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Abstrat|Sub-Riemannian problems are under in-

tensive study in 90-th. They are typial optimal

ontrol problems admitting singular and abnormal

minimizers (see [1 { 5℄). Moreover, any singular

geodesi in the sub-Riemannian problem is abnor-

mal and vie versa.

So minimizers may be singular geodesis, but it

is not lear for today, may they have singularities

as urves in the state spae or not. Until now,

all known minimizers were smooth. In this pa-

per we ompare di�erent types of loal minimal-

ity for smooth admissible urves. Surprisingly, the

smoothness of the trajetory implies the equivalene

of loal minimality in rather di�erent topologies.

Index terms|Optimal ontrol, sub-Riemannian

geometry, strong minimum.

Let M be a smooth manifold endowed with a sub-

Riemannian struture, dimM = n. We suppose that

the sub-Riemannian struture is extended to a Rieman-

nian struture g on M : g(v

1

; v

2

) is the salar produt

and jv

i

j

g

=

p

g(v

i

; v

i

) is the length of v

i

2 T

q

M; i =

1; 2; q 2M .

The sub-Riemannian struture is thus the restrition

of g to a subbundle � � TM . Reall that a Lipshitzian

urve � : [0; 1℄ ! M is alled admissible if

_

� 2 � for

almost all t 2 [0; 1℄. Let  : [0; 1℄ ! M be a smooth

urve and

_(t) 2 �; j _(t)j

g

= l > 0; 8t 2 [0; 1℄:

Suppose V



� M is an open neighborhood of the sub-

set f(t) : t 2 [0; 1℄g of M and � : V



! R

m

is an

imbedding of V



in R

m

.

The urve  is an H

1

-loal length minimizer if there

exists " > 0 suh that l �

1

R

0

j

_

�(t)j

g

dt for any admissible

urve � : [0; 1℄! V



satisfying the boundary onditions

�(0) = (0); �(1) = (1) and the inequality

1

Z

0

j�

�

_

�(t)��

�

_(t)j

2

dt < ": (1)

It is easy to hek that given de�nition of the H

1

-loal

length minimizers doesn't depend on the hoie of V



and �. Moreover, we get an equivalent de�nition if

replae j�

�

_

�(t)��

�

_(t)j

2

g

by j�

�

_

�(t)��

�

_(t)j

p

g

in the

above inequality, where p is an arbitrary real number

greater or equal to 1. We obtain the de�nition of a C

0

-

loal length minimizer if replae (1) by the inequality

sup

0�t�1

j�(�(t)) ��((t))j < ": (2)

Of ourse, any C

0

-loal length minimizer is auto-

matially a H

1

-loal length minimizer. The opposite

impliation is not obvious sine it is easier to satisfy

inequality (2) than (1). We'll however prove that these

two kinds of loal minima are equivalent.

Theorem 1 If  is an H

1

-loal (strit) length mini-

mizer, then it is a C

0

-loal (strit) length minimizer.

Proof Let exp : U ! M be the exponential mapping

assoiated to the Riemannian struture g; here U �

TM is an open neighborhood of the zero setion of the

vetor bundle TM ! M . Suppose M is imbedded in

TM as the zero setion. We have

exp(q) = q; exp

�

v = v; 8q 2M; v 2 T

q

(T

q

M) = T

q

M:

Let  be an H

1

-loal (strit) length minimizer. Take

a regular smooth urve � : [�1; 2℄ ! M suh that

�j

[0;1℄

= . Fix a smooth with respet to t 2 [�1; 2℄ or-

thonormal frame

1

l

_

�; v

1

(t); : : : ; v

n�1

(t) in T

�(t)

M . Con-

sider an open n � 1-dimensional Eulidean ball B =

fy = (y

1

; : : : ; y

n�1

) : jyj < 1g. If Æ > 0 is small enough,

then the mapping f

Æ

: (�1; 2)�B !M ,

f

Æ

(x; y) = exp

 

Æ

n�1

X

i=1

y

i

v

i

(�(x))

!

is well de�ned and satis�es the following:

� (t) = f

Æ

(t; 0):

� f

Æ

is a loal di�eomorphism of (�1; 2)�B onto an

open neighborhood of f(t) : t 2 [0; 1℄g in M .

� The matrix funtion

A

Æ

= fÆ

�2

(f

�

Æ

g)(

�

�y

i

;

�

�y

j

)g

n�1

i;j=1

tends uniformly to

the unit (n� 1)� (n� 1)-matrix as Æ �! 0.

