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THE EXPONENTIAL REPRESENTATION OF FLOWS

AND THE CHRONOLOGICAL CALCULUS
UDC 517.938 + 517.317

A. A. AGRACEV AND R. V. GAMKRELIDZE

ABSTRACT. In this article is developed a calculus which reflects the most general group-
theoretic properties of flows and which is based on an exponential representation of flows
defined by nonstationary differential equations. Problems of optimization and control
have had the greatest influence on the development of this calculus, and the results are
intended mainly to treat these problems.

Bibliography: 11 titles.

This paper was written especially in honor of the seventieth birthday of Lev
Semenovi¢ Pontrjagin.

We develop here a calculus which is based on the exponential representation of flows
defined by nonstationary ordinary differential equations and which reflects the most
general group-theoretic properties of flows. The problems of the theory of optimization
and control, and especially the numerous efforts to extend Pontrjagin’s maximum
principle to singular control problems (see [1]-[7]), have all had a decisive influence on
our development of this calculus. In accordance with this basic concern, we treat those
aspects of the calculus which have immediate applications to these theories.

As is well known, the main difficulty in expressing a flow by specifying its non-
stationary vector field arises from the fact that the fields at different moments of time do
not commute. This is a difficulty we must overcome in the derivations of all of the basic
results in this paper, most of which have well-known analogs in the case of stationary
flows. For similar “nonstationary” situations, physicists use the term “chronological,”
and we have adopted this term to describe the calculus developed here. It is explained
briefly in [8].

We do not give a general overview of the content of the paper since it is sufficiently
clear from the six section headings. We give here only the principal notation which will
be used throughout.

We denote by R” n-dimensional real space, whose points are n-dimensional columns,
always denoted by Latin letters; row vectors are always denoted by Greek letters. The
scalar product of a row vector by a column vector of the same dimension will be written
in the form of a matrix multiplication:
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x! n
E‘xz(glr"" Ej‘l)( :‘Igaxa'

n =1
\X

We denote the Jacobian matrix of an m-dimensional vector-valued function x — X(x)
with respect to the coordinate vector x € R” by
Xl
gradX = (X%, a=1,....,m B=1, ..., n, 89— "B Cx=|:
0x

)'(n
In particular, for a scalar function ¢ we have

grad(P = (alcpv st a’lq))

The identity mapping of R” onto itself will be denoted by E. By the modulus of a vector
x € R” we understand the quantity |x| = max_,|x“|, and by the modulus of an n-dimen-
sional row £, the quantity |¢| = 27|€,|. Similarly, we define the modulus of an n X m

matrix 4 = (ag), a=1,...,n, B=1,...,m, as |[4| = ZF_, maxa|a§|. Finally, the
term “smoothness” will mean infinite differentiability.
§1. Preparatory material

We collect in this section the formulas and estimates which will be used in the
subsequent development. In most cases they are well known, but we present them in
some detail for the benefit of possible readers from the engineering specialties.

1. Differentiation and formal exponents in algebras. We consider an arbitrary real
algebra @, i.e. a real vector space in which a multiplication of elements satisfying a
unique bilinearity condition is defined. Thus @ is not necessarily associative and does
not necessarily contain a unit; it can be a Lie algebra, for example, in which multiplica-
tion is anticommutative, ab = —ba, and the Jacobi identity

a(bc) +b6(ca) +-c(ab)=0 Va,b,cec@

is satisfied.

As is customary, we denote multiplication in an arbitrary Lie algebra by square
brackets, ab = [a, b), and we call it Lie brackets or commutation.

We denote the algebra of all linear mappings of the vector space & into itself by £(&®),
the product of the elements [,, [, € £(&), i.e., the composition of the linear mappings I,
and [, by [; ° I,,the identity element (identity mapping) by Id, and powers (iterations) of
[byl”", m > 0.

A linear mapping » € £(®) is called a differentiation in @ if it satisfies the formal rule
for the differentiation of a product

b(ab) = (ba)b + a (bb).

We denote the set of all differentiations in an algebra @ by Der(®); it is a subspace, but
not a subalgebra, of £(&). However, we convert Der(&) into a Lie algebra by defining
the product [d,, d,] of two elements b,, b, € Der(®€) to be their commutator d, b, —
by 0 By

(b4, 52] =Dy oby —Dyody.
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The fact that the Lie brackets [d,, b,] of two differentiations is again a differentiation in
@, and also the Jacobi identity for the multiplication defined in this way can be verified
by direct calculation.

Let A be an arbitrary real Lie algebra. There exists a natural linear mapping ad:
A - £(A) given by

(addv)w = [v, w] Vo, w€A.
We use the generally accepted notation
ad®v =1d, ad™'v=advoad™ =ad™voadv

for the powers of ad v € £(A). The mapping ad has the following basic properties: it
maps A into Der(A),

ad v [wy, w,] = [ad vw;, w,] + [wy, ad vw,),

where this mapping is a homomorphism of the Lie algebra A into the Lie algebra
Der(A), and

(ad [vy, vy]) w = [ad vy, ad v,] w.

Both of these identities can be verified by direct calculation using the Jacobi identity.
In an arbitrary algebra @ we may consider a formal power series over & in the variable
t

a = 2 %y, an€@.
=0

We call the element a,, the initial value of the series a,. The set of all formal power series
over @, which we denote by @[[¢]], can be made into a real algebra in a natural way if
we add series and multiply a series by a number in the usual way and if we define the
product of two series to be the “Cauchy product,”

a,bt = Z tm Z aabﬂ.

m=0 a+B=m

The algebra @ is identified in an obvious canonical way with a subalgebra of @[[7]].
We define the linear mapping d/ dt of the algebra @[[¢]] into itself, “differentiation with
respect fo t,”” by means of the usual “termwise differentiation,”

d d [ee] e o]

g = %= % (aay).

A= D ag = (aaq)
a=0 a=1

It is easy to verify by direct calculation that d/dt € Der(&[{¢]]) and that

Lt - (o)t (o).

We call the formal power series
f—tduterter L =veLee @)
21 e ol

the formal exponential of the element I € £(&).
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1

The formal exponential e clearly commutes with I, le® = e[, and satisfies the

“differential equation”

Ly
dt

It is easy to see that the equation
d
— a; = la , Ié B @ )
=l (@)

in a, € @[[#]] with arbitrary initial value @, € @ has a unique solution g, given by
a, = e"a,. This fact will be used below in the following form.
The equation

d !
—&?{t =1l T€L(@),

in [, € £(@)[[]] with arbitrary initial value [, for [ has the unique solution [, = ¢“l;. The
validity of this statement becomes evident if we note that [ can be considered as a linear
mapping of the vector space £(&) into itself:

{'y—-»[o{’ VIIGB(@)

For arbitrary elements [,, [, € £(&) which commute, i.e. which satisfy
Lolp—Tlyoly =03, 1] =0,
we have that

Lty — ptliptls —— ptlaptly (11)

The formal exponential gives a bijective mapping e: g, — e"a, of @[[¢]] onto itself,
because e’ = Id and therefore e’ = "0 = Id VI € £(&).

If b is a differentiation in @, then the formal exponential of d has the following
remarkable property.

For each differentiation b € Der(&€) and for arbitrary ¢, b € @ we have

¢f® (ab) = (ea) (e'™D). (1.2
In fact, since d/dt and b are differentiations in @[[¢]], we have the identity
£ ((¢"a) (¢7)) = (be"a) (¢"b) + (¢®a) (be"b) = b (e"a) (¢")),

from which (1.2) follows if we take into consideration that the initial value of the formal
power series (e”a)(e*b) is ab.

Multiplying the power series on the right-hand side of (1.2) and equating the
coefficients of equal powers of ¢ on both sides of the equation, we get the “Leibniz
formula” for the nth power of a differentiation of a product, for a differentiation
d € Der(®) in an arbitrary algebra @,

o (ah) = D) 2 (6%a) (a°0). (13)
atp=m O P!
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In concluding this subsection, we prove the “polarization identity” which we use in
making estimates.

Let ,, ..., 1, be pairwise commuting elements of £(®), i.e. [V, L) =0 for all j, k=
1,...,m. Then

L
m!

(__l)m—a Z (Cp, + - .. tka)m. (1.9

1 1=k <. <kg <M

[0 olpy=

fpda

Proor. Using the Viéte formulas for expressing the coefficients of a polynomial as
symmetric functions of its roots, and making use of (1.1), we can represent the formal
power series

f= (et —Id) .- ("M —Td) =10 ol + ...

in the form
- m-o (14 tp
= (—1d)" + 3 (—1) 3 b et
o=1 ISR < <kgsm
m
e SRS RGeS
o=1 1<E < <kgKm

All of the coefficients of ¢ in the series on the right-hand side are equal to zero for
J € m — 1, and the coefficient of 1™ can be calculated directly to be

m
— RS (e )

Qa1 1<k < < ST
which proves (1.4).

2. The algebras ® and £(®). We denote the algebra of all smooth real functions on R”
by @, and the Cartesian product of n copies of the vector space ® = ®! by &". We
identify canonically each linear mapping [ of ® into itself with a linear mapping of @"
into itself in a canonical way by

Xt Xt Xt
X=1: |=|:}| X=[: |eD"
X" X" X"

An arbitrary differentiation d € Der(®) in & is called a vector field, or simply a field
over R". As is well known, every vector field over R” is a first-order differential operator,
i.e, there exists a function
Xl
X=[: Jed"
Xn
such that
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Therefore in what follows we will denote vector fields over R" by X, Y, etc., putting an
arrow over the corresponding function. For constant fields, i.e. fields which correspond to
constant functions, we use the notation &, h € R, A field X and its corresponding
function X are obviously related by XE = X.

As usual, we call the m-linear mapping R” X - - - XR" — R given by
- -
(hyy - ooy Bm)>hyo -+ o hpm® ()

the mth-order derivative of ¢ € ® at the point x € R”. The symmetry of the mapping
follows from the fact that constant fields commute, and the m-linearity is obvious. We
get the usual expression for the first-order derivative,

b ho (x) = grad @ (¥) - h = }n} 0up (X) K

a=1

and the formal Taylor series of a function ¢ € ® at a point x can be written by making
use of the formal exponential of A:

-

E} (=t hmq’ (x) = (5‘ ";)w(x) —eth (x).

=0 m=0
In this case, (1.2) and (1.3) take the form

o (000 = (@) 0n), B (@) = 3 - Koo, (15)
a+ﬂ—m

For an arbitrary integer s > 0 and arbitrary M C R", we consider the seminorm
ll@ll 5.5, which can be either finite or infinite, defined in @ by

s

1 2a
= su — sup | A7 (x)).
19lu= sup E il )l

If M = R", we will omit the index M, i.e. ||¢|,r- = ||@ll,- For matrix-valued functions,
we let

1Al 5 2 max a5 | A =(af), af €D;
B=1

in particular,

X1
| XY 0 = max] X% o X=[ : )eo",
a Xn
“gns,M = Z “gﬁﬂs,mv E=(&, ..., &)
=1
The following easily verified inequalities hold:
“‘P\L,M S 2 VE>0,
ll®: ‘L.M i 173 VIS ([t YA (1.6)
19192l a1 <1 Puls pl @2l 00
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and their analogs for matrix-valued functions, of which we note

FAX, e <NAL p 1X ] pe- (1.7)
We prove the inequality
wp e o R (0| <25 [9],, VoEO, (19)

ZEM, thyl=.,. = hgl=1

which is important in making subsequent estimates. We use the polarization identity
(1.4) and write

sup |Fyo ok K== S s [t i) o)

€M, |hjl=1 a=1 ki< <k TEM: Vi pi=1
[ s! s
< — _—  su o (x
=g gl al (s —a)! xEM,|h1<U.l @l )l
——————  su o (x
s' 2 a!l (s—a)' XEM, |M—1| @l )l
s
<Nolas 3 zsr =@ lol,,
=1
We introduce in @ the topology defined by the family of seminorms || - ||, x, where

s » 0 and K is an arbitrary compact set in R". This topology, called the topology of
compact convergence with respect to all derivatives, makes ® a Fréchet space (a complete,
metrizable, locally convex space), and we will always regard ® as being furnished with
this topology in what follows, unless otherwise specified.

We denote the aigebra of continuous linear mappings of @ into itself by £(®). We
show that £(®) contains all vector fields. It is obviously sufficient to establish the
inequality

1K), 1< 31025 + 21X, 1@ sy o

and its immediate consequences,

[XA], 5 <3025 + 27X, | A]

s+1,M°
1Yl <3025 + 27X T, 1Y [y (1.9)

|grad @ ls << 3n(2s + 2" e lysa,pe-

M TS

Making use of (1.8), we can write

sy - -
1196 [, 1 < E o EM. lh,l— [ hyo - ohon® (x)

<3 aL (20 = 2% g < 3(25 +2° @ 00
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whence

n

S (9a9) X

®=1

< 3 10ul, X%

s,M Q=1

<3n (25 + 2" X Y pg ) losnee

1 X0, =

Above we put into correspondence with each function X € ®” the field of X. Now we
put into correspondence with each function P € ®” another operator Pin £(®), which
we call a smooth mapping; to distinguish it from the field generated by the same function
P, we will put a caret over the letter instead of an arrow. We define the action of Pon
¢ € ® by

Pp=qoP,
where the circle on the right-hand side denotes composition of functions. Thus,
13(7@1 + ) = Mg% + }‘«ﬁ%a (i)l ‘f‘ﬁz)@ ‘—“ﬁﬂ’ +132‘P,
PE=E.P=P.

To prove that P is continuous, we have the estimate

ﬂ pq) HS,M < (1 4_ 9n? (25)25)8 (l + “PHS,M)S nq) “s,P(M)’

and its consequences,

|BAJ, ,, <(1 4+ 972 (25)F (1 4+ Pl ) VAl pian,
(1.10)
I PX g py < (1902 (25)7) (1 1P o 1K pagy

The proof is by induction on s. We have

1Pol, = 510 1@ P ()] =191, pany

' ' 1 - -
loo Pl < hoo Pl -4 ﬁuﬁ\=1l W o hp o P(x)|

<N9oP, -+ lgrade) o Pl NP,

Furthermore, putting C, = (1 + 97%*(2s)*)° and using the induction assumption and the
second of the estimates (1.9), we can write

“(gl'ad q)) °© Pus—J,M = 2 “(aaq)) ° Pl}S_I’M

n

LCox (1 HPlyp)™ 3 10a@ ]y piany

a=1

< 3 (28)Cora (1 1Py )" 1l piays
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whence

UCPOPHS_M<H<9°P|L g - 302 Coa (1N PL_ ) APy pe @ pian
L Coy (1902 (25)° (1 =P o) 1@l piagy << Cs (1 1PY ) L@l oy

We prove one more estimate which we will need:

[Py — P) X |, << 3n(25 + 2" (1 - 9n2(25)) (1 +| Py, o,
F Pl p) 1Py —Pol @ lsos, 300 (1.11)

M={y|y=P,(x) +r(P(x)—P,(x)), X6 M, 0< r <1}
We have
(P, —P)o=¢oP,—@oP,=¢o(Py -+ (P, —Py))—¢oP,

— (Lot (P — Py dr = | (@od@)o (P 17 (PP - (Py— P,

«
0 ¢

and, on the basis of (1.10) and (1.9),
Ngrad @) o (P, + 1 (Py— Po); u
< (1907 (29%) (1 ] Py +1 Pl ) | grad ol
< 3n(2s + 2 (1 9n2(29)%) (1 =[Py + 1P2lg ) 19l 700

whence the desired estimate follows.

