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MaT. C6OPHHK Math. USSR Sbornik
TOM 107(149X1978), ΒΜΠ. 4 Vol. 35 (1979), No. 6

THE EXPONENTIAL REPRESENTATION OF FLOWS
AND THE CHRONOLOGICAL CALCULUS

UDC 517.938 + 517.317

A. A. AGRA£EV AND R. V. GAMKRELIDZE

ABSTRACT. In this article is developed a calculus which reflects the most general group-
theoretic properties of flows and which is based on an exponential representation of flows
defined by nonstationary differential equations. Problems of optimization and control
have had the greatest influence on the development of this calculus, and the results are
intended mainly to treat these problems.

Bibliography: 11 titles.

This paper was written especially in honor of the seventieth birthday of Lev
Semenovic Pontrjagin.

We develop here a calculus which is based on the exponential representation of flows
defined by nonstationary ordinary differential equations and which reflects the most
general group-theoretic properties of flows. The problems of the theory of optimization
and control, and especially the numerous efforts to extend Pontrjagin's maximum
principle to singular control problems (see [l]-[7]), have all had a decisive influence on
our development of this calculus. In accordance with this basic concern, we treat those
aspects of the calculus which have immediate applications to these theories.

As is well known, the main difficulty in expressing a flow by specifying its non-
stationary vector field arises from the fact that the fields at different moments of time do
not commute. This is a difficulty we must overcome in the derivations of all of the basic
results in this paper, most of which have well-known analogs in the case of stationary
flows. For similar "nonstationary" situations, physicists use the term "chronological,"
and we have adopted this term to describe the calculus developed here. It is explained
briefly in [8].

We do not give a general overview of the content of the paper since it is sufficiently
clear from the six section headings. We give here only the principal notation which will
be used throughout.

We denote by R" «-dimensional real space, whose points are w-dimensional columns,
always denoted by Latin letters; row vectors are always denoted by Greek letters. The
scalar product of a row vector by a column vector of the same dimension will be written
in the form of a matrix multiplication:
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α = ι

We denote the Jacobian matrix of an w-dimensional vector-valued function χ ι-> X(x)

with respect to the coordinate vector χ e R" by

a = l , . . . . m, β = ΐ , . . . , η, d* = - 2 - , Χ = :

In particular, for a scalar function φ we have

gradcp = (dtf, . . ., dnq>).

The identity mapping of R" onto itself will be denoted by E. By the modulus of a vector

χ G R" we understand the quantity \x\ = maxj;c a | , and by the modulus of an «-dimen-

sional row ξ, the quantity | | | = Σ?|£,|. Similarly, we define the modulus of an η Χ m

matrix A = (ag), a = 1, . . . , η, β = 1,. . . , m, as \A\ =* Σ _̂ι maxja^ |. Finally, the

term "smoothness" will mean infinite differentiability.

§1. Preparatory material

We collect in this section the formulas and estimates which will be used in the

subsequent development. In most cases they are well known, but we present them in

some detail for the benefit of possible readers from the engineering specialties.

1. Differentiation and formal exponents in algebras. We consider an arbitrary real
algebra 6E, i.e. a real vector space in which a multiplication of elements satisfying a

unique bilinearity condition is defined. Thus & is not necessarily associative and does

not necessarily contain a unit; it can be a Lie algebra, for example, in which multiplica-

tion is anticommutative, ab — -ba, and the Jacobi identity

a{bc)+b (ca) +c(ab) = 0 Va,b,c£&

is satisfied.

As is customary, we denote multiplication in an arbitrary Lie algebra by square

brackets, ab = [a, b], and we call it Lie brackets or commutation.

We denote the algebra of all linear mappings of the vector space & into itself by £(6E),

the product of the elements Ι1? I2 e £ ( # ) , i.e., the composition of the linear mappings ll

and I2, by Ij ° I2,the identity element (identity mapping) by Id,and powers (iterations) of

I by Γ, m > 0.

A linear mapping b e £(6E) is called a differentiation in ^ if it satisfies the formal rule

for the differentiation of a product

b(ab) = (ba)b +a(bb).

We denote the set of all differentiations in an algebra & by Der(dE); it is a subspace, but

not a subalgebra, of £ ( # ) . However, we convert Der(6E) into a Lie algebra by defining

the product [bt, b2] of two elements b,, b2 G Der(6E) to be their commutator bt ° b2 —

b2 ο b,:

[£>!> 02J = ^ ο b2 ·— b2 ο bj.
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The fact that the Lie brackets [bx, b2] of two differentiations is again a differentiation in
6B, and also the Jacobi identity for the multiplication defined in this way can be verified
by direct calculation.

Let Λ be an arbitrary real Lie algebra. There exists a natural linear mapping ad:
Λ-> £(Λ) given by

(adv)w = [v, w] \v,w£A.

We use the generally accepted notation

ad° ν = Id, adm+1u = ad υ ° admu = admv ° ad υ

for the powers of ad υ £ £(Λ). The mapping ad has the following basic properties: it
maps Λ into Der(A),

adt; [Wi, w2] = [aavwu w2] + [wlt advw2],

where this mapping is a homomorphism of the Lie algebra Λ into the Lie algebra
Der(A), and

(ad [vx, v2])w = [adv l t adv2] w.

Both of these identities can be verified by direct calculation using the Jacobi identity.
In an arbitrary algebra (£ we may consider a formal power series over & in the variable

t,

We call the element a0 the initial value of the series ar The set of all formal power series
over β, which we denote by &[[t]], can be made into a real algebra in a natural way if
we add series and multiply a series by a number in the usual way and if we define the
product of two series to be the "Cauchy product,"

afbt = 2 tm ^ aabz.
m=o α+β=/η

The algebra 6E is identified in an obvious canonical way with a subalgebra of (£[[*]].
We define the linear mapping d/dt of the algebra &[[t]] into itself, "differentiation with

respect to i," by means of the usual "termwise differentiation,"

i 4

α=ο

It is easy to verify by direct calculation that d/dt e Der((£[[*]]) and that

We call the formal power series

a=o

the formal exponential of the element I G £((£).
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The formal exponential etl clearly commutes with I, letl = e\ and satisfies the
"differential equation"

? \ i
dt

It is easy to see that the equation

dt

in at Ε @>[[tt]] with arbitrary initial value a0 Ε & has a unique solution at given by
at = e'̂ Q. This fact will be used below in the following form.

The equation

%7U tit, t e
dt

in I, E £(#)[[/]] with arbitrary initial value IQ for I has the unique solution I, = e'%. The
validity of this statement becomes evident if we note that I can be considered as a linear
mapping of the vector space £(6E) into itself:

For arbitrary elements I,, I2 Ε £((£) which commute, i.e. which satisfy

we have that

The formal exponential gives a bijective mapping e'1: at H* e'lat of (£[[/]] onto itself,
because e'° = Id and therefore e'1 = e/(~° = Id VI Ε £(<ί).

If b is a differentiation in 6B, then the formal exponential of b has the following
remarkable property.

For each differentiation b Ε Der((£) and for arbitrary a, b Ε & we have

In fact, since d/ dt and b are differentiations in #[[/]], we have the identity

— ( ( A ) (<?%)) = (be»fl) (e»6) + (e">a) (beibb) = b ((e*a) (^b)),
dt

from which (1.2) follows if we take into consideration that the initial value of the formal
power series (etba)(etbb) is ab.

Multiplying the power series on the right-hand side of (1.2) and equating the
coefficients of equal powers of / on both sides of the equation, we get the "Leibniz
formula" for the «th power of a differentiation of a product, for a differentiation
b Ε Der((£) in an arbitrary algebra (£,

V»(ab)= Σ -f--(baa)(b%). (1.3)
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In concluding this subsection, we prove the "polarization identity" which we use in
making estimates.

Let I1? . . . , lm be pairwise commuting elements of £ ( $ ) , i.e. [lj, lk] = 0 for all j , k =
1, . . . , m. Then

ι m

ti ο · · · ο tm = -L 2 (-ΐΓα 2 {ikt + . . . ha)
m- (1.4)

a=i i=-fti<...<fta</n

PROOF. Using the Viete formulas for expressing the coefficients of a polynomial as
symmetric functions of its roots, and making use of (1.1), we can represent the formal
power series

it = (6«i —Id) · · · (etlm - I d ) = tm\x ο • · · ο i m + . . .

in the form

t, = (._id)m + 2 ( - i)m"a 2 e1*1 · · · e"*a

All of the coefficients of tj in the series on the right-hand side are equal to zero for
j < m — 1, and the coefficient of tm can be calculated directly to be

ι m

j _ 2 ( - i r a 2 (u>+...+u ar,
a—l i<fti<...<£a<m

which proves (1.4).
2. T/ie algebras Φ amf £(Φ). We denote the algebra of all smooth real functions on R"

by Φ, and the Cartesian product of η copies of the vector space Φ = Φ1 by Φ". We
identify canonically each linear mapping I of Φ into itself with a linear mapping of Φ"
into itself in a canonical way by

An arbitrary differentiation b Ε ϋβΓ(Φ) in Φ is called a vector field, or simply a field
over R". As is well known, every vector field over R" is a first-order differential operator,
i.e, there exists a function

such that

dxa
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Therefore in what follows we will denote vector fields over R" by Χ, Ϋ, etc., putting an
arrow over the corresponding function. For constant fields, i.e. fields which correspond to
constant functions, we use the notation h, h Ε R". A field X and its corresponding
function X are obviously related by XE = X.

As usual, we call the /«-linear mapping R" X · · · X R" -» R given by

-» ->
(hu . . . , hm) π-»- hx ο • • · ο hmq> (χ)

the /nth-order derivative of φ e Φ at the point χ Ε R". The symmetry of the mapping
follows from the fact that constant fields commute, and the /w-linearity is obvious. We
get the usual expression for the first-order derivative,

_̂  η

h^-hxp {x) = grad φ (χ) · h = ^ α̂ψ (x) ha,
α=ι

and the formal Taylor series of a function φ Ε Φ at a point * can be written by making
use of the formal exponential of h:

Ϊ 1
m=o \m=o

In this case, (1.2) and (1.3) take the form

= Σ -^ftA· (1.5)
a ! P !

For an arbitrary integer s > 0 and arbitrary Μ c R", we consider the seminorm
, which can be either finite or infinite, defined in Φ by

y. — sup|Aaq>(*)|.
^ a! \H\=I

If Μ = R", we will omit the index M, i.e. | |φ | | ί > κ - = | |φ | | 5 . For matrix-valued functions,
we let

'4\\S.M>
 Λ =($)> «β€Φ;

β-1 "

in particular,

/χι
|X | | s > A f=max| |X a« S ( A i, X = \ :

\Λ"

The following easily verified inequahties hold:

III Φι IL.Af - II φ 2 1 . . Μ I < Ιίψι-φ21> Λ 4. (ΐ.6)

1 Φ1Φ2 ΙΙ,Λί < II ̂ 1 L,M H>2 is.Ai»
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and their analogs for matrix-valued functions, of which we note

M X f s , « < M I , J | X | U (1.7)

We prove the inequality

sup ft · . . . ο ^ φ (x)\ < (2s)s Ι φ I Vcp 6 Φ, (1.8)

which is important in making subsequent estimates. We use the polarization identity

(1.4) and write

sup 1 hx ο · · · οί5φ (χ) I < - L 2 ^ S UP

L ν
s! ^ a ! ( s — a ) !

s!

a s

We introduce in Φ the topology defined by the family of seminorms || · \\StK, where

s > 0 and Κ is an arbitrary compact set in R". This topology, called the topology of

compact convergence with respect to all derivatives, makes Φ a Frechet space (a complete,

metrizable, locally convex space), and we will always regard Φ as being furnished with

this topology in what follows, unless otherwise specified.

We denote the algebra of continuous linear mappings of Φ into itself by £(Φ). We

show that £(Φ) contains all vector fields. It is obviously sufficient to establish the

inequality

and its immediate consequences,

(1.9)

Making use of (1.8), we can write

s 1 — -*
< Υ, —Γ SUp | hx ο · · · ο fca+ιφ {X)\

Σ -^(2αΣ s+ι,ΛΙ'
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2 (^φ)Χ" < Σ I^UI^l.Μ
s,M α = 1

Above we put into correspondence with each function X EE Φ" the field of X. Now we
put into correspondence with each function Ρ 6 Φ " another operator Ρ in £(Φ), which
we call a smooth mapping; to distinguish it from the field generated by the same function
P, we will put a caret over the letter instead of an arrow. We define the action of Ρ on
φ £ Φ by

where the circle on the right-hand side denotes composition of functions. Thus,

Ρ (λ% + μφ2) = λΡψ! + μΑρ2, Φι + Λ) φ = Α £

To prove that P is continuous, we have the estimate

and its consequences,

9/22(2S)2s)s(l

The proof is by induction on s. We have

H I Ψ I . w

.M < \ v PLUM + τ "

(1.10)

I

Furthermore, putting Cs = (1 4- 9/Z2(2J)2 J) J and using the induction assumption and the
second of the estimates (1.9), we can write
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whence

Ι! Φ o P fls.M < 1 Φ ° P IL.M + 3 * ( 2 S)S C-1 ( 1 + 1 P Li.AfHl W i-l.M I ̂  L

We prove one more estimate which we will need:

We have

(P x - P 2) φ = φ ο P 3 - φ ο P 2 = φ ο (P 2 + (Ρ, - Ρ2)) - φ ο Ρ2

ο

and, on the basis of (1.10) and (1.9),

< 3/2 (2s + 2) s + 1 (1 + 9u2 (2s)2S)s (1 'r {P^ + lP 2 | ! s > A f 1 ^

whence the desired estimate follows.

In what follows, all of the smooth mappings Ρ will, as a rule, be diffeomorphisms of

R". We will also call the corresponding operators Ρ G £(Φ") diffeomorphisms.

