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Abstract. In this paper we give sufficient conditions for a bang-bang regular extremal to be
a strong local optimum for a control problem in the Mayer form; strong means that we consider
the C0 topology in the state space. The controls appear linearly and take values in a polyhedron,
and the state space and the end point constraints are finite-dimensional smooth manifolds. In the
case of bang-bang extremals, the kernel of the first variation of the problem is trivial, and hence the
usual second variation, which is defined on the kernel of the first one, does not give any information.
We consider the finite-dimensional subproblem generated by perturbing the switching times, and we
prove that the sufficient second order optimality conditions for this finite-dimensional subproblem
yield local strong optimality. We give an explicit algorithm to check the positivity of the second
variation which is based on the properties of the Hamiltonian fields.
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1. Introduction. This paper is part of a general research program whose aim
is to further extend the use of Hamiltonian methods in the study of optimal control
problems. We believe that these methods can play a relevant role in control theory be-
cause they allow a general approach to sufficient conditions for strong local optimality,
as we wish to show here.

The Hamiltonian approach to strong optimality consists of constructing a field of
state extremals covering a neighborhood of a given trajectory which has to be tested.
This field of extremals is obtained by projecting on the state manifold M the flow
Ht of the maximized Hamiltonian emanating from the Lagrangian submanifold of
the initial transversality conditions. If this projection admits a Lipschitz continuous
local inverse, then we can estimate the variation of the cost function at a neighboring
trajectory by a function ψ which depends only on the final point, and it is hence
independent of the control differential equation; in this way we reduce the problem
to a finite-dimensional one. The existence of a Lipschitz continuous local inverse is
guaranteed by the surjectivity of the projection on M of the tangent map to the flow
Ht. This construction corresponds to the classical one of a nonselfintersecting family
of state extremals. This is enough to obtain optimality if the final point is fixed since
the submanifold of the final end points reduces to a singleton; otherwise we need some
further optimality condition on the function ψ.

We use the relations existing between a suitable second variation and the sym-
plectic properties of the Hamiltonian flow to show that when this second variation is
positive definite then the projection on the state manifold M of the tangent map to
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the flow Ht is surjective; moreover the positivity of this second variation leads also to
the sufficient optimality conditions for the function ψ.

To make this general approach possible we need an intrinsic formulation of the
second variation as an accessory linear-quadratic minimization problem on the tangent
space; this will allow us to exploit one of the crucial ideas underlying the Hamiltonian
approach: the tangent map of the flow of the maximized Hamiltonian is the linear
Hamiltonian flow of an associated linear-quadratic problem, i.e., the flow of the Jacobi
system.

Another important issue is that, when the initial point is not free, it is not possible
to cover a neighborhood of the initial point by the projection of the Hamiltonian flow.
In the calculus of variations this problem has been solved by perturbing the initial
time, but this method does not always work in optimal control because the projection
could be singular for a time interval of positive length; this is always the case for
bang-bang controls if there is a constraint on the initial point. We propose a different
approach: when the second variation is positive we add a penalty term, which allows
us to reduce the original problem to another one without constraints on the initial
point.

Some of these issues have already been addressed. In [ASZ98b] we stated sufficient
conditions for strong local optimality for an optimal control problem in R

n with
unbounded controls, while in [ASZ98a] we gave an intrinsic expression of the accessory
problem and studied the relations between the Hamiltonian flow and the index of the
second variation. The geometric properties of the field of extremals necessary for
proving sufficient conditions for strong optimality were studied in [ASZ99].

In this paper we study a control problem in the Mayer form where the controls
appear linearly and take values in a polyhedron, the state space and the end point con-
straints are finite-dimensional smooth submanifolds, and we give sufficient conditions
for a bang-bang extremal to be a strong local minimizer.

In the bang-bang case we have to face some new problems. Since the maximized
Hamiltonian is not smooth at the switching points we need to give conditions (see
Assumptions 2.1, 2.2, 2.3) which assure us that its flow is defined and piecewise
smooth around the reference adjoint covector. Moreover, in the case of bang-bang
extremals, the kernel of the first variation of the problem is trivial, and hence the
usual second variation, which is defined on the kernel of the first one, does not give any
information. We solve this problem by considering the finite-dimensional subproblem
generated by perturbing the switching times. The usual (finite-dimensional) second
order optimality conditions for this problem give an appropriate second variation.
Indeed we prove that the positivity of this second variation yields that the Hamiltonian
flow has the properties we have described so that we can prove strong local optimality
for the reference trajectory. The set of admissible variations on which we test the
second variation can be very small, its dimension can be less than the state space
dimension, and when it is zero, we directly have optimality.

By introducing an analogue of the strict Legendre condition, Assumption 2.3, we
can eliminate the control from the extremality conditions for the second variation,
and its extremals are then described by a discrete version of the Jacobi system, (2.9);
the flow of this system describes the tangent subspaces to the flow of the maximized
Hamiltonian at the points of nonsmoothness. Since the optimality can be lost only
at these points, then the positivity of the second variation can be checked by an
algorithm (see Lemma 2.8) which is based on the properties of the discrete flow of
the bang-bang Jacobi system. For analogous conditions in the case of unbounded
controls, see [ASZ98b].
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The literature on second order sufficient conditions for the optimality of a bang-
bang trajectory is scarce; we refer to [PS00] and the references therein for results
based on the existence of a regular synthesis, and to [Sar92] and [Sar97], where the
author studies local minima in the L1 norm on the control in the time-optimal case.
For a general description of the classical study of strong local optimality in the one-
dimensional calculus of variations, see [GH96a, GH96b].

2. Statement of the results. Let Xi, i = 1, 2, . . . ,m, be distinct C∞ vector
fields defined on the C∞ finite-dimensional manifoldM and let ∆ = co {e1, e2, . . . , em}
be the unitary simplex in R

m.
We are interested in the optimal control problem

Minimize J(ξ) := c0(ξ(0)) + cT (ξ(T ))

subject to

ξ̇(t) =

m∑
i=1

ui(t)Xi(ξ(t)), u(t) ∈ ∆(2.1)

ξ(0) ∈ N0 , ξ(T ) ∈ NT ,(2.2)

where the time interval [0, T ] is fixed, N0, NT are given C∞ submanifolds of M ,
and c0, cT are real-valued smooth functions. We will give sufficient conditions for a
trajectory to be a strong local optimum, where strong means that we consider the C0

topology in the state space.
As a candidate optimal solution we are given a bang-bang Pontryagin extremal

(ξ̂, û), that is, an absolutely continuous solution ξ̂ : [0, T ] → M of system (2.1)–(2.2)
with corresponding control û satisfying the Pontryagin maximum principle (PMP);
moreover there is a partition of [0, T ]

0 = t0 < t1 < t2 < · · · < tr < tr+1 = T

such that

û(t) = eji , t ∈ (ti−1, ti),

for some ji ∈ {1, 2, . . . ,m}. Therefore ξ̂ is a solution of

ξ̇(t) = Xji(ξ(t)), t ∈ [ti−1, ti],(2.3)

in each subinterval. The values ti for i = 1, 2, . . . , r will be called switching times,
and we set

x0 := ξ̂(0), xT := ξ̂(T )

to simplify notation. Corresponding to the reference extremal we define the time-
dependent vector field

ĥ : [0, T ]×M → TM as ĥ|(ti−1,ti) := Xji ,

and we set hi := Xji . Therefore the reference trajectory is a solution of the differential
equation

ξ̇(t) = ĥt(ξ(t)), t ∈ [0, T ].(2.4)
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By lifting the vector field ĥt to the cotangent bundle, we define the time-dependent
Hamiltonian

Ĥ : [0, T ]× T ∗M → R, (t, �) �→ 〈�, ĥt(π�)〉,

where π : T ∗M →M is the canonical projection; let us set Hi := Ĥ|(ti−1,ti).
For our problem the maximized Hamiltonian

H : T ∗M → R, � �→ max
u∈∆

〈
�,

m∑
i=1

uiXi(π�)

〉
is well defined and Lipschitz.