In what follows, all of the smooth mappings P will, as a rule, be diffeomorphisms of
R”. We will also call the corresponding operators Pe £(®") diffeomorphisms.

It is easy to see that if the operator [ € £(®) satisfies

lp=polE Vee®
and is invertible in £(®), then [E is a diffeomorphism of R". Indeed, for all ¢ € @,
@=@o(l61E)=q@o(ITEIE) = (polT'E)oIE = [ (o ['E),

and consequently [”'p = ¢ o [7'E. Therefore the smooth mappings P = [E and Q =
[7'E are inverses of each other since

PoQ=1Ec(TE=1lE=E, QoP=1'EclE=1{."'E=E.
Conversely, if P and Q are smooth diffeomorphisms of R” which are inverses of each
other, then

P 1=Q
We also note the obvious fact that if P, and P, are two smooth mappings of R” into
itself, and if Q = P, ° P, is their composition, then
d=Pish,
If Pisa diffeomorphism, we can verlfy by direct calculation that for any field

X € Der(d)) the composition PoXoP'is also a field. We consider the function
X>PoXoP e Der(®) as a linear mapping of Der(®) into itself defined by the
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diffeomorphism P, and we denote it by Ad P:
(AdP)X & poXoPigDer (@) VX. (1.12)

3. Families of functions and operators. In what follows, we will constantly be concerned
with families ¢, ¢ € R, of elements of ®, to which the basic constructions of analysis
carry over in a natural way if we use the topology in ®. We note here only the most
essential ones.

It is not necessary to give special definitions of continuity and differentiability with
respect to ¢ of a family ¢,, since @ is a topological vector space. We will say that a family
¢, t € R, is measurable if Vx € R” the scalar function ¢ > ¢,(x) is measurable, and a
measurable family is locally integrable or uniformly integrable, respectively, if, for any
given #,, t,, s > 0 and for any compact set K C R”,

t,
(el v < oo,
t

or

t
Sllqntl!s.,(dt»() as |t —t,|—0,
ty

respectively. (The measurability of |{g,||, x follows easily from the measurability of ¢,.)
We call the function

ty
X — j ¢ (x)dt, x¢R",

t

the integral of the locally integrable family ¢,, + € R, between the limits ¢; and ¢,. We
prove by induction on s that it belongs to @ and that, for arbitrary constant fields
hy ..., h,

h]°"'°hsj.(Pth: hlo...o-};sq’)rd’lf.

Let K be a compact neighborhood of an arbitrarily given point x, € R". From (1.8) we
have that

[hyo - ohspe () < (29)° @il VXEK,
where the function on the right is integrable over [¢,, t,] by hypothesis. Applying the

induction assumption and the theorem concerning differentiation under the integral sign
at x,, we get
- - - t.’ - - b, -
by (hgo- - -ohsScptdr) =h15‘hgo o oA dT = Sh,o - o hypedr.
i iy £y
The statement just proved implies directly that
L
" S @ dt
ty

from which it follows that [;? ¢, dr depends continuously on (z,, £,).

ty
< S n Pz "s,l( dt’
s, K 4
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We call the family ¢,, ¢ € R, absolutely continuous if there exists a locally integrable
family y, such that ¢, = ¢, + [; ¥, dr. Using the fact that there exists a countable set
which is everywhere dense in ®, we can prove, just as for scalar functions, that for
almost all ¢

t

d d

_d?(pt = Tt;s P dT = Py

We now pass to a consideration of families of operators [,, ¢ € R, in £(®), where all of
the concepts of analysis defined above for families ¢, carry over automatically to families
of operators if the corresponding concept is defined for [, in the “weak” sense. For the
sake of convenience in the formulation, we introduce the vector topology of simple
(pointwise) convergence in £(®): a sequence of operators [, m = 1,2, ..., converges
to zero if and only if [,,p >0asm— o forallgp € &.

We define measurability, continuity, differentiability, local integrability, uniform integra-
bility, and absolute continuity of the family I,, ¢ € R, by requiring that the family I, have
the corresponding property for all ¢ € ®.

We define the derivative of a family I, which is differentiable at #, to be the linear
operator

11’0 — lim It.+6fm - It.

Oty —0 8, '

the convergence here, as in all that follows, being in the topology of simple convergence
in £(®). By the Banach-Steinhaus theorem, the limit of a sequence of continuous linear
operators in a Fréchet space is a continuous operator; consequently I; € L£(D).
The integral of a locally summable family !, from ¢, to ¢, is defined to be the linear
operator which acts thus:
1y ts
j' dv g = S [ dr.
A 4
We prove that this operator is continuous.
We denote by I, ¢, < ¢ < t,, the “truncation” of a family [,, defined as follows for
eachm = 1,2.... We take a sequence of numbers C,, — oo and an increasing sequence
of compact sets K,, whose union is all of R”. We fix s and K and put

™ = Ly, if |G HS,K <Cnle “s+m,Km Voea,

and [(™ = 0 otherwise. We denote by &,, the set of all points of [¢,, £,] at which (™ = [;
obviously mes &, — t, — t; as m — oo. Finally, we denote by @ . the vector space ®
furnished with the topology generated by the single seminorm || - ||, x, and by £(®, @, )
the vector space of continuous linear mappings from ® into ®, ,. For each fixed m, the
family I, ¢, < ¢ < t,, is bounded in the topology of simple convergence, i.e., for any
¢, s, and K we can find a constant C(g, s, K) such that

l Igm)q) ”s,K< Clp,s, K) Vielt, ).
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Therefore by the Banach-Steinhaus theorem it is equicontinuous, and consequently
J2 1 dr € £(®, @, 4), whence (again by the Banach-Steinhaus theorem)

11m SI‘”‘) dv = hm j ldt = SlrdTE L(D, ©;,x).

Since s and K are arbitrary here, [ [ dr € £(®).

We call the family [, t € R, absoluteb: continuous if there exists a locally integrable
family {, such that I, = Ly * Ji ¢{_dr. From the analogous statement for the family ¢, it
follows at once that d1,/ dt = I for almost all .

It is easy to see that if a family m, is locally integrable and the family I, is continuous,
then [, o m, is locally integrable.

In conclusion, we prove that if [, and m, are continuous families of operators in £(®)
which are differentiable at ¢, then (I, ° m, ) depends continuously on (¢, t,) € R?, the
family [, o m, is differentiable at 5, and we have the Leibniz formula for the derivative:

d d d
——-dt (Ig o mf);, == (dt ft) t.o my, + to © (dt m;)to

To prove the continuity, we form the difference

(Te,v0t, @ Wheyror, — Lo, 0 M) @ = Ty var, o (Weyuar, — M) @ + (lru0e, — 1) o M@,

As ot, 8t, >0, the second term (I, .5 — 1) ° m,p—0 by definition, and
(m,, — 8, — m, )¢ lies in any preassigned neighborhood of zero in ®. Furthermore the
family [, .5, |8t| < const, is continuous and therefore bounded in the topology of
simple convergence; consequently it is equicontinuous by the Banach-Steinhaus theorem,
and therefore

Ut 01, 8 (Weyp0r, — M) 9 — 0 as 8y, 8/, -0,
The statement concerning differentiability follows from identical arguments if we write

1
Ot

From what we have proved it follows easily that the composition I, o m, of two
absolutely continuous families is absolutely continuous, and also that the family I, ¢, is
absolutely continuous if ¢, is absolutely continuous, and that the formula for the
differentiation of a product holds for it.

4. Nonstationary' fields and flows. The main objects of our study are two classes of
families of operators in £(®). They are nonstationary fields and flows.

We will call an arbitrary locally integrable family )?,, t € R, of vector fields over R” a
nonstationary field over R”, or simply a field. Each additional property of a field will be
stated explicitly.

We will call an arbitrary absolutely continuous family of diffeomorphisms ﬁ, which
are defined for values of ¢ in a given interval J a flow over R". The interval J can be
replaced by the entire axis R in this definition (see Proposition 1.2); we prefer, however,
for purely technical reasons to leave it unspecified.

We also call the family of diffeomorphisms P, = P,E of R” corresponding to the flow
ﬁ, a flow. It is easy to see that P,, together with all of its derivatives with respect to x,
is continuous with respect to the collection of variables (¢, x) and is absolutely continu-
ous with respect to ¢ for fixed x € R”, and that it satisfies

— (lesor 0 Mpyor — loy) = —5— (Lot — Yz) o My }~ — It+6t o (500 — MWy).
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1 4
—P
57 l dv "
ty
Conversely, every family of smooth diffeomorphisms P, of R” with these properties

generates a flow P, in the above sense.
We consider the linear differential equation

d >
— ot o 1.13
dt 8‘1 %f f(t ( )

dt < oo,
s, K

with the initial conditions
Fte = Bo (1.14)

for the unknown family §,, ¢ € J,, of operators in £(®). Here )‘(: is a given non-
stationary field, and J, is an interval containing #,. Every absolutely continuous family
&, t € J,, of operators in £(®) which satisfies (1.13) for almost all 1 € J,, and which
satisfies (1.14) will be called a solution of (1.13) under the conditions (1.14). The absolute
continuity of the unknown solution guarantees the equivalence of (1.13)—(1.14) and the
integral equation

t >
Bt =Fo + { FroXedr. (1.15)

te

We will call the linear differential equation

4@ =—Xi08, (1.16)
dt
the adjoint of (1.13); the integral equation

t—)
@¢=@0~—5‘Xw@,dr (1.17)
to

corresponds to it. We will call (1.13), (1.15), (1.16), and (1.17) linear operator equations.
We will call an absolutely continuous family [, invertible if for all ¢ the operator
I, € £(®) has an inverse [[! € £(®) and [;! is also absolutely continuous. In this case
we will call [, and 1! mutual inverses. Every flow P, is invertible, since it is possible to
prove by the implicit function theorem that P,”' depends absolutely continuously on ¢.

PROPOSITION 1.1. 1) If the operator %, in (1.15) is a left inverse of &, in (1.17), then
every solution 5, of (1.15) is a left inverse of every solution &, of (1.17),i.e. &, > &, = 1d
Jorallt € J,.

2) If &, is a left inverse of &, and either one of the equations (1.15) or (1.17) has an
invertible solution, then each equation has a unique solution, and the solutions are mutually
inverse flows. Consequently if a solution of one of the equations is a flow, then the inverse
Slow is a solution of the other, and the solutions are unique.

PRrOOF. Part 1) can be verified by direct differentiation:
d d d iy by4
—-— e} @ = | — o o -~ = 3§s 0 e} — %4 0 == :
” (Feo Gy) (dt %t) & + F¢ (dt @t) FtoXeo @t — Fro Xy« G =0;

consequently by virtue of the absolute continuity of &, - &, we have that &, - &, =
o © & = Id for all t € R.
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For the proof of part 2), we note first of all that a similar check shows that if [,
t € J,, is an invertible solution of (1.15) or (1.17), then ;' is a solution of (1.17) or
(1.15), respectively, and the equations have unique solutions.

Finally, from the invertibility and uniqueness it follows that $, and @, are flows. In
fact, the family of operators [, defined by

lp=9s&E Veed
satisfy (1.16):

(’ddT r,) ¢ = Ti' (@ ° ) = ((grad ) o B,E) - (— X; 0 &E)

= — Xe(@oBE) = — X0 lip;

therefore |, = &, and consequently ®, and &, are flows, since 8,90 = ¢ - &,E Vg € D,
and &' = F,.

If the flow 13, satisfies the operator equation (1.13), then the corresponding flow P, in
R” is determined by the ordinary differential equation
%=KWL
since

dpP, d = " ~
’I:'d_tPtE= PtOXtE=tht=Xt°Pt-

If @, is an arbitrary solution of (1.16) with initial condition &, = Id, then for all ¢ in
® the function (¢, x) = &,p(x) = w(x) satisfies the first-order linear homogeneous
partial differential equation

n
L S 90 yo ~ 2% R0 =0, ()= (x).

ot a0 ot

Conversely, every absolutely continuous family of functions w, which satisfies this
equation is representable in the form

D-1
W = Pt (75

where ﬁ, is a flow satisfying (1.13) and the initial condition ﬁ,o = Id, since
d ~ d ~ ~ d ~ - a >
— P P, = = P,o X — P, X =0.
” (Pepe) (_dt t) ¢ + Py o ¥ o Xty ¢ & X s

In the next section we show that if the field f, in (1.15) and (1.17) is locally integrable,
then the equations have invertible solutions which, consequently, are unique, mutually
inverse flows; we also give representations of the solutions in the form of “chronological
exponentials.” We note here only that every flow P, can be represented in the form of a
solution to both (1.13) and its adjoint (1.16), since

d 3 T H-1 d 3 d » S =
—P=P0P0~w):~«ﬂ~pkp)o
dt ¢ t ( t 4t t dt t t . P )
and it can be verified by direct calculation that, for any fixed ¢, the quantities
51 d o3 d 5\ #-
Pite 2 (— p > o Pyt
£ Py, it t

belong to Der(®).
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PROPOSITION 1.2. Assume that the family of diffeomorphisms (ﬁ,m,) is defined for all t,
and t such that |t — to| < p, (where p, is an arbitrary function of 1), that it depends
absolutely continuously on t, and t, and that it satisfies the differential equation

d ~ -~ —
7 Pyt = P10 Xy,
where X’, is an arbitrary (locally integrable) field, and the initial condition

Pi=1d VteR.

Then it is possible to define ﬁ,o, as a solution of the given equation for arbitrary values of t,
and t in R.

