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Abstra
t|Sub-Riemannian problems are under in-

tensive study in 90-th. They are typi
al optimal


ontrol problems admitting singular and abnormal

minimizers (see [1 { 5℄). Moreover, any singular

geodesi
 in the sub-Riemannian problem is abnor-

mal and vi
e versa.

So minimizers may be singular geodesi
s, but it

is not 
lear for today, may they have singularities

as 
urves in the state spa
e or not. Until now,

all known minimizers were smooth. In this pa-

per we 
ompare di�erent types of lo
al minimal-

ity for smooth admissible 
urves. Surprisingly, the

smoothness of the traje
tory implies the equivalen
e

of lo
al minimality in rather di�erent topologies.

Index terms|Optimal 
ontrol, sub-Riemannian

geometry, strong minimum.

Let M be a smooth manifold endowed with a sub-

Riemannian stru
ture, dimM = n. We suppose that

the sub-Riemannian stru
ture is extended to a Rieman-

nian stru
ture g on M : g(v

1

; v

2

) is the s
alar produ
t

and jv

i

j

g

=

p

g(v

i

; v

i

) is the length of v

i

2 T

q

M; i =

1; 2; q 2M .

The sub-Riemannian stru
ture is thus the restri
tion

of g to a subbundle � � TM . Re
all that a Lips
hitzian


urve � : [0; 1℄ ! M is 
alled admissible if

_

� 2 � for

almost all t 2 [0; 1℄. Let 
 : [0; 1℄ ! M be a smooth


urve and

_
(t) 2 �; j _
(t)j

g

= l > 0; 8t 2 [0; 1℄:

Suppose V




� M is an open neighborhood of the sub-

set f
(t) : t 2 [0; 1℄g of M and � : V




! R

m

is an

imbedding of V




in R

m

.

The 
urve 
 is an H

1

-lo
al length minimizer if there

exists " > 0 su
h that l �

1

R

0

j

_

�(t)j

g

dt for any admissible


urve � : [0; 1℄! V




satisfying the boundary 
onditions

�(0) = 
(0); �(1) = 
(1) and the inequality

1

Z

0

j�

�

_

�(t)��

�

_
(t)j

2

dt < ": (1)

It is easy to 
he
k that given de�nition of the H

1

-lo
al

length minimizers doesn't depend on the 
hoi
e of V




and �. Moreover, we get an equivalent de�nition if

repla
e j�

�

_

�(t)��

�

_
(t)j

2

g

by j�

�

_

�(t)��

�

_
(t)j

p

g

in the

above inequality, where p is an arbitrary real number

greater or equal to 1. We obtain the de�nition of a C

0

-

lo
al length minimizer if repla
e (1) by the inequality

sup

0�t�1

j�(�(t)) ��(
(t))j < ": (2)

Of 
ourse, any C

0

-lo
al length minimizer is auto-

mati
ally a H

1

-lo
al length minimizer. The opposite

impli
ation is not obvious sin
e it is easier to satisfy

inequality (2) than (1). We'll however prove that these

two kinds of lo
al minima are equivalent.

Theorem 1 If 
 is an H

1

-lo
al (stri
t) length mini-

mizer, then it is a C

0

-lo
al (stri
t) length minimizer.

Proof Let exp : U ! M be the exponential mapping

asso
iated to the Riemannian stru
ture g; here U �

TM is an open neighborhood of the zero se
tion of the

ve
tor bundle TM ! M . Suppose M is imbedded in

TM as the zero se
tion. We have

exp(q) = q; exp

�

v = v; 8q 2M; v 2 T

q

(T

q

M) = T

q

M:

Let 
 be an H

1

-lo
al (stri
t) length minimizer. Take

a regular smooth 
urve �
 : [�1; 2℄ ! M su
h that

�
j

[0;1℄

= 
. Fix a smooth with respe
t to t 2 [�1; 2℄ or-

thonormal frame

1

l

_

�
; v

1

(t); : : : ; v

n�1

(t) in T

�
(t)