Recall that any piecewise smooth Hamiltonian Ht : T
∗M → R defines a Hamil-

tonian vector field �Ht whose flow will be denoted by Ht. Moreover for any time-
independent vector field Y we denote its flow by (t, x) �→ exp t Y (x); see [Arn80].

We can express the PMP by saying that there exist p0 ∈ {0, 1} and a lift λ̂ of ξ̂
to the cotangent bundle, which is a solution of

λ̇(t) =
�̂
Ht(λ(t)),

λ(0) = p0 dc0(x0) on Tx0N0,(2.5)

λ(T ) = −p0 dcT (xT ) on TxT
NT(2.6)

such that

|p0|+ ‖λ̂‖ 
= 0,

Ĥt(λ̂(t)) = H(λ̂(t)).

Let us now introduce our first assumption.
Assumption 2.1 (bang-bang regular extremal). The maximum

max
u∈∆

〈
λ̂(t),

m∑
i=1

uiXi(ξ̂(t))

〉
is attained at a vertex of ∆ for all t ∈ [0, T ], t 
= t1, t2, . . . , tr.

Assumption 2.1 means that on each subinterval (ti−1, ti) there is a unique index
ji such that

H(λ̂(t)) = 〈λ̂(t), Xji(ξ̂(t))〉.
The smooth functions p0 c0 and p0 cT are defined on N0 and NT , respectively, but

they can be extended to the whole manifold M in such a way that the transversality
conditions (2.5) and (2.6) hold on the whole tangent space. We denote by α, β :M →
R two functions such that

α = p0 c0 on N0, β = p0 cT on NT ,

λ̂(0) = dα(x0) on Tx0
M, λ̂(T ) = −d β(xT ) on TxT

M.(2.7)

Consider the two Lagrangian submanifolds

Λ0 :=
{
dα(x) + (TxN0)

⊥ | x ∈ N0

}
,

ΛT :=
{
−d β(x) + (TxNT )

⊥ | x ∈ NT

}
;
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the transversality conditions (2.5) and (2.6) of the PMP can be equivalently stated
by saying that

λ(0) ∈ Λ0, λ(T ) ∈ ΛT .

In the normal case (p0 = 1) α, β are cost functions equivalent to the original ones,
while in the abnormal case (p0 = 0) they are extensions of the zero function. When
p0 = 0 all the costs disappear, and indeed we will study a problem with a zero cost;
therefore, proving that ξ̂ is a strict strong minimizer will imply that it is isolated
with respect to the C0 topology among the admissible trajectories. In the case of
sub-Riemannian metrics isolated trajectories are called rigid geodesics.

The sufficient conditions will be derived by studying the following optimal control
problem, which is equivalent to the original one:

Minimize J(ξ) := α(ξ(0)) + β(ξ(T ))(P)

subject to (2.1) and (2.2).
The points

�i := λ̂(ti), i = 0, 1, . . . , r + 1,

will be called the switching points of the adjoint covector λ̂. From the PMP we can
deduce the following relations, which represent necessary optimality conditions:

Hi(�i) = Hi+1(�i), i = 1, 2, . . . , r,

〈d(Hi+1 −Hi), �Hi+1〉(�i) ≥ 0, i = 1, 2, . . . , r.

To state sufficient conditions for ξ̂ to be a strong local minimizer we need to strengthen
these two conditions, and hence we assume the following.

Assumption 2.2 (simple switching points). The maximum

max
u∈∆

〈
λ̂(t),

m∑
i=1

uiXi(ξ̂(t))

〉

is attained along a one-dimensional edge of ∆ for t = t1, t2, . . . , tr.
Assumption 2.3 (strict bang-bang Legendre condition).

〈d(Hi+1 −Hi), �Hi+1〉(�i) > 0, i = 1, 2, . . . , r.

Remark 2.4. The PMP implies that the switching point �i belongs to the level set
Hi+1−Hi = 0 for i = 1, 2, . . . , r. The strict bang-bang Legendre condition yields that,
near the point �i, this level set is a hypersurface which will be called the switching
surface.

Our assumptions are strictly related to the properties of the flow of the maximized
Hamiltonian H, and they guarantee that the Hamiltonian flow is piecewise smooth;
see Corollary 4.2. In particular, Assumptions 2.1 yields that locally around the ref-
erence extremal we can switch from one vector field to another only on the switching
surfaces, while Assumption 2.2 yields that, on the switching surfaces, we can choose
only between two vector fields, and the last one, Assumption 2.3, yields that we are
forced to switch. Let s be the Liouville one form in T ∗M and denote by σ = ds the
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canonical symplectic two form on T ∗M ; see [Arn80] for the definitions. Taking into
account the basic properties of σ, Assumption 2.3 can be equivalently written as

〈d(Hi+1−Hi), �Hi+1〉(�i)
= σ

(
�Hi, �Hi+1

)
(�i)

= {Hi, Hi+1} (�i)
= 〈�i, [hi, hi+1](ξ̂(ti)〉 ≥ 0,

where { , } and [ , ] denote the Poisson and Lie brackets, respectively.

2.1. A finite-dimensional subproblem. We are going to choose an appropri-
ate r-dimensional family of variations corresponding to bang-bang trajectories; they
are generated by perturbing the switching times. The optimality with respect to these
variations will be not only necessary but also sufficient (under the previously stated
assumptions) to prove that the reference trajectory is a strong local minimizer.

For a given a > 0 such that mini=1,...,r+1(ti − ti−1) > 2a, let ε ∈ B(0, a) ⊂ R
r,

set ε0 = εr+1 = 0, and consider the time-dependent vector field

(ε, x) �→ ht(ε, x) = hi(x) if t ∈ (ti−1 + εi−1, ti + εi).

This new vector field is obtained from the reference one by moving the switching time
ti by εi.

Remark 2.5. A small ε corresponds to a control variation which is small in the
L1 norm but not in the L∞ norm.

Denote the flow of ξ̇(t) = ht(ε, ξ(t)) by

St :M ×B(0, a) →M

and consider the following finite-dimensional subproblem of problem (P):

Minimize γ(x, ε) := α(x) + β(ST (x, ε))(sub-P)

subject to

x ∈ N0, ST (x, ε) ∈ NT .

Note that Ŝt := St(·, 0) is the flow of ĥt, St(x0, 0) = ξ̂(t) and (x0, 0) is the candidate
optimal solution for the subproblem.

By using the relations (2.7) and the extremality properties of the reference tra-
jectory, it is easy to prove that (x0, 0) is a critical point for γ, that is,

dγ(x0, 0) = 0,

and hence

J ′′ :=
1

2
D2γ(x0, 0)

is a well-defined quadratic form on Tx0M × R
r, which gives the second order ap-

proximation of γ. The second variation of (sub-P) is the restriction of J ′′ to the
linearization of the constraints; namely, if we set

N =
{
(δx, ε) ∈ Tx0N0 × R

r : ST∗(δx, ε) ∈ TxT
NT

}
,(2.8)
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then the second variation of (sub-P) is J ′′
|N, and it will be called the second variation

at the switching points. Let us remark that J ′′
|N ≥ 0 is a necessary optimality condition

when the subproblem is normal.
The main result of the paper states that under the regularity conditions on the

maximized Hamiltonian previously stated, the positivity of the second variation at
the switching points is sufficient to prove that the reference trajectory (ξ̂, û) is a
strict local minimizer for the original problem in the C0 topology on the state (strong
minimizer).

From an intuitive point of view the idea underlying this result can be summarized
by saying that the flow of the maximized Hamiltonian projects onto the trajectories
of the finite-dimensional subproblem, which then generates a field of extremals that
can be used to prove sufficiency.

Theorem 2.6. Assume that the given bang-bang Pontryagin extremal ξ̂ is regular
and has simple switching points and that the strict bang-bang Legendre condition is
satisfied. If the second variation at the switching points is positive definite, then ξ̂
is a strict strong local minimizer, i.e., a strict local minimizer in the C0 topology.
In the abnormal case ξ̂ is an isolated admissible solution of the constrained control
system.

