The 37th IEEE Conference on Decision and Control, Tampa, Florida, December 1998.

On the Equivalence of Different Types of Local Minima in
Sub-Riemannian Problems
Andrei A. Agrachev

Steklov Mathematical Institute, 8 ul. Gubkina, Moscow 117966
E-mail: agrachev@mi.ras.ru

Abstract—Sub-Riemannian problems are under in-
tensive study in 90-th. They are typical optimal
control problems admitting singular and abnormal
minimizers (see [1 — 5]). Moreover, any singular
geodesic in the sub-Riemannian problem is abnor-
mal and vice versa.

So minimizers may be singular geodesics, but it
is not clear for today, may they have singularities
as curves in the state space or not. Until now,
In this pa-
per we compare different types of local minimal-
ity for smooth admissible curves. Surprisingly, the
smoothness of the trajectory implies the equivalence
of local minimality in rather different topologies.

all known minimizers were smooth.

Index terms—Optimal control, sub-Riemannian
geometry, strong minimum.

Let M be a smooth manifold endowed with a sub-
Riemannian structure, dim M = n. We suppose that
the sub-Riemannian structure is extended to a Rieman-
nian structure g on M: g(v1,v9) is the scalar product
and |v;|g = v/g(v;,v;) is the length of v; € T, M, i =
1,2, g€ M.

The sub-Riemannian structure is thus the restriction
of g to a subbundle A C T'M. Recall that a Lipschitzian
curve ( : [0,1] = M is called admissible if ( € A for
almost all ¢t € [0,1]. Let v : [0,1] — M be a smooth
curve and

() €A, [yl =1>0,

Suppose V., C M is an open neighborhood of the sub-
set {y(t) : t € [0,1]} of M and ® : V, — R™ is an
imbedding of V, in R™.

The curve v is an H'-local length minimizer if there

vt € [0,1].

1 .
exists € > 0 such that I < [ |((t)|, dt for any admissible
0

curve ( : [0,1] — V,, satisfying the boundary conditions
¢(0) =v(0),¢(1) = v(1) and the inequality

/ 1B,0(t) — .5(0) dt < <. (1)
0

It is easy to check that given definition of the H'-local
length minimizers doesn’t depend on the choice of V,
and &. Moreover we get an equlvalent definition 1f
replace [®.C(t) — 0, 4(1)[2 by [8.C(t) — .4(1)[? in the
above inequality, where p is an arbitrary real number
greater or equal to 1. We obtain the definition of a C°-
local length minimizer if replace (1) by the inequality

sup |®(¢(t)) — 2(v(1)] <e. (2)
0<t<1

Of course, any C%local length minimizer is auto-
matically a H'-local length minimizer. The opposite
implication is not obvious since it is easier to satisfy
inequality (2) than (1). We’ll however prove that these
two kinds of local minima are equivalent.

Theorem 1 If v is an H'-local (strict) length mini-
mizer, then it is a C°-local (strict) length minimizer.

Proof Let exp : Y — M be the exponential mapping
associated to the Riemannian structure g; here U C
T M is an open neighborhood of the zero section of the
vector bundle TM — M. Suppose M is imbedded in
T M as the zero section. We have

exp(q) = ¢, exp,v=v, VYge M,veT,(T,M)=T,M.
Let v be an H!'-local (strict) length minimizer. Take
a regular smooth curve 7 : [-1,2] — M such that
Yljo,1] = - Fix a smooth with respect to ¢t € [—1, 2] or-
thonormal frame 1%, v1(t), ..., vn_1(t) in Ty M. Con-
sider an open n — 1-dimensional Euclidean ball B =
{y=(y1,--,yn—1) : ly| < 1}. If 6 > 0 is small enough,
then the mapping f5: (-1,2) x B — M,

fs(@,y) = exp ((5 Z_: yivi(V(JC)))

i=1
is well defined and satisfies the following;:
e (1) = f5(t,0).

fs is a local diffeomorphism of (—1,2) x B onto an
open neighborhood of {~(t) : ¢t € [0,1]} in M.

e The matrix function
As ={672(fF g)( 2y e !, tends uniformly to

By’ dy;
the unit (n — 1) x (n — 1)-matrix as § — 0.

o ) n—1
Oz dy; /Ji=1

e The vector-function a5 = {671 (f} g)(
tends uniformly to 0 as § — 0.

e The real function (fgg)(%, %)
the constant [? as § — 0.