It is easy to see that if the operator Ι Ε £(Φ) satisfies

tcp = φ ο IE V φ 6 Φ

and is invertible in £(Φ), then IE is a diffeomorphism of R". Indeed, for all φ e Φ,

φ = φ ο (ί 6 ΓιΕ) = φ ° {ΓΧΕ ο W) = (φ ο ΓιΕ) ο ΙΕ = t (φ ο Γ 1 ^ ) ,

and consequently Ι"!φ = φ ° Ι"1 .̂ Therefore the smooth mappings P = IE and Q =

l~1E are inverses of each other since

P o Q = I £ o \~lE = ΓιοίΕ = Ε, Q ο ρ = Γ 1 ^ ο t £ = ί ο Γ χ £ = Ε.

Conversely, if Ρ and Q are smooth diffeomorphisms of R" which are inverses of each

other, then

We also note the obvious fact that if Ρλ and P2 are two smooth mappings of R" into

itself, and if Q = Ρλ ° P2 is their composition, then

If P is a diffeomoφhism, we can verify by direct calculation that for any field

Χ Ε ϋβΓ(Φ) the composition Ρ ° X ° P~x is also a field. We consider the function

Ρ ο X ° P~x Ε ΟβΓ(Φ) as a linear mapping of ϋβΓ(Φ) into itself defined by the
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diffeomorphism P, and we denote it by Ad P:

YX. (1.12)

3. Families of functions and operators. In what follows, we will constantly be concerned
with families φ,, t Ε R, of elements of Φ, to which the basic constructions of analysis
carry over in a natural way if we use the topology in Φ. We note here only the most
essential ones.

It is not necessary to give special definitions of continuity and differentiability with
respect to / of a family <p,, since Φ is a topological vector space. We will say that a family
φ,, t Ε R, is measurable if VJC Ε R" the scalar function /1-> φ,(χ) is measurable, and a
measurable family is locally integrable or uniformly integrable, respectively, if, for any
given tx, t2, s > 0 and for any compact set Κ c R",

or

as | ^ - -

respectively. (The measurability of | |φ,|| ί ) Α· follows easily from the measurability of φ,.)
We call the function

j φ τ (x) dx,
U

the integral of the locally integrable family φ,, t Ε R, between the limits t1 and t2. We
prove by induction on s that it belongs to Φ and that, for arbitrary constant fields
Λ,, . . . , hs,

hj ο . . . ο hs φ τ άτ = \ ht ο . · . ο /ζ5φτ dx.

Let AT be a compact neighborhood of an arbitrarily given point x0 Ε R". From (1.8) we
have that

Jhx ο · · · ° hw(x)\ < (2s)s ||φ,\\StK ΥχβΚ,

where the function on the right is integrable over [tv t2] by hypothesis. Applying the
induction assumption and the theorem concerning differentiation under the integral sign
at XQ, we get

hx (/i2o · · · ο hs\ φ τ dx) = hx Λ2 ° · · · ° hsyx dx = \ hx ο • .. ο fisyx dx.

The statement just proved implies directly that

I t»

from which it follows that f't
2 φΤ άτ depends continuously on (tv t^).
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We call the family φ (, ί e R, absolutely continuous if there exists a locally integrable

family ψ, such that φ, = φ, + /J ψτ dr. Using the fact that there exists a countable set

which is everywhere dense in Φ, we can prove, just as for scalar functions, that for

almost all /

We now pass to a consideration of families of operators I,, t Ε R, in £(Φ), where all of

the concepts of analysis defined above for families φ, carry over automatically to families

of operators if the corresponding concept is defined for I, in the "weak" sense. For the

sake of convenience in the formulation, we introduce the vector topology of simple

(pointwise) convergence in £(Φ): a sequence of operators Im, m = 1, 2, . . . , converges

to zero if and only if lmtp —> 0 as m —> oo for all φ Ε Φ.

We define measurability, continuity, differentiability, local integrability, uniform integra-

bility, and absolute continuity of the family I(, ί 6 R, by requiring that the family Ι,φ have

the corresponding property for all φ Ε Φ.

We define the derivative of a family I, which is differentiate at t0 to be the linear

operator

the convergence here, as in all that follows, being in the topology of simple convergence

in £(Φ). By the Banach-Steinhaus theorem, the limit of a sequence of continuous linear

operators in a Frechet space is a continuous operator; consequently YtQ Ε £(Φ).

The integral of a locally summable family I, from tx to t2 is defined to be the linear

operator which acts thus:

*2 tt

\\τάτ cp = \ Ιτφάτ.

We prove that this operator is continuous.

We denote by I*"0, tx < t < t2, the "truncation" of a family I,, defined as follows for

each m — 1, 2 . . . . We take a sequence of numbers Cm -> oo and an increasing sequence

of compact sets Km whose union is all of R". We fix s and Κ and put

ιίΤ̂ ι*, if \\iM\s,K<cm\^mtKm Vcpeo,

and l!m) = 0 otherwise. We denote by &m the set of all points of [tv t2] at which I(,m) = I,;

obviously mes f£m -^ t2 — tx as m —» oo. Finally, we denote by ΦχΚ the vector space Φ

furnished with the topology generated by the single seminorm || · \\sK, and by £(Φ, Φ,^)

the vector space of continuous linear mappings from Φ into ΦΛ κ. For each fixed m, the

family l\m\ tx < t < t2, is bounded in the topology of simple convergence, i.e., for any

φ, s, and Κ we can find a constant C(<p, s, K) such that
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Therefore by the Banach-Steinhaus theorem it is equicontinuous, and consequently
jh [(»») fa G £(Φ, Φ ί Α Γ), whence (again by the Banach-Steinhaus theorem)

Urn f lim )dx = lim f \xάτ = f i t d x £ . £ (Φ, Φ8.κ)·
n-»oo y m->oo J Jm-»oo ,

»»

Since s and AT are arbitrary here, /J* Ιτί/τ G £(Φ).

We call the family I,, ί G R, absolutely continuous if there exists a locally integrable

family Ϊ, such that I, = I,o + /jJT */τ. From the analogous statement for the family <p, it

follows at once that d\Jdt = Ϊ, for almost all i.

It is easy to see that if a family m, is locally integrable and the family I, is continuous,

then I, ° m, is locally integrable.

In conclusion, we prove that if I, and m, are continuous families of operators in £(Φ)

which are differentiable at t0, then (I, ° m,2) depends continuously on (tlf t^) G R2, the

family I, ° m, is differentiable at t0, and we have the Leibniz formula for the derivative:

dt λ

To prove the continuity, we form the difference

As Stv 8t2->0, the second term ( I / ) + & i — I,) ° m,2<p -»0 by definition, and

(m, — 8t2 — m, )<p lies in any preassigned neighborhood of zero in Φ. Furthermore the

family l,l+Stl, |oV,| < const, is continuous and therefore bounded in the topology of

simple convergence; consequently it is equicontinuous by the Banach-Steinhaus theorem,

and therefore

Ul+6tl

 ϋ (tttf.+M, — ttt/J φ —>• 0 as 6/j, δ/2 —>• 0.

The statement concerning differentiability follows from identical arguments if we write

1 1 ι
""Γ~ (If+<W Q ttlt+6t — 1/ ° tUt) = —— \U+6t — U) ° W/ - | — — lt+(,t ct (V&t+M — ΙΠ;).

0/ ot at

From what we have proved it follows easily that the composition I, ° m, of two

absolutely continuous families is absolutely continuous, and also that the family Ι, φ, is

absolutely continuous if φ, is absolutely continuous, and that the formula for the

differentiation of a product holds for it.

4. Nonstationary fields and flows. The main objects of our study are two classes of

families of operators in £(Φ). They are nonstationary fields and flows.

We will call an arbitrary locally integrable family Xt, t G R, of vector fields over R" a

nonstationary field over R", or simply a field. Each additional property of a field will be

stated explicitly.

We will call an arbitrary absolutely continuous family of diffeomorphisms Pt which

are defined for values of / in a given interval / a flow over R". The interval / can be

replaced by the entire axis R in this definition (see Proposition 1.2); we prefer, however,

for purely technical reasons to leave it unspecified.

We also call the family of diffeomorphisms Pt — PtE of R" corresponding to the flow

Pta.flow. It is easy to see that Pt, together with all of its derivatives with respect to x,

is continuous with respect to the collection of variables (t, x) and is absolutely continu-

ous with respect to / for fixed Λ: G R", and that it satisfies
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oo.
s,K

Conversely, every family of smooth diffeomorphisms P, of R" with these properties

generates a flow Pt in the above sense.

We consider the linear differential equation

dt

with the initial conditions

& . = & > (1.14)

for the unknown family g,, t Ε / , , of operators in £(Φ). Here X, is a given non-

stationary field, and Jt is an interval containing t0. Every absolutely continuous family

§,, t Ε Jt, of operators in £(Φ) which satisfies (1.13) for almost all t Ε Jt and which

satisfies (1.14) will be called a solution of (1.13) under the conditions (1.14). The absolute

continuity of the unknown solution guarantees the equivalence of (1.13)—(1.14) and the

integral equation

%t = %o+l%x°Xxdx. (1.15)
I.

We will call the linear differential equation

A.Qt = —Xto®t (1.16)
dt

the adjoint of (1.13); the integral equation

dx (LIT)

corresponds to it. We will call (1.13), (1.15), (1.16), and (1.17) linear operator equations.

We will call an absolutely continuous family I, invertible if for all t the operator

Ι, Ε £(Φ) has an inverse Ι"1 Ε £(Φ) and I " 1 is also absolutely continuous. In this case

we will call I, and I~x mutual inverses. Every flow Pt is invertible, since it is possible to

prove by the implicit function theorem that P~λ depends absolutely continuously on t.

PROPOSITION 1.1. 1) If the operator g 0 in (1.15) is a left inverse of @0 in (1.17), then

every solution *$, 0/(1.15) is a left inverse of every solution %t 0/(1.17), i.e. g, ° ©, = Id

for all t Ε Jlo.

2) If δ 0 is a left inverse of @0 and either one of the equations (1.15) or (1.17) has an

invertible solution, then each equation has a unique solution, and the solutions are mutually

inverse flows. Consequently if a solution of one of the equations is a flow, then the inverse

flow is a solution of the other, and the solutions are unique.

PROOF. Part 1) can be verified by direct differentiation:

~dt '

consequently by virtue of the absolute continuity of g, ° ©, we have that

Sn ° ®n = Id for all t Ε R.
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For the proof of part 2), we note first of all that a similar check shows that if I,,
t G JtQ, is an invertible solution of (1.15) or (1.17), then I " 1 is a solution of (1.17) or
(1.15), respectively, and the equations have unique solutions.

Finally, from the invertibility and uniqueness it follows that g, and ®, are flows. In
fact, the family of operators I, defined by

ί,φ = φ ΰ ®tE V φ 6 Φ

satisfy (1.16):

( 4 Ο Φ = ~ (Φ ° ®<Ε) = ((g r a d Ψ) ° ®tE) '(-Xto GtE)
\ at ι dt

= — xt (φ ο ®tE) = — xt ° ί<φ;

therefore I, = ©, and consequently ©, and g, are flows, since @,<p = φ ° ©,£" V<p G Φ,
and ©Γ1 = %:

If the flow Pt satisfies the operator equation (1.13), then the corresponding flow Pt in
R" is determined by the ordinary differential equation

since
dPt d ~ -*
— - = — PtE = Pt ο XtE = Ρ Λ = Χ, ο ρ,.

dt dt

If ©, is an arbitrary solution of (1.16) with initial condition ®,o = Id, then for all φ in
Φ the function (t, x) (-» @,<p(jt) = ω,(χ) satisfies the first-order linear homogeneous
partial differential equation

dx°

Conversely, every absolutely continuous family of functions ω, which satisfies this
equation is representable in the form

where Pt is a flow satisfying (1.13) and the initial condition Pt = Id, since

JL (Pm) = I A- Pt) yt+Pt-Lyt==pto xm — Pt δ Xm = o.
Λ \dt j dt

In the next section we show that if the field Xt in (1.15) and (1.17) is locally integrable,
then the equations have invertible solutions which, consequently, are unique, mutually
inverse flows; we also give representations of the solutions in the form of "chronological
exponentials." We note here only that every flow P, can be represented in the form of a
solution to both (1.13) and its adjoint (1.16), since

d ρ __ ρ
dt t *

and it can be verified by direct calculation that, for any fixed /, the quantities

* dt

belong to ΌβΓ(Φ).
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A

PROPOSITION 1.2. Assume that the family of diffeomorphisms {Pto>t) is defined for all t0

and t such that \t — io | < p,o {where p,o is an arbitrary function of t^, that it depends

absolutely continuously on t0 and t, and that it satisfies the differential equation

where Xt is an arbitrary {locally integrable) field, and the initial condition

Ptti=\d V/6R.
A.

Then it is possible to define Pto>t as a solution of the given equation for arbitrary values of t0

and t in R.

PROOF. Suppose that it is possible to fix a point tx between t0 and t, t0 < tx <t,

satisfying 1^ - /0| < pTo and |/ — /,| < ph. The composition Qt^t = Pt^h ° Pht satisfies

— Qt*,t = Qu.t ° xt
at

and the initial condition Qt t = Pt t and therefore by Proposition 1.1 does not depend

on the choice of tv Similarly, the composition Pt h ° Pt^t ° · · · ° P, <t does not depend

on the choice of tv . . ., tm. Consequently if, for arbitrary given t0 and t in R, we choose

iA, . . . ,tm so that | i , - to\ < p v \t2 - t{\ < p v . . . , \t - tm\ < ptm, and if we put ρ,,,, =

Pto>ti ° Phh ο . . . ο p^ti w e get a well-defined family of diffeomorphisms Qt^t, t0,

/ 6 R , which depends absolutely continuously on t0 and t, which satisfies the given

differential equation and the initial condition Qtt = Id for all / in R, and which

coincides with Pt t for \t — tQ\ < p,.