M . Con-

sider an open n � 1-dimensional Eu
lidean ball B =

fy = (y

1

; : : : ; y

n�1

) : jyj < 1g. If Æ > 0 is small enough,

then the mapping f

Æ

: (�1; 2)�B !M ,

f

Æ

(x; y) = exp

 

Æ

n�1

X

i=1

y

i

v

i

(�
(x))

!

is well de�ned and satis�es the following:

� 
(t) = f

Æ

(t; 0):

� f

Æ

is a lo
al di�eomorphism of (�1; 2)�B onto an

open neighborhood of f
(t) : t 2 [0; 1℄g in M .

� The matrix fun
tion

A

Æ

= fÆ

�2

(f

�

Æ

g)(

�

�y

i

;

�

�y

j

)g

n�1

i;j=1

tends uniformly to

the unit (n� 1)� (n� 1)-matrix as Æ �! 0.

� The ve
tor-fun
tion a

Æ

= fÆ

�1

(f

�

Æ

g)(

�

�x

;

�

�y

i

)g

n�1

i=1

tends uniformly to 0 as Æ �! 0.

� The real fun
tion (f

�

Æ

g)(

�

�x

;

�

�x

) tends uniformly to

the 
onstant l

2

as Æ �! 0.

Set A

Æ

the set of all (�; �) : [0; 1℄ ! (�1; 2) � (ÆB)

su
h that (�; �)(0) = (0; 0), (�; �)(1) = (1; 0), and t 7!

f

Æ

(�(t);

1

Æ

�(t)) is an admissible 
urve. We have A

Æ

0

�

A

Æ

if Æ

0

< Æ. The 
urve 
 is a (stri
t) H

1

-lo
al length

minimizer. Hen
e there exists " > 0 su
h that for any

Æ and any (�; �) 2 A

Æ

the inequality

1

Z

0

(l

2

j

_

�(t)� 1j

2

+ j _�(t)j

2

) dt < 2"



implies that the length of the 
urve t 7! f

Æ

(�(t);

1

Æ

�(t)),

t 2 [0; 1℄ is no less (greater) than l.

Now take

�

Æ > 0 su
h that

2

�

Æ

2

> kA

�

Æ

k >

�

Æ

2

l

2

(l

2

+ ")

;

2l

2

>

�

�

�

�

(f

�

�

Æ

g)(

�

�x

;

�

�x

)

�

�

�

�

>

l

4

(l

2

+ ")

; (3)

ja

�

Æ

j �

�

Æ"

8l

3

(l

2

+ ")

:

Let (�; �) 2 A

�

Æ

and

1

Z

0

(l

2

j

_

�(t)� 1j

2

+ j _�(t)j

2

) dt � 2":

Set �(t) = f

Æ

(�(t);

1

Æ

�(t)). To 
omplete the proof of

the theorem it is enough to show that

1

R

0

j

_

�(t)j

g

dt > l.

Without loss of generality we may assume that j

_

�(t)j

g

�

1

R

0

j

_

�(t)j

g

dt; then

�

1

R

0

j

_

�(t)j

g

dt

�

2

=

1

R

0

g(

_

�(t);

_

�(t)) dt:

Suppose j

_

�(t)j

g

� l, then j

_

�(t)j �

p

2l

2

, j _�(t)j � 2l

(see (3)) and we have

1

Z

0

g(

_

�(t);

_

�(t)) dt =

1

Z

0

�

�

Æ

�2

hA

�

Æ

_�(t); _�(t)i+2

�

Æ

�1

ha

�

Æ

; _�(t)i

_

�(t)+(f

�

�

Æ

g)(

_

�;

_

�)

�

dt

>

l

2

l

2

+ "

1

Z

0

(j _�(t)j

2

+ l

2

j

_

�(t)j

2

� ") dt =

l

2

l

2

+ "

0

�

1

Z

0

(j _�(t)j

2

+ l

2

j

_

�(t)� 1j

2

) dt+ l

2

� "

1

A

� l

2

:

Hen
e j

_

�(t)j

g

> l and the theorem has been proved by


ontradi
tion.