Remark 2.7. If N reduces to {0}, then the second variation at the switching points
is positive definite, and hence we obtain a first order sufficient condition.

2.2. The bang-bang Jacobi system. We can check the positivity of the second
variation at the switching points in a complete Hamiltonian form. Let

Π := Tπ 
M ↪→ T
T
∗M

be the vertical subspace and define

L0 := T
0Λ0, LT := T
TΛT .

The regularity assumptions on the maximized Hamiltonian yield that Ht is smooth
everywhere except at the switching times where it is left and right smooth; see Corol-
lary 4.2. The positivity of the second variation at the switching points can be checked
through the properties of the tangent subspaces to Htk(Λ0) from the left and from the
right and by their relative positions with respect to Π. Thanks to the strict bang-bang
Legendre condition, these Lagrangian subspaces can be described through the flow of
the following discrete version of the Jacobi system:

δ�−k =
(
exp(tk+1 − tk) �Hk+1

)
∗ δ�

+
k−1,

δ�+k = δ�−k +
σ(δ�−k , ( �Hk − �Hk+1)(�k))

σ( �Hk, �Hk+1)(�k)
( �Hk − �Hk+1)(�k).

(2.9)

Denote the flow of δ�−k and δ�+k by ∆−
k ,∆

+
k and set

L−
k := ∆−

k L0, L+
k := ∆+

k L0.

In section 4 we prove that L+
k , L

−
k are the left and right tangent subspaces to Htk(Λ0);

see Remark 4.6.
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Lemma 2.8. The positivity of the second variation at the switching points can be
checked through the following algorithm.
STEP 1: Set k = 1.
STEP 2: If k ≤ r, then go to STEP 3

else go to STEP 4.

STEP 3: If ( �Hk − �Hk+1)(�k) /∈ L−
k +Π or ( �Hk − �Hk+1)(�k) ∈ L−

k , then set k =
k + 1 and go to STEP 2.

else

if L+
k ∩Π ⊆ L−

k ∩Π and for every δ�+ ∈ L+
k , δ�

− ∈ L−
k such that

π∗δ�+ = π∗δ�− we have that σ(δ�−, δ�+) ≥ 0, then set k = k + 1 and

go to STEP 2.

else J ′′
|N is not positive definite, STOP.

STEP 4: If for every δ� ∈ L−
r+1, δ�T ∈ LT such that π∗δ� = π∗δ�T 
= 0 we

have that σ(δ�, δ�T ) > 0, then J ′′
|N is positive definite, END.

else J ′′
|N is not positive definite, STOP.

Remark 2.9. Let us explain the meaning of each step of this algorithm.
1. The algorithm first checks the positivity of the second variation associated to

the corresponding problem with fixed final point (STEP 3).
2. Each iteration of the algorithm is associated to a new variation obtained by per-

turbing the corresponding switching time; this procedure generates an increasing
family of variations.

3. STEP 3 deserves some comment: if ( �Hk − �Hk+1)(�k) /∈ L−
k +Π, then there is no

new variation, and hence there is no condition to check; if ( �Hk− �Hk+1)(�k) ∈ L−
k ,

then the flow Ht is differentiable also at tk and the properties of the second
variation remain unchanged.

4. STEP 4 checks the positivity conditions related to the presence of a nontrivial
final cost, and hence when the final point is fixed, STEP 4 is void and the
algorithm becomes the following.
STEP 1: k = 1.
STEP 2: If k ≤ r, then go to STEP 3

else J ′′
|N is positive definite, END.

STEP 3: If ( �Hk − �Hk+1)(�k) /∈ L−
k +Π or ( �Hk − �Hk+1)(�k) ∈ L−

k , then set

k = k + 1 and go to STEP 2.

else

if L+
k ∩Π ⊆ L−

k ∩Π and for every δ�+ ∈ L+
k , δ�

− ∈ L−
k such

that π∗δ�+= π∗δ�− we have σ(δ�−, δ�+) ≥ 0, then set k = k + 1
and go to STEP 2.

else J ′′
|N is not positive definite, STOP.

Since the maximized Hamiltonian is a piecewise lift of a vector field onM, then the
vertical directions remain vertical under the action of the flow, and at the switching
points the dimension of the projection increases at most by one. To obtain a flow which
projects locally onto M we will reduce the problem to an equivalent one with free
initial point; for this reason we describe explicitly the algorithm in this special case.

Corollary 2.10. If the initial point is free, we have that L0 ∩ Π = {0}, and
hence the algorithm becomes the following.
STEP 1: Set k = 1.
STEP 2: If k ≤ r, then go to STEP 3

else go to STEP 4.
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STEP 3: If ( �Hk − �Hk+1)(�k) ∈ L−
k , then set k = k + 1 and go to STEP 2.

else

if π∗L+
k = Tξ̂(tk)M and for every δ�+ ∈ L+

k , δ�
− ∈ L−

k such that

π∗δ�+ = π∗δ�− we have that σ(δ�−, δ�+) ≥ 0, then set k = k + 1 and

go to STEP 2.

else J ′′
|N is not positive definite, STOP.

STEP 4: If for every δ� ∈ L−
r+1, δ�T ∈ LT such that π∗δ� = π∗δ�T 
= 0 we

have that σ(δ�, δ�T ) > 0, then J ′′
|N is positive definite, END.

else J ′′
|N is not positive definite, STOP.

Remark 2.11. In STEP 3 we check the fixed final point problem, and the algorithm
stops when we find a direction on which the quadratic form is negative or zero. For this
reason we call the corresponding switching time tk the conjugate point ; a conjugate
point can occur only at a switching time.

2.3. The Bolza problem. We deal with an optimal control problem in the
Mayer form only for simplicity; all the results can be stated for a problem in the
Bolza form when the cost function includes an integral term, that is,

Minimize J(ξ) := c0(ξ(0)) + cT (ξ(T )) +

∫ T

0

m∑
i=1

ui(t)X
0
i (ξ(t)) dt

subject to (2.1) and (2.2), where X0
i , i = 1, 2, . . . ,m, are C∞ functions defined onM.

The same proofs can be carried out using as reference and maximized Hamiltonian
those defined as

Ĥ : � �→ 〈�, ĥ(π�)〉 − p0

m∑
i=1

ûi(t)X
0
i (π�),

H : � �→ max
u∈∆

(〈
�,

m∑
i=1

uiXi(π�)

〉
− p0

m∑
i=1

uiX
0
i (π�)

)
.

3. The second variation at the switching points. This section is necessarily
technical, but it contains the main ideas and the technical lemmas needed to carry
out this kind of approach.

To study the relations existing between the second variation at the switching
points and the properties of the Hamiltonian flow, let us reduce (sub-P) to a single-
input affine problem with piecewise constant control maps having the ti’s as switching
times. This reduction can be achieved by the following time reparametrization:

ϕ̇(τ) = 1 + ν(τ), ν ∈ (−1, 1),
ϕ(0) = 0, ϕ(T ) = T,

where ν is piecewise constant, i.e., ν(τ) ≡ νi, τ ∈ [ti−1, ti).
Any solution of this boundary value problem is an increasing isomorphism of the

interval [0, T ] onto itself. If we set εi := ϕ(ti)− ti, i = 1, 2, . . . , r, then we have that
Sϕ(τ)(x, ε) is the solution of the differential equation

ζ̇(τ) = [1 + ν(τ)] ĥτ (ζ(τ)), ζ(0) = x.(3.1)
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If we set ui := νi (ti − ti−1), then from our construction it follows that εi =
∑i

j=1 uj

and
∑r+1

j=1 uj = 0 as it follows from the boundary condition ϕ(T ) = T. Therefore we
can take as control space the r-dimensional vector space

U :=

(u1, u2, . . . , ur+1) ∈ R
r+1

∣∣∣∣∣∣
r+1∑
j=1

uj = 0

 .