PROOF. Suppose that it is possible to fix a point 7, between ’o and 1, ¢, <t <t,
satisfying |¢; — #o| < p, and |t — ¢ I < p,,- The composition Q, = ° P, , satisfies

to,t,
— Qt.,t = Qt.,,t ° Xt

and the initial condition Q, 5 = P, ;, and therefore by Proposition 1 1 does not depend
on the choice of ¢,. Slrmlarly, the composition P, 5 ° P, LR P, , does not depend
on the choice of ¢, . . ., ,,. Consequently if, for arbitrary given #, and ¢ in R, we choose
t - -5 L SO that It - tol <piolta — 1)) <ppp - -5 |t — 1,] <p,,andif we putAQA,O,, =
PP, - P , we get a well-defined family of diffeomorphisms Q, ,, ¢,
t € R, which depends absolutely continuously on f, and ¢, which satisfies the given
differential equatlon and the initial condition Q, ,=1Id for all ¢+ in R, and which
coincides with P, for |t — 2| < p,.
In what follows we will represent flows in the form of families of diffeomorphisms P,

which depend absolutely contmuously on the parameters ¢, and ¢, and which reduce to

the identity mapping for ¢, = ¢, P,, Id. Similarly, we will solve the equations

t
Fron = 1d + j Fto1 © Xo dT, (1.18)
[N . t,
& =1d — j Xeo®y di=1d +S Yo @, dt. (1.19)
1o to

In the notation we have adopted,
ﬁto,t, ° ptl,tz °©...0 Iszm,t = ﬁ’to,t- (1.20)

5. The algebra of formal chronological series. Typical examples of chronological series
are so-called Volterra series, which arise if we solve (1.18) and (1.19) formally by means
of successive substitutions. As “formal solutions” of (1.18) and (1.19) we get the formal
series

¢ . t Ty N o
Fee =1d ¢ {duiXe, + gdrl [ drXe o Xey + .
ty

fo to

oo Tm—-1

Id Zjdrlgdr2... fdr,,,)?,mo...oxt,,

m=1t, to to

II

o Tm-1 . .
Gt =1d +- ﬂdrlﬂdrz R LS I O

m=1 fo tn tl’l
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The general term of the f1rst series is an 1terated integral in which the variables of
integration in the expression X W ® Cct e X increase from left to right, 7, < 7,, < 7,,_
--- <7 <t We call this series a rtght formal Volterra chronological series and
denote it by

Tm-1 . -
Vot (Xo) =1d + 2 jdrljdrz f dtm Xep 0 ... 0 Xu,s (1.21)

m=11, to

where the arrow over the %Y indicates the direction of increase of the variables in the
expression X R X Similarly, we call

Vs Py =1d+ 3 Sdrl 5 dr, ... tig'—ldrm-};no eV.,  (122)

m=1t, to ty

a left formal Volterra chronological series.
We now construct the ring of general formal chronological series.
In an m-dimensional space with points 7™ = (7, ..., 7,) we denote the simplex

(" = (7, ..., W< ... K1 L H}

by A,o_,(f(’")) = A("") = A(7y, . . ., 7,). If 7 is an arbitrary permutation of 1, ..., m,
then we will denote the simplex

A(mr™) = A(Twy, -5 Tagm)
by
(T s T | e << Ty < -0 L Ty < )

The collection of all simplexes A(7w7"™) corresponding to all possible permutations =
gives the triangulation of a cube

M—{("cl, o Tl LT K8 L, K T L
as is easy to see. Let S(J, k), j + kK = m, be the set of all permutations of 1,...,m

which preserve the order of the first j numbers and, separately, of the last k numbers;
S(Jj, k) obviously consists of m!/jlk! elements. It can be verified directly that

A (1) X A (7t0) — A (- lgm).
(TV) X A (z(®) neLsJ(,-,k) (7et™) (1.23)
Let (™) = &(ry, . . ., 7,,) be an integrable function on the cube B;”, with values in

£(®). Here, as in subsection 3, we understand integrability in the “weak” sense. The
obvious equality between the iterated integral and the m-fold integral over the simplex
A(7™™) holds:

t T Tm=-1
5’ dv, j d, ... f dt,Q (tim) = j £ (tim) drim, (1.24)
io to to A(zim))
and a change of variables gives
‘ (™) diim = j‘ L (rerim) dutm) = S LTy - -+ Taem)drm,  (1.25)

A(n-rrlm)) A(m) Arim))
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If §(rY) and ®(r®) are two integrable functions, then by (1.23) and (1.24) we can
write

f F (v) dtd o g ® () drlt = j F (1)) o G (TW0) drid ® dr)

A(t(!)) A(-[(k)) A(I(i))XA(t(k))

= 2 g Sty .., 1)eB(Tj1, ..., Tm)d™

TES(R) p(r-11(m))

= 2 { S (Tays - -5 i) © G (Tagivny, - -y Trem) AT,

TES(.R) Az lm))

and taking (1.24) into account, we get

t T1 TI'TI t T Th-1
Sdr,‘dtz... \ dv;$y (4, ...,rj)ojdrl de, ... " du@ (14, ..., )
i"" .tu ;o ty t'., tt; (1 26)
t T Tm-1
= 2 Sdtl S dry .. § At (Tnayy - - - Tagi) © G (Tagjsnyy - - s Toum) -
TES(j, k) T fo to
A formal series of the form
! Tm-1

SUX) =B (X) + ) [dv, fdvy [dry .. | duaBn (R Xy o, Ky, (12D
Ja

m=1t, ° to e

where B,,($o - - - » §,_,l) is a polynomial in the “noncommutative variables” {,, ..., ,
m=1,2,...,and X,,t € R, is a vector field, is called a formal chronological series.

It is easy to see that the natural definitions of the operations of addition, multiplica-
tion by a real number, and integration of formal chronological series from ¢, to ¢ again
give chronological series. The “Cauchy product” of chronological series,

61 (Xa) o ) (Xo) = 90 (X)) o 95 (X))

o0 t T, Ta~1 . -
+3 3 (duldn o dwPe (X Xe, oo Xey)
m=1a+B=mt, te fo

t Ti Tp~1 [ —
o ‘S' dTl 3 de [N 5 dTﬁspﬁ (Xt, X'[l, ce ey X'\tﬁ))

to to 0

reduces by (1.26) to the chronological series (1.27), where

Spm(goy Ty QM)
=2 D Palolaws ---s La)o P8 Go» Sxtienys -« -+ L)

a+B=m n€S(j.k)

(1.28)

Thus the set of all formal chronological series becomes a real associative algebra with the

multiplication given by (1.28).
The right and left Volterra series (1.21) and (1.22) are special cases of formal
chronological series. From the obvious identities
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t T Tm—1 - R -

'Sl dTl 5 dtz .« e i’ dTm Xfm O :+e 0 X’T1 = S er O e DXrldT(m), t0<t,
to to to Ato_t(r(m))

t Ty Tm-1 . R R o

s'drl S dt, ... S dtm Xcp 0 - 0 Xg = S (—1)™ Xey o0 -+ o Xy, daim,
to to t Az, (x)

t <4,
and the analogous identities

t T, Tm—1 . 5 N .
Sdrljdrz S dtmXr,0 oo 0 Xg, = [ Xeo oo o X dum, 4, <,
i i fo

A, (™)
t T Tm-1 . -
jdt15d12.~. 5‘ dTmXTIO"'OXTm
to

to to

(—1)" Xy 0 - v o Xp duim, £ 1y,

Ay g, (t™)

we get the important relation

C—V?t.,,t(}t) = ‘°Vu, (— }x), (1.29)

i.e., every right Volterra series in the field X, is at the same time a left Volterra series in
-X..

In conclusion, we note that if the fields X: and A—’;” commute for arbitrary ¢’ and ¢”,
and if we put ¢, < ¢ for definiteness, we get that

¢ T Tm-1 R s — s
j d’ﬁjdfz coo | dmXe, e 0 Xoy = 5 Xip o - o Xe, dum
to tp A A(t(m))
1 ] — —
=—>) Xeyo - or o Xe, dvim
m! % Agerim))
t m
L e oy % Ly
_ — S X-[to e OX-; d't(m)=-—' ‘S‘Xtd'c
m! m m!
(m ) to

Bi,.t

Consequently in the “commutative™ case considered here, left and right Volterra series
coincide and are representable as formal power series:

o ¢ m
Vet (Xo) = ‘(:.V—'to't (X) =3 ;nl—l (S X dt) . (1.30)
m=0 to

§2. Summation of Volterra series and exponential

representation of flows

In this section we prove that the operator equations (1.18) and (1.19) have unique
solutions which are flows. We construct flows with the help of a device we call
summation of Volterra series.
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1. The case of an analytic field. We denote by V, a complex g-neighborhood of the real
space R ¢ C™:
2
Ve=lz=[ 1! ]€C"||Imz| <0, 0 =0}, |Imz|=max|Imz*|,
z" x
and by Q, the set of all real analytic functions w on R” whose domains can be extended
to ¥, in such a way that the extended functions are (complex) analytic and bounded on
V,. We will again denote the extension to a complex neighborhood by the same symbol,
w, although (if we were to be completely precise) we should use some new symbol such
as @, for example; this applies also to the partial derivatives d,w and their complex
extensions é::) = 96 /3z°.
We make £, into a Banach space by defining a norm

o = sup |0(2)], €,
26V

in it. We denote the Cartesian product of n copies of &, by {;.
We will call the field X,, ¢ € R, bounded analytic if for some ¢ > 0 we have X, € Q7
for all t € R; we put

| Xi[§" = max | XF[5".

We define a bounded analytic mapping analogously, and in particular a bounded analytic
diffeomorphism P: R" — R" which corresponds to the operator P € £(®) with the same
name.

ProPOSITION 2.1. Suppose that )—(:, t € R, is a bounded, analytic, uniformly integrable
field, and that X, € 2 for all t € R. Then for all o' < o there is a number p > 0 such that
Jor all w € Q, the series

N . o t T, Tm-1 . .
Vit (X0 @ =0@) + 3 {dy [dr, ... (dXe,e... X0 @D
to

m==11I, to

converges absolutely and uniformly with respect to ty, t, and z for |t — to| < p,z € V,,, and

Vot (X0) (0,0) = Vit (X 0,V b i(Xe) 0y V 0y, 0,6 Qg @.2)

Proor. Taking into account the analyticity of X, and making use of the Cauchy
integral representation, we prove the estimate
t T, Tm—1 c?

jdrlig dt, ... g dr,;,?(tmo o Xe0

to

, ? 2.3)

(1X[6" de

to

<[ | ] o

from which the absolute and uniform convergence of (2.1) follows immediately.
The Cauchy formula

Xi(2) = —— [ dut deom % @)
dz_w%mng “.g (W —2) ... @ —2""

1
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where C, is a circle with center at z* and with a sufficiently small radius, allows us to
represent X, in the form

ke )
— n 1 1 n Xta (@g)
XT(Z: E W‘gdwa ...dea_rraka~
kg=1 1 n o

Here I'.[W- is a function of z,

1
(wg —2Y) ... (@} —2")

U, (2) =

1)

where the complex vector w, with coordinates w), . .., w” plays the role of a parameter.
We have

2 - k
X-[m © ++s 0O th(l) S 2 X-;:Zakm O e+ O X::akl(,t)
- ;
l n
= oy S S dwp ... jdw,';, . j dei . .. f dwff dut (X))
..... ky=1C, Cp bl Cm ol

where

1 1 1

= a 19} e, —— O ——
n, my km-1 o e

Wy Wy Wy w

If lw, —z| >8,a=1,...,m,and |w — z| > §, then an obvious induction on m gives
that

Rpieniky 1 27 m
l me ..... Wy,Ww (Z) l < (2m - l)” §ngnm < §rerrnim ;

therefore, assuming that C, in (2.4) is a circle of radius 0 — o’ with center at z%, we
get, forallz € V,

‘ero e o,_x-}tl(l)(z)l

2™m! (2n (0 — ¢"))M+Hm™

n n n
< W)—" er ng" e Il Xx, ﬂg “(!)“g (0 —0')* (0 — o )(+mim
2n \™ \ T
= m! (0 ——no’ ) ”X"m \‘gn v “ Xrl "g "mu‘(’; :
Consequently
ey = cn n m n cn n
[Xep oo Xe [or <l (2 P X, 6 X0 6 I
in particular,
“ )?Tm Cew.® )?TIE “g? = max“ }Tm e e Zfzxgx “g"'
(¢4

< (m—1) (0 i10’ \)mﬂ H X"m hgn SR “Xﬁ“gn
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Thus, using the identity

t m
IXe nS"dr)

jd j o, Tjﬂmm X 6 X = (j

173 te

and taking into account the uniform integrability of )-(:, we get (2.3).

For the proof of the multiplicative property (2.2) of Volterra series, we note that an
obvious induction gives the following generalization of the Leibniz rule for arbitrary
fields Yl, Ce Y :

m*

Yimo w0 yl (‘Px‘Pz) = 2 Z (Yn(m) e yn(i*l)‘Pl)(yn(i)" e Yﬁ(l)(Pz),»

j+k=m RES(j.k)

where S(j, k) is defined in §1.5. Hence we get from (1.26) the following identity for
m=1,2,...,from which (2.2) follows immediately:

t Ty Tm-1 — —>
j drv, fd’c2 .. j AT Xy, 0 - o Xr, (0,0,)
t. i
Ty Tm-1 — —
S dt, 5 dt, ... 5 dtm D) (Kegm © * © Xegj®1)
jth=mt, to to weS(/,k)
— — t, t{ TiTl —> —
X (Xrn(,) ©...0 XTT[(I)(O2) = Z j d‘l?l S de e dT]Xt] o+ -0 XI‘(.O]
jik=m1, to fo
T Th-1

jdn Cdr, ... [ duXo - o Xoon

t.l ty

The proposition we have just proved allows us to assert that if X , is a bounded analytic
and uniformly integrable field, then it is possible to find p > 0 such that for |t — £,| < p
the mapping

— —
Ve, (Xq) E:R">R"
is also bounded analytic, and the identity
‘V;.,t(Xr)m — 0oV (X)E VoEQq
and its corollary

Vot (Xe) Xe = Xi o (X E 2.5

both hold. The analyticity is obvious, and the identities follow from the facts that w can
be expanded in a series in powers of the independent variables, the operator E{f, ,(f,) can
be applied termw1sc, and the result for each term follows immediately from (2.2).

If weput P, , =, ,(X )E, we can see from (2.5) and the identities

—_ — r_ — . t. .
Vit X)E = E + [ ¥z (Xo) o Xedr = E + & 1ox (Xo) Xz d, .6
to

to
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that the family P oo 11— to] < p, satisfies
~ ¢ ~ —
Pui=1d + j Piro Xedr. 2.7
to

Proposition 2.1 continues to hold if we replace the right Volterra series by a left series.
In this case (2.6) must be replaced by

— L o
Vit (X)E = + | Xo¥ir (Xo) Ed
fo

or the equivalent relation

—C\ft.f(Xr)E Xt”V:,( o) E.

The family of operators Q,o,, |t — tg] € p, which satisfies the integral equation
t i ~
Qut =1d— [ Xco Qe dr
io
corresponds to the family of mappings

Qto.t =<°\—ffo.: (—X)E:R" >R, |t—1,]|<0, (2.8)

since

ij— Qior® = — ((grad ) o Qr,t) - ?_étQto.t = —Xi(po Qt,t) = — Xio Qtast®-

Hence we conclude by Proposmon 1.1 that the family P, , is a left inverse of Q, .- But
P, , is also a right inverse of Q, ,» as follows at once from the remark following (1.29)
Wthh states that a nght Volterra series in an arbitrary field X is identical to the left
Volterra series in —X if we permute £, and ¢.

Thus the families P,o,, and Q,o,,, |t — 15| < p, are mutually inverse flows which satisfy
(2.7) and (2.8), and which, by Proposxtion 1.1, are their unique solutions. According to
Proposition 1.2, the flows P, , and Q, , can be defined for arbitrary z, and ¢ so that they
are solutions of these equatlons and

- A - A
Put=PusoPrso ... 0P ¢ Vi, ..., In€R,

and similarly for QA,O,,. By Proposition 2.1, if |, — | < p, then 13,0,, is representable as
a composition of analytic diffeomorphisms, and therefore is an analytic diffeomorphism
for all 7, and ¢ in R.

