Hoxn. Akan. Hayx CCCP Soviet Math. Dokl.
Towm 299 (1988), Ne 1 Vol. 37 (1988), No. 2

COMPUTATION OF THE EULER CHARACTERISTIC
OF INTERSECTIONS OF REAL QUADRICS
UDC 515.165+519.85

A. A. AGRACHEV AND R. V. GAMKRELIDZE

In this note we present formulas that express the Euler characteristic of the set of
real solutions of a system of quadratic equations or quadratic inequalities, and also some
results that make it possible to use information about the solution sets of systems of
quadratic equations and inequalities to characterize the conditional extremum points of
smooth functions.

1. DEFINITION. Let p: R¥ x RY — R be a symmetric bilinear map. It is called
degenerate if the origin in R¥ is a critical value of the quadratic map ¢ — p(z,z),
z € R™\0; otherwise the map p is called nondegenerate.

Let w € R**. Then wp is a scalar quadratic form on RY. We denote by wP the
corresponding symmetric N x N matrix. The map p is degenerate if and only if for some
w € R**\0 and z € RN \0 the equalities wPz = 0 and p(z, z) = 0 hold. Tt is not hard to
conclude from this that the degenerate maps form a proper algebraic subset in the space
of all symmetric bilinear maps.

More generally, let K be a closed convex cone in R*¥ and K° = {we RFwy <0
Vy € K} the dual cone. We call the map p degenerate relative to K if for some w € K°\0
and z € RV \0 the relations wPz = 0 and p(z,z) € K hold; otherwise the map p is called
nondegenerate relative to K. Thus, the degeneracy of p is equivalent to the degeneracy
of p relative to the cone K = Q.

Let S¥~! (C R™) be the sphere of unit radius with center at the origin and PV—1
the quotient space of SV~1 by the action of the involution z +— (—z). Since p(—z,—z) =
p(z,z), the map p: {z, —x} — p(z, ) from P¥-1 into RF is well defined. Assume that
p is nondegenerate relative to a cone K € R*. Then, as is not hard to show, p~1(K) is
a submanifold with boundary of dimension N — k — 1+ dim K in PN~ (the boundary,
in general, is not smooth) or the empty set. But if K is a linear subspace in RF (ie.,
K = -K), then p~(K) is a real analytic submanifold in PV=1 or is empty.

To an arbitrary scalar quadratic form ¢ on RY there corresponds an inertia index
ind ¢, which is equal to the largest dimension of a subspace in R" on which the form
q is negative-definite. If p is a symmetric bilinear map of RN x R¥ into R, then
there is defined a function indp: w — ind(wp), w € R**, that takes nonnegative integral
values. We fix a closed convex cone K € R*. Let $*~1 be the unit sphere in R¥* and
Q=8*1NKO9 We set

’ Qp = (indp)~1([0,n]) N Q, n > 0.
We note that K = K°° = (2°, and so
pHK) =p7H0°) = {z € PYHwp(z) <0, Yw € 0},

Expressions of the form x(-) below denote the Euler characteristic of the topological
space in parentheses, and all topological spaces that we shall encounter admit a finite
triangulation, so that ambiguities in the definition of the Euler characteristic do not
arise.
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THEOREM 1. Assume that a symmetric bilinear map p: RN x RN — R¥ is nonde-
generate relative to a cone K. Then

N-1
(1) x(HE)) = 21+ ()N = Y (=1 x(0p).
n=0

As an example we consider the case when k¥ = 3 and K = 0. Then p1(0) is the
intersection of three quadrics in PY~!. The equation det(wP) = 0 defines a real curve
of degree N in P? = {{aw,« € R}|w € R®*\0}. We assume that this is a nonsingular
curve. If N is odd, then p~1(0) is an odd-dimensional manifold and x(5~*(0)) = 0, and
for even N the identity (1) can easily be transformed to the form

X(571(0)) = 2x({® € P?| det(wP) < 0}).
From the well-known inequalities of Petrovskii [1] it now follows that
X(FHO)] S FN(IV =2) +2.

An identity analogous to (1) holds for Hermitian maps as well. We call symmetric
R-bilinear maps pc: C¥ x CN — R’ that satisfy the condition pc(iz,iw) = pc(z, w)
Vz,w € CV Hermitian (for k = 1 not a sesquilinear complex form is obtained, but the
real part of such a form).

An Hermitian map pc is called nondegenerate if the map of R?V x R?Y into R”
obtained from pg by “forgetting” the complex structure in CV is nondegenerate. An
integral function ind pc takes only even values for Hermitian pc.

Let CN S §2N-1 be the unit sphere in CV. Multiplication of vectors in CV by
complex numbers equal to one in absolute value defines an action of the group S* on
§2N—1 and the quotient space CPY ! of the sphere SV ~1 by this action. If pc: CV x
CVN _ RF* is an Hermitian map, then the map pc: {€?%z,0 € R} — p(z, 2) from cph-!
into R* is well defined.

THEOREM 1. Assume that an Hermitian map pc: CY x CN — R¥ is nondegen-
erate relative to a cone K. Then

N-1
X(BG (K)) = N = > x(057).
n=0

2. We denote by Py the space of all scalar quadratic forms on RY. In Py there
is an algebraic hypersurface II = {q € Pn|kerq # 0} of degenerate forms. The set of
nonsingular points of the hypersurface II consists of forms ¢ such that dimkerg = 1,
and the set sing II of singular points has codimension 3 in Pn. Consequently, 11 is a
pseudomanifold and it is orientable in many ways, since I\ sing II is disconnected. Let
g € I\ sinTl, ind ¢ = n. For any sufficiently small neighborhood O, of ¢ in Py, the set
O4\II has two connected components, one of which consists of forms of index n, and the
‘other of forms of index n + 1. In order to choose the orientation of the hypersurface II
at the point g, it is enough to assign one of the components a plus sign, and the other a
minus sign. We call the orientation whose component consisting of forms of index n is
assigned a {—1)" sing canonical.