In what follows we will represent flows in the form of families of diffeomorphisms Pt ,

which depend absolutely continuously on the parameters t0 and t, and which reduce to

the identity mapping for tQ = t, Ptt — Id. Similarly, we will solve the equations

, i T °X T dT, (1.18)

®t0<t = Id - J Χτ ο ®to>x άτ = Id + j Yx ο et..x άτ. (1.19)

Uto U

In the notation we have adopted,

Kh*h.u°-">Ptm.t = Kt. (1.20)

5. The algebra of formal chronological series. Typical examples of chronological series

are so-called Volterra series, which arise if we solve (1.18) and (1.19) formally by means

of successive substitutions. As "formal solutions" of (1.18) and (1.19) we get the formal

series

}tt,t = Id -r \ άχχΧτι + \dxx\ άτ2ΧτΐοΧΧι + . . .
t tn t

oo t τ, Tm-i _ ^ _^

= Id f 2 j ^τι j ^ τ 2 · · · f dxmXXm ο . . . ο χ τ ι ,

oo t τ, T m-i
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The general term of the first series is an iterated integral in which the variables of

integration in the expression XTm ° · · · ° XTi increase from left to right, t0 < rm < rm_l

< - - · < Tj < t. We call this series a right formal Volterra chronological series and

denote it by

^ _ ^ oo t τ, τm-ι

Ύν(Χχ) = Id + S J rfTi J dx, .. . J ^Tm XT m ο ... ο Χτ ι, (1.21)

where the arrow over the Ύ indicates the direction of increase of the variables in the

expression XTm ° · · · ° XT. Similarly, we call

<__ _ * o o ί Τι xm-i

%..< (Yx) = Id + 2 5 dx, j dx2 ... f dxmYXl ο ... ο YXm (1.22)
m=i t, t0 h

a left formal Volterra chronological series.

We now construct the ring of general formal chronological series.

In an m-dimensional space with points T (m) = (rlf. . . , Tm) we denote the simplex

by Δ/Ο>/(Τ(Μ)) = Δ(τ(/η)) = Δ(τ,, . . . , r m ). If π is an arbitrary permutation of 1, . . . , m,

then we will denote the simplex

by

{(Ti, . . · , rm) \t0 < xn ( m ) < . . . < χηω < /}.

The collection of all simplexes Δ(τΓτ(/η)) corresponding to all possible permutations -π

gives the triangulation of a cube

Β(ΰ = {(χχ, . · . , τ Ι Β ) | / ο < τ 1 < / , . . . , to^xm<t},

as is easy to see. Let SO, )̂» 7 + A: = m, be the set of all permutations of 1, . . . , m

which preserve the order of the first j numbers and, separately, of the last k numbers;

S(J, k) obviously consists of m\/j\k\ elements. It can be verified directly that

Δ (τω) χ Δ (τ<*>) = U
esu

Let β(τ(/η)) = β(τ,, . . . , Tm) be an integrable function on the cube B^t with values in

£(Φ). Here, as in subsection 3, we understand integrability in the "weak" sense. The

obvious equality between the iterated integral and the m-fold integral over the simplex

Δ(τ(Λ)) holds:

t xt

 Tm-i

j dxl j dx2 .. . f dxm% (τ(»>) = J S (T<»>) dT(«>, (1.24)

and a change of variables gives

= J S (JITC»>) dxc«) = J £ (xn ( 1 ), . . . , xaln)) dx^h (1-25)
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If δ(τω) and @(T(/C)) are two integrable functions, then by (1.23) and (1.24) we can

write

f S (x<'>) dx('> ο

= Σ ί δ (τχ, . . . , τ,) ο β ( τ / ϊ 1, . . . , T
Δίπ-'τί"1))

]

and taking (1.24) into account, we get

f τ, τ/-ι ί τ, * ι

\ d x , (' d x 2 . . . j ' dx/ f t ( χ χ , . . . , x y ) ο j d x t j ' d x 2 . . . f dx*@ ( x l 5 . . . , xk)
t a tu to t0 to 'ο /-ι

t %i Tm-i

= 2 f d^ j dx2 . . . (" d

A formal series of the form

τ, τ, τ /η-ι _ * _ ^ _^

j [ j dTm^m (X<f XTl, . . . , XXJ, (1.27)

where ^m(^0, . . . , £„.) is a polynomial in the "noncommutative variables" ξ0, . . . , fw,
m — 1,2,..., and Xt, t £ R, is a vector field, is called a, formal chronological series.

It is easy to see that the natural definitions of the operations of addition, multiplica-
tion by a real number, and integration of formal chronological series from t0 to / again
give chronological series. The "Cauchy product" of chronological series,

e; (Xx) ° <£ (xT) = φ; (χ<) ° φ; ( ^
oo f τ, τ α - ι _

+ Σ Σ j d T i j ' ά τ * • • • \ dx«y« ( χ ' ' ^ . ' · · · ' · £ β )
m=i a+3=m <„ i, /„

° \ dXi \ dX2 • • • \ "ΧβΦρ {Xt, Χτ,, · · • > Χτα).

/. ίο Γ.

reduces by (1.26) to the chronological series (1.27), where

vm \bo> · · · > tm)

= 2 J Z J Φα(ζο> ζπ(ι)ι · · · , ζπ(/)) ° φβ(ζ ο > ζπ(/+ι), . . • , ζπ(ηι)).
(1.28)

Thus the set of all formal chronological series becomes a real associative algebra with the
multiplication given by (1.28).

The right and left Volterra series (1.21) and (1.22) are special cases of formal
chronological series. From the obvious identities
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t τ, T m-i _^ _^

dx2 . . . f dxm XXfnο • · · ο χ Χ ι =
ίο Δ

x . . . . J dTmxXmo . .. ο χ ΐ ι =

t<tQ,

and

<

ι

the analogous

I /TT"
1 L* t o · • Φ

identities
τ/π-»ι

ί τ,

<0 to

c X
m

we get the important relation

Ύ Μ ( Χ τ ) = Ύ ί Λ ( - Χ τ ) , (1.29)

i.e., every right Volterra series in the field Xt is at the same time a left Volterra series in

In conclusion, we note that if the fields Xt, and Xt« commute for arbitrary /' and /",

and if we put t0 < t for definiteness, we get that

t xt

 Tm-i _^ ^ ^ ^

dxx §dx2 . . . j" dT
to ta

Consequently in the "commutative" case considered here, left and right Volterra series

coincide and are representable as formal power series:

—> -* <e— °° / t \m

~*fu.t(Χτ) = %0.t(χτ) = 2 ^ r \ \ Χ τ d T ) · ° · 3 0 )

§2. Summation of Volterra series and exponential

representation of flows

In this section we prove that the operator equations (1.18) and (1.19) have unique

solutions which are flows. We construct flows with the help of a device we call

summation of Volterra series.
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1. The case of an analytic field. We denote by Va a complex σ-neighborhood of the real

space R c C :

=.- : )6C n | | Imz |<o, σ > 0 | Imz | = maxllmz06!,

and by Ωσ the set of all real analytic functions ω on R" whose domains can be extended
to Va in such a way that the extended functions are (complex) analytic and bounded on
Va. We will again denote the extension to a complex neighborhood by the same symbol,
ω, although (if we were to be completely precise) we should use some new symbol such
as ώ, for example; this applies also to the partial derivatives 9αω and their complex
extensions 3αω = θώ/8ζα.

We make Ωσ into a Banach space by defining a norm

| ω iff = sup |ω(ζ) | , ω^Ωβ,
zevc

in it. We denote the Cartesian product of η copies of Ωσ by Ω".
We will call the field Xt, i £ R , bounded analytic if for some σ > 0 we have Xt Ε Ω"

for all t Ε R; we put

We define a bounded analytic mapping analogously, and in particular a bounded analytic
diffeomorphism P: R" -• R" which corresponds to the operator Ρ Ε £(Φ) with the same
name.

PROPOSITION 2.1. Suppose that Xt, t Ε R, is a bounded, analytic, uniformly integrable

field, and that Xt Ε Ω" for all t Ε R. Then for all σ' < σ there is a number ρ > 0 such that

for all ω Ε Ωσ the series

_^ _^ oo / τ, T m - i _^ _^

Ύί,,ί ( Χ τ ) ω (ζ) = ω (ζ) + ^ ί ^ Τ ι ί ^ τ 2 · · · \ dTmXXm ° . . . °Χτ,ω (ζ) (2.1)

converges absolutely and uniformly with respect to t0, t, and ζ for 11 — to\ < ρ, ζ Ε V&, and

%tOtt (X x ) (ωχω2) = Τίο,ί ( Χ τ ) ω ί̂,,ί,ίΧτ) ω2 V ω ΐ 5 ω2 6 Ωβ. (2.2)

P R O O F . Taking into account the analyticity of Xt and making use of the Cauchy

integral representation, we prove the estimate

dxmXxm ο Χ τ ι ω

(2.3)

from which the absolute and uniform convergence of (2.1) follows immediately.
The Cauchy formula

X i ( z ) = =

(2πί)η
dw1 ... f do;" ί̂ί——— ,
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where Ca is a circle with center at za and with a sufficiently small radius, allows us to
represent X in the form

Here II W is a function of z,

where the complex vector wa with coordinates wj, . . . , w£ plays the role of a parameter.
We have

*i km=1

J } J{ f (2.4)J J
. . . J dx&x\i {wm)... x

where

*m *. 1 a J

If \wa — z\ > δ, a = 1, . . . , m, and \w — z\ > δ, then an obvious induction on m gives

that

| hwm ,....wltw Κ?) I «ft \*m l )• • gn

therefore, assuming that C a in (2.4) is a circle of radius σ — σ' with center at z a , we
get, for all ζ ε Κσ,,

π ( σ ~ σ > )

m l b ' ' ' " ' " σ " Ι Ι σ ( σ - σ ' ) " ( σ - o '

, / 2/1 \ m , | V «rn

^ m ! [ a - a ' I " m ^ · · ·
Consequently

2/1 \ m , | V «rn II V |,Cnn llC"

a' I " m ^ · · · l l ^ i l · ΙΙωΐΡ ·

in particular,

I X T m ο . . . ο Χ τ ι £ |g? = max | %m ο . . . ο X T f X«
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Thus, using the identity

t τ, T m-i <

dxm\\XXmf

and taking into account the uniform integrability of Xt, we get (2.3).

For the proof of the multiplicative property (2.2) of Volterra series, we note that an

obvious induction gives the following generalization of the Leibniz rule for arbitrary

f i e l d s Y v . . . , Ym:

Ym ο • • . ο r x ( 9 ^ 2 ) = 2 Σ (Yn{m)
j+k=m

where S(j, k) is defined in §1.5. Hence we get from (1.26) the following identity for

m = 1, 2, . . . , from which (2.2) follows immediately:

xm~\

f dxx f dx2 ... f dxmXXm ο .. . ο χ Χ ι ((U
tt.

t

j+k=m t0

Χ (Χτπ ( / ) ° · · · °

t.

τ .

to

Χτπ(1)ω2) =

χ \dx1 ( d
j J

ta L

to

to

Σ \d'j^k=mto

\j

tn

1

τ

h

dx

The proposition we have just proved allows us to assert that if Xt is a bounded analytic

and uniformly integrable field, then it is possible to find ρ > 0 such that for \t — io | < ρ

the mapping

is also bounded analytic, and the identity

? ί ) , ί ( ϊ Τ )ω = ω ο ΐ ί ο ι ί ( Χ Τ ) £ Υω6Ωσ

and its corollary

ι t,,t (XT) X/ = Xf ° ν tQ,t(Xx) Ε (2.5)

both hold. The analyticity is obvious, and the identities follow from the facts that ω can

be expanded in a series in powers of the independent variables, the operator Ύ, ,{XT) can

be applied termwise, and the result for each term follows immediately from (2.2).

If we put Pt t = Ύίο>,(Χτ)Ε, we can see from (2.5) and the identities

Ύ,Ο1<(Χτ) Ε = Ε + J Ύ ί ο . τ (Χθ) ° XxEdx = Ε + j Τί,,τ (Χβ) Xt dx, (2.6)
ίο ίο
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that the family Pto>l, \t — to\ < p, satisfies

t _.
§Ρίβ,τ°Χτάτ. (2.7)

Proposition 2.1 continues to hold if we replace the right Volterra series by a left series.

In this case (2.6) must be replaced by

or the equivalent relation

dt

The family of operators Qt^t, \t — to\ < p, which satisfies the integral equation
t -*

to

corresponds to the family of mappings

Qu = Ύ/ο,< (— Χτ)E:Rn-,R\ \ t - t01 < P, (2.8)

since

•£• &../Φ = — ( ( ? r a d Φ) ° Φ..*) · x&t+t = — ^ (Φ ° Q u ) = — x< ° 5Ο,<Φ·

Hence we conclude by Proposition 1.1 that the family Pt^t is a left inverse of Qto>r But

P/(h, is also a right inverse of Qto>t, as follows at once from the remark following (1.29)

which states that a right Volterra series in an arbitrary field Xr is identical to the left

Volterra series in -Xr if we permute t0 and t.

Thus the families Pt^t and Qtott, \t — to\ < p, are mutually inverse flows which satisfy

(2.7) and (2.8), and which, by Proposition 1.1, are their unique solutions. According to

Proposition 1.2, the flows Pto>t and Qt^t can be defined for arbitrary t0 and t so that they

are solutions of these equations and

Pto,t = PtQ,tt ° Pti.tt ο . . . ο Ptm<t V / j , . . . , im ζ R ,

and similarly for Qt^r By Proposition 2.1, if \tj•, — tJ+x\ < p, then Pt^t is representable as

a composition of analytic diffeomorphisms, and therefore is an analytic diffeomorphism

for all t0 and t in R.

