10). In the following we will have to remember that ˙̄θ = 2pθ.

Initial conditions. By invariance by rototranslation we can assume x1(0) = 0, x2(0) = 0, θ(0) = 0
which means θ̄(0) = −2pa. Geodesics are then parameterized by p1, p2 (which are constants) and by
pθ(0) (or alternatively by P, pa, pθ(0)). If we require that geodesics are parametrized by arclenght,
we have H(0) = 1

2 hence the initial covector belongs to the cylinder

p21 + pθ(0)
2 = 1, i.e., P 2 cos2 pa + pθ(0)

2 = 1.

Fixed an initial covector p(0) on the cylinder H(0) = 1/2 one get P, pa, pθ(0). Then one has to
consider the pendulum equation (13.64) with gravity P 2 and initial condition

θ̄(0) = −2pa, ˙̄θ(0) = 2pθ(0).
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Once the pendulum equation has been solved one obtains

θ(t) =
θ̄(t)

2
+ pa (13.65)

x1(t) =

∫ t

0
ẋ1(s) ds = P

∫ t

0
cos(θ(s)− pa) cos θ(s) ds = P

∫ t

0
cos

(
θ̄(s)

2

)
cos

(
θ̄(t)

2
+ pa

)
ds

(13.66)

x2(t) =

∫ t

0
ẋ2(s) ds = P

∫ t

0
cos(θ(s)− pa) sin θ(s) ds = P

∫ t

0
cos

(
θ̄(s)

2

)
sin

(
θ̄(t)

2
+ pa

)
ds

(13.67)

Qualitative behaviour of the geodesics.
Equation (13.64) admits an explicit solution in terms of elliptic functions. However the qualitative
behaviour of the solutions can be understood without integrating it explicitly.

In particular this equation admits the first integral (the energy of the pendulum)

Hp =
1

2
˙̄θ2 + P 2 cos θ̄.

Notice that this constant of the motion is not independent from H. Indeed a simple computation
gives:

Hp = 4H − P 2.

Since we are working on the level set H = 1/2, it will be much more convenient to work directly
with H that here we write in terms of the new variables

H =
1

2

(
P 2 cos2

(
θ̄

2

)
+ p2θ

)
.

The level sets of H are plotted in Figure 13.11. We are interested to the level set H = 1/2.
Depending on the value of (P, pa, pθ(0)) different types of the trajectories of the pendulum are
possible. Notice that

• when θ̄ passes monotonically through π, then the projection on the (x1, x2) plane of the
geodesic has a cusp.

• Geodesics are parameterized by (P, pa, pθ(0)) ∈ H−1(1/2). Changing P correspond to change
the gravity of the pendulum. This changes the period of the trajectories oscillating close the
stable equilibrium and the time between two cusps. Notice that P enters also in the equations
for x1(t) and x2(t). Changing pa and pθ(0) corresponds to change the starting point on the
pendulum trajectory.

Classification of normal Pontryagin extremals.
We have the following type of trajectories (see Figure 13.12):

• Trajectories with P > 0 and corresponding to the rotating pendulum. In this case θ̄(t)
increases monotonically. Notice that the projection of the geodesics on the plane (x1, x2) has
a cusp each time that θ̄ passes through π + 2kπ with k ∈ N.
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pθ H = 0 H < 1
2
P 2 H = 1

2
P 2

θ̄

H > 1
2
P 2

Figure 13.11: Trajectories of the inverted pendulum

• Trajectories with P > 0 and corresponding to the oscillating pendulum. In this case θ̄(t) is
oscillating either around π or around −π. Notice that the projection of the geodesics on the
plane (x1, x2) has a cusp each time that θ̄ passes through π or −π. One can easily check that
these trajectories have an inflection point between two cusps.

• Trajectories with P > 0 and staying on the separatrix (but not on the unstable equilibria).
The projection on the (x1, x2) plane of these trajectories has at most one cusp.

• Trajectories with P > 0 and staying on one of the unstable equilibria. In this case we have
pθ = 0 and pa = 0 (or pa = 2π). As a consequence we have θ(t) = 0, x1(t) = ±t, x2(t) = 0.

• Trajectories corresponding to P = 0 in this case each level set of the pendulum is an horizontal
line and equation (13.64) is reduced to θ̈(t) = 0. then we have θ̄(t) = −2pa + 2pθ(0)t, with
pθ(0) = ±1. As a consequence we have θ(t) = ±t, x1(t) = 0, x2(t) = 0.

Remark 13.48. Notice that trajectoreis with P > 0 and staying at one of the two stable equilibria
have H = 0 and they are abnormal extremals. For these trajectories θ̄ = ±π, pa = ∓π/2. Hence
x1(t) ≡ 0, x2(t) ≡ 0, θ(t) ≡ 0. This is the trivial trajectory staying fixed at the identity.

Optimality of geodesics.
Let q(·) = (x1(·), x2(·), θ(·)) defined on [0, T ] be a geodesic parameterized by arclength. Define the
two mapping of geodesics

S : q(·) 7→ qS(·) and T : q(·) 7→ qT(·)
in the following way. In the mechanical representation given above, consider the segment ℓ join-
ing (x1(0), x2(0)) and (x1(T ), x2(T )) and the line ℓ⊥ passing through the middle point of ℓ and
orthogonal to ℓ.
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zero gravity pendulum

unstable equilibrium

rotating pendulum

separatrix

oscillating pendulum

Figure 13.12: Geodesics for SE(2)
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ℓ

ℓ

ℓ⊥

q(0)

q(0)
map S map T

q(T ) q(T )

Figure 13.13: Maps S and T. Courtesy of Y. Sachkov.

Map S the trajectory qS(·) is the trajectory obtained by considering the reflection of q(·) with
respect to ℓ⊥.

Map T The trajectory qT(·) is the trajectory obtained by considering the reflection of q(·) with
respect to the middle point of ℓ.

In both cases the “bold arrows” should be reflected accordingly. The “empty arrows” giving the
direction of the parameterization should be oriented in such a way that the initial (resp. final) point
of qS(·) is q(0) (resp. q(T )). The same holds for qT(·). See Figure 13.13.

Remark 13.49. Notice that if q(·) is defined in [0, T ] then in general Sq(·) is different from S
(
q(·)|[0,t]

)

for t ∈ (0, T ). The same applies to Tq(·).

Definition 13.50. Let q(·) defined on [0, T ] be a geodesic. We say that q(T ) is a Maxwell point
corresponding to S (resp. T) if q(·) 6= qS(·) (resp. q(·) 6= qT(·)), q(0) = qS(0) and q(T ) = qS(T ) (resp.
q(T ) = qT(T )).

Examples of Maxwell points for S and T are shown at Figures 13.14. The following result,
whose proof is out of the scope of this book, is due to Yuri Sachkov.

Theorem 13.51. A geodesic q(·) on the interval [0, T ], is optimal if and only if each point q(t),
t ∈ (0, T ), is neither a Maxwell points corresponding to S or T for q(·)|[0,t] nor the limit of a
sequence of Maxwell points.

The cut locus for the sub-Riemannian problem on SE(2) has been computed by Y. Sachkov
and it is pictured in Figure 13.15.
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q(0)

q(T ) q(T )

q(0)
TS

Figure 13.14: Cut loci corresponding to S and T. Courtesy of Y. Sachkov.

Cut Locus

Cut Locus

Id

R2 seen as an open disc

S1

SE(2) ∼ R2 × S1

seen as a full torus with no boundary

Figure 13.15: Cut locus (dark region) from the identity for the sub-Riemannian problem on SE(2).
Courtesy of Y. Sachkov. In this picture SE(2) (that has the topology of R2×S1) is represented as
a solid torus without boundary given by B2 × S1, where B2 is the 2D disc without boundary.
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13.9 The Martinet flat sub-Riemannian structure

Let us write a point of R3 as (x, y, z). The Martinet flat sub-Riemannian structure is the structure
in R3 for which an orthonormal frame is given by

X1 =




1
0
y2

2


 , X2 =




0
1
0


 . (13.68)

Remark 13.52. This problem can be formulated as an isoperimetric problem in the sense of Sec-
tion 4.4.2. In this case the base manifold is given by the points (x, y) ∈ R2 and the 1-form A

defining the problem is A = y2

2 dx. In other words the trajectory realizing the sub-Riemannian
distance for the Martinet sub-Riemannian structure between (0, 0, 0) and (x1, y1, z1) is a curve
γ(t) = (x(t), y(t), z(t)) defined in [0, T ] steering (0, 0, 0) to (x1, y1, z1), for which

∫

γ
A =

∫ T

0
A(γ̇(t))dt =

∫ T

0

y(t)2

2
ẋ(t)dt = z1,

and whose projection in the (x, y)-plane is a length-minimizer for the Euclidean distance.

This structure is bracket generating, but it is not equiregular. Indeed we have

X3 := [X1,X2] =




0
0
−y


 , [X3,X2] =




0
0
1


 . (13.69)

Hence the distribution is contact out of {y = 0} and bracket-generating of step 3 at {y = 0}.
In the following two sections we are going to construct the Pontryagin extremals. We already

know, by Section 4.4.2, that the support of abnormal extremals should be contained in the set
{y = 0}. Such set is called the Martinet set, and in this case is a smooth surface. Let us use the
notation p = (px, py, pz).

13.9.1 Abnormal extremals

For abnormal extremals we have for every t,

0 = 〈p(t),X1(q(t)〉 = px(t) +
y(t)2

2
pz(t),

0 = 〈p(t),X2(q(t)〉 = py(t).

Differentiating with respect to t we obtain for almost every t

0 = u2(t)〈p(t), [X2,X1](q(t))〉 = −u2(t)〈p(t),X3(q(t))〉 = u2(t)pz(t)y(t),

0 = u1(t)〈p(t), [X1,X2](q(t))〉 = u1(t)〈p(t),X3(q(t))〉 = −u1(t)pz(t)y(t).

Hence if γ : [a, b]→ R3 is an abnormal extremal, either it is trivial (i.e., γ(t) = γ(0) for every t) or
we have

〈p(t),X3(q(t))〉 = pz(t)y(t) ≡ 0. (13.70)
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Since (px(t), py(t), pz(t)) cannot vanish, we have that γ is contained in the Martinet set i.e.,
γ([a, b]) ⊂ {y = 0}.

To obtain the controls corresponding to γ let us differentiate once more (13.70). We have for
almost every t

0 = u1(t)〈p(t), [X1,X3](q(t))〉 + u2(t)〈p(t), [X2,X3](q(t))〉 = −u2(t)pz(t),

where we used the fact that [X1,X3] = 0 when y = 0, and (13.69). Since again (px(t), py(t), pz(t))
is never vanishing, we obtain

u2(t) = 0 for almost every t.

Indeed we already knew this fact since the only way to stay on the Martinet set is to have u2(t) = 0
almost everywhere. The value of u1 is then obtained by requiring that γ is parametrized by arlength,
i.e., |u1(t)| = 1 for almost every t. Notice that we have many of such trajectories: indeed the control
u1 can be any measurable function satisfying |u1(t)| = 1 for almost every t. Such control can switch
arbitrarily between 1 and −1. Because of Remark 13.52 only trajectories corresponding to a control
that is almost everywhere constant are optimal. We then obtain the following.

Proposition 13.53. Arclength parametrized trajectories admitting an abnormal lift are Lipschitz
trajectories γ : [a, b]→ R3 lying on the Martinet set and corresponding to u2 ≡ 0 almost everywhere.
Among these trajectories, only those for which u1 is constantly equal to +1 or −1 are optimal.

13.9.2 Normal extremals

For normal extremals, the maximized Hamiltonian is given by

H(p, q) =
1

2
(h1(p, q)

2 + h2(p, q)
2),

where

h1(p, q) = px +
y2

2
pz, h2(p, q) = py.

The Hamiltonian equations are then

ẋ =
∂H

∂px
= h1, ṗx = −∂H

∂x
= 0, (13.71)

ẏ =
∂H

∂py
= py, ṗy = −

∂H

∂y
= −h1y pz, (13.72)

ż =
∂H

∂pz
= h1

y2

2
, ṗz = −

∂H

∂z
= 0. (13.73)

Notice that this Hamiltonian system is completely integrable, since we have three first integrals
independent and in involution (i.e., H, px, pz).

From (13.73) we have that pz is constant. Let us set pz = a. We can solve (13.71) and (13.72)
since these equations are independent from z. Let us use as coordinates (x, y, h1, h2). We have

ẋ = h1, ḣ1 = ṗx + y ẏ︸︷︷︸
py

a = a y h2, (13.74)

ẏ = py = h2, ḣ2 = ṗy = −a y h1. (13.75)
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ℓ = 1

θ

M = 1

g = a

Figure 13.16: The pendulum for the Martinet distribution

Now if consider normal extremals parametrized by arclength, we have

1

2
= H(q(t), p(t)) = h1(t)

2 + h2(t)
2.

It is then convenient to set

h1(t) = cos θ(t), h2(t) = sin θ(t).

The equations for h1 and h2 in (13.74) and (13.75) give then

− sin(θ)θ̇ = ay sin(θ),

cos(θ)θ̇ = −ay cos(θ),
from which we have

θ̇ = −ay. (13.76)

This equation together with ẏ = h2 = sin θ (see the equation for ẏ in (13.75)) gives

θ̈ = −a sin θ (13.77)

We obtain again an equation for a pendulum of unit mass, unit length and gravity a. See Figure
13.16.

Initial conditions
We are going to consider normal Pontryagin extremals starting from the point (x, y, z) = (0, 0, 0).
Arclength geodesics are then parameterized by θ0 := θ(0) (giving py(0) and px) and by a. Notice
that from (13.76) we have that θ̇(0) = 0.

Once the pendulum equation has been solved, one gets

x(t) =

∫ t

0
ẋ(s) ds =

∫ t

0
h1(q(s), p(s)) ds =

∫ t

0
cos θ(s) ds, (13.78)

y(t) =

∫ t

0
ẏ(s) ds =

∫ t

0
h2(q(s), p(s)) ds =

∫ t

0
sin θ(s) ds, (13.79)

z(t) =

∫ t

0
ż(s) ds =

∫ t

0
h1(q(s), p(s))

y2(s)

2
ds =

∫ t

0
cos(θ(s))

y2(s)

2
ds. (13.80)
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Hp > a/2

Hp = 0

Hp = −a/2

Hp = a/2

θ
π

θ̇

−π

Figure 13.17: The phase portrait of the pendulum for the Martinet flat sub-Riemannian structure

The solution of the pendulum equation and the corresponding expressions for x(t), y(t) and z(t) can
be expressed in terms of elliptic functions. Here we are going to make a short qualitative analysis.

We already know that the pendulum equation admits the first integral

Hp(θ, θ̇) =
1

2
θ̇2 − a cos(θ).

Level sets of Hp are plotted in Figure 13.17.

Case a = 0. In this case the level set of Hp are horizontal lines. We have θ̈ ≡ 0 hence θ̇(t) =const.
This constant is indeed zero since θ̇(0) = 0. Then θ(t) = θ0. From (13.78)-(13.80) we have

x(t) = t cos(θ0), y(t) = t sin(θ0), z(t) = cos(θ0) sin
2(θ0)

t3

6
.

For θ0 ∈ {0, π} this trajectory is lying on the Martinet surface and it is both normal and abnormal.

Case a 6= 0 and θ0 = 0. This is the trajectory staying at the stable equilibrium of the pendulum.
In this case we have θ(t) ≡ 0 and

x(t) = t, y(t) = 0, z(t) = 0.

This trajectory is lying on the Martinet set and it is both normal and abnormal.

Case a 6= 0 and θ0 = π. This is the trajectory staying at the unstable equilibrium of the pendulum.
In this case we have θ(t) ≡ π and

x(t) = −t, y(t) = 0, z(t) = 0.
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As the previous one, this trajectory is lying on the Martinet set and it is both normal and abnormal.
Notice that the heteroclinic orbit is not realized because of the initial condition θ̇(0) = 0.

Notice that all Pontryagin extremals studied up to now have a projection on the (x, y) plane
that is a straight line. Because of Remark 13.52 they are automatically optimal.

All other Pontryagin extremals are expressed in terms of Elliptic functions and are given by the
Theorem below.

To this purpose let sn(φ,m), cn(φ,m), dn(φ,m) be the standard Jacobi elliptic functions with
parameter m ∈ [0, 1] and recall the definition of:

• the complete elliptic integral of the first kind

K(m) :=

∫ π/2

0

(
1−m sin2(θ)

)− 1
2 dθ.

• the Jacobi epsilon function [Law89, p. 62]

Eps(φ,m) :=

∫ φ

0
dn2(w,m) dw.

Let us define the following functions of t, θ0, a (here we assume a > 0, θ0 ∈ (0, π)).

k =

√
1− cos(θ0)

2
, (13.81)

k′ =

√
1 + cos(θ0)

2
, (13.82)

u(t, k, a) = K(k2) + t
√
a, (13.83)

Υ(t, k, a) = Eps(u(t, k, a), k2)− Eps(K(k2), k2), (13.84)

The following result, whose proof is out of the scope of this book, is due to Agrachev, Bonnard,
Chyba, Kupka.

Theorem 13.54. The normal geodesics starting from the origin for θ0 ∈ (0, π) and a > 0 are given
by:

x(t) = −t+ 2√
a
Υ(t, k, a) (13.85)

y(t) = −2 k√
a
cn(u(t, k, a), k2) (13.86)

z(t) =
2

3a3/2
[
(2k2 − 1)Υ(t, k, a) + k′2t

√
a+ 2k2sn(u(t, k, a), k2)cn(u(t, k, a), k2)dn(u(t, k, a), k2)

]

(13.87)

For negative values of θ0 and/or a, the formulas are obtained from the previous ones considering
that a change in sign of θ0 produces a change of sign in the coordinate y and a change of sign of a
produces a change of sign in the coordinates x and z.
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Remark 13.55. These geodesics can be easily drawn using a commercial software having elliptic
functions and integrals implemented, as for instance Mathematica. The Jacobi epsilon function can
be written in terms of more common elliptic integrals using the formula (see for instance [Law89,
p.63])

Eps(φ,m) = E(am(φ,m),m).

Here E(α,m) :=
∫ α
0

(
1 − m sin2(θ)

) 1
2 dθ, is the elliptic integral of the second kind and am is the

Jacobi amplitude defined as the inverse of the elliptic integral of the first kind, i.e., if φ = F (α,m) :=∫ α
0

(
1−m sin2(θ)

)− 1
2 dθ, then α = am(φ,m).

The optimality of these geodesics is not easy to be studied (the method presented at the be-
ginning of the chapter does not apply directly because of the presence of abnormal minimizers, see
also the Bibliographical note). However this study was completed in the ’90s. And we have the
following result.

Theorem 13.56 (Agrachev, Bonnard, Chyba, Kupka). Normal Pontryagin extremals correspond-
ing to a = 0 or to θ0 = 0 (i.e., those for which the projection on the (x, y) plane is a straight line
are optimal for every time. All other Pontryagin extremals are optimal up to their first intersection
with the Martinet set {y = 0}. The cut time is given by the formula

tcut =




2K(k2)√

a
, for a > 0,

2K(k′2)√−a , for a < 0.

The sub-Riemannian sphere of radius one is drawn in Figure 13.18. Its intersection with the
Martinet surface (that is also the cut locus) is drown in Figure 13.19 A. In Figure 13.19 B it is
pictured the point on the cylinder H = 1/2 that are mapped in the cut locus at t = 1 namely the
points

a = (2K(k2))2 and a = −(2K(k′2))2.

Notice that, due to the presence of the abnormal trajectory, the cut locus is the image via the
exponential map of an unbounded curve on the cylinder {H = 1/2}. Points on this curve having
large values of a correspond to the part of the sphere that become tangent to the abnormal as
pictured.

13.10 Bibliographical note

The cut locus is a very old object in geometry. Its first appearance dates back to the famous paper
by Poincaré [Poi05], where he uses the terminology “ligne de partage” for the cut locus on a surface.
The first appearance of the term cut locus is probably in Whitehead [Whi35].

The literature about the cut locus (and conjugate locus) in Riemannian geometry is huge.
For a comprehensive discussion, we refer the interested reader to [Ber03]: more precisely Sections
1.6.2 and Section 3.3 for cut locus of two-dimensional surfaces, and to Section 6.5 for cut locus in
arbitrary dimension.

We focus here in the sub-Riemannian case and on the examples considered in this chapter.
Explicit computations of Pontryagin extremals and of the cut locus for the Heisenberg group and
its higher dimensional generalizations are well-known [Gav77, Bro82, Nac82, GV88, MPAM06,
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cut locus

cut locus

cut locus

cut locus

the Martinet surface (y = 0)

the Martinet sphere

the Martinet sphere inside

section with the Martinet surfacesection with the x = 0 plane

Figure 13.18: The Martinet sphere of radius one.
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B

A

a

θ0 = π

θ0 = 0

z

x

Figure 13.19: A: the intersection of the Martinet sphere for t = 1 with the Martinet surface, that
is also the cut locus. B: the cut locus seen on the cotangent bundle on H = 1

2 .
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ABB12, BBG12, BR18, BBNss, RS17]. It is still an open question to determine the cut locus of
the step-two free Carnot group of rank k ≥ 4. This problem was first studied in [Bro82]. In [RS17]
the authors disprove the conjectures on the shape of the cut loci proposed in [Mya02, Mya06] and
[MM17], by exhibiting sets of cut points which, for k ≥ 4, are strictly larger than conjectured ones.
For a detailed discussion about this conjecture and the comparison with previous literature we refer
the reader to [RS17].

The technique explained in Section 13.4 to compute the cut locus is an extension of a classical
technique due to Hadamard that was used in Riemannian geometry, in particular to study the
optimal synthesis on surfaces with negative curvature (see [Had98]). Its sub-Riemannian variant was
used to construct the optimal syntheses in several cases. See for instance [ABCK97, Mya02, Sac10,
Sac11]. This technique cannot be adapted to structures containing strict abnormal minimizers since
these trajectories are not seen from the exponential map. In principle one could apply the technique
to normal Pontryagin extremals and then one could compare the length of normal and abnormal at
points reached by both type of trajectories. However there are no known examples in which such an
idea has been successfully employed. With some additional work, the extended Hadamard technique
can be adapted to the presence of non-strict abnormal extremals. This program was successful for
the construction of the optimal synthesis for the Martinet flat sub-Riemannian structure and in
particular to prove Theorem 13.56. See [ABCK97].

The shape of the synthesis for the Grushin plane starting from a Riemannian point was drawn in
[ABS08, BL13]. However, we present here for the first time computations in full detail. The optimal
synthesis for SU(2), SO(3), SL(2) were constructed in [BR08] but using a different technique. These
optimal syntheses, together with the one for SO+(2, 1), were also constructed in [BZ15a, BZ15b,
BZ16] using the Gauss-Bonnet theorem. We follow this approach in Section 13.7.

The detailed analysis of geodesics for sub-Riemannian structure on SE(2) was done by Yuri
Sachkov in [MS10, Sac10, Sac11] that also proved Theorem 13.51 in full details.

The optimal synthesis for the Martinet flat sub-Riemannian structure was constructed in
[ABCK97]. In the same paper one can also find the proof of Theorem 13.56. See also [BC03].
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Chapter 14

Curves in the Lagrange Grassmannian

In this chapter we introduce the manifold of Lagrangian subspaces of a symplectic vector space.
After a description of its geometric properties, we discuss how to define the curvature for regular
curves in the Lagrange Grassmannian, that are curves with non-degenerate derivative. Then we
discuss the non-regular case, where a reduction procedure let us to reduce to a regular curve in a
reduced symplectic space.

The language developed in this chapter will be fundamental to encode in a single object, a curve
in a space of Lagrangian subspaces, all information concerning Jacobi fields along sub-Riemannian
geodesics, such as conjugate points and curvature, cf. Chapter 15. Indeed, in this chapter we
introduce an “abstract” notion of conjugate point and curvature associated with a curve in the
Lagrange Grassmannian and we will show that these notion recovers the classical ones when one
considers curves of Jacobi fields associated with Riemannian geodesics.

14.1 The geometry of the Lagrange Grassmannian

In this section we recall some basic facts about Grassmannians of k-dimensional subspaces of an n-
dimensional vector space. We then consider, for a vector space endowed with a symplectic structure,
the submanifold of its Lagrangian subspaces.

Definition 14.1. Let V be an n-dimensional vector space. The Grassmannian of k-planes on V
is the set

Gk(V ) := {W | W ⊂ V is a subspace, dim(W ) = k}.
It is a standard fact that Gk(V ) is a compact manifold of dimension k(n − k).

To fix a set of local coordinates on the Grassmannian Gk(V ), one proceeds as follow. Fix a
subspace Z ⊂ V such that dimZ = n− k and consider the set of all k-dimensional subspaces that
are transversal to Z

Z⋔ = {W ∈ Gk(V ) | W ∩ Z = 0}.
Clearly Z⋔ is an open subset of Gk(V ) and Gk(V ) is covered by such open subsets. To introduce
coordinates on Z⋔ it is then sufficient to identify every k-dimensional subspace U ⊂ V which is
transversal to Z with the graph of a linear map AU :W → Z. Once a basis on W and Z is chosen,
this permits to identify Z⋔ with the space of (n− k)× k matrices.

Next we describe the tangent space to this manifold.
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Proposition 14.2. Let W ∈ Gk(V ). There exists a canonical isomorphism

TWGk(V ) ≃ Hom(W,V/W ).

Proof. Consider a smooth curve on Gk(V ) which starts from W , i.e., a smooth family of k-
dimensional subspaces defined by a moving frame

W (t) = span{e1(t), . . . , ek(t)}, W (0) =W.

We want to associate in a canonical way with the tangent vector Ẇ (0) a linear operator from W
to the quotient V/W . Fix w ∈W and consider any smooth extension w(t) ∈W (t), with w(0) = w.
Then define the map

W → V/W, w 7→ ẇ(0) (mod W ). (14.1)

We are left to prove that the map (14.1) is well-defined, i.e., independent on the choices of rep-
resentatives. Indeed if we consider another extension w1(t) of w satisfying w1(t) ∈ W (t) we can
write

w1(t) = w(t) +
k∑

i=1

αi(t)ei(t),

for some smooth coefficients αi(t) such that αi(0) = 0 for every i. It follows that

ẇ1(t) = ẇ(t) +

k∑

i=1

α̇i(t)ei(t) +

k∑

i=1

αi(t)ėi(t), (14.2)

and evaluating (14.2) at t = 0 one has

ẇ1(0) = ẇ(0) +

k∑

i=1

α̇i(0)ei(0).

This shows that ẇ1(0) = ẇ(0) (mod W ), hence the map (14.1) is well-defined. Similarly one can
prove that the map does not depend on the moving frame defining W (t).

Finally, it is easy to show that the map that associates the tangent vector to the curve W (t)
with the linear operator W → V/W is surjective, hence it is an isomorphism since the two spaces
have the same dimension.

Let us now consider a symplectic vector space (Σ, σ), i.e., a 2n-dimensional vector space Σ
endowed with a non-degenerate symplectic form σ ∈ Λ2(Σ).

Definition 14.3. A vector subspace Π ⊂ Σ of a symplectic space is called

(i) symplectic if σ|Π is nondegenerate,

(ii) isotropic if σ|Π ≡ 0,

(iii) Lagrangian if σ|Π ≡ 0 and dimΠ = n.

Notice that in general for every subspace Π ⊂ Σ, by nondegeneracy of the symplectic form σ, one
has

dimΠ+ dimΠ∠ = dimΣ, (14.3)

where as usual we denote the symplectic orthogonal by Π∠ = {z ∈ Σ |σ(z, w) = 0, ∀w ∈ Π}.
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Exercise 14.4. Prove the following properties for a vector subspace Π of a symplectic vector space
Σ

(i) Π is symplectic if and only if Π ∩Π∠ = {0},

(ii) Π is isotropic if and only if Π ⊂ Π∠,

(iii) Π is Lagrangian if and only if Π = Π∠.

Exercise 14.5. Let (Σ, σ) be a symplectic space and A,B ⊂ Σ be two subspaces. Prove the
following identities: (A+B)∠ = A∠ ∩B∠ and (A ∩B)∠ = A∠ +B∠.

Example 14.6. Any symplectic vector space Σ admits Lagrangian subspaces. Indeed let dimΣ =
2n and fix any non-zero element e 6= 0 in Σ. Let e1 := e and choose iteratively for i = 2, . . . , n,

ei ∈ span{e1, . . . , ei−1}∠ \ span{e1, . . . , ei−1}. (14.4)

Notice that the existence of an element satisfying (14.4) is possible by (14.3). Then the subspace
Π := span{e1, . . . , en} is a Lagrangian subspace by construction.

Lemma 14.7. Let Π = span{e1, . . . , en} be a Lagrangian subspace of Σ. Then there exists vectors
f1, . . . , fn ∈ Σ such that

(i) Σ = Π⊕∆, where ∆ := span{f1, . . . , fn},

(ii) σ(ei, fj) = δij , σ(ei, ej) = σ(fi, fj) = 0, ∀ i, j = 1, . . . , n.

Proof. We prove the statement by induction. By nondegeneracy of σ there exists a non-zero z ∈ Σ
such that σ(en, z) 6= 0. Then the vector fn := z/σ(en, z) satisfies σ(en, fn) = 1. This implies that
σ restricted to span{en, fn} is nondegerate, hence by claim (i) of Exercise 14.4 one has

span{en, fn} ∩ span{en, fn}∠ = 0, (14.5)

We can apply the induction step to the 2(n− 1) subspace Σ′ := span{en, fn}∠. Notice that (14.5)
implies that σ is non-degenerate also on Σ′.

Remark 14.8. The complementary subspace ∆ = span{f1, . . . , fn} defined in Lemma 14.7 is La-
grangian and transversal to Π, i.e., it holds

Σ = Π⊕∆.

Considering coordinates induced from the basis chosen for this splitting, we can write Σ = Rn⊕Rn

and any element of Σ is written as z = (p, x) where

z =
n∑

i=1

piei + xifi, x =
(
x1, . . . , xn

)T
, p =

(
p1, . . . , pn

)T
,

Using the canonical form of σ on this basis (cf. Lemma 14.7) we have that in coordinates, if
z1 = (p1, x1), z2 = (p2, x2) the symplectic product is expressed as

σ(z1, z2) = pT1 x2 − pT2 x1. (14.6)
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Remark 14.9. A basis of a symplectic vector space Σ satisfying conditions satisfying conditions (ii)
of Lemma 14.7 is called a Darboux basis. The corresponding coordinates, in which the symplectic
product takes the form (14.6), are called Darboux coordinates.

Lemma 14.7 can be interpreted geometrically as follows: the group of symplectomorphisms acts
transitively on pairs of transversal Lagrangian subspaces. The next exercise, whose proof is an
adaptation of the previous one, generalizes the previous property to the action of the group of
symplectomorphisms on arbitrary pairs of subspaces. It shows that the unique invariant under this
action is the dimension of their intersection.

Exercise 14.10. Let Λ1,Λ2 be two subspaces in a symplectic vector space Σ, and assume that
dimΛ1 ∩ Λ2 = k. Show that there exists Darboux coordinates (p, x) in Σ such that

Λ1 = {(p, 0)}, Λ2 = {((p1, . . . , pk, 0, . . . , 0), (0, . . . , 0, xk+1, . . . , xn)}.

14.1.1 The Lagrange Grassmannian

Definition 14.11. The Lagrange Grassmannian L(Σ) on a symplectic vector space Σ is the set of
its n-dimensional Lagrangian subspaces.

Proposition 14.12. L(Σ) is a compact submanifold of the Grassmannian Gn(Σ). Moreover

dimL(Σ) =
n(n+ 1)

2
. (14.7)

Proof. Recall that Gn(Σ) is a n
2-dimensional compact manifold. Clearly L(Σ) ⊂ Gn(Σ) as a subset.

Consider the set of all Lagrangian subspaces that are transversal to a given one

∆⋔ = {Λ ∈ L(Σ) : Λ ∩∆ = 0}.
We have that ∆⋔ ⊂ L(Σ) is an open subset. Since by Lemma 14.7 every Lagrangian subspace
admits a Lagrangian complement

L(Σ) =
⋃

∆∈L(Σ)

∆⋔.

It is then sufficient to find some coordinates on these open subsets. The construction is similar
to what one does for the general Grassmannian (see the discussion after Definition 14.1). Every
n-dimensional subspace Λ ⊂ Σ which is transversal to ∆ is the graph of a linear map from Π to ∆.
More precisely there exists a matrix SΛ such that

Λ ∩∆ = 0⇔ Λ = {(pT , SΛp), p ∈ Rn}.
(Here we used the coordinates induced by the splitting Σ = Π⊕∆.) Moreover it is easily seen that

Λ ∈ L(Σ)⇔ SΛ = (SΛ)
T .

Indeed we have that Λ ∈ L(Σ) if and only if σ|Λ = 0 and using (14.6) this is rewritten as

σ((pT1 , SΛp1), (p
T
2 , SΛp2)) = pT1 SΛp2 − pT2 SΛp1 = 0,

which means exactly that SΛ is symmetric. Hence the open set of all subspaces that are transversal
to Λ is parametrized by the set of symmetric matrices, that gives coordinates in this open set. This
also proves that the dimension of L(Σ) coincides with the dimension of the space of symmetric
matrices, from which (14.7) follows. Notice also that, being L(Σ) a closed set in a compact manifold,
it is compact.
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Now we describe the tangent space to the Lagrange Grassmannian.

Proposition 14.13. Let Λ ∈ L(Σ). There exists a canonical isomorphism

TΛL(Σ) ≃ Q(Λ),

where Q(Λ) denote the space of quadratic forms on Λ.

Proof. Consider a smooth curve Λ(t) in L(Σ) such that Λ(0) = Λ and denote by Λ̇(0) ∈ TΛL(Σ)
its tangent vector. Consider a point z ∈ Λ and fix a smooth extension z(t) ∈ Λ(t) and denote with
ż := ż(0). We define the map

Λ̇ : z 7→ σ(z, ż), (14.8)

We show that in coordinates Λ̇ is a well-defined quadratic map, independent on the extensions
considered. Indeed

Λ(t) = {(pT , SΛ(t)p), p ∈ Rn},
and the curve z(t) can be written

z(t) = (p(t)T , SΛ(t)p(t)), z = z(0) = (pT , SΛp),

for some curve p(t) where p = p(0). Differentiating the last identity we get

ż(t) = (ṗ(t)T , ṠΛ(t)p(t) + SΛ(t)ṗ(t)),

and evaluating at t = 0 (we simply omit t when we evaluate at t = 0) we have

z = (pT , SΛp), ż = (ṗT , ṠΛp+ SΛṗ),

and finally get, using the simmetry of SΛ, that

σ(z, ż) = pT (ṠΛp+ SΛṗ)− ṗTSΛp
= pT ṠΛp+ pTSΛṗ− ṗTSΛp
= pT ṠΛp. (14.9)

Exercise 14.14. Let Λ(t) ∈ L(Σ) be such that Λ = Λ(0) and σ be the symplectic form. Prove
that the map B : Λ× Λ → R defined by B(z, w) = σ(z, ẇ), where ẇ = ẇ(0) is the tangent vector
to a smooth extension w(t) ∈ Λ(t) of w, is a symmetric bilinear map.

Remark 14.15. We have the following natural interpretation of Proposition 14.13: since L(Σ) is a
submanifold of the Grassmannian Gn(Σ), its tangent space TΛL(Σ) is naturally identified by the
inclusion with a subspace of the Grassmannian

i : L(Σ) →֒ Gn(Σ), i∗ : TΛL(Σ) →֒ TΛGn(Σ) ≃ Hom(Λ,Σ/Λ),

where the last isomorphism is given by Proposition 14.2. Being Λ a Lagrangian subspace of Σ, the
symplectic structure identifies in a canonical way the factor space Σ/Λ with the dual space Λ∗ as
follows

Σ/Λ ≃ Λ∗, 〈[z]Λ, w〉 = σ(z, w). (14.10)

Hence the tangent space to the Lagrange Grassmannian consists of those linear maps in the space
Hom(Λ,Λ∗) that are self-adjoint, which are naturally identified with quadratic forms on Λ itself.1

1any quadratic form on a vector space q ∈ Q(V ) can be identified with a self-adjoint linear map L : V → V ∗,
L(v) = B(v, ·) where B is the symmetric bilinear map such that q(v) = B(v, v).
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Remark 14.16. Given a curve Λ(t) in L(Σ), the above procedure associates to the tangent vector
Λ̇(t) a family of quadratic forms Λ̇(t), for every t.

We end this section by computing the tangent vector to a special class of curves that will play
a major role in the sequel. More precisely the curve on L(Σ) induced by the action on Λ by the
flow of the linear Hamiltonian vector field ~h associated with a quadratic form h ∈ Q(Σ).

Proposition 14.17. Let Λ ∈ L(Σ) and h ∈ Q(Σ). Define Λ(t) = et
~h(Λ). Then Λ̇ = 2h|Λ.

Proof. Notice that since h is a quadratic form on Σ then ~h is a linear Hamiltonian vector field. This
implies that Λ(t) is a Lagrangian subspace, for every t. Consider z ∈ Λ and the smooth extension

z(t) = et
~h(z). Then ż(t) = ~h(z(t)) and by definition of Hamiltonian vector field we find (we omit t

when evaluating at t = 0)

σ(z, ż) = σ(z,~h(z))

= 〈dzh, z〉
= 2h(z),

where in the last equality we used that h is a quadratic form.

14.2 Regular curves in Lagrange Grassmannian

The isomorphism between tangent vector to the Lagrange Grassmannian with quadratic forms
makes sense to the following definition (we denote by Λ̇ the tangent vector to the curve at the point
Λ as a quadratic map)

Definition 14.18. Let Λ(t) ∈ L(Σ) be a smooth curve in the Lagrange Grassmannian. We say
that the curve is

(i) monotone increasing (resp. descreasing) if Λ̇(t) ≥ 0 (Λ̇(t) ≤ 0).

(ii) strictly monotone increasing (resp. decreasing) if the inequality in (i) is strict.

(iii) regular if its derivative Λ̇(t) is a non-degenerate quadratic form.

Remark 14.19. Notice that if Λ(t) = {(p, S(t)p), p ∈ Rn} in some coordinate set, then it follows
from the proof of Proposition 14.13 that the quadratic form Λ̇(t) is represented by the matrix ṠΛ(t)
(see also (14.9)). In particular the curve is regular if and only if det ṠΛ(t) 6= 0.

The main goal of this section is the construction of a canonical Lagrangian complement for a
regular curve. More precisely we want to associate with a regular curve another curve Λ◦(t) in the
Lagrange Grassmannian such that Σ = Λ(t)⊕ Λ◦(t).

Consider an arbitrary Lagrangian splitting Σ = Λ(0) ⊕∆ defined by a complement ∆ to Λ(0)
(see Lemma 14.7) and fix coordinates in such a way that

Σ = {(p, x), p, x ∈ Rn}, Λ(0) = {(p, 0), p ∈ Rn}, ∆ = {(0, x), x ∈ Rn}.

In these coordinates our regular curve is described by a one-parametric family of symmetric matrices
S(t)

Λ(t) = {(p, S(t)p), p ∈ Rn},
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such that S(0) = 0 and Ṡ(0) is invertible. All Lagrangian complements to Λ(0) are parametrized
by a symmetrix matrix B as follows

∆B = {(Bx, x), x ∈ Rn}, B = BT .

The following lemma shows how the coordinate expression of our curve Λ(t) changes in the new
coordinate set defined by the splitting Σ = Λ(0) ⊕∆B .

Lemma 14.20. Let SB(t) be the one-parametric family of symmetric matrices defining Λ(t) in
coordinates with respect to the splitting Λ(0) ⊕∆B. Then the following identity holds

SB(t) = (S(t)−1 −B)−1. (14.11)

Proof. It is easy to show that, if (p, x) and (p′, x′) denotes coordinates with respect to the splitting
defined by the subspaces ∆ and ∆B we have

{
p′ = p−Bx
x′ = x

(14.12)

The matrix SB(t) by definition is the matrix that satisfies the identity x′ = SB(t)p
′. Using that

x = S(t)p by definition of Λ(t), from (14.12) we find

x′ = x = S(t)p = S(t)(p′ +Bx′),

and with straightforward computations we finally get

SB(t) = (I − S(t)B)−1S(t) = (S(t)−1 −B)−1.

From the previous lemma it follows that ṠB(0) = Ṡ(0), for every choice of B. Hence it is
natural to look for a change of coordinates (i.e., a choice of the matrix B) that simplifies the second
derivative of our curve.

Corollary 14.21. There exists a unique symmetric matrix B such that S̈B(0) = 0.

Proof. Recall that for a one-parametric family of matrices X(t) we have

d

dt
X(t)−1 = −X(t)−1Ẋ(t)X(t)−1.

Applying twice this identity to (14.11) (we omit t to denote the value at t = 0) we get

d

dt

∣∣∣∣
t=0

SB(t) = −(S−1 −B)−1

(
d

dt

∣∣∣∣
t=0

S−1(t)

)
(S−1 −B)−1

= (S−1 −B)−1S−1ṠS−1(S−1 −B)−1

= (I − SB)−1Ṡ(I −BS)−1.

Hence for the second derivative of SB(t) evaluated at t = 0 (remember that in our coordinates
S(0) = 0), one gets

S̈B = S̈ + 2ṠBṠ,

and using that Ṡ is non-degenerate, we can choose B = −1
2 Ṡ

−1S̈Ṡ−1.
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We set Λ◦(0) := ∆B, where B is determined by Corollary 14.21. Notice that by construction
Λ◦(0) is a Lagrangian subspace and it is transversal to Λ(0).

Then one can define Λ◦(t) for every t as follows: Λ◦(t) := Λ◦
t (0) where the curve Λt is defined

by Λt(s) = Λ(s+ t).

Definition 14.22. Let Λ(t) be a regular curve, the curve Λ◦(t) defined by the condition above is
called derivative curve of Λ(t).

Exercise 14.23. Prove that, if Λ(t) = {(p, S(t)p), p ∈ Rn} (without the condition S(0) = 0), then
the derivative curve Λ◦(t) = {(p, S◦(t)p), p ∈ Rn}, satisfies

S◦(t) = B(t)−1 + S(t), where B(t) := −1

2
Ṡ(t)−1S̈(t)Ṡ(t)−1, (14.13)

provided Λ◦(t) is transversal to the subspace ∆ = {(0, x), x ∈ Rn}. (This condition is equivalent
to the invertibility of B(t).) Notice that if S(0) = 0 then S◦(0) = B(0)−1.

Remark 14.24. The set Λtr of all n-dimensional spaces transversal to a fixed subspace Λ is an affine
space over Hom(Σ/Λ,Λ). Indeed given two elements ∆1,∆2 ∈ Λtr we can associate with their
difference the operator

∆2 −∆1 7→ A ∈ Hom(Σ/Λ,Λ), A([z]Λ) = z2 − z1 ∈ Λ, (14.14)

where zi ∈ ∆i ∩ [z]Λ are uniquely identified.
If Λ is Lagrangian, we have identification Σ/Λ ≃ Λ∗ given by the symplectic structure (see

(14.10)) that Λ⋔, that coincide by definition with the intersection Λtr ∩L(Σ) is an affine space over
HomS(Λ∗,Λ), the space of selfadjoint maps between Λ∗ and Λ, that it isomorphic to Q(Λ∗).

Notice that if we fix a distinguished complement of Λ, i.e., Σ = Λ ⊕∆, then we have also the
identification Σ/Λ ≃ ∆ and Λ⋔ ≃ Q(Λ∗) ≃ Q(∆).

Exercise 14.25. Prove that the operator A defined by (14.14), in the case when Λ is Lagrangian,
is a self-adjoint operator.

Remark 14.26. Assume that the splitting Σ = Λ⊕∆ is fixed. Then our curve Λ(t) in L(Σ), such that
Λ(0) = Λ, is characterized by a family of symmetric matrices S(t) satisfying Λ(t) = {(p, S(t)p), p ∈
Rn}, with S(0) = 0.

By regularity of the curve, Λ(t) ∈ Λ⋔ for t > 0 small enough, hence we can consider its
coordinate presentation in the affine space on the vector space of quadratic forms defined on ∆ (see
Remark 14.24) that is given by S−1(t).

The curve does not belong to the coordinate chart for t = 0 and is regular if and only if the
coordinate presentation has a simple pole at t = 0. In this case we can write the Laurent expansion
of this curve in the affine space

S(t)−1 =

(
tṠ +

t2

2
S̈ +O(t3)

)−1

=
1

t
Ṡ−1

(
I +

t

2
S̈Ṡ−1 +O(t2)

)−1

=
1

t
Ṡ−1−1

2
Ṡ−1S̈Ṡ−1

︸ ︷︷ ︸
B

+O(t).
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In this expansion every term but the zero-order one (with respect to t) is an element of the vector
space, while the zero-order term is a point, i.e., an element of the affine space. Then Λ◦(0) is the
free term in the Laurent expansion of Λ(t) in the chart Λ⋔

It is then not occasional that the matrix B coincides with the free term of this expansion.
Indeed the formula (14.11) for the change of coordinates can be rewritten as follows

SB(t)
−1 = S−1(t)−B, (14.15)

and the choice of B corresponds exactly to the choice of a coordinate set where the curve Λ(t)
has no free term in this expansion. Equivalently, a regular curve permits us to choose a privileged
origin in the affine space of Lagrangian subspaces that are transversal to the curve itself.

14.3 Curvature of a regular curve

Now we want to define the curvature of a regular curve in the Lagrange Grassmannian. Let Λ(t)
be a regular curve and consider its derivative curve Λ◦(t).

The tangent vectors to Λ(t) and Λ◦(t), as explained in Section 14.1, can be interpreted in a a
canonical way as a quadratic form on the space Λ(t) and Λ◦(t), respectively

Λ̇(t) ∈ Q(Λ(t)), Λ̇
◦
(t) ∈ Q(Λ◦(t)).

Being Λ◦(t) a canonical Lagrangian complement to Λ(t) we have the identifications through the
symplectic form2

Λ(t)∗ ≃ Λ◦(t), Λ◦(t)∗ ≃ Λ(t),

and the quadratic forms Λ̇(t), Λ̇
◦
(t) can be treated as (self-adjoint) mappings:

Λ̇(t) : Λ(t)→ Λ◦(t), Λ̇
◦
(t) : Λ◦(t)→ Λ(t). (14.16)

Definition 14.27. The operator RΛ(t) := Λ̇
◦
(t)◦Λ̇(t) : Λ(t)→ Λ(t) is called the curvature operator

of the regular curve Λ(t).

Remark 14.28. In the monotonic increasing (resp. decreasing) case, when Λ̇(t) (resp. −Λ̇(t)) defines
a scalar product on Λ(t), the operator R(t) is, by definition, symmetric with respect to this scalar
product. Moreover R(t), as quadratic form, has the same signature and rank as Λ̇

◦
(t) (resp.−Λ̇◦

(t)).

Definition 14.29. Let Λ1,Λ2 be two transversal Lagrangian subspaces of Σ. We denote by

πΛ1,Λ2 : Σ→ Λ2, (14.17)

the projection on Λ2 parallel to Λ1, i.e., the linear operator such that

πΛ1,Λ2 |Λ1 = 0 πΛ1,Λ2 |Λ2 = Id.

Exercise 14.30. Let Λ1 and Λ2 be two Lagrangian subspaces in Σ and assume that, in some
coordinate set, Λi = {(p, Sip), p ∈ Rn} for i = 1, 2. Prove that Σ = Λ1 ⊕ Λ2 if and only if
ker(S1 − S2) = {0}. In this case show that the following matrix expression for πΛ1,Λ2 :

πΛ1,Λ2 =

(
S−1
12 S1 −S−1

12

S2S
−1
12 S1 −S2S−1

12

)
, S12 := S1 − S2. (14.18)

2if Σ = Λ⊕∆ is a splitting of a vector space then Σ/Λ ≃ ∆. If moreover the splitting is Lagrangian in a symplectic
space, the symplectic form identifies Σ/Λ ≃ Λ∗, hence Λ∗ ≃ ∆.
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From the definition of the derivative of our curve we can get the following geometric character-
ization of the curvature of a curve.

Proposition 14.31. Let Λ(t) a regular curve in L(Σ) and Λ◦(t) its derivative curve. Then

Λ̇(t)(zt) = πΛ(t),Λ◦(t)(żt), Λ̇
◦
(t)(zt) = −πΛ◦(t),Λ(t)(żt).

In particular the curvature is the composition RΛ(t) = −πΛ◦(t),Λ(t) ◦ πΛ(t),Λ◦(t).

Proof. Recall that, by definition, the linear operator Λ̇ : Λ → Σ/Λ associated with the quadratic
form is the map z 7→ ż (mod Λ). Hence to build the map Λ → Λ◦ it is enough to compute the
projection of ż onto the complement Λ◦, that is exactly πΛ,Λ◦(ż). Notice that the minus sign in
equation (14.31) is a consequence of the skew symmetry of the symplectic product. More precisely,
the sign in the identification Λ◦ ≃ Λ∗ depends on the position of the argument.

The curvature RΛ(t) of the curve Λ(t) is a kind of relative velocity between the two curves Λ(t)
and Λ◦(t). If Σ has dimension two then a curve in the Lagrange Grassmannian is a curve of lines,
i.e., a curve on S1. In this case RΛ(t) > 0 means that the curve Λ(t) and its derivative Λ◦(t) moves
in the same direction.

Next we compute the expression of the curvature RΛ(t) in coordinates.

Proposition 14.32. Assume that Λ(t) = {(p, S(t)p)} is a regular curve in L(Σ). Then we have
the following coordinate expression for the curvature of Λ (we omit t in the formula)

RΛ = ((2Ṡ)−1S̈)̇− ((2Ṡ)−1S̈)2 (14.19)

=
1

2
Ṡ−1...S − 3

4
(Ṡ−1S̈)2. (14.20)

Proof. Assume that both Λ(t) and Λ◦(t) are contained in the same coordinate chart with

Λ(t) = {(p, S(t)p), p ∈ Rn}, Λ◦(t) = {(p, S◦(t)p), p ∈ Rn}.

We start the proof by computing the expression of the linear operator associated with the derivative
Λ̇ : Λ→ Λ◦ (we omit t when we compute at t = 0). For each element (p, Sp) ∈ Λ and any smooth
extension (p(t), S(t)p(t)) one can apply the matrix representing the operator πΛ,Λ◦ (see (14.18)) to
the derivative at t = 0 and find

πΛ,Λ◦(ṗ, Ṡp+ Sṗ) = (p′, S◦p′), p′ = −(S − S◦)−1Ṡp.

Exchanging the role of Λ and Λ◦, and taking into account of the minus sign one finds that the
coordinate representation of RΛ is given by

RΛ = (S◦ − S)−1Ṡ◦(S◦ − S)−1Ṡ. (14.21)

We prove formula (14.20) under the extra assumption that S(0) = 0. Notice that this is equivalent
to the choice of a particular coordinate set in L(Σ) and, being the expression of RΛ coordinate
independent by construction, this is not restrictive.

Under this extra assumption, it follows from (14.13) that

Λ(t) = {(p, S(t)p), p ∈ Rn}, Λ◦(t) = {(p, S◦(t)p), p ∈ Rn},
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where S◦(t) = B(t)−1 + S(t) and we denote by B(t) := −1
2 Ṡ(t)

−1S̈(t)Ṡ(t)−1.
Hence we have, assuming S(0) = 0 and omitting t when t = 0

RΛ = (S◦ − S)−1Ṡ◦(S◦ − S)−1Ṡ

= B
d

dt

∣∣∣∣
t=0

(
B(t)−1 + S(t)

)
BṠ

= (BṠ)2 − ḂṠ.

Plugging B = −1
2 Ṡ

−1S̈Ṡ−1 into the last formula, after some computations one gets to (14.20).

Remark 14.33. Consider a regular curve Λ(t) that is monotone increasing. The formula for the
curvature RΛ(t) of Λ(t) takes a very simple form in a particular coordinate set given by the splitting
Σ = Λ(0)⊕ Λ◦(0), i.e., such that

Λ(0) = {(p, 0), p ∈ Rn}, Λ◦(0) = {(0, x), x ∈ Rn}.

Indeed using a symplectic change of coordinates in Σ that preserves both Λ and Λ◦ (i.e., of the kind
p′ = Ap and x′ = (A−1)∗x) we can choose the matrix A in such a way that Ṡ(0) = I. Moreover
we know from Corollary 14.21 that the fact that Λ◦ = {(0, x), x ∈ Rn} is equivalent to S̈(0) = 0.
Hence one finds from (14.20) that

RΛ =
1

2

...
S . (14.22)

The curvature RΛ(t) represents a well-defined operator on Λ(0), naturally endowed with the sign
definite quadratic form Λ̇(0). Hence in these coordinates the eigenvalues of

...
S (and not only the

trace and the determinant) are invariants of the curve.

Exercise 14.34. Let f : R→ R be a smooth function such that f ′ 6= 0. The Schwarzian derivative
of f is defined as

Sf :=

(
f ′′

2f ′

)′
−
(
f ′′

2f ′

)2

. (14.23)

Prove that Sf = 0 if and only if f(t) =
at+ b

ct+ d
for some a, b, c, d ∈ R.

Remark 14.35. The previous proposition says that the curvature R is the matrix version of the
Schwarzian derivative of the matrix valued function S, cf. (14.19) and (14.23).

Example 14.36. Let Σ be a 2-dimensional symplectic space. In this case L(Σ) ≃ P1(R) is the real
projective line. Let us compute the curvature of a curve in L(Σ) with constant (angular) velocity
α > 0. We have

Λ(t) = {(p, S(t)p), p ∈ R}, S(t) = tan(αt) ∈ R.

From the explicit expression it easy to find the relation

Ṡ(t) = α(1 + S2(t)), ⇒ S̈(t)

2Ṡ(t)
= αS(t),

from which one gets that RΛ(t) = αṠ(t)− α2S2(t) = α2, i.e., the curve has constant curvature.

We end this section with a useful formula on the curvature of a reparametrized curve.
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Proposition 14.37. Let ϕ : R→ R a diffeomorphism and define the curve Λϕ(t) := Λ(ϕ(t)). Then

RΛϕ(t) = ϕ̇2(t)RΛ(ϕ(t)) +Rϕ(t)Id. (14.24)

Proof. It is a simple check that the Schwarzian derivative of the composition of two function f and
g satisfies

S(f ◦ g) = (Sf ◦ g)(g′)2 + Sg.
Notice that Rϕ(t) makes sense as the curvature of the regular curve ϕ : R→ R ⊂ P1 in the Lagrange
Grassmannian L(R2).

Exercise 14.38. (Another formula for the curvature). Let Λ0,Λ1 ∈ L(Σ) be such that Σ = Λ0⊕Λ1

and fix two tangent vectors ξ0 ∈ TΛ0L(Σ) and ξ1 ∈ TΛ1L(Σ). As in (14.16) we can treat each tangent
vector as a linear operator

ξ0 : Λ0 → Λ1, ξ1 : Λ1 → Λ0, (14.25)

and define the cross-ratio [ξ1, ξ0] = −ξ1 ◦ ξ0. If in some coordinates Λi = {(p, Sip)} for i = 0, 1 we
have (here Ṡi denotes the matrix associated with ξi)

[ξ1, ξ0] = (S1 − S0)−1Ṡ1(S1 − S0)−1Ṡ0.

Let now Λ(t) a regular curve in L(Σ). By regularity Σ = Λ(0)⊕Λ(t) for all t > 0 small enough,
hence the cross ratio

[Λ̇(t), Λ̇(0)] : Λ(0)→ Λ(0),

is well-defined. Prove the following expansion for t→ 0

[Λ̇(t), Λ̇(0)] ≃ 1

t2
Id +

1

3
RΛ(0) +O(t). (14.26)

14.4 Reduction of non-regular curves in Lagrange Grassmannian

In this section we want to extend the notion of curvature to non-regular curves. As we will see
in the next chapter, it is always possible to associate with an extremal a family of Lagrangian
subspaces in a symplectic space, i.e., a curve in a Lagrangian Grassmannian. This curve turns
out to be regular if and only if the extremal is an extremal of a Riemannian structure. Hence, if
we want to apply this theory for a genuine sub-Riemannian case we need some tools to deal with
non-regular curves in the Lagrangian Grassmannian.

Let (Σ, σ) be a symplectic vector space and L(Σ) denote the Lagrange Grassmannian. We start
by describing a natural submanifold of L(Σ) associated with an isotropic subspace Γ of Σ. This
will allow us to define a reduction procedure for a non-regula curve.

Let Γ be a k-dimensional isotropic subspace of Σ, i.e., σ
∣∣
Γ
= 0. This means that Γ ⊂ Γ∠.

In particular Γ∠/Γ is a 2(n − k) dimensional symplectic space, where the symplectic structure is
defined by the restriction of σ.

Lemma 14.39. There is a natural identification of L(Γ∠/Γ) as a submanifold of L(Σ):

L(Γ∠/Γ) ≃ {Λ ∈ L(Σ),Γ ⊂ Λ} ⊂ L(Σ). (14.27)

Moroever we have a natural projection

πΓ : L(Σ)→ L(Γ∠/Γ), Λ 7→ ΛΓ,

where ΛΓ := (Λ ∩ Γ∠) + Γ = (Λ + Γ) ∩ Γ∠.
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Proof. Assume that Λ ∈ L(Σ) and Γ ⊂ Λ. Then, since Λ is Lagrangian, Λ = Λ∠ ⊂ Γ∠, hence the
identification (14.27).

Assume now that Λ ∈ L(Γ∠/Γ) and let us show that πΓ(Λ) = Λ, i.e., πΓ is a projection. Indeed
from the inclusions Γ ⊂ Λ ⊂ Γ∠ one has πΓ(Λ) = ΛΓ = (Λ ∩ Γ∠) + Γ = Λ+ Γ = Λ.

We are left to check that ΛΓ is Lagrangian, i.e., (ΛΓ)∠ = ΛΓ.

(ΛΓ)∠ = ((Λ ∩ Γ∠) + Γ)∠

= (Λ ∩ Γ∠)∠ ∩ Γ∠

= (Λ + Γ) ∩ Γ∠ = ΛΓ,

where we repeatedly used Exercise 14.5. Notice that the last identity (Λ + Γ)∩ Γ∠ = (Λ ∩ Γ∠) + Γ
is also a consequence of the same exercise.

Remark 14.40. Let Γ⋔ = {Λ ∈ L(Σ) | Λ ∩ Γ = {0}}. The restriction πΓ
∣∣
Γ⋔ is smooth. Indeed one

can show that πΓ is defined by a rational function, since it is expressed via the solution of a linear
system.

The following example shows that the projection πΓ is not even continous when considered
globally on L(Σ).

Example 14.41. Consider the symplectic structure σ on R4 and fix a Darboux basis {e1, e2, f1, f2},
i.e., σ(ei, fj) = δij . Let Γ = span{e1} be a one dimensional isotropic subspace and define for ε > 0

Λε = span{e1 + εf2, e2 + εf1}.

It is easy to see that Λε is Lagrangian for every ε > 0 and that

ΛΓ
ε = span{e1, f2}, ∀ ε > 0, (14.28)

ΛΓ
0 = span{e1, e2}.