We call the analytic flows ﬁ,&, and Q,o_,, t,, t € R, just constructed right and left
chronological exponentials in X, and in —X,, respectively, and we denote them by

t

nd

13tn,t = (‘{f)to,t (/?r) E)= é—x; zdT,

[
Qtot = (Wit (— Xo) E) = exp ( — X dt
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Q)ecause of typographical considerations, we have put the expressxons ‘V (X )E and
o %Y, (X,)E in angle brackets instead of putting a caret over them). If X 1s “commuta-
tive,” i.e. if [X,, X ]=0for all ¢, t” € R, then (1.30) gives

Xpdt

1 ml
to to m=0

¢ t % m |
exp \thdrE ~exp J Xed1E = > = L (s err) E=¢"
to

In conclusion we note that, in order to assure the existence of chronological exponen-
tials, it is sufficient to require that X, be locally integrable instead of uniformly
integrable, as is clear from the proof. In this case the length of the interval of
convergence with respect to ¢, and #, |t — ¢y < p,, can approach zero as f, — oo, but this
does not interfere with the construction of flows for all ¢, and ¢ (see Proposition 1.2).

2. The case of an arbitrary field. If X; is analytic, then, as was shown above, the
construction of chronological exponentials is simple: we must apply the appropriate
Volterra series to the identity mapping £ to get series of analytic mgppmgs which
converge to the unknown flows. For nonanalytic fields X the series V, (X,)E and

,O,(X )E do not converge, and to obtain flows which give solutions of (2.7) and (2 8) we
apply a more complicated procedure. We begin by estimating the seminorm || ,m,(p”s’ X
under the assumption that P, , satisfies (2.7).

ProrosITioN 2.2. If }3,0’, satisfies (2.7), where X;, t €R, is an arbitrarily (locally
integrable) field, then for all ¢ in ®, for s > 0, and for any compact set K C R" we have
(1, < 1)

t
C, j X lls dt

. ]
[Pl x < Cae l@ s a1

¢ s
Cy= (1 =~s)(2ns) (1 +n +diamK 42 ( | X< Hodr) , 2.9
o

C, =3n(2s +2)°"'C,,
where M = On(K) is a neighborhood of radius R = | ;QIIX,HO dr of the compact set K.

Proor. We put
Kt = U {Prc (K)) T€ [y, 11}

and introduce the quantity

{“ to.t® 1‘3 K

Nt = sup
PED ” “s+1 Ky, ¢

“ % “5+1~Kta,t :# 0

0

= Zlég {l Pt.,,t(P kxlle “sH.Kt.,,t =1}

which, as is easy to see, is measurable in ¢, and ¢ and bounded on [#,, ¢]. The
measurability follows from the fact that the sup on the right-hand side need not be taken
over all ¢ € ® but over only an arbitrary countable dense subset of ®; the boundedness
follows from (1.10) and the obvious inequality ||<p||,_,,'°’(,0 < ”q)”’“"%" Let x, be a
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point at which
s
~ 1 ——»a
P = su — sup | h o P X
| Pro.c | sup EU p W:PJ (® © Prot) (%) ]

attains its upper bound, and let m_, be a polynomial of degree < s whose derivatives of
order up to and including s at the point p, = P, ,(x,) coincide with the corresponding
derivatives of ¢ at the same point,

S ——s .
My (x) = Z a—.l-(x—pO)(P (po)r X€ER".
a=o0 !
In this case

S
- 1 - -
|| P9 “5_1( = Z ar l:\u:pllha (Mg o Py,¢) (%) ‘ < u P, “s.K;

[o 2]

2.10)
“ mq; “S,po < “ q) "S,Ktmt'
In the finite-dimensional space of all real polynomials of degree < s, all norms are

equivalent, so there exists a constant C, which does not depend on the choice of the
polynomial m of degree < s such that

Il
-t e, @.11)
The inequalities (2.10) and (2.11) give the estimate

i Pt,,,t((’ Is. x <“ Pm,,t"% ls.x <C i ﬁt.,,tmw s, —C I Ptn,tmq)_“s,[( <CNii. (2.12)

lobw,,  Imgl,, Smglk,,  Vmgleak,

"We show that we can take

Cl == (] +S)(2n~s)s(l + n + diam Kto,t)s. (2’13)
From the estimate
h W 1 B [ n\k
6 -0 <=2, hil=1, o ’
ha e (w‘—zl).“(wﬂ_zﬂ)l " (0> l }\ 1 \w < \}0’

it follows that for ¢ = n (S, is a circle of radius » with center z%)

sup 17210...oﬁkm(x)|
X€Ky, ¢
= su Zo-wo}—z) dw' ... \ dw" m ()

1 & k n cn
T (’2‘) (27" |18V k.0 = LI 1V s, 0,
where

cn
m = su m(w)|,
I HV,.(Kto,t) wev,,ugm,) | m(w)]
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and V,(K, ,) is a complex neighborhood of radius n of the compact set K, . Therefore

s 1 _’a
Il = SeP, zoa‘%gl h%m (x)|

s

1 n "
<3 Zatimiue, 0 = (1 +9) w0, 0.

a==0
Consequently
\ n S 1 ——
“ m ”S-Kz : <(l+5s) " m //l(/:,,(l(ta,z) =(1+s) sup 2 = (2—p,) 1 (p,)
0, 26V (Kpo,0) | g !
(2.19)
S G of
— ! s 1 Z— Py
SeED s (Uele—plf sup | 5] (EEE ().
2€Vn(Kyy 1)) 2€Va(Ke 0| o @ M 2= P0 |
(The symbol
e sl n o
z2—py= 2, (2*—ps)0a
a=1
denotes the differential operator with (constant) complex coefficients z* — pg'.)
It is easy to see that
S —_
sup 3 _l_(_i:_@_) m(py) | < (2ns) |m], . (2.15)
2V, (K1) | =, @ L2 — ol Spo
In fact, if none of the coordinates w*, k = 1, . . ., n, of the complex vector w exceed one
in modulus, then, using (1.8), we would get
s 1 - s ! n £
o % - )
zal—(w) m(po)\( E—Q_V Z ‘wk' R ) [‘)k,o"'Odkam(Po)
Q=0 =0 Ryyores kg=1

1 . S i
< 2 ;!‘na(.?a) fml, , << (2n8) im| .

A=0
Combining this with (2.14), we arrive at (2.13).
Equation (2.7), together with (2.12) and (1.9), allow us to write

t —_—
" Pio-t(p “s,K < ”(P ”5,1( + S‘ " Ptn-T ° XT(P "s.l( dt
fo
t
< “ Y “s,K + 3n (23 + Q)SHCI S‘ Nl'oﬂ “ X" “s dv H ¢ “s v, Ky 4t
to
Dividing by ||¢]|, ., K, We arrive at

12y, 100k t
_'.'_.__'_.< 1 3 2 2 S+1C )
“q’“sﬂ.Kto,t +on (2 +2) 1 £N’°" | X= “s dv

Since the right-hand side does not depend on ¢, we get

t
Nt <1 +Cy [ Nee| Xel dv,  Cy = 3n (28 +2)C,,
Y
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from which it follows by Gronwall’s lemma that

t
Cs [ IXglsdv
Nijs<e o

0

by virtue of the boundedness of N, . or, by (2.12),
t
C, \' Xyl dt

n Isfn,f(P "S.K ‘\<~’ Cle fo ” (P I'S'Kto.t .

It remains to estimate the set K, . in terms of K and )? . We have

v
diam Kg,r = max x4 ) Xoo Pty0(x)dd — (y + j XooPee(y) d9> ‘
v,?%?ﬁ,t] to to
I3
ZdiamK + 2 f”XrHodT: Kyt C Oy (K),
fo X X fod
to

which concludes the proof of the proposition.

We assume now that the bounded (locally integrable) field X, is given, i.e., that it
satisfies || X,||, < oo for all s > 0. We consider the entire function of z € C*

1 -5 .
8e(2) = ———7e€ °, 2= Z (2%,
a=1
which depends on the parameter ¢ > 0. Taking its convolution with X,, we get the entire

function of z
z-x 2

X3(2) = 8% Xi(2) = Xi(x) dx.

(erT) 5

Considered on R”, for each fixed ¢ > 0 it belongs to the space 7 for all ¢ > 0. For real
values of the argument, X; can be calculated from

Xf(x) = —I——S e (T) Xi(y)dy = _VI_I?‘—S e ¥ X (x —ey) dy;
Rn n

(eVa)
consequently
| XEl, = Sup z ; \illl 1 Vﬂ S eV HEX (x — ey) dyi
R? (2.16)
< VIR"S e*”‘dyfsgz g — suplh Xe(x)| =] Xtl,.
R" *=0

Furthermore, the identity
I3 ” 1 " , "
(XF — X)) = 5= { dyev (X (v —e'9) — Xe (x— ')

RrR"

1
=2 —_: S dyev 5 drvgrad X¢(x —e"y +1(e" —¢&)y) - y
V=
Rll

1]
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together with (1.9) gives that

1X8 — XV, <le'—e"|Cal Xelys
2.17)

Cy=3n(2s +2)°" S ly|e¥ dy.

Rﬂ

Vn

In subsection 1 we proved the existence of mutually inverse analytic flows
Ppy=exp ﬂf XEdv, Q%= exp ft — Xidv, 1, tER,
#y fo
which satisfy
P y=1d -+ jt' B0 Xodt, (f;=1d— § X% o 0% <dr.
to

We show that as e — 0 the flows P, and Q;, converge in the topology of ®@” to the
mutually inverse flows P, ,and Q, ,, t, t € R, where P, ,and Q, , satisfy (2.7) and (2.8).
From

t t e
Py, —PE, = j PElio (XY — XE)dt j (Pf < — P§ 1) o X7 dr.
to t
(2.16), (2.17), (1.9), (1.10), and (1.11) we get

t
| Phot — Piall s < (1 4902 (25)* ) Cy | &’ 8"|S (4 [ Pl ) | Xe | de
to

t
+3n(28 + 2 (1 4907 (29)")° 5 (L1 Pielec + 1 Pie i)

X | Xe gy, | Phos — Phial, i dv.

The quantities ||P,f; s x and || ,MHS,K in this estimate are majorized by a locally
integrable function which does not depend on &, by virtue of (2.16) and Proposition 2.2.
Therefore applying Gronwall’s lemma to it, we get that

lim | PEe—Phil, =0

e’ ,e"—0

The convergence for Q;, can be proved similarly, or it follows from the convergence
just proved for P;, and the fact that the left flow Qy, is also a right flow:

e <« e o —)8
Qtrt = Vit (— X2) E = Vi, (Xo) E.
The limit transformations P, , and Q, , are mutually inverse diffeomorphisms for all ¢,
t € R, since it is easy to get from (1.11) that
PitoQut =Qtt o Prt =lim Pis o Qit = E
£—0

Finally, it is obvious that ﬁ,&, and Q,o, satisfy (2.7) and (2.8) since the limit flows satisfy
them.
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Thus we have constructed flows P .. and Q, nlpt ER, which L satisfy (2.7) and (2.8);
we call them right and left chronologtcal exponentials in X and -X, ,» Tespectively, and we
write

-~ —_—— t —> ¢ —_—— T —_ —
P = exp szdr =1d 4 S(eXp j Xede;) X dx,
to to te

-~ & — ¢ — ¢ b d )v“—- * -
Qus =exp | —Xedv =1d — | Xco (exp [ —Xs de) dr, (2.18)
to to to
exp jxtdro exp 5 — Xdt =exp 5‘ — X:dv o exp S Xzdv =1d,
i to to to

For arbitrary ¢,, . . . , t,, we have

— — b —t —_
exp y X«dt = exp j Xzdto exp j Xudto - - oexp S Xedr; (2.19)
I te ty t

in particular,

—— f_) —_— fu__) ~1 —— to s
exp 5 Xidt = (exp g Xtd17> = exp 5' — Xqdr. (2.20)
o i i

In subsection 1, we showed that for all 4 it is possible to find p, > O such that for
|t — 5| < p,, the series

> R o L7 Ta-1 -
Vit (XYE = (Id+ S| Sdtljd@ j dtaX 1z, o ...ox;)E

a=1to 12 )
e —_—
Xi = 0 Xy,

converges; we denote the corresponding operator flow by putting the expression under
consideration in angle brackets. If ¢, and ¢ are arbitrary, and if we insert points
to <t; < <t, =t between them such that [, — | < p,, we can write

—_—— ¢ —> — - - — —> —

exp [ Xedv = lim (Vi (X3) ED o (Vi (X EDo -+ o (Vi it (XD E),
) es0 (2.21)

— —

Xf = 8. % Xs.

We call the expression on the right-hand side the operatlon of “exponential summation”
of the Volterra series ‘V (X ). Even in the case where X is analytic, the Volterra series
does not converge in the topology of simple convergence in £(®) in the usual sense, so
we write

exp ijdrzld -+ 2 Sd‘rl j dt, ... 7—1 drm)am I o)_(},, Q.22)
m=11le o

understanding by the “asymptotic equality” the relation which is defined precisely in the
following proposition.
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PRrROPOSITION 2.3, Let )_(',, t € R, be a bounded (locally integrable) field and 13,0,, the flow
generated by it. Then for all ¢ in ® and m > 2

I (PM —(Id -+ z 5d11 S dv, ... ch-ldrajf,ao e o?&,)) ]

a=1 o t s, K (2.23)
¢
Ca | IXelsdt A (m
<Ce '" (3n (25 -+ 2m)"" )" — ‘j\\ Xiloarmey 47| 19 lsim a0
to
where C,, C,, and M are defined in Proposition 2.2.
Proor. Using Proposition 2.2 and (1.9), we can write
|Peyey 0 Xeppo -+ 0 Xey@ | 4
t
C: j Xy lls de
(Ce " (3n(23 4+ 2m) ™Y | Xe 1 Xty ory - - - 1K b 19 Lo i
¢
Ca| [ IX7lsd
< Cle " (3n (28 =+ 2m o m “ X"m "s+m 1 0 nX""l lL+m—1 “(p“s-l-m,M’
which proves the proposition if we apply the obvious identities
R m-1 ¢ T Ta-1 R .
Pto,t —(Id 4+ 2 s‘d‘fl 5 d't'z e s‘ d’tano e OXTI)
a=1to A fo
Ty Tm‘—l R o .
(dTl (dl’z e g dTmPt.,,tm OXTm 0 . OXt,y
1o f is

¢ L Tm-1 ¢ m
] ) o 1
j dTl j dT2 P ‘S dTm “X‘[‘m “s+m— . |X1f| ”s+m— = —f;l—— (s “ XT "S+m 1 ) .
[ tO tﬂ

t

§3. Representation of perturbation flows
(the “variation of constants” formula)

Two concepts in the theory of ordinary differential equations which have basic
significance for us are the perturbation flow of a given flow

— b
Pt =exp S Xedv €R))
i

and the variation of a flow ﬁ,o,,. In this section, we obtain formulas which represent a
perturbation flow in terms of input data, and the following two sections are devoted to a
study of the variation of a given flow.