Set As the set of all (§,n) : [0,1] — (—1,2) x (6B)
such that (€,7)(0) = (0,0), (€,7)(1) = (1,0), and t —
fs5(€(t), $n(t)) is an admissible curve. We have Ay C
As if 6' < 6. The curve 7 is a (strict) H!-local length
minimizer. Hence there exists € > 0 such that for any
d and any (£,7n) € Ajs the inequality

tends uniformly to

1
/z2|g AP+ [OP) dt < 2
0



implies that the length of the curve ¢ — f5(£(t), $n(t)),
t € [0,1] is no less (greater) than I.
Now take 6 > 0 such that

L, 522
207 > ||A6|| > ( +5)7
0 0 4
2 * - — -
2> |G )| > mrg O

lag] < de
4 813(12 +¢)
Let (¢,m) € A5 and

1
/ PIE(H) — 17 + (o)) dt > 2.
0

Set ((t) =
1 .

the theorem it is enough to show that [|C(¢)|, dt > 1.
0

fs(€t), £n(t)). To complete the proof of

Without loss of generality we may assume that |{(t)|, =
2

bf|¢<t>|gdt; then (f“|¢t|gdt) - f“g(at),é(t))dt.

Suppose [((t)], < I, then |£(t)] < fzz ()] < 21
(see (3)) and we have

/ g(C(), () dt =
0

[ (572 asi0, i) 25 s, 0O+ 5 9)(E ) de

1
2 : o
> e /(In(t)l2 + P ) dt =
0
l2
> +e

1
/ (0 + PIEE) — 1) dt+ 12— e | > 12,
0

Hence |((t)|, > [ and the theorem has been proved by
contradiction.

The C°-local minimizers are called strong minimiz-
ers in the classical calculus of variations. One obtains
the definition of a weak minimizer replacing (2) by the
inequality

sup [@.((t) —
0<t<1

D.(t)] < e.

The natural question is: could we strengthen the state-
ment of Theorem 1 working with weak minimizers in-
stead of H'-local ones? The answer is negative. The
following example of a weak but not a strong real-
analytic sub-Riemannian minimizer was studied in [6,
Append. B]. Let M be a neighbourhood of 0 in R® =
{(z,y,2)}, A be the annihilator of the differential form

w=dz —2%(y — 2*)?dz,

and
(&, 9, 25 = &° + 9% + (w, (&, 9, 2))>.

Then the curve t — (et —¢),€2(t — €)2,0), t € [0,1], is
a weak but not a strong minimizer (see [6]).

So, in general, weak and strong minimalities are not
equivalent. It happens however that some natural reg-
ularity assumptions make them equivalent even for ab-
normal geodesics (see [3]).

The space H([0,1]; M) of all (not necessary admissi-
ble) H!-curves in M enjoys the standard structure of a
smooth Banach manifold modelled on the Banach space
H([0,1]; R™). A subset U C H'([0,1]; M) is called a
submanifold if any point & € U belongs to a coordinate
neighbourhood

¥ O — H([0,1; R") (4)

such that ¥ (U N O¢) is a relatively open convex subset
of H1([0,1]; R™). We say that a convex set is relatively
open if it is open in its own linear hull. Note that the
linear hull may be nonclosed in H'([0, 1]; R™); in par-
ticular, it may be everywhere dense in H'(]0,1]; R™).
A subset Uy C U is called a submanifold of ¢/ if any
point £ € U belongs to a coordinate neighbourhood (4)
such that both ¥ (UyNO¢) and ¥(UNO¢) are relatively
open convex subsets of H([0,1]; R™).

For example, the space of C*-curves in M, 1 <
k < oo, is an everywhere dense submanifold of
H([0,1]; M). If M is real-analytic, then the space
of all real-analytic curves in M is also an everywhere
dense submanifold of H'([0,1]; M).

Let ©(A) be the space of admissible curves; this space
is a submanifold of H'([0,1]; M). The space of smooth
admissible curves is an everywhere dense submanifold
of Q(A). If M and A are real-analytic, then the space
of real-analytic admissible curves is also an everywhere
dense submanifold of Q2(A).

Suppose that ¢ is a submanifold of H!([0,1]; M) and
N is a smooth finfite-dimensional manifold. A mapping
F :U — N is called smooth if F' is the restriction to
U of a smooth mapping from H*([0,1]; M) to N. The
mapping F' is a submersion at £ € U if the differential
of F at £ is a surjective linear map. Any submersion is
a locally open mapping. Let & € Uy C U, where Uy is
an everywhere dense submanifold of 4. If F : i — N
is a submersion at £, then F|u0 is also a submersion at

£. Indeed, the image of the differential of F|u0 at £ is
an everywhere dense subspace of the finite—dimensional
space T're)N. Hence this image coincides with Ty N

Proposition 1 Suppose that F : U — N is a submer-
sion at £ €U, F(§) = q. Then F~(q)NUy # 0 for any
everywhere dense submanifold Uy of U.

Proof. Let
VO — HY([0,1]; R™)

be local coordinates such that ¥ (UyNO;) and ¥(UNO;)
are relatively open convex subsets of H'([0,1]; R"),



U(¢) = 0. Then there exists an open n-dimensional
symplex S C ¥(UNO¢), 0 € S, such that F oW is
a diffeomorphism. A small perturbation of the vertices
of S puts the vertices into ¥(Uy N Of). The convexity
property implies that the perturbed symplex S’ is con-
tained in ¥ (Uy N O¢). The mapping F o Ut is still
a diffeomorphism and the image of this diffeomorphism
contains q. The details are left to the reader.