The case ε = 0 is trivial. Let ε > 0. Then f2 ∈ e∠1 , that implies e1 + εf2 ∈ Λε ∩ Γ∠, therefore
f2 ∈ Λε ∩ Γ∠. By definition of reduced curve f2 ∈ ΛΓ

ε and (14.28) holds.

14.5 Ample curves

In this section we introduce ample curves.

Definition 14.42. Let Λ(t) ∈ L(Σ) be a smooth curve in the Lagrange Grassmannian. The curve
Λ(t) is ample at t = t0 if there exists N ∈ N such that

Σ = span{λ(i)(t0)| λ(t) ∈ Λ(t), λ(t) smooth, 0 ≤ i ≤ N}. (14.29)

In other words we require that all derivatives up to order N of all smooth sections of our curve in
L(Σ) span all the possible directions.

As usual, we can choose coordinates in such a way that, for some family of symmetric matrices
S(t), one has

Σ = {(p, x)| p, x ∈ Rn}, Λ(t) = {(p, S(t)p)| p ∈ Rn}.
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Exercise 14.43. Assume that Λ(t) = {(p, S(t)p), p ∈ Rn} with S(0) = 0. Prove that the curve is
ample at t = 0 if and only if there exists N ∈ N such that all the columns of the derivative of S(t)
up to order N (and computed at t = 0) span a maximal subspace:

rank{Ṡ(0), S̈(0), . . . , S(N)(0)} = n. (14.30)

In particular, a curve Λ(t) is regular at t0 if and only if is ample at t0 with N = 1.

An important property of ample and monotone curves is described in the following lemma.

Lemma 14.44. Let Λ(t) ∈ L(Σ) a monotone, ample curve at t0. Then, there exists ε > 0 such
that Λ(t) ∩ Λ(t0) = {0} for 0 < |t− t0| < ε.

Proof. Without loss of generality, assume t0 = 0. Choose a Lagrangian splitting Σ = Λ⊕ Π, with
Λ = J(0). For |t| < ε, the curve is contained in the chart defined by such a splitting. In coordinates,
Λ(t) = {(p, S(t)p)| p ∈ Rn}, with S(t) symmetric and S(0) = 0. The curve is monotone, then Ṡ(t)
is a semidefinite symmetric matrix. It follows that S(t) is semidefinite too.

Suppose that, for some t, Λ(t) ∩ Λ(0) 6= {0} (assume t > 0). This means that ∃ v ∈ Rn such
that S(t)v = 0. Indeed also v∗S(t)v = 0. The function τ 7→ v∗S(τ)v is monotone, vanishing at
τ = 0 and τ = t. Therefore v∗S(τ)v = 0 for all 0 ≤ τ ≤ t. Being a semidefinite, symmetric matrix,
v∗S(τ)v = 0 if and only if S(τ)v = 0. Therefore, we conclude that v ∈ kerS(τ) for 0 ≤ τ ≤ t. This
implies that, for any i ∈ N, v ∈ kerS(i)(0), which is a contradiction, since the curve is ample at
0.

Exercise 14.45. Prove that a monotone curve Λ(t) is ample at t0 if and only if one of the following
(equivalent) conditions is satisfied

(i) the family of matrices S(t) − S(t0) is nondegenerate for t 6= t0 close enough, and the same
remains true if we replace S(t) by its N -th Taylor polynomial, for some N in N.

(ii) the map t 7→ det(S(t)− S(t0)) has a finite order root at t = t0.

Let us now consider a monotone curve on L(Σ). Without loss of generality we can assume the
curve to be non-decreasing, i.e., Λ̇(t) ≥ 0. By monotonicity

Λ(0) ∩ Λ(t) =
⋂

0≤τ≤t
Λ(τ) =: Υt

Clearly Υt is a decreasing family of subspaces, i.e., Υt ⊆ Υτ if τ ≤ t. Hence the family Υt for t→ 0
stabilizes and the limit subspace Υ is well-defined

Υ := lim
t→0

Υt.

The symplectic reduction of the curve by the isotropic subspace Υ defines a new curve Λ̃(t) :=
Λ(t)Υ ∈ L(Υ∠/Υ).

Proposition 14.46. If Λ(t) is analytic and monotone in L(Σ), then Λ̃(t) is ample L(Υ∠/Υ).

Proof. By construction, in the reduced space Υ∠/Υ we removed the intersection of Λ(t) with Λ(0).
Hence for small t

Λ̃(0) ∩ Λ̃(t) = {0}, in L(Υ∠/Υ) (14.31)

In particular, if S̃(t) denotes the symmetric matrix representing Λ̃(t) such that S̃(0) represents
Λ̃(t0), it follows that S̃(t) is non-degenerate for 0 < |t| < ε. The analyticity of the curve guarantees
that the Taylor polynomial (of a suitable order N) is also non-degenerate.
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14.6 From ample to regular

In this section we prove the main result of this chapter, i.e., that any ample monotone curve can
be reduced to a regular one.

Theorem 14.47. Let Λ(t) be a smooth ample monotone curve and set Γ := ker Λ̇(0). Then the

reduced curve t 7→ ΛΓ(t) is a smooth regular curve. In particular Λ̇
Γ
(0) > 0.

Thanks to Theorem 14.47 the following definition is well-posed.

Definition 14.48. Let Λ(t) be a smooth ample monotone curve and set Γ := ker Λ̇(0). Then the
principal curvature of Λ(t) is the cuvature operator associated with the regular curve t 7→ ΛΓ(t).

Before proving Theorem 14.47, let us discuss two useful lemmas.

Lemma 14.49. Let v1(t), . . . , vk(t) ∈ Rn and define V (t) as the n × k matrix whose columns are
the vectors vi(t). Define the matrix S(t) :=

∫ t
0 V (τ)V (τ)∗dτ . Then the following are equivalent:

(i) S(t) is invertible (and positive definite),

(ii) span{vi(τ)| i = 1, . . . , k; τ ∈ [0, t]} = Rn.

Proof. Fix t > 0 and let us assume S(t) is not invertible. Since S(t) is non negative then there
exists a nonzero x ∈ Rn such that 〈S(t)x, x〉 = 0. On the other hand

〈S(t)x, x〉 =
∫ t

0
〈V (τ)V (τ)∗x, x〉 dτ =

∫ t

0
‖V (τ)∗x‖2dτ.

This implies that V (τ)∗x = 0 (or equivalently x∗V (τ) = 0) for τ ∈ [0, t], i.e., the nonzero vector x∗

is orthogonal to im τ∈[0,t]V (τ) = span{vi(τ)| i = 1, . . . , k, τ ∈ [0, t]} = Rn, that is a contradiction.
The converse is similar.

Lemma 14.50. Let A,B be two positive and symmetric matrices such that 0 < A < B. Then we
have also 0 < B−1 < A−1.

Proof. Assume first that A and B commute. Then A and B can be simultaneously diagonalized
and the statement is trivial for diagonal matrices.

In the general case, since A is symmetric and positive, we can consider its square root A1/2,
which is also symmetric and positive. We can write

0 < 〈Av, v〉 < 〈Bv, v〉 .

By setting w = A1/2v in the above inequality and using 〈Av, v〉 =
〈
A1/2v,A1/2v

〉
one gets

0 < 〈w,w〉 <
〈
A−1/2BA−1/2w,w

〉
,

which is equivalent to I < A−1/2BA−1/2. Since the identity matrix commutes with every other
matrix, we obtain

0 < A1/2B−1A1/2 = (A−1/2BA−1/2)−1 < I,

which is equivalent to 0 < B−1 < A−1 reasoning as before.
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Proof of Theorem 14.47. By assumption the curve t 7→ Λ(t) is ample, hence Λ(t) ∩ Γ = {0} and
t 7→ ΛΓ(t) is smooth for t > 0 small enough. We divide the proof into three parts: (i) we compute
the coordinate presentation of the reduced curve. (ii) we show that the reduced curve, extended
by continuity at t = 0, is smooth. (iii) we prove that the reduced curve is regular.

(i). Let us consider Darboux coordinates in the symplectic space Σ such that

Σ = {(p, x) : p, x ∈ Rn}, Λ(t) = {(p, S(t)p)| p ∈ Rn}, S(0) = 0.

Morover we can assume also Rn = Rk ⊕ Rn−k, where Γ = {0} ⊕ Rn−k. According to this splitting
we have the decomposition p = (p1, p2)

T and x = (x1, x2)
T . The subspaces Γ and Γ∠ are described

by the equations
Γ = {(p, x) : p1 = 0, x = 0}, Γ∠ = {(p, x) : x2 = 0}

and (p1, x1) are natural coordinates for the reduced space Γ∠/Γ. Up to a symplectic change of
coordinates preserving the splitting Rn = Rk ⊕ Rn−k we can assume that

S(t) =

(
S11(t) S12(t)
S∗
12(t) S22(t)

)
, with Ṡ(0) =

(
Ik 0
0 0

)
. (14.32)

where Ik is the k× k identity matrix. Finally, the fact that S is monotone and ample, implies that
S(t) > 0 for each t > 0. It follows

S11(t) > 0, S22(t) > 0, ∀ t > 0. (14.33)

Then we can compute the coordinate expression of the reduced curve, i.e., the matrix SΓ(t) such
that

ΛΓ(t) = {(p1, SΓ(t)p1) | p1 ∈ Rk}.
From the identity

Λ(t) ∩ Γ∠ = {(p, S(t)p), S(t)p ∈ Rk} =
{(

S−1(t)

(
x1
0

)
,

(
x1
0

))
, x1 ∈ Rk

}
, (14.34)

one gets the key relation SΓ(t)−1 = (S(t)−1)11.
Thus the matrix expression of the reduced curve ΛΓ(t) in L(Γ∠/Γ) is simply recovered. We

have

S(t)p =

(
S11 S12
S∗
12 S22

)(
p1
p2

)
=

(
S11p1 + S12p2
S∗
12p1 + S22p2

)
,

from which we get S(t)p ∈ Rk if and only if S∗
12(t)p1 + S22(t)p2 = 0. Then

ΛΓ(t) = {(p1, S11p1 + S12p2) : S
∗
12(t)p1 + S22(t)p2 = 0}

= {(p1, (S11 − S12S−1
22 S

∗
12)p1)}

that means
SΓ = S11 − S12S−1

22 S
∗
12. (14.35)

(ii). By the coordinate presentation of SΓ(t) the only term that can give rise to singularities is
the inverse matrix S−1

22 (t). In particular, since by assumption t 7→ detS22(t) has a finite order zero
at t = 0, the a priori singularity can be only a finite order pole.
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To prove that the curve is smooth it is enough to show that SΓ(t)→ 0 for t→ 0, i.e., the curve
remains bounded. This follows from the following

Claim I. As quadratic forms on Rk, we have the inequalities 0 ≤ SΓ(t) ≤ S11(t).
Indeed S(t) symmetric and positive one has that its inverse S(t)−1 is symmetric and positive also.
This implies that SΓ(t)−1 = (S(t)−1)11 > 0 and so is SΓ(t). This proves the left inequality of the
Claim I.

Moreover using (14.35) and the fact that S22 is positive definite (and so S−1
22 ) one gets

〈
(S11 − SΓ)p1, p1

〉
=
〈
S12S

−1
22 S

∗
12p1, p1

〉
=
〈
S−1
22 (S

∗
12p1), (S

∗
12p1)

〉
≥ 0.

Since S(t)→ 0 for t→ 0, clearly S11(t)→ 0 when t→ 0, that proves that SΓ(t)→ 0 also.
(iii). We are reduced to show that the derivative of t 7→ SΓ(t) at 0 is non-degenerate matrix,

which is equivalent to show that t 7→ SΓ(t)−1 has a simple pole at t = 0.
We need the following lemma, whose proof is postponed at the end of the proof of Theorem

14.47.

Lemma 14.51. Let A(t) be a smooth family of symmetric nonnegative n × n matrices. If the
condition rank(A, Ȧ, . . . , A(N))|t=0 = n is satisfied for some N , then there exists ε0 > 0 such that
εtA(0) <

∫ t
0 A(τ)dτ for all ε < ε0 and t > 0 small enough.

Applying the Lemma to the family A(t) = Ṡ(t) one obtains (see also (14.32))

〈S(t)p, p〉 > εt|p1|2,

for all 0 < ε < ε0, any p ∈ Rn and any small time t > 0.
Now let p1 ∈ Rk be arbitrary and extend it to a vector p = (p1, p2) ∈ Rn such that (p, S(t)p) ∈

Λ(t) ∩ Γ∠ (it is enough to choose p2 = −S−1
22 S

∗
12p1). This implies in particular that SΓ(t)p1 = x1

and 〈
SΓ(t)p1, p1

〉
= 〈S(t)p, p〉 ≥ εt|p1|2,

This identity can be rewritten as SΓ(t) > εt Ik > 0 and implies by Lemma 14.50

0 < SΓ(t)−1 <
1

εt
Ik,

which completes the proof.

Proof of Lemma 14.51. We reduce the proof of the Lemma to the following statement:

Claim II. There exists ĉ, N̂ > 0 such that for any sufficiently small ε, t > 0

det

(∫ t

0
A(τ) − εA(0) dτ

)
> ĉ tN̂ . (14.36)

Moreover ĉ, N̂ depends only on the 2N -th Taylor polynomial of A(t).

Indeed, assume Claim II is true and fix t0 > 0 small enough. Since A(t) ≥ 0, from (14.36) for ε = 0
we have that

∫ t0
0 A(τ)dτ > 0 (a non-negative quadratic form with positive determinant is positive).

Hence by continuity, for a fixed t0, there exists ε small enough such that
∫ t0
0 A(τ) − εA(0) dτ > 0.

Assume now that the matrix K(t) =
∫ t
0 A(τ)− εA(0) dτ is not strictly positive for some 0 < t < t0,
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then detK(τ) = 0 for some τ ∈ [t, t0], that is a contradiction.

We now prove Claim II. We may assume that t 7→ A(t) is analytic. Indeed, by smoothness
of the determinant, the statement remains true if we substitute A(t) by its Taylor polynomial of
sufficiently big order.

An analytic one parameter family of symmetric matrices t 7→ A(t) can be simultaneously diago-
nalized (see [Kat95]), in the sense that there exists an analytic (with respect to t) family of vectors
vi(t), with i = 1, . . . , n, such that

〈A(t)x, x〉 =
n∑

i=1

〈vi(t), x〉2 .

In other words A(t) = V (t)V (t)∗, where V (t) is the n × n matrix whose columns are the vectors
vi(t). (Notice that some of these vector can vanish at 0 or even vanish identically.)

Let us now consider the flag E1 ⊂ E2 ⊂ . . . ⊂ EN = Rn defined as follows

Ei = span{v(l)j , 1 ≤ j ≤ n, 0 ≤ l ≤ i}.

Notice that this flag is finite by our assumption on the rank of the consecutive derivatives of A(t)
and N is the same as in the statement of the Lemma. We then choose coordinates in Rn adapted
to this flag (i.e., the spaces Ei are coordinate subspaces) and define the following integers (here
e1, . . . , en is the standard basis of Rn)

mi = min{j : ei ∈ Ej}, i = 1, . . . , n.

In other words, when written in this new coordinate set, mi is the order of the first nonzero term in
the Taylor expansion of the i-th row of the matrix V (t). Then we introduce a quasi-homogeneous
family of matrices V̂ (t): the i-th row of V̂ (t) is the mi-homogeneous part of the i-the row of V (t).
Then we define Â(t) := V̂ (t)V̂ (t)∗. The columns of the matrix Â(t) satisfy the assumption of
Lemma 14.49, then

∫ t
0 Â(τ)dτ > 0 for every t > 0.

If we denote the entries A(t) = {aij(t)}ni,j=1 and Â(t) = {âij(t)}ni,j=1 we obtain

âij(t) = ĉijt
mi+mj , aij(t) = âij(t) +O(tmi+mj+1),

for suitable constants ĉij (some of them may be zero).

Then we let Aε(t) := A(t)− εA(0) = {aεij(t)}ni,j=1. Of course aεij(t) = cεijt
mi+mj +O(tmi+mj+1)

where

cεij =

{
(1− ε)ĉij , if mi +mj = 0,

ĉij , if mi +mj > 0.

From the equality ∫ t

0
aεij(τ)dτ = tmi+mj+1

(
cεij

mi +mj + 1
+O(t)

)
,

one gets

det

(∫ t

0
Aε(τ)dτ

)
= tn+2

∑N
i=1mi

(
det

(
cεij

mi +mj + 1

)
+O(t)

)
.
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On the other hand

det

(∫ t

0
Â(τ)dτ

)
= tn+2

∑N
i=1mi

(
det

(
ĉij

mi +mj + 1

)
+O(t)

)
> 0,

hence det
(

cεij
mi+mj+1

)
> 0 for small ε. The proof is completed by setting

ĉ := det

(
ĉij

mi +mj + 1

)
, N̂ := n+ 2

N∑

i=1

mi.

14.7 Conjugate points in L(Σ)

In this section we introduce the notion of conjugate point for a curve in the Lagrange Grassmannian.
In the next chapter we explain why this notion coincide with the one given for extremal paths in
sub-Riemannian geometry.

Definition 14.52. Let Λ(t) be a monotone curve in L(Σ). We say that Λ(t) is conjugate to Λ(0)
along Λ(·) if Λ(t) ∩ Λ(0) 6= {0}.

Conjugate points along a curve are independent on the parametrization. When a parametriza-
tion is fixed, one can speak about conjugate times along the curve. We have the following propo-
sition, cf. also Corollary 8.51.

Proposition 14.53. Conjugate points on a monotone and ample curve in L(Σ) are isolated.

Proof. Without loss of generality we can assume that the curve is monotone increasing. Notice
that from Lemma 14.44 we immediately get that the first conjugate time is separated from zero.
To prove that the set of conjugate time is discrete, recall that thanks to Exercice 14.10 the unique
invariant of two pair of Lagrangian subspaces is the dimension of their intersection.

Fix a time t̄ that is conjugate to zero and a set of coordinates in the Lagrange Grassmannian
such that Λ(t̄) = 0 and Λ(0) ≤ 0. Since the curve is monotone increasing and ample we have that
Λ(τ) > 0 for all τ > t̄, hence Λ(τ) ∩ Λ(0) = 0 for τ > t̄ small enough. To prove the analogue
statement for τ < t̄ it is enough to choose the coordinate chart in such a way that Λ(t̄) = 0 and
Λ(0) ≥ 0 and repeat the previous argument.

The following results describe two general properties of conjugate points

Theorem 14.54. Let Λ(t),∆(t) two ample and monotone curves in L(Σ) defined on R such that

(i) Σ = Λ(t)⊕∆(t) for every t ≥ 0,

(ii) Λ̇(t) ≥ 0, ∆̇(t) ≤ 0, as quadratic forms.

Then there exists no τ > 0 such that Λ(τ) is conjugate to Λ(0) along Λ(·). Moreover there exists
Λ(∞) := limt→+∞ Λ(t).
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Proof. Fix coordinates induced by some Lagrangian splitting of Σ in such a way that SΛ(0) = 0 and
S∆(0) = I. The monotonicity assumption implies that t 7→ SΛ(t) (resp. t 7→ S∆(t)) is a monotone
increasing (resp. decreasing) curve in the space of symmetric matrices. Moreover the tranversality
of Λ(t) and ∆(t) implies that S∆(t)− SΛ(t) is a non-degenerate matrix for all t. Hence

0 < SΛ(t) < S∆(t) < I, for all t > 0.

In particular Λ(t) never leaves the coordinate neighborhood under consideration, the subspace Λ(t)
is always traversal to Λ(0) for t > 0 and has a limit Λ(∞) whose coordinate representation is
SΛ(∞) = limt→+∞ SΛ(t).

Theorem 14.55. Let Λ0(t),Λ1(t) be two monotone and ample curves in L(Σ) such that Λ0(0) =
Λ1(0) = Λ. Assume that there exists a homotopy of curves Λs(t) such that Λs(0) = Λ for s ∈ [0, 1]
and satisfying the following properties:

(i) Λ0(·) contains no conjugate points to Λ,

(ii) Λs(·) is monotone and ample for every s ∈ [0, 1],

(iii) Λs(1) ∩ Λ = {0} for all s ∈ [0, 1].

Then the curve t 7→ Λ1(t) contains no conjugate points to Λ.

Proof. Let us consider the open chart Λ⋔ defined by all the Lagrangian subspaces traversal to Λ.
The statement is equivalent to the fact that Λ1(t) ∈ Λ⋔ for all t > 0. Let us fix coordinates induced
by some Lagrangian splitting Σ = Λ⊕∆ in such a way that Λ = {(p, 0), p ∈ Rn} and

Λs(t) = {(Bs(t)x, x), x ∈ Rn},

for all s and t > 0 (at least for t small enough, indeed by ampleness Λs(t) ∈ Λ⋔ for t small).
Recall that Bs(t) is the inverse of a matrix Ss(t) that is monotonically increasing and such that

Ss(t)→ 0 for t→ 0+.
It follows that Bs(t) is a monotone decreasing family of symmetric matrices and, for every

x ∈ Rn, one has xTBs(τ)x → +∞ when τ → 0+ (this quantity goes monotonically to ∞ and
since it is decreasing on ]0, 1[ it goes to +∞)). Analogously, a necessary condition for Λs(t) to be
conjugate to Λ is that there exists a nonzero x such that xTBs(τ)x→∞ for τ → t.

It is then enough to show that, for all x ∈ Rn the function (t, s) 7→ xTBs(t)x is bounded.
Indeed by assumptions t 7→ xTB0(t)x and t 7→ xTB1(t)x are monotone decreasing and bounded up
to t = 1. Hence the continuous family of values Ms := xTBs(1)x is well-defined and bounded for
all s ∈ [0, 1]. The monotonicity implies that actually xTBs(t)x > −∞ for all values of t, s ∈ [0, 1].
(See also Figure 14.1).

14.8 Comparison theorems for regular curves

In this last section we prove two comparison theorems for regular monotone curves in the Lagrange
Grassmannian.

Proposition 14.56. Let Λ(t) be a monotone and regular curve in the Lagrange Grassmannian
such that RΛ(t) ≤ 0. Then Λ(t) contains no conjugate points to Λ(0) along Λ(·).
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Figure 14.1: Proof of Theorem 14.55

Proof. Assume without loss of generality that Λ(t) is monotone increasing. Then RΛ(t) ≤ 0 implies
that Λ◦(t) is monotone decreasing and applying Theorem 14.54 with ∆(t) = Λ◦(t) the statement
follows.

Theorem 14.57. Let Λ(t) be a monotone and regular curve in the Lagrange Grassmannian. As-
sume that there exists k ≥ 0 such that

(i) RΛ(t) ≤ k Id for all t ≥ 0. Then if Λ(t0) is conjugate to Λ(0) along Λ(·), we have t0 ≥ π√
k
.

(ii) traceRΛ(t) ≥ nk for all t ≥ 0. Then for every τ ≥ 0 there exists t0 ∈ [τ, τ + π√
k
] such that

Λ(t0) is conjugate to Λ(0) along Λ(·).
We stress that assumption (i) means that all the eigenvalues of RΛ(t) are smaller or equal than

k, while (ii) requires only that the average of the eigenvalues is bigger or equal than k.

Remark 14.58. Notice that the estimates of Theorem 14.57 are sharp, as it is immediately seen by
considering the example of a 1-dimensional curve of constant velocity (cf. Example 14.36).

Proof. (i). Consider the real function

ϕ : R→]0,
π√
k
[, ϕ(t) =

1√
k
(arctan

√
kt+

π

2
).

Using that ϕ̇(t) = (1 + kt2)−1 it is easy to show that the Schwarzian derivative of ϕ is

Rϕ(t) = −
k

(1 + kt2)2
.

Thus using ϕ as a reparametrization we find, following the notation of Proposition 14.37 that

RΛϕ(t) = ϕ̇2RΛ(ϕ(t)) +Rϕ(t)Id

=
1

(1 + kt2)2
(RΛ(ϕ(t)) − kId) ≤ 0.
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By Corollary 14.56 the curve Λϕ := Λ ◦ ϕ has no conjugate points on R, i.e., Λ has no conjugate
points in the interval ]0, π√

k
[.

(ii). We prove the claim by showing that the curve Λ(t), on every interval of length π/
√
k has

non trivial intersection with every subspace (hence in particular with Λ(0)). This is equivalent to
prove that Λ(t) is not contained in a single coordinate chart for a whole interval of length π/

√
k.

Assume by contradiction that Λ(t) is contained in a single coordinate chart. Then there exists
coordinates such that Λ(t) = {(p, S(t)p)} and we can write the coordinate expression for the
curvature:

RΛ(t) = Ḃ(t)−B(t)2, where B(t) = (2S(t))−1S̈(t).

Let now b(t) := traceB(t). Computing the trace in both sides of the identity

Ḃ(t) = B2(t) +RΛ(t),

one gets the scalar equation

ḃ(t) = trace(B2(t)) + traceRΛ(t). (14.37)

Lemma 14.59. For every n× n symmetric matrix S, the following inequality holds true

trace(S2) ≥ 1

n
(traceS)2. (14.38)

Proof. For every symmetric matrix S there exists a matrix M such that MSM−1 = D is diagonal.
Since trace(MAM−1) = trace(A) for every matrix A, it is enough to prove the inequality (14.38)
for a real diagonal matrix D = diag(λ1, . . . , λn). In this case (14.38) reduces to the classical
Cauchy-Schwartz inequality

n∑

i=1

λ2i ≥
1

n

(
n∑

i=1

λi

)2

.

Applying Lemma 14.59 to (14.37) and using the assumption (ii), one gets

ḃ(t) ≥ 1

n
b2(t) + nk, (14.39)

By standard results in ODE theory we have b(t) ≥ ϕ(t) , where ϕ(t) is the solution of the differential
equation

ϕ̇(t) =
1

n
ϕ2(t) + nk. (14.40)

The unique solution of (14.40), with initial datum ϕ(t0) = 0, is explicitly given by

ϕ(t) = n
√
k tan(

√
k(t− t0)).

This solution is defined on an interval of measure π/
√
k. Thus the inequality b(t) ≥ ϕ(t) completes

the proof.
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14.9 Bibliographical note

The theory of invariants of curves in the Lagrange Grassmannian has been developed in the lit-
erature in relation to different questions, such as geodesic flows, control theory and projective
differential geometry.

The fact that the Schwarzian derivative can be interpreted as the curvature of a curve on
the projective line is already observed in [Fla70]. The theory of regular curves in the Lagrange
Grassmannian has also been previously studied in [Ahd89], in relation to the Riemannian geodesic
flow, in [Ovs89, Ovs93] in relation to Sturm systems, in [Zel00] in relation to Riccati equation, and,
more recently, in [APD09] in relation to symplectic invariants. In these references, regular curves
are called fanning curves.

The approach discussed here has been extensively developed in control theory starting from the
papers [AG97, Agr98b, AG98] and then subsequently in [AZ02b, AZ02a]. A discussion of many of
the results contained in this chapter can also be found in the lecture notes [Agr08], where the theory
of Morse index is also developed. The proof of Theorem 14.47 given here is original; an alternative
proof of the same result is also contained in [ABR18], where the relation between curvature of curves
in Lagrange Grassmannian and curvature in sub-Riemannian geometry and more general control
problem is revisited. The problem of finding a complete set of invariants for ample but non-regular
curves in Lagrange Grassmannian have been developed in [Zel06, ZL07, ZL09] (cf. Appendix).
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Chapter 15

Jacobi curves

Now we are ready to introduce the main object of this part of the book, i.e., the Jacobi curve
associated with a normal extremal. Heuristically, we would like to extract geometric properties of
the sub-Riemannian structure by studying the symplectic invariants of its geodesic flow, that is the
flow of ~H. The simplest idea is to look for invariants in its linearization.

As we explain in the next sections, this object is naturally related to geodesic variations, and
generalizes the notion of Jacobi fields in Riemannian geometry to more general geometric structures.

In this chapter we consider a sub-Riemannian structure (M,U, f) on a smooth n-dimensional
manifold M and we denote as usual by H : T ∗M → R its sub-Riemannian Hamiltonian.

15.1 From Jacobi fields to Jacobi curves

Fix a covector λ ∈ T ∗M , with π(λ) = q, and consider the normal extremal starting from q and
associated with λ, i.e.

λ(t) = et
~H(λ), γ(t) = π(λ(t)). (i.e. λ(t) ∈ T ∗

γ(t)M.)

For any ξ ∈ Tλ(T ∗M) we can define a vector field along the extremal λ(t) as follows

X(t) := et
~H

∗ ξ ∈ Tλ(t)(T ∗M)

The set of vector fields obtained in this way is a 2n-dimensional vector space which is the space of
Jacobi fields along the extremal. For an Hamiltonian H corresponding to a Riemannian structure,
the projection π∗ gives an isomorphism between the space of Jacobi fields along the extremal and
the classical space of Jacobi fields along the geodesic γ(t) = π(λ(t)).

Notice that this definition, equivalent to the standard one in Riemannian geometry, does
not need curvature or connection, and can be extended naturally for any strongly normal sub-
Riemannian geodesic.

In Riemannian geometry, the study of one half of this vector space, namely the subspace of
classical Jacobi fields vanishing at zero, carries informations about conjugate points along the
given geodesic. By the aforementioned isomorphism, this corresponds to the subspace of Jacobi
fields along the extremal such that π∗X(0) = 0. This motivates the following construction: For
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any λ ∈ T ∗M , we denote Vλ := kerπ∗|λ the vertical subspace. We could study the whole family of
(classical) Jacobi fields (vanishing at zero) by means of the family of subspaces along the extremal

L(t) := et
~H

∗ Vλ ⊂ Tλ(t)(T ∗M).

Notice that actually, being et
~H

∗ a symplectic transformation and Vλ a Lagrangian subspace, the
subspace L(t) is a Lagrangian subspace of Tλ(t)(T

∗M).

15.1.1 Jacobi curves

The theory of curves in the Lagrange Grassmannian developed in Chapter 14 is an efficient tool
to study family of Lagrangian subspaces contained in a single symplectic vector space. It is then
convenient to modify the construction of the previous section in order to collect the informations
about the linearization of the Hamiltonian flow into a family of Lagrangian subspaces at a fixed
tangent space.

By definition, the pushforward of the flow of ~H maps the tangent space to T ∗M at the point
λ(t) back to the tangent space to T ∗M at λ:

e−t
~H

∗ : Tλ(t)(T
∗M)→ Tλ(T

∗M).

If we then restrict the action of the pushforward e−t ~H∗ to the vertical subspace at λ(t), i.e. the
tangent space Tλ(t)(T

∗
γ(t)M) at the point λ(t) to the fiber T ∗

γ(t)M , we define a one parameter family

of n-dimensional subspaces in the 2n-dimensional vector space Tλ(T
∗M). This family of subspaces

is a curve in the Lagrangian Grassmannian L(Tλ(T
∗M)).

Notation. In the following we use the notation Vλ := Tλ(T
∗
qM) for the vertical subspace at

the point λ ∈ T ∗M , i.e. the tangent space at λ to the fiber T ∗
qM , where q = π(λ). Being the

tangent space to a vector space, sometimes it will be useful to identify the vertical space Vλ with
the vector space itself, namely Vλ ≃ T ∗

qM .

Definition 15.1. Let λ ∈ T ∗M . The Jacobi curve at the point λ is defined as follows

Jλ(t) := e−t
~H

∗ Vλ(t), (15.1)

where λ(t) := et
~H(λ) and γ(t) = π(λ(t)). Notice that Jλ(t) ⊂ Tλ(T ∗M) and Jλ(0) = Vλ = Tλ(T

∗
qM)

is vertical.

As discussed in Chapter 14, the tangent vector to a curve in the Lagrange Gassmannian can be
interpreted as a quadratic form. In the case of a Jacobi curve Jλ(t) its tangent vector is a quadratic
form J̇λ(t) : Jλ(t)→ R.

Proposition 15.2. The Jacobi curve Jλ(t) satisfies the following properties:

(i) Jλ(t+ s) = e−t ~H∗ Jλ(t)(s), for all t, s ≥ 0,

(ii) J̇λ(0) = −2H|T ∗
qM as quadratic forms on Vλ ≃ T ∗

qM .

(iii) rank J̇λ(t) = rankH|T ∗
γ(t)

M
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Proof. Claim (i) is a consequence of the semigroup property of the family {e−t ~H∗ }t≥0.

To prove (ii), introduce canonical coordinates (p, x) in the cotangent bundle. Fix ξ ∈ Vλ. The

smooth family of vectors defined by ξ(t) = e−t ~H∗ ξ (considering ξ as a constant vertical vector field)
is a smooth extension of ξ, i.e. it satisfies ξ(0) = ξ and ξ(t) ∈ Jλ(t). Therefore, by (14.8)

J̇λ(0)ξ = σ(ξ, ξ̇) = σ

(
ξ,
d

dt

∣∣∣∣
t=0

e−t
~H

∗ ξ

)
= σ(ξ, [ ~H, ξ]). (15.2)

To compute the last quantity we use the following elementary, although very useful, property of
the symplectic form σ.

Lemma 15.3. Let ξ ∈ Vλ a vertical vector. Then, for any η ∈ Tλ(T ∗M)

σ(ξ, η) = 〈ξ, π∗η〉, (15.3)

where we used the canonical identification Vλ = T ∗
qM .

Proof. In any Darboux basis induced by canonical local coordinates (p, x) on T ∗M , we have σ =∑n
i=1 dpi ∧ dxi and ξ =

∑n
i=1 ξ

i∂pi . The result follows immediately.

To complete the proof of point (ii) it is enough to compute in coordinates

π∗[ ~H, ξ] = π∗

[
∂H

∂p

∂

∂x
− ∂H

∂x

∂

∂p
, ξ
∂

∂p

]
= −∂

2H

∂p2
ξ
∂

∂x
,

Hence by Lemma 15.3 and the fact that H is quadratic on fibers one gets

σ(ξ, [ ~H, ξ]) = −
〈
ξ,
∂2H

∂p2
ξ

〉
= −2H(ξ).

(iii). The statement for t = 0 is a direct consequence of (ii). Using property (i) it is easily seen that
the quadratic forms associated with the derivatives at different times are related by the formula

J̇λ(t) ◦ et
~H

∗ = J̇λ(t)(0). (15.4)

Since e−t ~H∗ is a symplectic transformation, it preserves the sign and the rank of the quadratic form.1

Remark 15.4. Notice that claim (iii) of Proposition 15.2 implies that rank of the derivative of the
Jacobi curve is equal to the rank of the sub-Riemannian structure. Hence the curve is regular if and
only if it is associated with a Riemannian structure. In this case of course it is strictly monotone,
namely J̇λ(t) < 0 for all t.

Corollary 15.5. The Jacobi curve Jλ(t) associated with a sub-Riemannian extremal is monotone
nonincreasing for every λ ∈ T ∗M .

1Notice that J̇λ(t), J̇λ(t)(0) are defined on Jλ(t), Jλ(t)(0) respectively, and Jλ(t) = e−t ~H
∗ Jλ(t)(0).

467



15.2 Conjugate points and optimality

At this stage we have two possible definitions for conjugate points along normal geodesics. On one
hand we have singular points of the exponential map along the extremal path, on the other hand
we can consider conjugate points of the associated Jacobi curve. The next result show that actually
the two definition coincide.

Proposition 15.6. Let γ(t) = expq(tλ) be a normal geodesic starting from q with initial covector
λ. Denote by Jλ(t) its Jacobi curve and fix s > 0. Then the following statement are equivalent:

(a) γ(s) is conjugate to γ(0) along γ(·),

(b) Jλ(s) is conjugate to Jλ(0) along Jλ(·).

Proof. By Definition 8.45, γ(s) is conjugate to γ(0) if sλ is a critical point of the exponential
map expq. This is equivalent to say that the differential of the map from T ∗

qM to M defined by

λ 7→ π ◦es ~H (λ) is not surjective at the point λ, i.e. the image of the differential es
~H

∗ has a nontrivial
intersection with the kernel of the projection π∗

es
~H

∗ Jλ(0) ∩ Tλ(s)T ∗
γ(s)M 6= {0}. (15.5)

Applying the linear invertible transformation e−s ~H∗ to both subspaces one gets that (15.5) is equiv-
alent to

Jλ(0) ∩ Jλ(s) 6= {0}
which means by definition that Jλ(s) is conjugate to Jλ(0).

The next result shows that, as soon as we have a segment of points that are conjugate to the
initial one, the segment is also abnormal. The argument contained in this proof should be compared
with the one given in the proof of Theorem 8.47.

Theorem 15.7. Let γ : [0, 1] → M be a normal extremal path. Assume γ|[t0,t1] is a curve of
conjugate points to γ(0). Then the restriction γ|[t0,t1] is also abnormal.

Remark 15.8. Recall that if a curve γ : [0, T ] → M is a strictly normal trajectory, it can happen
that a piece of it is abnormal as well. If the trajectory is strongly normal, then if t0, t1 satisfy the
assumptions of Theorem 15.7 necessarily t0 > 0.

Proof. Let us denote by Jλ(t) the Jacobi curve associated with γ(t). From Proposition 15.6 it
follows that Jλ(t) ∩ Jλ(0) 6= {0} for each t ∈ [t0, t1]. We now show that actually this implies

Jλ(0) ∩
⋂

t∈[t0,t1]
Jλ(t) 6= {0}. (15.6)

We can assume that the whole piece of the Jacobi curve Jλ(t), with t0 ≤ t ≤ t1, is contained in a
single coordinate chart. Otherwise we can cover [t0, t1] with such intervals and repeat the argument
on each of them. Let us fix coordinates given by a Lagrangian splitting in such a way that

Jλ(t) = {(p, S(t)p), p ∈ Rn}, Jλ(0) = {(p, 0), p ∈ Rn}
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Moreover we can choose coordinates in such a way that S(t) ≤ 0 for every t0 ≤ t ≤ t1, i.e., is non
positive and monotone decreasing. Recall that this is possible thanks to Exercice 14.10.

In particular Jλ(t1)∩Jλ(0) 6= {0} if and only if there exists a vector v such that S(t1)v = 0. Since
the map t 7→ vTS(t)v is nonpositive and decreasing this means that S(t)v = 0 for all t ∈ [t0, t1],
thus

Jλ(0) ∩ Jλ(t1) ⊂ Jλ(0) ∩
⋂

t∈[t0,t1]
Jλ(t) (15.7)

that implies that actually we have the equality in (15.7).

We are left to show that if a Jacobi curve Jλ(t) is such that every t is a conjugate point for
0 ≤ t ≤ τ , then the corresponding extremal is also abnormal. Indeed let us fix an element ξ 6= 0
such that

ξ ∈
⋂

t∈[0,τ ]
Jλ(t)

which is non-empty by the above discussion. Then we consider the vertical vector field

ξ(t) = et
~H

∗ ξ ∈ Tλ(t)(T ∗
γ(t)M), 0 ≤ t ≤ τ.

By construction, the derivative in time of the vector field ξ is vertical, i.e., π∗[ ~H, ξ](λ(t)) = 0. Then
the statement is proved by the following exercice.

Exercise 15.9. Define η(t) = ξ(λ(t)) ∈ T ∗
γ(t)M (by canonical identification Tλ(T

∗
qM) ≃ T ∗

qM).

Show that the identity π∗[ ~H, ξ](λ(t)) = 0 rewrites in coordinates as follows

k∑

i=1

hi(η(t))
2 = 0, η̇(t) =

k∑

i=1

hi(λ(t))~hi(η(t)). (15.8)

Exercise 15.9 indeed shows that η(t) is a family of covectors associated with the extremal
path corresponding to controls ui(t) = hi(λ(t)) and such that hi(η(t)) = 0, that means that it is
abnormal.

Corollary 15.10. Let Jλ(t) be the Jacobi curve associated with λ ∈ T ∗M and γ(t) = π(λ(t)) the
associated sub-Riemannian extremal path. Then γ|[0,t0] is abnormal if and only if Jλ(τ)∩Jλ(0) 6= {0}
for all 0 ≤ τ ≤ t0.

15.3 Reduction of the Jacobi curves by homogeneity

The Jacobi curve at point λ ∈ T ∗M parametrizes all the possible geodesic variations of the geodesic
associated with an initial covector λ. Since the variations in the direction of the motion are always
trivial, i.e. the trajectory remains the same up to parametrizations, one can reduce the space of
variation to an (n− 1)-dimensional one.

This idea is formalized by considering a reduction of the Jacobi curve in a smaller symplectic
space. As we show in the next section, this is a natural consequence of the homogeneity of the
sub-Riemannian Hamiltonian.
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Remark 15.11. This procedure was already exploited in Section 8.11, obtained by a direct argument
via Proposition 8.42. Indeed one can recognize that the procedure that reduced the equation for
conjugate points of one dimension corresponds exactly to the reduction by homogeneity of the
Jacobi curve associated to the problem.

We start with a technical lemma, whose proof is left as an exercise.

Lemma 15.12. Let Σ = Σ1 ⊕ Σ2 be a splitting of the symplectic space, with σ = σ1 ⊕ σ2. Let
Λi ∈ L(Σi) and define the curve Λ(t) := Λ1(t)⊕ Λ2(t) ∈ L(Σ). Then one has the splittings:

Λ̇(t) = Λ̇1(t)⊕ Λ̇2(t),

RΛ(t) = RΛ1(t)⊕RΛ2(t).

Consider now a Jacobi curve associated with λ ∈ T ∗M :

Jλ(t) = e−t
~H

∗ Vλ(t), Vλ = Tλ(T
∗
π(λ)M).

Denote by δα : T ∗M → T ∗M the fiberwise dilation δα(λ) = αλ, where α > 0 .

Definition 15.13. The Euler vector field e ∈ Vec(T ∗M) is the vertical vector field defined by

e(λ) =
d

ds

∣∣∣∣
s=1

δs(λ), λ ∈ T ∗M.

It is easy to see that in canonical coordinates (x, ξ) it satisfies e =
∑n

i=1 ξi
∂
∂ξi

and the following
identity holds

eteλ = etλ, i.e. ete(ξ, x) = (etξ, x).

Exercise 15.14. Prove that the Euler vector field is characterized by the identity

ie σ = s, s = Liouville 1-form in T ∗M.

Lemma 15.15. We have the identity e−t ~H∗ e = e− t ~H. In particular [ ~H, e] = − ~H.

Proof. The homogeneity property (8.56) of the Hamiltonian can be rewritten as follows

et
~H(δsλ) = δs(e

st ~H(λ)), ∀ s, t > 0.

Applying δ−s to both sides and changing t into −t one gets the identity

δ−s ◦ e−t ~H ◦ δs = e−st
~H . (15.9)

Computing the 2nd order mixed partial derivative at (t, s) = (0, 1) in (15.9) one gets, by (2.30),

that [ ~H, e] = − ~H. Thus, by (2.34) we have e−t ~H∗ e = e − t ~H, since every higher order commutator
vanishes.

Proposition 15.16. The subspace Σ̃ = span{e, ~H} is invariant under the action of the Hamiltonian
flow. Moreover {e, ~H} is a Darboux basis on Σ̃ ∩H−1(1/2).
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Proof. The fact that Σ̃ is an invariant subspace is a consequence of the identities

e−t
~H

∗ e = e− t ~H, e−t
~H

∗ ~H = 0.

Moreover, on the level set H−1(1/2), we have by homogeneity of H w.r.t. p:

σ(e, ~H) = e(H) =
d

dt

∣∣∣∣
t=0

H(ete(p, x)) = p
∂H

∂p
= 2H = 1. (15.10)

It follows that {e, ~H} is a Darboux basis for Σ̃.

In particular we can consider the the symplectic splitting Σ = Σ̃⊕ Σ̃∠.

Exercise 15.17. Prove the following intrinsic characterization of the skew-orthogonal to Σ̃:

Σ̃∠ = {ξ ∈ T ∗
λ (T

∗M) : 〈dλH, ξ〉 = 〈sλ, ξ〉 = 0}.

The assumptions of Lemma 15.12 are satisfied.

Definition 15.18. The reduced Jacobi curve is defined as follows

Ĵλ(t) := Jλ(t) ∩ Σ̃∠. (15.11)

Notice that, if we put V̂λ := Vλ ∩ TλH−1(1/2), we get

Ĵλ(0) = V̂λ, Ĵλ(t) = e−t
~H

∗ V̂λ.

Moreover we have the splitting
Jλ(t) = Ĵλ(t)⊕ R(e− t ~H).

We stress again that Ĵλ(t) is a curve of (n−1)-dimensional Lagrangian subspaces in the (2n−2)-
dimensional vector space Σ̃∠.

Exercise 15.19. With the notation above

(i) Show that the curvature of the curve Jλ(t) ∩ Σ̃ in L(Σ̃) is always zero.

(ii) Prove that Jλ(0) ∩ Jλ(s) 6= {0} if and only if Ĵλ(0) ∩ Ĵλ(s) 6= {0}.

15.4 Bibliographical note

The theory of Jacobi curves have been developed in control theory starting from the papers [AG97,
Agr98b]. For a recent survey on Jacobi curves and its relation to a canonical connection see [BR17].
Jacobi curves are particular curves in Lagrange Grassmannian; we refer to the Bibliographical note
of Chapter 14 for further reading.
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Chapter 16

Riemannian curvature

On a manifold, in general there is no canonical way to identify tangent spaces (or, more generally,
fibers of a vector bundle) at different points. Thus, one has to expect that a notion of derivative for
vector fields (or sections of a vector bundle), depends on a certain choice. The additional structure
required to correctly define these notions is the one of connection.

In this chapter we introduce Ehresmann connections, with the associated notions of parallel
transport and curvature. We then specify these notions in the case of a Riemannian manifold,
where one can find a canonical connection associated with the metric structure, called Levi-Civita
connection. We then explain how this connection is related to the theory of Jacobi curves developed
in the previous chapter.

16.1 Ehresmann connection

Given a smooth fiber bundle E, with base M and canonical projection π : E → M , we denote by
Eq = π−1(q) the fiber at the point q ∈ M . The vertical distribution is by definition the collection
of subspaces in TE that are tangent to the fibers

V = {Vz}z∈E , Vz := ker π∗|z = TzEπ(z) ⊂ TzE.

Definition 16.1. Let E be a smooth fiber bundle. An Ehresmann connection on E is a smooth
vector distribution H in E satisfying

H = {Hz}z∈E , TzE = Vz ⊕Hz.

Notice that V, being the kernel of the pushforward π∗, is canonically associated with the fibre
bundle. Defining a connection means exactly to define a canonical complement to this distribution.
For this reason H is also called horizontal distribution.

Definition 16.2. Let X ∈ Vec(M). The horizontal lift of X is the unique vector field∇X ∈ Vec(E)
such that

∇X(z) ∈ Hz, π∗∇X = X, ∀ z ∈ E. (16.1)

The uniqueness follows from the fact that π∗,z : TzE → Tπ(z)M is an isomorphism when restricted
to Hz. Indeed π∗,z is a surjective linear map with ker π∗,z = Vz.
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In the following, with an abuse of terminology, we will identify the Ehresmann connection on
E with ∇.

Given a smooth curve γ : [0, T ] → M on the manifold M , the connection ∇ let us to define
a parallel transport along γ, i.e., a way to identify elements belonging to fibers of E at different
points of the curve. Let Xt be a smooth nonautonomous vector field defined on a neighborhood of
γ, that is an extension of the velocity vector field of the curve

γ̇(t) = Xt(γ(t)), ∀ t ∈ [0, T ].

Notice that this is always possible with a (possibly non autonomous) vector field.

Then consider the nonautonomous vector field ∇Xt ∈ Vec(E) defined by its lift.

Definition 16.3. Let γ : [0, T ] → M be a smooth curve and let 0 ≤ t0 < t1 ≤ T . The parallel
transport along γ is the map Φ defined by the flow of ∇Xt

Φt0,t1 : Eγ(t0) → Eγ(t1), Φt0,t1 := −→exp
∫ t1

t0

∇Xsds (16.2)

In full generality, one needs some extra assumption on the vector field to ensure that the flow
(16.2) is well defined, even for small times. Indeed the time of existence of the solution of the
corresponding ODE may depend on the initial point chosen the fiber. For instance if the fibers are
compact, then the flow is complete and it is possible to define (16.2) for every t0 < t1.

Exercise 16.4. Show that the parallel transport map (16.2) is well-defined, i.e., it sends fibers to
fibers and does not depend on the extension of the vector field Xt. (Hint: consider two extensions
and use the existence and uniqueness of the flow.)

16.1.1 Curvature of an Ehresmann connection

Assume that π : E → M is a smooth fiber bundle and let ∇ be an Ehresmann connection on E,
defining the splitting E = V ⊕H. Given an element z ∈ E we will also denote by zhor (resp. zver)
its projection on the horizontal (resp. vertical) subspace at that point.

The commutator of two vertical vector field is always vertical. The curvature operator associated
with the connection checks if the same holds true for two horizontal vector fields.

Definition 16.5. Let E be a smooth fiber bundle and ∇ a connection on E. Let X,Y ∈ Vec(M)
and define

R(X,Y ) := [∇X ,∇Y ]ver (16.3)

The operator R is called the curvature of the connection ∇.

Notice that, given a vector field on E, its horizontal part coincides, by definition, with the lift
of its projection. In particular

[∇X ,∇Y ]hor = ∇[X,Y ], (i.e., π∗[∇X ,∇Y ] = [X,Y ]).

Hence R(X,Y ) computes the nontrivial part of the bracket between the lift of X and Y . Moreover
R(X,Y ) = 0 for every X,Y if and only if the horizontal distribution H is involutive.
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Due to the previous identity, the curvature R(X,Y ) is also rewritten in the following more
classical way

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ] (16.4)

= ∇X∇Y −∇Y∇X −∇[X,Y ]. (16.5)

Next we show that R is a tensor, i.e., the value of R(X,Y ) at a point depends only on the value
of X and Y at the point itself.

Proposition 16.6. R is skew-symmetric and C∞(M)-linear.

Proof. The skew-symmetry is immediate from the formula (16.5). Also notice that, by definition
of lift of a vector field, one has the following identities ∇aX = a∇X and ∇X(π∗a) = Xa for every
a ∈ C∞(M). Notice that π∗a := a ◦ π is the function a ∈ C∞(M) seen as an element of C∞(E)
that is constant on fibers. In what follows we simply write a for π∗a, the meaning being clear by
the context.

Next we prove that R is C∞(M)-linear. By skew-symmetry, it is sufficient to prove that R is
linear in the first argument, namely that

R(aX, Y ) = aR(X,Y ), where a ∈ C∞(M). (16.6)

Applying the definition of ∇ and the Leibniz rule for the Lie bracket one gets

R(aX, Y ) = [∇aX ,∇Y ]−∇[aX,Y ]

= a[∇X ,∇Y ]− (∇Y a)∇X −∇a[X,Y ]−(Y a)X

= a[∇X ,∇Y ]− (Y a)∇X − a∇[X,Y ] + (Y a)∇X
= aR(X,Y ).

16.1.2 Linear Ehresmann connections

Assume now that π : E →M is a vector bundle on M (i.e., each fiber Eq = π−1(q) has a structure
of vector space). In this case it is natural to introduce the notion of linear Ehresmann connection
∇ on E.

Remark 16.7. For a vector bundle π : E → M , the base manifold M can be considered immersed
in E as the zero section (see also Example 2.52). The “dual” version of this identification is the
inclusion i : C∞(M) → C∞(E). Indeed any function in C∞(M) can be considered as a functions
in C∞(E) which is constant on fibers, i.e. more precisely a ∈ C∞(M) 7→ π∗a = a ◦ π ∈ C∞(E).

Following the notation introduced at the beginning of Chapter 4, the image of the inclusion
i : C∞(M)→ C∞(E) discussed in the previous remark, is denoted by C∞

cst(E).

Exercise 16.8. Let V ∈ Vec(E). Show that there exists X ∈ Vec(M) such that V = ∇X if and
only if V , seen as a differential operator on C∞(E), it maps the subspace C∞

cst(M) into itself.

Analogously, given a vector bundle π : E → M , we denote by C∞
lin(E) the set of smooth

functions on E that are linear on fibers. In light of the above discussion, it is natural to introduce
the following definition.
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Definition 16.9. A linear connection on a vector bundle E on the base M is an Ehresmann
connection ∇ such that the lift ∇X of a vector field X ∈ Vec(M) satisfies the following property:
for every a ∈ C∞

lin(E) it holds ∇Xa ∈ C∞
lin(E).

Given a local basis of vector fields X1, . . . ,Xn on M we can build the corresponding dual
coordinates (h1, . . . , hn) on the fibers of E by introducing the functions hi(z) = 〈z,Xi(q)〉, where
q = π(z). In this way

E ≃ {(q, h) | q ∈M,h ∈ Rn},

and the tangent space to E is split as TzE ≃ TqM ⊕ TzEq. A connection on E is determined by
the lift of the vector fields Xi, for i = 1, . . . , n, on the base manifold (recall that π∗∇Xi = Xi)

∇Xi = Xi +

n∑

j=1

aij(q, h)∂hj , i = 1, . . . , n, (16.7)

where aij ∈ C∞(E) are suitable smooth functions. Then ∇ is linear if and only if for every i, j the
function aij is linear, namely aij(q, h) =

∑n
k=1 Γ

k
ij(q)hk is linear with respect to h.

For a linear connection, the smooth functions Γkij defined above are called the Christoffel symbols
of the connection ∇, associated with the frame X1, . . . ,Xn on M .

Exercise 16.10. Fix a frame X1, . . . ,Xn on M and let Γkij be the Christoffel symbols of a
connection ∇ associated with this frame. Let γ be a smooth curve on the manifold such that
γ̇(t) =

∑n
i=1 vi(t)Xi(γ(t)). Show that the differential equation ξ̇(t) = ∇γ̇(t)ξ(t) for the parallel

transport along γ, is written as

ξ̇j(t) =

n∑

i,k=1

Γkij(γ(t))vi(t)ξk(t)

where (ξ1, . . . , ξn) denotes the vertical coordinates of ξ, namely ξj(t) := hj(ξ(t)).

For a linear connection, the parallel transport is defined through a first order linear (nonau-
tonomous) ODE. The existence of the flow is then guaranteed by classical results form ODE theory.
Moreover, the map Φt0,t1 : Eγ(t0) → Eγ(t1) is a linear transformation between fibers.

16.1.3 Covariant derivative and torsion for linear connections

Once a linear connection on a linear vector bundle E is given, we have a well-defined linear parallel
transport map

Φt0,t1 := −→exp
∫ t1

t0

∇Xsds : Eγ(t0) → Eγ(t1), for 0 ≤ t0 < t1 ≤ T. (16.8)

If we consider the dual map of the parallel transport one can naturally introduce a non autonomous
linear flow on the dual bundle (notice the position of t0 and t1)

Φ∗
t1,t0 :=

(
−→exp

∫ t0

t1

∇Xsds

)∗
: E∗

γ(t0)
→ E∗

γ(t1)
, for 0 ≤ t0 < t1 ≤ T. (16.9)
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The infinitesimal generator of this “adjoint” flow defines a linear parallel transport, hence a linear
connection, on the dual bundle E∗ (that is the vector bundle E∗ →M whose fibers are dual vector
spaces to the fibers of E →M).

In what follows we restrict our attention to the case of the vector bundle E = T ∗M and we
assume that a linear connection ∇ on T ∗M is given. Notice that, by the above discussion, all the
constructions can be equivalently performed on the dual bundle E∗ = TM .

For a vector field Y ∈ Vec(M) we denote with Y ∗ ∈ C∞(T ∗M) the function

Y ∗(λ) = 〈λ, Y (q)〉 , q = π(λ),

namely the smooth function on E associated with Y , and that is linear on fibers. This identification
between vector fields onM and linear functions on T ∗M permits us to define the covariant derivative
of vector fields.

Definition 16.11. Let X,Y ∈ Vec(M). We define ∇XY = Z if ∇XY ∗ = Z∗ with Z ∈ Vec(M).

Notice that the definition is well-posed since ∇ is linear, hence ∇XY ∗ is a linear function and
there exists Z ∈ Vec(M) such that ∇XY ∗ = Z∗.1

Lemma 16.12. Let {X1, . . . ,Xn} be a local frame on M . Then ∇XiXj = ΓkijXk, where Γkij are
the Christoffel symbols of the connection ∇ associated with the frame.

Proof. Let us prove the statement in the coordinates dual to the reference frame. In these coordi-
nates (see also (16.7)) the linear connection is specified by the lifts

∇Xi = Xi + Γkijhk∂hj , where hj(λ) = 〈λ,Xj〉 . (16.10)

Notice that X∗
j = hj . Hence from (16.10) it follows ∇XiX

∗
j = ΓkijX

∗
k , and the lemma is proved.

We now introduce the torsion tensor of a linear connection on T ∗M . As usual, σ denotes the
canonical symplectic structure on T ∗M .

Definition 16.13. The torsion of a linear connection ∇ is the map T : Vec(M) × Vec(M) →
Vec(M) defined by the identity

T (X,Y )∗ = σ(∇X ,∇Y ), ∀X,Y ∈ Vec(M). (16.11)

It is easy to check that T is C∞(M)-linear, i.e., the value of T (X,Y ) at a point q ∈ M depends
only on the values of X,Y at the point q itself.

The torsion computes how much the horizontal distribution H is far from being Lagrangian. In
particular H is Lagrangian if and only if T is identically zero. The classical formula for the torsion
tensor, in terms of covariant derivatives, is recovered in the following lemma.

Lemma 16.14. The torsion tensor satisfies the following identity for every X,Y ∈ Vec(M)

T (X,Y ) = ∇XY −∇YX − [X,Y ]. (16.12)

1There is no confusion in the notation above since, by definition, ∇X it is well defined when applied to smooth
functions on T ∗M . Whenever it is applied to a vector field, we follow the aforementioned convention.
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Proof. The statement is equivalent to the identity T (X,Y )∗ = ∇XY ∗ − ∇YX∗ − [X,Y ]∗. Notice
that we can write X∗(λ) = 〈λ,X〉 = 〈sλ,∇X〉, where s ∈ Λ1(T ∗M) is the Liouville 1-form defined
by sλ = λ ◦ π∗.

In particular σ = ds, and applying Cartan’s formula (4.84)

T (X,Y )∗ = ds(∇X ,∇Y )
= ∇X 〈s,∇Y 〉 − ∇Y 〈s,∇X〉 − 〈s, [∇X ,∇Y ]〉
= ∇X 〈s,∇Y 〉 − ∇Y 〈s,∇X〉 −

〈
s,∇[X,Y ]

〉

= ∇XY ∗ −∇YX∗ − [X,Y ]∗,

where in the second equality we used that 〈s, [∇X ,∇Y ]〉 = 〈s, [∇X ,∇Y ]hor〉 =
〈
s,∇[X,Y ]

〉
since the

Liouville form by definition depends only on the horizontal part of the vector.

Exercise 16.15. Show that a linear connection ∇ on a vector bundle E satisfies the Leibniz rule

∇X(aY ) = a∇XY + (Xa)Y, for every a ∈ C∞(M).

16.2 Riemannian connection

In this section we introduce the Levi-Civita connection on a Riemannian manifold M by defining
an Ehresmann connection on T ∗M through the Jacobi curve approach.