The C

0

-lo
al minimizers are 
alled strong minimiz-

ers in the 
lassi
al 
al
ulus of variations. One obtains

the de�nition of a weak minimizer repla
ing (2) by the

inequality

sup

0�t�1

j�

�

�(t)��

�


(t)j < ":

The natural question is: 
ould we strengthen the state-

ment of Theorem 1 working with weak minimizers in-

stead of H

1

-lo
al ones? The answer is negative. The

following example of a weak but not a strong real-

analyti
 sub-Riemannian minimizer was studied in [6,

Append. B℄. Let M be a neighbourhood of 0 in R

3

=

f(x; y; z)g, � be the annihilator of the di�erential form

! = dz � x

6

(y � x

2

)

2

dx;

and

k( _x; _y; _z)k

2

g

= _x

2

+ _y

2

+ h!; ( _x; _y; _z)i

2

:

Then the 
urve t 7! ("t� "); "

2

(t� ")

2

; 0), t 2 [0; 1℄, is

a weak but not a strong minimizer (see [6℄).

So, in general, weak and strong minimalities are not

equivalent. It happens however that some natural reg-

ularity assumptions make them equivalent even for ab-

normal geodesi
s (see [3℄).

The spa
e H

1

([0; 1℄;M) of all (not ne
essary admissi-

ble) H

1

-
urves in M enjoys the standard stru
ture of a

smooth Bana
h manifold modelled on the Bana
h spa
e

H

1

([0; 1℄;R

n

). A subset U � H

1

([0; 1℄;M) is 
alled a

submanifold if any point � 2 U belongs to a 
oordinate

neighbourhood

	 : O

�

! H

1

([0; 1℄;R

n

) (4)

su
h that 	(U \O

�

) is a relatively open 
onvex subset

of H

1

([0; 1℄;R

n

). We say that a 
onvex set is relatively

open if it is open in its own linear hull. Note that the

linear hull may be non
losed in H

1

([0; 1℄;R

n

); in par-

ti
ular, it may be everywhere dense in H

1

([0; 1℄;R

n

).

A subset U

0

� U is 
alled a submanifold of U if any

point � 2 U belongs to a 
oordinate neighbourhood (4)

su
h that both 	(U

0

\O

�

) and 	(U \O

�

) are relatively

open 
onvex subsets of H

1

([0; 1℄;R

n

).

For example, the spa
e of C

k

-
urves in M , 1 �

k � 1, is an everywhere dense submanifold of

H

1

([0; 1℄;M). If M is real{analyti
, then the spa
e

of all real{analyti
 
urves in M is also an everywhere

dense submanifold of H

1

([0; 1℄;M).

Let 
(�) be the spa
e of admissible 
urves; this spa
e

is a submanifold of H

1

([0; 1℄;M). The spa
e of smooth

admissible 
urves is an everywhere dense submanifold

of 
(�). If M and � are real{analyti
, then the spa
e

of real{analyti
 admissible 
urves is also an everywhere

dense submanifold of 
(�).

Suppose that U is a submanifold of H

1

([0; 1℄;M) and

N is a smooth �n�te-dimensional manifold. A mapping

F : U ! N is 
alled smooth if F is the restri
tion to

U of a smooth mapping from H

1

([0; 1℄;M) to N . The

mapping F is a submersion at � 2 U if the di�erential

of F at � is a surje
tive linear map. Any submersion is

a lo
ally open mapping. Let � 2 U

0

� U , where U

0

is

an everywhere dense submanifold of U . If F : U ! N

is a submersion at �, then F

�

�

U

0

is also a submersion at

�. Indeed, the image of the di�erential of F

�

�

U

0

at � is

an everywhere dense subspa
e of the �nite{dimensional

spa
e T

F (�)

N . Hen
e this image 
oin
ides with T

F (�)

N .