1. Representation of a perturbation flow. We will _assume that the fleld )? and the flow
(3 1) are_ flxed We will call an arbitrary field Y, a perturbation of X,, and the flow
exp [ (X + 7. ) dr the corresponding perturbed flow.
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We consider the problem: find flows CA‘,&,( )7,) and ]5,0’,( f’;) which satisfy

—_—— t — —> ~ —> —_—— t —
exp ( (Xe +Y)dr=0Cy e (Yr)oexp i‘ Xdr,

t, to

(3.2)

t
exp S (X« + Yy)dv = exp ( Xedt o Dy, ¢ (V).
A

We call (f,o,,( )7,) a left perturbation flow for P,o,, for the perturbation field )_",, and D‘,m,( 17';)
a right perturbation flow.

We obtain a solution of the above-stated problem by the method of “variation of
constants.”

To this end, we write by (1.12)

—_—— t—) - ~ — ~ >
(Ad exp S X@r) Z =P 0ZoP€EDer(®) VZEeDer (D),
4

regarding Ad ﬁ,o, as a family of linear transformations of Der(®) into itself which
depends on ¢, ¢ € R. Differentiation with respect to ¢ gives

% (AdPy, ) Z = Biyro(XioZ —Zo Xi)o Pl = (AdP, 0 adX)Z,  (33)

which, by virtue of the arbitrariness of Ze Der(®), may be considered, purely formally,
as a linear equation for Ad P, ,

t t
dit Ad Ex’ﬁj Xodt = Adexp j Xedt o adXs. (34)
to

This equation gives a purely formal reason for calling Ad exp | :o f, dr a “right chrono-
logical exponential in ad X,”:

—_— t — —_— 4 —
Adexp 5 «dt = exp S ad X dr. 3.5)
fo A

We note several simple properties of Ad ﬁ,&, which are completely consistent with the
notation of (3.4) and (3.5). First of all, it is clear that Ad P,o’, is invertible, and

(A 0 = AdB2, o6
and correspondingly ‘
dit (AP, )7 = — adX; o (AdP,) 2,
‘ G.7)
(AdP,, ) = Ad exp j — Xedv = 5{35 — adX.d.

fo

Furthermore, we have

Ad ﬁto.t; o Ad i)t,,tz °©o .. 0 Ad}stm,t = Adf’z,.t; (3.8)
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in particular,
— b
(AdPs, )t = Ad P; s, = exp § ad Xdr. (3.9)
i
We define the action of Ad ﬁ,b,z on flows by
-~ —_— t_A ~ —— t-—) ~
AdPy, i exp [ Vdt = Py, o exp [ Yadvo Pl
[ t,

Then we have
t

—_—— t — —_— ~ —
AdP; 4, exp S Y.dt = exp S AdPy, 1 Ydtv Vi, t,€ER, (3.10)
to

to

since if we differentiate the flow on the left-hand side with respect to ¢, we see that it
satisfies
t . t R
-5;— Adﬁtht: gX—() S Y-;d’l? = Ad ﬁt,,tz E_)Ef) S‘ ?—rd‘t’ o Ad ﬁt,,,tyt-
fa 1
Finally we note that if Z commutes with X, for all 7 in R (i.e. if ad X,Z = 0 for all 7 in
R), then

—_—— t_/) — —>
AdexpSXTdtZ=Z Vi, tER, (3.11)
to

since

t t
Ed{ Adexp § XedtZ = (Ad exp f Xedt o adx,) 7=0.
T fo

We now express the left perturbation flow CA‘,O,( )7,) in terms of X, and Y,. To this end,
we differentiate (3.2) with respect to ¢:

N 2 -
Cto,t (Y-‘;) o €Xp 5 X-;d’l,’ o (Xt + Yt)
tﬂ
t

t
= (5 Cous (V) oexp | Xt 4 Cipe (Vo) exp | Xedro X,
0 ty

whence
- —> / —_— 4 —> —
%Ctmt (Y-¢) = éto,t (Y-[)O (Ad exp SIX-;dT Y4> .
to

This differential equation was obtained by “variation of the constant é,w,”; integrating
it gives a representation of the left perturbation flow

. Lt . N 2V _
Crot (Vo) = exp g (Ad Py, ) Yedt = exp S (exp S ad Xede) Yadt (3.12)
;6 s to
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and, at the same time, a representation of the perturbed flow

—_—— t — — —_— ¢ ~ -—> —_—— t4>
exp S (Xz + Yo)dt =exp g (Ad Py z) Yedtoexp SXId-c. (3.13)
to io t
To determine DA,O',( )_’;), we write the following sequence of equalities (see (3.10), (3.6),
(3.8) and (3.9)):

—_—— t. ~ - —_—— ¢ -
exp ‘S (Ad Py,x) Yedroexp SXTdr
fo I

—_—— t —> ~ —_—— ! ~ -
=exp j Xudt o Ad P exp j (Ad Py ) Yedr

—_—— tto— > —_—— ¢ ~ ° ~ —
= exp S Xdtoexp S (AdPyt, o Ad Py ¢) Yodr

= exp S Xtdr 0 exp S (AdP, ) Ydr,

7

from which we get

D,ot (YT) = exp E(Ade) Y.t = expS (exp adXedG) Y.dr. (3.19)
Thus the perturbed flow can be represented with the help of the equalities

exp 5‘ (X; + Y1) dt = exp y ( Adexp SXQdO) dtoe exp S X.dv
Iy (.15)

t
— exp 5 (exp 5 ad Xede) Y<dt o exp SerT,
iy ty &

tl) o tD

—— t. e P —_—— t. — —_—— t. PO N —
exp 5 (X: +Yy)dt =exp j Xdt o exp 5 (Ad exp 3 nge) Y.dv
IR EA T (3.16)
= exp S Xdtoexp S (exp S ad XedG)Yrdr.
ty to t

We call them generalized “variation of constants” formulas.

2 A.symptotzc forms of (3. 15) and (3.16). In these formulas, the expressions
exp T 7, ad X,, d0 and exp /7 ad Xa df do more than serve as formal definitions of the
operators Ad P, . and Ad P . In the form in which they are written, (3.15) and (3.16)
point to the followmg two basxc facts.

DIf f’, and )_", are bounded analytic fields, then if we calculate all of the chronological
exponentials on the right-hand sides of (3.15) and (3.16), as well as the corresponding
formal Volterra series, and if we carry out the indicated operations, we arrive at formal
series which when applied to the identity mapping E give convergent series which
determine the perturbed flow.

2) In the case of arbitrary fields ,\_’; and )7,, this procedure does not lead to convergent
series, but these series give an asymptotic representation of exp f :0()_(: + )—",) dr. We give
the precise meanings of these statements in Propositions 3.1 and 3.2.
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PROPOSITION 3.1. Assume that X,, t € R, is a uniformly integrable, bounded, analytic

field, and that Z is a bounded analytic field: X, € Q2 for all t ER and Z € Q). Then for
all 6’ < o there exists a p > 0 such that the series

(V1,1(ad X)) Z) E (2) = Z (2)

o ! T Tm-1 — — o
+3 {du fdv, - [ dun(ad Xepo - 0ad XD E ()
m=11, ty to

converges absolutely and uniformly in ty, t, and z for |t — to| < pand z € V,,, and for these
values of ty, t, and z,

7/

(Ad exp f ?(,dr?) E(2) = (Ve,e(ad Xx) Z) E (2).

t,

The proof can be obtained from the estimate

t Ty Tm-1 N N ct
Sdtlj‘dn S dim(ad Xz o -+ oad X¢,Z) E
t, fy t, g’
2n \™ ; "
_om cn n
<2 (1| 12 €
t,

which follows from the similar estimate (2.3).

ProrposiTION 3.2. If f,, t € R, is locally integrable, then for Ze Der(®)
—_— t——> -
" (Ad exp j' Xzdr Z) E
to
T

m~1 ¢ ! ‘ta’_l s _— -
——(Z + jdrljdrg S dte (ad Xy o --- oaer,Z))E
t,

a=1%, t,

s, K
t

1Xg g4 qdt
to

aC,

< 3n(2s + 2)°°! (6n)™ (25 + 2m)™*™ C2e

t m
%I b ;—,‘ 1l e

Cy

,

where

t
Cy=(s + 2)(2s + 2)s+1ns+1 (1 +n +diam K + 4 S“ X.,“od‘r
to

)S+l
’

}4

C, = 3n(2s + 4)°"°C,, C,=dx - diamK + 2

{1 Xel o

where dy is the distance of the compact set K C R" from the origin, and where M = O(K)
is a neighborhood of radius R = 2|[; | X, ||, d| of the compact set K.
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The proof is easy to construct if we take into account the identity

~ - - m~1 t Y1 Ta-1 —> —
AdP, .z — (z + S S drljdrz . 5 dtgad Xeyo --- o adXT,Z)
a=1t, to t,
t T Tm-1 . . .
= S dTl S d’C2 cee s‘ dTm Ad Ptoﬂ'mo ad X‘rm° ... oad X‘rlZ

ty t Z

and make use of the following estimates, which follow directly from the corresponding
estimates (1.9) and (2.9):

" (ad 3(’ 2.) E "s,K < 6n (23 + 2)S+1 “ X“sﬂl(’“‘z “s+1,K,
I (ad X;o --- oad )?mZ)E bk <

< (6n)"(2s + 2m)m(s+m) I X1 ”s+m,K T Il Xm |L+m.1< 1z “s+m,K’
t
. ¢ N 2C, jl\xr "s+]d7
“ (Ad i [ ot z) E| <3n(2s+2ycke I CollZl, o
° s, K

3. Calculation of the chronological logarithm. In this and the following subsection, we
give two simple examples of the results we have obtained.

Since the field /\7,, t € R, is given uniquely in terms of the chronological exponential
exp [} X, dr which it generates by the formula

4 -1 t
X = (exp S de't) ° % exp j‘ Xd,
L to
it is natural to call the function determined for flows exp [ o X: dr by the correspondence
—_—— t_. —
exp S X-;d‘l.' = Xt,
'

a right chronological logarithm and to denote it by 16"§ t,- Here ¢, plays the role of a
parameter, so that the argument of a chronological logarithm is a function ¢+
exp f o )?, dr and its values are functions ¢ — )_(: Therefore to be perfectly precise we
should write

—— —_— t—% —
log, {exp 5' Xdt; t€ R} = {Xo; O0ER),
1
but we will use the less awkward notation
_— — -
log;, exp 5‘ Xedt = X,
to

We define the left chronological logarithm similarly:

——

¢ — ->
log:, exp 5' Xdv = Xi.
to
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Frequently it is necessary to calculate the field which generates a flow, ie., the
chronological logarithm of a flow when the flow is given not in “canonical” notation but
in the form

—_—— t _— N t .
Piyt = exp§ Yt -0 o expj' Yi™dr.
t

To do this, it suffices to write

T <. d
log: Pt,t = Py, 10— Py,
dt
t ¢
e — —_— e —_ ~
= epr‘— YMdro. .. & exp S‘—— YWt o %Pto,t ,

fo

to represent the derivative dﬁ,m, /dt in the form of an appropriate sum of m terms, and
then to use (3.7). As a result, we get

logs, (EXpS Y®dto .. ocexp S‘ Y(rm)dr)
to i

t ol ’ =

Y —ad Y‘{‘"’dt) yo

fo

= (exp S —ad Ydto - .- oexp
; (3.17)
e — ¢ — —— ¢ —_— —
+ (expj —ad Y™dto ... o exp [ —ad Y%‘”dt) y®
N t
— 1 — — -
o 4 (exp s\ —ad Y({")dr) yim oyt
I )

We find a right chronological logarithm as a solution of
—d—ﬁ)to,t =P io Xt + YioPrt.
dt

We have
~ P ¢ —_ —_—— t —
Pi,r =exp ( Yedt o exp (Xtdr;
ia t‘o

therefore, if we denote the unknown logarithm by Z: and repeat the computations in the

derivation of (3.17), we get
- ¢

¢ t
Zi = (é—xp g Yedto gx;) Sx}dr) 0o — ( S‘ dt o exp S )Td'[)
ty 0 N to
—_— —— t — —— ¢ — —
=X+ (exp j— ad Xidtoexp V— ad Yrdr) Y,
# £,

4. The quasistationary field case. We assume that the field }—(; is stationary: A—;, = X for
all z in R. We define the exponential of X by

e’ =exp SXdr. (3.18)
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The fieldﬁf,, t € R, is called quasistationary if for some fixed ¢, it commutes with the
field f; X, dr for all t in R.

PROPOSITION 3.3. If the field X » t € R, is quasistationary,

I
[X,,jXAI]:O V{ER,

t

then the family of diffeomorphisms

g Xdt
etﬂ b t 6 R b
is a flow which satisfies
it t = t
f —)-()tdt ‘ Xqdt r}r‘h
__e‘t‘o A o X — )—5 . ei° ) 3.19)
dt £ A ,
consequently in this case
¢ ->
— t_ ot f Xedt
exp [XTdT = exp g‘Xtdr = gl
fo fo
L, -1 t
| Xedt = | Xt
elo — ¢ to ViER.
In particular,
A pt-t0X — gtttk o X — X o elt-tX,
dt
- —
(et X) 1 = gltetI X
ProOE. We calculate the expression
t t+6t_) t,N
| [ Xedre | Xyav | X (3.20)
— \ gh t — gt .
ot
Putting
— t - 08
Y = (Xedv, Yor = 5‘ Xdv
A f

for brevity, and making use of (3.16), we get

1 1
%(enm )= 751{ (e‘x"ﬁj"(? 1+ Yo dt——exijdT)
0 0

1 1 T \
= é é_@j Ydto (e—x_pj (Ad exp S ?de) Ysdt — Id) .

[ [] 1
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For 8t — 0, (2.23) (Proposition 2.3) gives, at each point of differentiability of [ f, dr,

that
s A —_ r~ N\ : —_— s\
Elf (exp 5 (Ad exp 5 Yde) Y oudt — Id) . s (Ad exp 57 YdO) X5
' p ;

]

consequently as 8¢ — 0, (3.20) approaches (see (3.11))

— 11 U S N S
exijdros(AdexpEYdﬂ)thexpSYdroXt,
0

0 0 1

which proves the first equality of (3.19). If in this proof we use (3.15) in place of (3.16),
we get the second equality of (3.19).
For quasistationary fields, (3.5), (3.15) and (3.16) have the form

t
5 Xqdv S‘ ad }rdré
Adee  Z=éo  Z
! > - H —> t—)
[ Re¥oar __ t [adXgae [ Rear
b = eXxp ‘S‘ b Yrd'l' o el (321)
ty
t T
(Reae _ ¢ )[ad}’edo -
= ¢h oexp Y.dr.

f
In particular, for stationary fields we get the identities

eX o7 0 giX = gladX 7,
- 3 —— ! - —
FXHY) = exp s'eradx Ydto X
0 (3.22)

—_—— t - —>
= e'X oexp g ev-hadX Yy,
0
which are frequently useful.
§4. Variation of flows

We will assume that the flow e?p f : ? dr, which we will consider here as a perturba-
tlon of the identity flow-Id, = Id (generated by the zero fleld) 1s given, but we will regard
Y as a perturbation of the zero field. We will consider exp I Y dr as the corresponding
(right or left) perturbation flow. We pose the following problem.