Recall that every Jacobi curve associated with a trajectory on a Riemannian manifold is reg-
ular thanks to Proposition 15.2. Moreover, as showed in Section 14.2, every regular curve in the
Lagrangian Grassmannian admits a derivative curve, which defines a canonical complement to the
curve itself. Hence we can introduce an Ehresmann connection on T ∗M by defining at every point
λ ∈ T ∗M the canonical complement to the Jacobi curve defined at λ.

Definition 16.16. The Levi-Civita connection on T ∗M is the Ehresmann connection H is defined
by

Hλ = J◦
λ(0), ∀λ ∈ T ∗M,

where Jλ(t) denotes the Jacobi curve defined at λ ∈ T ∗M and J◦
λ(t) denotes its derivative curve.

The next proposition describes the main properties of Levi-Civita connection as an Ehresmann
connection on T ∗M .

Proposition 16.17. The Levi-Civita connection satisfies the following properties:

(i) it is a linear connection,

(ii) it has vanishing torsion,

(iii) it is metric-preserving, i.e., ∇XH = 0 for each vector field X ∈ Vec(M).

Proof. (i). It is enough to prove that the connection Hλ is 1-homogeneous, namely

Hcλ = δc∗Hλ, ∀ c > 0. (16.13)

Indeed if (16.13) holds true, the functions aij ∈ C∞(T ∗M) defining the connection with respect to
some frame (see (16.7)) are smooth and 1-homogeneous, hence linear (see also Exercise 16.20).

To prove (16.13), we need the following auxiliary result.
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Lemma 16.18. Let Jλ(t) be the regular Jacobi curve associated to λ ∈ T ∗M . Then we have for
all t ≥ 0:

(a) Jcλ(t) = δc∗Jλ(ct),

(b) J◦
cλ(t) = δc∗J◦

λ(ct).

Proof of Lemma 16.18. (a). The differential of the dilation on the fibers δc : T ∗M → T ∗M at a
point λ ∈ T ∗M is a linear map satisfying the identity δc∗(Tλ(T ∗

qM)) = Tcλ(T
∗
qM). Moreover the

following identity holds

et
~H ◦ δc = δc ◦ ect ~H , ∀ c > 0. (16.14)

Hence one obtains

Jcλ(t) = e−t
~H

∗ (Tcλ(T
∗
qM))

= e−t
~H

∗ ◦ δc∗(Tλ(T ∗
qM))

= δc∗ ◦ e−ct ~H∗ (Tλ(T
∗
qM))

= δc∗Jλ(ct),

where in the third equality we used the differential of (16.14). Notice that δc∗ does not preserve
the symplectic structure but it preserves Lagrangian subspaces, since δ∗cσ = cσ.

To prove (b), recall that, given a regular curve Λ(t) in the Lagrange Grassmannian, for t 6= t0
small enough the subspace Λ◦(t) is transversal to Λ(t0), hence belongs to the coordinate chart
Λ(t0)

⋔. The space Λ(t0)
⋔ has the structure of affine space and Λ◦(t0) is, by construction, the free

term (i.e., the zero-order term in the expansion with respect to t− t0) in the Laurent expansion of
the curve in this chart.

Notice that the map δc∗ sends Jλ(ct0) to Jcλ(t0) and the chart Jλ(ct0)
⋔ to Jcλ(t0)

⋔. Moreover,
being a linear map between the tangent space to fibers, δc∗ is compatible with the affine structure
on the charts. Finally, using (a), δc∗ sends the curve t 7→ Jλ(ct) to t 7→ Jcλ(t), and since the time
reparametrization does not change the zero order term, it follows from the construction that δc∗
also sends J◦

λ(ct) to J
◦
cλ(t), proving (b).

(ii). It is a direct consequence of the fact that J◦
λ(0) is a Lagrangian subspace of Tλ(T

∗M) for
every λ ∈ T ∗M , hence the symplectic form vanishes when applied to two horizontal vectors.

(iii). Again, for every X ∈ Vec(M), both ∇X and ~H are horizontal vector field. Since the
horizontal space is Lagrangian

∇XH = σ(∇X , ~H) = 0.

Exercise 16.19 (Proof of Lemma 16.18 in coordinates). Let us fix a coordinate chart on the
Lagrange Grassmannian in such a way that Jλ(t) = {(p, Sλ(t)p), p ∈ Rn}. We follow the notations
of Exercice 14.23.

(i) Show that claim (a) of Lemma 16.18 is rewritten as Scλ(t) =
1
cSλ(ct),

(ii) deduce the identities Bcλ(t) = cBλ(ct) and S
◦(t) = B−1(t) + S(t), and prove claim (b).
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Exercise 16.20. Let f : Rn → R be a smooth function that satisfies f(αx) = αf(x) for every
x ∈ Rn and α ≥ 0. Prove that f is linear.

The following theorem says that a connection satisfying the three properties of Proposition
16.17 is unique. It also characterizes the Levi-Civita connection in terms of the structure constants
of the Lie algebra defined by an orthonormal frame.

Theorem 16.21. There is a unique Ehresmann connection ∇ satisfying the properties (i), (ii),
and (iii) of Proposition 16.17, that is the Levi-Civita connection. Given an orthonormal frame
X1, . . . ,Xn, its Christoffel symbols are computed by

Γkij =
1

2
(ckij − cijk + cjki), i, j, k = 1, . . . , n, (16.15)

where ckij are smooth functions defined by the identities [Xi,Xj ] =
∑n

k=1 c
k
ijXk, for i, j = 1, . . . , n.

Proof. Let X1, . . . ,Xn be a local orthonormal frame for the Riemannian structure and let us con-
sider coordinates (q, h) in T ∗M , where the fiberwise coordinates h = (h1, . . . , hn) are dual to the
orthonormal frame. From the linearity of the connection it follows that there exist smooth functions
Γkij :M → R such that

∇Xi = Xi +
n∑

j=1

Γkijhk∂hj , i = 1, . . . , n. (16.16)

In particular ∇XiXj = ΓkijXk. In these coordinates the Hamiltonian vector field associated with

the Riemannian Hamiltonian H = 1
2

∑n
i=1 h

2
i reads

~H =

n∑

i=1

hi~hi =

n∑

i=1

hiXi +

n∑

i,j,k=1

ckijhihk∂hj , (16.17)

where we used the identity

~hi = Xi +

n∑

j=1

{hi, hj}∂hj = Xi +

n∑

j,k=1

ckijhk∂hj . (16.18)

Moreover the symplectic form σ is written in terms of the basis of 1-forms ν1, . . . , νn that is dual
to X1, . . . ,Xn as follows

σ =

n∑

k=1

dhk ∧ νk −
n∑

i,j,k=1

ckijhkνi ∧ νk.

Since the horizontal space is Lagrangian, one has the relations

0 = σ(∇Xi ,∇Xj ) =
n∑

k=1

(Γkij − Γkji − ckij)hk, ∀ i, j = 1, . . . , n,

hence ckij = Γkij − Γkji for all i, j, k = 1, . . . , n. Moreover the connection is metric, i.e., it satisfies

0 = ∇XiH =
n∑

j,k=1

Γkijhkhj , ∀ i = 1, . . . , n.
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The last identity implies that Γkij is skew-symmetric in the following sense: for every i, j, k = 1, . . . , n

one has Γkij = −Γjik. Combining the two identities we obtained, one gets

ckij − cijk + cjki = (Γkij − Γkji)− (Γijk + Γikj) + (Γjki − Γjik)

= Γkij − Γjik = 2Γkij .

Recall that the vector field ~H is automatically horizontal for the connection. This is recovered
also from the previous computations as follows.

Corollary 16.22. We have ~H =
∑n

i=1 hi∇Xi.

Proof. Notice that using the identities for i, j, k = 1, . . . , n,

ckij = Γkij − Γkji, Γkij = −Γjik (16.19)

one has, for j = 1, . . . , n,
n∑

i,k=1

ckijhihk =

n∑

i,k=1

Γkijhihk.

Hence comparing (16.16) and (16.17), one obtains the claim.

Let X,Y,Z,W ∈ Vec(M). We set R(X,Y )Z =W if R(X,Y )Z∗ =W ∗.

Proposition 16.23 (Bianchi identity). For every X,Y,Z ∈ Vec(M) the following identity holds

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0. (16.20)

Proof. We will show that (16.20) is a consequence of the Jacobi identity for vector fields (2.35).
Using the fact that ∇ is a torsion-free connection we can write

[X, [Y,Z]] = ∇X [Y,Z]−∇[Y,Z]X

= ∇X∇Y Z −∇X∇ZY −∇[Y,Z]X,

[Z, [X,Y ]] = ∇Z∇XY −∇Z∇YX −∇[X,Y ]Z,

[Y, [Z,X]] = ∇Y∇ZX −∇Y∇XZ −∇[Z,X]Y,

Then, adding these identities and using (2.35), one gets

0 = [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

= ∇X∇Y Z −∇X∇ZY −∇[Y,Z]X

+∇Z∇XY −∇Z∇YX −∇[X,Y ]Z

+∇Y∇ZX −∇Y∇XZ −∇[Z,X]Y

= R(X,Y )Z +R(Y,Z)X +R(Z,X)Y.
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Exercise 16.24 (second Bianchi identity). Prove that for every X,Y,Z,W ∈ Vec(M) one has

(∇XR)(Y,Z,W ) + (∇YR)(Z,X,W ) + (∇ZR)(X,Y,W ) = 0.

(Hint: Expand the identity ∇[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y ]]W = 0.)

Remark 16.25. The relations (16.19) for the Christoffel symbols implies the following skew-symmetry
property: for X,Y,Z,W ∈ Vec(M)

〈R(X,Y )Z |W 〉 = −〈R(X,Y )W |Z〉 ,

where 〈· | ·〉 denotes the Riemannian inner product.

Let us introduce the notation

R(X,Y,Z,W ) := 〈R(X,Y )Z |W 〉 .

Then, the first Bianchi identity (16.20) can be rewritten as follows: for X,Y,Z,W ∈ Vec(M) one
has

R(X,Y,Z,W ) +R(Z,X, Y,W ) +R(Y,Z,X,W ) = 0. (16.21)

Moreover, the skew-symmetry properties of the curvature tensor discussed in Proposition 16.6 and
Remark 16.25 can be rewritten as follows

R(X,Y,Z,W ) = −R(Y,X,Z,W ), R(X,Y,Z,W ) = −R(X,Y,W,Z). (16.22)

Proposition 16.26. For every X,Y,Z,W ∈ Vec(M) we have R(X,Y,Z,W ) = R(Z,W,X, Y ).

Proof. Using (16.21) four times we can write the identities

R(X,Y,Z,W ) +R(Z,X, Y,W ) +R(Y,Z,X,W ) = 0,

R(Y,Z,W,X) +R(W,Y,Z,X) +R(Z,W, Y,X) = 0,

R(Z,W,X, Y ) +R(X,Z,W, Y ) +R(W,X,Z, Y ) = 0,

R(W,X, Y,Z) +R(Y,W,X,Z) +R(X,Y,W,Z) = 0.

Summing these identities and using (16.22), one gets R(X,Z,W, Y ) = R(W,Y,X,Z).

Proposition 16.27. Assume that R(X,Y,X,W ) = 0 for every X,Y,W ∈ Vec(M). Then

R(X,Y,Z,W ) = 0 ∀X,Y,Z,W ∈ Vec(M).

Proof. By assumptions and the skew-symmetry properties (16.22) of the Riemann tensor we have
that R(X,Y,Z,W ) = 0 whenever any two of the vector fields coincide. In particular

0 = R(X,Y +W,Z, Y +W ) = R(X,Y,Z,W ) +R(X,W,Z, Y ). (16.23)

Notice that the two extra terms that should appear developing the left hand side vanish, by as-
sumptions. Then (16.23) can be rewritten as

R(X,Y,Z,W ) = R(Z,X, Y,W ).

This means that the quantity R(X,Y,Z,W ) is invariant by cyclic permutations of X,Y,Z. But the
cyclic sum of these terms is zero thanks to (16.21), hence R(X,Y,Z,W ) = 0.
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From the properties of the Riemann curvature one obtains the following.

Corollary 16.28. There is a well defined map

R : ∧2TqM → ∧2TqM, R(X ∧ Y ) := R(X,Y ).

Moreover R is self-adjoint with respect to the scalar product on ∧2TqM induced by the Riemannian
scalar product, namely

〈
R(X ∧ Y ) | Z ∧W

〉
=
〈
X ∧ Y | R(Z ∧W )

〉
.

16.3 Relation with Hamiltonian curvature

In this section we compute the curvature of the Jacobi curve associated with a Riemannian geodesic
and we describe the relation with the Riemann curvature discussed in the previous section. As we
show, the curvature associated with a geodesic can be interpreted as the sectional curvature operator
in the direction of the geodesic.

Definition 16.29. The Hamiltonian curvature at λ ∈ T ∗M is the curvature of the Jacobi curve
associated with λ at t = 0, namely

Rλ := RJλ(0) : Vλ → Vλ. (16.24)

Proposition 16.30. Let ξ ∈ Vλ and V be a smooth vertical vector field extending ξ. Then

Rλ(ξ) = −[ ~H, [ ~H, V ]hor]ver(λ). (16.25)

Proof. This is a direct consequence of Proposition 14.31. In fact, recall that the curvature of the
Jacobi curve is expressed through the composition

Rλ = J̇
◦
λ(0) ◦ J̇λ(0).

Moreover, being Jλ(0) = Vλ and J◦
λ(0) = Hλ we have that

πJ(0)J◦(0)(ξ) = ξhor, πJ◦(0)J(0)(η) = ηver.

Extending the vectors in Jλ(0) (resp. J◦
λ(0)) by applying the Hamiltonian vector field (recall the

identities Jλ(t) = et
~H

∗ Jλ(0) and J
◦
λ(t) = et

~H
∗ J◦

λ(0)), one obtains the following formulas

J̇λ(0)ξ = [ ~H, V ]hor, J̇
◦
λ(0)η = −[ ~H,W ]ver

where V is a vertical (resp. W is a horizontal) extension of the vector ξ ∈ Vλ (resp. η ∈ Hλ).

The following homogeneity property of the curvature operator is obtained by choosing ϕ(t) =
ct, with c > 0, in Proposition 14.37. Recall that a rescaling of the covector corresponds to a
reparametrization of the trajectory.

Corollary 16.31. For every c > 0 we have Rcλ = c2Rλ.
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We end this section by relating the Hamiltonian curvature just introduced with Riemannian
curvature. Let us denote by ι : TM → T ∗M the isomorphism defined by the Riemannian scalar
product 〈·|·〉. In particular ι(v) = λ for λ ∈ T ∗

qM and v ∈ TqM if 〈λ,w〉 = 〈v|w〉 for all w ∈ TqM .

Let us denote Hq := H|T ∗
qM . Recall that for every λ ∈ T ∗

qM the differential DλHq is a linear
functional on T ∗

qM , that can be identified with a tangent vector. Hence the differential of Hq can
be interpreted as a linear map DHq : T

∗
qM → TqM . With this identification, the map DHq is the

inverse of the isomorphism ι, as stated in the following lemma.

Lemma 16.32. Fix q ∈M and λ ∈ T ∗
qM . We have the following identities:

(i) DλHq = ι−1(λ).

(ii) ~H(λ) = ∇v, where v := ι−1(λ).

Proof. The first identity follows from the fact that the sub-Riemannian Hamiltonian H is quadratic
on fibers and H(λ) = 1

2

〈
λ, ι−1(λ)

〉
.

To prove the second one, since ~H is an horizontal vector field (cf. Corollary 16.22), it is sufficient
to show the identity π∗ ~H(λ) = v. We have, for every ξ ∈ Tλ(T ∗

qM), that

〈ξ, v〉 =
〈
ξ, ι−1(λ)

〉
= 〈DλH, ξ〉 = σ(ξ, ~H(λ)) =

〈
ξ, π∗ ~H(λ)

〉
.

where we used claim (i), the definition of ~H and Lemma 15.3. Since ξ is arbitrary, this implies
v = π∗ ~H(λ).

Theorem 16.33. The following identity holds for every X,Y ∈ TqM

R(X,Y )X = Rι(X)(ι(Y )). (16.26)

Proof. Thanks to (16.25), the right hand side satisfies

Rι(X)(ι(Y )) = −[ ~H, [ ~H, ι(Y )]hor]ver(ι(X)). (16.27)

To compute [ ~H, ι(Y )]hor we compute first its projection, that is π∗[ ~H, ι(Y )] = −Y . This implies
[ ~H, ι(Y )]hor = −∇Y . Hence

−[ ~H, [ ~H, ι(Y )]hor]ver(ι(X)) = [ ~H,∇Y ]ver(ι(X)) = [∇X ,∇Y ]ver(ι(X)) = R(X,Y )X.

Here, in the second identity, we used that [ ~H,∇Y ]ver(ι(X)) depends only on the value of the vector
fields at the point and that ~H(ι(X)) = ∇X , thanks to Lemma 16.32. Notice also that the last
identity follows from the definition of R(X,Y ), cf. (16.3).

The previous result is saying that identifying tangent and cotangent vectors through the Rie-
mannian product, the operatorRλ interpreted as a quadratic form on TqM is the sectional curvature
operator along the tangent vector v associated to λ.

484



16.4 Comparison theorems for conjugate points

In this section we specify the general results on conjugate points obtained in Section 14.8 to the
case of a Riemannian manifold.

Recall that R(X,Y,Z,W ) is the full Riemann curvature tensor defined as follows

R(X,Y,Z,W ) := 〈R(X,Y )Z |W 〉 .

Given two linearly independent vectors X,Y , we define the sectional curvature

Sec(X,Y ) := R(X,Y, Y,X)/(‖X‖2‖Y ‖2 − 〈X |Y 〉2).

Notice that this quantity indeed depends only on the plane span{X,Y }. We then define the Ricci
tensor

Ric(X) :=

n∑

i=1

R(X,Xi,Xi,X),

where X1, . . . ,Xn is an orthonormal basis for the Riemannian metric.
We have the following two comparison theorems, which are a direct consequence of Theo-

rem 14.57 and the fact that the Jacobi curve associated with a Riemannian geodesic is regular.

Theorem 16.34. Let M be a complete n-dimensional Riemannian manifold. Assume that there
exists k ≥ 0 such that for every pair of unitary tangent vectors X,Y one has

Sec(X,Y ) ≤ k.

If a geodesic parametrized by length γ : [0, T ] → M has a conjugate point, then T ≥ π/
√
k. In

particular, for k = 0, no geodesic has conjugate point.

Theorem 16.35. Let M be a complete n-dimensional Riemannian manifold. Assume that there
exists k ≥ 0 such that for every unitary tangent vector X one has

Ric(X,X) ≥ nk, (16.28)

Then every geodesic parametrized by length γ : [0, T ] → M such that T ≤ π/
√
k has at least a

conjugate point. In particular M is compact and diam(M) ≤ π/
√
k.

Remark 16.36. Theorem 16.35 is known as Bonnet-Myers theorem. Actually the assumption (16.28)
can be weakened as follows: for every unitary tangent vector X

Ric(X,X) ≥ (n− 1)k, (16.29)

since the curvature is always vanishing in the direction of the geodesic. This is tantamount to say
that the operatorRλ associated with a Jacobi curve on a Riemannian manifold has a zero eigenvalue,
thanks to the splitting due to homogeneity of Section 15.3 (cf. in particular with Exercice 15.19,
claim (i)).

Exercise 16.37 (Hadamard theorem). Let M be a complete Riemannian manifold, simply con-
nected, and such that all sectional curvatures are negative. Prove that for every q ∈ M , the map
expq : TqM →M is a global diffeomorphism. In particular, M is diffeomorphic to Rn.
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Hint : The conjugate locus from q is empty thanks to Theorem 16.34 for k = 0. Hence the
exponential map is a local diffeomorphism at every point. If expq is proper, the one can conclude
thanks to Corollary 13.24.

Exercise 16.38. Let M be a Riemannian manifold and let us define Ric(λ) at a point λ ∈ T ∗M
as the trace of the curvature operator Rλ. If X1, . . . ,Xn is a local orthonormal frame and ι(v) = λ.
Prove that

Ric(λ) := tr(Rλ) =
n∑

i=1

σλ([ ~H,∇Xi ],∇Xi) =
n∑

i=1

〈R(v,Xi)v|Xi〉 = Ric(v).

16.5 Locally flat spaces

In this section we want to show that the Riemannian curvature represents the obstruction for a
Riemannian manifold to be locally Euclidean. We also show that the Riemann curvature tensor is
completely recovered by the Hamiltonian curvature Rλ.

Theorem 16.39. A Riemannian manifold M is locally isometric to Rn if and only if the Riemann
curvature tensor vanishes at every point.

Proof. If M is locally isometric to Rn, then its curvature tensor at every point is zero.
Then let us assume that the Riemann tensor R vanishes identically and prove that M is locally

Euclidean. We will do that by showing that there exists coordinates such that the Hamiltonian is
written as the Hamiltonian associated to the Euclidean structure of Rn.

Since R is identically zero the horizontal distribution (defined by the Levi Civita connection)
is involutive. Hence, by Frobenius theorem, there exists a horizontal Lagrangian foliation of T ∗M ,
i.e. for each λ ∈ T ∗M , there exists a leaf Lλ of the foliation passing through this point that is
tangent to the horizontal space Hλ. In particular each leaf is transverse to the fiber T ∗

qM , where
q = π(λ).

Fix a point q0 ∈ M and a neighborhood Oq0 . We can assume that the curvature tensor R is
zero at every point of Oq0 . Define the map

Ψ : π−1(Oq0)→ T ∗
q0M, λ ∈ π−1(Oq0) 7→ Lλ ∩ T ∗

q0M

that assigns to each λ the intersection of the leaf passing through this point and T ∗
q0M .

Notice that Ψ is a fiberwise linear and orthogonal transformation, i.e., for every q ∈ Oq0 we have
that Ψ|T ∗

qM : T ∗
qM → T ∗

q0M is linear and satisfies H(Ψ(λ)) = H(λ). Indeed since the connection is
linear then it easily follows that the map Ψ is linear as well. Moreover the foliation is tangent to
the horizontal space and ~H is horizontal, hence H is constant on the leaves.

Fix now a basis {ν1, . . . , νn} in T ∗
q0M that is orthonormal (with respect to the dual metric).

Being Ψ linear on fibers, we can write

Ψ(λ) =
n∑

i=1

ψi(λ)νi, where ψi(λ) = 〈λ,Xi(q)〉 ,

for a suitable basis of vector fields X1, . . . ,Xn on a neighborhood of q0 (that we can assume to
coincide with Oq0 , up to restricting it). Moreover X1, . . . ,Xn is an orthonormal basis since Ψ is an
orthogonal map.
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We want to show that [Xi,Xj ] = 0 for all i, j = 1, . . . , n. This follows from the fact that the
foliation is Lagrangian. Indeed in terms of this frame, we have the following expression for the
tautological and the symplectic form

s =
n∑

i=1

ψi νi, σ = ds =
n∑

i=1

dψi ∧ νi + ψidνi. (16.30)

Since on each leaf the function ψi is constant by construction (in particular dψi|L = 0), we have
that σ|L =

∑
i ψi dνi. In particular each leaf is Lagrangian if and only if dνi = 0 for i = 1, . . . , n.

Then, from the Cartan formula, one gets

0 = dνi(Xj ,Xk) = −νi([Xj ,Xk]), ∀ i, j, k = 1, . . . , n.

This proves that [Xi,Xj ] = 0 for each i, j = 1, . . . , n. Hence, there exists coordinates x1, . . . , xn on
a possibly smaller neighborhood O′

q0 ⊂ Oq0 such that Xi = ∂/∂xi and in the corresponding dual
coordinates {ψi}i=1,...,n the Hamiltonian H is written on π−1(O′

q0) as

H(ψ, x) =
1

2

n∑

i=1

〈ψ,Xi(x)〉2 =
1

2

n∑

i=1

ψ2
i ,

which completes the proof.

To check if a manifold is locally Euclidean is indeed sufficient to compute the Hamiltonian
curvature.

Corollary 16.40. M is flat if and only if Rλ = 0 for every λ ∈ T ∗M .

Proof. Assume that M is flat. Then R is identically zero and a fortiori Rλ = 0 for every λ ∈ T ∗M ,
from (16.26). To prove the converse, recall that Rλ = 0 for every λ ∈ T ∗M implies, by (16.26),
that

R(X,Y,X,W ) = 0, ∀X,Y,W ∈ Vec(M).

Then the statement is a consequence of Proposition 16.27.

Exercise 16.41. Prove that the Riemann tensor R is completely determined by R.

16.6 Curvature of 2D Riemannian manifolds

In this section we specify the link between Riemannian curvature and Hamiltonian curvature for
two-dimensional Riemannian manifolds.

Let M be a two-dimensional Riemannian manifold and let X1,X2 be an orthonormal frame
satisfying

[X1,X2] = c1X1 + c2X2,

for some smooth functions c1, c2 on M .
On each fiber of the cotangent space we fix polar coordinates (r, θ), where r2 = 2H(λ) and θ is

the angle coordinate in the fiber defined by the identity

〈λ,X1〉 = r cos θ, 〈λ,X1〉 = r sin θ.
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Denoting µ1, µ2 the dual basis of 1-forms dual to X1,X2, it follows from the results of Section 4.4.1
that the horizontal distribution defined by the Levi-Civita connection is given by

H = kerω, ω = dθ − c1µ1 − c2µ2.

In particular the horizontal lift of the basis X1,X2 is computed as follows

∇X1 = X1 + c1∂θ, ∇X2 = X2 + c2∂θ.

Then one can compute the vertical vector field

R(X1,X2) = ∇X1∇X2 −∇X2∇X1 −∇[X1,X2]

= (X1 + c1∂θ)(X2 + c2∂θ)− (X2 + c2∂θ)(X1 + c1∂θ)− c1(X1 + c1∂θ)− c2(X2 + c2∂θ)

= (X1(c2)−X2(c1)− c21 − c22)∂θ
= κ∂θ,

where κ denotes the Gaussian curvature (cf. again Section 4.4.1). Notice that the Hamiltonian
vector field ~H has the form

~H = h1∇X1 + h2∇X2 (16.31)

= cos θX1 + sin θX2 + (c1 cos θ + c2 sin θ)∂θ, (16.32)

hence one can equivalently compute the curvature Rλ through the formula (16.25). Indeed we have

[ ~H, ∂θ] = sin θX1 − cos θX2 + (c1 sin θ − c2 cos θ)∂θ, (16.33)

and

−[ ~H, [ ~H, ∂θ]] = (X1(c2)−X2(c1)− c21 − c22)∂θ = κ∂θ. (16.34)

These two independent computations gives an explicit proof of the identity (16.26) of Theo-
rem 16.33.

16.7 Bibliographical note

The material and the results contained in this chapter about Riemannian curvature are quite
classical and present in most textbooks on the topic, such as [dC92, Cha06, GHL90, Lee97, Pet16,
Boo86].

However our approach and, in particular, the symplectic interpretation of the Levi-Civita con-
nection and Riemannian curvature are not classical. The presentation given here is partially inspired
by [AG97, Agr98b].
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Chapter 17

Curvature in 3D contact
sub-Riemannian geometry

In this chapter we discuss the notion of curvature in sub-Riemannian geometry. We will consider
in particular the case of three-dimensional contact manifolds. In Chapter 16 we showed that the
Riemann curvature tensor (along the direction of geodesics) can be recovered from the curvature
of the associated Jacobi curve, which is regular, cf. also Chapters 14-15.

When the structure is sub-Riemannian, the methods used in the previous chapter are no more
available since Jacobi curve associated with a geodesic is not regular, and there is hence no canonical
associated connection. Still, the Jacobi curve associated with a sub-Riemannian geodesic is mono-
tone and ample (cf. Proposition 17.18), we can compute its principal curvature, that is the curvature
of the reduced (regular) curve, as discussed in Chapter 14 (cf. in particular Definition 14.48).

The computation of the principal curvature in the 3D contact sub-Riemannian case reduces to
two functional invariants, called χ and κ, which are constant for left-invariant structures on Lie
groups. The final part of the chapter is then devoted to the classification of left-invariant structures
on 3D Lie groups with respect to local isometries and dilations, in terms of the above invariants.

17.1 A worked-out example: the 2D Riemannian case

As a preliminary computation towards the sub-Riemannian case, in this section we compute the
curvature of Jacobi curves associated with geodesics on two-dimensional Riemannian surfaces.

LetM be a 2-dimensional surface endowed with a Riemannian metric and let f1, f2 ∈ Vec(M) be
a local orthonormal frame. The Riemannian Hamiltonian H is written as follows (we use canonical
coordinates λ = (p, x) on T ∗M)

H(p, x) =
1

2

(
〈p, f1(x)〉2 + 〈p, f2(x)〉2

)
. (17.1)

Notice that, given λ = (p, x) ∈ T ∗M , the symplectic vector space Σλ = Tλ(T
∗M) is 4-dimensional.

Recall that, being M a 2-dimensional surface, the level set H−1(1/2) ∩ T ∗
qM is diffeomorphic

to a circle. Hence, let us introduce the coordinate θ on the level H−1(1/2) ∩ T ∗
xM by setting

〈p, f1(x)〉 = cos θ, 〈p, f2(x)〉 = sin θ.

489



This corresponds to set θ = 0 in the direction of f1. Denote by ∂θ the rotation in the fiber of
the unit tangent bundle and by e the Euler vector field (cf. Definition 15.13). Denote finally by
~H ′ := [∂θ, ~H ].

Notice that Σλ = Vλ ⊕Hλ where Vλ = span{e, ∂θ} and Hλ = span{ ~H, ~H ′}.

Lemma 17.1. The vectors {e, ∂θ , ~H, ~H ′} at λ form a Darboux basis for Σλ.

Proof. We have to prove the following identities

σ(∂θ, e) = 0, σ(∂θ, ~H) = 0, σ(e, ~H) = 1, (17.2)

σ(∂θ, ~H
′) = 1, σ(e, ~H ′) = 0, σ( ~H, ~H ′) = 0. (17.3)

Indeed, let us prove first (17.2). The first equality follows from the fact that both vectors belong
to the vertical subspace, that is Lagrangian. The second one is a consequence of the fact that, by
construction, ∂θ is tangent to the level set of H, i.e., σ(∂θ, ~H) = ∂θ( ~H) = 〈dH, ∂θ〉 = 0. The last
identity is (15.10).

As a preliminary step for the proof of (17.3) notice that, if s = ieσ denotes the tautological
Liouville form, one has

〈s, ~H〉 = 1, 〈s, ~H ′〉 = 0. (17.4)

These two identities follow from

〈s, ~H〉 = σ(e, ~H) = 1, (17.5)

〈s, ~H ′〉 = 〈s, [∂θ, ~H]〉 = ds( ~H, ∂θ) = σ( ~H, ∂θ) = 0, (17.6)

where in the second line we used the Cartan formula (4.84) and the fact that ∂θ is vertical.
Let us now prove (17.3). We have1 [∂θ, ~H

′] = [∂θ, [∂θ, ~H]] = − ~H, thus by Cartan formula and
(17.4)

σ(∂θ, ~H
′) = ds(∂θ, ~H

′) = −〈s, [∂θ, ~H ′]〉 = 〈s, ~H〉 = σ(e, ~H) = 1.

Moreover by (17.4)
σ(e, ~H ′) = 〈s, ~H ′〉 = 0.

The last computation is similar. Let us write

σ( ~H, ~H ′) = 〈dH, ~H ′〉 = 〈dH, [∂θ, ~H ]〉,

and apply the Cartan formula to the last term (where dH acts as a 1-form). Then

dH([∂θ, ~H]) = d2H(∂θ, ~H)− ∂θ〈dH, ~H〉+ ~H 〈dH, ∂θ〉 = 0,

since the three terms vanish.

Now we compute the curvature of the Jacobi curve, reduced by homogeneity. Notice that by
Lemma 17.1 we can remove the symplectic space spanned by {e, ~H} and, being {e, ~H}∠ = {∂θ, ~H ′},
we have

Ĵλ(t) = span{e−t ~H∗ ∂θ}.
1this identity is easily checked, for instance, thanks to formulas in Section 16.6.
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Then we define the generator of the Jacobi curve

Vt = e−t
~H

∗ ∂θ, V̇t = e−t
~H

∗ [ ~H, ∂θ] = −e−t ~H∗ ~H ′.

Notice that
σ(Vt, V̇t) = −1, for every t ≥ 0. (17.7)

Indeed (17.7) is true for t = 0, and the equality is then valid for all t since the transformation e−t ~H∗
is symplectic. To compute the curvature of the Jacobi curve let us write

Vt = α(t)V0 − β(t)V̇0. (17.8)

We claim that the matrix S(t) representing the 1-dimensional Jacobi curve (that actually is a
scalar), is given in these coordinates by

S(t) =
β(t)

α(t)
=
σ(V0, Vt)

σ(V̇0, Vt)
.

Indeed, the identity

Vt = α(t)V0 − β(t)V̇0 = α(t)

(
V0 −

β(t)

α(t)
V̇0

)
, (17.9)

tells us that the matrix representing the vector space spanned by Vt is the graph of the linear map
V0 7→ β(t)

α(t) (−V̇0). Moreover, using that V0 and −V̇0 form a Darboux basis, it is easy to compute

σ(V0, Vt) = α(t)σ(V0, V0)︸ ︷︷ ︸
=0

−β(t)σ(V0, V̇0)︸ ︷︷ ︸
=−1

= β(t), (17.10)

σ(V̇0, Vt) = α(t)σ(V̇0, V0)︸ ︷︷ ︸
=1

−β(t)σ(V̇0, V̇0)︸ ︷︷ ︸
=0

= α(t). (17.11)

Differentiating the identity (17.7) with respect to t one gets the relations

σ(Vt, V̈t) = 0, σ(Vt,
...
V t) = −σ(V̇t, V̈t).

Notice that these quantities are constant with respect to t. Collecting the above results one can
compute the asymptotic expansion of S(t) with respect to t as follows

S(t) =
−t+ t3

6
σ(V0,

...
V 0) +O(t5)

1 +
t2

2
σ(V̇0, V̈0) +O(t4)

(17.12)

=

(
−t+ t3

6
σ(V0,

...
V 0) +O(t5)

)(
1− t2

2
σ(V̇0, V̈0) +O(t4)

)
. (17.13)

In particular one has

Ṡ(0) = −1, S̈(0) = 0,
...
S (0) = 2σ(V̇0, V̈0).

Applying the formula for the curvature (14.20) at t = 0, the curvature Rλ at λ ∈ T ∗M is finally
computed as follows:

Rλ =
1

2

...
S (0)

Ṡ(0)
= σλ(V̈0, V̇0). (17.14)
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Using that Vt = e−t ~H∗ ∂θ we can expand Vt for t→ 0 as follows

Vt = ∂θ + t[ ~H, ∂θ] +
t2

2
[ ~H, [ ~H, ∂θ]] +O(t3).

Hence (17.14) is rewritten as

Rλ = σλ([ ~H, [ ~H, ∂θ]], [ ~H, ∂θ]) (17.15)

= σλ([ ~H, ~H
′], ~H ′). (17.16)

Let us now compute explicitly (17.16) in terms of the structure functions of a local orthonormal
frame f1, f2. Denote the Hamiltonians

hi(p, x) = 〈p, fi(x)〉 , i = 1, 2.

Then the equations for Pontryagin extremals read





ẋ = h1f1(x) + h2f2(x)

ḣ1 = {H,h1} = {h2, h1}h2
ḣ2 = {H,h2} = −{h2, h1}h1

(17.17)

Moreover {h2, h1}(p, x) = 〈p, [f2, f1](x)〉. Assume that

[f1, f2] = c1f1 + c2f2, ci ∈ C∞(M).

Then we have
{h2, h1} = −c1h1 − c2h2.

If we restrict to the level set H−1(1/2) defined by the relations h1 = cos θ and h2 = sin θ, then
equations (17.17) become {

ẋ = cos θf1 + sin θf2

θ̇ = c1 cos θ + c2 sin θ

and it is easy to compute the following expressions2

~H = h1f1 + h2f2 + (c1h1 + c2h2)∂θ,

~H ′ = −h2f1 + h1f2 + (−c1h2 + c2h1)∂θ,

[ ~H, ~H ′] = (f1c2 − f2c1 − c21 − c22)∂θ.

Recall that
κ = f1c2 − f2c1 − c21 − c22, (17.18)

is the Gaussian curvature of the surface M (see also Chapter 4). Since σ(∂θ, ~H
′) = 1, one gets

Rλ = σλ([ ~H, ~H
′], ~H ′) = σλ(κ∂θ, ~H

′) = κ. (17.19)

Notice that κ is a function defined on the base manifold M .

2Here, with a slight abuse of notation, we still use the notation h1, h2 as functions of θ, satisfying ∂θh1 = −h2,
and ∂θh2 = h1.
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Exercise 17.2. In this exercise we recover the previous computations introducing dual coordinates
to the frame. Let ν1, ν2 be the dual basis to f1, f2 and set

fθ := h1f1 + h2f2, νθ := h1ν1 + h2ν2.

Define the smooth function b := c1h1 + c2h2 on T ∗M . In these notations

~H = fθ + b∂θ, ~H ′ = fθ′ + b′∂θ,

where ′ denotes the derivative with respect to θ and fθ′ = f ′θ. Then, using that in these coordinates
the tautological form is s = νθ, show that the symplectic form is written as

σ = ds = dθ ∧ νθ′ − b ν1 ∧ ν2,

where νθ′ := ν ′θ, and compute the following expressions:

i ~H′σ = (b′ − b)νθ′ − dθ,
[ ~H, ~H ′] = (fθb

′ − fθ′b− b2 − b′2)∂θ,

Use the above to give an alternative derivation of (17.19).

17.2 3D contact sub-Riemannian manifolds

In this section we consider a sub-Riemannian manifold M of dimension 3 whose distribution is
defined as the kernel of a 1-form ω ∈ Λ1(M), i.e., Dq = kerωq for all q ∈M . Let us also fix a local
orthonormal frame f1, f2 such that

Dq = kerωq = span{f1(q), f2(q)}.

The 1-form ω ∈ Λ1(M) defines a contact distribution if, by definition, ω ∧ dω is never vanishing.

Exercise 17.3. Let M be a smooth manifold of dimension 3, ω ∈ Λ1M and D = kerω. The
following are equivalent:

(i) ω is a contact 1-form,

(ii) dω
∣∣
D 6= 0,

(iii) ∀ f1, f2 ∈ D linearly independent, then [f1, f2] /∈ D,

where we recall that D denotes the set of horizontal vector fields.

Remark 17.4. The contact form ω is defined up to a smooth function, i.e., if ω is a contact form,
aω is a contact form for every a ∈ C∞(M), a 6= 0. This fact allow us to normalize the contact form
by requiring that

dω
∣∣
D = ν1 ∧ ν2, (i.e., dω(f1, f2) = 1),

where ν1, ν2 is the dual basis to f1, f2. This is equivalent to say that dω is equal to the area form
induced on the distribution by the sub-Riemannian scalar product.
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Definition 17.5. The Reeb vector field of the contact structure is the unique vector field f0 ∈
Vec(M) that satisfies

dω(f0, ·) = 0, ω(f0) = 1.

In particular f0 is transversal to the distribution and the triple {f0, f1, f2} defines a basis of
TqM at every point q ∈M . Notice that ω, ν1, ν2 is the dual basis to this frame.

Remark 17.6. The flow generated by the Reeb vector field etf0 :M →M is a one-parameter group
of diffeomorphisms satisfying (etf0)∗ω = ω. Indeed

Lf0ω = d(if0ω) + if0dω = 0,

since if0ω = ω(f0) = 1, and if0dω = dω(f0, ·) = 0.

In what follows, to simplify the notation, we will denote the contact form ω by ν0, as the dual
element to the vector field f0. We can write the structure equations of this basis of 1-forms





dν0 = ν1 ∧ ν2
dν1 = c101ν0 ∧ ν1 + c102ν0 ∧ ν2 + c112ν1 ∧ ν2
dν2 = c201ν0 ∧ ν1 + c202ν0 ∧ ν2 + c212ν1 ∧ ν2

(17.20)

Here ckij are smooth functions defined on an open set U of the manifold, for i, j, k = 0, 1, 2. For
simplicity in what follows we work as if U =M , since all the construction is local. Recall that

dνk =

2∑

i,j=0

ckijνi ∧ νj if and only if [fj , fi] =

2∑

k=0

ckijfk.

Introduce the coordinates (h0, h1, h2) on each fiber of T ∗M induced by the dual frame, i.e.,

λ = h0ν0 + h1ν1 + h2ν2

where hi(λ) = 〈λ, fi(q)〉 are the Hamiltonians linear on fibers associated with fi, for i = 0, 1, 2.
The sub-Riemannian Hamiltonian is written as

H =
1

2
(h21 + h22).

We now compute the Poisson bracket {H,h0}, denoting with {H,h0}q its restriction to the fiber
T ∗
qM .

Proposition 17.7. The Poisson bracket {H,h0}q is a quadratic form. Moreover we have

{H,h0} = c101h
2
1 + (c201 + c102)h1h2 + c202h

2
2, (17.21)

c101 + c202 = 0. (17.22)

Notice that D⊥
q ⊂ ker {H,h0}q and {H,h0}q can be identified with a quadratic form on T ∗

qM/D⊥
q =

D∗
q .
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Proof. Using the equality {hi, hj}(λ) = 〈λ, [fi, fj ](q)〉 we get

{H,h0} =
1

2
{h21 + h22, h0} = h1{h1, h0}+ h2{h2, h0}

= h1(c
1
01h1 + c201h2) + h2(c

1
02h1 + c202h2)

= c101h
2
1 + (c201 + c102)h1h2 + c202h

2
2.

Differentiating the first equation in (17.20) one gets:

0 = d2ν0 = dν1 ∧ ν2 − ν1 ∧ dν2
= (c101ν0 ∧ ν1) ∧ ν2 − ν1 ∧ (c202ν0 ∧ ν2)
= (c101 + c202)ν0 ∧ ν1 ∧ ν2,

which proves (17.22).

Remark 17.8. Being {H,h0}q a quadratic form on the Euclidean plane Dq (using the canonical
identification of the vector space Dq with its dual D∗

q given by the scalar product), it can be
interpreted as a symmetric operator on the plane itself. In particular its determinant and its trace
are well defined. From (17.22) we get

trace {H,h0}q = c101 + c202 = 0.

This identity is a consequence of the fact that the flow defined by the normalized Reeb f0 preserves
not only the distribution but also the area form on it.

Definition 17.9. We define the first functional invariant χ :M → R as follows

χ(q) =
√
−det{H,h0}q. (17.23)

Notice that the function χ measures an intrinsic quantity since both H and h0 are defined only
by the sub-Riemannian structure and are independent by the choice of the orthonormal frame.
Indeed the quantity {H,h0} computes the derivative of H along the flow of ~h0, i.e., the obstruction
to the flow of the Reeb field f0 (which preserves the distribution and the volume form on it) to be
metric-preserving. Notice that, by definition χ ≥ 0.

Corollary 17.10. Assume that the vector field f0 is complete. Then {etf0}t∈R is a one-parametric
group of sub-Riemannian isometries if and only if χ ≡ 0.

Definition 17.11. We define the second functional invariant κ :M → R as follows

κ = f2c
1
12 − f1c212 − (c112)

2 − (c212)
2 +

c201 − c102
2

. (17.24)

Exercise 17.12. Show that the expression (17.24) for κ does not depend on the choice of an
orthonormal frame f1, f2 for the sub-Riemannian structure.

To solve the previous exercice, one uses the following lemma, whose proof is also left as an
exercice.

Lemma 17.13. Let f1, f2 be a local orthonormal frame on M and let θ ∈ C∞(M). Denote with
f̂1, f̂2 the frame obtained from the previous one with a rotation by an angle θ and with ĉkij the
structure functions of the rotated frame. Then we have:

ĉ112 = cos θ(c112 − f1(θ))− sin θ(c212 − f2(θ)),
ĉ212 = sin θ(c112 − f1(θ)) + cos θ(c212 − f2(θ)).
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17.3 Canonical frames

In the last section we introduced the quantities χ and κ for a three-dimensional contact sub-
Riemannian structure, that are smooth functions on the manifold.

In this section we select a canonical orthonormal frame for the sub-Riemannian structure. We
study separately the two cases χ 6= 0 and χ = 0 and we start by rewriting and improving Proposition
17.7 when χ 6= 0.

Proposition 17.14. Let M be a 3D contact sub-Riemannian manifold and assume that χ(q) 6= 0,
for some q ∈M . Then there exists a local frame such that

{H,h0} = 2χh1h2. (17.25)

In particular, for a left-invariant stucture on a Lie group, there exists a unique (up to a sign)
canonical frame {f0, f1, f2} such that

[f1, f0] = c201f2,

[f2, f0] = c102f1, (17.26)

[f2, f1] = c112f1 + c212f2 + f0.

In this frame we have

χ =
c201 + c102

2
, κ = −(c112)2 − (c212)

2 +
c201 − c102

2
. (17.27)

Proof. From Proposition 17.7 we know that {h, h0}q (the restriction of the Poisson bracket {h, h0}
to the fiber T ∗

qM) is a non degenerate symmetric operator with zero trace. Hence we have a well
defined, up to a sign, orthonormal frame by setting f1, f2 as the orthonormal isotropic vectors of this
operator (the normalized eigenvectors corresponding to the to real and opposite eigenvalues). We
stress that f0 depends only on the structure and not on the orthonormal frame on the distribution.
It is easily seen that in both cases we obtain expressions (17.25)-(17.26), which in turns implies
(17.27).

Remark 17.15. Notice that, if we change sign to f1 or f2, then c212 or c112, respectively, change
sign in (17.26), while c102 and c201 are unaffected. Hence equalities (17.27) do not depend on the
orientation of the sub-Riemannian structure.

Exercise 17.16. Prove that if the 3D contact structure is left-invariant on a unimodular Lie group
(cf. Definition 7.45), satisfying χ 6= 0, then the canonical frame given by Proposition 17.14 satisfies
(17.26) with c112 = c212 = 0. In particular we can write

[f1, f0] = (χ+ κ)f2,

[f2, f0] = (χ− κ)f1, (17.28)

[f2, f1] = f0.

If χ = 0 the above procedure cannot apply. Indeed both the trace and the determinant of the
operator vanish, hence we have {H,h0}q = 0. From (17.21) we get the identities

c101 = c202 = 0, c201 + c102 = 0. (17.29)
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so that the general formulas for the commutators

[f1, f0] = c101f1 + c201f2,

[f2, f0] = c102f1 + c202f2, (17.30)

[f2, f1] = c112f1 + c212f2 + f0.

simplifies into the following (we set c := c201)

[f1, f0] = cf2,

[f2, f0] = −cf1, (17.31)

[f2, f1] = c112f1 + c212f2 + f0.

We want to show, with an explicit construction, that also in this case there exists a smooth
orthonormal frame such that κ is the only structure function appearing in (17.31).

Now we can prove the main result of this section.

Proposition 17.17. Let M be a 3D contact sub-Riemannian manifold such that χ = 0. Then
for every q ∈ M there exists local orthonormal frame f̂1, f̂2 such that the following relations are
satisfied:

[f̂1, f0] = κf̂2,

[f̂2, f0] = −κf̂1, (17.32)

[f̂2, f̂1] = f0.

Moreover, if M is simply connected, then the frame satisfying (17.32) is global.

Proof. Fix an orthonormal frame f1, f2 for the sub-Riemannian structure. Thanks to Lemma 17.13,
the statement is equivalent to the following fact: there exists a smooth function θ : M → R such
that

f1(θ) = c112, f2(θ) = c212. (17.33)

Indeed, (17.33) would imply ĉ112 = ĉ212 = 0 and κ = c. To prove the claim, let us introduce the
simplified notations α1 := c112 and α2 := c212. Then

κ = f2(α1)− f1(α2)− (α1)
2 − (α2)

2 + c. (17.34)

If {ν0, ν1, ν2} denotes the basis of 1-forms dual to {f0, f1, f2}, we have

dθ = f0(θ)ν0 + f1(θ)ν1 + f2(θ)ν2.

From (17.31) we get:

f0(θ) = ([f2, f1]− α1f1 − α2f2)(θ)

= f2(α1)− f1(α2)− α2
1 − α2

2

= κ− c.

Suppose now that (17.33) are satisfied, we get

dθ = (κ− c)ν0 + α1ν1 + α2ν2 =: η. (17.35)
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with the right hand side independent from θ. To prove the statement, it is enough to show that
η is an exact 1-form. Actually, since the result is local (or the manifold is simply connected), it is
sufficient to prove that η is closed. If we denote νij := νi ∧ νj , the dual equations of (17.31) are:

dν0 = ν12,

dν1 = −cν02 + α1ν12,

dν2 = cν01 − α2ν12.

Using that d2νi = d(dνi) = 0 for i = 0, 1, 2, we get two nontrivial relations:

f1(c) + cα2 + f0(α1) = 0, (17.36)

f2(c) − cα1 + f0(α2) = 0. (17.37)

Collecting all these computations we have

dη = d(κ − c) ∧ ν0 + (κ− c)dν0 + dα1 ∧ ν1 + α1dν1 + dα2 ∧ ν2 + α2dν2

= −dc ∧ ν0 + (κ− c)ν12 + f0(α1)ν01 − f2(α1)ν12 + α1(α1ν12 − cν02)
+ f0(α2)ν02 + f1(α2)ν12 + α2(cν01 − α2ν12)

= (f0(α1) + α2c+ f1(c))ν01 + (f0(α2)− α1c+ f2(c))ν02

+ (κ− c− f2(α1) + f1(α2) + α2
1 + α2

2)ν12 = 0,

which proves dη = 0 thanks to (17.34) and (17.36)-(17.37).

17.4 Curvature of a 3D contact structure

In this section we compute the sub-Riemannian curvature of a 3D contact structure with a technique
similar to that used in Section 16.6 for the 2D Riemannian case. Let us consider the level set
{H = 1/2} = {h21 + h22 = 1} and define the coordinate θ in such a way that

h1 = cos θ, h2 = sin θ.

On the bundle T ∗M ∩ H−1(1/2) we introduce coordinates (x, θ, h0). Notice that each fiber is
topologically a cylinder S1 × R.

The sub-Riemannian Hamiltonian equation written in these coordinates are





ẋ = h1f1(x) + h2f2(x)

ḣ1 = {H,h1} = {h2, h1}h2
ḣ2 = {H,h2} = −{h2, h1}h1
ḣ0 = {H,h0}

(17.38)

Computing the Poisson bracket {h2, h1} = h0 + c112h1 + c212h2, and introducing the two functions
a, b : T ∗M → R given by

a = {H,h0} =
2∑

i,j=1

cj0ihihj , b := c112h1 + c212h2,
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we can rewrite the system, when restricted to H−1(1/2), as follows





ẋ = cos θf1 + sin θf2

θ̇ = −h0 − b
ḣ0 = a

(17.39)

Notice that, while a is intrinsic, the function b depends on the choice of the orthonormal frame.
In particular we have for the Hamiltonian vector field in the coordinates (q, θ, h0) is written as

~H = h1f1 + h2f2 − (h0 + b)∂θ + a∂h0 , (17.40)

[∂θ, ~H] = ~H ′ = −h2f1 + h1f2 + a′∂h0 − b′∂θ, (17.41)

where h1, h2 are shorthands for cos θ and sin θ, respectively, and we denoted by ′ the derivative
with respect to θ, i.e., h′1 = −h2 and h′2 = h1.

Now consider the symplectic vector space Σλ = Tλ(T
∗M). The vertical subspace Vλ is generated

by the vectors ∂θ, ∂h0 , e. Hence the Jacobi curve is

Jλ(t) = span{e−t ~H∗ ∂θ, e
−t ~H
∗ ∂h0 , e

−t ~H
∗ e}. (17.42)

Proposition 17.18. The Jacobi curve associated with a non-constant Pontryagin extremal on a
sub-Riemannian 3D contact is monotone and ample.

Proof. We fix the following basis on the symplectic vector space Σλ = Tλ(T
∗M)

Σλ = {∂θ, ∂h0 , e} ⊕ { ~H, ~H ′,~h0}.

Notice that this global basis is not Darboux (compare with Lemma 17.1) as for instance

σ( ~H,~h0) = {H,h0} = a,

which is in general a non-zero function. The fact that the Jacobi curve is monotone is general
(Proposition 15.2). Let us prove that the curve is ample. To do this we have to compute derivatives
of the vertical vector fields in (17.42). Recall that for a (vertical) vector field W on T ∗M one has

d

dt
e−t

~H
∗ W = e−t

~H
∗ [ ~H,W ].

It is enough to prove that the curve is ample at t = 0 for every (nonzero) initial covector. We are
then reduced to compute Lie brackets between ~H and the vertical fields. Recall that by Lemma 15.15

[ ~H, e] = − ~H.

Moreover, by construction
[ ~H, ∂θ] = − ~H ′.

Hence it is enough to show that [ ~H, [ ~H, ∂θ]] has a non-zero component along ~h0. A direct compu-
tation using (17.40)-(17.41) shows that

[ ~H, [ ~H, ∂θ]] = −[ ~H, ~H ′] = ~h0 mod {∂θ, ∂h0 , e} ⊕ { ~H, ~H ′}.

which completes the proof.
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We can then perform first the reduction of the Jacobi curve by homogeneity and split the
symplectic space as follows (cf. also Section 15.3)

Σλ = span{e, ~H} ⊕ span{e, ~H}∠.

The reduced Jacobi curve Λ(t) := Ĵλ(t) in the 4-dimensional symplectic space

Λ(t) := e−t
~H

∗ V̂λ/R ~H = span{e−t ~H∗ ∂θ, e
−t ~H
∗ ∂h0}/R ~H,

where Rv is a shorthand for span{v}.
Next, we perform the second reduction of the Jacobi curve, the one related with the fact that

the curve is non-regular. Indeed notice that the rank of Ĵλ(t) is 1. To find the new reduced curve,
we need to compute the kernel of the derivative of the curve at t = 0

Γ := ker Λ̇(0).

From the definition of Λ̇ := Λ̇(0) it follows that

Λ̇(∂θ) = π∗[ ~H, ∂θ] = h2f1 − h1f2,
Λ̇(∂h0) = π∗[ ~H, ∂h0 ] = π∗(∂θ) = 0.

Hence Γ = span{∂h0} and Γ∠ is 3-dimensional in V̂λ/R ~H. We refer to the notation of Chapter 14
for the reduced curve.

Proposition 17.19. We have the following characterizations:

(i) Γ∠ = span{∂h0 , ∂θ, ~H ′} in V̂λ/R ~H,

(ii) {∂θ, ~H ′} is a Darboux basis for Γ∠/Γ.

Proof. Since ∂h0 and ∂θ are vertical, to prove (i) it is enough to show that ~H ′ is skew-orthogonal
to ∂h0 . It is easy to compute, by Cartan’s formula

σ(∂h0 ,
~H ′) = ∂h0〈s, ~H ′〉 − ~H ′ 〈s, ∂h0〉 − 〈s, [∂h0 , ~H ′]〉 = 0,

since all the three terms in the right hand side vanish. Indeed 〈s, ~H ′〉 = σ( ~E, ~H ′) = 0 and 〈s, ∂h0〉 =
〈s, [∂h0 , ~H ′]〉 = 0 since ∂h0 and [∂h0 ,

~H ′] are both vertical, as can be computed from (17.41).
To complete the proof of (ii) it is enough to notice that, using [∂θ, ~H

′] = − ~H, that

σ(∂θ, ~H
′) = ∂θ〈s, ~H ′〉 − ~H ′ 〈s, ∂θ〉 − 〈s, [∂θ, ~H ′]〉 = 〈s, ~H〉 = 1.

Next we compute the curvature in terms of the Hamiltonian vector field and its commutators.
For a vector field W we use the notations

Ẇ := [ ~H,W ], W ′ := [∂θ,W ].

We stress that Ẇ = d
dt

∣∣
t=0

e−t ~H∗ W .

Lemma 17.20. Let us define Vt = e−t ~H∗ ∂h0 . We have the following identities

V0 = ∂h0 , V̇0 = ∂θ, V̈0 = − ~H ′. (17.43)

Moreover, for all t ≥ 0, we have
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(i) σ(Vt, V̇t) = σ(Vt, V̈t) = 0,

(ii) σ(Vt, V
(3)
t ) = 1, σ(V̇t, V

(3)
t ) = σ(Vt, V

(4)
t ) = 0,

(iii) σ(V̈t, V
(3)
t ) = −σ(V̇t, V (4)

t ) = σ(Vt, V
(5)
t ).

Proof. Equation (17.43) follows from the computations performed in the proof of Proposition 17.18.
The first equality of claim (i) is a consequence of the the fact that ∂θ and ∂h0 are both vertical.
Differentiating it with respect to t, one gets

0 = σ(V̇t, V̇t) + σ(Vt, V̈t) = σ(Vt, V̈t).

Differentiating again with respect to t one gets

σ(V̇t, V̈t) + σ(Vt, V
(3)
t ) = 0,

Using that σ(V̇0, V̈0) = −σ(∂θ, ~H ′) = −1 and the fact that e−t ~H∗ is a symplectic transformation
(hence preserves the symplectic product) one gets σ(V̇t, V̈t) = −1 for all t. This proves the first

equality in (ii). With similar arguments one can show that σ(V̇t, V
(3)
t ) = σ(Vt, V

(4)
t ) = 0. Claim

(iii) is proved similarly, evaluating derivatives of order 4.

The previous lemma shows that the only symplectic invariant one obtains up to derivatives of
order five is the quantity

rλ := σλ(V̈t, V
(3)
t ) = −σλ(V̇t, V (4)

t ) = σλ(Vt, V
(5)
t ). (17.44)

It turns out that this is the value of the sub-Riemannian curvature.

Proposition 17.21. We have the identity

Rλ = − rλ
10

= − 1

10
σλ([ ~H, ~H

′], ~H ′). (17.45)

Proof. The first identity in (17.45) follows from (17.44) and (17.43).

To prove the first identity in (17.45), we have to compute the Schwarzian derivative of the
reduced curve, in the Darboux basis {V̇0,−V̈0} of the space Γ∠/Γ (notice the minus sign, cf. also
Proposition 17.19).

Recall that Λ(t) = span{Vt, V̇t}. To compute the 1-dimensional reduced curve ΛΓ(t) in the
symplectic space Γ∠/Γ we need to compute the intersection of Λ(t) with Γ∠ (for all t > 0). In other
words we look for x(t) such that

σ(V̇t + x(t)Vt, V0) = 0 =⇒ x(t) = −σ(V̇t, V0)
σ(Vt, V0)

. (17.46)

We then write this vector as a linear combination of the Darboux basis (cf. (17.9) for the 2D
Riemannian case)

V̇t + x(t)Vt = α(t)V̇0 − β(t)V̈0 + ξ(t)V0. (17.47)
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To intepret it as a curve in the space Γ/Γ∠ we simply ignore the V0 component. In the coordinates
on Γ∠/Γ given by the splitting V̇0⊕ V̈0 endowed with the Darboux basis {V̇0,−V̈0}, the matrix S(t),
which is a scalar, representing the curve is

S(t) =
β(t)

α(t)
(17.48)

Notice that this is a one-dimensional non-degenerate curve. Moreover, using that {V̇0,−V̈0} is a
Darboux basis, it is easy to compute (thanks to Lemma 17.20; compare also with (17.10)-(17.11))

σ(V̇0, V̇t + x(t)Vt) = β(t), (17.49)

σ(V̈0, V̇t + x(t)Vt) = α(t). (17.50)

Combining (17.49),(17.50) with (17.48) and (17.46) one gets

S(t) =
σ(V̇t, V̇0)σ(Vt, V0)− σ(Vt, V̇0)σ(V̇t, V0)
σ(V̇t, V̈0)σ(Vt, V0)− σ(Vt, V̈0)σ(V̇t, V0)

(17.51)

After some long but straightforward computations, by Taylor expansion and using Lemma 17.20,
one gets

S(t) = − t
4
+

t3

120
r +O(t5). (17.52)

Since S̈(0) = 0 the principal curvature Rλ (that is the curvature of the rediced regular curve) is
computed by

Rλ =

...
S (0)

2Ṡ(0)
= − rλ

10
.