Let us consider the “boundary values” mapping

9: H'([0,1; M) = M x M, (&) = (£(0),£(1)).
This is, obviously, a smooth mapping and a submer-
sion at every point. At the same time, 8|Q(A) is not a

submersion at every point: critical points of 8|Q (a) are

exactly the singular (abnormal) geodesics of the distri-
bution A. The following impotant fact is a corollary of
the classical ”local controllability” techniques.

Theorem 2 Suppose that A is a bracket generating
distribution. Then the mapping 8|Q(A) s a submer-

sion at any point of an open everywhere dense subset
Ofail(QO7q1)mQ(A)7 V(QOan) €M x M.

Proof. Let £ € Q(A). Then there exists a bounded
measurable with respect to ¢t and smooth with respect
to ¢ nonautonomous vector field (¢,q) — Vi(q), t €
[0,1], ¢ € M, Vi(g) € A, such that {(t) = V;(£(t)) for
almost all ¢ € [0,1] (see [2]). The differential equation
g = Vi(q) defines a family of diffeomorphisms

P.,:M—M, P,lg =g,

0
gl =Vellra(@), 7te[0,1], g€ M.

Let « € (0,1); we define a mapping I, : Q(A) — Q(A)
by the formula

and a mapping
On : HY([0,1]; M) = M x M
by the formula 9,(¢) = (¢(0), {(a)).

Lemma 1 Suppose that 8a|Q(A) is a submersion at €.
Then 8|Q(A) is a submersion at & as well.
Indeed, 8(101(()) = (C(O)vpml(C(a))? Ia(€> = §. Since

P, 1 is a diffeomorphism, then 9o I, is a submersion at
£. Hence 8|Q(A) is a submersion at & as well.

For £,¢ € Q(A), £(0) = ¢(0), we denote

(€ Qu=4 §Ra=1) , a<i<2t
(), 2a<e<t,

We have (£-¢)a(0) = ¢(0), (§-()a(l) = ((1); besides
that, (£-()s tends to ¢ in H!-topology as the length of
¢ tends to 0 while ¢ remains fixed.

Suppose that 8a|Q(A) is a submersion at £. It fol-
lows from the lemma that 8a|9( A) is a submersion at

(€ ()a- To prove the theorem it is enough to construct
an arbitrary short admissible curve ¢ started from given
point go € M and such that 8O‘|Q(A) is a submersion at

&

The construction is classical. Let V; be a smooth
vector field with the values in A, Vi(go) # 0, and ¢t —
e!V1 be the (local) flow in M generated by Vi. Take
g€ > 0; there exist a smooth vector field V5 with the
values in A and a moment ¢} € (0,¢) such that V; and

Vs are linearly independent at e'1V1(go). Indeed, in the
opposite case the distribution A would be tangent to
the one-dimensional submanifold {e”™"*(qo) | 7 € (0,¢)}
and could not be bracket generating. Moreover, there
exist a field V3 with values in A and moments t3,3 €
(0,¢) such that the mapping

(11, 72) — e2V2 0 eV (qo)

is an immersion at (¢1,#3) and V3 is transversal to the
2 1
image of this immersion at the point e’2"2 o e2V1(qy).
The reason is the same: in the opposite case the dis-
tribution A would be tangent to the two-dimensional
submanifold consisting of the point €™"2 o e™V1(gy)
(where 71 is close to t, 7 is positive close to 0) and
could not be bracket generating. We may continue and
find fields Vi,...,V, with values in A and moments
th_,,...,t""1 € (0,¢) such that the mapping
(T1,. .y Tpe1) = eT=1Va=1 6. 0 V()
is an immersion at (t, ,,...,t"~]) and V,, is transver-
sal to the image of this immersion at the point
tn71VR_1 t}L71V1(

eln—1 o---o0eg q). It is easy to show

is a submersion at &,

<t

T n—1»
2
ST,

that the mapping 8nE|Q(A)

where £(r) = eVi(g) for 0 <

E(r) = e™2 o0 etn—1Vi (qo) for tL ,

~ n— S i
£(r) = e™Vroetn 1Yo oetn-1Vi(gy) for Y i, <

i=1
7. We are done since Vi,...,V, and € can be chosen
arbitrary small.

Corollary 1 Let Uy be an everywhere dense subman-
ifold of Q(A) and v € Q(A). Suppose that v realises
the minimum of the length among all admissible curves
¢ € O, NUy with the boundary conditions ((0) = v(0),
¢(1) = v(1), where O is a neighbourhood of v in Q(A).
Then vy is a H'-local length minimizer.

The statement of the corollary follows directly from
Theorem 2 and Proposition 1.

Summing up we conclude that it is enough to deal
only with smooth (or analytic in the case of a real—
analytic sub-Riemannian structure) perturbations of
the referenced curve in order to check the H'-local min-
imality.
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