For a given u ∈ U we denote by νu the corresponding control map. Since there
is a one-to-one correspondence between ε and u we still denote by N the subset of
Tx0N0 × U corresponding to N ⊆ Tx0

N0 × R
r, which is defined in (2.8). We can now

study the second variation of the problem of minimizing α(ζ(0))+β(ζ(T )) subject to
(3.1) with the boundary conditions ζ(0) ∈ N0 and ζ(T ) ∈ NT .

Following the same approach used in [ASZ98a] we can define the second variation
as a linear quadratic problem on Tx0 M by the using pull-back system defined through
the time-dependent vector field

ĝt := Ŝ−1
t∗ ĥt ◦ Ŝt.(3.2)

ĝt is piecewise constant with the same switching times as ĥt, and we set gi := ĝ|(ti−1,ti).
Consider the pull-back control system

η̇(t) = ν(t) ĝt(η(t))(3.3)

and the associated linearized equation at η(t) ≡ x0,

δ̇η(t) = ν(t) ĝt(x0).(3.4)

If we also pull back the costs by setting

β̂ = β ◦ ŜT , γ̂ = α+ β̂,

then, reasoning as in [ASZ98a], the second variation at the switching points can be
equivalently written as the restriction to N of the linear-quadratic form

J ′′[δe]2 =
1

2
D2γ̂(x0)[δx]

2 +

∫ T

0

νu(s) 〈Qs, δηs(δe)〉 ds,

where δe := (δx, u) ∈ Tx0M × U and

〈Qt, δx〉 = 〈D〈D β̂, ĝt〉(x0), δx〉.
The Hamiltonian associated with this linear-quadratic problem is

(ω, δx, u) �→ G′′
t (ω, δx)νu(t),

where G′′
t is the following piecewise constant linear Hamiltonian:

G′′
t : T ∗

x0
M × Tx0

M → R, (ω, δx) �→ 〈ω, ĝt(x0)〉+ 〈Qt, δx〉.
With notation analogous to previous ones, we set G′′

i := G′′ |(ti−1,ti) and define the
Lagrangian subspace of the initial and final transversality conditions as

L′′
0 :=

{(−D2γ̂(x0)(δx, ·) + ω, δx
) | δx ∈ Tx0

N0, ω ∈
(
Tx0

N0

)⊥}
,

L′′
T :=

(
Tx0 Ŝ

−1
T (NT )

)⊥
× Tx0 Ŝ

−1
T (NT ).
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We want to express the value of the form J ′′ in Hamiltonian notation. Let δe = (δx, u)
and δf = (δy, v) belong to Tx0M × U and let δ� ∈ L′′

0 be such that

π∗δ� = δx.

If we denote by G′′
t (δ�, u) := (ωt(δ�, u), δηt(δe)) the solution of the Hamiltonian system

λ̇(t) = �G′′
t (λ(t)) νu(t), λ(0) = δ�,(3.5)

then we obtain, as in the proof of Lemma 4 in [ASZ98a, p. 700],

J ′′(δe, δf) = D2γ̂(x0)(δx, δy) +

∫ T

0

〈Qs, νu(s)δηs(δf) + νv(s)δηs(δe)〉 ds

= D2γ̂(x0)(δx, δy)− 〈ωT (δ�, u), δηT (δf)〉+ 〈ω0(δ�, u), δy〉(3.6)

+

∫ T

0

G′′
t

(
G′′
t (δ�, u)

)
νv(t) dt.

The positivity of the second variation at the switching points will be checked in two
steps. We first consider the problem with fixed final point and check the positivity of
the corresponding second variation, that is, J ′′ restricted to

V := {(δx, u) ∈ Tx0N0 × U | δη(δx, νu, T ) = 0} ⊆ N.

Afterwards we check the positivity of J ′′ on N∩V ⊥J′′ , where ⊥J′′ means orthogonality
with respect to J ′′.

To study the signature of the second variation on V we take an increasing sequence
of subspaces Vk ⊂ V obtained by considering as admissible controls those u for which
νu is zero from tk+1 on; i.e., we will study the second variation on each

Vk := {(δx, u) ∈ V | uj = 0 for j ≥ k + 2} .
The extremals of J ′′ on V are essential in the study of its signature, and they are
those δe belonging to V ∩V ⊥J′′ . For this reason we characterize the J ′′-orthogonality
in the following integral version of the Jacobi system.

Lemma 3.1. For k ∈ {1, 2, . . . , r}, δe = (δx, u) ∈ N ∩ V ⊥J′′
k if and only if there

exists δ� ∈ L′′
0 such that

π∗δ� = δx, π∗ G′′
T (δ�, u) ∈ π∗ L′′

T ,(3.7)

∫ T

0

G′′
t

(
G′′
t (δ�, u)

)
νv(t) dt = 0 ∀v : vj = 0, j ≥ k + 2.(3.8)

Proof. δe ∈ N ∩ V ⊥J′′
k if and only if there exist ω̄0 ∈ (Tx0N0)

⊥
and ω̄T ∈ Π such

that

J ′′(δe, δf) = 〈ω̄0, δy〉+ 〈ω̄T , δηT (δf)〉
for all δf = (δy, v) ∈ Tx0M × U such that vj = 0, j ≥ k + 2.

If we choose

δ� = (−D2γ̂0(δx, ·) + ω̄0, δx),
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then δ� ∈ L′′
0 and (3.7) is satisfied. For v = 0, from (3.6) we obtain

−ωT (δ�, u) = ω̄T

and hence (3.8).
To prove the converse, let us remark that (3.7) yields that δe ∈ N; moreover,

using (3.6) for δf ∈ Vk, from (3.7) and (3.8), it follows that J ′′[δe, δf ] = 0.
Corollary 3.2. Let δe = (δx, u) ∈ N ∩ V ⊥J′′ and let δ� ∈ L′′

0 be the one given
in Lemma 3.1. If δ�1 ∈ L′′

T is such that π∗δ�1 = π∗G′′
T (δ�, u), then

J ′′ [δe]2 = σ
(
δ�1,G

′′
T (δ�, u)

)
.(3.9)

Let δe = (δx, u) ∈ Vk ∩ V ⊥J′′
k−1 and let δ� ∈ L′′

0 be the one given in Lemma 3.1. Then

J ′′[δe]2 = σ
(
G′′
tk
(δ�, u), uk+1(�G

′′
k+1 − �G′′

k)
)
.(3.10)

Proof. Equality (3.9) is an easy consequence of Lemma 3.1 and (3.6). Integrating
by parts and using the symplectic properties of the Hamiltonian flow, again from
(3.6), it follows that

J ′′[δe]2 =
∫ tk

tk−1

G′′
k

(
G′′
t (δ�, u)

) −uk+1

tk − tk−1
dt+

∫ tk+1

tk

G′′
k+1

(
G′′
t (δ�, u)

)
νu(t) dt

= −uk+1G
′′
k

(
G′′
tk
(δ�, u)

)
+ uk+1G

′′
k+1

(
G′′
tk+1

(δ�, u)
)

= uk+1

(
G′′

k+1 −G′′
k

)(
G′′
tk
(δ�, u)

)
.

Equality (3.10) now follows thanks to the symplectic properties of the Hamiltonian
flow.

Let us remark that (3.7) characterizes those δe in N, while (3.8) characterizes

those in V
⊥J′′
k . In particular the extremals of the second variation are described by

those δ� ∈ L′′
0 , u ∈ U such that G′′

T (δ�, u) ∈ L′′
T , and∫ T

0

G′′
t

(
G′′
t (δ�, u)

)
νv(t) dt = 0 ∀ v ∈ U.(3.11)

The relations between the second variation and the Hamiltonian of the original prob-
lem can be better understood by using the following map:

ı : T ∗
x0
M × Tx0

M → T
0T
∗M, (ω, δx) �→ −ω + d(−β̂)∗δx

It is easy to check that the map ı is an antisymplectic isomorphism

σ (ı δ�1, ı δ�2 ) = −σ (δ�1, δ�2 )(3.12)

and that it is an isomorphism between L′′
0 and L0 which acts as

ı δ� = dα∗π∗δ�.

