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Abstract. This paper is a continuation of a series of papers, dealing with contact sub-Riemannian
metrics onk3. We study the special case of contact metrics that correspond to isoperimetric problems
on the plane. The purpose is to understand the nature of the corresponding optimal synthesis, at
least locally. It is equivalent to studying the associated sub-Riemannian spheres of small radius. It
appears that the case of generic isoperimetric problems falls down in the category of generic sub-
Riemannian metrics that we studied in our previous papers (although, there is a certain symmetry).
Thanks to the classification of spheres, conjugate-loci and cut-loci, done in those papers, we conclude
immediately. On the contrary, for the Dido problem on a 2-d Riemannian manifold (i.e. the problem
of minimizing length, for a prescribed area), these results do not apply. Therefore, we study in details
this special case, for which we solve the problem generically (again, for generic cases, we compute
the conjugate loci, cut loci, and the shape of small sub-Riemannian spheres, with their singularities).
In an addendum, we say a few words about: (1) the singularities that can appear in general for the
Dido problem, and (2) the motion of particles in a nonvanishing constant magnetic field.
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1. Introduction
1.1. MOTIVATION: 2-D ISOPERIMETRIC PROBLEMS AND THE DIDO PROBLEM

In this paper, we consider thery elementargituation of ageneral isoperimetric
problemon a 2-dimensional Riemannian manifold. Moreover, in most of the paper,
we remain at thdocal level. Despite the apparent simplicity of the context, we
obtain new and interesting results.

We work in theC* category.(M, g) is an oriented 2-d Riemannian structure.
Almost everywhere in the paper, it will just be a gerngat M of such a structure.
We are given on{M, g) a 2-form,n = (MVolume)yr, and we consider the following
class of isoperimetric problem&V, g, n):

go.q1 € M are fixed, together with a smooth curye [0,1] — M, y(0) =
q0, ¥ (1) = g1, and we are looking for curves: [0,1] — M, y(0) = ¢q1, y(1) =
¢o, With minimal Riemannian length such that the valug of the integral/,, n is
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prescribed, wher& is the domain encircled by andy. This problem is referred
to as the “isoperimetric problem”, or problem (I).

If v =1, (I) is just the dual formulation of the classical isoperimetric problem
(called the Dido problem) which consists of maximizing the area, for prescribed
length. It can be shown that both formulations are equivalent, at least at the local
level.

Note 1.This Dido problem is also sometimes named Bappus Problenfsee
for instance Carathéodory [8, pp. 366—370]) in honor of the Greek mathematician
who solved it in the particular case of the Euclidean metric on the plane.

Even for theDido problem at the local levdi.e. small areas, or small perime-
ters), some interesting phenomena appear, as we shall show.

Just as an example, let us state a result and a corollary which show what can
happen. These results are simple consequences of the main theorems in this paper.

go € M denotes the poley denotes a certain primitive of the volume form,
and, A denotes the (small) prescribed value of the integj‘ai(;'/(r)) dzr. We will
treat only the casd > 0, The cased < 0 is similar and is obtained by reversing
orientation.

Letus seti = \/A/m. Letk(qo) denote the Gaussian curvature(df, g) atqo.

The successive covariant derivativésk are covariant symmetric tensor fields
of degreej on M and they can be decomposed under the action of the structural
group S@2) of T M on the fibers of the corresponding vector bundles, into isotypic
components relative to successive powéfsaf the basic charactef®e i = +/—1:

J
Vik(go) = Y (V/k(q0)). (1.1)
=0

In particular, v2k(qo) is a quadratic formy2k(qo) = v3k(qgo) + V5k(qo),
wherev2k(qo) = 3trace,(v?k(qo)) g(qo), andv2k(go) = O iff the discriminant
discr, (v2k(g0)) = 0. v3k(qo) is cubic,v3k(qo) = V3k(qo) + V3k(qo)-

Let us consider the following vectolg, Vi, V2, Vi, V2, V2 in T, M:

(1) v is the vector which is normal to the gradient lofat gg with length
m /4 |gradk|,,, and the framégradk, V1), is direct,

(2) Vi are the vectors in the direction where the quadratic fogt(qo), reaches
its maximumz, on the unit circle, with lengtlir /2)7,,

(3) V4 are the vectors that are normal to the directibnd>, I3 where the cubic
form vguqo) reaches its maximuri, over the unit circle, with lengtii3r /8)7ao,
and the frames!;, V) are direct,j = 1, 2, 3.