Proposition 1 Suppose that F : U ! N is a submer-

sion at � 2 U , F (�) = q. Then F

�1

(q)\U

0

6= 0 for any

everywhere dense submanifold U

0

of U .

Proof. Let

	 : O

�

! H

1

([0; 1℄;R

n

)

be lo
al 
oordinates su
h that 	(U

0

\O

�

) and 	(U\O

�

)

are relatively open 
onvex subsets of H

1

([0; 1℄;R

n

),



	(�) = 0. Then there exists an open n-dimensional

symplex S � 	(U \O

�

), 0 2 S, su
h that F Æ	

�1

�

�

S

is

a di�eomorphism. A small perturbation of the verti
es

of S puts the verti
es into 	(U

0

\ O

�

). The 
onvexity

property implies that the perturbed symplex S

0

is 
on-

tained in 	(U

0

\ O

�

). The mapping F Æ	

�1

�

�

S

0

is still

a di�eomorphism and the image of this di�eomorphism


ontains q. The details are left to the reader.

Let us 
onsider the \boundary values" mapping

� : H

1

([0; 1℄;M)!M �M; �(�) = (�(0); �(1)):

This is, obviously, a smooth mapping and a submer-

sion at every point. At the same time, �

�

�


(�)

is not a

submersion at every point: 
riti
al points of �

�

�


(�)

are

exa
tly the singular (abnormal) geodesi
s of the distri-

bution �. The following impotant fa
t is a 
orollary of

the 
lassi
al "lo
al 
ontrollability" te
hniques.

Theorem 2 Suppose that � is a bra
ket generating

distribution. Then the mapping �

�

�


(�)

is a submer-

sion at any point of an open everywhere dense subset

of �

�1

(q

0

; q

1

) \ 
(�); 8(q

0

; q

1

) 2M �M .

Proof. Let � 2 
(�). Then there exists a bounded

measurable with respe
t to t and smooth with respe
t

to q nonautonomous ve
tor �eld (t; q) 7! V

t

(q), t 2

[0; 1℄, q 2 M , V

t

(q) 2 �, su
h that

_

�(t) = V

t

(�(t)) for

almost all t 2 [0; 1℄ (see [2℄). The di�erential equation

_q = V

t

(q) de�nes a family of di�eomorphisms

P

�;t

:M !M; P

t;t

(q) = q;

�

�t

P

�;t

(q) = V

t

(P

�;t

(q)); �; t 2 [0; 1℄; q 2M:

Let � 2 (0; 1); we de�ne a mapping I

�

: 
(�)! 
(�)

by the formula

I

�

(�)(t) =

�

�(t) ; 0 � t � �

P

�;t

(�(�)) ; � � t � 1

and a mapping

�

�

: H

1

([0; 1℄;M)!M �M

by the formula �

�

(�) = (�(0); �(�)).

Lemma 1 Suppose that �

�

�

�


(�)

is a submersion at �.

Then �

�

�


(�)

is a submersion at � as well.

Indeed, �(I

�

(�)) = (�(0); P

�;1

(�(�)), I

�

(�) = �. Sin
e

P

�;1

is a di�eomorphism, then � Æ I

�

is a submersion at

�. Hen
e �

�

�


(�)

is a submersion at � as well.

For �; � 2 
(�), �(0) = �(0), we denote

(� � �)

�

=

8

>

<

>

:

�(t) ; 0 � t � �

�(2�� t) ; � � t � 2t

�

�

t�2�

1�2�

�

; 2� � t � 1 :

We have (� � �)

�

(0) = �(0), (� � �)

�

(1) = �(1); besides

that, (� � �)

�

tends to � in H

1

-topology as the length of

� tends to 0 while � remains �xed.