We call the analytic flows Pt^t and Qt^t, t0, t Ε R, just constructed right and left

chronological exponentials in X, and in -Xt, respectively, and we denote them by

Kt = <*?to.t (Χχ) Ε) = exp f Χ τ dT,

to

Qto.t = ( Ύ Μ (— Χτ) £ ) = Ϊ"ΧΡ f - Xr d
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(because of typographical considerations, we have put the expressions Ύίο>ι(Χτ)Ε and

% ,(XT)E in angle brackets instead of putting a caret over them). If Xt is "commuta-

tive," i.e. if [Xt,, Xr] = 0 for all t', t" e R, then (1.30) gives

exp Γ Χτ άτΕ = exp Γ Χτ άτΕ = y —\[χτάχ\ Ε= eto

In conclusion we note that, in order to assure the existence of chronological exponen-

tials, it is sufficient to require that Xt be locally integrable instead of uniformly

integrable, as is clear from the proof. In this case the length of the interval of

convergence with respect to t0 and t, \t — to\ < p,o, can approach zero as t0 —» °°> but this

does not interfere with the construction of flows for all t0 and t (see Proposition 1.2).

2. The case of an arbitrary field. If Xt is analytic, then, as was shown above, the

construction of chronological exponentials is simple: we must apply the appropriate

Volterra series to the identity mapping Ε to get series of analytic mappings which

converge to the unknown flows. For nonanalytic fields Xt the series Ύίο>ι(ΧΤ)Ε and

% t(Xr)E do not converge, and to obtain flows which give solutions of (2.7) and (2.8) we

apply a more complicated procedure. We begin by estimating the seminorm \\Pt ,<p\\s>K

under the assumption that Pt t satisfies (2.7).

PROPOSITION 2.2. If Pt t satisfies (2.7), where Xt, i £ R , is an arbitrarily (locally

integrable) field, then for all ψ in Φ, for s > 0, and for any compact set Κ c R" we have

(t0 < t)

t
C2 j \\XT\\sdx

\\Pt /<Pl! r^C.e to II φ I , „ ,

C1 = (\ rs) (2nsf 11 + n + diam/( + 2 f ||Χτ\\οάτ ) , ( 2 · 9)

C Q^ /On I O^4"1/^*
^0

\S4-1/

where Μ — OR(K) is a neighborhood of radius R = j \ \\XT\\0 dr of the compact set K.

PROOF. We put

and introduce the quantity

P.
ZV/0,< = sup

φ€Φ

Ιο,Ι ' 'S,l\

which, as is easy to see, is measurable in t0 and t and bounded on [t0, t]. The

measurability follows from the fact that the sup on the right-hand side need not be taken

over all φ Ε Φ but over only an arbitrary countable dense subset of Φ; the boundedness

follows from (1.10) and the obvious inequality ||<p||,fj> /(Α^ < ||<p|L+ix; . Let x 0 be a
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point at which

II K w l K = sup Σ λ, S U P I ̂ a (Φ ° ρ<»·<) (*) I

attains its upper bound, and let πιφ be a polynomial of degree < s whose derivatives of

order up to and including s at the point p0 = Pt^t(x^) coincide with the corresponding

derivatives of φ at the same point,

In this case

WhM\s,K = i: -7- (sup | Λα (ίηφο Ρίο,,) (Λ:0)

In the finite-dimensional space of all real polynomials of degree < s, all norms are

equivalent, so there exists a constant Cl which does not depend on the choice of the

polynomial m of degree < s such that

I M U ' ' - < C l . (2.11)
WmkPo

The inequalities (2.10) and (2.11) give the estimate

1:—ί.— ^ —ΐι—TJL·— ^ cx —— — = Cx — - — ^ - ^ — -^ CiNto.t. (2.12)

We show that we can take

C 1 = =(l +s)(2/w) s(l + η + diam Kto,t)
s'. (2.13)

From the estimate

it follows that for σ = η (Sa is a circle of radius η with center za)

sup I /i! ο · · · ο hkm (χ) Ι

— s u p /ι, ο . . . ο Jib \ d w 1 . . . l
5 t Sn

1 k\ ι η

(2n)n on

where

rn

sup
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and Vn(Kt t) is a complex neighborhood of radius η of the compact set Kt^r Therefore

K = sup y, — sup I ham (x) I
Λ'°·' *«L £0*i *&*

Σ
Consequently

im , K w < ( l + S ) | m C ( « , , , , , = ( l + s ) sup -7( z"PO)MPO)
(2.14)

sup sup
— p0

(The symbol

^

denotes the differential operator with (constant) complex coefficients za —
It is easy to see that

sup (2.15)

In fact, if none of the coordinates wk, k = 1, . . . , n, of the complex vector w exceed one
in modulus, then, using (1.8), we would get

~{w)am(Po)
a!

1
^ α ! ^

a = o &,,...,&α=ι

S 1 a

•X—Q

. . . wa\dkio . . . o ^ a m ( p 0 )

S.Po

Combining this with (2.14), we arrive at (2.13).
Equation (2.7), together with (2.12) and (1.9), allow us to write

, + 3n(2s4-2)mC

Dividing by | | φ | | , + 1>^ r, we arrive at

^ ^ - < 1 +3/i (2s + \NtoAXx\\sdx.
t

Since the right-hand side does not depend on φ, we get
t

1 + C 2 J Nu.x I Xx \\s dx, C2 = 3rc (2a + 2)S + 1C 1 )
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from which it follows by Gronwall's lemma that
t

Cs (* Mx\\sdx

by virtue of the boundedness of Nto>r or, by (2.12),

C2 j' \\Xx\\sdx

It remains to estimate the set Kf , in terms of Κ and X,. We have
•0»* *

diam Kto,t = max
X.K6K

τ' τ "

x+ J XB Ο Pta,« (x) dQ—lyt+$X9o Ρ/ο>θ (y) dQ

- diam Κ + 2 f 1 Xx ]|0 dx, Kto,t C 01 (/(),

ίο

which concludes the proof of the proposition.
We assume now that the bounded (locally integrable) field Xt is given, i.e., that it

satisfies H^H, < c» for all J > 0. We consider the entire function of ζ Ε C

-(-Γ

which depends on the parameter ε > 0. Taking its convolution with Xt, we get the entire
function of ζ

1 Xt {x) dx.

Rn

Considered on R", for each fixed ε > 0 it belongs to the space Ω" for all σ > 0. For real
values of the argument, Xt

e can be calculated from

x!(x)=--J-^\
(ε γη) J

consequently

2

Xt{y)dy= - ^ f e

Xf\\ = sup S1, - sup — I —

"S £ a ! Wi ^
f e-s'haXt{x —

Rrt

(2.16)

- T W \ e-Vdy sup 2 1 sup | ίαΧ, (χ) | = | Xt ||s.

Furthermore, the identity

(Xt' - Xf) (x) = y=-n jj dye-y* (Xt (x - z'y) -Xt{x — z"y))

v* V dx grad Xt {x — e"y + τ (ε" — ε') y) · #

R « 0
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together with (1.9) gives that

(2.17)

\y\e-*dy.

Rn

In subsection 1 we proved the existence of mutually inverse analytic flows

Pit = e x j f Χϊάτ, QfOtt = Γχρ f — ΧΒ

τ dx, t0,16 R,
t t

which satisfy

Pit = Id + J #..τ ο Χ&τ, &.., = Id - ξ Χτ

ε ο Qfo,Tdr.

We show that as ε -»0 the flows P' t and Q,^ converge in the topology of Φ" to the

mutually inverse flows Pto>t and Qt^t, t0, t Ε R, where Pt t and Qt^t satisfy (2.7) and (2.8).

From

Kt ~ K.t = J K.x ° (̂ τε' - Χΐ) dx

(2.16), (2.17), (1.9), (1.10), and (1.11) we get

j
J

The quantities ||Ρ^Τ | |,,^ and | | i^ T | | 5 t A - in this estimate are majorized by a locally

integrable function which does not depend on ε, by virtue of (2.16) and Proposition 2.2.

Therefore applying GronwalPs lemma to it, we get that

lim \\PZt-Pf;,t\\s,K = 0<
e',ew-*o

The convergence for Qt

e

 t can be proved similarly, or it follows from the convergence

just proved for Pf t and the fact that the left flow Q^t is also a right flow:

Qlt = %,t (- Χχ) Ε = T U i (X?) E.

The limit transformations Pt^t and Q,^t are mutually inverse diffeomorphisms for aU t0,

t e R, since it is easy to get from (1.11) that

Pt..t °Qt..t = Qtt.t ° Pto,t = lim Pit ° Qlt = E.
ε-»ο

Finally, it is obvious that Pto>t and Qto>t satisfy (2.7) and (2.8) since the limit flows satisfy

them.
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Thus we have constructed flows PtQ>t and Qt^t, t0, t G R, which satisfy (2.7) and (2.8);
we call them right and left chronological exponentials in Xt and -Xt, respectively, and we
write

Pt.,t = exp j Xxdx = Id + W exp j ΧΘ<2Θ|) Xx dxt

ί. ίο \ i. /

Q/0>i = exp j — Χτ£ίτ = Id — j Χ τ ο / ̂ χρ f _ χ θ ̂ θ 1 dx, (2.18)
ίο ίο \ ίο /

, t _^ < t _^ ^ t _^ ^ ί _ ^

exp Γ Χτίίτ ο exp Γ — Χτίίτ = exp Γ — Xxdx ο exp Γ Xxdx = Id.
t» t

F o r arbitrary / , , . . . , /m we have

exp Γ Xzdx = exp f Xxdx ο exp f Xxdx ο · .. ο exp f XTdt; (2.19)
' . <· <i tm

in particular,

^ t _^ / „ <o_^ \~1 < <· ^

exp Γ Xxdx = exp Γ Xxdx = exp Γ — Xxdx. (2.20)

In subsection 1, we showed that for all t0 it is possible to find p, > 0 such that for
\t — to\ < pto the series

oo ί %ι τ α - ι

α = ι ίο ί0

Α/ — Oe * Α/,

converges; we denote the corresponding operator flow by putting the expression under
consideration in angle brackets. If t0 and t are arbitrary, and if we insert points
t0 < tl < · - · <tm — t between them such that \tj — tJ+l\ < p,, we can write

fexp ΓΧτ^τ = 1ΪΓη(Ύ < ο Λ (Χ?)£)°(Ύ/ ί Λ(Χτ)^) 0 · · °(^ί _,*(*?)£>.
>' ε-κ> (2.21)

t = Οε * Λ*.

We call the expression on the right-hand side the operation of "exponential summation"
of the Volterra series % t(XT). Even in the case where X, is analytic, the Volterra series
does not converge in the topology of simple convergence in £(Φ) in the usual sense, so
we write

> ί _^ oo t xx

 Tm-i _^

exp Γχτίίτ^Μ + 2 f ̂ τι f dx2 . . . Γ dxmXXm ° · · · oXT i, (2.22)
ίο m = l i t t, t0

understanding by the "asymptotic equality" the relation which is defined precisely in the
following proposition.
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PROPOSITION 2.3. Let Xt, t Ε R, be a bounded {locally integrable) field and Pt t the flow

generated by it. Then for all φ in Φ and m > 2

m-i t

Kt - Id
α = ι ίο ίβ

(3n(2s
m!

χ τ Ι φ

(2.23)

Hs+m.Ai»

where Cv C2, and Μ are defined in Proposition 2.2.

PROOF. Using Proposition 2.2 and (1.9), we can write

ct Jl», .dx

(3n(2s

which proves the proposition if we apply the obvious identities

Kt -
m~\ t τ,

J
άτχ

t

ί τ,

A . j

ίο ίο

| |Χ τ,

\'

§3. Representation of perturbation flows

(the "variation of constants*' formula)

Two concepts in the theory of ordinary differential equations which have basic

significance for us are the perturbation flow of a given flow

Pto,t = exp C Χτάτ

ί,.

( 3 . 1 )

and the variation of a flow Pt^t. In this section, we obtain formulas which represent a

perturbation flow in terms of input data, and the following two sections are devoted to a

study of the variation of a given flow.

1. Representation of a perturbation flow. We will assume that the field Xt and the flow

(3.1) are fixed. We will call an arbitrary field Yt a perturbation of Xt, and the flow

exp f'lo(XT + YT) dr the corresponding perturbed flow.
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We consider the problem: find flows Ct^t(YT) and Dt^t(YT) which satisfy

exp f (Xx + Ϋχ) dx = CUJl (Yx) ° exp f Xxdx,

(3.2)

exp J (X x + Yx) dx = exp f Χτ<ίτ ο D,Of, ( ? τ ) .
' . Vo

We call C,0>/(i;) a left perturbation flow for P,^, for the perturbation field f,, and Dto>t(YT)
a right perturbation flow.

We obtain a solution of the above-stated problem by the method of "variation of
constants."

To this end, we write by (1.12)

( Ad exp \ Xxdx) Ζ «= P(o>t ° Ζ ο p£t e Der (Φ) VZ e Der (Φ),
\ t, J

regarding Ad Pt^t as a family of linear transformations of Der(<I>) into itself which
depends on t0, i £ R . Differentiation with respect to t gives

~(AdA..t)Z = Pto,to(XtoZ-ZoXt)op£t = (AdA..i ο adX,)2, (3.3)

which, by virtue of the arbitrariness of Ζ G ϋβΓ(Φ), may be considered, purely formally,
as a linear equation for Ad Pto>t:

t t

— Ad exp f Xxdx = Ad exp Γ Xxdx ο adX*. (3.4)
dt J J

to t.