The map ı connects the Hamiltonians associated with the second variation with the
original ones through the following relation:

ı �G′′
k = Ĥ−1

tk∗
�Hk(�k) = Ĥ−1

tk−1 ∗
�Hk(�k−1).(3.13)
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Equation (3.13) can be proved starting from the equality

�G′′
k =

(
−D〈D β̂, gk〉(x0), gk(x0)

)
and applying the map ı to obtain, in coordinates,

ı �G′′
k =

(
dβ̂(x0)Dgk(x0), gk(x0)

)
;

finally since dβ̂(x0) = −dα(x0), then (3.13) follows.
Thanks to the above properties of the map ı we can restate the strict bang-bang

Legendre condition as

σ
(
�G′′
k ,
�G′′
k+1

)
< 0, k = 1, 2, . . . , r.(3.14)

The strict bang-bang Legendre condition allows us to solve recursively equation (3.11)
with respect to the control, and hence we are able to define a discrete version of the
Jacobi system by substituting this control back into (3.5). The resulting system is
defined below, and its construction is described in the subsequent Lemma 3.4.

Definition 3.3. Suppose that the strict bang-bang Legendre condition is satisfied
and consider the discrete dynamical system on R × T ∗(Tx0

M),
wk =

σ
(
δ�k−1, �G

′′
k − �G′′

k+1

)
σ
(
�G′′
k ,
�G′′
k+1

) ,

δ�k = δ�k−1 + (�G′′
k − �G′′

k+1) wk.

For k = 1, 2, . . . , r we define the flows of wk and δ�k as the linear functions

ωk : L
′′
0 → R

and the symplectic isomorphisms

Gk
T : L′′

0 → T ∗
x0
M × Tx0

M.

Lemma 3.4. Suppose that the strict bang-bang Legendre condition is satisfied and
let (δ�, u) ∈ L′′

0 × U ; then (3.8) holds if and only if

ui = 〈(ωi − ωi−1), δ�〉, i = 1, 2, . . . , k,

G′′
ti(δ�, u) = Gi

T (δ�) + 〈ωi, δ�〉 �G′′
i+1, i = 1, 2, . . . , k.

Proof. From the properties of the Hamiltonian flows, by integrating by parts
equality (3.8), it follows that ∫ T

0

G′′
t

(
G′′
t (δ�, u)

)
νv(t) dt

=
k∑

i=1

vi

(
G′′

i

(
G′′
ti(δ�, u)

)
−G′′

k+1

(
G′′
tk+1

(δ�, u)
))

= 0

for all v ∈ U such that vj = 0, j ≥ k + 2. Hence (3.8) is equivalent to

G′′
1

(
G′′
t1(δ�, u)

)
= G′′

2

(
G′′
t2(δ�, u)

)
= · · · = G′′

k+1

(
G′′
tk+1

(δ�, u)
)
.
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If we compute explicitly(
G′′

i −G′′
i+1

)
(G′′

ti−1
(δ�, u) + ui �G

′′
i ) = 0,

we obtain, for each i = 1, 2, . . . , k,

σ
(
G′′
ti−1

(δ�, u) + ui �G
′′
i ,
�G′′
i − �G′′

i+1

)
= 0.

The equivalence now follows by finite induction and from Definition 3.3.
Remark 3.5. Let us remark that being J ′′-orthogonal to Vk implies that the

values of the control maps u1, u2, . . . , uk are uniquely determined by the value of δ�.
Moreover we obtain the flow of the Hamiltonian system of the second variation up to
time tk through the flow of the discrete bang-bang Jacobi system. More precisely, if
we define the control wk : L′′

0 → U as
wk

i := (ωi − ωi−1), i = 1, 2, . . . , k,

wk
k+1 := −ωk,

wk
i := 0, i ≥ k + 2,

(3.15)

then from Lemma 3.4 it follows that this control is such that (δ�, 〈wk, δ�〉) satisfies
(3.8) and

Gk
T (δ�) = G′′

T (δ�, 〈wk, δ�〉).

A possible way to check the positivity of J ′′ on Vk is to study the behavior of J ′′

on Vk∩V ⊥J′′
k−1 . Thanks to the properties of the bang-bang Jacobi system the variations

belonging to Vk ∩ V ⊥J′′
k−1 and the values of J ′′ can be described through the following

subspaces:

L′′
k := Gk

T L
′′
0 .

The results are given in the two following lemmas. Let us notice that the first state-
ment of the next lemma states that the extremals of J ′′ on Vk are the solutions of the
Jacobi system that become vertical at step k and that the third statement character-
izes the occurrence of a new variation.

Lemma 3.6. Suppose that the strict bang-bang Legendre condition is satisfied.
The following statements hold:

1. δe = (δx, u) ∈ Vk ∩ V ⊥J′′
k if and only if there exists δ� ∈ L′′

0 such that

π∗δ� = δx, u = 〈wk, δ�〉, Gk
T (δ�) ∈ Π.

2. δe ∈ Vk ∩ V ⊥J′′
k−1 if and only if there exists δ� ∈ L′′

0 such that

π∗δ� = δx, uj = 〈wk−1
j , δ�〉, j = 1, 2, . . . , k − 1,

Gk−1
T (δ�)− uk+1 (�G

′′
k − �G′′

k+1) ∈ Π,

and in this case we have that

J ′′[δe]2 = σ
(
Gk−1
T (δ�)− uk+1

�G′′
k ,−uk+1(�G

′′
k − �G′′

k+1)
)
.(3.16)
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3. If J ′′
|Vk−1

> 0, then Vk = Vk−1 if and only if �G′′
k − �G′′

k+1 /∈ L′′
k−1 +Π.

4. If δ�k−1 ∈ L′′
k−1 and δ�k ∈ L′′

k \ L′′
k−1 are such that

π∗δ�k−1 = π∗δ�k,

then there exists a nontrivial δe ∈ Vk ∩ V ⊥J′′
k−1 such that

J [δe]2 = σ (δ�k, δ�k−1) .

Proof. 1. From (3.7) and (3.8) and from the properties of the control (3.15) it
follows that

u = 〈wk, δ�〉 and G′′
T (δ�, u) = Gk

T (δ�) ∈ Π.

2. Letting δe ∈ Vk ∩ V
⊥J′′
k−1 be the first part is an immediate consequence of

Lemmas 3.1 and 3.4. Once again from the properties of the control (3.15) we have
that

G′′
tk+1

(δ�, u) = Gk−1
T (δ�) + 〈ωk−1, δ�〉 �G′′

k + uk �G
′′
k + uk+1

�G′′
k+1

= Gk−1
T (δ�)− uk+1 (�G

′′
k − �G′′

k+1).

From (3.10) it follows that

J ′′[δe]2 = σ
(
G′′
tk
(δ�, u), −uk+1(�G

′′
k − �G′′

k+1)
)

= σ
(
Gk−1
T (δ�)− uk+1

�G′′
k ,−uk+1(�G

′′
k − �G′′

k+1)
)
.

3. �G′′
k − �G′′

k+1 /∈ L′′
k−1 +Π if and only if

Gk−1
T (δ�)− uk+1 (�G

′′
k − �G′′

k+1) ∈ Π ⇒ uk+1 = 0.

From statement 2 we have that J [δe]2 = 0, and hence the statement follows.
4. By definition there are δ�0, δ�1 ∈ L′′

0 such that

δ�k−1 = Gk−1
T (δ�0), δ�k = Gk

T (δ�1).

From the assumptions we have that

Gk
T (δ�1)− Gk−1

T (δ�0) = Gk−1
T (δ�1)− Gk−1

T (δ�0) + 〈ωk, δ�1〉 (�G′′
k − �G′′

k+1) ∈ Π.

If we define δ� := δ�1 − δ�0 and δe := (π∗δ�, 〈wk, δ�1〉 − 〈wk−1, δ�0〉), then we have

that uk+1 = −〈ωk, δ�1〉, and from statement 2 we have that δe ∈ Vk ∩ V ⊥J′′
k−1 , and it is

nontrivial because if uk+1 = 0, then δ�k ∈ L′′
k−1. Moreover we have that

J ′′[δe]2 = σ
(
Gk−1
T (δ�1 − δ�0)− uk+1

�G′′
k , −uk+1(�G

′′
k − �G′′

k+1)
)

= σ
(−Gk−1

T (δ�0), Gk
T (δ�1)

)
+ σ

(
Gk−1
T (δ�0), Gk−1

T (δ�1)
)

− uk+1 σ
(
Gk−1
T (δ�1) + 〈ωk, δ�1〉 �G′′

k , �G
′′
k − �G′′

k+1

)
.