Suppose that �

�

�

�


(�)

is a submersion at �. It fol-

lows from the lemma that �

�

�

�


(�)

is a submersion at

(� � �)

�

. To prove the theorem it is enough to 
onstru
t

an arbitrary short admissible 
urve � started from given

point q

0

2M and su
h that �

�

�

�


(�)

is a submersion at

�.

The 
onstru
tion is 
lassi
al. Let V

1

be a smooth

ve
tor �eld with the values in �, V

1

(q

0

) 6= 0, and t 7!

e

tV

1

be the (lo
al) 
ow in M generated by V

1

. Take

" > 0; there exist a smooth ve
tor �eld V

2

with the

values in � and a moment t

1

1

2 (0; ") su
h that V

1

and

V

2

are linearly independent at e

t

1

1

V

1

(q

0

). Indeed, in the

opposite 
ase the distribution � would be tangent to

the one-dimensional submanifold fe

�V

1

(q

0

) j � 2 (0; ")g

and 
ould not be bra
ket generating. Moreover, there

exist a �eld V

3

with values in � and moments t

1

2

; t

2

2

2

(0; ") su
h that the mapping

(�

1

; �

2

) 7! e

�

2

V

2

Æ e

�

1

V

1

(q

0

)

is an immersion at (t

1

2

; t

2

2

) and V

3

is transversal to the

image of this immersion at the point e

t

2

2

V

2

Æ e

t

1

2

V

1

(q

0

).

The reason is the same: in the opposite 
ase the dis-

tribution � would be tangent to the two-dimensional

submanifold 
onsisting of the point e

�

2

V

2

Æ e

�

1

V

1

(q

0

)

(where �

1

is 
lose to t

1

2

, �

2

is positive 
lose to 0) and


ould not be bra
ket generating. We may 
ontinue and

�nd �elds V

1

; : : : ; V

n

with values in � and moments

t

1

n�1

; : : : ; t

n�1

n�1

2 (0; ") su
h that the mapping

(�

1

; : : : ; �

n�1

) 7! e

�

n�1

V

n�1

Æ � � � Æ e

�

1

V

1

(q

0

)

is an immersion at (t

1

n�1

; : : : ; t

n�1

n�1

) and V

n

is transver-

sal to the image of this immersion at the point

e

t

n�1

n�1

V

n�1

Æ � � � Æ e

t

1

n�1

V

1

(q

0

). It is easy to show

that the mapping �

n"

�

�


(�)

is a submersion at

^

�,

where

^

�(�) = e

�V

1

(q

0

) for 0 � � � t

1

n�1

,

^

�(�) = e

�V

2

Æ e

t

1

n�1

V

1

(q

0

) for t

1

n�1

� � � t

2

n�1

, . . . ,

^

�(�) = e

�V

n

Æe

t

n�1

n�1

V

n�1

Æ � � �Æe

t

1

n�1

V

1

(q

0

) for

n�1

P

i=1

t

i

n�1

�

� . We are done sin
e V

1

; : : : ; V

n

and " 
an be 
hosen

arbitrary small.

Corollary 1 Let U

0

be an everywhere dense subman-

ifold of 
(�) and 
 2 
(�). Suppose that 
 realises

the minimum of the length among all admissible 
urves

� 2 O




\ U

0

with the boundary 
onditions �(0) = 
(0),

�(1) = 
(1), where O




is a neighbourhood of 
 in 
(�).

Then 
 is a H

1

-lo
al length minimizer.

The statement of the 
orollary follows dire
tly from

Theorem 2 and Proposition 1.

Summing up we 
on
lude that it is enough to deal

only with smooth (or analyti
 in the 
ase of a real{

analyti
 sub-Riemannian stru
ture) perturbations of

the referen
ed 
urve in order to 
he
k the H

1

-lo
al min-

imality.
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