COMMUNICATIONS OF THE MOSCOW MATHEMATICAL SOCIETY

Uspekhi Mat. Nauk 44:5 (1989), 153-186

Russian Math. Surveys 44:5 (1989), 189-225

Translated by J. Szucs

One more condition for a conditional extremum

A.A. Agrachev

The difficulties associated with the characterization of points of conditional extremum are well known in the case where the restrictions are not independent. In this note we will state a necessary and sufficient condition which takes into account, on the one hand, the method of Milyutin [4], and on the other hand, the results of [1], [3]. We only consider the finite-dimensional situation, where the essence of the problem is not overshadowed by details of a functional analytic character. The author is grateful to A.V. Arutyunov for calling his attention to the fact that it would be interesting to obtain a condition for conditional extremum.

1. Let V be a finite-dimensional real vector space. We denote by $\mathcal{P}(V)$ the space of real-valued symmetric bilinear forms on V and by $S^2(V)$ the symmetric product of V by itself. Any $q \in \mathcal{P}(V)$ can be regarded as a linear form on $S^2(V)$, so that $S^2(V) = \mathcal{P}(V)^*$. To each $q \in \mathcal{P}(V)$ there corresponds a number ind q, the maximal dimension of a subspace of V on which the quadratic form $v \mapsto q(v, v)$ is negative definite, and also the subspace

$$\ker q = \{v \in V \mid q(v, V) = 0\}.$$

Let $C \subset V$ be a convex polyhedral cone (with vertex at the origin) and let C° denote its polar, as usual: $C^{\circ} \subset V^*$.

Definition. A linear map φ : $V \to \mathcal{P}(M)$ is called regular on C if

$$\varphi(C)^c \cap S^2(\ker \varphi(v)) = 0 \quad \forall v \in C \setminus 0.$$

By using Sard's theorem, it is easy to prove that in the set of linear maps of V into $\mathcal{P}(M)$ the maps regular on a polyhedral cone form an open everywhere dense subset.

2. Let $f \in C^2(\mathbb{R}^N; \mathbb{R}^n)$, f(0) = 0, and let $K \subset \mathbb{R}^n$ be a convex polyhedral cone with vertex at the origin. We denote by $f_0' \colon \mathbb{R}^N \to \mathbb{R}^n$ the derivative of f at the origin and by $f_0' \colon \ker f_0' \times \ker f_0' \to \mathbb{R}^n$ the restriction of the second derivative to the kernel of the first derivative. Therefore, f_0' is a linear and f_0'' a bilinear symmetric map. The space \mathbb{R}^n consists of column vectors and \mathbb{R}^{n*} of row vectors. If $\psi \in \mathbb{R}^{n*}$, then

$$\psi f_0'' \equiv \mathscr{P}(\ker f_0').$$

Let us introduce the notation

$$\Psi = K^{\circ} \cap (\operatorname{im} f_{0}')^{\perp}, \quad r = \dim \Psi_{0}, \Psi_{r} = \{ \psi \in \Psi \setminus 0 \mid \operatorname{ind} \psi f_{0}'' < r \}.$$

 $\Psi = K^{\circ} \cap (\operatorname{im} f_{0}')^{\frac{1}{r}}, \quad r = \dim \Psi, \quad \Psi_{r} = \{ \psi \in \Psi \setminus 0 \mid \operatorname{ind} \psi f_{0}'' < r \}.$ Theorem. Suppose that r > 0, r(r-1) < N-n, and that the map $\psi \mapsto \psi f_{0}'', \quad \psi \in \mathbb{R}^{n*}$ is regular on Ψ . Then the following assertions are equivalent: a) $f(O_0) \cap K = 0$ for some neighbourhood O_0 of the origin in \mathbb{R}^N ; b) $f(O_0 \setminus 0) \cap K = \emptyset$ for some neighbourhood O_0 of the origin in \mathbb{R}^N ; c) $\Psi_r \neq \emptyset$ and $\max \psi f_0''(u, u) \geqslant 0$ for all $u \in \ker f_0'$. **小三**平,