The “cut locus” CutL (k) corresponding to the prescribed valués defined as
the subset oM formed by the pointg; that are joined tgg by severalifot uniqué
minimum length trajectories.
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Diagram D2

Diagram D1

T(h')

Figure 1. The generic Cut Loci.

THEOREM 1.1 (lllustration of further resultsfor a germ of Riemannian metric
at go and for small enough, the following statements hold.

There exists a germ of smooth cunvé€) at go such thatdy (¢)/dt(g0) = Vi,
and:

(1) if v5k(go) # O, then,CutL(h) is a tree graph formed by two semi-open
smooth curve segments issued from the ppiitt*). The direction of these two
segments i¥/4, their length has asymptotids’| Vi |;

(2) if v3k(gq0) = 0 but v3k(go) # 0, then,CutL(h) is a tree graph formed
by three semi-open smooth curve segments issued from the samg @38ntThe
direction of these segmentsVig, their length has asymptotide’| V.

Figure 1 shows two diagram®); and D,, which give the shape of the generic
cut loci. Consequently:

COROLLARY 1.2 (For generic Riemannian metrigoverM). There are two
types of pointsjp € M: g1 € M denotes any point sufficiently closedg y:
[0,1] - M, y(0) = go, y(1) = g1, denotes any curve issued fragg, with
prescribed valueA of the integraljola()}(r)) dz, |A| sufficiently small. Then:

(1) if v3k(go) # O (generic points, there are exactly one or two optimal
curvesy,

(2) if v3k(qo) = O (isolated points, there are pointsy; with 3 optimal curves
y from g to ¢1. (Optimal means minimum leng}h.

The triple point of case 2 is just the pointh?), all other points of the semi-open
curve segments being double.

Note 2.1t follows from the theory of characteristic classes (see [17], Chapter
40, page 204, for instance) thatdf is a compact manifold, and the Euler charac-
teristic (M) is nonzero, there are always isolated points of the second tyje:
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defines a field of quadratic forms with signature 1 on the complemettt af the
set of these isolated pointand the sum of indices of the associated “field of line
elements” is 2¢(M).

In fact, our main purpose in this paper is to describe the shape of what is called
(in terms of control theory) the localptimal synthesi$or a generic isoperimetric
problem and for the special case of the Dido problem. That is, for any fixed value
of go, we want to find all optimal curves frogy to g1, for all |A| small enough,
and for allg; close enough tqo.

This Goal will be achieved in this paper. In the next Section 2, we will show
that, forgenericisoperimetric problemsM, g, n) the answer to this question is
just an immediate consequence of the main results of a series of papers of ours
(2,5, 9, 4]).

Unfortunately, for the very special case of the Dido problem, these arguments
are not valid. We will solve this local Dido problem in Section 3, and show that
mainly there is only a change of scale, but up to this change, the results are very
similar to those of the generic isoperimetric (or sub-Riemannian) case. The main
results are Theorem 3.7, Theorem 3.8.

We don't state the results precisely in terms of isoperimetric problems in this
paper. We leave this to the reader: in fact, it is very natural and convenient to
reformulate everything and state all results in terms of sub-Riemannian geometry.

1.2. REFORMULATION IN TERMS OF SUBRIEMANNIAN GEOMETRY
(ISOPERIMETRIC STRUCTURESFIRST DEFINITION)

These considerations are classical. One can consult for instance the survey paper
by Montgommery [15].