This equation gives a purely formal reason for calling Ad exp /{o JfT dr a "right chrono-
logical exponential in ad X":

^ t _^ ^ t _^

Ad exp I Xxdx = exp C adXTiiT. (3.5)
to tQ

We note several simple properties of Ad Pt , which are completely consistent with the
notation of (3.4) and (3.5). First of all, it is clear that Ad Pt t is invertible, and

( 3 . 6 )

and correspondingly

4 (AdP,0(ipZ = - adXt ο (AdPt..trlZ,
at

_ < . _ < . ( 3 ' 7 )

(AdP^.i)'1 = Ad exp j — Xxdx = exp Γ — adXxdx.
ίο to

Furthermore, we have

A d P i o i t l ο A d P t i t U ο . . . ο A d P / , ί = A d P t t , t ; (3.8)
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in particular,

(ΑάΡ,,,,Γ1 = Ad PUo = exp j adXTi/x. (3.9)

t

We define the action of Ad P. . on flows by

> t _^ ^ ψ t _^

AdPtlA exp j Υτάτ = Ρ, ι Λ ο exp j 7τίίτ ο Ρ^^.

Then we have

„ < _ ^ > ί _^

AdP / l ( i lexp j Κτίίτ - exp J A d P f ^ W k V ̂ , t2 6 R, (3-10)

since if we differentiate the flow on the left-hand side with respect to t, we see that it

satisfies

t t

± AaPtuU exp ξ Υχάτ = Ad Ρ ί ι Λ ix^ f fTdx ο Ad

Finally we note that if Ζ commutes with Xt for all / in R (i.e. if ad XtZ — 0 for all t in

R), then

Ad exp Ι Χτί/τΖ = Ζ V t0, ^6R, (3.11)

to
since

- Ad exp \ ΧχάτΖ = I Adexo \ ΧΑχ ο adXAd exp Ι ΧχάτΖ = Ad exp \ Χτάτ ο adX/ Ζ = 0.
J \ J /

We now express the left perturbation flow Ct^t(YT) in terms of Xt and Yr To this end,

we differentiate (3.2) with respect to /:

_ t _̂
Ct..t (Υτ) ο exp j Χτίίτ ο (Χ, + Yt)

ί t

exp i Χτίίτ + Claj (Υτ) ο exp

to to

whence

A- Cu t (Ϋτ) - Cu t {Ϋτ)° Ad exp f Xxd% Yt .
dt V { J

This differential equation was obtained by "variation of the constant Ct ,"; integrating

it gives a representation of the left perturbation flow

Ĉ o,< (Yx) = exp f (Ad Α0,τ) ^χ^τ = exp U exp [ adXed6 Yxd% (3.12)

'β ίο \ «o /



758 Α. Α. A G R A C E V AND R. V. GAMKRELIDZE

and, at the same time, a representation of the perturbed flow

^ i _^ _^ > t _^ t _^

exp J (Xx + Yx) dx = exp J" (Ad PtoiX) Yxdx ο exp J Χτότ. (3.13)
i

To determine Dto>t(Yr), we write the following sequence of equalities (see (3.10), (3.6),
(3.8) and (3.9)):

t
exp (' (Ad Ρ

/βΐΤ
) Υ

τ
άχ ° exp Γ Χ

τ
άχ

U U
_ > * _̂  ^ * _̂

= exp j X d x ο Ad p£t exp J (Ad Pt<>.x) Yxdx
t0 to

^ t ̂  > t _̂
= exp C XTdT ο exp C ( A d P U o ο Ad Α0,τ) Υχάτ

u ta

> t _> y t ^ _

= exp C Χτάτ ο exp C (AdP^,T ) Yxdx,
to to

from which we get
__, „ t _^ _ _ ^ t / ^ τ \

Dtt.t {Υχ) = exp j (AdPt.x ) Υχάχ = exp U exp f adX*ed9 I fTdx. ( 3 . 1 4 )

Thus the perturbed flow can be represented with the help of the equalities

^ t _^ v „ if > τ ^ \ _^ ^ t r

exp Γ ( Χ τ 4- Υτ) άτ = exp Γ | Ad exp (*Χθίίθ Υτά% ° exp C Χτίίτ
<ο t t \ t0 ) ί0 η 1 5 ^

= exp Γ exp Γ adXe^9 I Yxdx ° exp ̂ Χτίίτ,

> t __, _ „ ί ^ , / / „ τ _ \

exp (' (Χχ + ν τ ) άχ = exp f Χτίίτ ο exp Γ Ad exp Γ XQdQ Υτάχ

*° _^tj° _</_Λτ ^ 'x ( 3 · 1 6 >
= e x p C Χτίίτ ο e x p C ι e x p Γ a d Χθίίθ |Κτίίτ.

t0 u \ t Ι

We call them generalized "variation of constants" formulas.

2. Asymptotic forms of (3.15) and (3.16). In these formulas, the expressions

exp j]o ad Χθ άθ and exp /* a ( i - ^ dO do more than serve as formal definitions of the

operators Ad Pt T and Ad PlT. In the form in which they are written, (3.15) and (3.16)

point to the following two basic facts.

1) If Xt and Yt are bounded analytic fields, then if we calculate all of the chronological

exponentials on the right-hand sides of (3.15) and (3.16), as well as the corresponding

formal Volterra series, and if we carry out the indicated operations, we arrive at formal

series which when applied to the identity mapping Ε give convergent series which

determine the perturbed flow.

2) In the case of arbitrary fields Xt and Yt, this procedure does not lead to convergent

series, but these series give an asymptotic representation of exp f',(XT + YT) dr. We give

the precise meanings of these statements in Propositions 3.1 and 3.2.
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PROPOSITION 3.1. Assume that Xt, t SR, is a uniformly integrable, bounded, analytic

field, and that Ζ is a bounded analytic field: Xt G QTO for all t e R and Ζ e 9Ta. Then for

all a' < σ there exists a p > 0 such that the series

oo t τ,

m = l t0

· · ο ad XXlZ) Ε (ζ)

converges absolutely and uniformly in t0, t, and ζ for \t — to\ < ρ and ζ G V&, and for these

values of t0, t, and z,

I Adixp f %d%Z ) E(z) = ( T ^ a d Χχ) Ζ) Ε (ζ).

\ ί 1
The proof can be obtained from the estimate

f dx% • • • [ dxm (ad XT/n ο . • . ο ad XT lZ) Ε

a'
r η

II7 llc

IIL Ik '

which follows from the similar estimate (2.3).

PROPOSITION 3.2. // Χ,, ί e R, » toca//v integrable, then for Ζ Ε ϋβΓ(Φ)

j Adexp jXT

m-\ t

=ι t0 t0

°adXTlZ)

h.K

3/i (2s + 2)5 * 1
(2s + 2m) m ( s + m ) Cie

2Ct

where

=(s + 2) (2s + 2)S+V+1 [ 1 + η + diam /C l· 4

C 2 = 3/i(2s + 4) s + 2C 1, C3 = iiK

vv/iere d^ is the distance of the compact set Κ c R" from the origin, and where Μ = OR(K)

is a neighborhood of radius R = 2|/'J|XT | |0 dr\ of the compact set K.
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The proof is easy to construct if we take into account the identity

A d P < , l t Z — Ζ + 2 5 d T i J d T 2 · · · J ^ a a d X T a o ...

t
5J

V α=ι/ 0 f,

t τ, Tm-i

j * c f t m A d P * 0 , T m ° a d XXfn<> . . . ο a d J ? T l

and make use of the following estimates, which follow directly from the corresponding
estimates (1.9) and (2.9):

|| (ad Χ Ζ) Ε lK < 6n (2s 4- 2)s+11X \[^\\ Ζ |ls+1>/c,
—•» — > - >

I (ad X x ο . . . ο ad XmZ) Ε ||s K =<C

Ux 11,+! Λ

(AdexJ ΪΧχάτΖ)Ε
J

s,K

3. Calculation of the chronological logarithm. In this and the following subsection, we
give two simple examples of the results we have obtained.

Since the field Xt, t Ε R, is given uniquely in terms of the chronological exponential

elcp f't Xr dr which it generates by the formula

Xt = I exp C Χτάχ \ ο — exp f

\ J dt J
Xxdx,

it is natural to call the function determined for flows exp f',o XT dr by the correspondence

^ t _^ _^
exp [ Χχάτ Η». %,

a r/g/ΐί chronological logarithm and to denote it by log t0. Here /0 plays the role of a

parameter, so that the argument of a chronological logarithm is a function /i->

exp /J ΧΤ */τ and its values are functions t •-» A",. Therefore to be perfectly precise we

should write

log/. |expfXTdx; /6R = { X e ; 6 6R},

1 Ό J
but we will use the less awkward notation

log*, exp

We define the left chronological logarithm similarly:

\ogt0 exp j Χχάτ = Xt.
to
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Frequently it is necessary to calculate the field which generates a flow, i.e., the
chronological logarithm of a flow when the flow is given not in "canonical" notation but
in the form

t t

P t o i = e x p j Υ[1]άτ ο . . . ο e x p j Y[m)dx.
ίο ta

To do this, it suffices to write

P

t

?
dt

t0

to represent the derivative dPt^J dt in the form of an appropriate sum of m terms, and
then to use (3.7). As a result, we get

^ / t _^ ^ t _ \

l o g / . e x P J γ ( ? ά τ ° ·•· ° e x P f κ ? " ) ί ί τ

= e x p f — ad Y[m)dx ο . . . ο e x p f — ad Y?d%
V Ϊ. u J (3.17)

exp J — ad y f ^ x ο . . . ο exp j" — ad y f d t

\ ίο U J

We find a right chronological logarithm as a solution of

dt

We have

ο.ί = e x P f τ̂̂ τ ° exp

therefore, if we denote the unknown logarithm by Z, and repeat the computations in the
derivation of (3.17), we get

t , - l , t t

( ^ < ' \ - 1 ' ι t \

exp I Yxdx ο exp \ Χτίίτ Ι ο — | exp ί Υτάχ ο exp C Xxdx )

I l ι dt\ ί I )
Λ
j

t
= Xt + j exp f — ad X-cdx ο exp f — ad YTdx j K .̂

\ ' . i« /

4. 77ie quasistationary field case. We assume that the field Xt is stationary: Xt = X for
all ί in R. We define the exponential of X by

(3.18)



762 Α. Α. AGRACEV AND R. V. GAMKRELIDZE

The field Xt, t G R, is called quasistationary if for some fixed t0 it commutes with the
field f' X. dr for all t in R.

PROPOSITION 3.3. If the field Xt, t e R , is quasistationary,

L /. Τ J

rTien the family of diffeomorphisms

is a flow which satisfies

dt

consequently in this case

Xxdx I xxdx

^ * ̂  t / _ f Xxd

exp f Xxdx s= exp Γ Xxdx = eio

| Xxdx\ -\ xxdx

In particular,

dt ~~ ~~
- > - * •

PROOF. We calculate the expression

(
t -* t+6t^ t _^

J xxdx+ j xxdx Jxxrft| (3.20)
or

Putting
y = Γχτίίτ, Y6t = J X T d x

for brevity, and making use of (3.16), we get

— (eY*Y6t — eY) = — | exp Γ(Ϋ + ? β ί ) ίίτ — exp Γ Ydx
6/ 67 I J J /

\ 0 0 '

I —- Γ — /" > r / —* c -» \ ~* \
= — exp Κίίτ ο exp Ad exp \ YdQ Yatdx — Id. I -

ο V ο \ ι / /
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For St -*· 0, (2.23) (Proposition 2.3) gives, at each point of differentiability of /Jo XT dr,

that

- 1

Γ-^ exp Γ Ad exp f YdQ \Υ6ίάτ — Id j -+ f ( Ad exj Γ YdQ Xr,

\ 0 \ 1 / / 0 \ 1 '

consequently as St -> 0, (3.20) approaches (see (3.11))

ι ι / > τ _ ^ \ _ ^ ^ ι _ ^

exp f Ydx o f Ad exp ( Κίίθ Xf = exp [ Ydx ο Xtt

0 0 \ 1 / 0

which proves the first equality of (3.19). If in this proof we use (3.15) in place of (3.16),

we get the second equality of (3.19).

For quasistationary fields, (3.5), (3.15) and (3.16) have the form

t t

A d el" Ζ = β*° Ζ,
t τ t

j (ΧτϊΥτ)άτ > t j adXgrfO ^ j Χτ</τ

^ = exp Γ (*» Yxd% ο e*° ^ 21)

t τ

jxTdT ^ t fadAede~;

= ^o ο exp | V ^ τ ί ί τ ·

In particular, for stationary fields we get the identities

ptX
(3.22)

which are frequently useful.

§4. Variation of flows

We will assume that the flow exp /Jo yT ί/τ, which we will consider here as a perturba-
tion of the identity flow Id, = Id (generated by the zero field), is given, but we will regard
Y, as a perturbation of the zero field. We will consider elcp f't Yr dr as the corresponding
(right or left) perturbation flow. We pose the following problem.

For α given flow exp f'to YT dr, find α field Vt t{ Yr) which, in some asymptotic sense to be

specified precisely in Proposition 4.1, satisfies

ι

exp Γ Yxdx ^ e to' (4.1)

where the function of a stationary field in the exponent is to be understood in the sense
defined by (3.18).
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If such a field Vt^t(YT) exists, it is natural to call it the logarithm (not chronological!) of

the flow exp f't Υτ dr and to denote it by

*^xdx. (4.2)

It turns out that a reasonable solution of the problem stated above requires the

extension of the concept of a nonstationary field by the introduction of formal vector

fields by means of chronological series.

An explicit algorithm to be described in §5.2 gives a "universal" sequence of poly-

nomials in noncommutative variables

ζ 2 ) , . .. , d m (ζ ι , . . . , £ J , · · · > ( 4 . 3 )

where Qm is homogeneous of degree 1 in each variable. In addition, all of the polynomi-

als Qm have a remarkable property: they are "commutator" polynomials in their

variables. A commutator polynomial is one which can be expressed as a linear combina-

tion of the variables ξχ, . . . , £m, of their commutators [£}, $k] = $j$k — ζ^ρ of the

commutators of these, and so forth. For example, the first three polynomials have the

form

(r r , _ ι r «.,

iMbl» b2» t 3 ) = = ' T U b 3 » 11>2> t>lJJ T" Ub3' fe2J' t lJ; ·
6

It is clear that if Yx, . . . , Ym are arbitrary fields, then the expression Qm(Yx, . . . , ?OT)

will be a field.