We end this section by computing the expression of the curvature in terms of the orthonormal
frame for the distribution and the Reeb vector field. As usual we restrict to the level set H−1(1/2)
where

h21 + h22 = 1, h1 = cos θ, h2 = sin θ.

In the following we use the notation

fθ = h1f1 + h2f2, νθ = h1ν1 + h2ν2.

If h = (h1, h2) = (cos θ, sin θ) we denote by h′ = (−h2, h1) = (− sin θ, cos θ) its derivative with
respect to θ and, more in general, we denote F ′ := ∂θF for a smooth function F on T ∗M .

To express the quantity r = σ([ ~H, ~H ′], ~H ′) we start by computing the complete expression of
the commutator [ ~H, ~H ′]. From (17.40) and (17.41) one gets

[ ~H, ~H ′] = −f0 + h0fθ + (f2c
1
12 − f1c212 − (h0 + b)b− (b′)2 + a′)∂θ.

Next we write, following this notation, the symplectic form σ = ds. The Liouville form s is
expressed, in the dual basis ν0, ν1, ν2 to the basis of vector fields f1, f2, f0 as follows

s = h0ν0 + νθ.

Hence the symplectic form σ is written as follows:

σ = dh0 ∧ ν0 + h0 νθ ∧ νθ′ + dθ ∧ νθ′ + dνθ,
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where we used the shorthand νθ′ := ∂θνθ and (17.20). Computing the symplectic product then one
finds

10Rλ = h20 +
3

2
a′ + κ,

where we recall that

κ = f2c
1
12 − f1c212 − (c112)

2 − (c212)
2 +

c201 − c102
2

. (17.53)

By homogeneity, the function R is defined on the whole T ∗M , and not only for λ ∈ H−1(1/2).
For every λ = (h0, h1, h2) ∈ T ∗

xM we have

rλ := 10Rλ = h20 +
3

2
a′ + κ(h21 + h22). (17.54)

17.4.1 Geometric interpretation

Let us consider the kernel of the restriction of sub-Riemannian Hamiltonian to the fiber T ∗
xM

kerHx = {λ ∈ T ∗
xM | 〈λ, v〉 = 0, ∀ v ∈ Dx} = D⊥

x . (17.55)

The restriction of rλ defined in (17.54) to the 1-dimensional subspace D⊥
x , for every x ∈M , is the

strictly positive quadratic form rλ|D⊥
x
= h20. Moreover it is equal to 1 when evaluated on the Reeb

vector field. Hence rλ encodes both the contact form α and its normalization.

Let us consider the orthogonal complement D†
x of D⊥

x in the fiber with respect to rλ (this is
indeed isomorphic to the space of linear functionals defined on Dx). This induces the well-defined
splitting

T ∗
xM = D⊥

x ⊕D†
x = span{ν0} ⊕ span{ν1, ν2}, (17.56)

where ν0 = α and ν1, ν2 form a dual basis to f0, f1, f2 (where f1, f2 is an isotropic frame in the

sense of Proposition 17.14). Indeed the restriction of rλ to elements in D†
x is

rλ|D†
x
= (κ+ 3χ)h21 + (κ− 3χ)h22. (17.57)

By using the Euclidean metric induced by Hx on Dx, it can be identified with a symmetric operator.
From this formulae it is easy to recover the two invariants χ, κ

trace
(
rλ|D†

x

)
= 2κ, discr

(
rλ|D†

x

)
= 36χ2, (17.58)

where the discriminant of an operatorQ, defined on a two-dimensional space, is defined as the square
of the difference of its eigenvalues, and is computed by the formula discr(Q) = trace2(Q)−4 det(Q).

Remark 17.22. When χ = 0, then the eigenvalues of R coincide. In this case the pushforward
(etf0)∗ of the flow induced by the Reeb vector field preserves the metric on the distribution and
it is possible to define locally the quotient of the manifold M with respect to this action, i.e., the
space of integral lines of f0. The two dimensional surface defined by the quotient structure is a
2-dimensional manifold N endowed with a well-defined Riemannian metric.

The sub-Riemannian structure onM coincides with the isoperimetric Dido problem constructed
on the surface N . The invariant κ is constant along the orbits of the Reeb vector field, i.e., is a
well-defined function on N , and it represents indeed its Riemannian curvature.
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Indeed and it is easy to see that the identities

etf0∗ fi = fi, i = 1, 2.

imply [f0, f1] = [f0, f2] = 0. Hence c201, c
1
02 = 0 and the expression of κ reduces to the Riemannian

curvature of a surface whose orthonormal frame is f1, f2 (compare formulas (17.18) and (17.24)).
The Heisenberg case corresponds with the case when the surface N has vanishing Gaussian

curvature, i.e., is the Euclidean plane.

17.5 Local classification of 3D left-invariant structures

The goal of this section is to give a complete classification of left-invariant sub-Riemannian struc-
tures on 3D Lie groups up to local equivalence with respect to local isometries and dilations.

Recall that a local isometry between two sub-Riemannian structures is a local diffeomorphism
preserving the distribution and the sub-Riemannian metric.

For simplicity, we restate here a definition in the context of 3D contact manifolds.

Definition 17.23. Let M , N be two 3D contact sub-Riemannian structures, and let x0 ∈ M ,
y0 ∈ N . The two structures are said to be locally isometric if there exists a local diffeomorphism
φ : Ox0 → Oy0 such that φ(x0) = y0 and such that φ∗ : Tx0M → Ty0N preserves the distribution
and the inner product on it.

Remark 17.24. If φ : Ox0 → Oy0 is a local isometry between two contact sub-Riemannian structures
on M and N , and if f1, f2 is a local orthonormal frame for M on Ox0 then

gi := φ∗fi, for i = 1, 2. (17.59)

defines a local orthonormal frame for N on Oy0 .

A dilation is obtained by multiplying elements of an orthonormal frame by a common factor
λ > 0. It corresponds to a multiplication of all distances in the manifold by a factor λ−1.

Recall from Chapter 7 that a sub-Riemannian structure on a Lie group is said to be left-invariant
if its distribution and the inner product are preserved by left translations on the group. A left-
invariant distribution on a Lie group is uniquely determined by a two dimensional subspace of the
Lie algebra of the group. In the 3D case, the distribution is bracket generating (and contact) if and
only if the subspace is not a Lie subalgebra.

Remark 17.25. Notice that a sub-Riemannian local isometry φ : G→ G′ between two left-invariant
structures on Lie groups, induces a linear maps between Lie algebras φ∗ : g→ g′. In particular φ∗
maps the distribution to the distribution and preserves the inner product on it.

Conversely, given a linear map L : g→ g′ which maps the distribution to the distribution and
preserves the inner product on it, then there always exists a map φ : G → G′ defined locally in a
neighborhood of the identities of the corresponding Lie groups, which is a local isometry and such
that φ∗ = L.

This is a consequence of Theorem 2.41 in Section 2.4.1. We can then reduce the problem to the
level of Lie algebras.

Exercise 17.26. Prove that for a left-invariant structure on a 3D Lie group, the two functional
invariants χ and κ are constant. Moreover prove that two left-invariant structures on 3D Lie groups
which are locally isometric have the same values of χ and κ.
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It follows then immediately from the definitions that two sub-Riemannian structures that have
different invariants χ and κ cannot be locally isometric.

Proposition 17.27. Let G,H be 3D Lie groups endowed with left-invariant sub-Riemannian struc-
tures. Then if (κG, χG) 6= (κH , χH), then G and H are not locally isometric.

Nevertheless the invariants κ and χ turn out to be not complete, in the sense that there exists
non-isometric left-invariant sub-Riemannian stuctures which has the same value of χ and κ.

Exercise 17.28 (Homogeneity with respect to local dilations). Prove that χ and κ are homogeneous
of degree 2 with respect to dilations.

More precisely, assume that the sub-Riemannian structure (M,D, 〈· | ·〉) is locally defined by
the orthonormal frame f1, f2, i.e.

D = span{f1, f2}, 〈fi | fj〉 = δij .

Consider now the dilated structure defined by the orthonormal frame λf1, λf2

D = span{f1, f2}, 〈fi | fj〉 =
1

λ2
δij, λ > 0.

If χ, κ and χ̃, κ̃ denote the invariants of the two structures respectively, prove that

χ̃ = λ2χ, κ̃ = λ2κ.

In the following we are interested in a classification up to local isometries and dilations, hence
we can always suppose that the local invariants of our structure satisfy

χ = κ = 0, or χ2 + κ2 = 1. (17.60)

A left-invariant sub-Riemannian structure on a 3D Lie group satisfying (17.60) is said to be nor-
malized. The following result is the main result of this section.

Theorem 17.29. Let M be a left-invariant 3D sub-Riemannian structure on a Lie group and let
(κ, χ) be its invariants.

(i) Assume that χ = κ = 0. Then the structure is locally isometric to the Heisenberg group
endowed with the standard sub-Riemannian structure,

(ii) Assume that χ2 + κ2 = 1. Then there exist up to three non-isometric normalized sub-
Riemannian structures with the same invariants; in particular there exists a unique normalized
structure on a unimodular Lie group for the given value of the pair (κ, χ),

(iii) Assume χ 6= 0 or χ = 0, κ ≥ 0. Then two structures are locally isometric if and only if their
Lie algebras are isomorphic.
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17.5.1 A description of the classification

A more precise interpretation of Theorem 17.29 can be given in terms of Figure 17.1. To this aim,
let us first recall the classification of 3D Lie algebras.

The classification of 3D Lie algebras (up to isomorphisms) is very classical and can be found,
for instance, in [Jac62]. It can be expressed in terms of the dimension of the square [g, g] of the Lie
algebra. Every 3D Lie algebras is isomorphic to one of the following list.

• dim[g, g] = 0

– the 3D abelian Lie algebra (the Lie algebra of the abelian group (R3,+)).

• dim[g, g] = 1

– h, the nilpotent Lie algebra of the Heisenberg group H,

– a+(R) ⊕ R, where a+(R) is the solvable Lie algebra of the group A+(R) of orientation
preserving affine maps on R.

• dim[g, g] = 2

– se(2) the solvable Lie algebras of the group SE(2) of orientation preserving motions of
the Euclidean plane,

– sh(2) the solvable Lie algebras of the group SH(2) of orientation preserving motions of
the hyperbolic plane.

– the other algebras of this subclass can be interpreted as an operator acting on a 2-
dimensional abelian algebra and splits into two sub-classes solv+ and solv−, depending
on the sign of the determinant of the operator. See also Section 17.5.3.

• dim[g, g] = 3

– sl(2), the simple Lie algebra of the group SL(2),

– su(2), the simple Lie algebra of the group SU(2).

To define a left-invariant structure on a 3D Lie group G, one needs first to fix a bracket-generating
distribution, that is a 2-dimensional subspace of the Lie algebra g. Notice that the 3D abelian Lie
algebra does not contain any bracket-generating 2-dimensional subspace.

In all other cases the classification of bracket-generating 2-dimensional subspaces up to auto-
morphisms of the Lie algebra can be done explicitly as follows.

Exercise 17.30. (i). Prove that for every non-abelian Lie algebra listed above different from sl(2),
there exists a unique bracket-generating 2-dimensional subspace up to automorphisms of the Lie
algebra.

A 2-dimensional subspace of sl(2) is called elliptic (resp. hyperbolic) if the restriction of the
Killing form (cf. Definition 7.37) on this subspace is sign-definite (resp. sign-indefinite).

(ii). Prove that for the Lie algebra sl(2) there exists two equivalence classes, given by elliptic
and hyperbolic 2-dimensional subspaces.
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According to Exercice 17.30, we use the notation sle(2) (resp. slh(2)) when an elliptic (resp.
hyperbolic) distribution is fixed on sl(2). Notice that in the case of sle(2) one can define a natural
inner product on the distribution by restricting the Killing form on it, since it is sign-definite.

Notice that a priori, even in the cases when the bracket-generating distribution is unique (i.e.,
there exists a unique equivalence class), one could define different inner products on it, giving
structures with a priori different values of χ and κ.

As we explained, normalized structures with different χ and κ are not locally isometric by
Proposition 17.27. On the other hand, for a given pair (κ, χ) there exist up to three non-isometric
normalized sub-Riemannian structures with the same invariants.

In Figure 17.1 a structure is identified by the point (κ, χ) that is either the origin (if (κ, χ) =
(0, 0)) or it belongs to the half unit circle {κ2 + χ2 = 1, χ ≥ 0}. The three different arcs of the
circle are not overlapped in Figure 17.1 to highlight that two distinct points represent non locally
isometric structures.

h

su(2)

sh(2) se(2)

a+(R)⊕ R

solv−

solv+

su(2) with killing formsl(2) with killing form

κ

χ

sle(2)

slh(2)

Figure 17.1: The classification of 3D left-invariant sub-Riemannian structures. Each point on
the complete half-circle represents Lie algebras of unimodular Lie group (sl(2), sh(2), se(2), su(2)).
Each point on the two sub-arcs of circles of solv+ and solv− represents different sub-Riemannian
structures on different solvable groups, that are not unimodular. The algebra a+(R)⊕R is identified
in the picture with sl(2) with the Killing form since they are isometric (although not isomorphic).
The algebras se(2) (resp. sh(2)) can be seen as a limit of the cases solv+ (resp. solv−) for χ → κ
(resp. χ→ −κ). When χ→ 0 both solv+ and solv− tend to a+(R)⊕R. Cf. the dotted lines.

To distinguish between structures with different χ and κ, we use the canonical orthonormal
frames for the sub-Riemannian structure described in Section 17.3. In this way not only κ and χ,
but all structure functions of the Lie algebra written with respect to this frame are invariant with
respect to local isometries.

As a byproduct of the classification, for each distinct point (κ, χ) in the three arcs of the circles

507



there exists a canonical choice of the sub-Riemannian structure on the corresponding Lie algebra
(hence of an orthonormal frame on the distibution).

Some observations on Figure 17.1 are in order:

• each point on the complete half-circle represents Lie algebra of a unimodular Lie group. The
algebras se(2) and sh(2) are solvable and for this reason they are connected (via a short dotted
line) to the corresponding arcs of solv+ and solv−, since they arise as limiting cases of the
latter. The algebra a+(R)⊕ R arises as a limit case as well.

• each of the three sub-arcs of circles of sle(2), slh(2), su(2) represents different sub-Riemannian
structures on the same group.

• each point on the two sub-arcs of circles of solv+ and solv− represents different sub-Riemannian
structures on different groups. These groups are not unimodular.

• the left-invariant sub-Riemannian structure a+(R)⊕R is isometric to the one on sle(2) (where
the inner product is given by the restriction to the Killing form on the distribution). Notice
that these two Lie algebras are not isomorphic (cf. Section 17.5.2).

• the two sub-Riemannian structures on sle(2) and su(2) where the metric is defined by the
restriction of the Killing form to the distribution are of type d ⊕ s (cf. Section 7.7.1 and
Section 13.6).

A more intrinsic way to distinguish structures with the same invariants

Recall from the discussion in Section 17.4.1 that we have two quadratic forms on the cotangent space
H and r. For a given x ∈M we have kerHx = D⊥

x and considering the orthogonal complement D†
x

of D⊥
x in the fiber with respect to rλ one has the well-defined splitting

T ∗
xM = D⊥

x ⊕D†
x, (17.61)

and Hx defines an Euclidean strtucture on D†
x. The invariants κ and χ are the rescaled trace and

the discriminant of rλ|D†
x
(cf. 17.57).

How to distinguish structures with the same values of κ and χ? Compute the Poisson bracket
{H, r}. This is a cubic polynomial in h1, h2, h0. If {H, r}|D†

x
= 0, then the structure is unimodular.

If not, the zeros of {H, r}|D†
x
= 0 are exactly the eigenvectors of r|D†

x
. One of the zeroes has

multiplicity two, the other one is simple. If the eigenvector which has multiplicity two corresponds
to the larger eigenvalue, then we are in the case solv+, otherwise we are in the case solv−.

17.5.2 A sub-Riemannian isometry between non isomorphic Lie groups

As a byproduct of Theorem 17.29 and Proposition 17.17, we get also a uniformization-like theorem
for “constant curvature” manifolds in the sub-Riemannian setting:

Corollary 17.31. LetM be a complete simply connected 3D contact sub-Riemannian manifold. As-
sume that χ = 0 and κ is constant on M . Then M is isometric to a left-invariant sub-Riemannian
structure. More precisely:

(i) if κ = 0 it is isometric to the Heisenberg group H,
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(ii) if κ = 1 it is isometric to the group SU(2) with Killing metric,

(iii) if κ = −1 it is isometric to the group S̃L(2) with elliptic type Killing metric,

where S̃L(2) is the universal cover of SL(2).

Another byproduct of the classification is the fact that there exist non isomorphic Lie groups
with locally isometric sub-Riemannian structures. Indeed, as a consequence of Theorem 17.29, we
get that there exists a unique normalized left-invariant structure defined on A+(R) ⊕ R having
χ = 0, κ = −1. Thus A+(R)⊕ R is locally isometric to the group SL(2) with elliptic type Killing
metric by Corollary 17.31.

In Section 17.5.4, we explicitly compute the global sub-Riemannian isometry between A+(R)⊕R
and the universal cover of SL(2). We then show that this map is well defined on the quotient,
giving a global isometry between the group A+(R) × S1 and the group SL(2), endowed with the
sub-Riemannian structure defined by the restriction of the Killing form on the elliptic distribution.

The group A+(R)⊕R can be interpreted as the subgroup of the affine maps on the plane that
acts as an orientation preserving affinity on one axis and as translations on the other one.

A+(R)⊕ R :=







a 0 b
0 1 c
0 0 1


 , a > 0, b, c ∈ R



 .

Notice that we can recover the action as an affine map identifying (x, y) ∈ R2 with (x, y, 1)T and


a 0 b
0 1 c
0 0 1





x
y
1


 =



ax+ b
y + c
1


 .

The standard left-invariant sub-Riemannian structure on A+(R)⊕R is defined by the orthonor-
mal frame D = span{f1, f2}, where f1 = e2 and f2 = e1 + e3 defined in terms of the following basis
of the Lie algebra of the group

e1 =



0 0 1
0 0 0
0 0 0


 , e2 =



−1 0 0
0 0 0
0 0 0


 , e3 =



0 0 0
0 0 1
0 0 0


 ,

Notice that [e1, e2] = e1.
The subgroup A+(R) is topologically homeomorphic to the half-plane {(a, b) ∈ R2, a > 0} which

can be described in polar coordinates as {(ρ, θ)| ρ > 0,−π/2 < θ < π/2}.
To get a global sub-Riemannian isometry we should rather consider the group A+(R)× S1.

Theorem 17.32. The diffeomorphism Ψ : A+(R)× S1 −→ SL(2) defined by

Ψ(ρ, θ, ϕ) =
1√

ρ cos θ

(
cosϕ sinϕ

ρ sin(θ − ϕ) ρ cos(θ − ϕ)

)
, (17.62)

where (ρ, θ) ∈ A+(R) and ϕ ∈ S1, is a global sub-Riemannian isometry.

Using this global sub-Riemannian isometry as a change of coordinates one can a priori recover
the geometry of the sub-Riemannian structure on the group A+(R)×S1 (as for instance the explicit
expression of the sub-Riemannian distance, the cut locus, etc.) starting from the corresponding
properties of SL(2).
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17.5.3 Canonical frames and classification. Proof of Theorem 17.29

In this section G denotes a 3D Lie group, with Lie algebra g, endowed with a left-invariant sub-
Riemannian structure defined by the orthonormal frame f1, f2, i.e.,

D = span{f1, f2} ⊂ g, span{f1, f2, [f1, f2]} = g.

Recall that, for a 3D left-invariant structure, to be bracket generating is equivalent to be contact,
moreover the Reeb field f0 is also a left-invariant vector field by construction.

Since χ ≥ 0 by definition, we study separately the two cases χ > 0 and χ = 0. For each case,
we compute the canonical frame and we show that the structure is locally isometric to one of the
list given in Theorem 17.29 and Figure 17.1.

Case χ > 0

Let G be a 3D Lie group with a left-invariant sub-Riemannian structure such that χ > 0. From
Proposition 17.14, we can assume that D = span{f1, f2}, where f1, f2 is the canonical frame of the
structure (globally defined by left-invariance). From (17.26) we obtain the dual equations

dν0 = ν1 ∧ ν2,
dν1 = c102ν0 ∧ ν2 + c112ν1 ∧ ν2, (17.63)

dν2 = c201ν0 ∧ ν1 + c112ν1 ∧ ν2.

Using d2νi = d(dνi) = 0 for i = 1, 2, 0, we obtain the structure equations
{
c102c

2
12 = 0,

c201c
1
12 = 0.

(17.64)

We know that the structure functions associated with the canonical frame are invariant by local
isometries (up to changing the signs of c112, c

2
12, see Remark 17.15). Hence, every different choice

of coefficients in (17.26) which satisfies also (17.64) belongs to a different class of non-isometric
structures.

Taking into account that χ > 0 implies that c201 and c102 cannot be both non positive (see
(17.27)), we have the following cases:

(i) c112 = 0 and c212 = 0. In this first case we get

[f1, f0] = c201f2,

[f2, f0] = c102f1,

[f2, f1] = f0,

and formulas (17.27) imply

χ =
c201 + c102

2
> 0, κ =

c201 − c102
2

.

In addition, we find the relations between the invariants

χ+ κ = c201, χ− κ = c102.

We have the following subcases:

510



(a) If c102 = 0 we get the Lie algebra se(2) of the group SE(2) of the Euclidean isometries
of R2, satisfying χ = κ.

(b) If c201 = 0 this can be realized as the Lie algebra sh(2) of the group SH(2) of the
hyperbolic isometries of R2, satisfying χ = −κ.

(c) If c201 > 0 and c102 < 0 this can be realized as the Lie algebra su(2) and χ− κ < 0.

(d) If c201 < 0 and c102 > 0 this can be realized as the Lie algebra sl(2) with χ+ κ < 0.

(e) If c201 > 0 and c102 > 0 this can be realized as the Lie algebra sl(2) with χ+κ > 0, χ−κ > 0.

(ii) c102 = 0 and c112 = 0. In this case we have

[f1, f0] = c201f2,

[f2, f0] = 0, (17.65)

[f2, f1] = c212f2 + f0,

and necessarily c201 6= 0. Moreover we get

χ =
c201
2
> 0, κ = −(c212)2 +

c201
2
,

from which it follows

χ− κ ≥ 0. (17.66)

The Lie algebra g = span{f1, f2, f0} defined by (17.65) satisfies dim[g, g] = 2. Moreover,
notice that A = ad f1 is a well defined operator acting on the subspace span{f0, f2}, satisfying

trace A = −c212, detA = c201 > 0,

together with the following relation

2
trace2A

detA
= 1− κ

χ
. (17.67)

(iii) c201 = 0 and c212 = 0. In this last case we get

[f1, f0] = 0,

[f2, f0] = c102f1, (17.68)

[f2, f1] = c112f1 + f0,

and c102 6= 0. Moreover we get

χ =
c102
2
> 0, κ = −(c112)2 −

c102
2
,

from which it follows

χ+ κ ≤ 0. (17.69)
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The Lie algebra g = span{f1, f2, f0} defined by (17.68) satisfies dim[g, g] = 2. Moreover,
notice that A = ad f2 is a well-defined operator on the subspace span{f0, f1}, satisfying

trace A = c112, detA = −c102 < 0,

together with the relation

2
trace2A

detA
= 1 +

κ

χ
. (17.70)

Lie algebras of cases (ii) and (iii) are solvable algebras and we will denote respectively solv+ and
solv−, respectively. Notice that the sign stands for the sign of the determinant of the operator A it
represents. Indeed (17.66) and (17.67) imply detA > 0, while (17.69) and (17.70) imply detA < 0.

In particular, formulas (17.67) and (17.70) permits to recover the ratio between the two in-
variants (hence to determine a unique normalized structure) only from intrinsic properties of the
operator A introduced above.

Notice finally that the limit case of solv+ with c212 = 0 recovers the normalized structure (i.a),
while the limit case of solv− with c112 = 0 recovers the normalized structure (i.b).

Case χ = 0

A direct consequence of Proposition 17.17 for left-invariant structures is the following.

Corollary 17.33. Let G,H be Lie groups with left-invariant sub-Riemannian structures and as-
sume χG = χH = 0. Then G and H are locally isometric if and only if κG = κH .

Thanks to this result it is easy to complete our classification. Indeed it is sufficient to find all
left-invariant structures such that χ = 0 and to compare their second invariant κ.

An elementary but long calculation shows that among the Lie algebras listed in the classification,
the only that admit left-invariant structures with χ = 0 are:

- h is the Lie algebra of the Heisenberg group; then κ = 0.

- su(2) with the Killing inner product; then κ > 0.

- sle(2) with the elliptic distribution and Killing inner product; then κ < 0.

- a+(R)⊕ R; then κ < 0.

In particular this implies that there exists a global sub-Riemannian isometry between the simply
connected groups S̃L(2) (the universal cover of SL(2)) and A+(R) ⊕ R. In Section 17.5.4 we
construct explictly this isometry and we show that it descends to a global isometry between SL(2)
(with the elliptic distribution and Killing inner product on it) and A+(R)× S1.

The proof of Theorem 17.29 is now completed (cf. again Figure 17.1).

Exercise 17.34. Prove that for every left-invariant sub-Riemannian structures on H one has χ =
κ = 0. It follows that every left-invariant sub-Riemannian structure on H is globally isometric to
the standard one.
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17.5.4 An explicit isometry. Proof of Theorem 17.32

In this section we write explicitly the sub-Riemannian isometry between SL(2) and A+(R) × S1.
Consider the Lie algebra sl(2) = {A ∈M2(R), trace(A) = 0} = span{g1, g2, g3}, where

g1 =
1

2

(
1 0
0 −1

)
, g2 =

1

2

(
0 1
1 0

)
, g3 =

1

2

(
0 1
−1 0

)
.

The sub-Riemannian structure on SL(2) defined by the Killing form on the elliptic distribution is
given by the orthonormal frame {g1, g2} on the distribution

Dsl = span{g1, g2}, (17.71)

and g0 := −g3 is the Reeb vector field. Notice that this frame is canonical (in the sense of
Section 17.3), since equations (17.32) are satisfied. Indeed

[g1, g0] = −g2 = κg2.

Recall that the universal cover of SL(2), which we denote S̃L(2), is a simply connected Lie group
with Lie algebra sl(2). Hence (17.71) define a left-invariant structure also on the universal cover.

On the other hand we consider the following coordinates on the Lie group A+(R)⊕R, that are
well-adapted for our further calculations

A+(R)⊕ R :=







−y 0 x
0 1 z
0 0 1


 , y < 0, x, z ∈ R



 . (17.72)

It is easy to see that, in these coordinates, the group law reads

(x, y, z)(x′, y′, z′) = (x− yx′,−yy′, z + z′),

and its Lie algebra a(R)⊕ R is generated by the vector fields

e1 = −y∂x, e2 = −y∂y, e3 = ∂z,

with the only nontrivial commutator relation [e1, e2] = e1.
The left-invariant structure on A+(R)⊕ R is defined by the orthonormal frame

Da = span{f1, f2},
f1 := e2 = −y∂y, (17.73)

f2 := e1 + e3 = −y∂x + ∂z.

With straightforward calculations we compute the Reeb vector field f0 = −e3 = −∂z.
This frame is not canonical since it does not satisfy equations (17.32). Hence we can apply

Proposition 17.17 to find the canonical frame, that will be no more left-invariant. Following the
notation of Proposition 17.17 we have

Lemma 17.35. The canonical orthonormal frame on A+(R)⊕ R has the form:

f̂1 = y sin z ∂x − y cos z ∂y − sin z ∂z,

f̂2 = −y cos z ∂x − y sin z ∂y + cos z ∂z. (17.74)
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Proof. It is enough to show that the rotation defined in the proof of Proposition 17.17 is θ(x, y, z) =
z. The dual basis to our frame {f1, f2, f0} is given by

ν1 = −
1

y
dy, ν2 = −

1

y
dx, ν0 = −

1

y
dx− dz.

Moreover we have [f1, f0] = [f2, f0] = 0 and [f2, f1] = f2 + f0 so that, in (17.35) we get c = 0,
α1 = 0 and α2 = 1. Hence

dθ = −ν0 + ν2 = dz.

Now we have two canonical frames {f̂1, f̂2, f0} and {g1, g2, g0}, whose Lie algebras satisfy the
same commutation relations:

[f̂1, f0] = −f̂2, [g1, g0] = −g2,
[f̂2, f0] = f̂1, [g2, g0] = g1, (17.75)

[f̂2, f̂1] = f0, [g2, g1] = g0.

Let us consider the two maps

F̃ : R3 → A+(R)⊕R, (t1, t2, t0) 7→ et0f0 ◦ et2f̂2 ◦ et1f̂1(1A), (17.76)

G̃ : R3 → SL(2), (t1, t2, t0) 7→ et0g0 ◦ et2g2 ◦ et1g1(1SL). (17.77)

where we denote with 1A and 1SL identity element of A+(R)⊕ R and S̃L(2), respectively.

To simplify computation we introduce the rescaled maps

F (t) := F̃ (2t), G(t) := G̃(2t), t = (t1, t2, t0),

and solving the corresponding differential equations, we get from (17.76) the following expressions

F (t1, t2, t0) =

(
2e−2t1 tanh t2

1 + tanh2 t2
, −e−2t1 1− tanh2 t2

1 + tanh2 t2
, 2(arctan(tanh t2)− t0)

)
. (17.78)

The function F is globally invertible on its image and its inverse

F−1(x, y, z) =

(
−1

2
log
√
x2 + y2, arctanh

(
y +

√
x2 + y2

x

)
, arctan

(
y +

√
x2 + y2

x

)
− z

2

)
.

is defined for every y < 0 and for every x (it is extended by continuity at x = 0).

On the other hand, the map (17.77) can be expressed as the product of exponential matrices as
follows (recall that, since we consider left-invariant systems, we must multiply matrices from the
right)

G(t1, t2, t0) =

(
et1 0
0 e−t2

)(
cosh t2 sinh t2
sinh t2 cosh t2

)(
cos t0 − sin t0
sin t0 cos t0

)
. (17.79)
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To compute G◦F−1, we consider on the half-plane {(x, y), y < 0} the standard polar coordinates
(ρ, θ), where −π/2 < θ < π/2 is the angle that the point (x, y) defines with y-axis. Let us introduce
the quantity

ξ(θ) := tan
θ

2
=




y +

√
x2 + y2

x
, if x 6= 0,

0, if x = 0.

Hence we can rewrite F−1 as follows

F−1(ρ, θ, z) =

(
−1

2
log ρ, arctanh ξ(θ), arctan ξ(θ)− z

2

)
,

and compute the composition Ψ := G ◦ F−1 : A+(R) ⊕ R −→ SL(2). Once we substitute these
expressions in (17.79), the third factor is a rotation matrix by an angle arctan ξ(θ)− z/2. Splitting
this matrix in two consecutive rotations and using standard trigonometric identities (we use the
shorthand ξ = ξ(θ)) we obtain:

Ψ(ρ, θ, z) =

=

(
ρ−1/2 0

0 ρ1/2

)



1√
1− ξ2

ξ√
1− ξ2

ξ√
1− ξ2

1√
1− ξ2







1√
1 + ξ2

− ξ√
1 + ξ2

ξ√
1 + ξ2

1√
1 + ξ2







cos
z

2
sin

z

2

− sin
z

2
cos

z

2


 .

Then using identities: cos θ =
1− ξ2
1 + ξ2

, sin θ =
2ξ

1 + ξ2
, we get

Ψ(ρ, θ, z) =

(
ρ−1/2 0

0 ρ1/2

)



1 + ξ2√
1− ξ4

0

2ξ√
1− ξ4

1− ξ2√
1− ξ4







cos
z

2
sin

z

2

− sin
z

2
cos

z

2




=

√
1 + ξ2

1− ξ2
(
ρ−1/2 0

0 ρ1/2

)


1 0
2ξ

1 + ξ2
1− ξ2
1 + ξ2







cos
z

2
sin

z

2

− sin
z

2
cos

z

2




=
1√

ρ cos θ

(
1 0
0 ρ

)(
1 0

sin θ cos θ

)



cos
z

2
sin

z

2

− sin
z

2
cos

z

2




=
1√

ρ cos θ




cos
z

2
sin

z

2

ρ sin
(
θ − z

2

)
ρ cos

(
θ − z

2

)


 .

Lemma 17.36. The set Ψ−1(1SL) is a normal subgroup of A+(R)⊕ R.
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Proof. It is easy to show that Ψ−1(1SL) = {F (0, 0, 2kπ) | k ∈ Z}. From (17.78) we see that
F (0, 0, 2kπ) = (0,−1,−4kπ) and (17.72) implies that Ψ−1(1SL) is a normal subgroup. Indeed it is
enough to prove that Ψ−1(1SL) is a subgroup of the center, and this follows from the identity



1 0 0
0 1 4kπ
0 0 1





−y 0 x
0 1 z
0 0 1


 =



−y 0 x
0 1 z + 4kπ
0 0 1


 =



−y 0 x
0 1 z
0 0 1





1 0 0
0 1 4kπ
0 0 1


 .

Remark 17.37. Using a topological argument it is possible to prove that actually Ψ−1(A) is a
discrete countable set for every A ∈ SL(2), and Ψ is a representation of A+(R) ⊕ R as universal
cover of SL(2).

By Lemma 17.36, the map Ψ is a well-defined isomorphism between the quotient

A+(R)⊕R

Ψ−1(I)
≃ A+(R)× S1,

and the group SL(2), defined by restriction of Ψ to z ∈ [−2π, 2π]. If we consider the new variable
ϕ := z/2, defined on [−π, π], we can finally write the global isometry as

Ψ(ρ, θ, ϕ) =
1√

ρ cos θ

(
cosϕ sinϕ

ρ sin(θ − ϕ) ρ cos(θ − ϕ)

)
, (17.80)

where (ρ, θ) ∈ A+(R) and ϕ ∈ S1.

Notice that, in the coordinates introduced above, we have 1A = (1, 0, 0) and

Ψ(1A) = Ψ(1, 0, 0) =

(
1 0
0 1

)
= 1SL.

On the other hand it is an easy observation that

Lemma 17.38. Ψ is not a group homomorphism

Indeed one can easily check that on A+(R)⊕ R one has

(√
2

2
,
π

4
, π

)(√
2

2
,−π

4
,−π

)
= 1A,

while from (17.80) one gets

Ψ

(√
2

2
,
π

4
, π

)
Ψ

(√
2

2
,−π

4
,−π

)
=

(
2 0
1/2 1/2

)
6= 1SL.
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17.6 Appendix: Remarks on curvature coefficients

In this appendix we recall the relation of the geometric invariants χ and κ defined in Section 17.2,
with the invariants of a canonical connection that is possible to define on a 3D contact sub-
Riemannian structures.

We extend the sub-Riemannian metric on D to a global Riemannian structure (that we denote
with the symbol g) by promoting X0 to an unit vector orthogonal to D. We define the contact
endomorphism J : TM → TM by:

g(X,JY ) = dω(X,Y ), ∀X,Y ∈ Γ(TM). (17.81)

Clearly J is skew-symmetric w.r.t. to g. In the 3-dimensional case, the previous condition forces
J2 = −I on D and J(X0) = 0.

On a 3D contact sub-Riemannian manifold, it is possible to fix a canonical linear connection,
which is different from the Levi-Civita connection associated with g (it is not torsion-free). This
connection is possible to define on a general sub-Riemannian contact manifold, and is called Tanno
connection.

The conditions are written in terms of covariant derivative of tensors. Recall that, given a
tensor A of order r and a linear connection ∇, we define ∇A as a r + 1 tensor defined by

∇A(X1, . . . ,Xr, Y ) := Y (T (X1, . . . ,Xr))−A(∇YX1, . . . ,Xr)− . . . −A(X1, . . . ,∇YXr).

where X1, . . . ,Xr and Y are vector fields.

Exercise 17.39 (On the Tanno connection). Prove that, given a three-dimensional contact mani-
fold with normalized contact form ω, there exists a unique linear connection ∇ such that for every
Z ∈ Γ(TM)

(i) ∇ω = 0,

(ii) ∇X0 = 0,

(iii) ∇g = 0,

and such that, denoting T the torsion tensor associated with ∇,

(iv) T (X,Y ) = dω(X,Y )X0 for any X,Y ∈ Γ(D),

(v) T (X0, JX) = −JT (X0,X) for any vector field X ∈ Γ(TM),

Notice that, if X is a horizontal vector field, T (X0,X) is horizontal as well. As a consequence,
if we define τ(X) := T (X0,X), τ is a symmetric endomorphism defined on the distribution, which
satisfies τ ◦ J + J ◦ τ = 0, by property (v). Notice that trace(τ) = 0 and det(τ) ≤ 0. A standard
computation gives the following result, whose proof is left as an exercice.

Lemma 17.40. Let R∇ be the curvature associated with the connection ∇. Then

κ = R∇(X1,X2,X2,X1), χ =
√
−det(τ). (17.82)

where X1,X2 is a local orthonormal frame for the sub-Riemannian structure.
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17.7 Bibliographical note

The study of (complete sets of) metric invariants, connected with the problem of equivalence of 3D
sub-Riemannian contact structures, has been considered in the literature in different context and
with different languages, in particular in [Agr95, Agr96], in [Hug95] and [FG96].

In [Hug95] the authors introduces a generating set of invariants using the Cartan’s moving frame
method, while in [FG96] the authors introduce invariants associated with the canonical connection
discussed in Section 17.6. These invariants recover κ and χ respectively, up to normalization
constants. For a more detailed discussion on the explicit relation we refer to [BBLss, Appendix A]
(cf. also [ABR18, Section 7.5]).

The computation of the sub-Riemannian curvature on the three-dimensional case, following the
definition given here but with a different notation, is done in [AL14]. The relation between local
invariants and volume of small balls and small time heat kernel asymptotics on the diagonal have
also been considered in [BBLss] and [Bar13], respectively. The reader is referred also to [ABR18]
and [ABR17] for a discussion of the higher dimensional contact case.

The complete classification already appeared in Falbel and Gorodski [FG96], where the authors
classify sub-Riemannian homogeneous spaces (i.e., sub-Riemannian structures which admits a tran-
sitive Lie group of isometries acting smoothly on the manifold) in dimension 3 and 4. The local
classification of 3D left-invariant structures given here follows the approach given in [Agr95, AB12].
Three-dimensional sub-Riemannian symmetric spaces have been classified also in [Str86, Section 10].

A byproduct of the classification is an explicit sub-Riemannian isometry between two non-
isomorphic Lie groups. The explicit expression given here is taken from [AB12] (cf. also [FG96,
Remark 3.1]).

A more detailed discussion of the Nagano principle and its relation with the Orbit theorem can
be found in the book [AS04], cf. also the papers [Nag66, Sus74, Sus83].
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Chapter 18

Integrability of the sub-Riemannian
geodesic flow on 3D Lie groups

In this chapter we show how to find certain first integrals for Hamiltonian systems on Lie groups,
that are automatically in involution among them and with the Hamiltonian. We will study the
so-called Casimir first integral and other first integrals whose presence is a consequence of the
commutativity of left-invariant vector fields with right-invariant ones. This theory will be used
to prove that the Hamiltonian system for normal Pontryagin extremals for rank-2 left-invariant
sub-Riemannian structures on 3D Lie groups is completely integrable in the sense of Section 5.4.

18.1 Poisson manifolds and symplectic leaves

Poisson manifolds

Definition 18.1. A Poisson manifold is a connected differentiable manifold P endowed with an
operation {·, ·} : C∞(P ) × C∞(P ) → C∞(P ) (called Poisson bracket) which satisfies the following
properties:

• Bilinearity: {·, ·} is linear in both arguments;

• Antisymmetricity: {a, b} = −{b, a};
• Leibniz rule: {ab, c} = a{b, c} + {a, c}b;

• Jacobi identity: {{a, b}, c} + {{c, a}, b} + {{b, c}, a} = 0.

The pair (C∞(P ), {·, ·}) is called a Poisson algebra.

Given a ∈ C∞(P ), as a consequence of the Leibniz rule in Definition 18.1, the operator {a, ·} is
a derivation and hence it defines a vector field. Hence we can give the following definition.

Definition 18.2. Given a ∈ C∞(P ) we define the corresponding Poisson vector field as

~a(b) = {a, b}, for every b ∈ C∞(P ). (18.1)

The set of all Poisson vector fields on a Poisson manifold is denoted P.

In the previous definition we have used the same symbol as the one that we used for the
Hamiltonian vector field since, as we will see later on, they coincide on symplectic manifolds.
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The Poisson bi-vector

The description of a Poisson manifold in terms of Poisson brackets is not always the most efficient
one. There is an alternative description in terms of 2-vector fields, i.e., maps Λ1(P ) × Λ1(P ) →
C∞(P ). Actually, since {·, ·} is a derivation in each argument, it can be interpreted as a vector field
both when acting on its first, or in its second argument. As a consequence the value of {a, b}(q)
depends only da(q) and db(q). We can then give the following definition.

Definition 18.3. Let (P, {·, ·}) be a Poisson manifold. The operator Π : Λ1(P )×Λ1(P )→ C∞(P )
such that for every a, b ∈ C∞(P ) we have Π(da, db) = {a, b} is called Poisson bi-vector.

Notice that Π is skew-symmetric and hence can be interpreted as a map Λ2(P )→ C∞(P ).
In coordinates {xi} we can write Π(x) =

∑
i,j Πij(x)∂xi ⊗ ∂xj . From the relation Π(dxi, dxj) =

{xi, xj} we get that Πij is the antisymmetric matrix defined by Πij = {xi, xj}. It is then clear
that the relation Π(da, db) = {a, b} defines Π on every element of Λ1(P ) × Λ1(P ) and not only on
differential of functions.

Remark 18.4. Notice that, in general, given a bi-vector Υ(x) =
∑

i,j Υij∂xi ⊗ ∂xj with (Υij) skew-
symmetrc, it does not satisfy the Jacobi identity and hence it does not induce a structure of Poisson
manifold.

One immediately verifies the validity of following Proposition. Recall that the bi-vector Π is
non-degenerate if for every q ∈ P we have the following: the relation Πq(λ1, λ2) = 0 for every
λ2 ∈ T ∗

q P implies λ1 = 0

Proposition 18.5. Let (P, {·, ·}) be a Poisson manifold and let Π be the corresponding bi-vector.
Assume that Π is non-degenerate. Then the Poisson bracket is non-degenerate in the following
sense

{a, b} = 0 for every b ∈ C∞(N), implies a = const. (18.2)

Notice, however, that (18.2) does not imply the non degeneracy of Π (cf. Remark 18.13).

Symplectic manifolds

Every symplectic manifold (N,σ), and in particular every cotangent bundle T ∗M to a smooth
manifold M , is a Poisson manifold with the usual Poisson bracket

{a, b} = σ(~a,~b). (18.3)

Here ~a is the Hamiltonian vector field corresponding to the function a via σ, i.e., σ(·,~a) = da.

Let (N,σ) be a symplectic manifold. The symplectic form σ, that is a map from Vec(N) ×
Vec(N)→ C∞(N), can be regarded as a map from Vec(N)→ Λ1(N), if we think to the application
X 7→ σ(X, ·).

In a similar way, on a Poisson manifold (P, {·, ·}), the bi-vector Π, that is a map from Λ1(P )×
Λ1(P ) → C∞(P ), can be regarded as a map from Λ1(P ) → Vec(P ), if we think to the application
ω 7→ Π(ω, ·).

It is then a simple exercise to prove the following.

Proposition 18.6. Let (N,σ) be a symplectic manifold and Π the corresponding bi-vector. If we
regard σ as map from Vec(N) to Λ1(N) and Π as map from Λ1(N) to Vec(N) then Π = σ−1, i.e.,
in coordinates (Πij) = (σij)

−1.
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Hence for a symplectic manifold, as a consequence of the fact that σ is non-degenerate, the
bi-vector and the Poisson bracket are non-degenerate as well.

Notice that, although every symplectic manifold is a Poisson manifold, the opposite is not true.
For instance, any manifold endowed with the operation {a, b} = 0 for every a, b ∈ C∞(P ) is a
Poisson manifold, but this bracket does not come from a symplectic structure through (18.3) since
it is degenerate. Indeed the following holds.

Proposition 18.7. Let (P, {·, ·}) be a Poisson manifold and let Π be the corresponding bi-vector.
Then (P, {·, ·}) is symplectic (i.e., there exists a symplectic form σ on P such that {a, b} = σ(~a,~b),
for every a, b ∈ C∞(P )) if and only if Π is non-degenerate.

Proof. The implication “⇒” is obvious. For the opposite implication one defines σ = Π−1 and one
verifies that the closure of σ is guaranteed by the Jacobi identity in Definition 18.1.

Casimir functions

Definition 18.8. Let (P, {·, ·}) be a Poisson manifold. A function C ∈ C∞ such that {C , b} = 0
for every b ∈ C∞ is called a Casimir function.

Remark 18.9. Notice that, if C is a Casimir function, then for every c ∈ R, we have that cC is a
Casimir function as well.

As a consequence of Definition 18.2 we have:

Proposition 18.10. The Poisson vector field corresponding to a Casimir function is indentically
zero.

As a consequence of Proposition 18.7 we have the following.

Proposition 18.11. On a symplectic manifold, the only Casimir functions are constant functions.

Remark 18.12. Notice that on Poisson manifolds there may exist zero Poisson vector fields that
correspond to non-constant functions (that are exactly those corresponding to non-constant Casimr
functions). However this cannot occur if the manifold is symplectic.

Remark 18.13. Notice, however, that there exist Poisson manifolds that are not symplectic for
which the only Casimir functions are the constant functions. Consider for instance the symplectic
manifold (R2, dx ∧ dy) and the corresponding Poisson bi-vector Π = ∂x ∧ ∂y. Let a ∈ C∞(R2) be a
function that is zero in a single point. Then one immedately verfiy that aΠ is a bi-vector that gives
to R2 the structure of Poisson manifold. However in such a Poisson manifolds the only Casimir
functions are the constant functions.

As for symplectic manifolds we have (cf. Corollary 4.57),

Proposition 18.14. For every a, b ∈ C∞(P ) we have [~a,~b] =
−−−→{a, b}.

In other words the Lie bracket of two Poisson vector fields is still a Poisson vector field. As a
consequence

• the set of Poisson vector felds P is a Lie sub-algebra of Vec(P );

• the application C∞(P ) ∋ a 7→ ~a ∈ P is an homomorphism from the Poisson algebra
(C∞(P ), {·, ·}) onto the Lie algebra (P, [·, ·]).
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As for symplectic manifolds, given a, b ∈ C∞(P ) we have

d

dt
b(et~a(q)) = ~a(b)|et~a(q)) = {a, b}(et~a(q)).

Hence the following holds.

Proposition 18.15. Given a, b ∈ C∞(P ), if {a, b} = 0 then b is constant on the integral curves of
~a and a is constant on the integral curves of ~b. In particular a Casimir function is constant on the
integral curves of every Poisson vector field.

Symplectic leaves

Consider the distribution (in general rank-varying) generated by the set P of all Poisson vector
fields

Pq = span{~a(q) | ~a ∈P}. (18.4)

As a consequence of Proposition 18.14, we have that, if ~a1, ~a2 ∈ P, then [ ~a1, ~a2] ∈ P. We can
rephrase this by saying that Pq is a (rank-varying) involutive distribution.

For every q ∈ P consider the orbit associated with P,

O(q) = {q̄ ∈ P | ∃ ℓ ∈ N, t1, . . . , tℓ ∈ R,~a1, . . . ,~aℓ ∈P such that q̄ = etℓ~aℓ ◦ . . . ◦ et1~a1(q)}.

We have the following.

Theorem 18.16. For every q ∈ P , O(q) is an immersed submanifold of P . Moreover for every
q̄ ∈ O(q), we have Tq̄O(q) = Pq̄.

Proof. If the distribution (18.4) is of constant rank then, being involutive, it satisfies the hypotheses
of Frobenius Theorem 2.37 and the conclusion follows.

If the distribution (18.4) is rank-varying, similar arguments apply, but one should use a gener-
alization of Frobenius Theorem for rank-varying involutive distribution. See for instance [AS04, p.
76].

Theorem 18.17. For every q ∈ P we have that O(q) is a symplectic manifold with (non-degenerate)
Poisson bracket given by the restriction on O(q) of the Poisson bracket defined on P .

Proof. Let us set N = O(q). It is enough to prove that for every q̄ ∈ N , the restriction of the
Poisson bi-vector Πq̄ to N is non-degenerate. Consider the following linear map

W : T ∗
q̄N ∋ w 7→ ~a(q̄) ∈ Tq̄N,

where a is any function in C∞(N) such that dq̄a = w. We have that Pq̄ is the image of W . Since
Pq̄ = Tq̄N we have that W is surjective, hence W has no kernel and ~a(q̄) 6= 0 for every w 6= 0.

Assume by contradiction that Πq̄ is degenerate, then there exists w ∈ T ∗
q̄N , w 6= 0, such that

Πq̄(w, w̄) = 0 for every w̄ ∈ T ∗
q̄N . Now if a and b belongs to C∞(N) and are such that w = dq̄a

and w̄ = dq̄b, we have

~a(b)q̄ = {a, b}q̄ = Πq̄(da, db) = Πq̄(w, w̄) = 0.

Being b arbitrary this would implies ~a(q̄) = 0. Contradiction.
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Corollary 18.18. If (P, {·, ·}) is symplectic, then for every q ∈ P we have O(q) = P .

Proof. If (P, {·, ·}) is symplectic, then for every q ∈ P we have Pq = TqP . Hence the distribution
has full rank and, as a consequence of the Raschevskii-Chow theorem, we have that O(q) = P .

Remark 18.19. O(q) could be zero-dimensional (as it happens for instance if the Poisson bracket is
identically zero).

Remark 18.20. Each orbit is called a symplectic leaf. Symplectic leaves can have different dimen-
sions, however since they are symplectic, they are even-dimensional. Casimir functions are constant
on symplectic leaves.

18.2 Integrability of Hamiltonian systems on Lie groups

In the rest of this chapter we work on a Lie group G and we denote by g the Lie algebra of its
left-invariant vector fields. We follow the notation of Chapter 7. We identify T

1

G with g and we
denote g∗ the dual of g.

18.2.1 The Poisson manifold g∗

Recall that g has a structure of Lie algebra, that is not possible to transfer canonically on g∗ without
an additional structure. The space g∗ is the most important example of Poisson manifold. Indeed
one immediately verify the validity of the following proposition.

Proposition 18.21. For every a, b ∈ C∞(g∗), define the bracket {a, b}g∗(ξ) = 〈ξ, [da, db]〉, ξ ∈ g∗.
Then (g∗, {·, ·}g∗) is a Poisson manifold.

Here da, db ∈ g∗∗ and hence can be identified with elements of g. The bracket {·, ·}g∗(ξ) is called
the Lie-Poisson bracket.

Proposition 18.22. Let H1 and H2 be two left-invariant Hamiltonian on T ∗G, i.e. H1(p, g) =
H1(L

∗
gp) and H2(p, g) = H2(L

∗
gp), where H1,H1 are two functions g∗ → R. Then {H1,H2} is

left-invariant and

{H1,H2}|(p,g) = {H1,H2}g∗ |(L∗
gp)
. (18.5)

Proof. Let h1, . . . , hn be the vertical coordinates induced by a basis e∗1, . . . , e
∗
n of g∗. In matrix

notation hi(p, g) = 〈p, g ei〉. Then

{H1,H2} =
n∑

i,j=1

∂H1

∂hi

∂H2

∂hj
{hi, hj} =

n∑

i,j=1

∂H1

∂hi

∂H2

∂hj
〈p, [g ei, g ej ]〉

=

n∑

i,j=1

∂H1

∂hi

∂H2

∂hj
〈p, [g ei, g ej]〉. (18.6)

In the last formula we have used the fact that in vertical coordinatesH(g, h1, . . . , hn) = H(h1, . . . , hn).
Now the dependence on g is either through hi that are left-invariant or through 〈p, [g ei, g ej ]〉 that
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is left-invariant as well since [g ei, g ej ] = g[ei, ej ]. Hence {H1,H2} is left-invariant. To prove For-
mula (18.5) it is then sufficient to prove it for g = 1. At the identity (p, g) = (ξ,1), formula (18.6)
becomes

{H1,H2}(ξ,1) =
n∑

i,j=1

∂H1

∂hi

∂H2

∂hj
〈ξ, [ei, ej ]〉.

Now let us compute

{H1,H2}g∗(ξ) = 〈ξ, [dH1, dH2]〉 = 〈ξ,




n∑

i=1

∂H1

∂hi
ei,

n∑

j=1

∂H2

∂hj
ej


〉 =

n∑

i,j=1

∂H1

∂hi

∂H2

∂hj
〈ξ, [ei, ej ]〉.

The conclusion follows.

Definition 18.23. The symplectic leaves of the Poisson manifolds (g∗, {·, ·}g∗ ) are called coadjoint
orbits.

Exercise 18.24. Prove that the coadjoint orbit of G through a point ξ ∈ g∗ coincides with the set

Oc(ξ) = {Ad ∗
g−1ξ, g ∈ G}.

Proposition 18.25. Let H ∈ C∞(g∗) and let ~H be the corresponding Poisson vector field. Then
~H(ξ) = (ad dH)∗ξ.
Proof. Let a ∈ C∞(g∗). By definition we have

< da, ~H(ξ) > = ~H(a)|ξ = {H, a}g∗(ξ) = 〈ξ, [dH, da]〉 = 〈ξ, (ad dH)da〉 = 〈(ad dH)∗ξ, da〉
=< da, (ad dH)∗ξ > . (18.7)

In this formula the symbol 〈·, ·〉 is the duality product defined on g∗ × g, while the symbol < ·, · >
is the duality product defined on g∗∗ × g∗.

18.2.2 The Casimir first integral

Let us come back on the trivialized Hamiltonian equations associated with a left-invariant Hamil-
tonian H(p, g) = H(L∗

gp) (cf. Proposition 7.65).

{
ġ = Lg∗dH
ξ̇ = (ad dH)∗ξ. (18.8)

Here g ∈ G, dH is seen as an element of g, ξ is the trivialized covector belonging to g∗ and (ad dH)∗
is an operator from g∗ to itself.

Notice the second equation is decoupled from the first one since H is a function of ξ only
(although non-linear in general). In other words, writing explicitly the dependence on time we
have

{
ġ(t) = Lg∗dH(ξ(t))
ξ̇(t) =

(
ad dH(ξ(t))

)∗
ξ(t).

(18.9)

Thanks to Proposition 18.25 the vector field
(
ad dH(ξ(t))

)∗
ξ on g∗ is the Poisson vector field

~H corresponding to the function H. Hence we have
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Lemma 18.26. Let (ξ(t), g(t)) be a solution to (18.8) corresponding to an initial condition (ξ(0), g(0)).
Then, for every t, ξ(t) belong to the coadjoint orbit O(ξ(0)).

Proposition 18.27. Let H be a left-invariant Hamiltonian on a Lie group and C : g∗ → R be a
Casimir function. Define

IC (p, g) = C (L∗
gp).

Then

{H, IC } = 0.

In particular, IC is a constant along the integral curves of ~H.

Proof. We have {H, IC }|(p(t),g(t)) = {H,C }g∗ |(L∗
g(t)

p(t)) = 0.

When C is a non-constant Casimir function, the corresponding function IC is called the Casimir
first integral and it is constant along the integral curve of any left-invariant Hamiltonian.

Remark 18.28. The fact that when C is non constant, IC is a first integral can also be seen in the
following way. The trivialized Hamiltonian system corresponding to a left-invariant Hamiltonian
H is (18.9) with H defined by H(p, g) = H(L∗

gp) and ξ = L∗
gp ∈ g∗. Since ξ(t) has support in

a coadjoint orbit we have that C (ξ(t)) is constant. As a consequence IC (p(t), g(t)) = C (ξ(t)) is
constant as well.

Notice that in vertical coordinates h1, . . . , hn we have that

IC (h1, . . . hn) = C (h1, . . . hn).

18.2.3 First integrals associated with a right-invariant vector field

Lemma 18.29. Let X be a left-invariant vector field and Y be a right-invariant one on a Lie group
G. Then [X,Y ] = 0.

Proof. Recall that the flow induced by a left-invariant vector field is a right-translation, the flow
induced by a right-invariant vector field is a left-translation and that the two flows commute (cf.
Section 7.2.1). As a consequence the Lie brackets of the corresponding vector fields is identically
zero.

As a consequence we have

Corollary 18.30. Let H be a left-invariant Hamiltonian and Y be a right-invariant vector field.
Let HY = 〈p, Y (g)〉 be the corresponding right-invariant Hamiltonian linear on fibers. Then

{H,HY } = 0.

Proof. In vertical coordinates hi(p, g) = 〈p,Xi(g)〉, i = 1, . . . , n, we have

{H,HY } =
n∑

i=1

∂H

∂hi
{hi,HY } =

n∑

i=1

∂H

∂hi
〈p, [Xi, Y ](g)〉 = 0

since Xi is left-invariant and Y is right-invariant.
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Remark 18.31. Notice that, given an Hamiltonian system on Lie group of dimension n, there are n
independent right-invariant vector fields Y1, . . . , Yn. Hence HY1 = 〈p, Y1(g)〉, . . . ,HYn = 〈p, Yn(g)〉
are n first integrals in involution with the Hamiltonian. However we have that {HYi ,HYj} = 0, for
some i, j if and only if [Yi, Yj ] = 0. Hence the method of constructing first integrals in involutions
via right-invariant vector fields provides more than one constant of the motion only if there is a
commutative subalgebra in g, of dimension larger than one.

18.2.4 Complete integrability on Lie groups

Recall that an Hamiltonian system is completely integrable if one can find n functions on T ∗G
(n = dim(G)), including the Hamiltonian, that are independent and in involution (cf. Section 5.4).

Given a Hamiltonian system on a Lie group associated with a left-invariant Hamiltonian H,
above we have described a method to find two additional first integrals:

• IC (p, g) = C (L∗
gp), where C is a non-constant Casimir function on g∗;

• HY (p, g) = 〈p, Y (g)〉 where Y (g) is any right-invariant vector field.