3. Proof. We denote by Π the maximal subspace in the cone im $f'_0 + K$. Let $\pi: \mathbb{R}^n \to \mathbb{R}^n/\Pi$ be the canonical map onto the quotient space. Then $\pi(K)$ is an acute polyhedral cone. Let

$$S = \{u \in \ker f_0' \mid |u| = 1\}$$

be the unit sphere in ker f_0' . We introduce the map $p: S \to \mathbb{R}^n/\Pi$ by putting $p(u) = \pi f_0''(u, u)$, $u \in S$. It is easy to deduce from the regularity of $\psi \mapsto \psi f_0'$ on $\Psi = \pi(K)^\circ$ that p is transversal to $\pi(K)$ (for the definition of transversality of a map to a convex set, see the appendix of [2]). In turn if p is transversal to $\pi(K)$, then, as is easy to show, each of the assertions a), b) is equivalent to the relation

$$p(S) \cap \pi(K) = \emptyset.$$

At the same time, assertion c) is equivalent to the relation

(2)
$$p(S) \cap \operatorname{int}(\Psi_r^{\circ} + \pi(K)) = \varnothing.$$

The remaining reasoning follows along the lines of the proof of Proposition 2.1 of [2]. First of all, it follows from the proof of Lemma 2.3 of [2] that under the hypotheses of the theorem int $\Psi_r^{\circ} \neq \emptyset$. For the proof of the theorem it is sufficient to show that (1) implies (2).

Let us assume that (1) is satisfied but (2) is not. Then there is a $u_0 \in S$ such that

$$p(u_0) \in \text{int } (\Psi_r^{\circ} + \pi(K))$$

and

$$(p(u) - \alpha p(u_0)) \notin \pi(K) \quad \forall \alpha \in [0, 1), u \in S.$$

In this case there exists $\psi \in \pi(K)^{\circ} \setminus 0$, $\psi p(u_{0}) \geq 0$, such that u_{0} is a critical point of ψp and the Hessian of ψp at u_{0} has index smaller than $r = \dim(\mathbb{R}^{n}/\Pi)$. Recalling that ψp is the restriction of the quadratic function $u \mapsto \psi f_{0}^{r}(u, u)$ to S, we obtain ind $\psi f_{0}^{r'} < r$. Hence $\psi \in \Psi_{r} \cap \pi(K)^{\circ}$. Consequently, for any non-zero $y \in \operatorname{int}(\Psi_{r}^{\circ} + \pi(K))$ we have $\psi y < 0$. This contradicts the inequality $\psi p(u_{0}) \geq 0$.

The convenience of the above theorem lies in the fact that both the statement and the proof rely only on elementary facts of convex analysis. The main shortcoming is obvious: for the verification of the condition of extremum, the maximum of a family of quadratic forms has to be considered; in the presence of the quadratic forms themselves, this is a very complex undertaking. However, a more basic study of the quadratic map $u \mapsto f_0''(u, u)$ requires much more powerful methods (see [2]).

References

- [1] A.A. Agrachev and R.V. Gamkrelidze, The index of extremality and quasi-extremal controls, Dokl. Akad. Nauk SSSR, 284 (1985), 777-781. MR 87j:49051. = Soviet Math. Dokl. 32 (1985), 478-481.
- [2] ——, Itogi Nauki i Tekhniki. Algebra. Topology. Geometry 26 (1988), 85-124.
- [3] A.V. Arutyunov, On necessary optimality conditions in a problem with phase constraints, Dokl. Akad. Nauk SSSR 280 (1985), 1033-1037. MR 86f:49073.
 = Soviet Math. Dokl. 31 (1985), 174-177.
- [4] A.A. Milyutin and A.Ya. Dubovitskii, Theory of the maximum principle, in: *Metody teorii* ekstremal'nykh zadach v ekonomike (Methods of the theory of extremal problems in economics), Nauka, Moscow 1981, pp. 138-177. MR 84g:90038.

All-Union Institute of Scientific and Technical Information

Received by the Board of Governors 21 March 1989