� The vetor-funtion a

Æ

= fÆ

�1

(f

�

Æ

g)(

�

�x

;

�

�y

i

)g

n�1

i=1

tends uniformly to 0 as Æ �! 0.

� The real funtion (f

�

Æ

g)(

�

�x

;

�

�x

) tends uniformly to

the onstant l

2

as Æ �! 0.

Set A

Æ

the set of all (�; �) : [0; 1℄ ! (�1; 2) � (ÆB)

suh that (�; �)(0) = (0; 0), (�; �)(1) = (1; 0), and t 7!

f

Æ

(�(t);

1

Æ

�(t)) is an admissible urve. We have A

Æ

0

�

A

Æ

if Æ

0

< Æ. The urve  is a (strit) H

1

-loal length

minimizer. Hene there exists " > 0 suh that for any

Æ and any (�; �) 2 A

Æ

the inequality

1

Z

0

(l

2

j

_

�(t)� 1j

2

+ j _�(t)j

2

) dt < 2"



implies that the length of the urve t 7! f

Æ

(�(t);

1

Æ

�(t)),

t 2 [0; 1℄ is no less (greater) than l.

Now take

�

Æ > 0 suh that

2

�

Æ

2

> kA

�

Æ

k >

�

Æ

2

l

2

(l

2

+ ")

;

2l

2

>

�

�

�

�

(f

�

�

Æ

g)(

�

�x

;

�

�x

)

�

�

�

�

>

l

4

(l

2

+ ")

; (3)

ja

�

Æ

j �

�

Æ"

8l

3

(l

2

+ ")

:

Let (�; �) 2 A

�

Æ

and

1

Z

0

(l

2

j

_

�(t)� 1j

2

+ j _�(t)j

2

) dt � 2":

Set �(t) = f

Æ

(�(t);

1

Æ

�(t)). To omplete the proof of

the theorem it is enough to show that

1

R

0

j

_

�(t)j

g

dt > l.

Without loss of generality we may assume that j

_

�(t)j

g

�

1

R

0

j

_

�(t)j

g

dt; then

�

1

R

0

j

_

�(t)j

g

dt

�

2

=

1

R

0

g(

_

�(t);

_

�(t)) dt:

Suppose j

_

�(t)j

g

� l, then j

_

�(t)j �

p

2l

2

, j _�(t)j � 2l

(see (3)) and we have

1

Z

0

g(

_

�(t);

_

�(t)) dt =

1

Z

0

�

�

Æ

�2

hA

�

Æ

_�(t); _�(t)i+2

�

Æ

�1

ha

�

Æ

; _�(t)i

_

�(t)+(f

�

�

Æ

g)(

_

�;

_

�)

�

dt

>

l

2

l

2

+ "

1

Z

0

(j _�(t)j

2

+ l

2

j

_

�(t)j

2

� ") dt =

l

2

l

2

+ "

0

�

1

Z

0

(j _�(t)j

2

+ l

2

j

_

�(t)� 1j

2

) dt+ l

2

� "

1

A

� l

2

:

Hene j

_

�(t)j

g

> l and the theorem has been proved by

ontradition.

The C

0

-loal minimizers are alled strong minimiz-

ers in the lassial alulus of variations. One obtains

the de�nition of a weak minimizer replaing (2) by the

inequality

sup

0�t�1

j�

�

�(t)��

�

(t)j < ":

The natural question is: ould we strengthen the state-

ment of Theorem 1 working with weak minimizers in-

stead of H

1

-loal ones? The answer is negative. The

following example of a weak but not a strong real-

analyti sub-Riemannian minimizer was studied in [6,

Append. B℄. Let M be a neighbourhood of 0 in R

3

=

f(x; y; z)g, � be the annihilator of the di�erential form

! = dz � x

6

(y � x

2

)

2

dx;

and

k( _x; _y; _z)k

2

g

= _x

2

+ _y

2

+ h!; ( _x; _y; _z)i

2

:

Then the urve t 7! ("t� "); "

2

(t� ")

2

; 0), t 2 [0; 1℄, is

a weak but not a strong minimizer (see [6℄).

So, in general, weak and strong minimalities are not

equivalent. It happens however that some natural reg-

ularity assumptions make them equivalent even for ab-

normal geodesis (see [3℄).