Let (M, g) be a 2-d Riemann metric (with orientation), andidetE — M be a
(circle or line) principal bundle oveV!. For instance, one can consider the (circle)
principal bundle of oriented orthonormal frames oWer

The data(E, M, g, =, A) of such a principal bundle: E — M over a Rie-
mannian manifold M, g), and a connectiom on this principal bundle defines a
sub-Riemannian structure overin the obvious way: the underlaying distribution
is the “horizontal spaceA of the connection, and the sub-Riemannian metgic
is the lift on A via 7 of the Riemann metric oM : gz = 7. g.

DEFINITION 1.1. Such a structur€E, M, g, w, A) is called an isoperimetric
structure.

An isoperimetric structure is gpecial sub-Riemannian structuoeer E, since
such a structure is invariant under the action of the (circle or line) structure group
of the bundler. It is very easy to check that the sub-Riemannian structure obtained
in this way is acontactstructure if and only ithe curvature form of the connection
is nonvanishing
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DEFINITION 1.2. If the curvature form of the connection is a constant multiple
of the lift of the volume form of M, g), then we call this structure@ido structure

If we stay at the local level ot (small prescribed areas, or small prescribed
perimeters, for isoperimetric problems), then it doesn’'t make any difference to con-
sider either circle or line groups. Also, a Dido structuredampletely determined by
the underlaying Riemannian structufelus the nonsignificant constant appearing
in the definition).

The problem of “optimal synthesis” for isoperimetric problems is equivalent
to the problem of computing the “Cost functiol€’(p1) = d(po, p1), Whered
is the sub-Riemannian distance over The level surfaces of this cost functions
are just the sub-Riemannian spheres. It turns out that (in contrast with Riemannian
geometry) this cost function and its level surfaces, the spheres, are not smooth,
even locally. They have singularities, that should be described. This program has
already been carried out for generic germs of contact sub-Riemannian metrics, in
our papers ([2, 5, 9, 4]).

Note 3.This work has also been done in the noncontact “flat Martinet case”, in
the papers [3, 10], leading to very interesting results: the distance function, for the
most elementary noncontact analytic isoperimetric structure, is not subanalytic. On
the contrary, it follows from our papers that, in the contact case it is subanalytic.

As we shall see in the next section, generic isoperimetric structures have the
same classification as generic sub-Riemannian structures: the invariants leading to
this classification (there are two, mainly), are nondegendtasshe main purpose
of this paper to make the same generic classification for Dido structures.

Also, in this paper, we will give, in the Dido case, more details about computa-
tions of the cut locus, and more generally the self-intersections of the wave fronts.
This was partly done for general sub-Riemannian metrics in [2].

1.3. COMPLEMENTS

In our last Section 4, we will briefly mention two interesting complements. We will
deal with the motion of charged particles in a nonvanishing magneticielthe
motion of a particle with chargeis given by the equation:

kg(z(s)) = ¢ ¥ (z(s)), 1.2)

wherek, (z(s)) denotes the geodesic curvature of the curie.

It appears (see Section 4) that the trajectories of the motion are exactly the
geodesics of an underlaying contact isoperimetric sub-Riemannian metric. If the
magnetic field is constant, it is a Dido structure. Some problems of collision of
particles with the same charge are very similar to the problem of computing the cut
locus of a point for the metric. In the context of Riemannian geometry, at the local
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level, the cut locus of the polg is empty. This is never the case in sub-Riemannian
geometry, and in particular this is never the case for general isoperimetric metrics
or for the Dido metrics. On the same way, there will be a locus where collision of
particles occur, arbitrarily close to the origin.

It is rather strange that this locus is very different from the cut-locus: in partic-
ular, its size has not the same order (although the caustic is the same).

The other problem we will address in this last section is the following: the sub-
Riemannian conjugate locus of the pglgalso, hasyg in its closure (similarly to
the cut locus). As we shall see, this conjugate locus is a certain surface, with a
certain number of cuspidal lines. For generic Dido structures (generic Riemannian
metrics), this number is 4 or 6. We will show that for more degenerate Riemann
metrics, it can be arbitrarily large. Also, the number of branches of the cut locus
can be arbitrarily large, provided that the Riemannian metric is flatter and flatter in
some sense at the pole.