We have already seen thatH,HY , IC are automatically in involution because IC is in involution with
any left-invariant function (and in particular with H) and HY (being right-invariant) is involution
with any left-invariant function (and in particular with H and IC ). However, as we are going to
see in the next section, there is no guarantee a priory that a non-constant Casimir function exists
and that H,HY , IC are independent. One should study case by case.

Remark 18.32. Notice that in general there may exist several independent Casimir functions. More-
over, as already remarked, if g contains a commutative sub-algebra of dimension larger than one,
there are more than one independent first integrals constructed with the corresponding right-
invariant vector fields.

Notice that the exponential of an element belonging to the center of a Lie algebra g, is an
element of the center of the group. As a consequence we have the following.

Proposition 18.33. Let W 6= 0 be an element of the center of g and X be the corresponding left-
invariant vector field. Then X is also right-invariant. Moreover C (ξ) := 〈ξ,W 〉 is a (non-constant)
Casimir function.

An analogue statement holds for right-invariant vector fields. In other words, if W 6= 0 is in the
center of g, and (in matrix notation) X(g) = gW and Y (g) =Wg. Then X = Y .

In the next section we are going to study the case of 3-dimensional Lie groups.

18.3 Left-invariant Hamiltonian systems on 3D Lie groups

On a 3D Lie group G, we have that g∗ has dimension 3. Being g∗ odd dimensional, it cannot
be symplectic. One could be tempted to say that in this case a non-constant Casimir function C

(whose level sets are the symplectic leaves) always exists. Since one can always find a first integral
HY built with a right-invariant vector field Y , one could be tempted to say that any Hamiltonian
system corresponding to a left-invariant Hamiltonian H, under the hypotheses that H, IC (p, g) and
HY are independent, is completely integrable.
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However, the situation is not so simple, since the existence of symplectic leaves does not guar-
antee the existence of a non-constant Casimir function C .

Let us now study the existence of a non-constant Casimir function on a 3D Lie group. To
this purpose it will be useful the classification studied in Section 17.5. Hence let us fix a rank-2
left-invariant sub-Riemannian structure for which an orthonormal frame is given by X1,X2 and X0

is the corresponding Reeb field.
With such a structure one can associate the two invariants χ ≥ 0 and κ ∈ R (cf. Section 17.2).

We will find Casimir functions that can be expressed in terms of these invariants (as consequence
of the chosen frame), however they depend only on the Lie group structure.

It is then useful to recall that, besides the case κ = χ = 0 (Heisenberg case), we can always
normalize (up to a dilation of the structure) κ2 +χ2 = 1. Moreover if we are interested only to the
Lie group structure, in certain cases we can fix completely χ and κ (cf. Section 17.5.1). This will
be done in Section 18.3.2.

In the following we use the coordinates on g∗

hi = 〈ξ,Xi〉, Xi ∈ g, ξ ∈ g∗, i = 0, 1, 2,

and we refer to Sections 17.3, 17.4, and 17.5 for more details on the notation. Up to a rotation
of X1 and X2, the following cases are possible for the structure of 3D-Lie algebras (we omit the
abelian case for which the theory is obvious).

Unimodular case with χ 6= 0

Thanks to Exercice 17.16 we have the relations

[X1,X0] = (χ+ κ)X2, (18.10)

[X2,X0] = (χ− κ)X1, (18.11)

[X2,X1] = X0. (18.12)

In this case we have the following.

Proposition 18.34. In the unimodular case with χ 6= 0, the function

C (h0, h1, h2) = (κ− χ)h21 + (κ+ χ)h22 + h20,

is a non-constant Casimir function.

Proof. It is enough to verify that {C , hi}g∗ = 0, i = 0, 1, 2. Let us start with i = 1.

{C , h1} =
2∑

i=0

∂C

∂hi
{hi, h1}g∗ = (κ− χ)2h1{h1, h1}g∗ + (κ+ χ)2h2{h2, h1}g∗ + 2h0{h0, h1}g∗

= (κ+ χ)2h2h0 + 2h0(−χ− κ)h2 = 0. (18.13)

The other two relations are similar.

Remark 18.35. Notice the presence of the invariants χ and κ in C is due to the precise choice of
the frame X1,X2,X0. Indeed Casimir functions depends only on the group structure.

Remark 18.36. Notice that for κ 6= ±χ, the corresponding algebra is simple (su(2) for κ > χ and
sl(2) for κ < χ) and C is a weighted sum of h21, h

2
2 and h20. For κ = χ (resp. κ = −χ) the

corresponding algebra is se(2) (resp. sh(2)) and C is a weighted sum of h22 and h20 (resp. h21 and h20)
only.
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Unimodular case with χ = 0

[X1,X0] = κX2, (18.14)

[X2,X0] = −κX1, (18.15)

[X2,X1] = X0. (18.16)

The same computation as (18.13) provides the following.

Proposition 18.37. In the unimodular case with χ = 0, the function

C (h0, h1, h2) = κ(h21 + h22) + h20,

is a non-constant Casimir function.

Notice that if κ = 0 we obtain the Heisenberg algebra and C = h20 implying that h0 is a Casimir
function as well. The same result can be obtained with Proposition 18.33, since X0 belongs to
the center of the algebra. If κ 6= 0 and we normalize κ = ±1, we obtain su(2) and sl(2) in their
standard representations. It is then clear that C is proportional to the Killing form.

Non-unimodular, χ 6= 0, case 1 (solv+)

Let us consider the commutation relations (with respect to the notation of Section 17.5.3, we have
set α = c201 and β = c212)

[X1,X0] = αX2, (18.17)

[X2,X0] = 0, (18.18)

[X2,X1] = βX2 +X0. (18.19)

In this case α > 0, β 6= 0 and χ = α
2 > 0, κ = −β2 + α

2 , χ− κ > 0.
A Casimir function C should verify {C , hi}g∗ = 0, for i = 0, 1, 2. Hence we have

{C , h0} =
2∑

i=0

∂C

∂hi
{hi, h0}g∗ =

∂C

∂h1
(αh2) = 0, (18.20)

{C , h1} =
2∑

i=0

∂C

∂hi
{hi, h1}g∗ =

∂C

∂h0
(−αh2) +

∂C

∂h2
(βh2 + h0) = 0, (18.21)

{C , h2} =
2∑

i=0

∂C

∂hi
{hi, h2}g∗ =

∂C

∂h1
(−βh2 − h0) = 0. (18.22)

Equation (18.20) and (18.22) say that C is independent from h1. As a consequence equation (18.21)
gives (

∂C

∂h0
,
∂C

∂h2

)
(−αh2, βh2 + h0) = 0. (18.23)

Now, in the plane (h0, h2), define the linear vector field

V +(h0, h2) := (−αh2, βh2 + h0) =

(
0 −α
1 β

)(
h0
h2

)
. (18.24)
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Then equation (18.23) says that the gradient of C (with respect to (h0, h2)) is orthogonal to V +.
This implies that C is constant along the integral curves of V + (notice that V + is zero only at the
origin). The eigenvalues of the matrix appearing in the definition of V + are

1

2
(β ±

√
β2 − 4α).

Now we have two cases.

A. If β2 − 4α ≥ 0 (which corresponds to the case κ + 7χ ≤ 0) we have that the eigenvalues are
either both positive or both negative, meaning that all integral curves of V + have the origin in
their closure.

B. If β2 − 4α < 0 (which corresponds to the case κ + 7χ > 0) we have that the eigenvalues are
complex conjugate, meaning again that all integral curves of V + have the origin in their closure.

Since C is continuous, it is constant on the integral curves of V + and all such curves have the
origin in their closure, it follows that C is a constant Casimir function. Hence we have

Proposition 18.38. In the solv+ case all Casimir functions are constant.

Non-unimodular, χ 6= 0, case 2 (solv−)

Let us consider the commutation relations (with respect to the notation of Section 17.5.3, we have
set α = c102 and β = c112)

[X1,X0] = 0, (18.25)

[X2,X0] = αX1, (18.26)

[X2,X1] = βX1 +X0. (18.27)

In this case α > 0, β 6= 0 and χ = α
2 > 0, κ = −β2 − α

2 , χ+ κ < 0. A similar computation as the
one above permits to conclude that in this case C is independent from h2. Moreover the gradient
of C (in the plane (h0, h1)) is orthogonal to the vector

V −(h0, h1) :=
(

0 −α
−1 −β

)(
h0
h1

)
. (18.28)

As before, this implies that C is constant along the integral curves of V −. The eigenvalues of the
matrix appearing in the definition of V − are

λ± =
1

2
(−β ±

√
β2 + 4α).

In this case, the origin is a saddle point for V −. Then we have the following

Proposition 18.39. In the solv− case define r = −λ+/λ− =
−β+
√
β2+4α

β+
√
β2+4α

. If r is rational then a

non-constant Casimir function exists in the analytic category. If r is irrational then a non-constant
Casimir function exists in the C∞ category (and not in the analytic one).

Remark 18.40. Notice that the existence or not of a non-constant Casimir function in the analytic
category depends on the invariants χ and κ. However this is a property that depends only on the
Lie group structure since in the solv− case different Lie algebras correspond to different values of
χ and κ and viceversa.
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Non-unimodular, χ = 0, case (a+(R)⊕ R)

[X1,X0] = 0, (18.29)

[X2,X0] = 0, (18.30)

[X2,X1] = X2 +X0. (18.31)

In this case χ = 0 and κ = −1. Since X0 belongs to the center of the algebra, from Proposition
18.33 follows

Proposition 18.41. In the a+(R)⊕ R, the function

C (h0, h1, h2) = h0

is a non-constant Casimir function.

Collecting all the results of this section, we have the following.

Proposition 18.42. A 3D Lie group admits a non-constant Casimir function if and only if it is
not in the SOLV + case.

18.3.1 Rank 2 sub-Riemannian structures on 3D Lie groups

Let us now study the case of rank-2 left-invariant sub-Riemannian structure on 3D-Lie groups. In
this case the Hamiltonian for normal extremals has the form

H =
1

2
(〈p,X1〉2 + (〈p,X2〉2),

for some non-commuting left-invariant vector fields X1 and X2.
We can now study, case by case, the independence of the various first integrals. In the following

we call Y0, Y1, Y2 the right-invariant vector fields corresponding to the left-invariant vector fields
X0,X1,X2 (i.e., in matrix notation if Xi = gWi, i = 0, 1, 2 then Yi = Wig, i = 0, 1, 2). Recall that
in vertical coordinates IC (h1, h2, h3) = C (h1, h2, h3).

• Unimodular case with χ 6= 0. In this case we have the first integrals H, IC , HY where Y is
any right-invariant vector field. Let us use (h0, h1, h2) as coordinates. H is independent from
IC since IC depends on h0 while H does not. HY is independent from H and IC since it
depends only on 〈p, Y (g)〉 while H and IC are quadratic in at least two of the hi (i = 0, 1, 2).
The system is completely integrable.

• Unimodular case with χ = 0. If κ 6= 0 then the situation is the same as the previous one. If
κ = 0 (Heisenberg case) then IC = h20. Moreover since in this case X0 and (for instance) X1

form a commutative sub-algebra, the linear Hamiltonians built with the corresponding right-
invarant vector fields Y0 and Y1 are two first integrals. We found 4 first integral in involution:
H, IC , HY0 and HY1 . We have that HY0 and IC are dependent since HY0 = HX0 = h0
(X0 belongs to the center of the group, cf. Proposition 18.33) and IC = h20. However HY1 is
independent fromHY0 since it corresponds to another independent right-invariant vector field.
Finally H is independent from HY0 (resp. HY1) since it is quadratic in h1 and h2 while HY0

(resp. HY1) depends only on 〈p, Y0(g)〉 (resp. 〈p, Y1(g)〉). The system is completely integrable.
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• Non-unimodular case with χ 6= 0 (solv+). In this case there are no non-constant Casimir
functions. However since there is a commutative subalgebra (generated by X0 and X2)
we have the first integrals HY0 and HY2 . They are independent since they correspond to
independent vector fields. As before, H is independent from them since it is quadratic in h1
and h2. The system is completely integrable.

• Non-unimodular case with χ 6= 0 (solv−). In this case a non-constant Casimir function exists
(in the analytic or C∞ category depending on the value of the parameters). However we
obtain complete integrability even without using this first integral. As in the previous case,
we have a commutative subalgebra (generated by X0 and X1) and hence we have the first
integrals HY0 and HY1 . They are independent since they correspond to independent vector
fields. As before, H is independent from them since it is quadratic in h1 and h2. The system
is completely integrable.

• a+(R)⊕R. Since X0 belongs to the center of the algebra, IC = h0 is a non-constant Casimir
function. Moreover, since X0 and (for instance) X1 form a commutative sub-algebra, another
independent first integral is HY1 . Finally the 3 first integrals that are independent and in
involution are H, HY0 and HY1 . The system is completely integrable.

We have then proved the following

Theorem 18.43. The Hamiltonian system associated with a rank-2 left-invariant sub-Riemannian
structure on a 3D Lie group is completely integrable.

Notice that out of the rank-2 sub-Riemannian case, the first integrals could be different with
respect to those identified in this section. Consider for instance the Hamiltonian system that one
obtains looking for Riemannian geodesics on SU(2) with the metric given by the opposite of the
Killing form. In that case IC and H are proportional. However, besides H, one can take as
independent first integrals HY and HX where X is a left-invariant vector field and Y is a right-
invariant vector field (not corresponding to X). This is possible since in this case H is bi-invariant.

Exercise 18.44. Prove that the Hamiltonian system associated with a left-invariant Riemannian
structure on a 3D Lie group is completely integrable.

Exercise 18.45. Find the explicit expression of the geodesics on SU(2) for the Riemannan metric
given by the opposite of the Killing form (cf. Secton 7.7.1).

Exercise 18.46. Consider the matrix realization of SE(2) that we used in Section 13.81

SE(2) =








cos(θ) − sin(θ) x1
sin(θ) cos(θ) x2

0 0 1


 , θ ∈ S1, x1, x2 ∈ R



 ,

se(2) = span {X1,X2,X0} ,

where

X1 =




0 −1 0
1 0 0

0 0 0


 , X2 =




0 0 1
0 0 0

0 0 0


 , X0 =




0 0 0
0 0 −1
0 0 0


 .

1with respect to Section 13.8 here we have the change of notation er → X1, e1 → X2, e2 → −X0.
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Let p = (p1, p2, pθ) be the dual variable to (x1, x2, θ). Let g ∈ SE(2). Call X̄1, X̄2, X̄0 the
vector realizations of gX1, gX2, gX0 (cf. Section 13.8) and Ȳ1, Ȳ2, Ȳ0 the vector realizations
of X1g,X2g,X0g. Prove that in these coordinates IC = p21 + p22 is a Casimir function and that
HY2 := 〈p, Ȳ2〉 = p1 and HY0 := 〈p, Ȳ0〉 = −p2. Notice that we found 4 first integrals in involution:
H = 1

2(〈p, X̄1〉2 + 〈p, X̄2〉2), IC , HY2 , HY0 (the presence of HY2 , HY0 is due to the presence of a
commutative sub-algebra). However IC depends on HY2 and HY0 .

18.3.2 Classification of symplectic leaves on 3D Lie groups

In the previous section we have studied Casimir functions on 3D Lie groups. We know that
symplectic leaves are contained in the level set of Casimir functions. However they can be smaller.
In this section we complete the analysis by computing explicitly all symplectic leaves.

To this purpose we are going to construct explicitly the set P of all Poisson vector fields. For
the moment consider a general Lie group G of dimension n with Lie algebra g. Let {X0, . . . ,Xn−1}
be a basis of g. On g∗ let us use coordinates hi = 〈ξ,Xi〉, i = 0, . . . , n − 1. In these coordinates
dhi = Xi. We have

P = {~a ∈ Vec(g∗) | ~a(·) = 〈ξ, [da, d(·)]〉 for some function a ∈ C∞(g∗)}.

In the formula above da belongs to g∗∗ and hence it is identified with an elements of g.

Let now a, b ∈ C∞(g∗) and let us compute ~a(b). Since da =
∑n−1

i=0 (∂hia)Xi, db =
∑n−1

i=0 (∂hib)Xi,
we have that

~a(b) = 〈ξ, [da, db]〉 =
n−1∑

i,j=0

(∂hia) (∂hjb) 〈ξ, [Xi,Xj ]〉. (18.32)

Notice that if we set [Xi,Xj ] =
∑

k c
k
jiXk then ~a(b) =

∑n−1
i,j,k=0(∂hia) (∂hj b) c

k
ji hk and

P =





n−1∑

i,j,k=0

(∂hia) c
k
ji hk ∂hj | a ∈ C∞(g∗)



 .

Notice that all vector fields of P are zero at the origin of g∗. Hence we have

Proposition 18.47. For any Lie group G with Lie algebra g, the origin in g∗ is a symplectic leaf.

Let us now come back to the 3D case. From (18.32) we have

~a(b) = 〈ξ, [da, db]〉 =
(
∂h1a〈ξ, [X1,X0]〉+ ∂h2a〈ξ, [X2,X0]〉

)
∂h0b+

+
(
∂h0a〈ξ, [X0,X1]〉+ ∂h2a〈ξ, [X2,X1]〉

)
∂h1b+

+
(
∂h0a〈ξ, [X0,X2]〉+ ∂h1a〈ξ, [X1,X2]〉

)
∂h2b. (18.33)

Let us now study the different cases. Since here we are interested to the symplectic leaves, that
depend only on the group structure, we normalize as much as possible the invariant χ and κ.
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Symplectic leaves on su(2)

On su(2) a non-constant Casimir function is given by (see Proposition 18.37, normalizing κ = 1)

C = h21 + h22 + h20.

The commutation relations are (see (18.14),(18.15),(18.16) with κ = 1)

[X1,X0] = X2, [X2,X0] = −X1, [X2,X1] = X0.

Hence from (18.33) we have

~a =
(
∂h1ah2 − ∂h2ah1

)
∂h0 +

(
− ∂h0ah2 + ∂h2ah0

)
∂h1 +

(
∂h0ah1 − ∂h1ah0

)
∂h2 , (18.34)

and
P = {~a of the form (18.34) | a ∈ C∞(g∗)}

Taking a = h0, then a = h1, and finally a = h2 we obtain that P contains the 3 vector fields

F0 = −h2∂h1 + h1∂h2 ,

F1 = h2∂h0 − h0∂h2 ,
F2 = −h1∂h0 + h0∂h1 .

We already know that these vector fields are tangent to the level sets of C = h21 + h22 + h20. One
immediately verify that they generate the tangent space of each level set. Hence we obtain the
following.

Proposition 18.48. On su(2) the symplectic leaves are the level sets of the function h21 + h22 + h20.

Notice that the symplectic leaf corresponding to the zero level is zero-dimensional while all
other symplectic leaves are 2-dimensional. The symplectic leaves for su(2) are plotted in Figure
18.1.

Symplectic leaves on sl(2)

On sl(2) a non-constant Casimir function is given by (see Proposition 18.37, normalizing κ = −1)

C = −h21 − h22 + h20.

The commutation relations are (see (18.14),(18.15),(18.16) with κ = −1)

[X1,X0] = −X2, [X2,X0] = X1, [X2,X1] = X0.

Hence from (18.33) we have

~a =
(
− ∂h1ah2 + ∂h2ah1

)
∂h0 +

(
∂h0ah2 + ∂h2ah0

)
∂h1 +

(
− ∂h0ah1 − ∂h1ah0

)
∂h2 . (18.35)

Taking a = h0, then a = h1, and finally a = h2 we obtain that P contains the 3 vector fields

F0 = h2∂h1 − h1∂h2 ,
F1 = −h2∂h0 − h0∂h2 ,
F2 = h1∂h0 + h0∂h1 .
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As in the previous case, we already know that these vector fields are tangent to the level sets of
C = −h21 − h22 + h20. One immediately verify that they generate the tangent space of on each level
different from zero. The zero level is a double cone C, whose vertex is the origin. We already know
that the origin is a symplectic leaf (since all vector fields of P are zero there). One immediately
verify that the three vector fields generate the tangent space of the two connected components of
C \ {0}. Hence we obtain the following.

Proposition 18.49. On sl(2) the symplectic leaves are

Sc = {(h0, h1, h2) | −h21 − h22 + h20 = c}, c 6= 0,

S+
0 = {(h0, h1, h2) | −h21 − h22 + h20 = 0, h0 > 0},
S−
0 = {(h0, h1, h2) | −h21 − h22 + h20 = 0, h0 < 0},
S0
0 = {0}.

Notice that the symplectic leaf S0
0 is zero-dimensional while the others are 2-dimensional. The

symplectic leaves for sl(2) are shown in Figure 18.1.

Symplectic leaves on the Heisenberg algebra

On the Heisenberg algebra, a non-constant Casimir function is given by (see Proposition 18.37,
with κ = 0 and extracting the square root)

C = h0.

The commutation relations are (see (18.14),(18.15),(18.16) with κ = 0)

[X1,X0] = 0, [X2,X0] = 0, [X2,X1] = X0.

Hence from (18.33) we have

~a = ∂h2ah0 ∂h1 − ∂h1ah0 ∂h2 . (18.36)

Taking a = h1 and then a = h2 we obtain that P contains the 2 vector fields

F1 = −h0∂h2 ,
F2 = h0∂h1 .

We already know that these vector fields are tangent to the level sets of C = h0. These vector fields
generate the tangent space of each level different from zero. On the zero level, all vector fields of
the form (18.36) are zero. Hence we obtain the following.

Proposition 18.50. On the Heisenberg algebra, the symplectic leaves are

Sc = {(h0, h1, h2) | h0 = c}, c 6= 0,

Sc1,c2 = {(h0, h1, h2) | h1 = c1, h2 = c2, h0 = 0}, c1, c2 ∈ R.

Notice that the symplectic leaves Sc1,c2 are zero-dimensional while the symplectic leaves Sc are
two-dimensional.

The symplectic leaves for the Heisenberg algebra are plotted in Figure 18.1.
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Symplectic leaves on se(2)

On se(2) a non-constant Casimir function is given by (see Proposition 18.34, with χ = κ and
normalizing κ = 1/2)

C = h22 + h20.

The commutation relations are (see (18.10),(18.11),(18.12) with κ = χ = 1/2)

[X1,X0] = X2, [X2,X0] = 0, [X2,X1] = X0.

Hence from (18.33) we have

~a =
(
∂h1ah2

)
∂h0 +

(
− ∂h0ah2 + ∂h2ah0

)
∂h1 +

(
− ∂h1ah0

)
∂h2 . (18.37)

Taking a = h0, then a = h1, and finally a = h2 we obtain that P contains the 3 vector fields

F0 = −h2∂h1
F1 = h2∂h0 − h0∂h2 ,
F2 = h0∂h1 .

We already know that these vector fields are tangent to the level sets of C = h22 + h20. One
immediately verify that they generate the tangent space each level set different from zero. The
zero level is the h1 axis and since (18.37) is zero on this axis, all its points are zero-dimensional
symplectic leaves. Hence we obtain the following.

Proposition 18.51. On se(2) the symplectic leaves are

Sc = {(h0, h1, h2) | h22 + h20 = c}, c > 0,

Sc0 = {(h0, h1, h2) | h1 = c0, h2 = h0 = 0}, c0 ∈ R.

Notice that the symplectic leaves Sc0 , are zero-dimensional while the the symplectic leaves Sc
are two-dimensional. The symplectic leaves for se(2) are plotted in Figure 18.1.

Symplectic leaves on sh(2)

On sh(2) a non-constant Casimir function is given by (see Proposition 18.34, with κ = −χ and
normalizing κ = −1/2)

C = −h21 + h20.

The commutation relations are (see (18.10),(18.11),(18.12) with κ = −1/2, χ = 1/2)

[X1,X0] = 0, [X2,X0] = X1, [X2,X1] = X0.

Hence from (18.33) we have

~a =
(
∂h2ah1

)
∂h0 +

(
∂h2ah0

)
∂h1 +

(
− ∂h0ah1 − ∂h1ah0

)
∂h2 . (18.38)

Taking a = h0, then a = h1, and finally a = h2 we obtain that P contains the 3 vector fields

F0 = −h1∂h2 ,
F1 = −h0∂h2 ,
F2 = h1∂h0 + h0∂h1 .
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We already know that these vector fields are tangent to the level sets of C = −h21 + h20. One
immediately verify that they generate the tangent space to each level set different from zero. The
zero level is the h2 axis and since (18.38) is zero on this axis, all its points are zero-dimensional
symplectic leaves. Hence we obtain the following.

Proposition 18.52. On sh(2) the symplectic leaves are

Sc = {(h0, h1, h2) | −h21 + h20 = c}, c > 0,

Sc0 = {(h0, h1, h2) | h2 = c0, h1 = h0 = 0}, c0 ∈ R.

The symplectic leaves Sc0 , are zero-dimensional while the the symplectic leaves Sc are two-
dimensional. See Figure 18.1.

Symplectic leaves on a+(R)⊕ R

On a+(R)⊕ R a non-constant Casimir function is given by (see Proposition 18.41)

C = h0.

The commutation relations are

[X1,X0] = 0, [X2,X0] = 0, [X2,X1] = X2 +X0.

Hence from (18.33) we have

~a = ∂h2a (h2 + h0)∂h1 − ∂h1a (h2 + h0)∂h2 . (18.39)

Taking a = h1, then a = h2, we obtain that P contains the 2 vector fields

F1 = (h2 + h0)∂h1 ,

F2 = −(h2 + h0)∂h2 .

These vector fields are tangent to the level sets of C = h0. All points of the plane {h2 + h0 = 0}
are zero-dimensional symplectic leaves. This plane cuts in two connected components every level
set of C . On each of these components, F1 and F2 generate the tangent space. Hence we have

Proposition 18.53. On a+(R)⊕ R the symplectic leaves are

S+
c = {(h0, h1, h2) | h0 = c, h2 + h0 > 0}, c ∈ R,

S−
c = {(h0, h1, h2) | h0 = c, h2 + h0 < 0}, c ∈ R,

Sc1,c2 = {(h0, h1, h2) | h1 = c1, h2 = c2, h2 + h0 = 0}, c1, c2 ∈ R.

(18.40)

Notice that the symplectic leaves Sc1,c2, are zero-dimensional while the others are 2-dimensional.
Figure 18.2.
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Symplectic leaves on solv+

On solv+ a non-constant Casimir function does not exist (see Propositions 18.38 and 18.39). The
commutation relations are

[X1,X0] = αX2, [X2,X0] = 0, [X2,X1] = βX2 +X0.

with α > 0, β 6= 0. From (18.33) we have

~a =
(
∂h1aαh2

)
∂h0 +

(
− ∂h0aαh2 + ∂h2a (βh2 + h0)

)
∂h1 +

(
− ∂h1a (βh2 + h0)

)
∂h2 , (18.41)

and taking a = h0, then a = −h1, and finally a = h2 we obtain that P contains the 3 vector fields

F0 = −αh2∂h1 ,
F1 = αh2∂h0 − (βh2 + h0)∂h2 ,

F2 = (βh2 + h0)∂h1 .

The integral curves of the linear vector F1 in the plane (h0, h2) has been already studied above,
since F1 = V + (cf. (18.24)). There are two cases: case A (i.e., β2 − 4α ≥ 0) for which the phase
portrait of V + has a node and case B (i.e., β2 − 4α < 0) for which the phase portrait of V + has a
focus. In both cases all integral curves have the origin in their closure. In the plane (h0, h2) let us
call {Γ+

θ }θ∈S1 the set of all integral curves of V + . For instance we can take

Γ+
θ = {etV +

(cos(θ), sin θ), t ∈ R}.

The other two vector fields are directed along ∂h1 and they are never both zero excepted on the
h1 axis. On the h1 axis all vector fields of the type (18.41) are vanishing. Hence one obtain the
following

Proposition 18.54. On solv+ the symplectic leaves are

Sc0 = {(h0, h1, h2) | h0 = 0, h2 = 0, h1 = c0}, c0 ∈ R,

Sθ = {(h0, h1, h2) | (h0, h2) ∈ Γ+
θ }, θ ∈ S1.

Notice that the symplectic leaves corresponding to Sc0 are zero-dimensional while all others are
2-dimensional. The symplectic leaves for solv+ are plotted in 18.2.

Symplectic leaves on solv−

On solv− the commutation relations are

[X1,X0] = 0, [X2,X0] = αX1, [X2,X1] = βX1 +X0.

with α > 0, β 6= 0. From (18.33) we have

~a =
(
∂h2aαh1

)
∂h0 +

(
∂h2a (βh1 + h0)

)
∂h1 +

(
− ∂h0aαh1 − ∂h1a (βh1 + h0)

)
∂h2 , (18.42)

and taking a = h0, then a = h1, and finally a = −h2 we obtain that P contains the 3 vector fields

F0 = −αh1∂h2 ,
F1 = −(βh1 + h0)∂h2 ,

F2 = −αh1∂h0 − (βh1 + h0)∂h1 .
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The integral curves of the linear vector F2 in the plane (h0, h1) has been already studied above,
since F2 = V − (cf. (18.28)). The linear vector field V − has a saddle at the origin.

In the plane (h0, h1) let us call {Γ−
θ }θ∈Π the set of all integral curves of V − (here each curve

is seen as a subset of R2). The other two vector fields are directed along ∂h2 and they are never
both zero excepted on the h2 axis. On the h2 axis all vector fields of the type (18.42) are vanishing.
Hence one obtain the following.

Proposition 18.55. On solv− the symplectic leaves are

Sc0 = {(h0, h1, h2) | h0 = 0, h1 = 0, h2 = c0}, c0 ∈ R,

Sθ = {(h0, h1, h2) | (h0, h1) ∈ Γ−
θ }, θ ∈ Π.

Notice that the symplectic leaves corresponding to Sc0 are zero-dimensional while all others are
2-dimensional. The symplectic leaves for solv− are plotted in Figure 18.2.

18.4 Bibliographical note

The integrability of the Hamiltonian systems associated with rank-2 sub-Riemannian structures on
3D Lie groups is “mathematical folklore”. A statement and a sketch of the proof can be found
in [Jur99]. See also [MS15] for the integrability and superintegrability in the unimodular case,
together with a list of references where certain cases have been solved explicitly. In the more
general context of optimal control problems on Lie groups, many interesting discussions can be
found in [Jur97, Jur16]. Theorem 18.16, guaranteeing that the orbits of the set of Poisson vector
fields are immersed sub-manifolds, can be found in any book of symplectic geometry. However it
is one of most compelling application of Sussmann’s orbit theorem [Sus73]. See also [AS04].
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sl(2)

zero dimensional leaf

zero dimensional leaves

zero dimensional leaves

su(2)

sh(2)

Heisenberg algebra h

se(2)

Figure 18.1: Symplectic leaves for 3D Lie algebras. Unimodular cases. In all these cases a
non-constant Casimir function exists.
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zero dimensional leaves

zero dimensional leaves

zero dimensional leaves

solv−

solv+. Case β2 − 4α < 0solv+. Case β2 − 4α ≥ 0

a+(R)⊕ R

Figure 18.2: Symplectic leaves for 3D Lie algebras. Non-unimodular cases. Notice that in the
solv+ case, the fact that all two-dimensional symplectic leaves have the same line in their closure (of
zero-dimensional symplectic leaves) implies the non existence of non-constant Casimir functions.
In the solv− case there exists a non-constant Casimir function (sometimes analytic and sometimes
only C∞, depending on the eigenvalues).
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Chapter 19

Asymptotic expansion of the 3D
contact exponential map

In this chapter we compute the small time asymptotics of the exponential map in the three-
dimensional contact case. We show how the structure of the cut and the conjugate locus is encoded
in it, and we express in terms of the curvature invariants.

19.1 The exponential map

Let M be a contact sub-Riemannian structure on a 3D manifold, let us fix a local orthonormal
frame f1, f2 for the sub-Riemannian structure, and let f0 be the Reeb vector field associated to the
normalized contact form. We refer the reader to Section 17.4 for the corresponding definitions.

We fix the coordinates (h0, h1, h2) dual to the local frame f0, f1, f2 (recall that then ν0 coincides
with the normalized contact form). The Hamiltonian vector field ~H associated with the sub-
Riemannian Hamiltonian H is then written as follows:

~H = cos θf1 + sin θf2 − (h0 + b)∂θ + a∂h0 . (19.1)

where we have restricted our attention to the level set H−1(1/2), and the coordinate θ is defined in
such a way that h1 = cos θ and h2 = sin θ. Recall that the functions a and b are defined as follows

a = {H,h0} =
2∑

i,j=1

cj0ihihj , b := c112h1 + c212h2,

where ckij are structure functions of the Lie algebra defined by the orthonormal frame and the Reeb
vector field

[fj, fi] =

2∑

k=0

ckijfk, i, j = 0, 1, 2.

In the sequel it will be convenient to introduce the coordinate ρ := −h0 for the function that
is linear on fibers of T ∗M associated with the opposite of the Reeb vector field. The Hamiltonian
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system (19.1) on the level set H−1(1/2) is then rewritten in the coordinates (q, θ, ρ) as follows:





q̇ = cos θf1 + sin θf2

θ̇ = ρ− b
ρ̇ = −a

(19.2)

The exponential map based at q0 ∈ M is the map that with each time t > 0 and every initial
covector (θ0, ρ0) ∈ T ∗

q0M ∩H−1(1/2) associates the first component of the solution at time t of the
system (19.2), denoted by expq0(t, θ0, ρ0) (or simply exp(t, θ0, ρ0) when there is no confusion about
the base point).

Conjugate points are critical points of the exponential map, i.e., the set of initial covectors such
that the differential of the exponential map is not surjective. Hence conjugate points are solutions
to the equation

det

(
∂exp

∂θ0
,
∂exp

∂ρ0
,
∂exp

∂t

)
= 0. (19.3)

The variation of the exponential map along time is always nonzero and independent with respect to
variations of the covectors in the set H−1(1/2) (see also Section 8.11 and Proposition 8.42). Hence
(19.3) is equivalent to

∂exp

∂θ0
∧ ∂exp
∂ρ0

= 0, (19.4)

meaning that the two vectors are linearly dependent.

19.1.1 The nilpotent case

We start by studying the exponential map on the Heisenberg group. This corresponds to the case
when the functions a and b in (19.2) vanish identically, namely the system





q̇ = cos θf1 + sin θf2

θ̇ = ρ

ρ̇ = 0

(19.5)

Let us first recover, in this notation, the conjugate locus in the case of the Heisenberg group.
Let us denote coordinates on the manifold R3 as follows

q = (x, z), x = (x1, x2) ∈ R2, z ∈ R. (19.6)

Notice moreover that in this case the Reeb vector field is proportional to ∂z and its dual coordinate
ρ is constant along trajectories. There are two possible cases:

(i). ρ = 0. Then the solution is a straight line contained in the plane z = 0 and is optimal for
all time.

(ii). ρ 6= 0. In this case we claim that the equation (19.4) is equivalent to the following

∂x

∂θ0
∧ ∂x

∂ρ0
= 0. (19.7)
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In fact, by Gauss’ Lemma (Proposition 8.42), the covector p = (px, ρ) at the final point annihilates
the image of the differential of the exponential map restricted to the level set, i.e.

0 =

〈
p,
∂exp

∂θ0

〉
=

〈
px,

∂x

∂θ0

〉
+ ρ

∂z

∂θ0
, (19.8)

0 =

〈
p,
∂exp

∂ρ0

〉
=

〈
px,

∂x

∂ρ0

〉
+ ρ

∂z

∂ρ0
, (19.9)

and since ρ 6= 0 it follows that among the three vectors



∂x1
∂θ0

∂x1
∂ρ0







∂x2
∂θ0

∂x2
∂ρ0







∂z

∂θ0

∂z

∂ρ0


 (19.10)

the third one is always a linear combination of the first two.

Proposition 19.1. The first conjugate time is tc(θ0, ρ0) = 2π/|ρ0|.
Proof. In the standard coordinates (x1, x2, z) the two vector fields f1 and f2 defining the orthonor-
mal frame are

f1 = ∂x1 −
x2
2
∂z, f2 = ∂x2 +

x1
2
∂z.

Thus, the first two coordinates of the horizontal part of the Hamiltonian system satisfy
{
ẋ1 = cos θ

ẋ2 = sin θ
(19.11)

It is then easy to integrate the x-part of the exponential map being θ(t) = θ0 + ρt (recall that
ρ ≡ ρ0 and, without loss of generality we can assume ρ > 0)

x(t; θ0, ρ0) =

∫ t

0

(
cos(θ0 + ρs)
sin(θ0 + ρs)

)
ds =

∫ θ0+t

θ0

(
cos ρs
sin ρs

)
ds (19.12)

Due to the symmetry with respect to rotations around the z axis, the determinant of the Jacobian
map will not depend on θ0. Hence to compute the determinant of the Jacobian it is enough to
compute partial derivatives at θ0 = 0

∂x

∂θ0
=

(
cos ρt− 1
sin ρt

)

∂x

∂ρ0
= − 1

ρ2

(
sin ρt

1− cos ρt

)
+
t

ρ

(
cos ρt
sin ρt

)

and denoting by τ := ρt one can compute

∂x

∂θ0
∧ ∂x

∂ρ0
=

1

ρ2
det

(
cos τ − 1 τ cos τ − sin τ
sin τ −1 + τ sin τ + cos τ

)
,

=
1

ρ2
(τ sin τ + 2cos τ − 2).

The fact that tc = 2π/|ρ| follows from the fact that 2π is the first positive root of the equation
τ sin τ + 2cos τ − 2 = 0. Notice that it is indeed a simple root.
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19.2 General case: second order asymptotic expansion

Let us consider the Hamiltonian system for the general 3D contact case





q̇ = fθ := cos θf1 + sin θf2

θ̇ = ρ− b
ρ̇ = −a

(19.13)

We are going to study the asymptotic expansion for our system for the initial parameter ρ0 → ±∞.
To this aim, it is convenient to introduce the change of variables r := 1/ρ and denote by ν :=
r(0) = 1/ρ0 its initial value. Notice that ρ is no more constant in the general case and ρ0 → ∞
implies ν → 0.

The main result of this section says that the conjugate time for the perturbed system is a
perturbation of the conjugate time of the nilpotent case, where the perturbation has no term of
order 2.

Proposition 19.2. The conjugate time tc(θ0, ν) is a smooth function of the parameter ν for ν > 0.
Moreover for ν → 0

tc(θ0, ν) = 2π|ν|+O(|ν|3).

19.2.1 Proof of Proposition 19.2: second order asymptotics

To prove Proposition 19.2, let us introduce a new time variable τ such that dt
dτ = r. If we denote

by Ḟ the derivative of a function F with respect to the new time τ , the system (19.13) is rewritten
in the new coordinate system (q, θ, r) (where we recall r = 1/ρ), as follows





q̇ = rfθ

θ̇ = 1− rb
ṙ = r3a

ṫ = r

(19.14)

To compute the asymptotics of the conjugate time, it is also convenient to consider a system of
coordinates, depending on a parameter ε, corresponding to the quasi-homogeneous blow up of the
sub-Riemannian structure at q0 and converging to the nilpotent approximation.

More precisely, first we consider the equation q̇ = rfθ in any linearly adapted coordinates on
M . These coordinates are automatically privileged coordinates, see Sec. 10.4.1 and Example 10.31.
Next, we apply a quasi-homogeneous blow-up Φε = δ1/ε defined via dilations, see Sec. 10.4.1 and
Remark 10.42. This permits to introduce a new system of privileged coordinates on M depending
on a parameter ε > 0. After the blow-up we get (Φε)∗fθ = 1

εf
ε
θ where

f εθ = f̂θ + εf
(0)
θ + ε2f

(1)
θ + . . .

and f̂θ is the Heisenberg nilpotent approximation.

Accordingly to this change of coordinates we have the equalities

(Φε)∗fi =
1

ε
f εi , (Φε)∗f0 =

1

ε2
f ε0 ,
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where f ε0 is the Reeb vector field defined by the orthonormal frame f ε1 , f
ε
2 . Moreover denoting by

aε, bε the function a and b written in the new coordinate system, we have

b =
1

ε
bε, a =

1

ε2
aε.

Let us now define, for fixed ε, the variable w such that r = εw.

Proposition 19.3. The system (19.14) is rewritten in these variables as follows





q̇ = wf εθ
θ̇ = 1− wbε
ẇ = w3aε

ṫ = εw

(19.15)

Notice that the dynamical system is written in a coordinate system that depends on ε. Moreover
the initial asymptotic for ρ0 →∞, corresponding to r(0)→ 0, is now reduced to fix an initial value
w(0) = 1 and send ε→ 0.

Consider some linearly adapted coordinates (x, z), with x ∈ R2 and z ∈ R (cf. Definition 10.30).
If we denote by qε = (xε, zε) the solution of the horizontal part of the ε-system (19.15), conjugate
points are solutions of the equation

∂qε

∂θ0
∧ ∂qε

∂w0

∣∣∣∣
w0=1

= 0.

As in Section 19.1.1, one can check that this condition is equivalent to

∂xε

∂θ0
∧ ∂xε

∂w0

∣∣∣∣
w0=1

= 0.

Notice that the original parameters (t, θ0, ρ0) parametrizing the trajectories in the exponential map
correspond to a conjugate point if the corresponding parameters (τ, θ0, ε) satisfy

ϕ(τ, ε, θ0) :=
∂xε

∂θ0
∧ ∂xε

∂w0

∣∣∣∣
w0=1

= 0. (19.16)

For ε = 0, i.e., for the nilpotent approximation, the first conjugate time is τc = 2π, and moreover
it is a simple root. Thus one gets

ϕ(2π, 0, θ0) = 0,
∂ϕ

∂τ
(2π, 0, θ0) 6= 0. (19.17)

Hence the implicit function theorem guarantees that there exists a smooth function τc(ε, θ0) such
that τc(0, θ0) = 2π and

ϕ(τc(ε, θ0), ε, θ0) = 0. (19.18)

In other words τc(ε, θ0) computes the conjugate time τ associated with parameters ε, θ0. By smooth-
ness of τc one immediately has the expansion for ε→ 0

τc(ε, θ0) = 2π +O(ε).
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Now the statement of the proposition is rewritten in terms of the function τc as follows

τc(ε, θ0) = 2π +O(ε2). (19.19)

Differentiating the identity (19.18) with respect to ε one has

∂ϕ

∂τ

∂τc
∂ε

+
∂ϕ

∂ε
= 0,

hence, thanks to (19.17), the expansion (19.19) holds if and only if
∂ϕ

∂ε
(2π, 0, θ0) = 0.

Moreover differentiating the expression (19.16) with respect to ε one has

∂ϕ

∂ε
(2π, 0, θ0) =

∂2xε

∂ε∂θ0
∧ ∂xε

∂w0
− ∂2xε

∂ε∂w0
∧ ∂x

ε

∂θ0

∣∣∣∣
w0=1,ε=0,τ=2π

The second term vanishes since at ε = 0 is the Heisenberg case, whose horizontal part at τ = 2π
does not depend on θ0. Hence it is sufficient to prove that

∂2xε

∂ε∂θ0

∣∣∣∣
ε=0,τ=2π

= 0. (19.20)

which is a consequence of the following lemma.

Lemma 19.4. The quantity
∂xε

∂ε

∣∣∣∣
ε=0,τ=2π

does not depend on θ0.

Proof. To prove the statement it will be enough to find the first order expansion in ε of the solution
of the system (19.15).

Recall that when ε = 0 the system corresponds to the Heisenberg case, i.e., we have aε|ε=0 = 0
and bε|ε=0 = 0. This gives the expansion of w (recall that w(0) = w0 = 1)

w(t) = w(0) +

∫ t

0
aε(τ)w3(τ)dτ ⇒ w(t) = 1 + εα(t) +O(ε2). (19.21)

Notice that aε, and thus α = ∂aε

∂ε

∣∣
ε=0

, is a homogeneous polynomial in cos θ and sin θ (cf. also
Section 17.4).

Analogously we have bε = ε 〈β, u〉 + O(ε2), where 〈β, u〉 = β1u1 + β2u2 and β denotes the
(constant) coefficient of weight zero in the expansion of bε with respect to ε. Denoting u(θ) =
(cos θ, sin θ), the equation for θ then is reduced to

θ̇ = 1− ε 〈β, u(θ)〉+O(ε2), θ(0) = θ0.

This equation can be integrated and one gets

∂θ

∂ε

∣∣∣∣
ε=0

= −
∫ t

0
〈β, u(θ(τ))〉 dτ =

〈
β, u′(θ0 + t)− u′(θ0)

〉
, (19.22)

where u′(θ) = (− sin θ, cos θ).
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Next we are going to use (19.21) and (19.22) to compute the derivative of xε wrt ε. The equation
for the horizontal part of (19.15) can be expanded in ε as follows

ẋ = u(θ) + ε(αu(θ) + f
(0)
θ (x)) +O(ε2)

where the first term is Heisenberg, and f
(0)
θ is the term of weight zero of fθ, which is linear with

respect to x1 and x2 (recall that this is the zero order part of the vector field fu along ∂x, hence
only x variables appear and have order 1). To compute the derivative of the solution with respect
to the parameter ε we use the following general fact.

Lemma 19.5. Let φ(ε, t) denote the solution of the differential equation ẏ = F (ε, y) with fixed
initial condition y(0) = y0. Then the derivative ∂φ

∂ε satisfies the following linear ODE

d

dt

∂φ

∂ε
(ε, t) =

∂F

∂y
(ε, φ(ε, t))

∂φ

∂ε
(ε, t) +

∂F

∂ε
(ε, φ(ε, t)).

We apply the above lemma when y = (x, θ) and F = (F x, F θ) and we compute at ε = 0. In
particular we need the solution of the original system at ε = 0

φ(0, t) = (x̄(t), θ̄(t)), θ̄(t) = θ0 + t, x̄(t) = u′(θ0)− u′(θ0 + t).

Then by Lemma 19.5 we have

d

dt

∂x

∂ε
=
∂F x

∂x

∂x

∂ε
+
∂F x

∂θ

∂θ

∂ε
+
∂F x

∂ε

Computing the derivatives at ε = 0 gives

∂F x

∂x

∣∣∣∣
ε=0

= 0,
∂F x

∂θ

∣∣∣∣
ε=0

= u′(θ̄(t)),
∂F x

∂ε

∣∣∣∣
ε=0

= α(t)u(θ̄(t)) + f
(0)

θ̄(t)
(x̄(t))

and we obtain the equation for the derivative ∂x
∂ε (recall that θ̄(t) = θ0 + t)

d

dt

∂x

∂ε

∣∣∣∣
ε=0

= u′(θ0 + t)
∂θ

∂ε

∣∣∣∣
ε=0

+ α(t)u(θ0 + t) + f
(0)
θ0+t

(u′(θ0)− u′(θ0 + t)).

If we introduce the new variable s = θ0 + t we can rewrite the last equation in the more compact
form

d

ds

∂x

∂ε

∣∣∣∣
ε=0

= u′(s)
∂θ

∂ε
+ α(s− θ0)u(s) + f (0)s (u′(θ0)− u′(s)).

Integrating and using (19.22) one has

∂x

∂ε

∣∣∣∣
ε=0,τ=2π

=

∫ θ0+2π

θ0

〈
β, u′(s)− u′(θ0)

〉
u′(s)ds+

∫ θ0+2π

θ0

α(s − θ0)u(s)ds

+

∫ θ0+2π

θ0

f (0)s (u′(θ0)− u′(s))ds.

One can see that the last expression does not depend on θ0, since we compute integrals of a periodic
functions over its period. This finishes the proof of Lemma 19.4, hence the proof of the Proposition
19.2.
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19.3 General case: higher order asymptotic expansion

Next we continue our analysis about the structure of the conjugate locus for a 3D contact structure
by studying higher order asymptotics. In this section we determine the coefficient of order 3 in the
asymptotic expansion of the conjugate locus. Namely we have the following result, whose proof is
postponed to Section 19.3.1.

Theorem 19.6. In a system of local coordinates around q0 ∈M one has the expansion

Conq0(θ0, ν) = q0 ± πf0|ν|2 ± π(a′fθ0 − afθ′0)|ν|
3 +O(|ν|4), ν → 0±. (19.23)

If we choose coordinates such that a = 2χh1h2 one gets

Conq0(θ0, ν) = q0 ± πf0|ν|2 ± 2πχ(q0)(cos
3 θf2 − sin3 θf1)|ν|3 +O(|ν|4), ν → 0±. (19.24)

Moreover for the conjugate length we have the expansion

ℓc(θ0, ν) = 2π|ν| − πκ|ν|3 +O(|ν|4), ν → 0±. (19.25)

Analogous formulas can be obtained for the asymptotics of the cut locus at a point q0 where
the invariant χ is non vanishing.

Theorem 19.7. Assume χ(q0) 6= 0. In a system of local coordinates around q0 ∈ M such that
a = 2χu1u2 one gets

Cutq0(θ, ν) = q0 ± πν2f0(q0)± 2πχ(q0) cos θf1(q0)ν
3 +O(ν4), ν → 0±

Moreover the cut length satisfies

ℓcut(θ, ν) = 2π|ν| − π(κ+ 2χ sin2 θ)|ν|3 +O(ν4), ν → 0± (19.26)

We can collect the information given by the asymptotics of the conjugate and the cut loci in
Figure 19.1.

All geometrical information about the structure of these sets is encoded in a pair of quadratic
forms defined on the fiber at the base point q0, namely the curvature R and the sub-Riemannian
Hamiltonian H.

Recall that the sub-Riemannian Hamiltonian encodes the information about the distribution
and about the metric defined on it (see Exercise 4.32).

Let us consider the kernel of the sub-Riemannian Hamiltonian

kerH = {λ ∈ T ∗
qM : 〈λ, v〉 = 0, ∀ v ∈ Dq} = D⊥

q . (19.27)

The restriction of R to the 1-dimensional subspace D⊥
q for every q ∈ M , is a strictly positive

quadratic form. Moreover it is equal to 1/10 when evaluated on the Reeb vector field. Hence the
curvature R encodes both the contact form ω and its normalization.

If we denote by D∗
q the orthogonal complement1 of D⊥

q in the fiber with respect to R, we have
that R is a quadratic form on D∗

q and, by using the Euclidean metric defined by H on Dq, we can
identify it with a symmetric operator.

1this is indeed isomorphic to the space of linear functionals defined on Dq.
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Figure 19.1: Asymptotic structure of cut and conjugate locus

As we explained in the previous chapter, at each q0 where χ(q0) 6= 0 there always exists a frame
such that

{H,h0} = 2χh1h2

and in this frame we can express the restriction of R to D∗
q (corresponding to the set {h0 = 0}) on

this subspace as follows (see Section 17.4)

10R = (κ+ 3χ)h21 + (κ− 3χ)h22.

From this formula it is easy to recover the two invariants χ, κ considering

trace(10R
∣∣
h0=0

) = 2κ, discr(10R
∣∣
h0=0

) = 36χ2,

where the discriminant of an operatorQ, defined on a two-dimensional space, is defined as the square
of the difference of its eigenvalues, and can be compute by the formula discr(Q) = trace2(Q) −
4 det(Q).

The cubic term of the asymptotic expansion of the conjugate locus parametrizes an astroid. The
cuspidal directions of the astroid are given by the eigenvectors of R, and the cut locus intersects the
conjugate locus exactly at the cuspidal points, in the direction of the eigenvector ofR corresponding
to the larger eigenvalue.

Finally the “size” of the cut locus increases for bigger values of χ, while κ is involved in the
length of curves arriving at cut/conjugate locus.

Remark 19.8. The expression of the conjugate locus (resp. cut locus) given in Theorem 19.6 (resp.
Theorem 19.7) gives the truncation up to order three of the asymptotics of the conjugate locus

549



(resp. cut locus) of the exponential map. It is indeed possible to show that this is actually the exact
cut locus corresponding to the truncated exponential map at order three. For a discussion on this
point we refer to Section 19.3.4.

19.3.1 Proof of Theorem 19.6: asymptotics of the exponential map

The proof of Theorem 19.6 requires a careful analysis of the asymptotic of the exponential map.
Let us consider again our Hamiltonian system in the form (19.14)





q̇ = rfθ

θ̇ = 1− rb
ṙ = r3a

ṫ = r

(19.28)

where we recall that equations are written with respect to the time τ . In particular, since we restrict
on the level set H−1(1/2), the trajectories are parametrized by length and the time t coincides with
the length of the curve. Thus in what follows we replace the variable t by ℓ.

Next, we consider a last change of the time variable. Namely we parametrize trajectories by
the coordinate θ. In other words we rewrite again the equations in such a way that θ̇ = 1 and the
dot will denote derivative with respect to θ. The equations are rewritten in the following form:





q̇ =
r

1− rbfθ
θ̇ = 1

ṙ =
r3

1− rba
ℓ̇ =

r

1− rb

(19.29)

where we recall that fθ = cos θf1+sin θf2 and we denote ν = r(0). Moreover we define F (t; θ0, ν) :=
q(t + θ0; θ0, ν), where q(θ0; θ0, ν) = q0. This means that the curve that corresponds to initial
parameter θ0 start from q0 at time equal to θ0.

Notice that in (19.29) we can solve the equation for r = r(τ) and substitute it in the first
equation. In this way we can write the trajectory as an integral curve of the nonautonomous vector
field

F (t; θ0, ν) = q0 ⊙Qθ0,νt , Qθ0,νt = −→exp
∫ θ0+t

θ0

r(τ)

1− r(τ)b(τ)fτdτ.

To simplify the notation in what follows we denote the flow Qθ0,νt simply by Qt and by Vt the
non-autonomous vector field defined by this flow

Qt =
−→exp

∫ θ0+t

θ0

Vτdτ, Vτ :=
r(τ)

1− r(τ)b(τ)fτ . (19.30)

We start by analyzing the asymptotics of the end-point map after time t = 2π.

Lemma 19.9. F (2π; θ0, ν) = q0 − πf0(q0)ν2 +O(ν3)
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Proof. From (19.29), recalling that r(0) = ν, it is easy to see that r satisfies the identity

r(t) = ν + r̃(t)ν3 = ν +O(ν3)

for some smooth function r̃(t). Thus, to find the second order term in ν of the endpoint map
F (2π; θ, ν), we can then assume that r is constantly equal to ν = r(0).

Using the Volterra expansion (cf. (6.17))

−→exp
∫ θ0+2π

θ0

Vτdτ =


Id +

∫ θ0+2π

θ0

Vτdτ +

∫∫

θ0≤τ2≤τ1≤θ0+2π

Vτ2 ⊙ Vτ1dτ1dτ2 + . . .


 (19.31)

and substituting r(τ) ≡ ν we have the following expansion for the first term in (19.31):

∫ θ0+2π

θ0

Vτdτ =

∫ θ0+2π

θ0

ν

1− νb(τ)fτdτ =

∫ θ0+2π

θ0

ν(1 + νb(τ) +O(ν2))fτ dτ,

= ν

∫ θ0+2π

θ0

fτdτ + ν2
∫ θ0+2π

θ0

b(τ)fτdτ +O(ν3)

= ν2
∫ θ0+2π

θ0

b(τ)fτdτ +O(ν3)

Notice that the first order term in ν vanishes since we integrate over a period and
∫ θ0+2π
θ0

fτdτ = 0.
The second term in (19.31) can be rewritten using Lemma 8.30

∫∫

θ0≤τ2≤τ1≤θ0+2π

Vτ2 ⊙ Vτ1dτ1dτ2 =
1

2

∫ θ0+2π

θ0

Vτdτ ⊙

∫ θ0+2π

θ0

Vτdτ +

∫∫

θ0≤τ2≤τ1≤θ0+2π

[Vτ2 , Vτ1 ]dτ1dτ2

=
ν2

2



∫ θ0+2π

θ0

fτdτ ⊙

∫ θ0+2π

θ0

fτdτ +

∫∫

θ0≤τ2≤τ1≤θ0+2π

[fτ2 , fτ1 ]dτ1dτ2




=
ν2

2

∫∫

θ0≤τ2≤τ1≤θ0+2π

[fτ2 , fτ1 ]dτ1dτ2

where we used again
∫ θ0+2π
θ0

fτdτ = 0. Notice that higher order terms in the Volterra expansions

are O(ν3). Collecting together the two expansions and recalling that

[f2, f1] = f0 + α1f1 + α2f2

one easily obtains

F (2π; θ0, ν) = q0 + ν2
(∫ θ0+2π

θ0

b(t)ft dt+
1

2

[∫ t

θ0

fτdτ, ft

]
dt

)
+O(ν3)

= q0 − πν2f0(q0) +O(ν3) (19.32)

Notice that the factor π in (19.32) comes out from the evaluation of integrals of kind
∫ θ0+2π
θ0

cos2 τdτ

and
∫ θ0+2π
θ0

sin2 τdτ .
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Next we prove a symmetry of the exponential map

Lemma 19.10. F (t; θ0, ν) = F (t; θ0 + π,−ν)

Proof. It is a direct consequence of our geodesic equation. Recall that F (t; θ0, ν) = q(t+ θ0; θ0, ν),
is the solution of the system, with initial condition q(θ0; θ0, ν) = q0.

Applying the transformation t 7→ t + π and ν → −ν we see that the right hand side of q̇ in
(19.29) is preserved while the right hand side of ṙ changes sign (we use that ui(t + π) = −ui(t),
hence a(t + π) = a(t) and b(t + π) = −b(t)). Then, if (q(t), r(t)) is a solution of the system, the
pair (q(t+ π),−r(t+ π)) is also a solution. The lemma follows.

The symmetry property just proved permits to characterize all odd terms in the expansion in
ν of the exponential map at t = 2π.

Corollary 19.11. Consider the formal expansion

F (2π; θ, ν) ≃
∞∑

n=0

qn(θ)ν
n.

We have the following identities

(i) qn(θ + π) = (−1)nqn(θ),

(ii) q2n+1(θ) = −
1

2

∫ θ+π

θ

dq2n+1

dθ
(τ)dτ .

Proof. This is an immediate consequence of Lemma 19.10 and the identity

2q2n+1(θ) = q2n+1(θ)− q2n+1(θ + π) = −
∫ θ+π

θ

dq2n+1

dθ
(τ)dτ.

We already computed the terms q1(θ) and q2(θ). To find q3(θ) we start by computing the
derivative of the map F with respect to θ.

Lemma 19.12.
∂F

∂θ0
(2π; θ0, ν) = −π[f0, fθ0 ]q0ν3 +O(ν4)

Proof. We stress that, since we are now interested to third order term in ν, we can no more assume
that r(τ) is constant. Differentiating (3.74) with respect to θ gives two terms as follows:

∂F

∂θ0
=

∂

∂θ0
(q0 ⊙Qt) = q0 ⊙

∂

∂θ0

(
−→exp

∫ θ+2π

θ
Vτdτ

)

= q0 ⊙ (Q2π ⊙ Vθ0+2π − Vθ0 ⊙Q2π) (19.33)

Next let us rewrite

Q2π ⊙ Vθ0+2π = Q2π ⊙ Vθ0+2π ⊙Q−1
2π

⊙Q2π

= AdQ2π ⊙ Vθ0+2π
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so that (19.33) can be rewritten as

∂F

∂θ0
= q0 ⊙ (AdQ2π ⊙ Vθ0+2π − Vθ0) ⊙Q2π (19.34)

Thanks to Lemma 19.9 we can write

Q2π = Id− πν2f0 +O(ν3) (19.35)

that implies the following asymptotics for the action of its adjoint by (6.31)

AdQ2π = Id− πν2ad f0 +O(ν3)

We are left to compute the asymptotic expansion of (19.34). To this goal, recall that r = r(τ)
satisfies

ṙ =
r3

1− rba = r3a+O(r4)

hence we can compute its term of order 3 with respect to ν

r(t) = ν + ν3
∫ t

θ0

a(τ)dτ +O(ν4) (19.36)

This in particular implies that r(θ0 + 2π) = ν + O(ν4) since
∫ θ0+2π
θ0

a(t)dt = 0 (this follows from

the fact that
∫ θ0+2π
θ0

cos2 θdθ =
∫ θ0+2π
θ0

sin2 θdθ and the fact that a has zero trace).