With the help of Yt we construct the formal chronological series

CO

Vt»t<yx)= 2 ν{ΰ(Υτ),
(4.4)

and we call it the formal vector field corresponding to the field Yr From what was said

above, all expressons ν^\ΫΤ), m = 1, 2, . . . , represent vector fields in the ordinary

sense.

The following proposition gives the precise sense in which the asymptotic relation (4.1)

must be understood; the proof is given in §5.1.

PROPOSITION 4.1. If

then

ν
e x p Γ Y%dx — ^ = 1 Ι φ

s,K

(4.5)
(Κ)'
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where the constants Cx and C2 depend only on s, m, and diam K, and where OcJiK) is a

C2- neighborhood of the compact set K.

As an immediate consequence of (4.5) and (2.23), we can conclude that if at a point

χ G R"

\fi(Yx)E(x) = 0 Va = 1, . .. , m- 1, (4.6)

then

\ Y\dxE (*) = * + νΐ) (Υτ) Ε (χ) + 0 [ | Υτ \\S^JT , (4.7)

since if Ϋχ, . . . ,Yk are arbitrary fields and if Ϋλ vanishes at χ (Ϋλ(χ) = 0), then the
composition Yx ° · · · ° Yk vanishes at x. Thus if all of the functions V$(YT)E, a =
1, . . . , m — 1, vanish at x, then the value of the perturbation field exp /', YT drE at χ
can be calculated by means of the expression χ + Vf-"l\YT)E(x), and the error can be
estimated by means of (4.7). This motivates the following terminology.

We call the field Vffi( YT) the mth variation of the identity flow corresponding to the
perturbation field Yt, and we call the formal field Vt t(YT) the complete variation of the
identity flow. We inroduce the corresponding notation

V(S (Y\) = 6(W) Id,.., (Ϋτ), VUYt) - δ 1\ΛΥτ)

and rewrite (4.1) and (4.4) in the form

exj) f Y\dz ^ em^{Y^ = Id + y — (6 Id,0 , (Yx))m,

(4.8)

oo oo t τ, xm-\

We call this representation the Maclaurin expansion ("in the vicinity of the zero field") of
the perturbation flow e~xp /',o 7T dr.

Combining (4.8) and (3.17), we arrive at the following generalization of the Campbell-
Hausdorff formula:

co t tj τα-ι

e x p [ Ϋ?άτ ο . · . ο exp f Y[m)dx ^ e«=i ^

e x p j — ad K [ m ) d x ο . . . ο e x p f — ad Y(?d% ) y i x ) (4.9)

_ t

+ I exp Γ — ad 7 ?

The usual computational form of this formula, which, as a rule, is stated only for the
case where Υ^;) = Yj are stationary fields, j = 1, 2, is extremely complicated because the
α-fold integrations, only indicated in (4.9), are actually carried out.
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The question of convergence of the formal series on the right-hand sides of the
asymptotic relations (4.8) and (4.9) and the question of precise equality to the flows on
the left-hand sides are treated in the next section.

The expression

where Vt^(YT) is an arbitrary formal field, is called the formal flow corresponding to the
formal field Vto>t( Yr). We can introduce a multiplication operation into the set of all
formal flows by means of the relation

where (cf. (3.17))

X(Y't, Y"t) = | 5 φ j —ϋάΫ'χάλ Y't

which then makes it into a multiplicative group, as is easy to see.
One decided advantage of the definitions of variations given here over the usual

definitions is that our variations satisfy the asymptotic relations (4.5)-(4.7) and have an
invariant form: the expressions 8(m)Idt^t(YT) represent vector fields, which therefore act
as "infinitesimal shifts" not only in Φ but also in R".

The "usual variations" of a perturbation flow, successive terms in the "Volterra
expansion"

exp Γ Yxd% ̂  Id + Γ dt1YXl + f di^ f άτ2 YXi » 7 t l +
t0 t0 t0 t0

fail to have an invariant meaning beginning with the quadratic term; therefore they act
only in Φ, and not in R". By means of the procedure described here (see also the
construction of the polynomials gm in the next section), we actually "extract" the
invariant variations δ ( m ) I d w ( YT) from the "usual" ones

Their interrelation is given explicitly by (4.8).
For example,

δ(2> Id,,,, (F T ) =jjdT^ dr2 YXl ο YTi - -L fid) Id/o,, (Υτ) ο fid) Id,0,, (Yx),

to to

and so forth.
In conclusion we note that if y, is a perturbation of an arbitrary flow Pt t =

exp f't XT dr instead of the identity flow, then the corresponding variation of P,v, must
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be defined by

t xt

 xm-i / f_

toj <Υτ) = j dxx j dxa · · · j d t m 9 m exp
ίο ίο ίο \ \ ί

J adX.de ) l\mV
ίο / /

and the complete variation by

δ exp
i0 m = i

we get for the expansion of the perturbation flow in a " Taylor series in the vicinity of X"

the expression

exj ( (ixp f aaXtdQ) Υτάτ^e h ^

i \ ί J
As the "Taylor expansion" of the perturbed flow we get

§5. Calculation of the formal fieldO Vto>t(Xr) = In έχρ /',ο XT dr

We assume throughout this section that all differentiations and integrations of formal

series are to be performed termwise.

1. Computation in the algebra β of chronological series. In the algebra & of formal

chronological series, we denote by 91L the ideal consisting of series of the form

oo ί τ, T m - i

( j x j άτ2 . . . j d T n c m ( X t , XXt, . . . . XXm),

1*i.e., series without zero terms. The kth power of 911 is denoted by 911*. We call a series

(£, ,(XT) in 911 absolutely continuous if the polynomials cm(f0, . . . , fOT) do not depend on

f0. It is clear that absolutely continuous series can be differentiated with respect to /, and

the operation d/dt maps the collection of all absolutely continuous series onto all of 6B.

Furthermore, if ©io>/(XT) e 9H, then

*—> ml
m=o

is obviously a well-defined formal chronological series.

PROPOSITION 5.1. There exists an absolutely continuous formal chronological series

oo t x t

 T m-i _ _^

m = i i0 t,, ta

(') We note that an explicit expression for In exp f',oXTdr is obtained in [9], but it is not in the form of a
chronological series. The connection between this formula and the Campbell-Hausdorff formula is also noted
there.
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such that

(5.1)

In addition, the polynomials gm(£,, . . . , fm) are commutators {see §4) and are homogeneous
of the first degree in each variable.

The series Vto^t(XT) whose existence is asserted in this proposition satisfies all of the
hypotheses of Proposition 4.1. Indeed, let

τ) = j dx, J άτ2 ... f dxn9m (Xxt, .. . , XTJ.
t U t

Since the commutator polynomial gm is homogeneous of the first degree in each variable,
it follows from the inequality

\\{X,

which holds for any X and Y, that

Therefore

( t

Γ II Υ
«J
ίο

But then (4.5) follows at once from the formal equality (5.1) and the asymptotic estimate
(2.23).

PROOF OF PROPOSITION 5.1. It is required to find an absolutely continuous chronologi-
cal series satisfying (5.1). In what follows, we will, as a rule, omit the arguments t0 and XT

We differentiate (5.1) with respect to /. On the left we get %^(Xr) ° Xr In order to
differentiate the right-hand side, we must use the formal variant of the variation formula
(3.21). We have

t+ε

Consequently

e e \ e dx
dt J dt

Thus it follows from (5.1) that

JLe = e ο \ e dx — Vt.
J dt

t o , t
v Vt C ~ x a a v t j d wt = e ο \e dx—Vt.

J dt



THE EXPONENTIAL REPRESENTATION OF FLOWS 769

Cancelling the invertible series Ύίο>/(ίτ) = ev· from both sides, we get

Xt=\e dx — Vt.J at
0

The series ^oe~T&av' άτ begins with Id, so it is invertible. The inverse series is the

Maclaurin series of the function
ι

/ J e~z - 1
η

with the variable ζ replaced by ad Vr We put φ(ζ) = -z/(e~2 - 1). Our equation takes

the form

d ,r— Vt = φ (ad Vt) Xt- (5.2)
dt

Here

^ a!
a=o

where 5 a is the ath Bernoulli number: J52 = | , 5 4 = - | , . . . , and Β1α+λ = 0 for α =

1, 2, . . . .

Conversely, we assume that the chronological series Vt of 9H satisfies (5.2). Then

e e
dt

and consequently ev> = Ύ , X ^ ) . Thus (5.1) is equivalent to (5.2).

To solve (5.2) it is convenient to introduce a formal Laurent series in the m-dimen-

sional variable λ = (λ,, . . . , λ^) with coefficients in (J. We denote by @>m(X) the

collection of all series of the form

= Σ <2&(*χ)λι, Qi:!i(ix)6-6B.

Here t = (t,, . . . , im) is a multi-index, λ4 = λ\\ . . . , λ£, and Z ( m ) is the set of all

w-dimensional vectors with integer coordinates.

It is not possible to multiply arbitrary formal Laurent series, as is done with power

series. Therefore #m(X) does not have a natural ring structure. Nevertheless we can say

the following.
ο

Let $m(A) be the subset of 6Em(\) defined by the following condition: a series

3« (λ) = Σ Κί.1!ί(Χτ)λι

iez<m )

ο
in &m(X) belongs to &m(X) if and only if the coefficients R$(XT) e 911*·, where A:t -> oo
as |t| -> oo.

For any

£ ( λ ) = Σ <2(ά(Χι)λι€««(λ) and 31(λ)= 2 . Κίλ(^)λι€έΒ«(λ)



770 Α. Α. AGRACEV AND R. V. GAMKRELIDZE

we define the product 2dl(X) Ε &(λ) by

( Σ QUtf

The infinite sum

Σ η(ι')η(ι")
l*ito,tt<to,t

l ' + l " = l

has meaning by virtue of the restrictions imposed on the coefficients of the series in

Such a definition of multiplication, together with termwise addition, gives a ring
o o

structure in 6£m(A) and an (^(A^module structure in @>m(X).

We note that for arbitrary(2) Q Ε <?)1L the element λ — Q is invertible in &X(K), and

(λ —Q)
oo

~1= 2
m = 0

Let β(λ) = ΣίεΖ(-.) β ' λ 1 be a series in &m(X). As usual, we call the coefficient

^~x ~ ! ) of Xf' · · · λ^"χ the residue of the series β(λ) Λ/ zero and denote it by

We consider an arbitrary formal power series G(X) = Σ£° GaX
a with scalar

ο
coefficients. It is clear that such a series belongs, in particular, to an 6E (A)-module of
ο '
6Bj(A). In addition, as is not difficult to verify,

CO
res {G (λ) (λ - Q p } = g G*Qa = G (Q) (5.3)

a=o

for any Q E. 6L.
o o ο

Let F: &m(X) -» &m(X) be a mapping of &m(X) into itself. We call the mapping dzF:
ο ο
^ ( λ ) - .̂ ̂ ( λ ) defined by

d
ooF (ΣΗ (λ)) = — F (ii (λ) ~f- εϋϊ (λ)),

"~z ε=ο

0

a differential of the mapping F at the "point" β(λ) Ε @>m(X) if the derivative on the
ο

right-hand side exists for all 9?(λ) Ε ^ ( λ ) .
The usual Leibniz rule for the differentiation of a product,

d2 (FG) (9? (λ)) = (d2F (31 (λ))) G (£ (λ)) 4-F (2 (λ)) dgG (91 (λ)),

holds for this differential, and (under suitable assumptions) the rule for differentiating a

composition,

d2 (F ο G) (91 (λ)) = dF(2)F ο d2G (9? (λ)).

We omit the arguments t0, t, and X, in the symbol Ql0t,(XT) e Φ for a ring element.
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0

Let F be such that £(λ) G &m(X) exists for all F(S(X))"1. We denote the mapping
£(λ) -• F(Q(X))~l by the symbol \/F (in contrast to the inverse F~l). An application of
the Leibniz rule to the identity F^iK^F^X))'1 = Id gives an expression for the
differential of \/F\

a 2 (\/F) (3ί (λ)) = - F (β (λ))"13ΐ (λ) F ( £ (λ)Γ1. (5.4)

We return to (5.2). We denote the mapping of (£ which associates with an arbitrary
series Qtot(XT) G & the series <p(ad Qto>t(XT))Xt by Ψ,: <£-»#. Our equation takes the
form

ί ί ( ί ) , /G (5.5)
dt

Finally, we denote by Ψ, the mapping which associates with each differentiable mapping
ο

F in the ring & c $m(X) the mapping Q -+ dQF(^t(Q)) in the same ring. The analogy
with ordinary vector fields is obvious.

With the help of Ψ(, we can write a solution of (5.5) in precisely the same way as in the
case of ordinary differential equations. We have

t t t τ,

Vt = j Ψ* (VXi) dx1 = j ΨΤι (0) dxx + [ d T l (" c>vT Ψ
to h

= j ψΤ ι (0) dxx + f

1 j ] dX2... Υ άχαΨΧα ο ... ο ψ τ ,ψ τ ι (0)
α = ι ί0

τ/η-ι

. J
ίο

οο t

\ m = i i 0 ίο ί0 / U

Thus in order to find the chronological series Vt t(XT), it remains to calculate the
polynomial

The unknown series then takes the form

_ ^ oo t τ, xm~i _ ^ _ ^

Vto,t (Χτ) *= ^ \ d%i \ dx2 • • • \ dTmQm (-̂ τ,) · · · > -^xm)·

m = i ίο ί0 ίο

To carry out the calculation, we make use of (5.3). The mapping tym can be expressed
in the form

Ψ™ (Q) = φ (ad Q) Xm = res(p (λ) (λ —ad Q ) - 1 ^ .
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By virtue of (5.4) and the linearity of the operation of taking the residue, we get

Ψ Λ (Q) = 0<?Ψι (Ψ, (Q)) = res φ (λ) (λ - ad Q P ad Ψ2 (Q) (λ - ad Q)'1 XX

= res φ (λχ) φ (λ2) (λχ — ad Q)"1 ad ((λ2 — ad Q)"1 X2) (λχ — ad Q ) " 1 ! , .