2. Preliminaries, Notations, Study of Generic Isoperimetric Structures

CONVENTION. All along the remaining of the paper, the notatign,, ..., a,)
means a function of all variables under consideration, which is in the itleal
generated by, ..., a,. o (a1, ..., a,) means an element of.

(E, A, g) denotes a sub-Riemannian metric over the 3-d manifbla is the
underlaying distribution, ang: A — R™ is the metric.

2.1. CHARACTERISTIC VECTOR FIELD

Assume thatA is contact. There is a (unique up to orientation) one faron E
such that:

Kera = A, (2.1)
doja = Volume

There is also a (unique up to orientation) vector figldalled thecharacteristic
vector field such that:

a(w)=1, i,(da) =0, (2.2)
or equivalently:
iyl ANda) =da. (2.3)

2.2. ISOPERIMETRIC STRUCTURE(SECOND DEFINITIOI\D

DEFINITION 2.1. (E, A, g, X) is called an isoperimetric structure(if, A, g)
is a 3-d sub-Riemannian metrik, is a vector field orE, transversal ta\, and the
sub-Riemannian structure is invariant by the flow @¥p of the vector fieldX.
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DEFINITION 2.2. A sub-Riemannian metric&, A, g) is called a Dido metric
(or a Dido structure) if it is contact an@E, A, g, v) is an isoperimetric structure
(v being the characteristic vector field).

Note 4.(a) If (E, A, g, X) is a contact isoperimetric structur#, defines an
orientation onA,

(b) If (E, A, g) is a Dido metric, then is defined up to orientation af, but,
if the orientation is reversed, is changed into-v, and the fact thatE, A, g) is
v-invariant is preserved.

If we are given an isoperimetric structure in the sense of Definition 1.1, then we
have a sub-Riemannian structure over the principal bumdl& — M, which is
invariant under the action of the vertical one parameter group of any element of the
Lie algebra of the (circle or line) structure group. As we shall see, this isoperimetric
structure is a Dido structure in the sense of the Definition 1.2 if and only if it is in
the sense of the Definition 2.2.

2.3. EQUIVALENCE OF THE TWO DEFINITIONS(OF ISOPERIMETRIC AND DIDO
STRUCTUREQ AT THE LEVEL OF GERMS

Conversely, if(E, A, g, X),, is @ germ aty, of an isoperimetric structure in the
sense of Definition 2.1, then:

(1) the quotient spac# = E/X of E by the foliation defined by the vector
field X inherits a (germ of) Riemannian structure (with orientation ils contact:
the orientation orM is induced by the orientation of defined byX).

(2) The germ(E, A, g, X),, can be extended to a germ of a trivial principal
(line) bundle over the germV, g) (4. With a connection, the horizontal space of
which isA.

If (E, A, g, X)y isDido, thenX = v, andx defined in (2.1) is the form of the
connection. Hence, the curvature form of the connection is the lift of the volume
form.

Therefore, at the level of germs at least, the two definitions of isoperimetric and
Dido structures are equivalent.

2.4. GEODESICS AND EXPONENTIAL MAPPING

Let us recall the basic facts about the sub-Riemannian geodesics and the expo-
nential mappingn the contact caseln that case (contrarily to the isoperimetric
“Martinet case” [3]), there is no abnormal geodesic. All geodesics are projections
on E of trajectories of the Hamiltonian vector field on 7*E associated to the
Hamiltonian:

2
HO) == sup (‘/’(v)) . (2.4)
2ueA\{0} vl
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Figure 2. Half a Heisenberg wave front.

H () is a positive semi-definite quadratic form on the fibersof T*E — E,
the kernel of which is the annihilator &f.
If the metric is specified by an orthonormal frame fiekd G), then:

HW) = z (W (F)?+ ¢ (G)?). (2.5)
2

In the isoperimetric situation, another more classical but equivalent charac-
terization of geodesics can be given, in terms of the geodesic curvature of their
projection on the quotient Riemannian manifold (see Section 4.2).