This allows us to replace r(·) with ν in the term Vθ0+2π since r(θ+ 2π) = ν +O(ν4). Moreover
using that b(θ0 + 2π) = b(θ0) and fθ0+2π = fθ0 we get

AdQ2π ⊙ Vθ0+2π − Vθ0 = (Id− πν2ad f0 +O(ν3))

(
ν

1− νbfθ0
)
−
(

ν

1− νbfθ0
)
+O(ν4)

= −πν2ad f0(νfθ0) +O(ν4), (19.37)

and finally plugging (19.35) and (19.37) into (19.34) one obtains

∂F

∂θ
= q0 ⊙

(
−πν2ad f0(νfθ0) +O(ν4)

)
⊙ (Id +O(ν))

= q0 ⊙ (−πν3[f0, fθ0 ] +O(ν4)).

19.3.2 Asymptotics of the conjugate locus

In this section we finally prove Theorem 19.6, by computing the expansion of the conjugate time
tc(θ0, ν). We know from Proposition 19.2 that

τc(θ0, ν) = 2π + ν2s(θ0) +O(ν3).

Since τc(θ0, ν) is a conjugate point, the function s = s(θ0) is characterized as the solution of the
equation

∂F

∂s
∧ ∂F
∂θ
∧ ∂F
∂ν

∣∣∣∣
(2π+ν2s,θ,ν)

= 0, (19.38)
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where s is considered as a parameter. Notice that the derivative with respect to s is computed by

∂F

∂s
=
∂F

∂t

∂t

∂s
= (νfθ +O(ν2))ν2 = ν3fθ +O(ν4).

Moreover, from the expansion of F with respect to ν one has

∂F

∂ν
= −2πνf0 +O(ν2).

Thus
F (2π + ν2s; θ, ν) = F (2π, θ, ν) + ν3sfθ +O(ν4),

and differentiation with respect to θ0 together with Lemma 19.12 gives

∂F

∂θ
(2π + ν2s; θ, ν) = ν3(π[fθ, f0] + sfθ′) +O(ν4),

where as usual fθ′ denotes the derivative with respect to θ.
Then, collecting together all these computations, the equation for conjugate points (19.38) can

be rewritten as
fθ ∧ (sfθ′ + π[fθ, f0]) ∧ f0 = O(ν). (19.39)

Since fθ, fθ′ are an orthonormal frame on D and f0 is transversal to the distribution, (19.39) is
equivalent to

fθ ∧ (sfθ′ + π[fθ, f0]) = O(ν),

that implies
s(θ) = π 〈[f0, fθ] | fθ′〉+O(ν),

where 〈· | ·〉 denotes the the scalar product on the distribution. Hence

tc(θ, ν) = 2π + πν2 〈[f0, fθ] | fθ′〉q0 +O(ν3).

To find the expression of conjugate locus, we evaluate the exponential map at time tc(θ, ν).
We first consider the asymptotic of the conjugate locus. Using again that the first order term

with respect to ν of ∂tF is νfθ we have

F (2π + ν2s(θ0), θ0, ν) = F (2π; θ0, ν) + ν3s(θ0)fθ0 +O(ν4).

Hence, by Corollary 19.11 and Lemma 19.9 one gets

Conq0(θ0, ν) = q0 − πν2f0(q0)−
ν3

2

∫ θ0+π

θ0

dq3
dτ

dτ + ν3s(θ0)fθ0 +O(ν4).

Moreover, since
∂F

∂θ0
(2π, ν, θ0) = ν3[fθ0 , f0] +O(ν4),

we have by definition that q3(θ) = [fθ, f0] and

Conq0(θ0, ν) = q0 − ν2f0(q0)−
ν3

2

∫ θ0+π

θ0

π[fθ0 , f0]dτ + ν3s(θ0)fθ0

= q0 − ν2f0(q0)−
ν3

2

∫ θ0+π

θ0

π[fθ0 , f0] + s′(t)fθ0 + s(t)fθ′0dt, (19.40)
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where the last identify follows by writing fθ′′ = −fθ and integrating by parts. Using that

s(θ) = π 〈[f0, fθ] | fθ′〉
s′(θ) = π 〈[f0, fθ′ ] | fθ′〉 − π 〈[f0, fθ] | fθ〉 = 2πa,

we can rewrite (19.40) as follows

π[fθ0 , f0] + s′(t)fθ0 + s(t)fθ′0 = π[fθ0 , f0] + 2πafθ0 + π
〈
[f0, fθ0 ]

∣∣∣ fθ′0
〉
fθ′0

= π 〈[fθ0 , f0] | fθ0〉 fθ0 + 2πafθ0

= 3πafθ0 .

Finally

Conq0(θ0, ν) = q0 − πν2f0(q0)−
3ν3

2
π

∫ θ0+π

θ0

a(τ)fτdτ +O(ν4)

= q0 − πν2f0(q0) + ν3π(a′fθ0 − afθ′0) +O(ν4).

19.3.3 Asymptotics of the conjugate length

Similarly, we consider conjugate length. Recall that

ℓc(θ0, ν) =

∫ θ0+tc(θ0,ν)

θ0

r(t)

1− r(t)Qθ0,νt b(t)
dt,

where we replaced b(t) by its value along the flow Qθ0,νt b(t).

As a first step, notice that we can reduce to an integral over a period, up to higher order terms
with respect to ν. Namely

ℓc(θ0, ν) =

∫ θ0+2π

θ0

r(t)

1− r(t)Qθ0,νt b(t)
dt+ ν3s(θ0) +O(ν4). (19.41)

Indeed tc(θ0, ν) = 2π+ν2s(θ)+O(ν3) and the first order term w.r.t. ν in the integrand is exactly ν

by (19.36). In what follows we use again the notation Qt := Qθ0,νt , and we compute the expansion
in ν of the integral appearing in (19.41).

First notice that

r(t)

1− r(t)Qtb(t)
= r(t)

(
1 + r(t)Qtb(t) + r2(t)[Qtb(t) ⊙Qtb(t)] +O(r(t)3)

)
.

Using that r(t) = ν +O(ν3) and Qtb(t) = b(t) +O(ν) we have that

r(t)

1− r(t)Qtb(t)
= r(t) + r2(t)Qtb(t) + r3(t)b(t)2 +O(ν4).
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Now each addend of the sum expands as follows

r(t) = ν + ν3
∫ t

0
a(t)dt+O(ν4) (19.42)

r2(t)Qt(ν)b(t) = (ν2 +O(ν4))

(
Id + ν

∫ t

0
fτdτ +O(ν)

)
b(t) (19.43)

= ν2b(t) + ν3
∫ t

0
fτdτb(t) +O(ν4) (19.44)

r3(t)b(t)2 = ν3b(t)2 +O(ν4). (19.45)

Integrating the sum over the interval [θ0, θ0 +2π] and considering terms only up to O(ν4) we have

ℓc(θ0, ν) = 2πν +

(∫ θ0+2π

θ0

[∫ t

0
a(τ)dτ +

∫ t

0
fτdτ

]
b(t) + b2(t)dt

)
ν3 +O(ν4),

where the coefficient in ν2 vanishes since
∫ θ0+2π
θ0

b(τ)dτ = 0. A straightforward computation of the
integrals ends the proof of the theorem.

19.3.4 Stability of the conjugate locus

In this section we want to prove that the third order Taylor polynomial of the exponential map
corresponds to a stable map in the sense of singularity theory. More precisely it can be treated
as a one parameter family of maps between 2-dimensional manifolds that has only singular points
of “cusp” and “fold” type. As a consequence the original exponential map can be treated as a
perturbation of the (truncated) stable one.

The classic Whitney theorem on the stability of maps between 2-dimensional manifolds then
implies that the structure of their singularity will be the same, and actually the singular set of the
perturbed one is the image under an homeomorphism of the singular set of the truncated map.

Fix some local coordinates (x0, x1, x2) around the point q0 such that

q0 = (0, 0, 0), fi(q0) = ∂xi , ∀ i = 0, 1, 2.

Lemma 19.13. In these coordinates we have

1

π
F (2π + πη2τ, θ, ν) = (x0(τ, θ, ν), x1(τ, θ, ν), x2(τ, θ, ν))

= (−ν2, (τ − c102) cos(θ)ν3, (τ + c201) sin(θ)ν
3) +O(ν4). (19.46)

Let us define the new variable ζ =
√
−x0(τ, θ, ν) =

√
ν2 +O(ν4) = ν + O(ν3) and apply the

smooth change of variables (τ, θ, ν) 7→ (τ, θ, ζ). The map (19.46) is rewritten as follows

1

π
F (2π + πη2τ, θ, ν) = (−ζ2, (τ − c102) cos(θ)ζ3 +O(ζ4), (τ + c201) sin(θ)ζ

3 +O(ζ4)). (19.47)

Notice that the first coordinate function of this map is constant in the new variables, when ζ is
constant. The map (19.47) can be interpreted as a family of maps, parametrized by ζ, depending
on two variables

1

π
F (2π + πη2τ, θ, ν) = (−ζ2, ζ3Φζ(τ, θ)), (19.48)
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where we have defined

Φζ(τ, θ) = ((τ − c102) cos(θ), (τ + c201) sin(θ)) +O(ζ). (19.49)

The critical set of the map Φ0(τ, θ) is a smooth closed curve in R× S1 defined by the equation

τ = c102 sin
2(θ)− c201 cos2(θ). (19.50)

The critical values of this map, that is the image under the map Φ0 of the set defined by (19.50),
is the astroid

A0 = {2χ(− sin3(θ), cos3(θ)), θ ∈ S1}. (19.51)

The restriction to Φ0 to the set A0 is a one-to-one map. Moreover every critical point of Φ0 is a fold
or a cusp. This implies that Φ0 is a Whitney map. Hence it is stable, in the sense of Thom-Mather
theory, see [Whi55, GG73].

In other words, for any compact K ⊂ R × S1 big enough, there exists ε > 0 such that for all
ζ ∈]0, ε[, the map Φζ |K is equivalent to Φ0|K , under a smooth family of change of coordinates in
the source and in the image. Moreover, this family can be chosen to be smooth with respect to the
parameter ζ.

Collecting these results, we have proved that the shape of the conjugate locus described in
Figure 19.1 obtained via third order approximation of the end-point map is indeed a picture of the
true shape.

Theorem 19.14. Suppose M is a 3D contact sub-Riemannian structure and χ(q0) 6= 0. Then
there exists ε > 0 such that for every closed ball B = B(q0, r) with r ≤ ε there exists an open set
U ⊂ B \ {q0} and a diffeomorphism Ψ : U → R3 × {±1} such that B ∩ Conq0 ⊂ U and

Ψ(B ∩Conq0) = {(ζ2, cos3(θ)ζ3,− sin3(θ)ζ3) : ζ > 0, θ ∈ S1} × {±1}.

In particular, each of the two connected components of B ∩ Conq0 contains 4 cuspidal edges.

A similar statement concerning the stability of the cut locus can be found in [Agr96].

19.4 Bibliographical note

The asymptotics of the exponential map for the 3D sub-Riemannian contact structures and the
corresponding study of cut and conjugate locus have been first studied, independently, in [Agr96]
and [EAGK96]. Other relevant references on the same topic are also [ACGZ00, ACEAG98, AG99].

The material contained in this chapter is based essentialy on the paper [Agr96].
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Chapter 20

The volume in sub-Riemannian
geometry

In this chapter we investigate the notion of instrinsic volume in sub-Riemannian geometry in the
case of equiregular structures.

In particular we consider two constructions: the first one is the Popp volume that is a smooth
volume which is canonically associated with the sub-Riemannian structure, and it is a natural
generalization of the Riemannian one. The second one is the Hausdorff volume, a notion that is
well defined on every metric space.

On a Riemannian manifold these two notions coincide. The goal of this chapter is to introduce
these two volumes, prove their basic properties and show that in general these two volumes may
be different in sub-Riemannian geometry.

20.1 Equiregular sub-Riemannian manifolds

We denote by Dq ⊂ TqM the fiber of D over q. Recall that, for every i ≥ 1, define recursively the
submodules Di of Vec(M) by

D1 = D, Di+1 = Di + [D,Di].

and we set Diq = {X(q) | X ∈ Di}. The bracket-generating assumption implies that for every
q ∈M there exists an integer k(q), the non-holonomy degree at q, such that

{0} ⊂ D1
q ⊂ · · · ⊂ Dk(q)q = TqM. (20.1)

The sequence of subspaces (20.1) is called the flag of D at q. Set di(q) = dimDiq for i ≥ 0 with the
understaing that d0(q) = 0. We say that M is equiregular if di(q) is constant as q varies in M , for
every i ≥ 1.

For an equiregular structure the modulus D can be identified with the sections satisfying

{X ∈ Vec(M) | X(q) ∈ Dq,∀ q ∈M}.

and we define the homogeneous dimension

Q :=

k∑

i=1

i(di − di−1), (20.2)
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Remark 20.1. Notice that if we consider the dilations δα(x1, . . . , xr) we have det δα∗ = αQ.

20.2 The Popp volume

We introduce the nilpotentization of the distribution at the point q, which is fundamental for the
definition of Popp’s volume.

Definition 20.2. Let D be an equiregular distribution of step m. The nilpotentization of D at the
point q ∈M is the graded vector space

grq(D) = Dq ⊕D2
q/Dq ⊕ . . .⊕Dmq /Dm−1

q .

The vector space grq(D) can be endowed with a Lie algebra structure, which respects the
grading. Then, there is a unique connected, simply connected group, Grq(D), such that its Lie
algebra is grq(D). The global, left-invariant vector fields obtained by the group action on any
orthonormal basis of Dq ⊂ grq(D) define a sub-Riemannian structure on Grq(D), which is called
the nilpotent approximation of the sub-Riemannian structure at the point q.

In what follows, we provide the definition of Popp’s volume. Our presentation follows closely
the one that can be found in [BR13]. (See also [Mon02]). The definition rests on the following
lemmas.

Lemma 20.3. Let E be an inner product space and V be a vector space. Let π : E → V be a
surjective linear map. Then π induces an inner product on V such that the norm of v ∈ V is

‖v‖V = min{‖e‖E s.t. π(e) = v} . (20.3)

Proof. It is easy to check that Eq. (20.3) defines a norm on V . Moreover, since ‖ · ‖E is induced
by an inner product, i.e., it satisfies the parallelogram identity, it follows that ‖ · ‖V satisfies the
parallelogram identity too. Notice that this is equivalent to consider the inner product on V defined
by the linear isomorphism π : (ker π)⊥ → V . Indeed the norm of v ∈ V is the norm of the shortest
element e ∈ π−1(v).

Lemma 20.4. Let E be a vector space of dimension n with a flag of linear subspaces {0} = F 0 ⊂
F 1 ⊂ F 2 ⊂ . . . ⊂ Fm = E. Let gr(F ) = F 1 ⊕ F 2/F 1 ⊕ . . . ⊕ Fm/Fm−1 be the associated graded
vector space. Then there is a canonical isomorphism θ : ∧nE → ∧ngr(F ).

Proof. We only give a sketch of the proof. For 0 ≤ i ≤ m, let ki := dimF i. Let X1, . . . ,Xn be a
adapted basis for E, i.e., X1, . . . ,Xki is a basis for F i. We define the linear map θ̂ : E → gr(F )
which, for 0 ≤ j ≤ m−1, takes Xkj+1, . . . ,Xkj+1

to the corresponding equivalence class in F j+1/F j .
This map is indeed a non-canonical isomorphism, which depends on the choice of the adapted basis.
In turn, θ̂ induces a map θ : ∧nE → ∧ngr(F ), which sends X1 ∧ . . .∧Xn to θ̂(X1)∧ . . .∧ θ̂(Xn). It
is a standard check that θ does not depend on the choice of the adapted basis.

The idea behind Popp’s volume is to define an inner product on each Diq/Di−1
q which, in turn,

induces an inner product on the orthogonal direct sum grq(D). The latter has a natural volume
form, which is the canonical volume of an inner product space obtained by wedging the elements an
orthonormal dual basis. Then, we employ Lemma 20.4 to define an element of (∧nTqM)∗ ≃ ∧nT ∗

qM ,
which is Popp’s volume form computed at q.
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Fix q ∈ M . Then, let v,w ∈ Dq, and let V,W be any horizontal extensions of v,w. Namely,
V,W ∈ Γ(D) and V (q) = v, W (q) = w. The linear map π : Dq ⊗Dq → D2

q/Dq
π(v ⊗ w) := [V,W ]q mod Dq , (20.4)

is well defined, and does not depend on the choice the horizontal extensions. Indeed let Ṽ and
W̃ be two different horizontal extensions of v and w respectively. Then, in terms of a local frame
X1, . . . ,Xk of D

Ṽ = V +

k∑

i=1

fiXi , W̃ =W +

k∑

i=1

giXi , (20.5)

where, for 1 ≤ i ≤ k, fi, gi ∈ C∞(M) and fi(q) = gi(q) = 0. Therefore

[Ṽ , W̃ ] = [V,W ] +
k∑

i=1

(V (gi)−W (fi))Xi +
k∑

i,j=1

figj [Xi,Xj ] . (20.6)

Thus, evaluating at q, [Ṽ , W̃ ]q = [V,W ]q mod Dq, as claimed. Similarly, let 1 ≤ i ≤ m. The linear
maps πi : ⊗iDq → Diq/Di−1

q

πi(v1 ⊗ · · · ⊗ vi) = [V1, [V2, . . . , [Vi−1, Vi]]]q mod Di−1
q , (20.7)

are well defined and do not depend on the choice of the horizontal extensions V1, . . . , Vi of v1, . . . , vi.
By the bracket-generating condition, πi are surjective and, by Lemma 20.3, they induce an

inner product space structure on Diq/Di−1
q . Therefore, the nilpotentization of the distribution at q,

namely
grq(D) = Dq ⊕D2

q/Dq ⊕ . . .⊕Dmq /Dm−1
q , (20.8)

is an inner product space, as the orthogonal direct sum of a finite number of inner product spaces.
As such, it is endowed with a canonical volume (defined up to a sign) ωq ∈ ∧ngrq(D)∗, which is the
volume form obtained by wedging the elements of an orthonormal dual basis.

Finally, Popp’s volume (computed at the point q) is obtained by transporting the volume of
grq(D) to TqM through the map θq : ∧nTqM → ∧ngrq(D) defined in Lemma 20.4. Namely

Pq = θ∗q(ωq) = ωq ◦ θq , (20.9)

where θ∗q denotes the dual map and we employ the canonical identification (∧nTqM)∗ ≃ ∧nT ∗
qM .

Eq. (20.9) is defined only in the domain of the chosen local frame. Since M is orientable, with
a standard argument, these n-forms can be glued together to obtain Popp’s volume P ∈ Ωn(M).
The smoothness of P follows directly from Theorem 20.6.

Remark 20.5. The definition of Popp’s volume can be restated as follows. Let (M,D) be an oriented
sub-Riemannian manifold. Popp’s volume is the unique volume P such that, for all q ∈ M , the
following diagram is commutative:

(M,D) P−−−−→ (∧nTqM)∗

grq

y
yθ∗q

grq(D) −−−−→ω (∧ngrq(D))∗

where ω associates the inner product space grq(D) with its canonical volume ωq, and θ
∗
q is the dual

of the map defined in Lemma 20.4.
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20.3 A formula for Popp volume in terms of adapted frames

In this section we prove an explicit formula for the Popp volume.
We say that a local frame X1, . . . ,Xn is adapted if X1, . . . ,Xki is a local frame for Di, where

ki := dimDi, and X1, . . . ,Xk are orthonormal. It is useful to define the functions clij ∈ C∞(M) by

[Xi,Xj ] =

n∑

l=1

clijXl . (20.10)

With a standard abuse of notation we call them structure constants. For j = 2, . . . ,m we define
the adapted structure constants bli1... ij ∈ C∞(M) as follows:

[Xi1 , [Xi2 , . . . , [Xij−1 ,Xij ]]] =

kj∑

l=kj−1+1

bli1i2... ijXl mod Dj−1 , (20.11)

where 1 ≤ i1, . . . , ij ≤ k. These are a generalization of the clij , with an important difference: the
structure constants of Eq. (20.10) are obtained by considering the Lie bracket of all the fields of
the local frame, namely 1 ≤ i, j, l ≤ n. On the other hand, the adapted structure constants of
Eq. (20.11) are obtained by taking the iterated Lie brackets of the first k elements of the adapted
frame only (i.e., the local orthonormal frame for D), and considering the appropriate equivalence
class. For j = 2, the adapted structure constants can be directly compared to the standard ones.
Namely blij = clij when both are defined, that is for 1 ≤ i, j ≤ k, l ≥ k + 1.

Then, we define the kj − kj−1 dimensional square matrix Bj as follows:

[Bj]
hl =

k∑

i1,i2,...,ij=1

bhi1i2...ijb
l
i1i2...ij , j = 1, . . . ,m , (20.12)

with the understanding that B1 is the k × k identity matrix. It turns out that each Bj is positive
definite.

Theorem 20.6. Let X1, . . . ,Xn be a local adapted frame, and let ν1, . . . , νn be the dual frame.
Then Popp’s volume P satisfies

P =
1√∏
j detBj

ν1 ∧ . . . ∧ νn , (20.13)

where Bj is defined by (20.12) in terms of the adapted structure constants (20.11).

To clarify the geometric meaning of Eq. (20.13), let us consider more closely the case m = 2.
If D is a step 2 distribution, we can build a local adapted frame {X1, . . . ,Xk,Xk+1, . . . ,Xn} by
completing any local orthonormal frame {X1, . . . ,Xk} of the distribution to a local frame of the
whole tangent bundle. Even though it may not be evident, it turns out that B−1

2 (q) is the Gram
matrix of the vectors Xk+1, . . . ,Xn, seen as elements of TqM/Dq. The latter has a natural structure
of inner product space, induced by the surjective linear map [ , ] : Dq ⊗ Dq → TqM/Dq (see
Lemma 20.3). Therefore, the function appearing at the beginning of Eq. (20.13) is the volume
of the parallelotope whose edges are X1, . . . ,Xn, seen as elements of the orthogonal direct sum
grq(D) = Dq ⊕ TqM/Dq.

562



Proof of Theorem 20.6

We are now ready to prove Theorem 20.6. For convenience, we first prove it for a distribution of step
m = 2. Then, we discuss the general case. In the following subsections, everything is understood
to be computed at a fixed point q ∈ M . Namely, by gr(D) we mean the nilpotentization of D at
the point q, and by Di we mean the fibre Diq of the appropriate higher order distribution.

Step 2 distribution

If D is a step 2 distribution, then D2 = TM . The growth vector is G = (k, n). We choose n − k
independent vector fields {Yl}nl=k+1 such that X1, . . . ,Xk, Yk+1, . . . , Yn is a local adapted frame for
TM . Then

[Xi,Xj ] =

n∑

l=k+1

blijYl mod D . (20.14)

For each l = k + 1, . . . , n, we can think to blij as the components of an Euclidean vector in Rk
2
,

which we denote by the symbol bl. According to the general construction of Popp’s volume, we
need first to compute the inner product on the orthogonal direct sum gr(D) = D ⊕ D2/D. By
Lemma 20.3, the norm on D2/D is induced by the linear map π : ⊗2D → D2/D

π(Xi ⊗Xj) = [Xi,Xj ] mod D . (20.15)

The vector space ⊗2D inherits an inner product from the one on D, namely ∀X,Y,Z,W ∈ D,
〈X ⊗ Y,Z ⊗W 〉 = 〈X,Z〉〈Y,W 〉. π is surjective, then we identify the range D2/D with ker π⊥ ⊂
⊗2D, and define an inner product on D2/D by this identification. In order to compute explicitly
the norm on D2/D (and then, by polarization, the inner product), let Y ∈ D2/D. Then

‖D2/D‖Y = min{‖Z‖⊗2D s.t. π(Z) = Y } . (20.16)

Let Y =
∑n

l=k+1 c
lYl and Z =

∑k
i,j=1 aijXi ⊗Xj ∈ ⊗2D. We can think to aij as the components

of a vector a ∈ Rk
2
. Then, Eq. (20.16) writes

‖Y ‖D2/D = min{|a| s.t. a · bl = cl, l = k + 1, . . . , n} , (20.17)

where |a| is the Euclidean norm of a, and the dot denotes the Euclidean inner product. Indeed,
‖Y ‖D2/D is the Euclidean distance of the origin from the affine subspace of Rk

2
defined by the

equations a · bl = cl for l = k + 1, . . . , n. In order to find an explicit expression for ‖Y ‖2D2/D in

terms of the bl, we employ the Lagrange multipliers technique. Then, we look for extremals of

L(a, bk+1, . . . , bn, λk+1, . . . , λn) = |a|2 − 2

n∑

l=k+1

λl(a · bl − cl) . (20.18)

We obtain the following system




n∑

l=k+1

λl · bl − a = 0,

n∑

l=k+1

λlb
l · br = cr , r = k + 1, . . . , n.

(20.19)
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Let us define the n − k square matrix B, with components Bhl = bh · bl. B is a Gram matrix,
which is positive definite iff the bl are n − k linearly independent vectors. These vectors are
exactly the rows of the representative matrix of the linear map π : ⊗2D → D2/D, which has rank
n − k. Therefore B is symmetric and positive definite, hence invertible. It is now easy to write
the solution of system (20.19) by employing the matrix B−1, which has components B−1

hl . Indeed
a straightforward computation leads to

‖
n∑

s=k+1

csYs‖2D2/D =

n∑

h,l=k+1

chB−1
hl c

l . (20.20)

By polarization, the inner product on D2/D is defined, in the basis Yl, by

〈Yl, Yh〉D2/D = B−1
lh . (20.21)

Observe that B−1 is the Gram matrix of the vectors Yk+1, . . . , Yn seen as elements of D2/D. Then,
by the definition of Popp’s volume, if ν1, . . . , νk, ηk+1, . . . , ηn is the dual basis associated with
X1, . . . ,Xk, Yk+1, . . . , Yn, the following formula holds true

P =
1√

detB
ν1 ∧ · · · ∧ νk ∧ ηk+1 ∧ · · · ∧ ηn . (20.22)

General case

In the general case, the procedure above can be carried out with no difficulty. Let X1, . . . ,Xn

be a local adapted frame for the flag D0 ⊂ D ⊂ D2 ⊂ · · · ⊂ Dm. As usual ki = dim(Di). For
j = 2, . . . ,m we define the adapted structure constants bli1... ij ∈ C∞(M) by

[Xi1 , [Xi2 , . . . , [Xij−1 ,Xij ]]] =

kj∑

l=kj−1+1

bli1i2... ijXl mod Dj−1 , (20.23)

where 1 ≤ i1, . . . , ij ≤ k. Again, bli1...ij can be seen as the components of a vector bl ∈ Rk
j
.

Recall that for each j we defined the surjective linear map πj : ⊗jD → Dj/Dj−1

πj(Xi1 ⊗Xi2 ⊗ · · · ⊗Xij ) = [Xi1 , [Xi2 , . . . , [Xij−1 ,Xij ]]] mod Dj−1 . (20.24)

Then, we compute the norm of an element of Dj/Dj−1 exactly as in the previous case. It is
convenient to define, for each 1 ≤ j ≤ m, the kj−kj−1 dimensional square matrix Bj, of components

[Bj]
hl =

k∑

i1,i2,...,ij=1

bhi1i2...ijb
l
i1i2...ij . (20.25)

with the understanding that B1 is the k×k identity matrix. Each one of these matrices is symmetric
and positive definite, hence invertible, due to the surjectivity of πj. The same computation of the
previous case, applied to each Dj/Dj−1 shows that the matrices B−1

j are precisely the Gram matrices

of the vectors Xkj−1+1, . . . ,Xkj ∈ Dj/Dj−1, in other words

〈Xkj−1+l,Xkj−1+h〉Dj/Dj−1 = B−1
lh . (20.26)

Therefore, if ν1, . . . , νn is the dual frame associated with X1, . . . ,Xn, Popp’s volume is

P =
1√∏m

j=1 detBj
ν1 ∧ . . . ∧ νn . (20.27)
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20.4 Popp volume and smooth isometries

In the last part of the paper we discuss the conditions under which a local isometry preserves Popp’s
volume. In the Riemannian setting, an isometry is a diffeomorphism such that its differential is an
isometry for the Riemannian metric. The concept is easily generalized to the sub-Riemannian case.

Definition 20.7. A diffeomorphism ϕ : M → M is a isometry if its differential ϕ∗ : TM → TM
preserves the sub-Riemannian structure (D, 〈· | ·〉), namely

(i) ϕ∗(Dq) = Dϕ(q) for all q ∈M ,

(ii) 〈ϕ∗X |ϕ∗Y 〉ϕ(q) = 〈X |Y 〉q for all q ∈M , X,Y ∈ Dq .

Similarly, one defines a local isometry when ϕ is a local diffeomorhism in a neighborhood Oq of a
point q ∈M and conditions (i) and (ii) are satisfied on Oq.

Remark 20.8. Condition (i), which is trivially satisfied in the Riemannian case, is necessary to
define isometries in the sub-Riemannian case. Actually, it also implies that all the higher order
distributions are preserved by ϕ∗, i.e., ϕ∗(Diq) = Diϕ(q), for 1 ≤ i ≤ m.

Definition 20.9. Let M be a manifold equipped with a volume form µ ∈ Ωn(M). We say that a
(local) diffeomorphism ϕ :M →M is a (local) volume preserving transformation if ϕ∗µ = µ.

In the Riemannian case, local isometries are also volume preserving transformations for the
Riemannian volume. Then, it is natural to ask whether this is true also in the sub-Riemannian
setting, for some choice of the volume. The next proposition states that the answer is positive if
we choose Popp’s volume.

Proposition 20.10. Sub-Riemannian (local) isometries are volume preserving transformations for
Popp’s volume.

Proposition 20.10 may be false for volumes different than Popp’s one. We have the following.

Proposition 20.11. Let Iso(M) be the group of isometries of the sub-Riemannian manifold M . If
Iso(M) acts transitively on M , then Popp’s volume is the unique volume (up to multiplication by
scalar constant) such that Proposition 20.10 holds true.

Recall that when M be a Lie group, a sub-Riemannian structure (M,D, 〈· | ·〉) is said to be left
invariant if ∀g ∈M , the left action Lg :M →M is an isometry.

As a trivial consequence of Proposition 20.10 we have the following

Corollary 20.12. Let (M,D, 〈· | ·〉) be a left-invariant sub-Riemannian structure. Then Popp’s
volume is left invariant, i.e., L∗

gP = P for every g ∈M .

The rest of this section is devoted to the proof of Propositions 20.10 and 20.11.

565



Proof of Proposition 20.10

Let ϕ ∈ Iso(M) be a (local) isometry, and 1 ≤ i ≤ m. The differential ϕ∗ induces a linear map

ϕ∗ : ⊗iDq → ⊗iDϕ(q) . (20.28)

Moreover ϕ∗ preserves the flag D ⊂ . . . ⊂ Dm. Therefore, it induces a linear map

ϕ̂∗ : Diq/Di−1
q → Diϕ(q)/Di−1

ϕ(q) . (20.29)

The key to the proof of Proposition 20.10 is the following lemma.

Lemma 20.13. ϕ∗ and ϕ̂∗ are isometries of inner product spaces.

Proof. The proof for ϕ∗ is trivial. The proof for ϕ̂∗ is as follows. Remember that the inner product
on Di/Di−1 is induced by the surjective maps πi : ⊗iD → Di/Di−1 defined by Eq. (20.7). Namely,
let Y ∈ Diq/Di−1

q . Then

‖Y ‖Di
q/Di−1

q
= min{‖Z‖⊗iDq

s.t. πi(Z) = Y } . (20.30)

As a consequence of the properties of the Lie brackets, πi ◦ ϕ∗ = ϕ̂∗ ◦ πi. Therefore

‖Y ‖Di
q/Di−1

q
= min{‖ϕ∗Z‖⊗iDϕ(q)

s.t. πi(ϕ∗Z) = ϕ̂∗Y } = ‖ϕ̂∗Y ‖Di
ϕ(q)

/Di−1
ϕ(q)

. (20.31)

By polarization, ϕ̂∗ is an isometry.

Since grq(D) = ⊕mi=1Diq/Di−1
q is an orthogonal direct sum, ϕ̂∗ : grq(D) → grϕ(q)(D) is also an

isometry of inner product spaces.

Finally, Popp’s volume is the canonical volume of grq(D) when the latter is identified with TqM
through any choice of a local adapted frame. Since ϕ∗ is equal to ϕ̂∗ under such an identification,
and the latter is an isometry of inner product spaces, the result follows.

Proof of Proposition 20.11

Let µ be a volume form such that ϕ∗µ = µ for any isometry ϕ ∈ Iso(M). There exists f ∈ C∞(M),
f 6= 0 such that P = fµ. It follows that, for any ϕ ∈ Iso(M)

fµ = P = ϕ∗P = (f ◦ ϕ)ϕ∗µ = (f ◦ ϕ)µ , (20.32)

where we used the Iso(M)-invariance of Popp’s volume. Then also f is Iso(M)-invariant, namely
ϕ∗f = f for any ϕ ∈ Iso(M). By hypothesis, the action of Iso(M) is transitive, then f is constant.

20.5 Hausdorff dimension and Hausdorff volume

Let (M,d) be a metric space. We denote by diamS the diameter of a set S ⊂ M , by B(q, r)
the open ball {q ∈ M | d(p, q) < r}, and by B(q, r) the closure of B(q, r). Let α ≥ 0 be a
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real number. For every set A ⊂ M , the α-dimensional Hausdorff measure Hα of A is defined as
Hα(A) = limδ→0+ Hαδ (A), where

Hαδ (A) = inf

{ ∞∑

i=1

(diamSi)
α : A ⊂

∞⋃

i=1

Si, Si closed set, diamSi ≤ δ
}
, (20.33)

and the α-dimensional spherical Hausdorff measure is defined as Sα(A) = limδ→0+ Sαδ (A), where

Sαδ (A) = inf

{ ∞∑

i=1

(diamSi)
α : A ⊂

∞⋃

i=1

Si, Si ball, diamSi ≤ δ
}
. (20.34)

For every set A ⊂M , the non-negative number

dimH(A) := sup{α ≥ 0 | Hα(A) = +∞} = inf{α ≥ 0 | Hα(A) = 0}, (20.35)

is well-defined and is called the Hausdorff dimension of A.

Exercise 20.14. (i) Prove the equality of the two definitions of Hausdorff dimension in (20.35).
(ii) Prove that for every subset S ⊂ N we have the inequalities

Hα(S) ≤ Sα(S) ≤ 2αHα(S). (20.36)

(iii) Deduce that in (20.35) one can replace Hα with Sα.

If (M,d) is a metric space, the Hausdorff volume (resp. spherical Hausdorff volume) on M is
the D-dimensional Hausdorff measure HD (resp. SD), where D = dimH(M). Notice that given
A ⊂M , its Hausdorff volume (resp. spherical Hausdorff volume) may be 0, positive, or +∞.

20.6 Hausdorff volume on sub-Riemannian manifolds

A sub-Riemannian manifold (M,U, f), can be seen as a metric space (M,d) endowed with the sub-
Riemannian distance. The following questions are then natural in view of the previous discussion:

(a) What is the Hausdorff dimension D := dimH(M) of (M,d)?

(b) Is HD(B(p, r)) (or, equivalently, SD(B(p, r))) finite?

(c) What is the Radon–Nikodym derivative of HD (or SD) with respect to a smooth volume µ ?

Notice that, while the answer to question (b) is independent on the choice among HD or SD, in
question (c) the density depends on which Hausdorff volume we work with.

We will answer to these questions under the assumptions that the sub-Riemannian manifold is
equiregular, and when we choose the spherical Hausdorff volume.

Definition 20.15. LetM be a n-dimensional smooth manifold, which is connected and orientable.
By a smooth volume on M we mean a measure µ on M associated with a smooth non-vanishing
and positively oriented n-form ω ∈ ΛnM , i.e., for every subset A ⊂M we set

µ(A) =

∫

A
ω. (20.37)

567



In a coordinate system (x1, . . . , xn) on M a smooth volume is locally written as

ω = g(x)dx1 ∧ · · · ∧ dxn,

where g :M → R is some smooth and strictly positive function. In this case (20.37) simply means

µ(A) =

∫

A
g(x)dx1 · · · dxn.

The Popp volume P defined in the first part of the chapter, when the sub-Riemannian structure
is equiregular, is a smooth volume in the sense of Definition 20.15.

Remark 20.16. Orientation here is only a technical condition to have a globally defined non degen-
erate n-form. All the results in what follows can be stated without the orientability assumption,
replacing differential forms with smooth densities. We refer the interested reader to [Lee13, Chap-
ter 16].

20.6.1 Hausdorff dimension

Given an equiregular sub-Riemannian manifold (see Section 20.1) we set di = dimDiq for i ≥ 0
(where d0 = 0) and we define the homogeneous dimension

Q :=

k∑

i=1

i(di − di−1), (20.38)

The following two lemmas are crucial in the sequel. The first one is a uniform volume estimate and
is a consequence of the Ball-box theorem for equiregular manifold.

Lemma 20.17. Let M be an equiregular sub-Riemannian manifold and let µ be a smooth volume.
For every compact K ⊂M there exist ε0 > 0 and 0 < c1 < c2 such that

c1ε
Q ≤ µ(B(q, ε)) ≤ c2εQ. (20.39)

for every point q ∈ K and every ε < ε0.

Proof. Fix a point q ∈ M and consider privileged coordinates around this point. By the Ball-Box
theorem (Theorem 10.67) there exist constants c′1, c

′
2 > 0 such that

c′1Box(ε) ⊂ B(q, ε) ⊂ c′2Box(ε) (20.40)

for ε < ε0 small enough (both the constants and ε0 depending on q). Recall that

Box(ε) = {x ∈ Rn : |xi| ≤ εi, i = 1, . . . , k}. (20.41)

in privileged coordinates x = (x1, . . . , xk) ∈ Rn1 ⊕ . . .⊕Rnk = Rn (cf. Chapter 10). It follows that

µ(c′1Box(ε)) ≤ µ(B(q, ε)) ≤ µ(c′2Box(ε)). (20.42)

In privileged coordinates µ = g(x)dx where g is a smooth function in Rn and dx is the Lebesgue
volume. The volume of Box(ε) with respect to the Lebesgue volume is εQ. Since g is smooth, it is
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uniformly bounded from above and below on compact sets, hence there exist two constants c1, c2
such that

c1ε
Q ≤ µ(c′1Box(ε)), and µ(c′2Box(ε)) ≤ c2εQ. (20.43)

for ε > 0 small enough. Since the structure is equiregular these estimate can be made uniform for
points q in a compact K (more precisely, the constants c′i(q) are bounded from above and from
below).

The second lemma permits to pass from a uniform estimate of the measure of balls in term of
diameters to an estimate with respect to spherical Hausdorff measure.

Lemma 20.18. Let µ be a smooth volume and fix q ∈ M . Assume there exists ε0 > 0 and
0 < c1 < c2 such that, for every point p ∈ B(q, ε0) and every ε < ε0, there holds

c1 diam(B(p, ε))Q ≤ µ(B(p, ε)) ≤ c2 diam(B(p, ε))Q. (20.44)

Then, for every ε < ε0,

c1SQ(B(q, ε)) ≤ µ(B(q, ε)) ≤ c2SQ(B(q, ε)) (20.45)

Proof. We prove separately the two inequalities.
(i). Let

⋃
iB(pi, ri) be an arbitrary covering of B(q, ε) with balls of radius smaller than δ < ε0. If

δ is small enough, every pi belongs to B(q, ε0) and, using (20.44), there holds

µ(B(q, ε)) ≤
∑

i

µ(B(pi, ri)) ≤ c2
∑

i

diam(B(pi, ri))
Q.

Hence, passing to the infimum on such coverings we have

µ(B(q, ε)) ≤ c2SQ(B(q, ε)).

(ii). For the other inequality, fix any η > 0 and 0 < δ < ε0, and let
⋃
iB(pi, ri) be a covering of

B(q, ε) such that pi ∈ B(q, ε), ri < δ, and

∑

i

µ(B(pi, ri)) ≤ µ(B(q, ε)) + η.

Such a covering exists due to the Vitali covering lemma. Using as above (20.44), we obtain

c1
∑

i

diam(B(pi, ri))
Q ≤

∑

i

µ(B(pi, ri)) ≤ µ(B(q, ε)) + η.

Since SQδ is an infimum on coverings we have

c1SQδ (B(q, ε)) ≤ µ(B(q, ε)) + η.

Letting η and δ tend to 0, one gets the conclusion.

Combining these two lemmas we easily obtain the following result.

Theorem 20.19. Let M be an equiregular sub-Riemannian manifold and let µ be a smooth volume.
Then
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(i) SQ(B(q, ε)) < +∞ for ε < ε0 = ε0(q),

(ii) dimHM = Q,

(iii) SQ is a Radon measure on M .

Proof. (i). Let us prove that small balls have finite SQ volume, i.e., for every p ∈ M there exists
ε > 0 such that SQ(B(p, ε)) < +∞ for ε small enough. Thanks to Proposition 4.69 we have that
diam(B(q, ε)) = 2ε for ε small enough, combined with Lemma 20.17 we have that the assumptions
of Lemma 20.18 are satisfied. It follows from estimate (20.45) that SQ(B(p, ε)) < +∞.

(ii). Fix a ball B(p, ε) such that SQ(B(q, ε)) < +∞, thanks to part (i). Then SQ+η(M) ≥
SQ+η(B(p, ε)) = +∞ hence dimHM ≤ Q. Analogously let us write M = ∪iB(qi, εi) where every
SQ(B(qi, εi)) < +∞. Then SQ+η(M) ≤∑i SQ+η(B(qi, εi)) = 0 and dimHM ≥ Q.

(iii). Since SQ is locally finite by (i), then it is finite on compact sets by classical covering
arguments.

20.6.2 On the metric convergence

Recall that, given an equiregular sub-Riemannian structure, we can fix a basis of vector fields
V1, . . . , Vn on the tangent space which is privileged at every point in a neighborhood of a fixed
point q ∈M (cf. Section 10.4.3).

A continuous (actually smooth) system of privileged coordinates in a neighborhood Ω of a point
q ∈M is given by the map

Ψ : Ω× Rn →M, Ψ(p, s1, . . . , sn) = p ⊙ es1V1 ⊙ . . . ⊙ esnVn , (20.46)

We call this a set of uniform privileged coordinates around the point q ∈M .

From the equiregularity assumption and convergence of the metrics we have the following uni-
form estimate.

Lemma 20.20. Let M be an equiregular sub-Riemannian manifold and fix uniform privileged
coordinates around q ∈M . For every ε > 0 small enough there exists r = r(ε) such that

B̂q(ε(1 − r)) ⊂ B(q, ε) ⊂ B̂q(ε(1 + r)), (20.47)

with r(ε)→ 0 when ε→ 0. Moreover r(ε) can be chosen uniformly in a neighborhood of q.

Proof. Fix a set of privileged coordinates and denote by dε the sub-Riemannian distance defined
by the ε-approximations of the vector fields from a generating frame at a point q. Thanks to
Theorem 10.65 we have that dε → d̂ on compact sets. This implies that there exists ε0 such that
for every ε < ε0 we have the inclusions

B̂q(1− r) ⊂ Bε(q, 1) ⊂ B̂q(1 + r), (20.48)

for some r = r(ε) > 0, depending on ε, and such that r(ε)→ 0 when ε→ 0. Applying the dilation
δε to (20.48), one gets (20.47) (recall that δε(B

ε(q, 1)) = B(q, ε) thanks to 10.61).
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20.6.3 Induced volumes and estimates

Definition 20.21. Let M be an equiregular sub-Riemannian manifold. If µ a smooth volume on
M , associated to ω, we define the induced volume µ̂q at the point q as the left-invariant volume on
the nilpotent tangent space at q canonically associated with ωµ(q) ∈ ∧n(T ∗

qM) (cf. isomorphism
given by the Lemma 20.4).

We prove now the main estimate, that is a refinement of Lemma 20.17.

Proposition 20.22. Let µ be a smooth volume and µ̂q the induced volume at the nilpotent approx-
imation at q. For ε→ 0

µ(B(q, ε)) = εQµ̂q(B̂q) + o(εQ), (20.49)

where o(εQ) is uniform as q varies in M and B̂q is the ball centered at 0 of radius 1 in the nilpotent
approximation at q of the sub-Riemannian manifold.

Proof. The result is of local nature. Fix a set of privileged coordinates (x1, . . . , xn) where q = 0,
µ = g(x)dx and µ̂q = g(0)dx. Then

µ(B(q, ε)) =

∫

B(q,ε)
g(x)dx =

∫

B(q,ε)
(g(0) + o(1))dx = µ̂q(B(q, ε)) + o(εQ), (20.50)

where we used that the measure of B(q, ε) is O(εQ) (cf. Lemma 20.17). Then using the homogeneity
of µ̂q we get

µ̂q(B(q, ε)) = εQµ̂q(δ1/εB(q, ε)). (20.51)

To conclude, we use the following fact, stated in privileged coordinates.

Lemma 20.23. We have that µ̂q(δ1/εB(q, ε))→ µ̂q(B̂q) for ε→ 0.

Proof. For ε > 0 small enough we have applying δ1/ε to (20.47)

B̂q(1− r) ⊂ δ1/εB(q, ε) ⊂ B̂q(1 + r). (20.52)

Hence

µ̂q(δ1/εB(q, ε))− µ̂q(B̂q) ≤ µ̂q(B̂q(1 + r))− µ̂q(B̂q)
≤
(
(1 + r)Q − 1

)
µ̂q(B̂q).

Analogously one proves the inequality

µ̂q(δ1/εB(q, ε))− µ̂q(B̂q) ≥
(
(1 − r)Q − 1

)
µ̂q(B̂q).

Using that r(ε)→ 0 for ε→ 0 (uniformly in q) one gets the claim.

We now go back to the proof of the Proposition 20.22. Applying Lemma 20.23 to (20.51) we
get

µ̂q(B(q, ε)) = εQµ̂q(δ1/εB(q, ε)) = εQµ̂q(B̂q) + o(εQ) (20.53)

Combining (20.50) and (20.53) we have (20.49).
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Proposition 20.24. Assume M is equiregular endowed with a smooth volume µ. The function
µ̂ :M → R defined by µ̂ : q 7→ µ̂q(B̂q) is continous.

To prove this Proposition we use an analogue of Lemma 20.20 for a family of nilpotent approx-
imation depending on the point.

Lemma 20.25. Let {d̂q}q∈M be the family of nilpontent approximations on an equiregular sub-
Riemannian manifold. There exists r = r(p, q) such that

B̂q(1− r) ⊂ B̂p(1) ⊂ B̂q(1 + r), (20.54)

where r(p, q)→ 0 when d(p, q)→ 0. Moreover the estimate (20.54) is uniform for p, q in a compact
set.

Proof of Proposition 20.24. Thanks to the previous discussion, the measure µ̂q can be represented
in a set of uniform privlieged coordinates as

µ̂q(A) =

∫

A
ĝ(q, x)dx1 · · · dxn,

where ĝ is a smooth function of the two parameters. We have to estimate the difference

|µ̂p(B̂p)− µ̂q(B̂q)| ≤ |µ̂p(B̂p)− µ̂q(B̂p)|+ |µ̂q(B̂q)− µ̂q(B̂p)|,

and show that the right hans side tends to zero when p→ q.
For the first term, using that ĝ is smooth in q uniformly in x we get from the mean value

theorem1

|µ̂p(B̂p)− µ̂q(B̂p)| ≤
∫

B̂p

|ĝ(p, x)− ĝ(q, x)| dx1 · · · dxn,

≤ d(p, q)
∫

B̂p

|Ĝ(x)|dx1 · · · dxn,

for some smooth function Ĝ(x). Fix a compact K such that B̂p ⊂ K for all p in a neighborhood of
q. Hence there exists C > 0 such that for p, q close enough

|µ̂p(B̂p)− µ̂q(B̂p)| ≤ Cd(p, q),

For the second one

|µ̂q(B̂q)− µ̂q(B̂p)| ≤ µ̂q(B̂p ⊖ B̂q),

where B̂p ⊖ B̂q := (B̂p \ B̂q) ∪ (B̂q \ B̂p) is the symmetric set difference. Thanks to Lemma 20.25

µ̂q(B̂p ⊖ B̂q) ≤ µ̂q(B̂q(1 + r) \ B̂q) ∪ µ̂q(B̂q \ B̂q(1− r))
≤ µ̂q(B̂q(1 + r) \ B̂q(1− r))
≤ [(1 + r)Q − (1− r)Q]µ̂q(B̂q).

Since (1 + r)Q − (1− r)Q = O(r) and r(p, q)→ 0 when d(p, q)→ 0, the proof is completed.
1in coordinates

|ĝ(p, x)− ĝ(q, x)| ≤ sup
t∈[0,1]

∣∣∣∣
∂ĝ

∂q
(tp+ (1− t)q, x)

∣∣∣∣ |p− q| ≤ |Ĝ(x)|d(p, q).

572



20.7 Density of the spherical Hausdorff volume with respect to a

smooth volume

We state now the main result of this section. Recall that µ is a fixed smooth volume on M .

Theorem 20.26. The measure SQ is absolutely continuous with respect to µ. The Radon–Nikodym
derivative is given by

dµ

dSQ (q) =
µ̂q(B̂q)

2Q
(20.55)

is a continuous function on M . In particular, if A is a Borel set in M , we have the formula

µ(A) =
1

2Q

∫

A
µ̂q(B̂q)dSQ. (20.56)

Theorem 20.26 is a consequence of the differentiation theorem for Radon measures in metric
spaces [Sim83, Thm. 4.7] (see also [Fed69]). This result guarantees that the Radon–Nikodym
derivative can be computed as follows:

dµ

dSQ (q) = lim
ε→0

µ(B(q, ε))

SQ(B(q, ε))
. (20.57)

The proof is then completed by the following result.

Proposition 20.27. Assume M is equiregular. Then, for every smooth volume µ on M ,

lim
ε→0

µ(B(q, ε))

SQ(B(q, ε))
=
µ̂q(B̂q)

2Q
, ∀ q ∈M. (20.58)

Proof of Proposition 20.27. Fix q ∈ M . For every p in a neighborhood of q we have the following
expansions

µ(B(p, ε)) = εQµ̂p(B̂p) + o(εQ), (20.59)

diam(B(p, ε)) = 2ε+ o(ε). (20.60)

Thanks to the equiregularity ofM , these expansions (i.e., the quantities o(εQ) and o(ε)) are uniform
for p in a neighborhood of q (cf. the uniform estimates (20.47)). Moreover p 7→ µ̂p(B̂p) is continuous
in a neighborhood of q ∈M , thanks to Proposition 20.24.

Therefore we can write in a neighborhood of q

µ(B(p, ε))

diam(B(p, ε))Q
=
εQµ̂p(B̂p) + o(εQ)

2QεQ + o(εQ)
=
µ̂p(B̂p)

2Q
(1 + o(1)),

where o(1) is uniform in p. Thus for every η > 0 we can find 0 < ε0 < η such that for every
p ∈ B(q, ε0) and every ε < ε0 we have

µ̂q(B̂q)

2Q
− η ≤ µ(B(p, ε))

diam(B(p, ε))Q
≤ µ̂q(B̂q)

2Q
+ η.

Applying Lemma 20.18 one obtains that for every η > 0 there exists ε > 0 such that for ε < ε0 we
have

µ̂q(B̂q)

2Q
− η ≤ µ(B(q, ε))

SQ(B(q, ε))
≤ µ̂q(B̂q)

2Q
+ η,

that is the definition of the limit (20.58).
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Exercise 20.28. Prove that if (G, d) is a Carnot group and Q is its Hausdorff dimension, then
SQ(B(x, r)) = 2QrQ. This says that formula (20.58) can be reinterpreted as

lim
ε→0

µ(B(q, ε))

SQ(B(q, ε))
=

µ̂q(B̂q)

ŜQ(B̂q)
, (20.61)

where ŜQ is the spherical Hausdorff volume on the nonholonomic tangent space.

20.8 Bibliographical note

The problem to define a canonical volume on a sub-Riemannian manifold was first pointed out by
Brockett in his seminal paper [Bro82], motivated by the construction of a Laplace operator on a
3D sub-Riemannian manifold canonically associated with the metric structure, analogous to the
Laplace-Beltrami operator on a Riemannian manifold.

Montgomery addressed the problem in the general case in [Mon02, Chapter 10]. A first natural
volume is Popp’s volume, first defined by Octavian Popp but appeared in the literature only in
[Mon02]. A second natural volume Hausdorff volume. These two measure are mutually absolutely
continuous and the question is whether the density is smooth or not.

A first answer to this question was given in [ABB12], where also the formula for the density of
the spherical Hausdorff measure with respect to a smooth first appeared. The proof given here for
the formula of the density is essentially taken from [GJ14], where the authors extends the study to
non-equiregular situations (see also [GJ15]). Indeed the key argument in the proof of the density
formula in [ABB12] contains a gap, in the sense that the proof is complete only for centered2

Hausdorff measure. We refer, for instance, to the paper [FSSC15] for a discussion on centered
Hausdorff measure and its comparison to spherical one. The formula for the Hausdorff dimension
of sub-Riemannian manifolds first appeared in [Mit85].

The smoothness of the density of the spherical Hausdorff measure with respect to a smooth one
have also been studiend in corank 2 sub-Riemannian manifolds in [BBG12, BG13].

Further discussions on Popp’s volume can be found in [ABGR09] and [BR13].

2in the definition of centered Hausdorff measure one requires that the center of the balls belong to the set one is
measuring.
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Chapter 21

The sub-Riemannian heat equation

In this chapter we derive the sub-Riemannian heat equation and its relation to the notion of
intrinsic volume in sub-Riemannian geometry. We then discuss (without proofs) the well-posedness
of the Cauchy problem, the smoothness of its solution and the relation with the bracket-generating
condition (Hörmander theorem). In the last part of the chapter we present en elementary method
to compute the fundamental solution of the heat equation on the Heisenberg group (the celebrated
Gaveau-Hulanicki formula) and we briefly discuss the relation between the small-time heat kernel
asymptotics and the sub-Riemannian distance.

21.1 The heat equation

To write the heat equation in a general sub-Riemannian manifold, let us start by writing it in
the Riemannian context and let us see which mathematical structures are missing in the sub-
Riemannian one.

21.1.1 The heat equation in the Riemannian context

Let (M,g) be an oriented1 Riemannian manifold of dimension n and let R be the Riemannian
volume form defined by

R(X1, . . . ,Xn) = 1, where {X1, . . . ,Xn} is a local orthonormal frame.

In coordinates if g is represented by a matrix (gij), we have

R =
√
det(gij) dx1 ∧ . . . ∧ dxn.

Let φ be a quantity (depending on the position q and on the time t) subjects to a diffusion
process. For example it may represent the temperature of a body, the concentration of a chemical
product, the noise etc. Let F be a time dependent vector field representing the flux of the quantity
φ, i.e., how much of φ is flowing through the unity of surface in unitary time.

Our purpose is to get a partial differential equation describing the evolution of φ. The Rieman-
nian heat equation is obtained by postulating the following two facts:

1we work an oriented manifold for simplicity of presentation. In the non-orientable case, a never vanishing globally
defined n form does not exist. However one can repeat the same arguments using densities. See for instance [Tay96,
Section 2.2].
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ν

∂V

V

Figure 21.1: Heat conservation in V .

(R1) the flux is proportional to minus the gradient of φ, i.e., normalizing the proportionality
constant to one, we assume that

F = −grad(φ); (21.1)

(R2) the quantity φ satisfies a conservation law, i.e., for every bounded open set V having a smooth
boundary ∂V we have the following: the rate of decreasing of φ inside V is equal to the rate
of flowing of φ via F, out of V , through ∂V . See Figure 21.1. In formulas this is written as

− d

dt

∫

V
φ R =

∫

∂V
F · ν dS. (21.2)

Here ν is the external (Riemannian) normal to ∂V and dS is the element of area induced
by R on M , thanks to the Riemannian structure, i.e., dS = R(ν, ·). The symbol F · ν is a
notation for gq(F(q, t), ν(q)).

Applying the Riemannian divergence theorem to (21.2) and using (21.1) we have then

− d

dt

∫

V
φ R =

∫

∂V
F · ν dS =

∫

V
divR(F)R = −

∫

V
divR(grad(φ))R.

By the arbitrarity of V and defining the Riemannian Laplacian (usually called the Laplace-Beltrami
operator) as

△φ = divR(grad(φ)), (21.3)

we get the heat equation
∂

∂t
φ(q, t) = △φ(q, t).

Useful expressions for the Riemannian Laplacian

In this section we get some useful expressions for △. To this purpose we have to recall what are
grad and divR in formula (21.3).

We recall that the gradient of a smooth function ϕ : M → R is a vector field pointing in the
direction of the greatest rate of increase of ϕ and its magnitude is the derivative of ϕ in that
direction. In formulas, it is the unique vector field grad(ϕ) satisfying for every q ∈M ,

gq(grad(ϕ), v) = dϕ(v), for every v ∈ TqM. (21.4)

In coordinates, if g is represented by a matrix (gij), and calling (gij) its inverse, we have

grad(ϕ)i =

n∑

j=1

gij∂jϕ. (21.5)
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If {X1, . . . ,Xn} is a local orthonormal frame for g, we have the useful formula

grad(ϕ) =
n∑

i=1

Xi(ϕ)Xi. (21.6)

Exercise 21.1. Prove that if the Riemannian metric is defined globally via a generating family
{X1, . . . ,Xm} with m ≥ n, in the sense of Chapter 3, then grad(ϕ) =

∑m
i=1Xi(ϕ)Xi.

Recall that the divergence of a smooth vector field X says how much the volume is increasing
or decreasing along the flow of X. It is defined in the following way. The Lie derivative in the
direction of X of the volume form is still a n-form and hence point-wise proportional to the volume
form itself. The function of proportionality is by definition is the divergence of X. In formulas,

LXR = divR(X)R.
Now, using dR = 0 and the Cartan formula (4.83), we have that LXR = iXdR+d(iXR) = d(iXR).
Hence the divergence of a vector field X can be defined by

d(iXR) = divR(X)R. (21.7)

In coordinates, if R = h(x)dx1 ∧ . . . dxn we have

divR(X) =
1

h(x)

n∑

i=1

∂i(h(x)X
i). (21.8)

Remark 21.2. Notice that to define the divergence of a vector field it is not necessary a Riemannian
structure, but only a volume form (i.e., a smooth n-form globally defined).