The spae H

1

([0; 1℄;M) of all (not neessary admissi-

ble) H

1

-urves in M enjoys the standard struture of a

smooth Banah manifold modelled on the Banah spae

H

1

([0; 1℄;R

n

). A subset U � H

1

([0; 1℄;M) is alled a

submanifold if any point � 2 U belongs to a oordinate

neighbourhood

	 : O

�

! H

1

([0; 1℄;R

n

) (4)

suh that 	(U \O

�

) is a relatively open onvex subset

of H

1

([0; 1℄;R

n

). We say that a onvex set is relatively

open if it is open in its own linear hull. Note that the

linear hull may be nonlosed in H

1

([0; 1℄;R

n

); in par-

tiular, it may be everywhere dense in H

1

([0; 1℄;R

n

).

A subset U

0

� U is alled a submanifold of U if any

point � 2 U belongs to a oordinate neighbourhood (4)

suh that both 	(U

0

\O

�

) and 	(U \O

�

) are relatively

open onvex subsets of H

1

([0; 1℄;R

n

).

For example, the spae of C

k

-urves in M , 1 �

k � 1, is an everywhere dense submanifold of

H

1

([0; 1℄;M). If M is real{analyti, then the spae

of all real{analyti urves in M is also an everywhere

dense submanifold of H

1

([0; 1℄;M).

Let 
(�) be the spae of admissible urves; this spae

is a submanifold of H

1

([0; 1℄;M). The spae of smooth

admissible urves is an everywhere dense submanifold

of 
(�). If M and � are real{analyti, then the spae

of real{analyti admissible urves is also an everywhere

dense submanifold of 
(�).

Suppose that U is a submanifold of H

1

([0; 1℄;M) and

N is a smooth �n�te-dimensional manifold. A mapping

F : U ! N is alled smooth if F is the restrition to

U of a smooth mapping from H

1

([0; 1℄;M) to N . The

mapping F is a submersion at � 2 U if the di�erential

of F at � is a surjetive linear map. Any submersion is

a loally open mapping. Let � 2 U

0

� U , where U

0

is

an everywhere dense submanifold of U . If F : U ! N

is a submersion at �, then F

�

�

U

0

is also a submersion at

�. Indeed, the image of the di�erential of F

�

�

U

0

at � is

an everywhere dense subspae of the �nite{dimensional

spae T

F (�)

N . Hene this image oinides with T

F (�)

N .

Proposition 1 Suppose that F : U ! N is a submer-

sion at � 2 U , F (�) = q. Then F

�1

(q)\U

0

6= 0 for any

everywhere dense submanifold U

0

of U .

Proof. Let

	 : O

�

! H

1

([0; 1℄;R

n

)

be loal oordinates suh that 	(U

0

\O

�

) and 	(U\O

�

)

are relatively open onvex subsets of H

1

([0; 1℄;R

n

),



	(�) = 0. Then there exists an open n-dimensional

symplex S � 	(U \O

�

), 0 2 S, suh that F Æ	

�1

�

�

S

is

a di�eomorphism. A small perturbation of the verties

of S puts the verties into 	(U

0

\ O

�

). The onvexity

property implies that the perturbed symplex S

0

is on-

tained in 	(U

0

\ O

�

). The mapping F Æ	

�1

�

�

S

0

is still

a di�eomorphism and the image of this di�eomorphism

ontains q. The details are left to the reader.

Let us onsider the \boundary values" mapping

� : H

1

([0; 1℄;M)!M �M; �(�) = (�(0); �(1)):

This is, obviously, a smooth mapping and a submer-

sion at every point. At the same time, �

�

�


(�)

is not a

submersion at every point: ritial points of �

�

�


(�)

are

exatly the singular (abnormal) geodesis of the distri-

bution �. The following impotant fat is a orollary of

the lassial "loal ontrollability" tehniques.

Theorem 2 Suppose that � is a braket generating

distribution. Then the mapping �

�

�


(�)

is a submer-

sion at any point of an open everywhere dense subset

of �

�1

(q

0

; q

1

) \ 
(�); 8(q

0

; q

1

) 2M �M .

Proof. Let � 2 
(�). Then there exists a bounded

measurable with respet to t and smooth with respet

to q nonautonomous vetor �eld (t; q) 7! V

t

(q), t 2

[0; 1℄, q 2 M , V

t

(q) 2 �, suh that

_

�(t) = V

t

(�(t)) for

almost all t 2 [0; 1℄ (see [2℄). The di�erential equation

_q = V

t

(q) de�nes a family of di�eomorphisms

P

�;t

:M !M; P

t;t

(q) = q;

�

�t

P

�;t

(q) = V

t

(P

�;t

(q)); �; t 2 [0; 1℄; q 2M:

Let � 2 (0; 1); we de�ne a mapping I

�

: 
(�)! 
(�)

by the formula

I

�

(�)(t) =

�

�(t) ; 0 � t � �

P

�;t

(�(�)) ; � � t � 1

and a mapping

�

�

: H

1

([0; 1℄;M)!M �M

by the formula �

�

(�) = (�(0); �(�)).