Let Hypp = H*l(%) be the level surface aff corresponding to geodesics that
are parametrized by the arclength. Since the Hamiltonian (2.5) is homogeneous
w.r.t. ¥, Hi inherits the canonical contact structure of the projective cotangent
bundle PT*E. Let Co C T*E, Co = 7, (qo), mx: T*E — E, and letC be the
cylinderCo = CoN Hy 5. Cois a Legendre manifold for this contact structure, and
the Hamiltonian flow preserves this contact structure.

The exponential mapping is the mapping:

. Cox Rt — E, (2.6)
(p,s) > mgo eXp(sH(p)).

2.5. CANONICAL SECTION

If (E, A, g, X), isagerm of an isoperimetric structu, = E/X, then, there
is acanonical local smooth sectioy),: M — E throughgo, (sq,(7x(q0)) = qo):
we consider orE the sub-Riemannian geodesic®, s), issued fromgg, which
satisfy atgg the Pontriaguine’s “transversality conditions” with respecitoi.e.
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p(X(g0)) = 0O (see [16]), and which are parametrized by the arclemg®ince

X is transversal taA, these geodesics are necessarily Hamiltonian (cannot be
abnormal).Our canonical section,, is defined bys, (7x(¢)) = ¢’, whereq’

is the unique point of in (x) ‘o mx(g) which is of the forme(p, s). It is not

hard to see that this construction defines a smooth segtiofConsult for instance

our paper [4], but it is very easy.)

2.6. RELATION OF OUR DEFINITIONS WITH ISOPERIMETRIC PROBLEMS

If we have a germ of an isoperimetric structgie M, g, , A), then, the curvature
form 5 of the connection defines a 2-formon M and hence an isoperimetric
problem(M, g, n) in the sense of Section 1.1.

Conversely, if we consider a germ of an isoperimetric probléfm g, n), then
considering the trivial principal bundle: E =M x R — M, E = {(q, A)|q €
M, A € R}, anda@ = dA + m.«, Wherea is any primitive of the formy over M,
we get a connection ovet, defined by its formx. @ is defined up to any closed
one-formdn over M

a=dA+ m.(a +dn),

corresponds to the same isoperimetric problem.

Also, if two isoperimetric structure6E, M, g, 7, A) and(E, M, g, r, A) de-
fine the same isoperimetric problem ovaf, g) then, their connection forns, &
differ locally from =.dn, the pull-back of a closed one-fora@w over M. The
fiber mapping(g, A) — (g, A + n(g)) is an isomorphism of these isoperimetric
structures.

Letgo = (90,0) € M x R, and let the ger{E = M x R, M, g, m, A)z, be
given. Then, there is a unique choice of the functidior the images;, (M) of M
by the canonical sectiasy, (defined in Section 2.5) be the sgi(M) = {(g,0) |
q € M}.

This choice being made, then, for afty= (o, t) € E, the sef{(q,t) | g € M}
is the images;, (M) of the canonical sectiosy,.

2.7. CANONICAL COMPLEX STRUCTURES

Let (E, A, g, X) be an isoperimetric structure, with = E/X. There are two
canonical complex structures, both denoted/bgn the fibers of" M andA. Both
are defined by:

Vol (u, v) = g(J (), v), (2.7)

where Vo, is the volume (area) form associated with the megrether onM or
ONnA.
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2.8. DECOMPOSITION OF TENSOR FIELDS

Let ©" A* (resp.(O* T* M) denote the tensor bundle of symmetriegovariant
tensors oven (resp.TM).n: E — M = E/X is the canonical projection.

The structural group S@) of A andT M acts on the typical fibers (which are
the same) of both bundlgg)* A* and(* 7* M.

Here, the typical fiber§)* A*(0), ©" T*M(0), as S@2)-modules, have real
decompositions:

Or0 = @ (éA*(@)

JeN

éT*M(O) - D (éT*M(O))

JjeN

(2.8)

R
J

)
J

where the representation of &) on the jth component of the right-hand side of
(2.8) corresponds to the characte¥s’el, ¢ = +1, —1. All nonzeroj-components
are 2-dimensional, except fgr = 0 where they are 1-dimensional. The higher
order term in the sum i$ = k, and ifk is odd (resp. even) all the even (resp. odd)
components are zero.