For a given flow exp [ t Y. a1, find a field Vit }_’;) which, in some asymptotic sense to be
specified precisely in Proposition 4.1, satisfies

— Ve
exp ‘Y Yedr = 017 (CHY)

where the function of a stationary field in the exponent is to be understood in the sense
defined by (3.18).
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If such a field Viod( Y) exists, it is natural to call it the logarithm (not chronological!) of
the flow exp |[* t Y dr and to denote it by

— — b
Vit (Ye) =1nexp S Y.dt. @4.2)
to

It turns out that a reasonable solution of the problem stated above requires the
extension of the concept of a nonstationary field by the introduction of formal vector
fields by means of chronological series.

An explicit algorithm to be described in §5.2 gives a “universal” sequence of poly-
nomials in noncommutative variables

81 (Cl)* gZ(Cls C,g), L] gm (Cli set Z.:m)r tet (43)

where g, is homogeneous of degree 1 in each variable. In addition, all of the polynomi-
als g,, have a remarkable property: they are “commutator” polynomials in their
variables. A commutator polynomial is one which can be expressed as a linear combina-
tion of the variables {,...,{,, of their commutators [{, {;] = fjfk = &S, of the
commutators of these, and so forth. For example, the first three polynomials have the
form

5 (G) =L 8o (Gu B) = (G Gl
8 (1, Lor £) = = (G 1 a0 Tl + (1G5, Tl -

It is clear that if Y, ..., ?m are arbitrary fields, then the expression g,,( ?1, R )7,")
will be a field.
With the help of Y, we construct the formal chronological series

Vit (V) = 3 VI (YVa),

me (4.4)
-1 —> —>
ViR (Vo) = j dr, j dty - | dngn (Ve - Vo),
to
and we call it the formal vector field corresponding to the field )—",. From what was said
above, all expressons V{7(Y,), m = 1,2, ..., represent vector fields in the ordinary
sense.

The following proposition gives the precise sense in which the asymptotic relation (4.1)
must be understood; the proof is given in §5.1.

ProrosiTION 4.1. If

\\ Yo us '.»de <l

-~
SHey -

then

m
.t E V(ta)t(y‘r)
(exp g‘)’rdr — =1 @

o

m+1

S‘“ Y “swm T (45)

; u ¢ ““"”LOC,(K)’

s.K
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where the constants C, and C, depend only on s, m, and diam K, and where Oc(K) is a
C,-neighborhood of the compact set K.

As an immediate consequence of (4.5) and (2.23), we can conclude that if at a point
x €ER"

VBW)E®=0 Va=1, ..., m—1, (4.6)

then

exp ngdrE (X) = x + V(YD E(x) 0 ((H Yel,,, dt )mu) | “

2y /

since if fl, .. Yk are arbltrary fields and if Yl vanishes at x (Y,(x) 0), then the
composition f, ..+ o Y, vanishes at x. Thus if all of the functlons V“‘)(Y)E a=
1,...,m — 1, vanish at x, then the value of the perturbatlon field exp I ! Y drE at x
can be calculated by means of the expression x + V‘"')(Y )E(x), and the error can be
estimated by means of (4.7). This motivates the followmg terminology.

We call the field V,(’;')(Y) the mth variation of the identity flow corresponding to the
perturbation field Y and we call the formal field V, (Y) the complete variation of the
identity flow. We inroduce the corresponding notation

VI (Y g) = 8" 1dy ¢ (V) Viu(Ye) = 81dy, 1 (V)
and rewrite (4.1) and (4.4) in the form

t —> o0 i

exp | Vidr = 600 = 1d + S L (31dy,, (V)"
<~ m!
1y m=1
43)
— Y . co 1 Ty T’?}‘l .

81ds, ¢ (Vo) = }:. M Idg, ¢ (V) = D) ‘S dr, ‘S dv, - | dtwgm (Ve -, YV,
m=1

m==11, ty ty

We call this representation the Maclaurin expansion (“in the vicinity of the zero field”) of
the perturbation flow €xp | t }7, dr.

Combining (4.8) and (3.17), we arrive at the following generalization of the Campbell-
Hausdorff formula:

o Ty Ta~1
ot ; \‘”4 dt,... \ drgg ( Zg, Ta),
exp | YWdto o exp g Yt = ea=1ta 1 t
to iy
. T N
Zi = (expj —ad Y{dro ... oexp (—ad YPdr |V 4.9)

ty f J

4+ o (exp\g' —ad Y(m)d‘t) Y(m-l) —{/’(lm).

The usual computational form of this formula, which, as a rule, is stated only for the
case where Y? = Y, are stationary fields, j = 1, 2, is extremely complicated because the
a-fold integrations, only indicated in (4.9), are actually carried out.
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The question of convergence of the formal series on the right-hand sides of the
asymptotic relations (4.8) and (4.9) and the question of precise equality to the flows on
the left-hand sides are treated in the next section.

The expression

¢n gy #(Vf,,,z(ﬁ)) :

m=1

where V, ( }7,) is an arbitrary formal field, is called the formal flow corresponding to the
Jormal field V, (Y,). We can introduce a multiplication operation into the set of all
formal flows by means of the relation

.y —on PR
eVt t YD) Vi Y1) _ Vi, 1MV, Yr»,

where (cf. (3.17))
S, Pa— t -, —, -
MYy Y= (exp 5 —ad Yrd‘t) Y +Yy,
t

which then makes it into a multiplicative group, as is easy to see.

One decided advantage of the definitions of variations given here over the usual
definitions is that our variations satisfy the asymptotic relations (4.5)—(4.7) and have an
invariant form: the expressions 6(’"’Id,o,,( i) represent vector fields, which therefore act
as “infinitesimal shifts” not only in ® but also in R”.

The “usual variations” of a perturbation flow, successive terms in the “Volterra
expansion”

. t t - t Ty . N
exp S‘Yrdr—zld + S' dav,Y., + gdrl gdrz YoV - -0

o I by o

fail to have an invariant meaning beginning with the quadratic term; therefore they act
only in ®, and not in R”. By means of the procedure described here (see also the
construction of the polynomials g,, in the next section), we actually “extract” the
invariant variations 8 ™Id, ( Y,) from the “usual” ones

¢ T, Tm-1 R
fdrl Ydr2 . 87 dtmYe, o -+ oVq,.

IR fa i

Their interrelation is given explicitly by (4.8).
For example,

—

3 1d, (Vo) = (Vidr,

e -

-

o

t Ty ] R -
801y 1 (V) = [ dry | dry Ve, Ve, — - 801y (V) 0 800 L (V2),

and so forth.
In conclus1on we note that if Y is a perturbation of an arbitrary flow P, =
exp S X dr instead of the identity flow, then the corresponding variation of P, , must
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be defined by

t T, Tm-1
dm P, (Vo) = (dv, (dry - | dtm AXed8 | Ve, ..,
Pt (Y3) §TI§; To ‘S‘ Tgm((expga 8 ) T

Tm -
(e_)i; | ad X de) th),
to

and the complete variation by

6 €Xp jerT ‘r) = 5‘ 6‘”‘) Pt I(Y'c)

m=1

we get for the expansion of the perturbation flow in a “Taylor series in the vicinity of X,”
the expression

exp 5 (exp jadXedB) Ydr=e o, ‘(Yt)
te

As the “Taylor expansion” of the perturbed flow we get

exp S (Re + Vodvad o™ p,

0"

§5. Calculation of the formal field(*) ¥, ,(X,) = In exp /! X, dr

We assume throughout this section that all differentiations and integrations of formal
series are to be performed termwise.

1. Computation in the algebra @ of chronological series. In the algebra @ of formal
chronological series, we denote by 9N the ideal consisting of series of the form

00 Tm-1 . .
(é:tn»f (XT) = ? 3 drl XdTZ e E dTmCm (le XI,’ s ey Xt,,,)&
m=1t, o

i.e., series without zero terms. The kth power of 9N is denoted by 9M*. We call a series

@Z,o,,(f,) in 9N absolutely continuous if the polynomials c,($, - . . , §,,) do not depend on

$o- It is clear that absolutely continuous series can be differentiated with respect to ¢, and

the operation d/dt maps the collection of all absolutely continuous series onto all of &@.
Furthermore, if €, (X,) € O, then

6, K gei o | -
et VL S (6, (X
= ml( to,t( T))

is obviously a well-defined formal chronological series.

PROPOSITION 5.1. There exists an absolutely continuous formal chronological series

. Tm-1 . .
Viet (Xz) = S dt, S dt, ... 5“ dTmgm (Xv,y .., Xe,),
m_1t0 fo

(*) We note that an explicit expression for In éxp [} X, dr is obtained in [9], but it is not in the form of a
chronological series. The connection between this formula and the Campbell-Hausdorff formula is also noted
there.
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such that

Vit (Xo) = 't0 150, 5.1)

In addition, the polynomials g, (%, . . ., §,,) are commutators (see §4) and are homogeneous
of the first degree in each variable.

The series V,o,(f',) whose existence is asserted in this proposition satisfies all of the
hypotheses of Proposition 4.1. Indeed, let
Tm—-1

Vi, (Xe) = S dr, 5 vy .. dimgm(Xey, ..., Xop).

0

Since the commutator polynomial g, is homogeneous of the first degree in each variable,
it follows from the inequality

WX, VIEN, x<<60(25+2) [ X]losill Vs,
which holds for any X and 17, that

lgm (Xey -« s Xep) Elgx 2C G m) | Xealyum <« 1 Xem losmxe

Therefore

VIR (X El o <=2 (yuxtuw ) -

t“
But then (4.5) follows at once from the formal equality (5.1) and the asymptotic estimate
(2.23).

PROOF OF PROPOSITION 5.1. It is required to find an absolutely continuous chronologi-
cal series satisfying (5.1). In what follows, we will, as a rule, omit the arguments ¢, and )?,
in ¥, (X,).

We differentiate (5.1) with respect to ¢. On the left we get °V ot (X, ) ° )-f', In order to
differentiate the right-hand side, we must use the formal variant of the variation formula
(3.21). We have

t+ed
y Vt*jd—{vt‘“ ) , . iie 4
] o2 -TadV;
e+8:e t :6t°cvo’1(e XEVQdG).

t
Consequently
1
% \4 ® -tadV d
PP R W R
dt dt

[

Thus it follows from (5.1) that

1
Vit (Xz)o Xi = th ¢ S'e“”d” d'ci V.
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Cancelling the invertible series E{fto’,()_(;) = e" from both sides, we get

1
— [ -tadV d
X ;== 1€ g dt — Vt.
dt
0
The series [§ e "% dr begins with Id, so it is invertible. The inverse series is the
Maclaurin series of the function

1
1 /j' ~2t = s
/ e T e

with the variable z replaced by ad V,. We put ¢(z) = -z /(e™* — 1). Our equation takes
the form

d —
'Et' Vt = (ad Vt) Xt. (52)

Here

0 ((Z) [ve) B

_ o~ ¢ ay; 1 3 a . 1Qrr
(p(ath)—-Z—a!—ad Vtul—r—“z—ad‘/t-{"z-a‘—dd I/t,

=0 A=2
where B, is the ath Bernoulli number: B, =1, B,=-1,...,and B,,,, =0 for a =
,2,....

Conversely, we assume that the chronological series V, of 9N satisfies (5.2). Then

1 1
d oVt — Seﬂadvtd,c% V, = to Se-rathdT(P (ad Vi) X; = th o Xy,
o o
and consequently e” = ‘?\f,o,, ()?,). Thus (5.1) is equivalent to (5.2).
To solve (5.2) it is convenient to introduce a formal Laurent series in the m-dimen-

sional variable A = (A, ..., A,) with coefficients in @. We denote by &,(A) the
collection of all series of the form

2 =3 QNXKor, Qhk(Xoe @
LezZ(m)
Here ¢ = (4, ..., t,) is a multi-index, A' = Ay, ..., A, and Z™ is the set of all
m-dimensional vectors with integer coordinates.
It is not possible to multiply arbitrary formal Laurent series, as is done with power
series. Therefore @,,(A\) does not have a natural ring structure. Nevertheless we can say
the follgwing.

Let @ (A) be the subset of @,,(A) defined by the following condition: a series
RA) = S REY (X M
vezim)

0 .
in &,,(A) belongs to @, (M) if and only if the coefficients R(X,) € IM*, where k, > o
as |i| - 0.

For any

M= QHX)NERM (M) and XM= 5| RELX)A € Enld)

vezim) wezim)
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we define the product INA) € (M) by
LR =3 ( S QLR )
LEZ(’") V=1

The infinite sum

lgas meaning by virtue of the restrictions imposed on the coefficients of the series in

e M.

Such a defmmon of multxphcatxon together with termwise addition, gives a ring
structure in @ () and an @ . (A)-module structure in &,,(A).

We note that for arbitrary(®) Q € 9N the element A — Q is invertible in @l()\), and
(-t = 3 A

m=0

Let ¥\ = E‘_ez(...) Q‘AN' be a series in €,(A\). As usual, we call the coefficient
QUL Dof A7+ -« A the residue of the series {A) at zero and denote it by

QU™ =res £ (A).

We consider an arbitrary formal power series G(QA) = & G, }\“ with scalar
coefﬁclents It is clear that such a series belongs, in particular, to an 6?, ,(A)-module of
@ ;). In addition, as is not difficult to verify,

res{G(A) (A —Q)"} = 2 GQ" =G (Q) (5.3)
a=0
for any Q E @.

Let F: @ (A > @ ..(A) be a mapping of 62 ., (A) into itself. We call the mapping 9, F:

GE nOVE G’, . (A) defined by

9F (R () = % F(2 (M) +eR (M),

=0

0
a differential of the mapping F at tgle “point” &) € €, (N) if the derivative on the

right-hand side exists for all RA) € @ (A).
The usual Leibniz rule for the differentiation of a product,

dg (FG) (R (1)) = (OgF (R (M) G (€ (M) - F (2 (1) IgG (R (M),

holds for this differential, and (under suitable assumptions) the rule for differentiating a
composition,

0g (F » G) (R (W) = OrgyF o 0 (R (W),

(®) We omit the arguments #;, ¢, and )2", in the symbol Q,o,(.’?,) € @ for a ring element.
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Let F be such that A) € gﬁm(}\) exists for all F(R(A\))~'. We denote the mapping
M) - F(R(\) ™! by the symbol 1/ F (in contrast to the inverse F ~'). An application of
the Leibniz rule to the identity F(RQA)F(RQA)) ™' = Id gives an expression for the
differential of 1/ F:

Og (1/F) (R (W) = — F (2 (M) RO F (L ()™ (5.4)

We return to (5.2). We denote the mapping of & which associates with an arbitrary
series Q, (X,) € @ the series p(ad Q, (X)X, by ¥,: & —» &. Our equation takes the
form

:—t V=W, (V), Vi (5.5)

Finally, we denote l:())y ‘_I", the mapping which associates with each differentiable mapping

F in the ring @ c &,,(\) the mapping Q — 9, F(¥,(Q)) in the same ring. The analogy
with ordinary vector fields is obvious.