Consequently

X 2 ) = ~Ψ2Ψ, (Ο) =

= φ' (0) φ (0)

If we use (5.4) and Leibniz' rule for differentiating a product, it is not difficult, by

means of successive differentiation, to represent ^fm ο . . . ο Ψ2Ψ,((>) in the form of a

residue of some series in 6Bm(A) for any given m, and then, putting Q = 0 and taking the

residue, to find Qm(Xv . . . , Xm). It is clear from the method of constructing the Qm that

they satisfy all of the hypotheses of Proposition 5.1.

The procedure for calculating the Qm can be simplified considerably. We describe one

of the possible algorithms.

2. Construction of the polynomials Qm. Let Ass(ad, £ l 5 . . . , £m) be the free associative

algebra over R with generators ad, fv . . . , $m. The elements of this algebra are all

posssible linear combinations of words made from the alphabet ad, £,, . . . , ξΜ.

We call a word made up of the "letters" ad, £ , , . . . , $m, regular if by the introduction

of suitable parentheses it can be expressed as a commutator polynomial in ζλ, . . . , ζη

with the usual meaning of the symbol ad,

( a d S t ) e a = [ζ,, ζ2] ==ζ,ζ,—ζ,ζ!.

For example, the words ad ζ2ζν ad ad £3£2fj = [[f3, f2], £J are regular, and the words

ad £2, ad ζ2ζ\ζι a r e n o t regular. We note that the parentheses in a regular word can be

inserted in only one way to get the "commutator monomial."

Let w be some word. With each variable $k occurring in w we associate a natural

number called the depth of £k in w. The depth is defined in the following way. We

represent w = w^kw2, where H>, is a (possibly empty) word which does not contain $k,

and we assume that w = vl · - · vh where each Vj is one of the generators of our algebra.

We define the set / c {1, . . . ,/} by means of the following rule: / e / if and only if

the following two conditions are satisfied: 1) the number of occurrences of the generator

ad in the word v{vi+l · · · vt is \{l — i + 1); 2) for each /' > i, the number of oc-

currences of ad in vfvv+x · · · vt does not exceed (/ — Γ + l)/2. The depth of ζΙι in w is

equal (by definition) to the number of elements in J.

We mention an equivalent definition of the depth of a variable in a word which

motivates the term "depth." In the terminology developed above, the depth of $k in the

word w is the number of regular words of the form vfvi+l · · · v^k, where / < /. To prove

the equivalence of the two definitions, it suffices to note that the word t>, · · · v^k is

regular if and only if v( · · · «, satisfies the conditions 1) and 2) above.

With each word w we associate a differentiation $)(w>) of the algebra

Ass(ad, ζν . . . , fw) which acts on the generators according to the rule 2)(w)ad = w ad,
(£)(w)£j = w£,, and which is extended to the remaining elements of the algebra by
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linearity and Leibniz' rule. For example,

To construct the polynomials gm we need the sequence bQ= 1, ba — Ba/a\, a =

2, 3, . . . , of real numbers, where Ba are the Bernoulli numbers.

We consider now the element

© ( a d C J o · · · ο Ώ ( 3 ά ζ 2 ) ζ 1 6 A s s ( a d , ζ,,..., ζη),

which is obtained from ζλ by successive applications of the differentiations

3D(ad ζ2), . . . , ©(ad fOT) and which is a sum of (2m — 3)!! regular words:

©(ad Cm) ο · · · ο © (ad ζ2) ζχ = r ĵ + . . . + t%m-3)u. (5.6)

We denote the depth of ξχ in vv, by v0-, and we put $λ(ζχ) = £, and

(2m-3)!!

9m (ζι, · · · , ζηι) = ^ ^ ν ια · • · ^maW^' Μ ~> 2 ·

For example,

93 (ζι, ζ
2
. Cs) = -τ-

a d
 ̂ 3

a d
 ̂ 2̂ 1 Η — — ad ad ζ

3
ζ
2
ζι + — ad ζ

2
 ad ζ

3
ζ

χ6 4 6

= -^-[ζ3, [ζ2> ζΐ]] + 4 - 1 ^ 3 . ζ21, ζχ] + " 4 - [ ζ 2 . Ιζ8. Si]] ·
6 4 6

After simple transformations using the Jacobi identity, we get

9a (ζι, ζ2, ζ3) = - τ ^ 3 . Ιζ8. ζιΠ + Ιίζβ, y > ζιΐ)·
ο

Similarly,

This algorithm for the construction of Qm is essentially a formalization of the

procedure for calculating the Qm by means of residues described earlier, as can be

verified by simple induction on m.

REMARK. Let φ be an analytic vector field over the straight line corresponding to the

function <p(t) = -t/(e~( - 1). Using the fact that

ψ χ ο . · . ο Ψ,η-ίΨηι (0) = "S1 bv . . . &v Wa,

α=ι

it is easy to get that

(2m-3)!! _

α=ι

(here Ε is the function which gives the identity mapping of the straight line, E(t) = t).
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Similarly, if

and χ is the vector field corresponding to the function χ(ί), then

(2/n-3)H

Σ Ι6ν ι α···^αι = Μ ( 0 ) .
a=i

Using this result (see also (5.7)), we can estimate the constants Cx and C2 in (4.5). We

will, however, not pursue this.

3. Convergence of the series. In general, the series V(^(XT)E diverges, but in certain

situations it can converge.

We assume that Β is some subalgebra of the Lie algebra Der(<I>) and that a norm || · ||,

where \\[X, Y]\\ < \\X\\ \\Y\\ VX, Ϋ e B, is given on B, making it into a Banach Lie

algebra.

PROPOSITION 5.2. Let Xt be a nonstationary field, and let Xt e Β for all t e R. If

f'lo\\XT\\ dr < 0.44, then Vto>t(XT) converges absolutely in B.

PROOF. Suppose that Xx, . . . , Xm e B. We estimate \\Qm(Xx,.. . , Xm)\\. We note that

each variable Xit i = 1, . . . , m, occurs in the word Wj (j = 1, 2, . . . , (2m — 3)!!; see

(5.6)) precisely once. Consequently ||w,|| < \\XX\\ · · · \\Xm\\. Thus

— τ — τ

(-Kit · · · , Xm)\\ =

(2/Π-3)!!

JWn

y j . . .\\Xm\\.

Therefore the wth term of Vt^t(Xr) is bounded above by

It remains to estimate the radius of convergence of E*(xm/ml)E(0)9m '.

The Maclaurin expansion of χ(ζ) has radius of convergence 2TT. Arguing as in §2.1, we

get that, for any σ G (0, 2π),

(5.7)

where Μ(σ) !· Furthermore,

Σ
Consequently Μ(σ) = χ(σ). Thus the series in which we are interested converges for

\91 < max o < < , < 2 w σ/2χ(σ) = 0.44 . . . . This proves the proposition.

At the same time we get the estimate
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COROLLARY. Under the hypotheses of the proposition, the flow Pt^t — e y>^x^ coincides

with exp j ' t o XT dr.

Indeed,

l e V ^ = A.^>o L-'^^dQ — Vt t(Xr)
at J dt v

ο

= A · ^ ο φ (ad ν ί β ι ί (Χ,))"1 ο cp (ad Vtotl (Χτ)) Xt = A . ' w ο xt.

§6. Two examples of applications of the formulas

In subsequent articles we intend to consider applications of the calculus we have

developed, mainly to a study of necessary conditions for extremality of high orders. We

give here only two simple examples which illustrate possible applications of our results.

1. Control by means of quasistationary fields. In this subsection we characterize in

invariant terms those controlled equations which, from the point of view of control

theory, must be considered as equivalent to linear systems.

First of all, we introduce a criterion for the commutativity of two nonstationary vector

fields of a special form.

PROPOSITION 6.1. Let X, Yv and Y2 be (smooth) vector fields. The field etadxYx

commutes with the field es&dxY2 for all t and s if and only if

[?!, ad/XY2] — 0 for / = 0, 1, . . . , 2n — 1. (6.1)

PROOF. The necessity is obvious: it suffices to differentiate the identity [Yv e'AdxY2]

= Oy times with respect to t.

We now establish the sufficiency of (6.1). Because of the identity

[e**d~xYlt esad~xY2] = et*dx\Y1, e«-^ad~xY2], (6.2)

the sufficiency will be established if we prove 1) the commutativity of Yx with eTadXY2

for all τ and 2) that if (6.1) is satisfied then all of the brackets

[ a d W i , adlXY2], 0 < i ̂  η — 1, 0 < / < η,

vanish.

We get 2) at once if we compare the Taylor series expansions of the right and left sides

of (6.2).

For each χ G R", we denote the largest number such that the vectors Yx(x),

ad XYx(x), . . . , ad*"1 XYx(x) are linearly independent by k(x); similarly, l(x) is the

largest number such that Y2(x), · · · , ad'" 1 Λ Ύ 2 ( Λ ; ) are linearly independent. It is clear

that k(x) and l(x) do not exceed n. In addition, k(x) and l(x), which take on finitely

many values, are lower semicontinuous and consequently locally constant on some open

dense subset of R". To prove the proposition, it suffices to examine each component of

this open set separately. Therefore we may assume that k(x) = k and l(x) = I are

constants. In this case,

_ ^ _ k~l _ _ ^ /-I _

χ = Σ αα aaaXY\, ad'XY2 = £ 6β a
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where aa and δβ are smooth scalar functions. Suppose that 0 < / < η — 1; then, by
virtue of 2),

Since the fields ad7 Χ Ύ Ρ 0 < β < k - 1, are linearly independent, it follows from this
that (ad' XYx)bp - 0, β = 0, 1, . . . , / - 1. Hence we deduce that ( e ' a d *?,)£, = 0 for all
t andy = 0, 1, . . . , / - 1.

Indeed,

a=o

dta

Thus (e'&dXYl)bl, as a function of t, satisfies a linear differential equation of order k. In
addition, the function and its first k — 1 derivatives vanish at / = 0. Consequently

We put Z, = [f,, e ' a d j r f 2 ] . It is required to prove (see 1)) that the family Z, consists
of zero vector fields.

We have

α=ο

Since

the second sum on the right-hand side of (6.3) is equal to zero. Consequently

(I ry «—1 / i V / \ Of

dtl

Since

fory - 0, . . . , / - 1, it follows that Ζ, Ξ 0.
We now consider the controlled equation

x = f(x)+G(x)u, w6Rr, (6.4)

inRn.
The vector-valued and matrix-valued functions f(x) and G(x) are assumed to be

smooth and bounded.
In addition, we assume that the vector fields e'adfGu and es&dfGv commute for all t, s

and all u, ν Ε R". Proposition 6.1 gives an effective method of verifying this assumption.
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We fix a point x0 e R" (the initial state) and a moment in time / > 0. The control

theory problem for (6.4) consists in the study of the mapping
_ t

α (τ) •-» exp \ (f + Gu (τ))άχΕ (Λ'Ο),

ο

given on the space L[[0, t] of /--dimensional vector-valued functions which are summable

on [0, t], or given on some subset of this space. By virtue of the fact that

_ _ £ - » - — ' -»->• ~*

exp (' (f - Gu(x)) dx = exp \ e T a d fGu(x)dx ° etf,
ο ο

this reduces to the study of the mapping

^ ί ^_^

u (τ) ->- exp 1 ex a d ^G« (τ) ίίτ£ (χ0), (6.5)
ο

which corresponds to the controlled equation

x a d ^ ) , 0 < τ < / , (6.6)

with initial condition x(0) = xQ.

We denote by D the corresponding attainable set, i.e. the image of L[[0, t] under the

mapping (6.5),

exp f ex a d fGu (τ) dx \ u (τ) 6 Li [0, *] I c R".

PROPOSITION 6.2. The attainable set D has an intrinsic commutative Lie group structure,

and the fields eTAdfGu, 0 < τ < /, u £ RT, generate a space of invariant vector fields on this

group.

REMARK. We assume that the dimension of the group is k {k < n). Since any

connected fc-dimensional commutative Lie group can be obtained by factoring R* by

some (perhaps singular) lattice, it follows that the proposition reduces the controlled

equation (6.6) to a linear system in R* modulo a lattice. For example, the problem of

hitting a point for (6.6) is equivalent to the problem of hitting the nodes of an

appropriate lattice for a linear system in Rk.

PROOF OF THE PROPOSITION. From the vector fields eT&dfGu, 0 < τ < t, u E. R r,we

choose fields Yv . . . , Yk such that the vectors Y^x^, . . . , Yk(x0) form a basis of the

linear hull of the vectors {eT&dfGuE(x0), 0 < τ </, u e R r} (we emphasize that

Υχ(χ), . . . , Yk(x) need not generate the linear hull of the vectors eTaAfGuE(x) for

χ Φχ<ύ-
We define a mapping & : Rk —> R" by

S(Si, · · · , sk) = ea=° E(x0).

Since the fields Y,, i = 1, . . . , k, commute with each other, we get

= ea=1 Υ}(χ0) = Y j ( S ( s l t ..., s k ) ) , / = ! , . . . , * .
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The vectors y,(S(s)), . . . , Yk(&(s)) are linearly independent for any s = (sv . . . , sk) Ε
R*. In fact, if we assume that Σ*_, ca Ya(&(s)) = 0, we get for any function φ Ε Φ

φ (*ο)
ι

k

V (
ZJ

α = ι

α
s " ) ~Υ

α

k

/ ι s' ?α (

k

i.e. Σίοα ̂ (^ο), which means that ca = 0, α = 1, . . . , k.
Thus the vectors d&(s)/dsj are linearly independent for all s &Rk; consequently the

mapping & induces a smooth A>dimensional manifold structure on $ (R*).
Furthermore, the correspondence (sv . . ., sk) ι-» e^SaYa defines a transitive operation

of the additive group of R* on the manifold &(Rk). Indeed, since the fields Yif

i = 1, . . . , k, commute, we have

k -»

f o f a U sa, 3β, α , β = 1, . . . , Λ.