Then, according to these decompositions of the typical fibers, we have decom-
positions of the bundles:

O - B(Ox)
éT*M

(2.9)

B
J

D (éT*M)

JEN J

If po € M, go € 7 %(po). then, = induces a mapping,: O TEM —
@k Ay, which is a linear isomorphism. The decompositions (2.9) of the bundles
commute with this mapping,: if 7 € O TiM, po = 7(q0). T = Y. T,
T; € (O T M) ;. thenm(T) = Y. w.(T)), m(T)) € (O AL);.

This decompositiof” = ) 7, of T is nothing but the real Fourier seriesBf
if T is identified to a function on the unit circle, via the identificatiork afovariant
symmetric tensors ovek (resp.T M), with homogeneous polynomials of degree
k on A* (resp.T*M).

All along the paper, this decomposition will be used extensively.

NOTATION. If k denotes the Gaussian curvaturednthens/’k is a symmet-
ric covariant tensor field of degréeover M. We will allow to write V’,.k in place

of (v'k); in the previous decomposition.
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2.9. NORMAL FORMS AND NORMAL COORDINATES

Letl,, = (E, A, g, X),, denote a germ of isoperimetric structuregate E. Set
M =E/X, po=m(qo)-

For the germ ap, of Riemannian metric spade,, = (M, g),,, we can con-
sider the standard “normal coordinate®’, y) from Riemannian geometry (see
[12] for instance).

DEFINITION 2.3. The following coordinatege, y, w) in a neighbourhood afy
are calledsoperimetric normal coordinatest ¢o:

(x, y) are normal Riemannian coordinates on the quotiént
w is such that, iy = exp(tX)(s,,(p)), then,w(g) =1t.

Here,s,, is the canonical section defined in Section 2.5 above.

We prefer the letterw to the letterz for the third coordinate, keeping the
notation for(x + iy), in accordance with the complex structufever A defined
in Section 2.7.

Consider the curvd™: ]—e, e[ — E,T'(t) = exptX(go)). In the (isoperi-
metric) normal coordinateér, y, w), geodesics starting from (), and satisfy-
ing the transversality conditions w.r.t. the curl’¢r) are straight lines through
['(¢), contained in the planeBy = cst = t}. Similar coordinates have already
been introduced in our previous papers [4, 9], where they have been called “(sub-
Riemannian) normal coordinates”. The main difference with these previous sub-
Riemannian coordinates is that now, the vector fiéldrites

X = i (2.10)
Jw
These coordinateare uniquely definedp to the action of S@) on A, (or on
T,oM).

Note 5.In these coordinate$;(r) = (0, 0, ¢), and, fors > 0 small, the cylin-
dersC, = {(x,y,w) | x*> + y?> = s?} are just the set of pointg such that
d(q,{r'(\}) =s.

Following the same method as in our previous paper [4], one can easily prove
the following theorem:

THEOREM 2.1. In normal coordinates afo, there is a(unique up to the action
of SO2) on A,,) orthonormal frame field F, G) for the sub-Riemannian metric,
of the form

3 3 3 3
F = ——yﬁ(x——y—)JrXV—, (2.11)
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whereg, y are smooth functions af and y only.
The result of [4] in the general sub-Riemannian case is:

THEOREM 2.2. There is a uniqugunique up to the action d6Q(2) on A,))
coordinate system, called tlgib-Riemannian normal coordinatesd a unique
(once the coordinates are chogearthonormal frame field F, G) for the metric,
of the form(2.11), where the functiong, y depend on(x, y, w), but satisfy the
boundary conditions

y(0,0,w) = 1, (2.12)
9 9

B0,0,w) = £0,0,w) = 2X(0,0,w) =0.
0x ay

Note 6.(a) Theorem 2.2 is not obvious. See [4] for details and proof. In the
isoperimetric case, it is much easier. Details of the proof are simple variations of
the proof in [4].