With the help of \.I",, we can write a solution of (5.5) in precisely the same way as in the
case of ordinary differential equations. We have

t t t Ty
V= j"l’n (Ve,) dry = S ¥, (0)d, + f dr, ( Ay, P, (de.) dr,
to to .to lbo dry
t t T, -
= j‘ We, (0)d, -+ gldﬁ 5‘ dt, ¥, ¥e, (Vs,)
to 1y to
m-1 t T Ta-1 _) .
=3 fdx, (dty... [ duaeye . o Fe¥e (0)
a=1#, to to
3 T, Tm-1 . .
+ ( dt j" dty ... | dtmWe,o -0 W, We (Ve,)
to to to
o ¢t T, Tm~1 . - Y NN
= ,..= (2 Sdrlj'drz... jdr,,,q‘r,mo... ulvtl)ld(0)=exp gqr,dﬂd(O).
m=1f{, to to to

Thus in order to find the chronological series V,o,,(f,), it remains to calculate the
polynomial

gn Xy -, Xm) = W0 0 Vo War(0).

The unknown series then takes the form

Tm-1

o« ¢ Ty — .
Vit (Xo) =3 'fdrlg]drz... g dTngm Xey - > Xz,

m=1t, iy ;o

To carry out the calculation, we make use of (5.3). The mapping ¥,, can be expressed
in the form

¥ (Q) = @ (ad Q) Xpn = res @ (A) (A — ad Q) X
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By virtue of (5.4) and the linearity of the operation of taking the residue, we get

¥, (Q) = oW (W2 (Q)) = resg () (A —ad Q) ad W, (Q) (h — ad Q)1 X,
= 1es® () @ (hg) (b —ad Q) ad ((, — ad Q) X;) (b, — ad Q)1 X,

Consequently

81 (X)) = V1 (0) = 9 (0 X, = X;,
a2 (X1, 522) = W,¥; (0) =res 2&;32-(&@3)' ad )_52)?1

172

= ¢'(0)p (0)ad Xz)?l = % ad}23€1'

If we use (5.4) and Leibniz’ rule for differentiating a product, it is not difficult, by
means of successive differentiation, to represent ‘f',,, °©o +.. o ‘i’z\I',(Q) in the form of a
residue of some series in @,,(\) for any given m, and then, putting Q = 0 and taking the
residue, to find gm(f boeees fm). It is clear from the method of constructing the g, that
they satisfy all of the hypotheses of Proposition 5.1.

The procedure for calculating the g, can be simplified considerably. We describe one
of the possible algorithms.

2. Construction of the polynomials g,,. Let Ass(ad, {,, ..., ,) be the free associative
algebra over R with generators ad, §,,...,§,. The elements of this algebra are all
posssible linear combinations of words made from the alphabet ad, ¢, . . ., ¢,

We call a word made up of the “letters” ad, {,, . . ., £, regular if by the introduction
of suitable parentheses it can be expressed as a commutator polynomial in §,, ..., ¢,
with the usual meaning of the symbol ad,

(ad Ci)ggr— [Qh Zz] =§1€z~§zci-

For example, the words ad {,¢{;, ad ad {,{,§, = [[{5, §,), {,] are regular, and the words
ad ¢,, ad §,{,$; are not regular. We note that the parentheses in a regular word can be
inserted in only one way to get the “commutator monomial.”

Let w be some word. With each variable {, occurring in w we associate a natural
number called the depth of {, in w. The depth is defined in the following way. We
represent w = w,{, w,, where w, is a (possibly empty) word which does not contain §,,
and we assume that w = v, - - - v, where each v; is one of the generators of our algebra.

We define the set J c {1, ..., 7} by means of the following rule: i € J if and only if
the following two conditions are satisfied: 1) the number of occurrences of the generator
ad in the word vv,,,- - - v, is 3(I — i + 1); 2) for each i > i, the number of oc-
currences of ad in vv,,, - - - v, does not exceed (/ — i + 1)/2. The depth of {, in w is
equal (by definition) to the number of elements in J.

We mention an equivalent definition of the depth of a variable in a word which
motivates the term “depth.” In the terminology developed above, the depth of {, in the
word w is the number of regular words of the form v;v,,; - - - v,{,, where i < I. To prove
the equivalence of the two definitions, it suffices to note that the word v, - - - v){; is
regular if and only if v, - - - v, satisfies the conditions 1) and 2) above.

With each word w we associate a differentiation D(w) of the algebra
Ass(ad, ¢, . - ., §,) which acts on the generators according to the rule ®(w)ad = w ad,
D(w)$; = wt;, and which is extended to the remaining elements of the algebra by
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linearity and Leibniz’ rule. For example,
D(C)adl;="Ciadl; +ad i)

To construct the polynomials g,, we need the sequence b, =1, b, = B,/a!, a =
2,3,..., of real numbers, where B, are the Bernoulli numbers.
We consider now the element

D(@dfp)e - --D(@dg,) € Ass(ad, Ty, ..., Lm),

which is obtained from ¢§, by successive applications of the differentiations
D(ad §y), . . ., D(ad §,,) and which is a sum of (2m — 3)!! regular words:

D(adlm)o - - oD(ad L) Ly =wy + ... + Wem-g1. (5.6)

We denote the depth of {, in w; by v,

y',

and we put g,(§,) = {, and

(am-3)!t

gm (Cly e ey gm) - 2 bvl(l . bvmawa, m >/ 2
a=1

For example,

85 (Cu Lov &) = ——ad yad L, + —— ad ad Ly + - ad Ly ad Ly

(G0 (B Gl + 1y, Gl L]+ [ G, Gall.

L
6
After simple transformations using the Jacobi identity, we get

85 (Cos ov Go) = = (Gon Lo Gull + G0 Lol L.
Similarly,

g4(€1v §2v C:}! §4)
([[Cdr §3]9 l§27 Cl” "11— [[[gdn €3]7 C2]3 gl] "lw_ ICM [[CSv €2]v Cl”
—VL—[C:}’ [[C47 C‘Z]s Cl]])

RN
12

This algorithm for the construction of g, is essentially a formalization of the
procedure for calculating the g,, by means of residues described earlier, as can be
verified by simple induction on m.

REMARK. Let ¢ be an analytic vector field over the straight line corresponding to the
function @(¢) = —t/(e”* — 1). Using the fact that

. . (2m-3)!!
Wyowe oo Wy W (0) = 51 buyy .- by,
a=1
it is easy to get that

(2m-3)!!

SV buyg b = 9™E (0)
=1

(here E is the function which gives the identity mapping of the straight line, E(f) = ¢).
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Similarly, if

1) =S |b a=i(1—-ti)‘2
(2) Eﬂlalz 5 ctg—) +

and ¥ is the vector field corresponding to the function x(¢), then

(2m-s)!! .
2 [bvyg - - by | = XME (0).
a=1
Using this result (see also (5.7)), we can estimate the constants C, and C, in (4.5). We
will, however, not pursue this.
3. Convergence of the series. In general, the series ﬁ&,(f,)E diverges, but in certain
situations it can converge.
We assume that B is some subalgebra of the Lie algebra Der(®) and that a norm || - |},
where ”[X Y]|| < ||X|| ||Y|| VX, Y € B, is given on B, making it into a Banach Lie
algebra.

PROPOSITION 5.2. Let X be a nonstationary field, and let X € B for all t eR. If
Ji |1 X, || dr < 0.44, then V, ,(X ) converges absolutely in B.

PRrOOF. Suppose that X e X € B. We estimate ugm()? P _.,,,)ll. We note that
each variable X,, i = 1,..., m, occurs in the word w, (_] =12...,2m— 3)!; see
(5.6)) precisely once. Consequently ||w)|| < ||X e e 1 Xl Thus

(am-3)!!

Ilgm(Xh--.,Xm)": Z b"la“'b"maw‘l

a=1

(2m~3)!! s s - _ —
<( Z lb"la .t 'b"mal) "Xl” . “Xm“ = XmE(O)“XI“ . “X”l"

Therefore the mth term of V,O,(A—’;) is bounded above by
T, Tm-1 - 3 m
— m 0
X"‘E(O)ydrlj dv, . . j AT ) Xe, ). . | X, | = "—i‘l (yux,udr) .
b t to to
It remains to estimate the radius of convergence of Z3(x™/ m!)E(0)8™.
The Maclaurin expansion of x(z) has radius of convergence 27. Arguing as in §2.1, we
get that, for any o € (0, 27),
XmE (0) < (m — 1) = (‘M"—’)"’ .7

(o)

where M(0) = max, cc,,|-,/x(2)|- Furthermore,

1%(2)] = <SHbullzle=2(2]), |2 22

a==0

S [ba| 2
a==0

Consequently M(o) = x(o). Thus the series in which we are interested converges for
|8] < maxy, s, 6/2x(0) = 0.44 . . .. This proves the proposition.
At the same time we get the estimate

t
\IIXTlldr %

Vet (X | < o E (0).
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COROLLARZ. Under the hypotheses of the proposition, the flow ﬁ,o., = VoK) coincides
with €xp [! X, dr.
Indeed,
J . .1 - 4 =
L ) adtio ((rsnage Ly, (%

o

= &1t 0 (ad Vi, (Xe)) o 0 (ad Vit (X)) Xe = €050 0 X,

§6. Two examples of applications of the formulas

In subsequent articles we intend to consider applications of the calculus we have
developed, mainly to a study of necessary conditions for extremality of high orders. We
give here only two simple examples which illustrate possible applications of our results.

1. Control by means of quasistationary fields. In this subsection we characterize in
invariant terms those controlled equations which, from the point of view of control
theory, must be considered as equivalent to linear systems.

First of all, we introduce a criterion for the commutativity of two nonstationary vector
fields of a special form.

PROPOSITION 6.1. Let X, j;v and Y_"2 be (smooth) vector fields. The field e'*d x f,
commutes with the field e*** XY, for all t and s if and only if

[Y,, adi XY,]=0C for j=0, 1,...,21—1, (6.1)

PRrOOF. The necessity is obvious: it suffices to differentiate the identity [)_’.1, e’ X f’;]
= (0 times with respect to z.
We now establish the sufficiency of (6.1). Because of the identity

[¢dXY |, sadXY)] — adX [V, elt-9adXY,), (6.2)

the sufficiency will be established if we prove 1) the commutativity of 171 with e72d ¥ f’;
for all 7 and 2) that if (6.1) is satisfied then all of the brackets

ladiXY, adi)??:], 0<Lign—1,0<Lj<n,

vanish.

We get 2) at once if we compare the Taylor series expansions of the right and left sides
of (6.2).

For each x € R", we denote the largest number such that the vectors fl(x),
ad X )_”l(x), cadd X ?,(x) are linearly independent by k(x); similarly, /(x) is the
largest number such that ?z(x), o.,adl X fz(x) are linearly independent. It is clear
that k£(x) and /(x) do not exceed n. In addition, k(x) and /(x), which take on finitely
many values, are lower semicontinuous and consequently locally constant on some open
dense subset of R”. To prove the proposition, it suffices to examine each component of
this open set separately. Therefore we may assume that k(x) =k and /(x) =1 are
constants. In this case,

. k-1 N . -1 .
adtXY, = 3" agad*XY,, ad'XY,=73" bgadf XV,

a=a B=0
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where a, and by are smooth scalar functions. Suppose that 0 <i < n — 1; then, by
virtue of 2),

-1
0= [ad‘XYl, ad’ XY2] = ((adf XYI) be) adB XY ,.

a=0

Since the fields ad X Yl, 0 < B <k — 1, are linearly independent, it follows from this
that (ad’ X Y,)bp =0,8=0,1,...,/— 1. Hence we deduce that (e‘*! XY,)bj = 0 for all
tandj=0,1,...,/—1.
Indeed,
k-1
(e‘ade Vb = (e‘a‘”r ad* XYI) b; = 2 (e’adxa ade XY, 1) b;
a=0o
k-1 k-1
=3 (e‘Xa )o (e’adxad“XY )bj =73 (e‘xa )o (etadXY )b;.

=0 ox=0

dk

Thus (e’ *XY,)b,, as a function of #, satisfies a linear differential equation of order k. In
addition, the function and its first kK — 1 derivatives vanish at 7 = 0. Consequently
( tad X Yl) b.=0.

We put Z =[Y,, e'* XY, ,]. It is required to prove (see 1)) that the family Z, consists
of zero vector fields.

We have
— — - — s —
;Zt [Yh 2 (€ Xbgy) o et2dX ad O‘XYQ]
t .':
_— ¢ - (6.3)
:Z (efxb [y etadX daxy2] TZ (y e‘Xba) etadX d“XY
a=0 a=0
Since

)71 o eﬁba — X o (e-tad??l) b,

the second sum on the right-hand side of (6.3) is equal to zero. Consequently

— Zt 5‘ (etXba) — Zt

dt’ it
Since
d] — —> L
—Zt)y_, =1V, ad/ XY,] =0
day
forj=0,. — 1, it follows that Z =0.
We now cons1der the controlled equation
x=fx+Gx)u, ueR’, (6.9)
in R”.

The vector-valued and matrix-valued functions f(x) and G(x) are assumed to be
smooth and bounded. . .

In addition, we assume that the vector fields e’ *4/Gu and e**/Gv commute for all ¢, s
and all u, v € R". Proposition 6.1 gives an effective method of verifying this assumption.
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We fix a point x, € R” (the initial state) and a moment in time ¢ > 0. The control

theory problem for (6.4) consists in the study of the mapping
N
w () —exp | (f 4 Gu(t))dTE (x,),
0

given on the space L{[0, ¢] of r-dimensional vector-valued functions which are summable
on [0, ¢], or given on some subset of this space. By virtue of the fact that

—— 2 = —— radf T4
exp | (f - Gu(r))dt =exp | e 'Gu(r)dr-e’,
0 o
this reduces to the study of the mapping
t >,
u(v) —~exp | € */Gu (v) diE (x,), (6.5)

]

which corresponds to the controlled equation
v = IGUE (v), 0< 1<, (6.6)

with initial condition x(0) = x,.
We denote by D the corresponding attainable set, i.e. the image of L{[0, ¢] under the
mapping (6.5),

— ! T
D = lexp | e“ " Gu(t)dt| u(v)€ L[]0, t]}cR".
0

PROPOSITION 6.2. The attainable set D has an intrinsic commutative Lie group structure,
and the fields e"*/Gu, 0 < 7 < t, u € R", generate a space of invariant vector fields on this

group.

REMARK. We assume that the dimension of the group is k& (k < n). Since any
connected k-dimensional commutative Lie group can be obtained by factoring R* by
some (perhaps singular) lattice, it follows that the proposition reduces the controlled
equation (6.6) to a linear system in R* modulo a lattice. For example, the problem of
hitting a point for (6.6) is equivalent to the problem of hitting the nodes of an
appropriate lattice for a linear system in R¥. .