The final statement now follows because the second addend is zero since both the
arguments belong to the same Lagrangian subspace L′′

k−1 and the third one is zero
by the properties of ωk.
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Lemma 3.7. J ′′
|V > 0 if and only if one of the following statements holds for each

k = 1, 2, . . . , r:
1. �G′′

k − �G′′
k+1 /∈ L′′

k−1 +Π.

2. �G′′
k − �G′′

k+1 ∈ L′′
k−1.

3. L′′
k ∩Π ⊆ L′′

k−1 ∩Π and for all δ�k ∈ L′′
k and δ�k−1 ∈ L′′

k−1 such that π∗δ�k =
π∗δ�k−1, we have that σ(δ�k, δ�k−1) ≥ 0.

Proof. The idea of the proof is the following: we first show that these conditions
together with J ′′

|Vk−1
> 0 imply that

J ′′
|Vk∩V

⊥
J′′

k−1

> 0

and hence J ′′
|Vk

> 0; since V0 = {0}, then the lemma will follow by finite induction
on k. Let us show that the induction step is valid for each k if and only if one of the
statements of the lemma holds.

Assume that J ′′
|Vk−1

> 0.

• From statement 2 of Lemma 3.6 it follows that �G′′
k − �G′′

k+1 /∈ L′′
k−1 + Π is

equivalent to Vk ∩ V ⊥J′′
k−1 = {0} and the induction step is trivial.

• If �G′′
k − �G′′

k+1 ∈ L′′
k−1, then L′′

k = L′′
k−1; moreover we can choose uk+1 = 1

in part 2 of Lemma 3.6 to show that Vk ∩ V ⊥J′′
k−1 
= {0} to obtain a nontrivial

δe ∈ Vk ∩ V ⊥J′′
k−1 such that

J ′′[δe]2 = σ
(
Gk−1
T (δ�)− �G′′

k ,−(�G′′
k − �G′′

k+1)
)

= σ
(
�G′′
k+1,

�G′′
k

)
.

Equation (3.14) completes the proof.

• If �G′′
k − �G′′

k+1 ∈ {L′′
k−1 + Π} \ L′′

k−1, then dimVk ∩ V ⊥J′′
k−1 = 1. From the first

statement of Lemma 3.6 it follows that the condition L′′
k ∩ Π ⊆ L′′

k−1 ∩ Π is
equivalent to

Vk ∩ V ⊥J′′
k = Vk−1 ∩ V ⊥J′′

k−1 = {0},

and hence it will be enough to prove that J ′′
|Vk∩V

⊥
J′′

k−1

≥ 0.

Under our assumptions there is δ� ∈ L′′
k−1 such that 〈ωk, δ�〉 = 1. If we set

δ�k := δ�+ (�G′′
k − �G′′

k+1) ∈ L′′
k ,

then we can find δ�k−1 ∈ L′′
k−1 such that π∗ δ�k−1 = π∗ δ�k. From the fourth statement

of Lemma 3.6 it follows that

J [δe]2 = σ (δ�k, δ�k−1) .

Since dimVk ∩ V ⊥J′′
k−1 = 1 then J|Vk∩V

⊥
J′′

k−1

≥ 0 if and only if σ (δ�k, δ�k−1) ≥ 0.

Lemma 3.8. Assume that J ′′
|V > 0; then the quadratic form J ′′

|N∩V ⊥
J′′ is positive

definite if and only if for every δ� ∈ L′′
0 and δ�T ∈ L′′

T such that

π∗ δ�T = π∗ Gr
T (δ�) 
= 0



STRONG OPTIMALITY FOR A BANG-BANG TRAJECTORY 1007

we have

σ(δ�T ,G
r
T (δ�)) > 0.

Proof. From Lemma 3.1 and the properties of the control wk (see (3.15)), we have
that δe = (δx, u) ∈ N ∩ V ⊥J′′ if and only if there is δ� ∈ L′′

0 such that

π∗δ� = δx, u = 〈wr, δ�〉, π∗Gr
T (δ�) ∈ π∗ L′′

T .

If π∗Gr
T (δ�) = 0, then δe ∈ V ∩V ⊥J′′ and hence δe = 0; otherwise we can use equation

(3.9).

3.1. The algorithm. We have essentially already shown that the algorithm can
be used to check the positivity of the second variation at the switching points. This
can be easily seen since from (3.12), (3.13), it follows that

L−
k = Ĥtk∗ ı L

′′
k−1 for k = 1, 2, . . . , r + 1,

L+
k = Ĥtk∗ ı L

′′
k for k = 1, 2, . . . , r.

Moreover STEP 3 follows from Lemma 3.7, while STEP 4 follows from Lemma 3.8,
taking into account (3.12).

4. Proof of the theorem. In order to demonstrate the Hamiltonian method we
now give the proof of our main result step by step following the approach described
in the introduction.

All the proofs make strong use of the properties (see [Arn80]) of the Poincaré–
Cartan form ω = s−H dt on I × T ∗M associated to the Hamiltonian H. Namely,

• ω evaluated along a lift of a solution of (2.1) is nonpositive and it is zero

along λ̂;
• ω is exact on the Legendre submanifold generated by the flow of �H emanating
from a Lagrangian submanifold.

4.1. Flow properties. The first step shows that our assumptions guarantee
that the flow of the maximized Hamiltonian is locally well defined and piecewise C∞

and describes the structure of the switching surfaces.
Lemma 4.1. There exists a neighborhood U of �0 such that we can define recur-

sively for i = 1, . . . , r the C∞-maps

τi : U → R and φi : U → T ∗M

in the following way: set

τ0 := 0, φ0 := Id.

The τi’s are implicitly defined by{
(Hi −Hi+1)

(
exp τi(�) �Hi(φi−1(�))

)
= 0,

τi(�i) = ti,

while the φi’s are defined as

φi := � �→ exp(−τi(�) �Hi+1) ◦ exp τi(�) �Hi (φi−1(�)).
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The neighborhood U can be chosen such that

sup

∈U

τi(�) < inf

∈U

τi+1(�),(4.1)

and the φi’s are C∞ symplectic diffeomorphisms.
Proof. Thanks to the strict bang-bang Legendre condition we can apply the

implicit function theorem to show that the τi’s are well defined and C∞. Therefore,
by continuity, we can guarantee that (4.1) holds. Let us show by induction that φi’s
are symplectic diffeomorphisms. From the definition of the τi’s we have that

σ
(
�Hi, �Hi+1

)
d τi(�) = σ

(
(exp τi(�) �Hi)∗φi−1 ∗, �Hi − �Hi+1

)
,(4.2)

and from the definition of the φi’s we have that

φi∗ = exp(−τi(�) �Hi+1)∗ exp(τi(�) �Hi)∗φi−1 ∗

+
{
exp(−τi(�) �Hi+1)∗ �Hi

(
exp(τi(�) �Hi(φi−1(�))

)
− �Hi+1(φi(�))

}
d τi(�).

(4.3)

The result now follows from (4.2) and from the general fact that exp(s �G) is a sym-

plectic diffeomorphism for any Hamiltonian vector field �G.
Let U be the neighborhood of �0 given in Lemma 4.1. If we set

Oi :=
{
(t, �) | � ∈ U, τi−1(�) ≤ t ≤ τi(�)

}
⊆ [0, T ]× T ∗M,

then the Oi’s are 2n+1-dimensional C
∞ submanifolds with boundary ∂Oi = Si−1∪Si,

where

Si := Oi ∩ Oi+1 =
{
(τi(�), �) , � ∈ U

}
.