If we put together formula (21.5) and formula (21.8), with X = grad(ϕ) we get the well-known
expression for the Laplace Beltrami operator,

△(ϕ) = divR(grad(ϕ)) =
1

h(x)

n∑

i,j=1

∂i(h(x)g
ij∂jϕ). (21.9)

Combining formula 21.6 with the property div(aX) = adiv(X) +X(a) where X is a vector field
and a is a function, we get

△(ϕ) =

n∑

i=1

(
X2
i ϕ+ divR(Xi)Xi(ϕ)

)
(21.10)

where {X1, . . . Xn} is a local orthonormal frame. Similarly, defining the Riemannian structure via
a generating family {X1, . . . Xm}, for m ≥ n, we get

△(ϕ) =
m∑

i=1

(
X2
i ϕ+ divR(Xi)Xi(ϕ)

)
. (21.11)

Remark 21.3. Notice that one could consider a diffusion process on a Riemannian manifold mea-
suring the gradient with the Riemannian structure and the volume with a volume form ω different
from R. In this case one would get a heat equation of the form (one can do this explicitly by using
Lemma 21.4 below).

∂

∂t
φ(q, t) = △φ(q, t), where △φ = divω(grad(φ)).

From Formula 21.10 or (21.11) one gets that the choice of the volume form does not affect the
second order terms, but only the first order ones.
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21.1.2 The heat equation in the sub-Riemannian context

Let M be a sub-Riemannian manifold of dimension n. To write a heat-like equation in the sub-
Riemannian context we follow what we did in the Riemannian case. However many ingredients are
missing and we have to follow a different argument to derive the heat equation. We denote by φ
the quantity that is subject to the diffusion process, and we postulate that:

(SR1) the heat flows in the direction where φ is increasing more, but only among horizontal direc-
tions;

(SR2) the quantity φ satisfies a conservation law, i.e., for every bounded open set V having a smooth
and orientable boundary ∂V , the rate of decreasing of φ inside V is equal to the rate of flowing
of φ, out of V , through ∂V .

For (SR1) we need:

A. a notion of horizontal gradient;

for (SR2) we need:

B. a way of computing the volume;

C. a way to express the conservation law without using the Riemannian normal ν to ∂V , the
scalar product between ν and the flux and the Riemannian divergence theorem.

Let us now discuss A, B, and C.

A. The horizontal gradient

In sub-Riemannian geometry the gradient of a smooth function ϕ : M → R is a horizontal vector
field (called horizontal gradient) pointing in the horizontal direction of the greatest rate of increase
of ϕ and its magnitude is the derivative of ϕ in that direction. In formulas it is the unique vector
field gradH(ϕ) satisfying for every q ∈M ,

〈gradH(ϕ) | v〉q = dϕ(v), for every v ∈ DqM. (21.12)

Here 〈· | ·〉q is the scalar product induced by the sub-Riemannian structure on Dq (see Exercise 3.9).
If {X1, . . . ,Xm} is a generating family then

gradH(ϕ) =

m∑

i=1

Xi(ϕ)Xi.

B. Measuring the volume

As in the Riemannian case, let us assume for simplicity that M is oriented. The construction of
a canonical volume form in sub-Riemannian geometry (i.e., a volume form obtained using only
the sub-Riemannian structure) have been discussed in Chapter 20. We have seen that, in the
equiregular case, a canonical construction exists and the volume form obtained in that way is
called Popp’s volume. However other constructions are possible. Being (M,d) a metric space one
can for instance use the Hausdorff volume or the spherical Hausdorff volume. In certain cases,
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these different constructions give rise to the same volume form (up to a multiplicative constant).
In others cases, different constructions give rise to a different volume form. Here, we are not going
to discuss the details of this problem. Let us just recall that the three situations that one can
encounter are (we refer to the bibliographical note for some references):

• rank-varying or non-equiregular cases. In this case a construction of a canonical smooth
volume form is not known.

• equiregular cases for which the nilpotent approximation at different points are isometric.
In this case Popp’s volume is in a sense the only canonical volume (up to a multiplicative
constant) that one can build;2

• equiregular cases for which nilpotent approximations at different points are not isometric. In
this case one can build an infinite number of canonical volumes and Popp’s volume is only
one of the possible constructions.

For left-invariant sub-Riemannian structures on Lie groups, the nilpotent approximations at dif-
ferent points are isometric and we are in the second case. For these structures Popp’s volume is
a left-invariant volume form and hence it coincides (up to a multiplicative constant) with the left
Haar measure on the group that is a canonical volume that can be built on any Lie group.

Due to these difficulties, in the following we assume that a volume form ω (i.e., a smooth n-form
globally defined) is assigned independently of the sub-Riemannian structure.

C. Conservation laws without a Riemannian structure

The next step is to express the conservation of the heat without a Riemannian structure. This can
be done thanks to the following lemma, whose proof is left as an exercise.

Lemma 21.4. Let M be a smooth manifold provided with a smooth volume form ω. Let Ω be
an embedded bounded sub-manifold (possible with boundary) of codimension 1. Let F (q, t) be a
time-dependent complete vector field (we assume smoothness jointly in q and t) and P0,t be the
corresponding flow. Consider the cylinder defined by the images of Ω translated by the flow of F
for times between 0 and t (see Figure 21.2):

ΠF (t,Ω) = {P0,t(Ω) | s ∈ [0, t]}.

Then
d

dt

∣∣∣∣
t=0

∫

ΠF (t,Ω)
ω =

∫

Ω
iF (q,0) ω(q).

The heat equation

The postulate (SR1) consist then in declaring that the heat is flowing via a flux F given by

F = −gradH(φ).
2roughly speaking Popp’s volume is the unique volume form (up to a multiplicative constant) that at every point

q depends only on the nilpotent approximation of the sub-Riemannian structure at the point q.
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Ω

ΠF (t,Ω)

F

Figure 21.2: The cylinder ΠF (t,Ω).

The postulate (SR2) is then written as

− d

dt

∫

V
φ ω =

d

dt

∫

ΠF(t,∂V )

ω =

∫

∂V
iF ω,

where in the last equality we have used the Lemma 21.4.
Now, using Stokes theorem, the definition of divergence (21.7) and the identity F = −gradHφ

we have ∫

∂V
iF ω =

∫

V
d(iF ω) =

∫

V
divω(F)ω = −

∫

V
div(gradH(φ))ω.

Definition 21.5. Let M be a sub-Riemannian manifolds and let ω be a volume on M . The
operator △Hφ = divω(gradH(φ)) is called the sub-Riemannian Laplacian.

By the arbitrarity of V we get the sub-Riemannian heat equation

∂

∂t
φ(q, t) = △Hφ(q, t).

21.1.3 The Hörmander theorem and the existence of the heat kernel

The expression of the sub-Riemannian Laplacian does not change if we multiply the volume by
a (non zero) constant. In the equiregular case and when the nilpotent approximation of the sub-
Riemannian structure does not depend on the point, the sub-Riemannian Laplacian computed with
respect to the Popp volume is called the intrinsic sub-Laplacian. △intrφ = divP(gradH(φ)).

The same computation of the Riemannian case provides the following expression for the sub-
Riemannian Laplacian,

△H(φ) =

m∑

i=1

(
X2
i φ+ divω(Xi)Xi(φ)

)
where {X1, . . . Xm}, is a generating family. (21.13)

In the Riemannian case, the operator △H is elliptic, i.e., in coordinates it has the expression

△H =

n∑

i,j=0

aij(x)∂i∂j + first order terms,

where the matrix (aij) is symmetric and positive definite for every x.
In the sub-Riemannian (and not-Riemannian) case, △H it is not elliptic since the matrix (aij)

can have several zero eigenvalues. However, a theorem of Hörmander says that, thanks to the
bracket-generating condition, △H is hypoelliptic.

We have the following.
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Theorem 21.6 (Hörmander). Let {Y0, Y1 . . . Yk} be a family of bracket-generating vector fields on
a smooth manifold M . Then the operator L = Y0 +

∑k
i=1 Y

2
i is hypoelliptic which means that if ϕ

is a distribution defined on an open set Ω ⊂M , such that Lϕ is C∞, then ϕ is C∞ in Ω.

Notice that:

• Elliptic operators with C∞ coefficients are hypoelliptic.

• The heat operator△−∂t, where△ is the Laplace-Beltrami operator on a Riemannian manifold
M , is not elliptic, since the matrix of coefficients of the second order derivatives in R×M has
one zero eigenvalue (the one corresponding to t). However it is hypoelliptic since if {X1 . . . Xn}
is an orthonormal frame, then Y0 =

∑n
i=1 divR(Xi)Xi(φ) − ∂t and Y1 := X1, . . . , Yn := Xn

are bracket-generating in R×M .

• The sub-Riemannian heat operator △H − ∂t is hypoelliptic since, if {X1 . . . Xm} is a gener-
ating family, then Y0 =

∑m
i=1 divω(Xi)Xi(φ) − ∂t and Y1 := X1, . . . , Ym := Xm are bracket-

generating in R × M . (The hypoellipticity of △H alone is consequence of the fact that
{X1, . . . ,Xm} are bracket-generating on M .)

One of the most important consequences of the Hörmander theorem is that the heat evolution
smooths out immediately every initial condition. Indeed if one can guarantee that a solution of
(△H − ∂t)ϕ = 0 exists in distributional sense in an open set Ω of R ×M , then, being 0 ∈ C∞, it
follows that ϕ is C∞ in Ω.

A standard result for the existence of a solution in L2(M,ω) is given by the following theorem.3

Theorem 21.7. Let M be a smooth manifold and ω be a volume on M . If △ is a non-negative
and essentially self-adjoint operator on L2(M,ω), then, there exists a unique solution to the Cauchy
problem

{
(∂t −△)φ = 0
φ(q, 0) = φ0(q) ∈ L2(M,ω),

(21.14)

on [0,+∞[×M . Moreover for each t ∈ [0,+∞[ this solution belongs to L2(M,ω).

It is immediate to prove that △H is non-negative and symmetric on L2(M,ω). If in addition
one can prove that △H is essentially self-adjoint, then thanks to the Hörmander theorem, one has
that the solution of (21.14) is indeed C∞ in ]0,+∞[×M .

The discussion of the theory of self-adjoint operators is out of the purpose of this book. However
the essential self-adjointness of △H is guaranteed by the completeness of the sub-Riemannian
manifold as metric space.

Theorem 21.8. Consider a sub-Riemannian manifold that is complete as metric space. Let ω be
a volume on M . Then △H defined on C∞c (M) is essentially self-adjoint in L2(M,ω).

Typical cases in which the sub-Riemannian manifold is complete are left-invariant structure on
Lie groups, sub-Riemannian manifold obtained as restriction of complete Riemannian manifolds,
sub-Riemannian structures defined in Rn having as generating family a set of sub-linear vector
fields.

3By L2(M,ω) we mean functions from M to R which are square integrable with respect to the volume ω.
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When the manifold is not complete as metric space (as for instance the standard Euclidean
structure on the unitary disc in R2), then to study the Cauchy problem (21.14) one need to specify
more the problem (e.g., boundary conditions).

As a consequence of the hypoellipticity of △H − ∂t, of Therem 21.7 and of Theorem 21.8, we
have

Corollary 21.9. Consider a sub-Riemannian manifold that is complete as metric space. Let ω
be a volume on M . There exists a unique solution to the Cauchy problem (21.14), that is C∞ in
]0,+∞[×M .

Under the hypothesis of completeness of the manifold one can also guarantee the existence of a
convolution kernel.

Theorem 21.10. Consider a sub-Riemannian manifold that is complete as metric space. Let ω be
a volume on M . Then the unique solution to the Cauchy problem (21.14) on ]0,+∞[×M can be
written as

φ(q, t) =

∫

M
φ0(q̄)Kt(q, q̄)ω(q̄)

where Kt(q, q̄) is a positive function defined on ]0,+∞[×M×M which is smooth, symmetric for the
exchange of q and q̄ and such that for every fixed (t, q) ∈]0,+∞[×M , we have Kt(q, ·) ∈ L2(M,ω).

The function Kt(q, q̄) is called the kernel of the heat equation.

21.1.4 The heat equation in the non bracket-generating case

If the sub-Riemannian structure is not bracket-generating, then the operator △H can be defined
as above, but in general it is not hypoelliptic and the heat evolution does not smooth the initial
condition.

Consider for example the non bracket-generating sub-Riemannian structure on R3 for which
an orthonormal frame is given by {∂x, ∂y} (here we are calling (x, y, z) the points of R3). Take as
volume the Lebesgue volume on R3. Then △H = ∂2x+∂

2
y on R3. This operator is not obtained from

bracket-generating vector fields. Consider the corresponding heat operator △H−∂t on [0,+∞[×R3.
Since the z direction is not appearing in this operator, any discontinuity in the z variable is not
smoothed by the evolution. For instance if ψ(x, y, t) is a solution of the heat equation △H − ∂t = 0
on [0,+∞[×R2, then ψ(x, y, t)θ(z) is a solution of the heat equation on [0,+∞[×R3, where θ is the
Heaviside function.

21.2 The heat-kernel on the Heisenberg group

In this section we construct the heat kernel on the Heisenberg sub-Riemannian structure. To this
purpose it is convenient to see this structure as a left-invariant structure on a matrix representation
of the Heisenberg group. This point of view is useful because permits to fully exploit the left-
invariance of the structure (construction of a canonical volume form, looking for a special form of
the heat kernel that behave well for left-translations etc.).
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21.2.1 The Heisenberg group as a group of matrices

The Heisenberg group H1 can be seen as the 3-dimensional group of matrices

H1 =








1 x z + 1
2xy

0 1 y
0 0 1


 | x, y, z ∈ R



 ,

endowed with the standard matrix product. H1 is indeed R3, endowed with the group law

(x1, y1, z1) · (x2, y2, z2) =
(
x1 + x2, y1 + y2, z1 + z2 +

1

2
(x1y2 − x2y1)

)
. (21.15)

This group law comes from the matrix product after the identification

(x, y, z) ∼




1 x z + 1
2xy

0 1 y
0 0 1


 .

The identity of the group is the element (0, 0, 0) and the inverse element is given by the formula

(x, y, z)−1 = (−x,−y,−z).

A basis of the Lie algebra h of H is {p1, p2, k}, where

p1 =




0 1 0
0 0 0
0 0 0


 , p2 =




0 0 0
0 0 1
0 0 0


 , k =




0 0 1
0 0 0
0 0 0


 . (21.16)

We have following commutation rules: [p1, p2] = k, [p1, k] = [p2, k] = 0, hence H is a 2-step nilpotent
Carnot group.

Remark 21.11. Notice that if one writes an element of the algebra as xp1 + yp2 + zk, one has that

exp(xp1 + yp2 + zk) =




1 x z + 1
2xy

0 1 y
0 0 1


 . (21.17)

Hence the coordinates (x, y, z) are the coordinates on the Lie algebra related to the basis {p1, p2, k},
transported on the group via the exponential map. These are called coordinates of the first type.
As we will see later, coordinates (x, y, w), where w = z + 1

2xy, are also useful.

The standard sub-Riemannian structure on H is the one having as generating family:

X1(g) = gp1, X2(g) = gp2.

With a straightforward computation one gets the following coordinate expression for the generating
family:

X1 = ∂x −
y

2
∂z, X2 = ∂y +

x

2
∂z,

that we already met several times in the previous chapters.

Let Lg (resp. Rg) be the left (resp. right) translation on H:

Lg(h) = gh, Rg(h) = hg, g, h ∈ H.
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Exercise 21.12. Prove that, up to a multiplicative constant, there exists a unique 3-form dhL on H
which is left-invariant, i.e., such that L∗

gdhL = dhL. Show that dhL coincides (up to a multiplicative
constant) with the Lebesgue measure dx∧dy∧dz. Prove the same for a right-invariant 3-form dhR.

The left- and right-invariant forms built in the exercise above are the left and right Haar
measures on H. Since they coincide up to a multiplicative constant, the Heisenberg group is said
to be unimodular. In the following we normalise the left and right Haar measures on the sub-
Riemannian structure in such a way that

dhL(X1,X2, [X1,X2]) = dhR(X1,X2, [X1,X2]) = 1. (21.18)

The 3-form obtained in this way on H coincides with the Lebesgue measure on R3 and in the
following we call it simply the Haar measure

dh = dx ∧ dy ∧ dz. (21.19)

As already remarked above, since we are on a Lie group this 3-form, this also coincides (up to a
multiplicative constant) with Popp’s measure.

Exercise 21.13. Prove that dh coincides with Popp’s measure.

Exercise 21.14. Prove that the two conditions (21.18) are invariant by change of the orthonormal
frame.

21.2.2 The heat equation on the Heisenberg group

Given a volume form ω on R3, the sub-Riemannian Laplacian for the Heisenberg sub-Riemannian
structure is given by the formula,

△H(φ) =
(
X2

1 +X2
2 + divω(X1)X1 + divω(X2)X2

)
φ. (21.20)

If we take as volume the Haar volume dh, and using the fact that X1 and X2 are divergence free
with respect to dh, we get for the sub-Riemannian Laplacian

△H(φ) = (X1)
2 + (X2)

2 = (∂x −
y

2
∂z)

2 + (∂y +
x

2
∂z)

2. (21.21)

The heat equation on the Heisenberg group is then

∂tφ(x, y, z, t) = △H(φ) =
(
(∂x −

y

2
∂z)

2 + (∂y +
x

2
∂z)

2
)
φ(x, y, z, t)

For this equation, we are looking for the heat kernel, namely a function Kt(q, q̄) such that the
solution to the Cauchy problem

{
(△H − ∂t)φ = 0
φ(q, 0) = φ0(q) ∈ L2(R3, dh)

(21.22)

can be expressed as

φ(q, t) =

∫

R3

Kt(q, q̄)φ0(q̄)dh(q̄), t > 0. (21.23)

The existence of a heat kernel that is smooth, positive and symmetric is guaranteed by Theorem
21.8 since the Heisenberg group (as sub-Riemannian structure) is complete. Its explicit expression
(as a matter of fact in a form of an inverse Fourier transform) is given by the following Theorem.
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Theorem 21.15. The heat kernel for the heat equation for the standard sub-Riemannian structure
on the Heisenberg group, i.e., for the equation in R3

∂tφ(x, y, z, t) =
(
(∂x −

y

2
∂z)

2 + (∂y +
x

2
∂z)

2
)
φ(x, y, z, t),

is given by the formula (here q = (x, y, z) and “·” is the group law (21.15))

Kt(q, q̄) = Pt(q
−1 · q̄),

where

Pt(x, y, z) =
1

(2πt)2

∫

R

2τ

sinh(2τ)
exp

(
− τ(x2 + y2)

2t tanh(2τ)

)
cos
(
2
zτ

t

)
dτ, t > 0. (21.24)

Formula 21.24 is called the Gaveau-Hulanicki fundamential solution for the Heisenberg group.
Notice that Pt(q) = Kt(q, 0) hence it represents the evolution at time t of an initial condition that
at time zero is concentrated in the origin (a Dirac delta δ0).

Pt(q) = Kt(q, 0) =

∫

R3

Kt(q, q̄)δ0(q̄)dh(q̄).

21.2.3 Construction of the Gaveau-Hulanicki fundamental solution

The construction of the Gaveau-Hulanicki fundamental solution on the Heisenberg group was an
important achievement of the end of the seventies (see the bibliographical note). Here we propose
an elementary direct method divided in the following steps:

STEP 1. We look for a special form for Kt(q, q̄) using the group law.

STEP 2. We make a change of variables in such a way that the coefficients of the heat equation depend
only on one variable instead of two.

STEP 3. By using the Fourier transform in two variables, we transform the heat equation (that was a
PDE in three spatial variables plus the time) in a heat equation with an harmonic potential
in one variable plus the time.

STEP 4. We find the kernel for the heat equation with the harmonic potential, thanks to the Mehler
formula for Hermite polynomials.

STEP 5. We come back to the original variables.

Let us make these steps one by one.

STEP 1. Due to invariance under the group law, we expect that Kt(q, q̄) = Kt(h ·q, h · q̄) for every
h ∈ H. Taking h = q−1 we then look for a heat kernel having the property Kt(q, q̄) = Kt(0, q

−1q̄).
Hence setting q = (x, y, z) and q̄ = (x̄, ȳ, z̄) we can write

Kt(q, q̄) = Pt(q
−1 · q̄) = Pt(x̄− x, ȳ − y, z̄ − z) = Pt(x− x̄, y − ȳ, z − z̄), (21.25)

for a suitable function Pt(·) called the fundamental solution. In the last equality we have used the
symmetry of the heat kernel.
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STEP 2. Let us make the change the variable z → w, where

w = z +
1

2
xy,

(cf. Remark 21.11). In the new variables we have that the Haar measure is dh = dx ∧ dy ∧ dw.
The generating family and the sub-Riemannian Laplacian becomes

X1 =




1
0
0


 = ∂x, (21.26)

X2 =




0
1
x


 = ∂y + x∂w, (21.27)

△H(φ) = (X1)
2 + (X2)

2 = ∂2x + (∂y + x∂w)
2. (21.28)

The new coordinates are very useful since now the coefficients of the different terms in △H depend
only on one variable. We are then looking for the solution to the Cauchy problem

{
∂tϕ(x, y, w, t) = △H(ϕ(x, y, w, t)) =

(
∂2x + (∂y + x∂w)

2
)
ϕ(x, y, w, t)

ϕ(x, y, w, 0) = ϕ0(x, y, w) ∈ L2(R3, dh)
(21.29)

where ϕ(x, y, w, t) = φ(x, y, w − 1
2xy, t).

STEP 3. By making the Fourier transform in y and w, we have ∂y → iµ, ∂w → iν and the Cauchy
problem become {

∂tϕ̂(x, µ, ν, t) =
(
∂2x − (µ + νx)2

)
ϕ̂(x, µ, ν, t)

ϕ̂(x, µ, ν, 0) = ϕ̂0(x, µ, ν).
(21.30)

By making the change of variable x→ θ, where µ+ νx = νθ, i.e., θ = x+ µ
ν we get:

{
∂tϕ̄

µ,ν(θ, t) =
(
∂2θ − ν2θ2

)
ϕ̄µ,ν(θ, t)

ϕ̄µ,ν(θ, 0) = ϕ̄µ,ν0 (θ),
(21.31)

where we set ϕ̄µ,ν(θ, t) := ϕ̂(θ − µ
ν , µ, ν, t), and ϕ̄

µ,ν
0 (θ) = ϕ̂0(θ − µ

ν , µ, ν).

STEP 4.. We have the following

Theorem 21.16. The solution of the Cauchy problem for the evolution of the heat in an harmonic
potential, i.e. {

∂tψ(θ, t) =
(
∂2θ − ν2θ2

)
ψ(θ, t)

ψ(θ, 0) = ψ0(θ) ∈ L2(R, dθ)
(21.32)

can be written in the form of a convolution kernel

ψ(θ, t) =

∫

R
Qνt (θ, θ̄)ψ0(θ̄)dθ̄, t > 0. (21.33)

where

Qνt (θ, θ̄) :=

√
ν

2π sinh(2νt)
exp

(
−1

2

ν cosh(2νt)

sinh(2νt)
(θ2 + θ̄2) +

νθθ̄

sinh(2νt)

)
, (21.34)

is the so-called Mehler Kernel.
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Remark 21.17. In the case ν = 0 we interpret Q0
t (θ, θ̄) as

limν→0Q
ν
t (θ, θ̄) =

1√
4πt

exp

(
−(θ − θ̄)2

4t

)
. (21.35)

Proof. For ν = 0, equation (21.32) is the standard heat equation on R and the heat kernel is given
by formula (21.35) (see for instance [Eva98]). In the rest of the proof we assume ν > 0. The
eigenvalues and the eigenfunctions of the operator ∂2θ − ν2θ2 on R are (see for instance [CTDL92])

Ej = −2ν(j + 1/2),

Φνj (θ) =
1√
2jj!

(ν
π

) 1
4
exp(−νθ

2

2
)Hj(

√
ν θ),

where Hj are the Hermite polynomials Hj(θ) = (−1)j exp(θ2) dj
dθj

exp(−θ2). Since the operator
∂2θ − ν2θ2 is essentially self adjoint in L2(R), we have that {Φνj }j∈N is an orthonormal frame of

L2(R) and we can write

ψ(θ, t) =
∑

j∈N
Cj(t)Φ

ν
j (θ).

Using equation (21.32), we obtain that

Cj(t) = Cj(0) exp(tEj),

where Cj(0) =
∫
RΦνj (θ̄)ψ0(θ̄) dθ̄. Hence

ψ(θ, t) =

∫

R
Qνt (θ, θ̄)ψ0(θ̄) dθ̄,

where

Qνt (θ, θ̄) =
∑

j∈N
Φνj (θ)Φ

ν
j (θ̄) exp(tEj).

After some algebraic manipulations and using the Mehler formula for Hermite polynomials (see for
instance [CTDL92])

∑

j∈N

Hj(ξ)Hj(ξ̄)

2jj!
(w)j = (1− w2)−

1
2 exp

(
2ξξ̄w − (ξ2 + ξ̄2)w2

1− w2

)
, ∀ w ∈ (−1, 1),

with ξ =
√
νθ, ξ̄ =

√
νθ̄, w = exp(−2νt), one gets formula (21.34). In the case ν < 0 we get the

same result. �

Using Theorem 21.16 we can write the solution to (21.31) as

ϕ̄µ,ν(θ, t) =

∫

R
Qνt (θ, θ̄)ϕ̄

µ,ν
0 (θ̄)dθ̄.
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An alternative construction of Mehler’s kernel

The construction of the Mehler kernel given above makes use of the Mehler formula that could
appear a bit mysterious. In the following we give an alternative elementary construction based on
a certain natural ansatz.

First observe that the following properties must hold:

P1. Qνt (θ, θ̄) = Qνt (−θ,−θ̄). This because the of invariance of harmonic potential for θ → −θ.

P2. Qνt (θ, θ̄) = Qνt (θ̄, θ). This because the operator ∂2θ − ν2θ2 is essentially self-adjoint and hence

symmetric. As a consequence the operator et(∂
2
θ−ν2θ2) is symmetric as well. It follows that

Qνt (θ, θ̄) should be symmetric for the exchange of its arguments.

P3. limt→0Q
ν
t (θ, θ̄)→ δθ̄(θ). This because for t→ 0 formula (21.33) should reproduce the initial

condition ψ0(θ).

Now, if we want to find the solution of (21.32) in the form (21.33) we could make the following
probabilistic interpretation. Fixed t > 0, Qνt (θ, θ̄) is the density of probability of finding in θ, a
random particle with a quadratic rate of killing (that at time zero was in θ̄). Densities of probability
are usually Gaussian. We then make the following ansatz:

A1 For fixed t and θ̄, Qνt (θ, θ̄) is a Gaussian.

We then look for Qνt (θ, θ̄) in the following form

Qνt (θ, θ̄) = ξ(t)ev(t)(θ
2+θ̄2)+w(t)θθ̄. (21.36)

Here for simplicity of notation we omit the dependence on ν of the functions ξ, v, w. We also
assume ν > 0, the opposite case being similar. The dependence on θ and θ̄ has been chosen to be
the exponent of a quadratic form (as a consequence of ansatz A1) that has the required symmetries
(as a consequence of properties P1 and P2). The time dependence of the functions ξ, v, w will be
obtained by equation (21.32) and by ansatz P3.

If we plug (21.36) in (21.32) we obtain

ξ̇ev(θ
2+θ̄2)+wθθ̄ + ξev(θ

2+θ̄2)+wθθ̄(v̇(θ2 + θ̄2) + ẇθθ̄) =

ξev(θ
2+θ̄2)+wθθ̄2v + ξev(θ

2+θ̄2)+wθθ̄(2vθ + wθ̄)2 − ν2θ2ξev(θ2+θ̄2)+wθθ̄.

Dividing by ξev(θ
2+θ̄2)+wθθ̄ we get

ξ̇/ξ + v̇θ2 + v̇θ̄2 + ẇθθ̄ = 2v + (2vθ + wθ̄)2 − ν2θ2.

Separating the terms in θ2, θ̄2, θθ̄ and those independent from θ and θ̄ we get

v̇ = 4v2 − ν2 (21.37)

v̇ = w2 (21.38)

ẇ = 4vw (21.39)

ξ̇

ξ
= 2v (21.40)
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Let us use property P3 to fix the initial conditons for these differental equations. We must have
limt→0Q

ν
t (0, 0) = +∞. Hence limt→0 ξ(t) = +∞. For θ 6= 0 we must have limt→0Q

ν
t (θ, 0) = 0.

Hence limt→+∞ v(t) = −∞. Finally Qνt (θ, θ) = ξ(t)etθ
2(2v(t)+w(t)) should tend to infinity for t that

tends to zero. Now since ξ(t) tends to infinity, v(t) tends to minus infinity and ξ(t)etθ
2v(t) tends to

zero, we must have limt→0 w(t) = +∞.

Equation (21.37) with initial condition v(0) = −∞ has solution

v(t) = −ν
2
coth(2νt). (21.41)

From (21.37) and (21.38) we have w(t) = ±
√

4v(t)2 − ν2 = ± ν
sinh(2νt) . Here we should choose the

sign + because of the condition limt→0 w(t) = +∞. Finally

w(t) =
ν

sinh(2νt)
. (21.42)

Equation (21.39) is automatically satisfied. Equation (21.40) with initial condition ξ(t0) = ξ0 has
as solution

ξ(t; t0, ξ0) = ξ0

√
sinh(2νt0)

sinh(2νt)
. (21.43)

Thanks to property P3, we should have

1 = lim
t→0

∫ +∞

−∞
Qν(θ, 0)dθ = lim

t→0
ξ(t; t0, ξ0)

∫ +∞

−∞
ev(t)θ

2
= lim

t→0
ξ(t; t0, ξ0)

√
2π

ν coth(2νt)

= lim
t→0

ξ0

√
2π

ν

sinh(2νt0)

cosh(2νt)
= ξ0

√
2π sinh(2νt0)

ν
.

Hence ξ0 =
√

ν
2π

1
sinh 2νt0

. Plugging this in (21.43) we get

ξ(t) =

√
ν

2π

1

sinh(2νt)
. (21.44)

From (21.41), (21.42), (21.42) and (21.36) we get (21.34).

STEP 5. We now come back to the original variables step by step. We have

ϕ̂(x, µ, ν, t) = ϕ̄µ,ν(x+
µ

ν
, t) =

∫

R
Qνt (x+

µ

ν
, θ̄)ϕ̄µ,ν0 (θ̄)dθ̄ =

∫

R
Qνt (x+

µ

ν
, x̄+

µ

ν
)ϕ̂0(x̄, µ, ν)dx̄.

In the last equality we made the change of variable θ̄ → x̄ with θ̄ = x̄ + µ
ν and we used the fact

that ϕ̂µ,ν0 (x̄+ µ
ν ) = ϕ̂0(x̄, µ, ν).

Now, using the fact that ϕ̂0(x̄, µ, ν) is the Fourier transform of the initial condition, i.e.

ϕ̂0(x̄, µ, ν) =

∫

R

∫

R
ϕ0(x̄, ȳ, w̄)e

−iµȳe−iνw̄dȳ dw̄,

and making the inverse Fourier transform we get
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ϕ(x, y, w, t) =
1

(2π)2

∫

R

∫

R
ϕ̂(x, µ, ν, t)eiµyeiνwdµ dν

=

∫

R3

(
1

(2π)2

∫

R

∫

R
Qνt (x+

µ

ν
, x̄+

µ

ν
)eiµ(y−ȳ)eiν(w−w̄)dµ dν

)
ϕ0(x̄, ȳ, w̄)dx̄ dȳ dw̄.

Coming back to the variable x, y, z, we have

φ(x, y, z, t) = ϕ(x, y, z +
1

2
xy, t) =

∫

R3

Kt(x, y, z, x̄, ȳ, z̄)φ0(x̄, ȳ, z̄)dx̄ dȳ dz̄.

where

Kt(x, y, z, x̄, ȳ, z̄) =
1

(2π)2

∫

R

∫

R
Qνt (x+

µ

ν
, x̄+

µ

ν
)eiµ(y−ȳ)eiν(z−z̄+

1
2
(xy−x̄ȳ))dµ dν.

We have then (cf. (21.25))

Pt(x, y, z) = Kt(x, y, z; 0, 0, 0) =
1

(2π)2

∫

R

∫

R
Qνt (x+

µ

ν
,
µ

ν
)eiµyeiν(z+

1
2
xy)dµ dν.

To simplify this formula and in particular to get rid of one of the two integrals let us set

A(ν, t) =

√
ν

2π sinh(2νt)
,

and let us write explicitly from (21.34)

Qνt (x+
µ

ν
,
µ

ν
) = A(ν, t) exp

(
− ν

2 tanh(2νt)

((
x+

µ

ν

)2
+
µ2

ν2

)
+
ν
(
x+ µ

ν

) µ
ν

sinh(2νt)

)

= A(ν, t) exp

(
− ν

2 tanh(2νt)
x2 + (µνx+ µ2)α(ν, t)

)
,

where

α(ν, t) =
1

ν

(
1

sinh(2νt)
− 1

tanh(2νt)

)
=

1

ν

(
1− cosh(2νt)

sinh(2νt)

)
= −1

ν
tanh(νt) < 0, ∀t > 0 and ν ∈ R.

If we notice that µνx+ µ2 =
(
µ+ ν

2x
)2 − ν2

4 x
2, we can rewrite

Qνt (x+
µ

ν
,
µ

ν
) = A(ν, t) exp

(
−
(

ν

2 tanh(2νt)
+
ν2α(ν, t)

4

)
x2
)
exp

(
α(ν, t)

(
µ+

ν

2
x
)2)

.

Since

−
(

ν

2 tanh(2νt)
+
ν2α(ν, t)

4

)
= −ν

4

1

tanh(νt)
,

we have then

Pt(x, y, z) =
1

(2π)2

∫

R

∫

R
A(ν, t) exp

(
−ν
4

1

tanh(νt)
x2
)
exp

(
α(ν, t)

(
µ+

ν

2
x
)2)

eiµyeiν(z+
1
2
xy)dµ dν.
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Let us make the change of variable µ→ ω = µ+ ν
2x implying that dω = dµ. We have

Pt(x, y, z) =
1

(2π)2

∫

R

∫

R
A(ν, t) exp

(
−ν
4

1

tanh(νt)
x2
)
exp

(
α(ν, t)ω2

)
ei(ω−

ν
2
x)yeiν(z+

1
2
xy)dω dν

=
1

(2π)2

∫

R

∫

R
A(ν, t) exp

(
−ν
4

1

tanh(νt)
x2
)
eiνz exp

(
α(ν, t)ω2

)
eiωy︸ ︷︷ ︸

T0

dω dν.

Now the variable ω appear only in the term in T0. The integral in dω can then be computed
explicitly. Indeed being α(ν, t) < 0 we have that

∫

R
exp

(
α(ν, t)ω2

)
eiωydω =

√
π

−α(ν, t) exp
(

y2

4α(ν, t)

)
.

Hence

Pt(x, y, z) =
1

(2π)2

∫

R

√
π

−α(ν, t)︸ ︷︷ ︸
T1

T2︷ ︸︸ ︷
exp

(
y2

4α(ν, t)

)
A(ν, t)︸ ︷︷ ︸

T3

T4︷ ︸︸ ︷
exp

(
−ν
4

1

tanh(νt)
x2
)
eiνz dν.

Let us now compute

T1 × T3 =

√
π

−α(ν, t)A(ν, t) =
√

νπ

tanh(νt)

√
ν

2π sinh(2νt)
=

ν

2 sinh(νt)

T2 × T4 = exp

(
y2

4(−) 1ν tanh(νt)

)
exp

(
−ν
4

1

tanh(νt)
x2
)

= exp

(
−ν
4

1

tanh(νt)
(x2 + y2)

)

Hence

Pt(x, y, z) =
1

(2π)2

∫

R

ν

2 sinh(νt)
exp

(
−ν
4

1

tanh(νt)
(x2 + y2)

)
eiνz dν.

Finally we make the change of variables ν → τ = νt
2 implying dν = 2

t dτ and we get

Pt(x, y, z) =
1

(2π)2

∫

R

2
t τ

2 sinh(2τ)
exp

(
−

2
t τ

4

1

tanh(2τ)
(x2 + y2)

)
ei

2
t
τz 2

t
d τ.

Now, being the integrand an even function of τ , we can replace ei
2
t
τz with cos(2t τz) and we get

Pt(x, y, z) =
1

(2πt)2

∫

R

2τ

sinh(2τ)
exp

(
− τ(x

2 + y2)

2t tanh(2τ)

)
cos(2

zτ

t
)dτ. (21.45)

Exercise 21.18. With the same technique explained above, find the heat kernel for the heat
equation on the Grushin plane where the Laplacian is calculated with respect to Euclidean volume.
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21.2.4 Small-time asymptotics for the Gaveau-Hulanicki fundamental solution

The integral representation (21.24) can be computed explicitly on the origin and on the z axis. Let
q0 = (0, 0, 0) and qz = (0, 0, z). We have

Kt(q0, q0) = Pt(0, 0, 0) =
1

16t2
(21.46)

Kt(q0, qz) = Pt(0, 0, z) =
1

8t2
(
1 + cosh

(
πz
t

)) =
1

4t2
exp

(
−d

2(q0, qz)

4t

)
fz(t) (21.47)

In the last equality we have used the fact that for the Heisenberg group d(q0, qz) =
√

4π|z|. Here

fz(t) :=
e

2πz
t

(
e

πz
t + 1

)2

is a function that for z 6= 0 is smooth as function of t and satisfies fz(0) = 1. A more detailed
analysis (cf. also the bibliographical note) permits to get for every fixed q = (x, y, z) such that
x2 + y2 6= 0

Kt(q0, q) = Pt(x, y, z) =
C +O(t)

t3/2
exp

(
−d

2(q0, q)

4t

)
. (21.48)

Notice that the asymptotics (21.46), (21.47), (21.48) are deeply different with respect to those
in the Euclidean case. Indeed the heat kernel for the standard heat equation in Rn is given by the
formula

Kt(q0, q) =
1

(4πt)n/2
exp

(
−dE(q0, q)

2

4t

)
. (21.49)

Here q0, q ∈ Rn and dE is the standard Euclidean norm. Comparing (21.49) with (21.46), (21.47),
(21.48), one has the impression that the heat diffusion on the Heisenberg group at the origin and
on the points on the z axis, is similar to the one in an Euclidean space of dimension 4 (i.e., beside

constants it has an asymptotics of the type 1
t2
exp(−d2(q0,q)

4t ) for t → 0). While on all the other
points it is similar to the one in an Euclidean space of dimension 3, (i.e., beside constants it has

an asymptotics of the type 1
t(3/2)

exp(−d2(q0,q)
4t ) for t → 0). Indeed the difference of asymptotics

between the Heisenberg and the Euclidean case at the origin is related to the fact that the Hausdorff
dimension of the Heisenberg group is 4, while its topological dimension is 3 (See Chapter 20). While
the difference of asymptotics on the z axis (without the origin) is related to the fact that these are
points reached by a one parameter family of optimal geodesics starting from the origin and hence
they are at the same time cut and conjugate points. For more details see the bibliographical note.

It is interesting to remark that on a Riemannian manifold of dimension n the asymptotics are
similar to the Euclidean ones for points close enough. Indeed for every q close enough to q0 we

have Kt(q0, q) = C+O(t)

(4πt)n/2 exp
(
−d2(q0,q)

4t

)
for some C = C(q0, q) > 0 depending on the point and

C(q0, q0) = 1. However if q is a point that is in the cut locus from q0 (situation that never occurs

when q is close enough to q0) thenKt(q0, q) =
C+O(t)
tm exp

(
−d2(q0,q)

4t

)
, where C > 0 andm ≥ n/2 are

constants whose values depend on the structure of optimal geodesics starting from q0 and arriving
in a neighborhood of q.
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21.3 Bibliographical note

The problem of existence of an intrinsic volume in sub-Riemannian geometry and hence of a Lapla-
cian was first formulated by Brockett in [Bro82]. The problem was then studied by Strichartz in
[Str86], Montgomery in [Mon02] who introduced the Popp measure, and in [ABGR09]. Concerning
the uniqueness of an intrinsic volume see [ABB12, BNR17].

For the heat equation in Riemannian geometry, we refer to [Ros97] and references therein. For
an elementary introduction in Rn we refer to the book of Evans [Eva98].

Theorem 21.8 has been proved in [Str86, Str89]. This result has been first proved in the
Riemannian context in [Gaf54, Gaf55]. In [Str86, Str89] one finds also the proof of Theorem
21.10. For the proof of Theorem 21.7, see for instance [FOT94]. Hörmander theorem was proved
in [Hör67]. Today there are alternative proofs based on stochastic analysis. See for instance
[Hai11, CF10, CHLT15]. For a nice discussion concerning the Hörmander theorem see [Bra14].

The fundamental solution of the heat equation on the Heisenberg group (cf. Theorem 21.15) was
obtained by Gaveau using Hamilton-Jacobi theory [Gav77] and by Hulanicki using non-commutative
Fourier analysis [Hul76]. For this second method applied on other 3-dimensional Lee groups see
also [ABGR09, BB09, Bon12]. The elementary method presented here, that uses the standard
Fourier transform after a change of coordinates that make the sub-Laplacian depending only on
one variable, is original.

The small time heat kernel estimates for the Heisenberg group (21.46), (21.47), (21.48) have
been obtained in [Gav77]. For more general sub-Riemannian structures, small time heat kernel
estimates on the diagonal (i.e., for Pt(q, q)) and their relation with the Hausdorff dimension were
studied in [BA89, L9́2, BAL91a, BAL91b], see also [Bar13]. Small time heat kernel estimates out
of the diagonal (i.e., for Pt(q, q

′) with q 6= q′) and their relation with the sub-Riemannian distance
were studied in [BA88] (out of the cut locus) and in [BBCN17, BBN12, BBNss] on the cut locus,
adapting a technique due to Molchanov [Mol75].
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Appendix A

Geometry of parametrized curves in
Lagrangian Grassmannians (by Igor
Zelenko)

The aim of this Appendix is to describe how to construct canonical bundles of moving frames
and differential invariants for parametrized curves in Lagrangian Grassmannians, at least in the
monotonic case. Such curves appear as Jacobi curves of sub-Riemannian extremals. Originally this
construction was done in [ZL07, ZL09], where it uses the specifics of Lagrangian Grassmannian.
In later works [DZ12, DZ13] a much more general theory for construction of canonical bundles of
moving frames for parametrized or unparametrized curves in the so-called generalized flag varieties
was developed, so that the problem which is discussed here can be considered as a particular case of
this general theory. Although this was briefly discussed at the very end of [DZ12], the application
of the theory of [DZ12, DZ13] to obtain the results of [ZL07, ZL09] were never written in detail and
this is our goal here. We believe that this exposition gives a more conceptual point of view on the
original results of [ZL07, ZL09] and especially clarifies the origin of the normalization conditions of
the canonical bundles of moving frames there, which in fact boil down to a choice of a complement
to a certain subspace of the symplectic Lie algebra. I would like to thank David Sykes and Chengbo
Li for editing most of this text.

A.1 Preliminaries

Basics on moving frames and structure functions

Throughout this appendix I denotes an interval of R and the parameter t takes values in I. We first
start with more elementary and naive point of view on moving frames. For a moment, by a moving
frame in Rn we mean an n-tuple E(t) =

(
e1(t), . . . en(t)

)
of vectors such that E(t) constitute a

basis of Rn for every t and it smoothly depends on t ∈ I. We can regard E(t) as an n× n matrix
with ith column equal to the column vector ei(t), or an element of the Lie group GLn. So, the
moving frame E(t) can be seen as a smooth curve in this Lie group.

The velocity e′j(t) of the jth vector ej(t) of the moving frame E(t) can be decomposed into the
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linear combination with respect to the basis E(t), i.e., there exist scalars rij(t) such that

e′j(t) =
n∑

i=1

rij(t)ei(t), 1 ≤ j ≤ n, t ∈ I (A.1)

Let R(t) be the n× n matrix with the ijth entry rij(t). Then (A.1) is equivalent to

E′(t) = E(t)R(t). (A.2)

The equation (A.2) is called the structure equation of the moving frame E(t) and the matrix function
R(t), is called the structure function of the moving frame E(t).

Remark A.1. Recall that the (left) Maurer-Cartan form Ω on a Lie group G with the Lie algebra
g is the g-valued one-form such that for any X ∈ TaG, a ∈ G

Ωa(X) := d(L−1
a )X, (A.3)

where La denotes the left translation by an element a in G. For a matrix Lie group Ωa(X) := a−1X,
where in the right-hand side the matrix multiplication is used. Note that (A.2) can be written as

R(t) = E(t)−1E′(t), (A.4)

which is equivalent to
R(t) = ΩE(t)

(
E′(t)

)
, (A.5)

where Ω is the Maurer-Cartan form of GLn, i.e., the structure function of the frame E(t) is equal
to the value of the Maurer-Cartan form at the velocity to the frame.

Now let G be a Lie subgroup of GLn with Lie algebra g. We will say that a moving frame E(t)
is G-valued if E(t), considered as an n × n- matrix, belongs to G. From (A.5) it follows that the
structure function of a G-valued frame takes value in the Lie algebra g.

Two G-valued moving frames E(t) and Ẽ(t) are called equivalent with respect to G, or G-
equivalent, if there exists A ∈ G such that ẽj(t) = Aej(t) for any 1 ≤ j ≤ n and t ∈ I or,
equivalently, in the matrix form

Ẽ(t) = AE(t), ∀t ∈ I. (A.6)

The following simple lemma is fundamental for the applications of moving frames in geometry of
curves:

Lemma A.2. 1. Two G-valued moving frames E(t) and Ẽ(t) with the structure functions R(t)
and R̃(t), respectively are G-equivalent if and only if R(t) ≡ R̃(t) on I.

2. Given any function R : I → g there exists the unique, up to the action of G, G-valued moving
frame with the structure function R(t).

Proof. The “only if” part of the first statement of the lemma is trivial, because if Ẽ(t) = AE(t),
then

R̃(t) =
(
Ẽ(t)

)−1
Ẽ′(t) =

(
E(t)−1A−1

)(
AE′(t)

)
= E(t)−1E′(t) = R(t).

For the “if” part take t0 ∈ I and let A := Ẽ(t0)E(t0)
−1. Then clearly

Ẽ(t0) = AE(t0). (A.7)
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Further, by the same arguments as in the previous part, the moving frame AE(t) has the same
structure function as E(t) and therefore, by our assumptions, as Ẽ(t). In other words, the frames
AE(T ) and Ẽ(t) satisfy the same system of linear ODEs. Since by (A.7) they meet the same initial
conditions at t0, we have (A.6) by the uniqueness theorem for linear ODEs.

The existence claim of the second statement of the lemma follows from the existence theorem for
linear systems of ODEs, while the uniqueness part follows from the “if” part of the first statement.

Applications to geometry of curves in Euclidean space

The previous lemma is the basis for application of moving frames and construction of the complete
system of invariants for various types of curves with respect to the action of various groups. Perhaps,
every Differential Geometry student quickly encounters the Frenet-Serret moving frame in the study
of curves in Euclidean space up to a rigid motion1. Recall its construction: Assume that a curve
γ(t) in Rn is parametrized by an arc length and for simplicity 2 satisfies the following regularity
assumption:

span{γ′(t), . . . γ(n)(t)} = Rn (A.8)

i.e.,
(
γ′(t), . . . γ(n)(t)

)
is a moving frame. The Frenet-Serret moving frame is obtained from this

frame by the Gram-Schmidt orthogonalization procedure. This is On-valued (or orthonormal)
moving frame3 uniquely assigned to each curve with the properties above and two curves can be
transformed one to another by a rigid motion if and only of their Frenet-Serret frames are On-
equivalent, which by Lemma A.2 is equivalent to the fact that the structure functions of their
Frenet-Serret frames coincide. By constructions, these structure functions are son-valued (i.e.,
skew-symmetric) such that the following condition holds:

The normalization condition for the Frenet-Serret frame: The only possible nonzero
entries below the diagonal are (j + 1, j)-entry with 1 ≤ j ≤ n− 1. These n − 1 entries completely

determine the structure function by skew-symmetricity and therefore, again by Lemma A.2, con-
stitute constitute its complete system of invariants. The (2, 1)-entry classically called the curvature
of the curve, the (3, 2)-entry is classically called the torsion, at least for n = 3, and for higher
dimensions all other non-zero entries are called higher order curvatures.

Already in this classical example one encounters, at least implicitly, the notion of the curve of
osculating flags, which will be important in the sequel. Recall that a flag in a vector space V or a
filtration of V is a collection of nested subspaces of V . The flag is called complete, if each dimension
between 0 and dimV appears exactly once in the collection of dimensions of the subspaces of the
flag. To a curve γ, satisfying regularity assumption (A.8), one can assign the following curve of
complete flags in Rn:

0 ⊂ span{γ′(t)} ⊂ span{γ′(t), γ′′(t)} ⊂ . . . ⊂ span{γ(j)(t)}ij=1 ⊂ . . . ⊂ span{γ(j)(t)}nj=1 = Rn,
(A.9)

1Here by the rigid motion we mean the map x 7→ a+ Ux, where U ∈ On, while often one assumes that U ∈ SOn
2Often, especially in the case of a modification of the problem mentioned in the previous footnote,one makes a

weaker assumption that dim span{γ′(t), . . . γ(n−1)(t)} = n− 1
3In the case of the weaker assumption of the previous footnote related to the problem mentioned in the first

footnote one uses the Gram-Schmidt orthogonalization for the tuple of vectors {γ′(t), . . . γ(n−1)(t)} to construct n−1
unit and pairwise orthogonal vectors and then completes this to SOn-valued frame.
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which is called the curve of osculating flags, associated with the curve γ. A moving frame
(v1(t), . . . , vn(t) is called adapted to the curve of osculating flags (A.9), if span{vj(t)}ij=1 = span{γ(j)(t)}ij=1

for all 1 ≤ i ≤ n. The Gram-Schmidt orthogonalization procedure is nothing but the procedure
of construction of the orthonormal frame adapted to the curve of flag (A.9) and such that the ith
vector of the frame points toward the same half-space of the ith subspaces of the flag (A.9) with
respect to the (i− 1)th subspace of this flag as the vector γ(i)(t). In this case there is exactly one
such adapted frame.

In this example, one can see another important point for our exposition. The Frenet-Serret
frame can be described in terms of its structure function without referring to the Gram-Schmidt
orthogonalization: The Frenet-Serret frame of a curve γ parametrized by an arc length is the only
orthonormal frame such that the very first vector is γ′(t) and the structure function satisfies the
normalization conditions above with all nonzero entries being positive.

More general point of view: homogeneous spaces and moving frames as lifts to
the group, defining the equivalence

Equivalence problem for curves in Rn up to a rigid motion is a particular case of equivalence problem
for curves in a homogeneous space. In more detail, given a Lie group G and its closed subgroup
G0, the space G/G0 of the left cosets of G0 is a smooth manifold with the natural transitive action
of G induced by the left translation on G. The space G/G0 is called a homogeneous space of the
group G. Two curves in G/G0 are called equivalent if there exist and element of G sending one
curve to another. In the case of curves in Rn up to a rigid motion, G is the group of rigid motion,
denoted by AOn and G0 can be taken as its subgroup preserving the origin of Rn, i.e., the group
of orthogonal transformations On, so that Rn ∼= AOn/On.

Grassmannians and, more generally, flag varieties provide another class of examples of homoge-
neous spaces. A flag variety is a set of flags of a vector space V with fixed dimensions of subspaces
in these flags. Fix one of the flags and let G0 be the subgroup of GL(V ) preserving this flag. Then
the flag variety can be identified with GL(V )/G0. A Grassmannian corresponds to a flag variety
with flags consisting of a one subspace of a fixed dimension.

If V has some additional structure, then one can distinguish special flags and consider proper
subgroups of GL(V ) as the group G. For example, let V be a 2m-dimensional vector space ended
with a symplectic, i.e., a non-degenerate skew-symmetric, form σ. Given a subspace Λ of V let Λ∠

be the skew-orthogonal complement of Λ with respect to σ,

Λ∠ = {v ∈ V : σ(v, z) = 0 ∀z ∈ Λ}

Then one can distinguish the following classes of subspaces of V : a subspace Λ of V is called
isotropic, if Λ ⊂ Λ∠ or, equivalently. σ|Λ = 0, a subspace Λ is called coisotropic, if Λ∠ ⊂ Λ, or
equivalently, if Λ∠ is isotropic, and it is called Lagrangian if it is both isotropic and coisotropic,
i.e., Λ = Λ∠. Since from nodegenericty of σ subspaces Λ and Λ∠ have complementary dimensions
to 2m, the dimension of isotropic spaces is not greater than m and of the coisotropic subspaces is
not smaller than m. Hence the dimension of Lagrangian subspaces is equal to m. The set L(V )
of all Lagrangian subspaces is called the Lagrangian Grassmannian. Let Sp(V ) be the group of all
symplectic transformations, i.e., of all A ∈ GL(V ) preserving the form σ, σ(Av,Aw) = σ(v,w).
Since Sp(V ) acts transitively on L(W ), the latter can be identified with SP(V )/G0, where G0 is
the subgroup of Sp(V ) preserving one chosen Lagrangian subspace Λ.
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Initially we defined a moving frame as a one-parametric family of bases in Rn. However the most
important thing in the equivalence problem was the structure function of the frame and in order
to define it we essentially used the corresponding one-parametric family (i.e., a curve) of matrices.
This motivates the following slightly more abstract definition of a moving frame: a moving frame
in a vector space W is a curve E(t) of bijective linear operators on W , i.e., a curve in GL(W ). In
the same way if G is a Lie subgroup of GL(W ), then the G-valued moving frame is a curve in G.
The structure function of E(t) is defined by equation (A.4).

In order to relate this point of view to the previously defined notion of a moving frames in Rn

it is just enough to choose some basis in W . This identifies W with Rn and the operators of the
frame with the matrices with respect to this basis. The one-parametric family of bases in W can
be obtained by taking the images of the chosen basis under the operators of the moving frame.

Since the structure functions of the moving frame are defined via the Maurer-Cartan, which is
defined on any Lie group, we can go further and give the following definition of a moving frame in
a homogeneous space of an abstract Lie group without any relation to the initial naive notion of
the moving frame as a curve of bases:

Definition A.3. A moving frame over a curve γ in a homogeneous space G/G0 is a smooth lift
of γ to the Lie group G, i.e., a smooth curve Γ in G such that π

(
Γ(t)

)
= γ(t) for every t, where

π : G→ G/G0 is the canonical projection. The structure function of the moving frame Γ(t) is the
g-valued function

CΓ(t) := ΩΓ(t)(Γ
′(t)) (A.10)

where Ω is the left Maurer -Cartan form on the Lie group G.

This definition can be related to the previous one if one choose a faithful representation of G.

Note that in the case of curves in a flag variety G/G0 the set of moving frames over this curve
can be naturally related to the set of moving frames adapted to this curve of flags in the sense of
the previous subsection.

For completeness, let us adjust this more general point of view on moving frames for curves
in homogeneous spaces to the case of curves in Euclidean space. Here a standard representation
of the affine group, although one can easily manage without any representation. For this identify
Rn with the affine subspace of Rn+1 by identifying a point (x1, . . . , xn) ∈ Rn with the point
(1, x1, . . . xn) ∈ Rn+1 and the group of rigid motions AOn with the subgroup of GLn+1, consisting
of the matrices of the form




1 0

a U


 , (A.11)

where a ∈ Rn and U ∈ On. Here the matrix (A.11) corresponds to the rigid motion sending x ∈ Rn

to a+Ux, because this matrix sends the vector

(
1
x

)
, x ∈ Rn to

(
1

a+ Ux

)
. To a curve γ we assign

the moving frame, given by the following curve Γ(t) in AOn ⊂ GLn+1

Γ(t) =

(
1 0 . . . 0
γ(t) e1(t) . . . en(t)

)
, (A.12)
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where
(
e1(t), . . . , en(t)

)
is the Frenet-Serret frame of γ(t). Since by constructions γ′(t) = e1(t), the

structure function of this frame is



0 0 . . . 0

1
0
...
0

R(t)




,

where R(t) is the structure function of the Frenet-Serret frame of γ. In contrast to the Frenet-
Serret frame, the frame (A.12) takes values in the entire group of rigid motions that defines the
considered equivalence relation. Hence, equivalence of curves with the same structure functions
of their AOn-valued frames, as given in (A.12), is obtained immediately from Lemma A.2, while
using the Frenet-Serret frame, Lemma A.2 gives that the curve of velocities are equivalent by an
orthogonal transformation and the equivalence of the original curves up to a rigid motion is obtained
after integration only. Although technically these two arguments are equally elementary, the use
of frames, which take values in the entire group defining the equivalence relation (or, equivalently,
in the entire group of the homogeneous space) has an obvious conceptual advantage.

The moving frame Γ(t) from (A.12) can be seen as the canonical lift of the original curve γ from
Rn = AOn/On to the group AOn. In view of Lemma A.2, the construction of such a canonical lift
or a bundle of such lifts is the main idea for solving such type of equivalence problems. Canonical
means that two curves γ(t) and γ̃(t) in G/G0 are equivalent via g ∈ G, i.e., g.γ(t) = γ̃(t) if and
only if g sends any canonical lift of γ(t) to a canonical lift of γ̃(t).

Some general ideas on canonical bundles of moving frames: symmetries and
normalization conditions

A way to choose the canonical moving frame or, equivalently, the canonical lift to the group G, is
to specify certain restrictions, called normalization conditions, on its structure function In the case
of curves in Euclidean space the necessity of such specification does not really emerge, because it
follows automatically from the condition on the moving frame to be adapted to the osculating flag.
Besides, in this case such a frame is unique.

For curves in general homogeneous spaces G/G0 one cannot expect that there exists a unique
canonical lift to the corresponding Lie group. The reason for this is that a curve γ(t) in G/G0 may
have a nontrivial non-effective symmetry, i.e., an element s of G, which is not the identity, but
preserves each point of γ, s.γ(t) = γ(t) for every t. The group of non-effective symmetries will be
denoted by Symne

γ . This group of symmetries is relevant to geometry of parametrized curves. In
the case of unparametrized curves they should be replaced by a larger subgroup of G consisting of
symmetries preserving a distinguished point of γ only and not necessary other points of γ.

If s ∈ Symne
γ and Γ(t) is a lift of γ(t) then sΓ(t) is a lift of γ(t) as well and there is not any

preference of choosing Γ(t) over sΓ(t) and vice versa. In particular, they have the same structure
functions. In other words the group Symne

γ encodes the minimal possible freedom of choice of a
canonical frame for the curve γ(t), so that if a normalization condition on the structure function is
chosen, the set of all lifts satisfying this condition forms a fiber bundle over the curve γ with the
fibers of dimension not smaller than dimSymne

γ and which is foliated by the lifts. This bundle will
be referred as the canonical bundle corresponding to the chosen normalization conditions.
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The reason why we do not insist that such bundle will have fibers of dimension exactly equal to
dimSymne

γ is that different curves in G/G0 may have non-effective symmetry groups of different
dimension. For example, generic curves may not have any nontrivial non-effective symmetry. So,
if we insist to assign to each curve the bundle of moving frames of the minimal possible dimension,
we may have too much branching in this construction with different normalization conditions for
each branch. Instead, it is preferable to choose the widest possible classes of curves so that within
each class the uniform normalization conditions for moving frames are used and so that for some
distinguished curves in this class the symmetry group has the maximal possible dimension within
the class, i.e., for these curves the canonical bundle is of the smallest possible dimension. The
natural candidates for such curves are orbits of one- parametric subgroups of G and in the case
of Grassmannians and flag varieties these one-parametric subgroups are generated by nilpotent
elements of the Lie algebra of G.

