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One more condition for a conditional extremum

A.A. Agrachev

The difficulties associated with the characterization of points of conditional extremum are well
known in the case where the restrictions are not independent. In this note we will state a necessary
and sufficient condition which takes into account, on the one hand, the method of Milyutin [4], and
on the other hand, the results of [1], [3]. We only consider the finite-dimensional situation, where
the essence of the problem is not overshadowed by details of a functional analytic character. The
author is grateful to A.V. Arutyunov for calling his attention to the fact that it would be interesting
to obtain a condition for conditional extremum.

1. Let V be a finite-dimensional real vector space. We denote by &P (V) the space of real-valued
symmetric bilinear forms on V and by S2(V) the symmetric product of V by itself. Any ¢ = .2 (V)
can be regarded as a linear form on S2(V), so that S2 (V) = &P (V)*. To each ¢ = P (V) there
corresponds a number ind g, the maximal dimension of a subspace of V on which the quadratic form
v+ ¢ (v, v}is negative definite, and also the subspace '

kerg= {v = V|g (v, V) = 0}.

Let C C V be a convex polyhedral cone (with vertex at the origin) and let C° denote its polar, as
usual: C° C V*,
Definition. A linear map ¢: V — PP (M) is called regular on C if

e (Cr N SPkerg())=0 Vve C\ 0.

By using Sard’s theorem, it is easy to prove that in the set of linear maps of V into 9° (M) the
maps regular on a polyhedral cone form an open everywhere dense subset.
2. Let e C? ®RY; ®R™), f(0) = 0, and let K C R™ be a convex polyhedral cone with vertex at

the origin. We denote by f RN — R™ the derivative of f at the origin and by fo ker j x ker f, — R®
the restriction of the second derivative to the kernel of the first derivative. Therefore f0 is a linear
and fg' a bilinear symmetric map. The space K™ consists of column vectors and R"* of row vectors.
If = R™* then

$y & P (ker fp).

Let us introduce the notation

¥ =K°(Q (imj)*, llx?ané,w,—{qeqf\0|1ndqfo<r} '
Theorem. Suppose thatr >0, r(r—1) < N-nYand that the map { — Yy, b & R™* js regular on v,
Then the followmg assertions are equivalent: a) f(Og) N K = 0 for some nezghbourhood Og of the
origin in RYN; b) f(0p\0) N K = ¢ for some neighbourhood Og of the origin in RY; ¢) \If,. # O and

max fo (u ) >0 forall u € ker fy.

wz\}f
3. Proof. We denote by II the maximal subspace in the cone im fo+ K. Let m: R™ — R, Tl be the
canonical map onto the quotient space. Then n(K) is an acute polyhedral cone. Let

S={uekerf|u]=1}
be the unit sphere in ker f. We introduce the map p: S — R"/I1 by putting p(u) = nfy (u, u),

u € 8. It is easy to deduce from the regularity of 4 i—)-\lf on ¥ = n(K)° that p is transversal to
m(K) (for the definition of transversality of a map to a convex set, see the appendix of {2]). In turn



if p is transversal to m(K), then, as is easy to show, each of the assertions a), b) is equivalent to the
relation

(1) | p(S) (k)= ¢

_ At the same time, assertion ¢) i3 equivalent to the relation
(2) PO N Int(Y. F a(K) = ¢

The remaining reasoning follows along the lines of the proof of Proposition 2.1 of [2]. First of
all, it follows from the proof of Lemma 2.3 of [2] that under the hypotheses of the theorem
int W, # ¢. For the proof of the theorem it is sufficient to show that (1) implies (2).

Let us assume that (1) is satisfied but (2) is not. Then there is a Ug < S such that

p (ug) € int (¥ - 71 (K))
and
(p (1) — ap (ug)) & a (K) Vo = [0,1), veS.

In this case there exists y € n(K)°\0, ¥p(ug) = 0, such that ug is a critical point of yp and the
Hessian of yp at ug has index smaller than r = dim (R™/II). Recalling that yp is the restriction of
the quadratic function u +> 1,Lf0 (u, u)to S, we obtain ind yfo <r. Hence y € ¥, N n(K).
Consequently, for any non-zero y € int(¥} + n(K)) we have yy < 0. This contradicts the inequality

yp(ug) > 0. =

The convenience of the above theorem lies in the fact that both the statement and the proof rely
only on elementary facts of convex analysis. The main shortcoming is obvious: for the verification
of the condition of extremum, the maximum of a family of quadratic forms has to be considered;
in the presence of the quadratic forms themselves this is a very complex undertaking. However, a
more basic study of the quadratic map u ]‘0 (u, u) requires much more powerful methods (see [2]).
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