From Lemma 4.1 we can easily deduce the following.
Corollary 4.2. Under Assumptions 2.1, 2.2, and 2.3 the Hamiltonian system

λ̇(t) = �H(λ(t)),

λ(0) = �

has a unique solution, which can be represented on [0, T ]×U by the map H : (t, �) �→
(t,Ht(�)) given by

Ht(�) = exp t �Hi+1(φi(�)), t ∈ [τi(�), τi+1(�)],(4.4)

where τr+1 ≡ T ; moreover the flow H is C∞ on each Oi.
Let us remark that every solution of the Hamiltonian system (4.4) has the same

number of switches as the reference trajectory ξ̂; moreover, from the above equation
(4.4), we can deduce that for t ∈ [τi−1(�), τi(�)] we can write

Ht(�) = exp(t− τi−1(�)) �Hi ◦ · · · ◦ exp(τ2(�)− τ1(�)) �H2 ◦ exp τ1(�) �H1 (�)

and the φi’s can be written as

φi(�) = exp(−τi(�) �Hi+1) ◦ Hτi(
) (�).
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Remark 4.3. We can interpret Lemma 4.1 as saying that, thanks to the strict
bang-bang Legendre condition, we can define, in a tube around the adjoint covector,
a time-dependent maximized Hamiltonian as

(t, �) �→ Hi(t, �) if H−1(t, �) ∈ Oi.

This Hamiltonian switches from one vector field to another when its flow crosses the
switching surfaces and hence when changing the vector field results in an energy in-
crease. Assumptions 2.1 and 2.2 ensure that with this choice we obtain the maximized
Hamiltonian.

4.2. Hamiltonian methods. For a general introduction to the use of these
methods and their application to optimal control, we refer to [AG90, AG97].

Without loss of generality we can assume that Λ0 ⊆ U and that Λ0 is a smooth
simply connected Lagrangian submanifold; if necessary we take the restriction to a
neighborhood of x0. Define

Ωi :=
{
(t, �) ∈ Oi | � ∈ Λ0

}
, Σi := Ωi ∩ Ωi+1,

and

Ω :=

r+1⋃
i=1

Ωi.

The Ωi’s are n+ 1-dimensional C∞ submanifolds with boundary ∂Ωi = Σi−1 ∪ Σi.
From (4.4) it follows that Ht(Λ0) is a Lagrangian submanifold, although it might

be not C1 at the switching surfaces. We now investigate the properties of the Cartan
form ω and of the map

πt := π ◦ Ht : Λ0 �→M.

Lemma 4.4. The form H∗ω is closed on each Ωi and hence exact on Ω so that
it can be written as

H∗ω = d ϑ,

where ϑ is a continuous function on [0, T ] × Λ0, which is C∞ on each Ωi. Moreover
ϑ can be chosen such that

ϑ(0, ·) := ϑ0 = α ◦ π.
If πt is Lipschitz invertible, then

d(ϑt ◦ π−1
t ) = Ht ◦ π−1

t .

Proof. The proof of the first statement is a standard consequence of the properties
of ω (see [Arn80]).

Let γ : [a, b] → M be a Lipschitz curve; then from the first part of the lemma it
follows that ∫

γ

Ht ◦ π−1
t =

∫
Ht◦π−1

t ◦γ
s =

∫
π−1
t ◦γ

H∗
t s = ϑt ◦ π−1

t

∣∣∣∣γ(b)

γ(a)

,

and the statement follows.
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If λ : [0, T ] → T ∗M is a Lipschitz lift of a solution ξ of equation (2.1) such that
(t, λ(t)) ∈ Ω for t ∈ [0, T ], then∫

λ

ω ≤ 0 and

∫
λ̂

ω = 0(4.5)

because ω is defined by the maximized Hamiltonian H. From this property and by
the previous lemma, we obtain that

J(πλ)− J(ξ̂) ≥ ϑT

(
H−1

T (λ(T ))
)
− ϑT (�0) + β(ξ(T ))− β(xT ).(4.6)

Hence, as we mentioned in the introduction, the variation of the cost is estimated
from below by the function ϑT + β ◦ π, which depends only on the final point.

Let us remark that if πT is invertible, then the same estimate can be obtained by
the function

χ := ϑT ◦ π−1
T + β.

For this function, Lemma 4.4 and the transversality conditions imply that

dχ(xT ) = 0.

4.3. An equivalent free initial point problem. To be able to lift to Ω any
trajectory in a neighborhood of the reference one, we need that πt is locally onto for
each t and in particular for t = 0. This last condition can be fulfilled by constructing an
equivalent problem with a free initial point. Let Q be any nonnegative quadratic form
on Tx0M, whose nullity is Tx0

N0. We extend it to Tx0M × R
r by setting Q[δx, ε]2 =

Q[δx]2. If the quadratic form J ′′ is positive on N, then we can find ρ > 0 such that

J ′′ +
1

2
ρQ > 0 on

{
(δx, ε) ∈ Tx0M × R

r : ST∗(δx, ε) ∈ TxT
NT

}
,

as can be easily proved by elementary arguments of linear algebra. Let us choose a
function αρ such that

αρ = α on N0,

dαρ = dα on Tx0
N0,

D2αρ(x0) = D2α(x0) + ρQ

and consider the problem

Minimize αρ(ξ(0)) + β(ξ(T ))(4.7)

subject to

ξ̇(t) =

m∑
i=1

ui(t)Xi(ξ(t)), u ∈ ∆,

ξ(T ) ∈ NT .

Since the reference trajectory satisfies the initial boundary conditions, then proving
that it is optimal for this new problem yields its optimality for the original one. There-
fore without loss of generality we can assume that the original problem has already free



STRONG OPTIMALITY FOR A BANG-BANG TRAJECTORY 1011

initial point, i.e., N0 ≡M and α ≡ αρ; in this case the initial Lagrangian submanifold
is horizontal and its projection covers a neighborhood of the initial point x0.

Remark 4.5. This reduction is possible because the new cost on the initial point
contains an exact penalty which can be constructed assuming that the second variation
is positive definite.

Let us now see which properties of the symplectic map Ht∗ : T
0Λ0 → Tλ̂(t)M

lead to the optimality of ξ̂. Let us remark that (4.4) yields, for δ� ∈ L0,

Ht∗(δ�) = (exp t �Hi+1)∗φi∗δ� for t ∈ (ti, ti+1),(4.8)

Hti ∗(δ�) =

(exp ti
�Hi)∗φi−1 ∗δ� for 〈d τi(�0), δ�〉 ≤ 0,

(exp ti �Hi+1)∗φi∗δ� for 〈d τi(�0), δ�〉 ≥ 0.
(4.9)

Remark 4.6. By (4.2) and (4.3) one can easily see that L−
k = (exp tk �Hk)∗φk−1 ∗ L0

and L+
k = (exp tk �Hk+1)∗φk∗; therefore L−

k and L+
k are tangent to Htk(L0) from the

left and from the right, respectively. Moreover if d τk(�0)|L0
= 0, then the flow is

differentiable at (tk, �0).
Lemma 4.7. If the map π∗ Ht∗ : L0 → Tξ̂(t)M is onto for t ∈ [0, T ], then there

exists a neighborhood V ⊆ Λ0 of �0 such that [0, T ] × V is mapped by πH onto a

neighborhood of ξ̂ in [0, T ] ×M and πH has a piecewise C∞ local inverse. Without
loss of generality we set V = Λ0.

Proof. Thanks to the invertibility assumption on π∗ Hti ∗ and by possibly taking
a smaller neighborhood of �0, we can apply the inverse function theorem on each sub-
manifold with boundary Ωi to show that the image under πH of Ω is a neighborhood
of ξ̂ in [0, T ]×M.

Theorem 4.8. The equality

π∗Ht∗ L0 = Tξ̂(t)M

holds for t ∈ [0, T ] if and only if the following statements hold for i = 1, 2, . . . , r:
1. π∗φi∗L0 = Tx0M.
2. If δ�1, δ�2 ∈ L0 are such that

π∗
[
(exp ti �Hi)∗φi−1 ∗δ�1

]
= π∗

[
(exp ti �Hi+1)∗φi∗δ�2

]
,

then

σ
(
(exp ti �Hi)∗φi−1 ∗δ�1, (exp ti �Hi+1)∗φi∗δ�2

)
≥ 0.