PrROOF OF THE PROPOSITION. From the vector fields e” “dféu, 0<7<tuEeR,we

choose fields 171, cee fk such that the vectors Y (xy), . .., Y,(x,) form a basis of the
linear hull of the vectors {e”dféuE(xo), 0<7<t u€R’} (we emphasize that
Y (x), ..., Y(x) need not generate the linear hull of the vectors e”*/GuE(x) for
X # Xg).
We define a mapping & : R* - R" by
k -
D sa¥a
E@By .., ) =€"" E(x).
Since the fields 17,., i=1,...,k, commute with each other, we get

k e d
3 Zsaya
a(‘g’(sl, ce., Sp) =" Vi) =Yi(&(Gy, -.., 8%), =1, ...,k
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The vectors Y (& (s)), . . ., Y, (& (s)) are linearly independent for any s = (s, ..., ) €
R*. In fact, if we assume that Sk 16, Y (6(s) =0, we get for any function ¢ € ®

k

/3 - -
N PN Y sa¥e - 5 Sa¥a
( Z Caya) P (%) = (? Caya> ! oe * @ (%)
1

o= a=1

-> & -
Dosa¥a = N sa¥a
=& oSN aVace T @(x)
a=1
i ->
PN ( - 2 saVa )
= caVale 71 ¢/ (6(s) =0,
a=1
ie. k¢, Y (x,), which means thatc, =0, a =1, ..., k.
Thus the vectors 3& (s)/ds; are linearly independent for all s € R*; consequently the
mapping & induces a smooth k-dimensional manifold structure on & (R).
Furthermore, the correspondence (s;, ..., s)—e Z%Ya defines a transitive operatlon
of the additive group of R* on the manifold & (R*). Indeed, since the fields Y,,
i=1,...,k, commute, we have

k k
Z (S(;+S;) ?a 2 s Ya Z sa}a )
&&=t = ¢* 0™t for all sg,sp, a,p=1, ..., k.

Since & (R¥) has dimension k, the kernel of this operation is some d1screte subgroup H
of R*. This means that & (R¥) is isomorphic to R*/H, and the fields ¥,, .. ., ¥, form a
basis of the space of invariant vector fields over the group & (R).

We show that the restrictions of the vector fields e”*/Gu, 0 < 7 < ¢, u € R’, to the set

& (R*) are linear combinations (with constant coefficients) of the fields )7,, R )7,‘;
hence it will follow that D c & (R¥).

Let 1 € [0, /] and u € R". By virtue of the choice of the Y, =1, , k, the vector

¢"*JGuE(xy) can be expressed linearly in terms of Y;(xy), . - Yk(xo) We show that a

relation of the form
& T GUE (x) = <;‘ CaY o (%)
OL-—I

continues to hold if x, is replaced by any point of & (R¥). We again use the commutativ-
ity of the Y. For any function ¢ € ® we have

V saYa
27—
( adf Gu(p) (& @) = e"‘—1 o & 4 Gue (x,)

k —>
Eo ( D) sa¥a ) k
= 2 ca¥ o \ €% @/ (%) = 3‘. oY o (& (3)).
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To complete the proof, it remains to verify that & (R¥) ¢ D. From Proposition 3.3 we

have the identity

1

t et adfGu () g
—_— _)_> .
exp 5 e Gu(t)dr = ¢
0
On the other hand, for each j the restriction of }71 to & (R¥) can evidently be expressed in

the form

! T
)/~ — T adf .
’Ig(kk) S e “"Gu(t)dr

2. The Euler equation for a variational problem. We need certain standard notation and
results involving differential forms which we now recall (for details, see [11]).

Any ®-multilinear skew symmetric mapping
o:Der(®) X ... X Der(®) >

is called a differential form of degree k over R".
The linear space of all such forms is denoted by A%, and A* = @ § Af. We note that

A* is an algebra over ® = AJ with respect to the operation of exterior multiplication.
An arbitrary diffeomorphism P induces a mapping P*: A* —» A*. In fact, if w € A},
then
(Po)(Xy, ..., Xp)=Po(AdPX,, ..., AdP1X)).
To each field ¥ € Der(®) there corresponds the operator iy: A* — A* of interior
multiplication of differential forms over the field Y. For any k > 0, i; acts from A} to

e -

(i) Xy, oo X =0, X,, ..., X

A% _, according to the rule

We also define in A* the coboundary operator (exterior differential) d, which acts from

A} to Af, |, for each k > 0, according to the rule

N . n+1 . N o .
(do)(Xy, - o, Xon) = S (— D" Xo0 (X, ooy Xay ooy Xp)
a=1 6.7)
= S =D 0 (1Xa Xpl, Xoy ooy Xay ooy Xpy s, Xa)
a<fB o
(notation of the form ., X,,... means that the field X; is deleted from the
sequence). The mappings P* and d commute:
P od =do P 6.8)

The operator L; = i; o d + d © iy is called Lie differentiation along the field Y.
Lie differentiation is actually differentiation in A*, i.e.

L"}' (0 /\ ©5) = (L;)(Dl) N©, + o, /\(L;’wz)
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The operators Ly and 4 commute, as follows at once from the identity d o d = 0.
We can derive the following useful identity, true for all w € A} and Y, Z € Der(®),
directly from the definition:

(L7m) (ZY=Yo(Z)—o(lY, Z}). 6.9)
Suppose that the nonstationary field /\7, and the corresponding flow 13, = exp [} A_’; dr
are given.
PROPOSITION 6.3. The family P} of mappings of A* satisfy the equation

d P,—PtoLa
dt

PROOF. Since the operators Ly and P! dP?/dt are differentiations in A*, it
suffices to show that
L Plo=PoLow
dt Xy
for generators of this algebra, i.e. in the case where w is a form of degree zero or one. If w
is of zero degree, i.e. w =@ € <I> then L;p = X,p, and the above equality is obvious.
Suppose that w € A}. For any Y Der(®) we have (see (6.7) and (6.8))
2 (Pio) (V) = % P (Ad P}T)
dt dt
— P (— ad X; Ad P7YY) -+ B0 X (Ad P7YY)
= P, (—o (X, Ad Py 1Y]) X (Ad Py 1Y))
= Pid(!) (Xz, Ad Pt IY) . Y ° Pg(&) (Xt)
= (Pioiodo) (Y) +(d= Proizw)(Y)
t Xt
= Py o (L)?to d -+ dol)—?t)(.l)()/).
Consequently

d . »
— Pio :PtOL——>OJ.
at ' Xt

Thus we may write

NI

’—-——> ,f > \ —_——r t
(exp | err} = exp | L dr. (6.10)
. 0 0

Let p be an nth-degree differential form which vanishes nowhere. Then any other form
in A} can be obtained by multiplying p by some uniquely determined scalar function.

The mapping div,: Der(®) — @ is given by Lyp = (div, Y)u.

The connection between div, for various p is given by the relation

¢ leqm =div, (cpY) Y(p L odivy }7 (6.11)
which holds for any ¢ € ® and Y € Der(®).
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We denote the set of all dlffeomorphlsms which preserve u by P, ie. P € P & P*p
= p. From (6.10) it follows that exp It X dr € 63’ for an arbltrary nonstationary field
X and for all 7 if and only if div, X =0.

Let f(x, v), x,v €R", be a smooth scalar function. To each vector field ¥ there
corresponds a function f( Y) € ¢ defined by the relation f( Y)(x) J(x, Y(x)). We
denote by dJ(X ) the first-degree differential form given by

F(X +eY).

=0

df (X) (V) ===

We fix a bounded region €, C R" with a smooth boundary 9, and we define the
functional J on the set of flows Py, which preserve p (P, € &, for all ¢ € R) in the
following way:

J(Poq) = dt S Pof (108 Po) 1. 6.12)

0

The nth-degree form under the inside 1ntegra1 sign in (6.12) is obtained by applying
the diffeomorphism Po, to the function f(log P0 . and multiplying the result by p.

We find differential equations which are satisfied by the extremals of this functional
for two types of boundary conditions:

1) fixed diffeomorphism Py ;

2) fixed region £, = P, (£)

(condition 1) is essentially more restrictive).

We calculate the first variation of J at the “point” P,,. We will denote the flow Py
simply by P,. In addition, we denote the result of applying an arbitrary fustodegree form
w to some fleld Y by means of angular brackets (as a scalar product) w( Y) = {w, Y>

Let X log P div, X = 0 V¢ € R. Using (3.16) and (2.20), we get

0 Qo

J (5{5 [ (Xe + Vo) dr) g dt | exp S (X. - Vo) dif (X +Vou
| dt

( 2 [(d,,f (Xn), ¥o) - \ (Ex_p f —ad XedBYt) drf (xt)} m

0 .Qo 0 T

where ||7||, x = O(f$ dt(f§|| Y|l ;41 dT)*) fors = 0, 1,2, ... and any compact set K.
The nonstationary vector field

- t(——- t —> —»
7 = [ exp f — ad XpdBY <dt
0 T

satisfies

dilz, = —ad XiZ, +Yi, Zy=0. (6.13)

The first variation 8/ of J at the point P, can be expressed in the following form:

8 (Vo) = (dt { Bol{ldef (X0, Yo) + Zd (Ko}

0 Q,
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Differentiation of the boundary conditions with respect to )7, gives Z, = 0 in case 1),
and Z, is tangent to 9%, in case 2).
From this point on, we assume that X, depends absolutely continuously on . We
transform the expression for 8J(Y,). Using (6.13) and integrating by parts, we get
ldtf’ T N O B
[ar CPecaf (X0, Yoou =G ar (Peaf (X0, 220+ 1X,, Z
0 a, 0
- - } -~ - - >
= [Putaf (X)), Zoyw — [ dt [Pe{Xedif (X0, Z0)
Q 0 Qq

-+ <—Edt— d‘,]c(X.t), Zt>—<dvf (}Zt% [;Q, 22]}”

S

Applying (6.9) to the form d,f(X,) and the fields X, and Z,, we get
1 - - ~ - -
Vat [Pld (X0, Yiyw = [Pl (X), Zi7w

o 9 Q

! ~ d - ‘ - —
_ § dt g P,<d—t duf (X) + Ly dof (X0, z,> .

Qo

If we change the variables of integration and take into account the fact that P*u = p,
we arrive at the relation

81 (Vx) = [(dof (X,), Zyop
Q,

d S z Ty o\
— (5 (X Lddd (X —df (X0, Z2 .

o

We now suppose that P, is an extremal of J. Then 8J( )_’;) = 0 for all admissible }_;,
Consequently

CLdf(X) + Ladef (X)—df (X), Z>p =0,
x§ N\ & 7 (6.14)

-

ViE [0, 1], VZ, sothat divyZ = 0.

LEMMA 1. Assume that the first-degree form w in the bounded region Q with smooth
boundary 9% satisfies

(o, op=0 VZ, sothat divy7 =0, (6.15)
Q

Then w = do for some function @ which vanishes on 3%.

ProOF. We show first of all that (6.15) does not depend on the choice of the
nth-degree form p which vanishes nowhere. In fact, any other nth-degree form has the
form @u, where @ € ®. In addition it follows from (6.11) that diV“((pi) = 0 = div,, Z=
0 for every function ¢ in ® which vanishes nowhere.
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Thus it suffices to prove the lemma for the case where p is a volume element in R”,
p = /\]dx’. In what follows, we will denote the Laplace operator by A,
n
. 0%
A =divyegrad = ;
* 21 (0x%)?

for any vector fields X and Y the function (X'. R )7) in ® is given by

XN@=X@, Y @) =S X* @)Y @), | Xp=(X, X);

a=1

T is the vector field dual to w defined by
(o, )—(’) =(w, )?) vXé Der (D).
The function ¢ whose existence is asserted in the lemma is uniquely determined by the
conditions
Ap =divye” in Q,
¢ =0 on 0Q.

The validity of (6.15) for de follows easily from the Gauss-Ostrogradskii formula. In
fact, if div, Z =0, then {de, z > = Z(p div ((pZ ), and consequently

f(dcp, Zyw = Ydivu(cpZ)u — {wzcin =0.
Q Q on
On the other hand, div,(w” — grad ¢) = 0. Thus
0= {(m —dp, 0" —gradg)u = \ |m —grad @ |? .
Q Q
Therefore w = dp.
Lemma 1 and (6.14) guarantee the existence, for any ¢ € [0, 1], of a function ¢, such
that
< df (X0) + Ly def (X0 =d(1(X) + ) in Qs
(6.16)
@: =0 on 9%, div, )_()t = 0.
These are equations for extremals of J in the case of boundary condition 1). In case 2),

both (6.14) and the fact that

{ ¢aef (X1), Z)p =0  VZ&Der(®) (6.17)

follow from 8J = 0, so that div, Z= 0, and Z is tangent to 9%,.

LEMMA 2. Assume that the first-degree form w in the bounded region Q with smooth
boundary 09 satisfies

Rco,_Z))u:O VZ
o

where div, Z=0and Z is tangent to Q2. Then w = do for some function ¢.
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The proof is similar to that of Lemma 1. In fact, it suffices to consider the case where
p is a volume element in R”. In this case ¢ is determined by the conditions

Agp =dive’ in Q,

dp ,
~— ={w, n) on dQ
on h >

(here n is the exterior unit normal to 32, and the remaining notation is as in the proof of
Lemma 1).
From (6.17) and Lemma 2 it follows that duf(f Y = dS; in ©, for some function §,.
We put w, = d f(X, ) Then w, = dS, and (see (6.16))

gf—mt + L—>(l’t~d(f (Xt) + @) in Q. (6.18)

The family of forms w, is a unique solution of (6.18), since the corresponding
homogeneous equation has only one solution (see (6.10) and Proposition 1.1). Making
use of the Cauchy formula for the solution of linear differential equations (its validity in
this situation can be verified by direct differentiation) and the commutativity of Lie
differentiation and exterior differentiation, we get

PR | { !
w; = exXp S — L dudS, + | {( V ) d(f (Xo) + (Pr)} dv
1 L R 1 :
=d (exp ( — XudtS, + ( p —Xod0 (f (X) +90)) d )

Thus w, = d8S, for some function S, and for all ¢ in [0, 1]. After removal of the exterior
differential, (6.18) takes the form

%St 4-)—(3& = f()_(’t) -+ @¢.

Since ¢, = 0 on 9%,, the complete system of equations for the extremals of J in the
case of the boundary conditions 2) is

—:—t St —‘—X;St = f()?[) on 652;,

dS; = dof (X;) and divy X; =0 in Q.

REMARK. In the case where n = 3, p = Aldx’ and f has the form f(x, v) = }p|v|* —
U(x), the variational problem for J with boundary conditions of type 1) embodies the
principle of least action for the motion of an ideal fluid in a force field with potential
U(x), and (6.16) is the corresponding Euler equation (see [10]). The function ¢, plays the
role of the pressure, and the boundary is free.

Received 30/AUG /78
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