Let m > 0 and let G, (Z%y) be the manifold of all orientable m-dimensional subspaces
in Py. We denote by G, (IT\ sing I1) the submanifold (nonclosed) in #y x G, () con-
sisting of pairs (g, H) such that ¢ € II\ sing Il and the m-dimensional oriented subspace
H is tangent to II at g. We denote by G, (I) the topological closure of G, (I1\ sing IT)
in Py x G (Py). It is not hard to show that G- (1) is an algebraic submanifold
of codimension m + 1 in Py x G (Pn) which is, furthermore, an orientable pseudo-
manifold. The canonical orientation of the manifold II\ singIT induces an orientation of
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G, (I1\ sing IT), which can be extended to a well-defined orientation of the pseudomani-
fold G, (IT) (we note that the set of nonsingular points of G (IT) is connected, and so,
unlike II, there exist only two orientations on G} (I1)).

Let p: RV x RY — R* be a symmetric bilinear map such that wp is a nonzero
quadratic form Yw # 0. If a row w # 0, then its orthogonal complement w' is a hyper-
plane in R** with the obvious orientation (which is induced by the standard orientation
of R**); accordingly (wtp) € G¥_[(Pv). We set Tp = {(wp,wp)|w € S5~ 1}—this is a
(k — 1)-dimensional sphere imbedded in Py x G, (%y). The map p is nondegenerate
if and only if

TpNGi_ () = 2.

Furthermore let %y > . be a quadratic form of the type ¢t = — |z[2. We set Jp =
{(t,w'p)|w € §*~1}—this is another (k — 1)-dimensional sphere in Py x Gf_(P). It
is easy to see that the (k — 1)-dimensional cycles Tp and Jp are homologous in Py X
Gi_,(Pn). If pis a nondegenerate map, then the linking coefficient I(Jp—Thp, Gy_, (1)
is defined.

Let T be a singular chain in Py x G}, (%) that satisfies the condition 8T = Jp—Tp.
Then {(Jp — Tp, Gi_, (I)) equal the intersection index of T with G}, (II) and does not
depend on the choice of T'.

THEOREM 2. Let p: RY x RY — RF be a nondegenerate symmetric bilinear map.
Then

X(F7H(0) = (=DFU(Jp ~ Tp, GF_, (1) + $(1 = (=N ==1),

3. In this section quadratic maps are used to investigate a problem concerning arbi-
trary smooth maps. Let U and M be manifolds of class C°, dim M <dimU,uv € U, and
F: U — M asmooth map. We call u an extremal point if F'(u) lies on the boundary of
the set F(O,) for some neighborhood O, of v in U; otherwise we call u an interior point
of F. The concept of extremal point is the natural geometric analog of the concept of
local conditional extremum point for a scalar function subject to restrictions of equality
type.

It follows from the implicit function theorem that an extremal point must be crit-
lcal, ie., iImF}, # TpyM, where F: T,U — Tp,)M is the differential of the map
F at the point u. At a critical point v the Hessian of F, i.e. the symmetric bilin-
ear map F/: ker ), x ker F], — coker F),, is well defined (we recall that coker F, =
TF(U)M/ lqui)

PROPOSITION 1. Assume that the map F)/ is nondegencrate. Then there exists a
homeomorphism ®: T, U — O, of the space T, U onto some neighborhood O, of w in U
such that for every v € T,,U the equality F(®(v)) = F(u) is equivalent to the relations
v €ker F, and F)/(v,v) = 0. In addition, the set F~1(F(u)) NOy\u contains no critical
points of F.

If F}) is nondegenerate, then zero in coker F, is not a critical value of the quadratic
map v — F//(v,v), v € ker F/\0. Two cases are possible: a) zero is a regular value of
this map, or b) zero, in general, is not a value of this map.

COROLLARY. Under the conditions of Proposition 1, if F./(v,v) =0 for some v # 0,
then u is an interior point of F.

In §§1 and 2 we computed the Euler characteristic of the set of nontrivial zeros of a
quadratic map. Equality of this value to zero for the map FZ is a necessary condition
for u to be an extremal point.

Let us turn to case b).




PROPOSITION 2. Let k2 < N and let (N, k) be the space of all symmetric bilinear
maps of RY x RN into RF. In the space & (N, k) there exists a proper algebraic subset
% such that for any p € P(N,E)\Z the following alternative is valid: either p(z,z) =0
for some z # 0, or the image of the map z p(z,z), = € RN, does not coincide with
RE.

PROPOSITION 3. Assume that F!' is nondegenerate. If the image of the quadratic
map v — F!'(v,v), v € ker F,, does not coincide with coker F!, then u is an extremal
point of F'.

REMARK 1. The restriction k2 < N in the formulation of Proposition 2 can appar-
ently be weakened but cannot be elimated entirely. For example, any map close to z — 22,
2 € C = R2, is obviously surjective. This also goes for the map (z,w) — (2, lw|? —12]%)
from C? = R? into C ® R = RA that realizes the Hopf bundle.

REMARK 2. We have shown how the problem of characterizing extremal points
leads to systems of quadratic equations. If we attempt to characterize local conditional
extremum points under restrictions of inequality type, we arrive at systems of quadratic
inequalities.
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