Proof. Since exp t �Hi transforms horizontal submanifolds into horizontal subman-
ifolds, then (4.8)–(4.9) imply that the map π∗ Ht∗ is onto for t ∈ [0, T ] if and only if
it is onto for t = ti, i = 1, 2, . . . , r.

Let us now check that conditions 1 and 2 are equivalent to

π∗Hti∗ L0 = Tξ̂(ti)M.(4.10)

If d τi(�0) = 0 on L0, then the maps (exp ti �Hi)∗φi−1 ∗ and (exp ti �Hi+1)∗φi∗ coincide,
and hence (4.10) is equivalent to condition 1, and moreover condition 2 holds with
the equality sign.
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Otherwise we have that (4.10) holds if and only if

π∗φi−1 ∗L0 = π∗φi∗L0 = Tx0
M

and the two half-spaces{
π∗(exp ti �Hi)∗φi−1 ∗δ�, 〈d τi(�0), δ�〉 ≤ 0

}
,{

π∗(exp ti �Hi+1)∗φi∗δ�, 〈d τi(�0), δ�〉 ≥ 0
}

do not coincide. To check this we can show that for every δ�1, δ�2 ∈ L0 such that

π∗
[
(exp ti �Hi)∗φi−1 ∗δ�1

]
= π∗

[
(exp ti �Hi+1)∗φi∗δ�2

]
one has

〈d τi(�0), δ�1〉 〈d τi(�0), δ�2〉 ≥ 0.

By (4.3) we obtain that

σ
(
(exp ti �Hi)∗φi−1 ∗δ�1, (exp ti �Hi+1)∗φi∗δ�2

)
= σ

(
(exp ti �Hi)∗φi−1 ∗δ�1, ( �Hi − �Hi+1)(�i)

)
〈d τi(�0), δ�2〉.

Finally by the strict bang-bang Legendre condition and by (4.2) we obtain that

σ
(
(exp ti �Hi)∗φi−1 ∗δ�1, ( �Hi − �Hi+1)(�i)

)
has the same sign as 〈d τi(�0), δ�1〉, and the statement is proved.

Remark 4.9. Theorem 4.8 states that in the bang-bang case, a conjugate point
can occur only at a switching time; moreover condition 1 states that the projection
has full dimension, while condition 2 says that there is not a fold.

Theorem 4.10. Let the map π∗ Ht∗ : L0 → Tξ̂(t)M be onto for t ∈ [0, T ]. If the
form

δx �→ σ
(
d(ϑT ◦ π−1

T )∗δx, d(−β)∗δx
)
= σ

(
(HT ◦ π−1

T )∗δx, d(−β)∗δx
)

is positive definite on TxT
NT , then ξ̂ is a strict strong local minimizer for the problem

(P).
Proof. By (4.6) if we prove that xT is a local minimizer on NT of χ = ϑT ◦π−1

T +β,

then ξ̂ is a strong local minimizer for the problem (P). As we pointed out before,
dχ(xT ) = 0; thus the second derivative of χ is well defined at xT , and we have that

D2 χ(xT )[δx]
2 = σ

(
d(ϑT ◦ π−1

T )∗δx, d(−β)∗δx
)
,

which ends the first part of the proof.
Let us now prove that the minimum is locally uniquely attained. First of all let us

notice that under our assumptions ξ̂(T ) is a strict local minimum for the function χ.
Assume now by contradiction that there exists another admissible trajectory ξ with
the same cost and the same final point ξ(T ) = ξ̂(T ); denote by λ := t �→ π−1

t (ξ(t)) its
lift. By (4.6) and (4.5) we have that ∫

λ

ω = 0;
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thus, since H is the maximized Hamiltonian, we have that

〈Ht(λ(t)), ξ̇(t)〉 −H(Ht(λ(t))) = 0 a.e. t ∈ [0, T ].

Thanks to Assumption 2.1, for all t such that (t, λ(t)) ∈ int Ωi we have that

ξ̇(t) = hi(ξ(t));

this equation yields that

λ̇(t) = 0,

and hence, from inequality (4.1), it follows that λ(t) is constant, say ki, for t ∈
[τi−1(ki), τi(ki)]. When τi(ki) ≤ t ≤ τi(ki+1) we have that (t, λ(t)) ∈ Σi, and hence
there is µ ∈ [0, 1] such that

ξ̇(t) = (1− µ)hi+1(ξ(t)) + µhi(ξ(t)).

For t ∈ [τr(kr), T ] we have that λ(t) ∈ Ωr+1, and hence λ is as smooth as ξ; moreover
on the last time interval [tr, T ] we have that λ(t) = �0. Let us now show that λ cannot
remain on the switching surface for a time interval of positive measure or, equivalently,
that τr(kr) = tr. By contradiction, if kr 
= �0, then

(t, ξ(t)) ∈ πH(Σr) ⊆ πH(Ωr+1), t ∈ [τr(kr), tr].

If we differentiate the identities

t = τr(λ(t)), πHt(λ(t)) = ξ(t),

we obtain, a.e. t ∈ [τr(kr), tr],

〈d τr(λ(t)), λ̇(t)〉 = 1, ξ̇(t) = hr+1(ξ(t)) + π∗Ht ∗λ̇(t).(4.11)

From Assumption 2.2 it follows that for a.a. t ∈ [τr(kr), tr] there exists µt ∈ [0, 1] such
that

ξ̇(t) = (1− µt)hr+1(ξ(t)) + µt hr(ξ(t)),

and hence

π∗Ht ∗λ̇(t) = µt

(
hr(ξ(t))− hr+1(ξ(t))

)
.

Since λ̇(t) and µt are bounded we can take a sequence ti → tr such that λ̇(ti) → δ� ∈
L0 and µti → µ. Taking into account (4.11) we can say that δ� 
= 0, and since we have
that π∗Htr ∗ is injective, then from

π∗Htr ∗δ� = µ
(
hr(ξ(tr))− hr+1(ξ(tr))

)
it follows that also µ 
= 0. On the other hand from (4.4) and (4.3) we obtain

π∗
(
exp tr �Hr

)
∗
φr−1 ∗δ� = π∗Htr ∗δ�−

(
hr(ξ(tr))− hr+1(ξ(tr))

)
= (µ− 1)

(
hr(ξ(tr))− hr+1(ξ(tr))

)
.

Once again the last term has to be nonzero. If we set δ�1 :=
µ

µ−1δ�, then

〈d τr(�0), δ�〉 〈d τr(�0), δ�1〉 = µ

µ− 1
< 0,

and from Theorem 4.8 we obtain a contradiction. Therefore kr = �0, and hence
τr(kr) = τr(�0) = tr.We can do the same proof on each interval proceeding backwards
in time to prove that the trajectory is constant.
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4.4. The proof. As we pointed out in Remark 4.6 if we have a regular bang-bang
extremal with simple switching times and the strict bang-bang Legendre condition is
satisfied, then

L−
k = (exp tk �Hk)∗ϕk−1 ∗ L0 for k = 1, 2, . . . , r + 1,

L+
k = (exp tk �Hk+1)∗ϕk ∗ L0 for k = 1, 2, . . . , r.

On the other hand we are considering a free initial point problem; therefore if J ′′
|V > 0,

then from STEP 3 of the algorithm described in Corollary 2.10 it follows that we can
apply Theorem 4.8, and hence we have that π∗Ht∗ L0 = Tξ̂(t)M for all t ∈ [0, T ] and

L−
r+1 =

(
HT ◦ π−1

T

)
∗TxT

M.

Therefore STEP 4 of the algorithm described in Corollary 2.10 yields that we can
apply Theorem 4.10.

In the abnormal case the cost is zero, and hence the existence of a strict strong
local minimizer is equivalent to the fact that the reference trajectory is isolated among
the admissible trajectories in the C0 topology.
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