Lemma 1 Suppose that �

�

�

�


(�)

is a submersion at �.

Then �

�

�


(�)

is a submersion at � as well.

Indeed, �(I

�

(�)) = (�(0); P

�;1

(�(�)), I

�

(�) = �. Sine

P

�;1

is a di�eomorphism, then � Æ I

�

is a submersion at

�. Hene �

�

�


(�)

is a submersion at � as well.

For �; � 2 
(�), �(0) = �(0), we denote

(� � �)

�

=

8

>

<

>

:

�(t) ; 0 � t � �

�(2�� t) ; � � t � 2t

�

�

t�2�

1�2�

�

; 2� � t � 1 :

We have (� � �)

�

(0) = �(0), (� � �)

�

(1) = �(1); besides

that, (� � �)

�

tends to � in H

1

-topology as the length of

� tends to 0 while � remains �xed.

Suppose that �

�

�

�


(�)

is a submersion at �. It fol-

lows from the lemma that �

�

�

�


(�)

is a submersion at

(� � �)

�

. To prove the theorem it is enough to onstrut

an arbitrary short admissible urve � started from given

point q

0

2M and suh that �

�

�

�


(�)

is a submersion at

�.

The onstrution is lassial. Let V

1

be a smooth

vetor �eld with the values in �, V

1

(q

0

) 6= 0, and t 7!

e

tV

1

be the (loal) ow in M generated by V

1

. Take

" > 0; there exist a smooth vetor �eld V

2

with the

values in � and a moment t

1

1

2 (0; ") suh that V

1

and

V

2

are linearly independent at e

t

1

1

V

1

(q

0

). Indeed, in the

opposite ase the distribution � would be tangent to

the one-dimensional submanifold fe

�V

1

(q

0

) j � 2 (0; ")g

and ould not be braket generating. Moreover, there

exist a �eld V

3

with values in � and moments t

1

2

; t

2

2

2

(0; ") suh that the mapping

(�

1

; �

2

) 7! e

�

2

V

2

Æ e

�

1

V

1

(q

0

)

is an immersion at (t

1

2

; t

2

2

) and V

3

is transversal to the

image of this immersion at the point e

t

2

2

V

2

Æ e

t

1

2

V

1

(q

0

).

The reason is the same: in the opposite ase the dis-

tribution � would be tangent to the two-dimensional

submanifold onsisting of the point e

�

2

V

2

Æ e

�

1

V

1

(q

0

)

(where �

1

is lose to t

1

2

, �

2

is positive lose to 0) and

ould not be braket generating. We may ontinue and

�nd �elds V

1

; : : : ; V

n

with values in � and moments

t

1

n�1

; : : : ; t

n�1

n�1

2 (0; ") suh that the mapping

(�

1

; : : : ; �

n�1

) 7! e

�

n�1

V

n�1

Æ � � � Æ e

�

1

V

1

(q

0

)

is an immersion at (t

1

n�1

; : : : ; t

n�1

n�1

) and V

n

is transver-

sal to the image of this immersion at the point

e

t

n�1

n�1

V

n�1

Æ � � � Æ e

t

1

n�1

V

1

(q

0

). It is easy to show

that the mapping �

n"

�

�


(�)

is a submersion at

^

�,

where

^

�(�) = e

�V

1

(q

0

) for 0 � � � t

1

n�1

,

^

�(�) = e

�V

2

Æ e

t

1

n�1

V

1

(q

0

) for t

1

n�1

� � � t

2

n�1

, . . . ,

^

�(�) = e

�V

n

Æe

t

n�1

n�1

V

n�1

Æ � � �Æe

t

1

n�1

V

1

(q

0

) for

n�1

P

i=1

t

i

n�1

�

� . We are done sine V

1

; : : : ; V

n

and " an be hosen

arbitrary small.

Corollary 1 Let U

0

be an everywhere dense subman-

ifold of 
(�) and  2 
(�). Suppose that  realises

the minimum of the length among all admissible urves

� 2 O



\ U

0

with the boundary onditions �(0) = (0),

�(1) = (1), where O



is a neighbourhood of  in 
(�).

Then  is a H

1

-loal length minimizer.

The statement of the orollary follows diretly from

Theorem 2 and Proposition 1.

Summing up we onlude that it is enough to deal

only with smooth (or analyti in the ase of a real{

analyti sub-Riemannian struture) perturbations of

the referened urve in order to hek the H

1

-loal min-

imality.
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