Since S (R*) has dimension k, the kernel of this operation is some discrete subgroup Η
of R*. This means that &(Rk) is isomorphic to Rk/H, and the fields Yu . . ., Yk form a
basis of the space of invariant vector fields over the group S (R*).

We show that the restrictions of the vector fields eT&dfGu, 0 < τ < t, u Ε Rr, to the set
S(RA) are linear combinations (with constant coefficients) of the fields Yv . . ., Yk\
hence it will follow that D c & (R*).

Let τ e [0, /] and u Ε Rr. By virtue of the choice of the Yj,j= 1, · . · , k, the vector
eTAa*GuE(x^) can be expressed linearly in terms of Yi(x0), · . ., Υι£χο)· We show that a
relation of the form

continues to hold if x0 is replaced by any point of & (Rk). We again use the commutativ-
ity of the Yj. For any function φ Ε Φ we have

6τ a d ' θ « φ ] (^ (3)) = ea==1

*

= e^dfGu{e^ <p)(x0

k _ Ι Σ

α=ι α=ι
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To complete the proof, it remains to verify that & (Rk) c D. From Proposition 3.3 we

have the identity

I C T adfGu(x)dx

exp
0

On the other hand, for eachy the restriction of Yj to S (Rfc) can evidently be expressed in

the form

t

id fYj\ , = [eTadfGu(x)dx.

2. 77ie Euler equation for a variationalproblem. We need certain standard notation and

results involving differential forms which we now recall (for details, see [11]).

Any Φ-multilinear skew symmetric mapping

(o:Der((D)x . . . χ D e r ( ( £ ) + Φ

is called a differential form of degree k over R".

The linear space of all such forms is denoted by Λ£, and Λ* = φ Q Λ£. We note that

Λ* is an algebra over Φ = Λ£ with respect to the operation of exterior multiplication.

An arbitrary diffeomorphism Ρ induces a mapping Ρ*: Α* -» Λ*. In fact, if ω Ε Λ£,

then

(Ρ*ω)(Χ1, . . . , Χη) = Ρω(ΑάΓ1Χ1, . . ., ΑάΡ^Χη).

To each field Υ Ε. ϋβΓ(Φ) there corresponds the operator if. A* —» Λ* of interior

multiplication of differential forms over the field Y. For any k > 0, ΐγ acts from Λ£ to
Λ£_, according to the rule

( ^ ω ) ( Χ 1 ? . . . , Χ Β ) = ω ( ? , Χ 1 , . . . , Χη).

We also define in Λ* the coboundary operator {exterior differential} d, which acts from

Λ£ to Λ £ + 1 , for each k > 0, according to the rule

, · · · , Xn+i) = S ( - 1 Γ 1 Χαω(Χχ, . . . , L· . . ., Xn)
«=i (6.7)

( - ΐΓΡω ([Χβ, XP], Xx, . . . , ka, • • • , h> • • • , Xn)

(notation of the form . . . , Xa, . . . means that the field Xa is deleted from the

sequence). The mappings P* and d commute:

(6.8)

The operator L^ = if ° d + d ° if is called Lie differentiation along the field Y.
Lie differentiation is actually differentiation in Λ*, i.e.

LY (ωι Λ ω2) = (Z-*o>i) Λ ω2 + ω! Λ (^ω 2 ).



780 A. A. AGRA£EV AND R. V. GAMKRELIDZE

The operators Ly and d commute, as follows at once from the identity d ° d = 0.

We can derive the following useful identity, true for all ω Ε Af and Υ, Ζ Ε Der(<£),

directly from the definition:

(L*>) (Ζ) = Υω (Ζ) - ω ([Υ, Ζ]). (6.9)

Suppose that the nonstationary field Xt and the corresponding flow Pt = exp /Q A^ </T

are given.

PROPOSITION 6.3. The family P* of mappings of A* satisfy the equation

at Xt

PROOF. Since the operators L% and P*~l ° dPf/dt are differentiations in Λ*, it

suffices to show that

P' = P't L®Ptio Pt
dt xt

for generators of this algebra, i.e. in the case where ω is a form of degree zero or one. If ω

is of zero degree, i.e. ω = φ ε Φ, then Ζ^φ = Χ,φ, and the above equality is obvious.

Suppose that ω Ε Af. For any Ϋ Ε Der(<I>) we have (see (6.7) and (6.8))

= Ρίω (— ad Xt Ad PJ1?) + Pt ο Χέω (Ad Ρ^Ϋ)

= A (— ω ([Xt, Ad Ρ;1?}) + Χ ί ω (Ad PJ1?))

- Ptdo) (Xt, Ad P7XF) -f Ϋο Ρ(ω (Xt)

= (P*t ο U ο dxo) (Y) + (d c Ρ] ο ί̂ ω) (?)
xt xt

= Ρ] ο (ί- °d + doU)(a (Y).
xt xt

Consequently

dt

Thus we may write

/--* i -* \* — .i
exp I Xrfih; = exp I L^dx. (6.10)

I .' / · Χχ
\ 0 0

Let μ be an /ith-degree differential form which vanishes nowhere. Then any other form

in Λ* can be obtained by multiplying μ by some uniquely determined scalar function.

The mapping div^ Der(O) -* Φ is given by Ζ,̂ μ = (div^ Υ)μ.

The connection between divM for various μ is given by the relation

φ d i v w Υ = άΐνμ (φ?) = Υφ + φ div/?, (6.11)

which holds for any φ Ε Φ and Ϋ Ε
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We denote the set of all diffeomorphisms which preserve μ by <$μ, i.e. Ρ G ty <*=> Ρ*μ

= μ. From (6.10) it follows that exp J'o XT dr G <$μ for an arbitrary nonstationary field

Xt and for all t if and only if divM Xt = 0.

Let f(x, ν), χ, υ G R", be a smooth scalar function. To each vector field Υ there

corresponds a function / ( f ) e Φ defined by the relation /(Y)(x) = f(x, Y(x))- We

denote by dJ(X) the first-degree differential form given by

d,/(X) (?) = •£-

We fix a bounded region Ωο c R" with a smooth boundary ΘΩ0, and we define the

functional J on the set of flows POt which preserve μ (POt G <ίΡμ for all t G R) in the

following way:

1 ^

lip \ ι" Μ Γ ρ j (\c0 Ρ Λ ii ffi 17^

ο Ωο

The «th-degree form under the inside integral sign in (6.12) is obtained by applying

the diffeomorphism POt to the function/(log POt) and multiplying the result by μ.

We find differential equations which are satisfied by the extremals of this functional

for two types of boundary conditions:

1) fixed diffeomorphism P0l;

2) fixed region Ω, = P0l(Si0)

(condition 1) is essentially more restrictive).

We calculate the first variation of J at the "point" P0l. We will denote the flow Po,

simply by Pr In addition, we denote the result of applying an arbitrary first-degree form

ω to some field Υ by means of angular brackets (as a scalar product) ω(7) = <ω, Υ}.

Let Xt = log Pt, άϊ\μ Xt = 0 Vi G R. Using (3.16) and (2.20), we get

= [dt\ exp Γ (Χ τ + Υτ) dxf {Xt + Yt) μ

= J {Pt) +\dt\ Pt \(dvf (Xt), Yt) -f f (exp j - aaX»dQYx \ dx f (Xt)\ μ + r,
ο Ωο Ι ο \ τ / J

where \\r\\sK = Ο(/ό dt(J'0\\ Yr\\s+l dr)2) for s = 0, 1, 2, . . . and any compact set K.
The nonstationary vector field

Zt= f exp f — adX%dQYxdx
ο τ

satisfies

— Zt — — ad XtZt -\-Yu

The first variation 8J of J at the point Pt can be expressed in the following form:

bJ (Υτ) = Γ Λ f Ρ, {/Λ/ (Χ/), ?/> -f- Ε/ ( % μ ·
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Differentiation of the boundary conditions with respect to Yt gives Z, = 0 in case 1),
and Z, is tangent to ΘΩ, in case 2).

From this point on, we assume that Xt depends absolutely continuously on /. We
transform the expression for 8J(YT). Using (6.13) and integrating by parts, we get

ο Ω ο Ο Ω ο

Ο Ω.

χ dt , - ")~(dvf(Xt),[Xt,

Applying (6.9) to the form dJ(Xt) and the fields Xt and Zt, we get

ο Ωο

ι

J J \ dt xt
ο Ωο

If we change the variables of integration and take into account the fact that Ρ*μ = μ,
we arrive at the relation

6J(YX) = ^idvfiXj), Ζχ)μ
Ω\

ο Qt

We now suppose that Pt is an extremal of J. Then 8J(Yr) = 0 for all admissible Yt.
Consequently

\ \ T t + L X dvf ^ ~df ( ^ } ' y
Q/ ' (6.14)

V/6[0, 1], VZ, so that άίνμ2 = 0.

LEMMA 1. Assume that the first-degree form ω in the bounded region Ω with smooth

boundary ΘΩ satisfies

| ( ω , 2 ) μ = 0 VZ, so r/raf άΐνμΖ = 0. (6-15)

77ie/i ω = dtp for some function φ which vanishes on ΘΩ.

PROOF. We show first of all that (6.15) does not depend on the choice of the
«th-degree form μ which vanishes nowhere. In fact, any other «th-degree form has the
form φμ, where φ ε Φ. In addition it follows from (6.11) that όΐνμ(φΖ) = 0 <=> divw Ζ =
0 for every function φ in Φ which vanishes nowhere.
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Thus it suffices to prove the lemma for the case where μ is a volume element in R",

μ = /\n

xdx'. In what follows, we will denote the Laplace operator by Δ,
n a 3

Δ = (ϋνμ α grad = y ;

for any vector fields X and Υ the function (X, Y) in Φ is given by

(X'Y)(x) = (X(x),Y(x))-= 3 Xa(x)Ya(x), |X| 2 = (X,X);
<z=i

ω τ is the vector field dual to ω defined by

(ωΓ, Χ) = (ω, X) VXGDer(O).

The function φ whose existence is asserted in the lemma is uniquely determined by the

conditions

Δφ = άϊνμω
Γ in Ω,

φ = 0 on dQ.

The validity of (6.15) for dq> follows easily from the Gauss-Ostrogradskii formula. In

fact, if άίνμ Ζ = 0, then <ί/φ, Ζ> = Ζφ = div^qpZ), and consequently

Γ(ίίφ, Ζ)μ = j* (1ΐνμ(φΖ)μ = ("φΖίίη = 0.
Ω Ω 3Ω

On the other hand, div^to T — grad <p) = 0. Thus

0 = ^(ω — d y , ωτ — grad φ ) μ = \ \ωτ •—grad φ |2 μ.

Ω Ώ

Therefore ω = dtp.

Lemma 1 and (6.14) guarantee the existence, for any / €Ξ [0, 1], of a function φ, such

that

^- dvf (Xt) + L^dvf (Xt) = d(f (Xt) + Φ /) in Qt',
dt Xt

(6.16)

φζ = 0 on dQt, div μ X < = 0.

These are equations for extremals of / in the case of boundary condition 1). In case 2),

both (6.14) and the fact that

0 VZ6Der((D) (6.17)
Ω ,

follow from 8J = 0, so that div̂ ^ Ζ = 0, and Ζ is tangent to ΘΩ,.

LEMMA 2. Assume that the first-degree form ω in the bounded region Ω with smooth

boundary ΘΩ satisfies

[<ω,Ζ)μ = 0 VZ,
Ω

where div Ζ = 0 and Ζ is tangent to 9Ω. Then ω = dq> for some function φ.
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The proof is similar to that of Lemma 1. In fact, it suffices to consider the case where
μ is a volume element in R". In this case φ is determined by the conditions

Δφ = divco7 in Q,

— --= (ω, η} on 3Ω
dn

(here η is the exterior unit normal to ΘΩ, and the remaining notation is as in the proof of
Lemma 1).

From (6.17) and Lemma 2 it follows that dJ{Xx) = dSx in Ω, for some function Sx.
We put ω, = dJ(Xt). Then ωχ = dSx and (see (6.16))

- % ) , + L7u>t=d(f {Xt) + φ<) in Ω,. (6.18)
a/ xt

The family of forms ω, is a unique solution of (6.18), since the corresponding
homogeneous equation has only one solution (see (6.10) and Proposition 1.1). Making
use of the Cauchy formula for the solution of linear differential equations (its validity in
this situation can be verified by direct differentiation) and the commutativity of Lie
differentiation and exterior differentiation, we get

ω / = exp f — L-> dxdSt -h Γ I exp Γ — L·^ dQ \d {f (Χτ) + yAdx
J χ τ .) \ .- XQ J

= d / exp f - X^TS, + f (exp J -ΧΘ<*Θ(/(Χτ) + <Ρτ))άτ\.

Thus ω, = dSt for some function St and for all t in [0, 1]. After removal of the exterior
differential, (6.18) takes the form

at

Since φ, = 0 on 3Ω,, the complete system of equations for the extremals of / in the
case of the boundary conditions 2) is

— St+ XtSt = / {Xt) on d&,
dt

dSt = dvf {Xt) and άΐνμ Xt = 0 in Ω*.

REMARK. In the case where η = 3, μ — /\\dx' and/ has the form/(x, v) = ̂ p\v\2 —
U{x), the variational problem for J with boundary conditions of type 1) embodies the
principle of least action for the motion of an ideal fluid in a force field with potential
U{x), and (6.16) is the corresponding Euler equation (see [10]). The function <p, plays the
role of the pressure, and the boundary is free.
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