A.2 Algebraic theory of curves in Grassmannians and flag vari-

eties

It turns out that for curves in Grassmannians and, more generally, in flag varieties all main steps
in the construction of canonical moving frames, including the choice of the class of curves, the
description of maximal group of symmetries and of the normalization conditions can be maid
purely algebraically. In this section we we will describe this algebraic theory.

Tangent spaces to Grassmannians

Tangent spaces to Grassmannians and Lagrangian Grassmannians were already discussed in Chap-
ter 14, see Propositions 14.2 and 14.13. Here for uniformity of presentation of the appendix we
discuss this topic from the point of view of homogeneous spaces. The tangent space to a Lie group
G at a point a can be identified with its Lie algebra g via the Maurer-Cartan form as in (A.3).
This immediately implies that the tangent space to a homogeneous space G/G0 at a point o can
be identified with the quotient space g/g0,

To(G/G
0) ∼= g/g0 (A.13)

where g and g0 are the Lie algebras of G and G0, respectively.
Consider the case of the Grassmannian Grk(V ) of k-dimensional subspaces in a vector space V .

Fix a point Λ ∈ Grk(V ). As already mentioned in subsection A.1, Grk(V ) can be identified with
GL(V )/G0, where G0 is the subgroup of GL(V ), preserving the subspace Λ. The Lie algebra gl(V )
of GL(V ) is the algebra of all endomorphisms of V and the Lie algebra g0 of G0 is the algebra
of all endomorphisms of V , preserving Λ. It is easy to see that the quotient space gl(V )/g0 can
be canonically identified with the space Hom(Λ, V/Λ). Indeed, let p : V → V/Λ be the canonical
projection to the quotient space. The assignment

A ∈ gl(V ) 7→ (p ◦A)|Λ ∈ Hom(Λ, V/Λ) (A.14)

maps the endomorphisms from the same coset in gl(V )/g0 to the same element of Hom(Λ, V/Λ)
and is onto. Therefore by (A.13)

TΛGrk(V ) ∼= Hom(Λ, V/Λ). (A.15)
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This identification can be described also as follows: Take Y ∈ TΛGrk(V ) and let Λ(t) be a curve
in Grk(V ) such that Λ(0) = Λ and Λ′(0) = Y . Given l ∈ Λ take a smooth curve of vectors ℓ(t)
satisfying the following two properties:

1. ℓ(0) = l,

2. ℓ(t) ∈ Λ(t) for every t close to 0.

Exercise A.4. Show that the coset of ℓ′(t) in V/Λ is independent of the choice of the curve ℓ
satisfying the properties (1) and (2) above.

Based on the previous exercise to Y we can assign the element of Hom
(
Λ(t),W/Λ(t)

)
that sends

l ∈ Λ to the coset of ℓ′(0) in V/Λ, where the curve ℓ satisfies properties (1) and (2) above.

Now assume that V is 2m-dimensional and is endowed with a symplectic form σ. Describe
the identification analogous to (A.15) for the Lagrange Grassmannian L(V ). Take Λ ∈ L(V ).
Since L(V ) ⊂ Grm(V ), the space TΛL(V ) can be identified with a subspace of Hom(Λ, V/Λ). To
describe this subspace, first note that σ defines the identification of V/Λ with the dual space Λ∗:
the assignment

v ∈ V 7→ (ivσ)|Λ (A.16)

maps the elements from the same coset of V/Λ to the same element of Λ∗ and is onto. Hence, it
defines the required identification. Here ivσ defines the interior product of the vector v and the
form σ, that is ivσ(w) = σ(v,w). Second, since L(W ) ∼= Sp(V )/G0, where G0 is the subgroup of
Sp(V ) preserving the space Λ, by (A.13) the space TΛL(V ) can be identified with sp(V )/h, where
sp(V ) is the Lie algebra of Sp(V ) and it consists of A ∈ gl(V ) such that

σ(Av,w) = σ(Aw, v), (A.17)

i.e., the bilinear form σ(A·, ·) is symmetric, and g0 is the Lie algebra of G0. So, in (A.14) we have
to take A ∈ sp(V ). From (A.16) and (A.17) it follows that (p ◦ A)|Λ considered as a map from Λ
to Λ∗ is self-adjoint. Besides, any self-adjoint map from Λ to Λ∗ can be obtained in this way from
some A ∈ sp(V ). The space of self-adjoint maps from Λ to Λ∗ can be identified with the space
Quad(Λ) on Λ,

TΛL(V ) ∼= Quad(Λ). (A.18)

Similarly to the case of the Grassmannian, if Y ∈ TΛL(V ), Λ(t) is a curve in L(V ) such that
Λ(0) = Λ and Λ′(0) = Y , and a smooth curve of vectors ℓ(t) satisfies the properties (1) and (2)
above, then the quadratic form on Λ corresponding to Y is the form sending l to σ(ℓ′(0), l).

We say that a curve Λ(t) in Lagrange Grassmannians is monotonically nondecreasing if it

velocity
d

dt
Λ(t) is non-negative quadratic form for every t.

Osculating flags and symbols of curves in Grassmannians

The goal of this subsection is to distinguish the classes of curves in Grassmannians for which the
uniform construction of canonical moving frames can be made. For this, first to a curve Λ(t) in
the Grassmannian Grk(V ) we assign a special curve of flags, called the curve of osculating flags.
Denote by C(Λ) the canonical bundle over the curve Λ: The fiber of C(Λ) over the point Λ(t) is
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the vector space Λ(t). Let Γ(Λ) be the space of all sections of C(Λ) . Set Λ(0)(t) := Λ(t) and define
inductively

Λ(−j)(t) = span

{
dk

dtk
ℓ(t) : ℓ ∈ Γ(Λ), 0 ≤ k ≤ j

}

for j ≥ 0. The space Λ(−j)(t), j > 0, is called the jth extension or the jth osculating subspace of
the curve Λ at point t. The usage of negative indices here is in fact natural because, as we will see
later, it is in accordance with the order of invariants of the curve (i.e., the order of jet of a curve
on which an invariant depends) and also with the natural filtration of the algebra of infinitesimal
symmetries, given by stabilizers of jets of a curve of each order (and indexed by this jet order).

Further, given a subspace L in V denote by L⊥ the annihilator of L in the dual space V ∗:

L⊥ = {p ∈ V ∗ : p(v) = 0, ∀ v ∈ L}.

Set

Λ(j)(t) =
((

Λ(t)⊥
)(−j))⊥

, j ≥ 0. (A.19)

The subspace Λ(j)(t), j > 0, is called the jth contraction of the curve Λ at point t. Clearly,
Λ(j)(t) ⊆ Λ(j−1)(t). The flag (the filtration)

. . .Λ(2)(t) ⊆ Λ(1)(t) ⊆ Λ(0) ⊆ Λ(−1)(t) ⊆ Λ(−2)(t) ⊆ . . . (A.20)

is called the osculating flag (filtration) of the curve Λ at point t. By construction, the curves in
Grassmannians (Lagrangian Grassmannian) are GL(V )-equivalent (Sp(V )-equivalent) if and only
if the curves of their osculating flags are GL(V )-equivalent (Sp(V ) equivalent).

A flag {Xj}j∈Z in a symplectic spaceX withXj ⊂ Xj−1 will be called symplectic if all subspaces
Xj with j > 0 are coisotropic and X−j = (Xj)∠. Then all subspaces Xj with j < 0 are isotropic.
If Λ(t) is a curve in a Lagrangian Grassmannian, then the flag (A.20) is symplectic. Indeed, as
Λ(t) ⊂ Λ(j)(t) for j < 0 and Λ(t) is Lagrangian, we have that

Λ(−j) = Λ(j)(t)∠ ⊂ Λ(t) ⊂ Λ(j)(t),

which implies that the subspaces Λ(t) ⊂ Λ(j)(t) are isotropic. Further, from (A.16) and (A.19) it
follows that

Λ(j)(t) =
(
Λ(−j)(t)

)∠
. (A.21)

The curve Λ(t) is called equiregular if for every j > 0 the dimension of Λ(j)(t) is constant. As
the integer-valued function dimΛ(j)(t) is lower semi-continuous, it is locally constant on an open
dense set of I, which will imply that for a generic t the curve Λ is equiregular in a neighborhood
of t. So, from now on we will assume that the curve Λ(t) is equiregular. For an equiregular curve
passing to the osculating flag, we get a curve in a flag variety, i.e., the equivalence of curves in
Grassmannians (Lagrangian Grassmannians) is reduced to the equivalence of the osculating curves
in the corresponding flag varieties.

Remark A.5. For an equiregular curve Λ(t) the subspaces Λ(j)(t) can be described by means of
the identification of tangent vectors to Grassmannians with certain linear maps as in subsection
A.2. Namely, Λ(j−1)(t) is the preimage under the canonical projection from V to V/Λ(j)(t) of
Im d

dtΛ
(j)(t). For an equiregular curve Λ(t) we also have

Λ(j)(t) = Ker
d

dt
Λ(j−1)(t), j > 0
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Exercise A.6. Prove that if the curve Λ is equiregular, then

dimΛ(j−1)(t)− dimΛ(j)(t) ≤ dimΛ(j)(t)− dimΛ(j+1)(t), j < 0.

Recall that a Young diagram is a finite collection of boxes, arranged in columns (equivalently,
rows) with the column (rows) lengths in non-increasing order , aligned from the top and the left,
as shown in the example below:

Definition A.7. The Young diagram D such that the number of boxes in the −jth column,
j < 0, of D is equal to dimΛ(j) − dimΛ(j+1) is called the Young diagram D of the curve Λ(t) in
Grassmannian

This notion is especially important for monotonic curves in Lagrangian Grassmannians as shown
in Proposition A.22.

Example A.8. The curve in Lagrangian Grassmannian Λ is regular in the sense of Definition 14.18
if and only if Λ(−1) = V . In this case the Young diagram consists of one row with the number of

boxes equal to
1

2
dimV . �.

Let
Vj(t) := Λ(j)(t)/Λ(j+1)(t) (A.22)

and
grV (t) :=

⊕

j∈Z
Vj(t) (A.23)

be the graded space, associated with the filtration (A.20). By constructions, for any j ∈ Z we have
the following inclusion

(Λ(j))(−1)(t) ⊆ Λ(j−1)(t). (A.24)

Hence, the velocity d
dtΛ

(j)(t) of the curve Λ(j) at t, which is the map from Λ(j)(t) to V/Λ(j)(t)
factors through the map from Vj(t) to Vj−1(t). Thus, the velocity of the curve of osculating flags
(A.20) at t factors through the endomorphism δt of the graded space grV (t), sending Vj(t) to Vj−1(t)
for any j ∈ Z, i.e., the degree −1 endomorphism of the graded space grV (t). This endomorphism
is called the symbol of the curve Λ at t in the Grassmannian Grk(V ).

Remark A.9. By constructions δt : Vj(t)→ Vj−1(t) is injective for j ≥ 0 and surjective for j ≤ 0.

The natural equivalence relation on the space of endomorphisms of graded vector spaces is

defined via conjugation: two endomorphisms δ and δ̃ acting on graded vector spaces X =
⊕

j∈Z
Xj

and X̃ =
⊕

j∈Z
X̃j , respectively, are called equivalent, if there exists an isomorphism Q : X → X̃ ,

preserving the grading, i.e., such that Q(Xj) = X̃j, and conjugating δ with δ̃, i.e., such that

Qδ = δ̃Q. (A.25)
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So, it is in fact more correct to call the symbol of the curve Λ at t the equivalence class of δt in the
set of degree −1 endomorphisms of graded spaces instead of a single degree −1 endomorphisms δt.
Also note that if X̃ = X, then δ and δ̃ are equivalent if and only if they lie in the same orbit under
adjoint action of the isomorphisms of X preserving the grading on gl(X).

In the case of a curve in Lagrangian Grassmannians L(V ) the symplectic form σ on V induces
the symplectic form σt on each graded space grV (t) as follows: if x̄ ∈ Vj(t) and ȳ ∈ Vj̃(t) with

j + j̃ = 1, then σt(x̄, ȳ) := w(x, y), where x and y are representatives of x̄ and ȳ in Λ(j)(t) and

Λ(j̃)(t) respectively; if j+ j̃ 6= 1, then σt(x̄, ȳ) = 0. From (A.29) below it will follow that the symbol
δt is not only an endomorphism of grV (t) but also an element of the symplectic algebra sp

(
grV (t)

)
.

We say that a graded space X =
⊕

j∈Z
Xj with a symplectic form σ is a symplectic graded space, if

the flag {Xj}j∈Z, where Xj :=
⊕

i≥j
Xi, is a symplectic flag and after the identification of Xj/Xj+1

with Xj the symplectic form induced by σ on the graded space X =
⊕

j∈Z
Xj/Xj−1 coincides with

σ. Equivalently, it means that the spaces Xj ⊕Xj̄ with j + j̄ 6= 1 are isotropic with respect to σ.
To define the equivalence relation on the space of endomorphisms of symplectic graded spaces one
has to require that the conjugating isomorphism Q, as in (A.25), preserves the symplectic form.

Note that the notion of symbol as above can be defined not only for a curve in a Grassmannian
(a Lagrangian Grassmannian) via its curve of osculating flags but for any curve of flags (symplectic
flags) {Λj(t)}j∈Z such that

Λj(t) ⊆ Λj−1(t), (Λj)(−1)(t) ⊆ Λj−1(t). (A.26)

For this, spaces Λ(j)(t) in all previous formulas should be replaced by Λj(t). So, the subsequent
theory will be developed to the more general case of such curves of flags, which will be called curves
of flags compatible with osculation.

Fix a flag (a symplectic flag) {V j}j∈Z with V j+1 ⊂ V j in V and the grading (symplectic
grading) of V ,

V =
⊕

j∈Z
Vj (A.27)

such that V j = V j+1 ⊕ Vj . Recall that an endomorphism A of the graded space V is of degree k if

A(Vj) ⊂ Vj+k.

Further, let G denote either GL(V ) or Sp(V ) and by G0 the subgroup of G preserving the chosen
flag {V j}j∈Z . The grading on V induces the grading on the Lie algebra g:

g =
⊕

k∈Z
gk, (A.28)

where gk is the space of degree k endomorphism of V , belonging to g. Given a ∈ g we will denote
by ak its degree k component, i.e., the gk-component of A with respect to the splitting (A.28).

If Γ(t) is a smooth lift of curve of flags {Λj(t)}j∈Z compatible with osculation from G/G0 to G,
then by constructions

δt :=
(
Γ′(t)Γ(t)−1)−1. (A.29)
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Definition A.10. We say that a curve of flags (symplectic flags) {Λj(t)}j∈Z compatible with
osculation is of constant type if for all t symbols δt belong to the same equivalence class. If δ is a
degree −1 element of a graded space (a symplectic graded space), then we say that a curve of flags
{Λj(t)}j∈Z compatible with osculation is of constant type δ if for all t the symbol δt is equivalent
to δ.

Lemma A.11. The curve of flags {Λj(t)}j∈Z is of constant type δ if and only if for any smooth
lift Γ(t) of the curve the degree −1 component of the structure function CΓ of Γ lies in the orbit of
δ under the adjoint action of G0 on g.

Proof. Indeed, from (A.29) it follows that

(
CΓ(t)

)
−1

=
(
ΩΓ(t)

(
Γ′(t)

))
−1

=
(
Γ(t)−1Γ′(t)

)
−1

=
(
Γ(t)−1δtΓ(t)

)
−1
. (A.30)

Therefore, δt is equivalent to δ if and only if
(
CΓ(t)

)
−1

lies in the orbit of δ under the adjoint

action of G0 on g.

The set of all equivalence classes of degree −1 endomorphisms of a graded space (a symplectic
graded space) is finite and all equivalence classes in this case are explicitly described in [DZ12].
The finiteness of these equivalence classes implies that a curve of flags (symplectic flags) compatible
with osculation is of constant type in a neighborhood of its generic point. Moreover, as it will be
shown for completeness later, any equiregular monotonically nondecreasing curve in a Lagrangian
Grassmannian is of constant type; the space of equivalence classes of symbols of such curves is in
fact in one-to-one correspondence with the tuples {dimΛ(j)}j≤0 or , equivalently, with the set of all
Young diagrams (see Proposition A.22 below). Note also that the finiteness of the set of equivalence
classes follows in fact from more general result of E.B. Vinberg [Vin76] on finiteness of orbits of
degree −1 elements of a graded semisimple Lie algebra under the adjoint action of the group of
automorphisms of this graded Lie algebra.

Flat curves of constant type and their symmetries

Fix δ ∈ g−1. The ultimate goal of the entire section is to describe the unified construction of
canonical bundle of moving frames for all curves of flags (symplectic flags) of constant type δ.

According to the general discussions at the end of the previous section, first we need to dis-
tinguish the most symmetric curves within this class. The natural candidate is an orbit under
the action of the one-parametric group exp(tδ) on the corresponding flag variety, for example, the
curve of flags t → {exp(tδ)V j}j∈Z. Such curve is called the flat curve of constant type δ and will
be denoted by F (δ). As we will see later, this curve is indeed the right candidate for the most
symmetric curve in the considered class. The Lie algebra of the symmetry group of Fδ has an ex-
plicit algebraic description. Since for a parametrized curves the group of non-effective symmetries
are important, in this subsection we will focus on the corresponding Lie algebra, referred as the
algebra of infinitesimal non-effective symmetries.

Let

u0(δ) := {x ∈ g0 : [x, δ] = 0} (A.31)

and define recursively

uk(δ) := {x ∈ gk : [x, δ] ∈ uk−1(δ)}, k > 0. (A.32)
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Exercise A.12. Show that
u(δ) :=

⊕

k≥0

uk(δ) (A.33)

is a subalgebra of g.

The algebra u(δ) is called the universal algebraic prolongation of the symbol δ, and its degree k
homogeneous component uk(δ) is called the kth algebraic prolongation of the symbol δ.

Remark A.13. Let

U0(δ) = {A ∈ G : AdAδ = δ and A(Vj) = Vj ∀j} (A.34)

U0(δ) = {A ∈ G :
(
AdAδ

)
−1

= δ and A(V j) = V j ∀j} (A.35)

Then the Lie algebra of U0(δ) is equal to u0(δ) and the Lie algebra of U0(δ) is equal to u0⊕
⊕

k>0

gk.

Theorem A.14. The algebra of infinitesimal non-effective symmetries symne
F (δ) of the flat curve

F (δ) of constant type δ is equal to the algebra u(δ).

Proof. By definition, y ∈ symne
F (δ) if and only if exp(sy) ∈ Symne

F (δ) for every s sufficiently close to
0. The latter means that

exp(sy).Fδ(t) = Fδ(t) (A.36)

for every s sufficiently close to 0 and every t ∈ R or, equivalently

exp(sy) ◦ exp(tδ)V j = exp(tδ)V j ⇔ exp(−tδ) ◦ exp(sy) ◦ exp(tδ)V j = V j

for every s sufficiently close to 0, every t ∈ R and j ∈ Z, which in turn equivalently can be written
as

exp(−tδ) ◦ exp(sy) ◦ exp(tδ) ∈ G0, (A.37)

where, as before, G0 denotes the subgroup of G consisting of all element preserving the flag {V j}j∈Z.
Differentiating (A.37) with respect to s at s = 0, we get

Ad
(
exp(−tδ)

)
y ∈ g0 (A.38)

where g0 is the Lie algebra of G0. Pass to the Taylor series of the left-hand side of (A.38),

Ad
(
exp(−tδ)

)
y =

∞∑

k=0

tk

k!

(
ad(−δ)

)k
y, (A.39)

where the sum is actually finite for every element y. Then we get that (A.38) is equivalent to

(
ad δ

)k
y ∈ g0, k ≥ 0. (A.40)

Obviously, g0 =
⊕

k≥0

gk. So, y can be represented as y =
∑

k≥0

yk with yk ∈ gk. Since δ has degree −1

and all elements of g0 are of nonnegative degree, from (A.40) with k = 1 it follows that [δ, y0] = 0,
i.e. by (A.31) we have y0 ∈ u0(δ). Further, from (A.40) with k = 2 it follows that adδ2y1 = 0,
which yields that [δ, y1] ∈ u0(δ) and so by (A.32) we have y1 ∈ u1(δ). In this way by induction in
k one proves that (A.40) implies that yk ∈ uk(δ) for all k ≥ 0, i.e., that symne

F (δ) ⊂ u(δ). Finally,

the opposite inclusion is valid because (A.40) implies (A.36).
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Remark A.15. By analogy, one can describe the whole algebra of infinitesimal symmetries symF (δ)

of a curve Fδ considered as an unparametrized curve (a one-dimensional submanifold of the corre-
sponding flag variety). For this set

ũ−1(δ) := span{δ}

and define recursively

ũk(δ) := {x ∈ gk : [x, δ] ∈ ũk−1(δ)}, k ≥ 0.

Then symF (δ) =
⊕

k≥−1

ũk(δ). The algebra symF (δ) is in fact the maximal graded subalgebra among

all graded subalgebras of algebras with negative part equal to span{δ}. Moreover the algebra
symne

F (δ) is the largest ideal of symF (δ) concentrated in nonnegative degree and symF (δ)/sym
ne
F (δ) is

isomorphic to the algebra sl2.

Construction of canonical frames for curves of constant type δ

Fix δ ∈ g−1 again. Now we will describe the unified construction of canonical bundle of moving
frames for all curves of constant type δ. Fix a curve γ. Let π : G → G/G0 be the canonical
projection. By a moving frame bundle B over γ we mean any subbundle (not necessarily principal)
of the G0-bundle π−1(γ)→ γ.

Let B(t) = π−1
(
γ(t)

)
∩ B be the fiber of B over the point γ(t). Given any Γ ∈ B(t) consider

the tangent space TΓB(t) to the fiber B(t) at Γ. This space can be identified with the following
subspace WΓ of the Lie algebra g0 via the left Maurer-Cartan form Ω:

WΓ := ΩΓ (TΓB(t)) . (A.41)

If B is a principal bundle over our curve, which is a reduction of the bundle π−1(γ)→ γ, then the
space LΓ is independent of Γ and equal to the Lie algebra of the structure group of the bundle B.
For our purposes here we need to consider more general class of fiber subbundles of π−1(γ) → γ.
To define this class first consider the decreasing filtration {gk}k≥0of the graded space g0 where

gk =
⊕

i≥k
gi.

Given a subspace U of g0 let Uk = U ∩ gk. Note that the quotient space gk/gk+1 is naturally
identified with gk. Therefore, since the quotient space Uk/Uk+1 can be considered as a subspace
of gk/gk+1, Uk/Uk+1 can be naturally identified with a subspace Uk of gk. With this notation, we

assign to each subspace U of g0 a graded subspace grU :=
⊕

k≥0

Uk of g0. Note that this space is in

general different from the original space U .

The space grWΓ, where WΓ is as in (A.41), is called the symbol of the bundle B at the point Γ.

Definition A.16. We say that the fiber subbundle B of π−1(γ)→ γ has a constant symbol s if its
symbols at different points coincide with s. In this case we call B the quasi-principal subbundle of
the bundle π−1(γ)→ γ with symbol s.

Let [δ, gk] := {[δ, y] : y ∈ gk}.
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Definition A.17. Let N =
⊕

k≥0

Nk be a graded subspace of g0, i.e., such that Nk ⊂ gk. We say

that N defines a normalization condition if for any k ≥ 0 the subspace Nk is complementary to
uk + [δ, gk+1] in gk.

gk =
(
uk(δ) + [δ, gk+1]

)
⊕Nk, k ≥ 0. (A.42)

In this case we also say that the graded subspace Nk is complementary to
(
u(δ)+ [δ, g0]

)
∩ g0 in g0.

Theorem A.18. Given a normalization condition N , for any curve γ of constant type δ the set of
moving frames Γ(t) such that its structure function CΓ satisfies

CΓ(t)− δ ∈ N, ∀t, (A.43)

foliates the fiber subbundle of the bundle π−1(γ) → γ of constant symbol u(δ). Moreover, if N is
invariant with respect to the adjoint action of the group Symne

F (δ) of noneffective symmetries of the

flat curve F (δ) of constant type δ, then the resulting bundle is a principle Symne
F (δ)-subbundle of

π−1(γ) → γ and the foliation of moving frames, satisfying (A.43), is invariant with respect to the
principal Symne

F (δ)-action.

Proof. We will say that a moving frame Γ(t) is normal up to order k ≥ 0, if its structure function
CΓ satisfies (

CΓ(t)
)
−1

= δ (A.44)

for all t and (
CΓ(t)

)
i
∈ Ni (A.45)

for all t and 0 ≤ i < k.

We will construct by induction the decreasing sequence of subbundles

B−1 = π−1(γ) ⊃ B0 ⊂ B1 ⊃ . . . (A.46)

such that Bk is the union of all normal up to order k moving frames. Moreover, the bundle Bk has

constant symbol
k⊕

i=0

ui(δ) ⊕ gk+1.

Let us describe this inductive procedure. For k = 0, the condition (A.45) is void and by (A.30)
the condition (A.44) is equivalent to

(
Γ(t)−1δtΓ(t)

)
−1

= δ.

By Definition A.10 of curves of constant type δ such Γ(t) exists for any t , i.e., B0 is not empty.
Moreover, by Remark A.13 B0 is the principal reduction of the principal bundleB−1 with a structure
group U0(δ) as in (A.35) and with the Lie algebra u0 ⊕ g1. In particular, the latter is the symbol
of this algebra.

Now assume by induction that the bundle Bk−1 with the properties above is constructed for
some k ≥ 1 and construct the next bundle Bk. Since, by assumptions, (A.45) holds for i < k − 1,

the symbol of Bk−1 is

k−1⊕

i=0

ui(δ) ⊕ gk, and by (A.42) the spaces Ni and ui(δ) intersect trivially, we
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have that if two normal up to order k − 1 moving frames Γ and Γ̃ pass through the same point at
t = t0, i.e., Γ(t0) = Γ̃(t0), then

(
CΓ(t0)

)
i
=
(
CΓ̃(t0)

)
i
, 0 ≤ i ≤ k − 2; (A.47)

(
CΓ(t0)

)
k−1

=
(
CΓ̃(t0)

)
k−1

mod uk−1(δ). (A.48)

In other words, for 0 ≤ i ≤ k − 2 the degree i component of the structure function of a normal up
to order k − 1 frame, passing through a point b ∈ Bk−1, depends not on the frame but on b only,
while the degree k − 1 component depends on b modulo uk−1(δ). For the latter case, let us denote
by ξk−1(b) the corresponding element of gk−1mod uk−1 or, equivalently, of gk−1/uk−1(δ).

Now let us explore how the function Rk−1 changes along the fiber of Bk−1. Denote by Ra the
right translation by a in the group G.

Lemma A.19. The following identity holds

ξk−1

(
Rexp xb

)
= ξk−1(b) + [δ, x]k−1 mod uk−1(δ), ∀x ∈ gk, (A.49)

or, equivalently,

ξk−1

(
Rexpxb

)
=

{
ξk−1(b) + [δ, x] mod uk−1(δ), x ∈ gk;
ξk−1(b) mod uk−1(δ), x ∈ gk+1.

(A.50)

Proof. We use the following equivariance property of the left Maurer -Cartan form:

R∗
aΩ =

(
Ad a−1

)
Ω, ∀a ∈ G. (A.51)

Let us prove (A.51) for completeness. Indeed, using the definition of the left Maurer-Cartan form
given by (A.3) and the fact that any left translation commutes with the right translation, we have

R∗
aΩb(y) = Ωba

(
(Ra)∗y

)
=
(
(L(ba)−1)∗◦(Ra)∗

)
(y) =

(
(La−1)∗◦(Ra)∗◦(Lb−1

)
∗
(y) =

(
Ad a−1

)
Ωb(y),

for any y ∈ g, which proves (A.51).

Take a moving frame Γ over γ and consider the moving frame Rexp x(Γ). Using formula (A.51)
and the Taylor expansion as in (A.39) with δ = x, one can relate the structure functions of the
frames Γ and Rexp x(Γ) in the following way:

CRexp x(Γ)(t) = CΓ(t) +
∞∑

k=1

1

k!

(
ad(−x)

)k
CΓ(t), (A.52)

where the sum is actually finite. Comparing the homogeneous components of degree less than k−1
in both sides of (A.52), we get that if x ∈ gk and the moving frame Γ is normal up to the order
k − 1, then the moving frame Rexp x(Γ) is normal up to the order k − 1. Therefore, comparing the
degree k − 1 components in both sides of (A.52) and using (A.44), we can replace the structure
function by the function ξk−1 evaluated at the appropriate points to obtain (A.49).
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Now, from (A.50) and the fact that Nk−1 is complementary to [x, gk] mod uk−1(δ) it follows
that for b ∈ Bk−1, one can find x ∈ gk such that

ξk−1(Rexp xb) ∈ Nk−1 mod uk−1(δ). (A.53)

Moreover, since the degree k−1 component of the symbol of the bundle Bk−1 is equal to uk−1(δ)
one can find a normal up to order k moving frame Γ passing through Rexpxb which implies that
Rexpxb ∈ Bk, i.e., Bk(t0) is not empty, where t0 is such that π(b) = γ(t0).

Now, if b ∈ Bk , then (A.50) implies that Rexp xb ∈ Bk for x ∈ gk if and only if

[x, δ] ∈ Nk−1 ⊕ uk−1(δ). (A.54)

Since by (A.42) Nk−1 is transversal to uk−1(δ) + [δ, gk] in gk−1, the relation (A.54) implies that
[δ, x] ∈ uk−1(δ), hence x ∈ uk(δ). This implies that Bk is the fiber subbundle of B−1 with constant

symbol
k⊕

i=0

ui(δ) ⊕ gk+1, which concludes the proof of the induction step.

Since there exists an integer m such that gi = 0 for all i ≥ m, the sequence of bundles (A.46)
will be stabilized, i.e., Bi = Bm for all i ≥ m. Moreover, the normal up to order m moving frames
will foliate Bm, because for any point b ∈ Bm the structure function of any normal up to order m
moving frame and therefore the tangent line to such a moving frame will depend on the point b
only. So, there is a unique normal up to order m moving frame which passes through b. So, Bm is
the desired bundle of moving frames, which completes the proof of the first part of the theorem.

The moving frames, which are normal up to order m, will be called simply normal. If N is
invariant with respect to the adjoint action of Symne

F (δ), then by (A.51), if the moving frame Γ is

normal, then for any u ∈ symne
F (δ) the moving frame Rexp u(Γ) is normal as well. Hence the bundle

Bm is a principal U0(δ)-bundle and the foliation of normal moving frames is invariant with respect
to Rexp u, which completes the proof of the second part of our theorem.

A.3 Application to differential geometry of monotonic parametrized

curves in Lagrangian Grassmannians

Now we apply the general algebraic theory, developed in the previous section, to construct the
canonical bundle of moving frames for monotonic parametrized curves in Lagrangian Grassman-
nians. For this we will first classify all possible symbols of their osculating flags, compute their
algebraic prolongation, and find the natural invariant normalization conditions.

Classification of symbols of monotonic curves in Lagrangian Grassmannians

Let Λ(t) be a parametrized equiregular curve in Lagrangian Grassmannians L(V ). As in formula
(A.20) of subsection A.2, let {Λj}j∈Z be the osculating flag. We do not lose much by assuming
that there exists a negative integer p such that

Λ(p)(t) = V (A.55)

Otherwise, if Λ(p−1)(t) = Λ(p)(t) ⊂ V , then the subspace Ṽ = Λ(p)(t) does not depend on t and one
can work with the curve Λ(t)/Ṽ ∠ in the symplectic space Ṽ /Ṽ ∠ instead of Λ(t).
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Definition A.20. The curve Λ is called ample, if for any t there exists p for which (A.55) holds.

Let D be the Young diagram of the curve Λ (see Definition A.7). Let the length of the rows of
D be p1 repeated r1 times, p2 repeated r2 times, . . ., ps repeated rs times with p1 > p2 > . . . > ps.
The reduction or the reduced Young diagram of the Young diagram D is the Young diagram ∆,
consisting of k rows such that the ith row has pi boxes.

Make the mirror reflection of the Young diagram ∆ with respect to its left vertical edge . Denote
the skew-diagram obtained by union of this mirror reflection and ∆ by ∆̃. Denote by r and l the
right and left shifts on ∆̃, respectively. In other words given a box a of ∆̃ denote by r(a) and
l(a) the boxes next to a to the right and to the left, respectively, in the same row of ∆. Also let
m : ∆̃→ ∆̃ be the mirror reflection with respect to the left vertical edge of the diagram ∆, i.e., the
map sending a box a of ∆̃ to the box which is mirror-symmetric to a with respect to this left edge.

We say that the basis {Ea}a∈∆̃ of V , where for a box a from the ith row of ∆̃ Ea is the tuple

of ri vectors in V , Ea = (e1a, . . . e
ri
a ), forms a Darboux basis indexed by the diagram D̃, if any vector

from the tuple Ea is skew-orthogonal to any vector from the tuple Eb for b 6= m(a) and

σ(eim(a), e
j
a) = δij , a ∈ ∆. (A.56)

Given a tuple of vectors E in V and an endomorphism X of V , by XE we denote the tuple of
vectors obtained by applying X to vectors of E. If Y is a matrix with the same number of rows as
the number of vectors in E, then by EY we mean the new tuple with the jth vector equal to the
linear combination of vectors E with coefficients in jth column of Y .

Exercise A.21. Show that the map X ∈ sp(X) if and only if it has the representation in a Darboux
basis {Ea}a∈∆̃

X(Ea) =
∑

b∈∆̃

EbXba (A.57)

such that

Xab = XT
m(b)m(a) , a ∈ ∆, b ∈ m(∆) (A.58)

Xab = −XT
m(b)m(a) a, b ∈ ∆ (A.59)

If we denote

ε(a) =

{
−1, a ∈ ∆;

1, a ∈ m(∆)
(A.60)

then (A.58) and (A.59) can be written as

Xab = −ε(a)ε(b)XT
m(b)m(a) (A.61)

Proposition A.22. Any monotonic equiregular ample curve with Young Diagram D in a La-
grangian Grassmannian has the unique symbol represented by the endomorphism δ acting on a
Darboux basis {Ea}a∈∆̃ as follows:

δ(Ea) = ε(a)Er(a), (A.62)

where ε(a) is defined in (A.60). In particular, there is one-to-one correspondence between the set
of Young diagrams and the set of symbols of monotonic curve in Lagrangian Grassmannians.
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Proof. Let Vj and grV (t) be as (A.22) and (A.23). Let δt be the symbol of the curve of osculating
flags {Λj}j∈Z at t.

Lemma A.23. If Λ satisfies the assumption of Proposition A.22, then for any j ≥ 0 the map
δ2j+1
t : Vj(t)→ V−j−1(t) is an isomorphism.

Proof. Let σt be the natural symplectic form on grVt induced by the symplectic form on V as
described in subsection A.2. Note that the bilinear form (x, y) 7→ σt(δtx, y) on V0(t) is symmetric
and nondegenerate, as follows from (A.17) and the construction of the spaces Λ(1)(t). From the
fact that the osculating flags are symplectic it follows that

σt(δ
2j+1
t x, y) = (−1)sσt(δ2j+1−s

t x, δst y) (A.63)

for all x, y ∈ Vj(t). In particular, for s = j

σt(δ
2j+1
t x, y) = (−1)jσt(δj+1

t x, δjt y)

for all x, y ∈ Vj(t). This implies that the bilinear form σt(δ
2j+1
t x, y) on Vj(t) is symmetric and the

desired condition that δ2j+1
t : Vj(t) → V−j−1(t) is an isomorphism is equivalent to the fact that

this form is nondegenerate. Besides, since δjt : Vj(t) 7→ V0(t) is injective (see Remark A.9) the
latter statement is equivalent to the fact that the symmetric bilinear form σt(δtx, y) (and hence the
corresponding quadratic form) is nondegenerate on the subspace δjT (Vj) of V0(t). Finally, since by
the assumption the curve Λ is monotonic, the quadratic form σt(δtx, y) is positive definite on V0(t),
and hence its restriction to any subspace of V0(t) is positive definite and hence nondegenerate. This
completes the proof of the lemma.

Let ρi be the last (i.e., the most right) box of the ith row of the reduced Young diagram ∆ of
D and let again pi is the number of boxes in the ith row of ∆. Let Em(ρ1)(t) be a basis of Vp1(t)

orthonormal with respect to the inner product (−1)p1σt(δ2p1+1
t x, y). Then for 0 ≤ s < p1 − p2 − 1

set

E
rs
(
m(ρ1)(t)

) := δstEm(ρ1)(t).

Note that by (A.63) the tuples δstEm(ρ1)(t) are orthonormal with respect to the inner product

(−1)p1−sσt(δ2(p1−s)+1
t x, x).

Further, let Em(ρ2)(t) be a completion of the tuple δp2−p1−1
t Em(ρ1)(t) to an orthonormal basis of

Vp2(t) with respect to the inner product (−1)p2σt(δ2p2+1x, x). So, we defined Ea(t) for all a not
located to the right of ρ2 in m(∆).

In the same way, by applying δ and completing the constructed tuples to orthonormal bases of
the corresponding Vj(t) with respect to the corresponding inner product, we can define Ea for all
a ∈ m(∆) such that δtEa(t) is either equal to Er(a)(t) or is subtuple of Er(a)(t). Further, for the

box a in the jth column of the diagram ∆ set Ea(t) := (−1)j−1δ2j−1
t Em(a)(t). Then again from

(A.63) it follows that {Ea(t)}a∈∆̃ is a Darboux frame of grV (t). Moreover, by constructions δt acts
on the basis {Ea(t)}D̃ as in (A.62), which proves the statement.
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Calculation of the universal algebraic prolongation of δ

We assume that δ has the form (A.62) in a Darboux basis {Ea}a∈∆̃. First, let us calculate the
commutator of δ with X ∈ sp(V ) in the Darboux basis {Ea}a∈∆̃. We need it both for calculation
of the algebraic prolongation and for the choice of the normalization conditions.

Lemma A.24. If

[δ,X](Ea) =
∑

b∈∆̃

EbYba, (A.64)

then
Yba = ε

(
l(b)
)
Xl(b)a − ε(a)Xb r(a), (A.65)

where the terms involving non-existing boxes of the diagram ∆̃ are considered to be equal to zero.

Proof. Using (A.62) and (A.57), we have

[δ,X](Ea) = δ ◦X(Ea)−Xδ(A) = δ
(∑

b∈∆̃

EbXba

)
− ε(a)X(Er(a)) =

∑

b∈∆̃

ε(b)Er(b)Xba − ε(a)
∑

b∈∆̃

EbXb r(a) =
∑

b∈∆̃

EbYba

with Yba as in (A.65), which completes the proof of the lemma.

Proposition A.25. The following holds:

u(δ) = u0(δ) ∼=
s⊕

i=1

sori (A.66)

In more detail, u(δ) consists of all X ∈ g0 such that if X is represented in the Darboux frame
{Ea}a∈∆̃ by (A.57), then the only possibly nonzero matrices Xba are when a = b and in this case

each Xaa is skew-symmetric and Xl(a)l(a) = X(a,a) for any box a ∈ ∆̃, which is not the first box of
a row.

Proof. First let us describe all X in g0 (and not necessarily in g0) that commute with δ. This will
allow us to calculate u0 and will be used to prove that ui = 0 for i > 0.

Lemma A.26. If X ∈ g0 and [δ,X] = 0, then the only possibly nonzero matrices Xba in the
representation (A.57) are when a = b and in this case each Xaa is skew-symmetric and Xl(a)l(a) =

X(a,a) for any box a ∈ ∆̃, which is not the first box of a row.

Proof. Let, as before, ρi be the last (i.e., the most right) box in the ith row of ∆̃. Since r(σ) does
not exist, by (A.65) we get that the condition Ybρi = 0 implies that

Xl(b)ρi = 0. (A.67)

This means that Xbρi = 0 for all b 6= ρj . Since X ∈ g0, Xρjρi = 0 if i < j. Also, if j > i, then
(A.59) implies that Xρjρi = −XT

m(ρi)m(ρj )
and the latter is 0 from the condition X ∈ g0 again. So,

we got that
Xbρi = 0, b 6= ρi. (A.68)
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Using relations (A.67) and (A.65) we get that the condition Yl(b)l(ρi) = 0 implies that

Xl2(b)l(ρi) = 0.

In the same way, by induction we will get that if [δ,X] = 0, then

Xli+1(b)li(ρi) = 0,

which together with (A.68) yields
Xba = 0, b 6= a.

Now treat the case b = a. From (A.65) the condition Yr(a)a = 0, where a is not the last box of

a row ∆̃, is equivalent to Xaa = Xr(a)r(a), which implies that Xaa = Xbb if boxes a and b lie in the

same row of ∆̃. Since boxes a and m(a) lie in the same row, we get from this and (A.59) that

Xaa = Xm(a)m(a) = −XT
aa,

i.e., Xaa is skew-symmetric, which completes the proof of the lemma.

From the previous lemma we get that u0 consists of all X ∈ g0 such that the only possibly
nonzero matrices Xba in the representation (A.57) are when a = b and in this case each Xaa is
skew-symmetric and Xl(a)l(a) = X(a,a) for any box a ∈ ∆̃, which is not the first box of a row.

Also, from the previous lemma it follows that in order to complete the proof of the proposition
it is enough to prove that u1 = 0, because there is no nontrivial elements of degree ≥ 2 in g , which
commute with δ.

To calculate u1, let Yba be as in (A.64). If ρi is the last box of the i row of ∆̃ and [δ,X] ∈ u0,
then Ybρi = 0 form b 6= ρi. Hence by (A.65) we have (A.67) for b 6= ρi and by exactly the same
arguments as in Lemma A.24 and the assumption that X ∈ g1 one gets that

Xba = 0, b 6= l(a). (A.69)

Now, applying (A.65) for b = a, we get

Yaa = ε
(
l(a)

)
Xl(a)a − ε(a)Xa r(a), (A.70)

where Yaa is the same skew-symmetric matrix for all a on the same row of ∆̃. For a = ρi formula
(A.70) implies

Xl(ρi)ρi = ε
(
l(ρi)

)
Yρiρi (A.71)

Now use (A.70) for a = l(ρi)

Yl(ρi)l(ρi) = ε
(
l2(ρi)

)
Xl2(ρi)l(ρi) − ε

(
l(ρi)

)
Xl(ρi)ρi (A.72)

Substituting (A.71) into (A.72) and using that Yl(ρi)l(ρi) = Yρiρi , we get

Xl2(ρi)l(ρi) = 2ε
(
l2(ρi)

)
Yρiρi .

Continuing by induction we get

Xlj(ρi)lj−1](ρi) = jε
(
lj(ρi)

)
Yρiρi , (A.73)
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which implies that for every a in the ith row of ∆̃ the matrix Xl(a)a is a nonzero multiple of the
same skew-symmetric matrix Yρiρi .

Now assume that ai is the first box in the ith row of ∆. Then l(ai) = m(ai) hence by (A.58)
we have

Xl(ai)ai = Xm(ai)ai = XT
m(ai)ai

= XT
l(ai)ai

,

i.e., Xl(ai)ai is simultaneously symmetric and skew-symmetric and hence it is equal to zero. This
implies that Xl(a)a = 0, which together with (A.69) yields that X = 0. So, we proved that u1 = 0
and hence ui = 0 for all i ≥ 2. The proof of the proposition is completed.

Remark A.27. As a matter of fact, u0(δ) can be found without calculations from the fact that each
space Vj(t), j ≥ 0 is endowed with the Euclidean structure given by the quadratic form σt(δ

2j+1
t x, x).

Also, from this and the fact that u(δ) = u0(δ) it is obvious that Symne
F (δ)
∼= Or1 × . . . × Ors . The

adjoint action of this group on g can be described as follows: If U = (U1, . . . , Us), where Ui ∈ Ori
and X ∈ g, then

(AdUX)ba = UjXbaU
−1
i , (A.74)

where a and b are in the ith and jth rows of ∆̃, respectively.

Calculation of [δ, g0]

Before choosing the normalization condition, i.e., a graded subspace complementary to u(δ) +
[δ, g0]∩ g0 in g0, we have to describe the space [δ, g0]∩ g0. The following notation will be useful for

this purpose. Given Y ∈ g0, which has the form Y =
∑

b∈∆̃

EbYba, let

D(Y )ba := Yba +
ε
(
l(b)
)

ε
(
l(a)

)Yl(b)l(a) +
ε
(
l(b)
)

ε
(
l(a)

) ε
(
l2(b)

)

ε
(
l2(a)

)Yl2(b)l2(a) + . . . =
∑

j≥0

(
j∏

s=1

ε
(
ls(b)

)

ε
(
ls(a)

)
)
Ylj(b)lj(a),

(A.75)
where the sum is finite as we reach the first box of a row after finite number of applications of l.

Proposition A.28. Y ∈ [δ, g0] ∩ g0 if and only if for every last box ρ of the diagram ∆̃ and every
box b ∈ ∆̃ that is not higher than ρ in ∆̃ the following identity holds

D(Y )bρ = 0. (A.76)

Proof. Let (a, b) be a pair of boxes of ∆̃ such that b is not to the right and not higher than a. Note
that from (A.61) an element X ∈ g0 is determined uniquely from the knowledge of Xba for all such
pairs.

If Y = [δ,X] for some X ∈ g0, then applying (A.65) to pairs of boxes (b, a),
(
l(a), l(b)

)
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,
(
l2(a), l2(b)

)
, . . . we get the following chain of identities:

Yba = ε
(
l(b)
)
Xl(b)a − ε(a)Xb r(a),

Yl2(b)l2(a) = ε
(
l2(b)

)
Xl2(b)l(a) − ε

(
l(a)

)
Xl(b) a),

Yl3(b)l3(a) = ε
(
l3(b)

)
Xl2(b)l(a) − ε

(
l2(a)

)
Xl2(b) l(a),

...

Ylj−1(b)lj−1(a) = ε
(
lj(b)

)
Xlj(b)lj−1(a) − ε

(
lj−1(a)

)
Xlj−1(b) lj−2(a),

Ylj(b)lj(a) = −ε
(
lj(a)

)
Xlj(b) lj−1(a),

(A.77)

where j is such that lj(b) is the first box in the corresponding row of ∆̃. Note that by the assumption
on the location of b with respect to a all indices appearing in (A.77), except maybe r(a), are well
defined. Eliminating Xl(b)a by taking an appropriate linear combination of the first identities in
(A.77), then eliminating XXl2(b)l(a)

from the resulting combination by adding the third identity of

(A.77), and continuing this successive eliminating procedure we get that

ε(a)Xbr(a) = −D(Y )ba (A.78)

This implies (A.76) in the case when a = ρ, i.e., the last box of a row in ∆̃, which proves necessity
of (A.76).

To prove sufficiency, given Y ∈ g0, satisfying (A.76), define X such that it satisfies (A.78) for
all pair (a, b) , where a is not the last box in a row and b is not to the right and not higher than
r(a), and also such that (A.61) holds. It can be shown that conditions (A.78) and (A.61) are
consistent in the case when a and b lie in the same row, so such X indeed can be constructed and
X ∈ g0. Moreover, by reversion of the procedure of going from (A.77) to (A.78) we can show that
[δ,X] = Y , which completes the proof of sufficiency.

Now in order to choose a normalization condition the following lemma is useful:

Lemma A.29. Assume that ρ is the last box of a row of ∆̃ and b be the kth box in the same row
(from the left). Then if Y ∈ g0 the matrix D(Y )bρ is symmetric if k is odd and skew-symmetric if
k is even.

Proof. In the considered case in the sum (A.75) defining D(Y )bρ the terms are subdivided into
pairs satisfying relation (A.61). Indeed, for any j, 0 ≤ j ≤ k it is easy to show that

m
(
lj(b)

)
= lk−1−j(ρ), m

(
lj(ρ)

)
= lk−1−j(b).

Hence, by (A.61),

Ylj(b)lj(ρ) = −ε
(
lj(b)

)
ε
(
lj(ρ)

)(
Ylk−1−j(b)lk−1−j (ρ)

)T
(A.79)

Assume that the number of boxes in the considered row of D̃ is equal to 2p Consider the
following two cases separately

Case 1. Assume that k ≤ p. Then for all j, 0 ≤ j ≤ k − 1,

lj(b) ∈ m(∆), lj(ρ) ∈ ∆ (A.80)
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Hence, ε
(
lj(b)

)
= −ε

(
lj(ρ)

)
. Therefore, by (A.75)

D(Y )bρ =

k−1∑

j=0

(−1)jYlj(b)lj (ρ) (A.81)

and by (A.79)

Ylj(b)lj(ρ) =
(
Ylk−1−j(b)lk−1−j(ρ)

)T
(A.82)

Consequently,

(−1)jYlj(b)lj (ρ) + (−1)k−1−jYlk−1−j(b)lk−1−j(ρ) = (−1)jYlj(b)lj (ρ) + (−1)k−1−j(Ylj(b)lj(ρ)
)T

and the latter matrix is symmetric if k is odd and skew-symmetric if k is even. This together with
(A.81) implies the statement of the lemma.

Case 2. Assume that k > p. We have 3 subcases:

1. k − p ≤ j ≤ p− 1;

2. 0 ≤ j < k − p;

3. p ≤ j < k.

In subcase (1) (A.80) holds, In subcase (2) lj(b) ∈ m(∆) and lj(ρ) ∈ m(∆) and in subcase (3)
lj(b) ∈ ∆ and lj(ρ) ∈ ∆. In both of these subcases ε

(
lj(b)

)
= ε
(
lj(ρ)

)
. Hence, by (A.75)

D(Y )bρ =

k−p−1∑

j=0

Ylj(b)lj (ρ) +

p−1∑

j=k−p
(−1)j−k+p+1Ylj(b)lj(ρ) + (−1)2p−k

k−1∑

j=p

Ylj(b)lj(ρ) (A.83)

and by (A.79)

Ylj(b)lj(ρ) = −
(
Ylk−1−j(b)lk−1−j(ρ)

)T
(A.84)

The middle sum in (A.83) corresponds to subcase (1) and can be treated as in the previous case.
To treat the other two sums note that by (A.84)

Ylj(b)lj (ρ) + (−1)k−2pYlk−1−j(b)lk−1−j (ρ) = Ylj(b)lj(ρ) + (−1)k−1
(
Ylj(b)lj (ρ)

)T
.

and the latter is symmetric if k is odd and skew-symmetric if k is even. This implies that the sum
of the first and the third sums in (A.83) symmetric if k is odd and skew-symmetric if k is even,
which completes the proof of the lemma.

A class of Ad-invariant normalization conditions

Now we are ready to choose a normalization condition. Of course, this choice is not unique, but
Proposition A.28 and Lemma A.29 immediately suggest an entire class of normalization conditions
invariant with respect to the adjoint action of the group Symne

F (δ) (recall that it has the Lie algebra

u(δ) = u0(δ)).
Let us describe this class of normalization conditions. For any last box ρ of a row of ∆̃ and a

box b 6= ρ , which is not higher than ρ, in the following set of pairs of boxes

{(b, ρ),
(
l(b), l(ρ)

)
,
(
l2(b), l2(ρ)

)
, . . .} (A.85)
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we choose exactly one pair of boxes, denoted ϕ(b, ρ).
Let Nϕ be the subspace of g0 consisting of all Y such that the only possibly nonzero matrices

Yba are one of the following:

1. Yϕ(b,ρ) , if b and ρ are not in the same row of ∆̃;

2. Yϕ(b,ρ) and Ym
(
ϕ(b,ρ)

), if b and ρ are in the same row of ∆̃ and b 6= ρ. Moreover, if b is the kth

box of the row, then Ygϕ(b,ρ) is symmetric and Y
m
(
ϕ(b,ρ)

) = Yϕ(b,ρ), if k is odd, and Yϕ(b,ρ) is

skew-symmetric and Y
m
(
ϕ(b,ρ)

) = −Yϕ(b,ρ), if k is even.

As a direct consequence of Propositions A.25, A.28, and Lemma A.29 we have the following

Theorem A.30. The subspace Nϕ corresponding to an assignment ϕ as above is an invariant
normalization condition with respect to the adjoint action of the group Symne

F (δ) on g0.

The invariancy follows from the form of the adjoint action given by (A.74). The condition that
b 6= ρ comes from the fact that we need to find a complement to u(δ) + [δ, g0] ∩ g0 and not to
[δ, g0] ∩ g0.

Note that the normalization condition chosen in the original works [ZL07, ZL09] belongs to the
class of normalization of the previous theorem and it corresponds to the following assignment ϕ0:

1. Assume that b and ρ are not in the same row of ∆̃ and assume that c is the first (i.e., the
most left) box of the row of b in ∆̃ and d is a box in the row of ρ such that (c, d) belongs to
the set (A.85), then

• if m(c) is located to the left of d, then ϕ0(b, ρ) = (c, d);

• if m(c) is not located to the left of d, then ϕ0(b, ρ) is the only pair in the set (A.85) of
the form (m(b1), a1) or (m ◦ r(b1), a1), where a1 and b1 lie in the same column;

2. Assume that b and ρ are in the same row of ∆̃ and b is the kth box of this row.

• If k is odd then ϕ0(b, ρ) is the unique pair in the set (A.85) of the form (m(e), e);

• If k is odd then ϕ0(b, ρ) is the unique pair in the set (A.85) of the form (m ◦ r(e), e).
In the light of the more general theory developed here and based on [DZ12, DZ13] this particular
normalization Nϕ0 for general Young diagram does not have any advantage compared to any other
normalization of Theorem A.30.

Finally, assume that the assignment ϕ is chosen and we used Theorem A.43 to construct the
bundle of moving frames. Then for any a ∈ ∆̃ the space

Va(t) := Γ(t)(Ea),

is independent of the choice of the normal frame Γ and it is endowed with the canonical Euclidean
structure (see Remark A.27). Besides from the invariancy with respect to the adjoint action and

(A.74) it follows that for any a and b the corresponding matrix block
(
CΓ(t)

)
ba

of the structure

function of Γ defines the linear map from Va to Vb , which is independent of the choice of the normal
basis. We call it the (a, b)-curvature map of the curve γ at t. 4

We conclude with several examples.

4The (a, b)-curvature defined in the original work [ZL07, ZL09] for the particular normalization condition chosen
there corresponds to

(
a,m(b)

)
-curvature here.
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Example A.31. This is the continuation of Example A.8. The reduced diagram of a regular
curve in Lagrangian Grassmannian consists of one box, say ρ. In this case there is only one box
b = m(ρ) in ∆̃, which differs from ρ and hence, there is only one choice of the assignment ϕ, acting
as the identity on the pair

(
m(ρ), ρ

)
. There is the unique nontrivial curvature map in this case,

the
(
m(ρ), ρ

)
-curvature map, and it coincides with the curvature map of the regular curve defined

in Chapter 14.

Example A.32. (The case of rectangular Young diagram) Assume that the Young diagram D of
Λ is rectangular. Then the reduced diagram ∆ consists of only one row. Hence, for an assignment
ϕ the condition (1) for the corresponding normalization condition Nϕ is void. Now, if we use the

assignment ϕ0 as above, then for a normal frame Γ the only possibly nonzero blocks
(
CΓ(t)

)
ba

for its structure function (where b is not located to the right of a) are when (b, a) = (m(e), e) or

(b, a) = (m ◦ r(e), e), where e ∈ ∆. Moreover, the matrices
(
CΓ(t)

)
m(e)e

are symmetric and the

matrices
(
CΓ(t)

)
m◦r(e)e

are skew-symmetric.

Example A.33. (The case of rank 1 curves in Lagrangian Grassmannians) Let Λ be an equiregular
and ample and that

dimΛ(−1) − dimΛ = 1. (A.86)

The last condition is equivalent to the fact that the rank of the linear map d
dtΛ(t) is equal to 1. Such

curves are called rank 1 curves in Lagrangian Grassmannians and they appear as Jacobi curves
of sub-Riemannian structures on rank 2 distributions. From (A.86) and the assumptions that the
curve is ample and equiregular it follows that

dimΛ(j−1) − dimΛ(j) = 1, 0 ≤ −j < 1

2
dimV.

Hence, the Young diagram D of Λ consists of one row of length
1

2
dimV , i.e., this is a particular

case of the previous example. In this case the corresponding matrices
(
CΓ(t)

)
ba

are 1 × 1 matrix

valued functions, i.e., they are usual (scalar-valued) functions. and if we use the normalization

condition Nϕ0 , then the only possibly nonzero entries
(
CΓ(t)

)
ba

of the structure functions with b

located not to the right of a are
(
CΓ(t)

)
m(e)e

with e ∈ ∆, as a skew-symmmetric 1 × 1 matrices

are zero. Besides, by Remark A.27 the group Symne
F (δ) is isomorphic to {±I} and there are exactly

two normal frames which differ by a sign. The tuple of functions

{(
CΓ(t)

)
m(e)e

}

e∈∆
(A.87)

for the complete system of invariants of the curve Λ, i.e., two curves are Sp(V )-equivalent if and
only if the corresponding tuples as in (A.87) are equal.
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[BA89] Gérard Ben Arous. Développement asymptotique du noyau de la chaleur hypoellip-
tique sur la diagonale. Ann. Inst. Fourier (Grenoble), 39(1):73–99, 1989.
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Rudolf Jauslin. Optimal control in laser-induced population transfer for two- and
three-level quantum systems. J. Math. Phys., 43(5):2107–2132, 2002.

[BCG13] U. Boscain, G. Charlot, and R. Ghezzi. Normal forms and invariants for 2-dimensional
almost-Riemannian structures. Differential Geom. Appl., 31(1):41–62, 2013.

[BCGJ11] B. Bonnard, G. Charlot, R. Ghezzi, and G. Janin. The sphere and the cut locus at
a tangency point in two-dimensional almost-Riemannian geometry. J. Dyn. Control
Syst., 17(1):141–161, 2011.

[BCGM15] Ugo Boscain, Gregoire Charlot, Moussa Gaye, and Paolo Mason. Local proper-
ties of almost-Riemannian structures in dimension 3. Discrete Contin. Dyn. Syst.,
35(9):4115–4147, 2015.

[BCGS13] U. Boscain, G. Charlot, R. Ghezzi, and M. Sigalotti. Lipschitz classification of almost-
Riemannian distances on compact oriented surfaces. J. Geom. Anal., 23(1):438–455,
2013.

[BCJ+19] D. Barilari, Y. Chitour, F. Jean, D. Prandi, and M. Sigalotti. On the regularity of
abnormal minimizers for rank 2 sub-Riemannian structures. J. Math. Pures Appl.,
2019.
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[Mit85] John Mitchell. On Carnot-Carathéodory metrics. J. Differential Geom., 21(1):35–45,
1985.

[MM95] G. A. Margulis and G. D. Mostow. The differential of a quasi-conformal mapping of
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