(b) This normal form (2.11) (together with the boundary conditions 2.12), is
invariant under the action of rotations ay,: if e’% denotes the linear mapping
(x, ¥) = (cog6p)x —sin(fg)y, sin(6p)x + cogby)y) (see Section 2.7 above), then,
setting (x, y) = €’%(%, §), the orthonormal framéF, G) = e /%(F, G) is in
normal form (2.11), witld = Boe’®, 7 =y o e/%.

(c) As a corollary, we find the classical normal form for 2-d Riemannian metrics:
in normal coordinates with polgg, there is an orthonormal frame (unique up to
rotations in7,,M), (F, G) :

_ a a a
F=—— — —y—, 2.13
0x yﬁ(xay ax) ( )
G ad P ad ad
= —+xBlx——y— ).
ay ay y8x

This normal form is also invariant under the action of(@Qn 7,,M (in the
same sense as in (b) just above).

In the Dido case, the functiop can be computed in terms of the Riemannian
structure of the quotien¥, that is, in terms of3: using the fact that the character-
istic vector field isv = 9/dw in our normal coordinates, we get:

THEOREM 2.3. In the case of a Dido structure, the functignn the isoperimetric
normal form(2.11)is given by:

1 2td
y (. y) = (14 G2 + YD), y) / 2 (2.14)

o 1+12(x2+ y?)B(tx,ty)
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2.10. INVARIANTS

A normal coordinate systeny, is chosen, together with a normal orthonormal
frame (2.11). In these coordinates, #tth differentialsD*8, D*y of these func-
tions B(x, y), y(x,y) at the pointpg (x = y = 0) in M are homogeneous
polynomials of degreé in x,y. D*B, D*y define symmetric covariant tensors
of degreek on T,,,M, that we denote bg*, y*. The point (b) in the Note 6 above
shows that these tensors are independent of the choice of the normal orthonormal
frame field: if (F, G) is changed foF, G) = e /%(F, G), then theg¥, y* are
changed for* = g o e/, 7k = yk o e/, It is also easy to check that, by
construction, in the contact case, they do not depend on the orientatian ibrk

is changed for- X, orientation onA is reversed ang andy don't move. In the
Dido case, if the orientation oM changesy is changed for-v.

COROLLARY 2.4. The tensorgs, y* on M are invariants of the isoperimetric
structure. Thed* are invariants of the quotient Riemannian structureMn

The invariantsg’, that are the only ones in the Dido case, are related with the
curvature onM as follows: letk denote the Gaussian curvature &h Using the
fact that (2.13) is an orthonormal frame #fiin Riemannian normal coordinates
with pole py, it is only a matter of simple computations to check that:

k(po) = 6B(po). (2.15)
If v denotes the covariant derivative df
Vk(po) = 128" (po). (2.16)

v2k(po) is a 2-covariant symmetric tensor. It can be decomposed following
Section 2.8:

2 2 2

Orm = (@T*M)o@(QT*M)z, (2.17)
V2k(po) = vik(po) + v3k(po).

One has:
Vek(po) = 8B(po)((dx)? + (dy)?), (2.18)
V2k(po) = 2083(po),
and:

Vk(po) = Vik(po) + vak(po), (2.19)
Vik(po) = 18083(po).

In particular, forj = 2,3, the “highest harmonics” in the decomposition of
v/k(po) and B/ (po) are nonzero constant multiptes’k = ; g/ for some real
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Aj # 0. This follows from the fact that the curvature dh= E/X is related with
the functiong in the normal forms (2.11), (2.13) by the following formula, with
Z=x+1iy:

k(x,y)
_ (6/8 + 108222 + 26%2* + 2y%<3 L2128 +

p ) 2028 ,0%B 9°B 2
2%x—(3+2 — —L 4o 1+ 1z/%8).
+ ax( + 2/z|°B) + x oz T 8y2+ Yaxdy /(14 1zI°B)

The formulas (2.16), (2.18) follow from this formula easily: singe y) are
normal coordinates oM, covariant differentiation of any tensor field, at the pole
(x, y) = Ois just standard differentiation. (2.19) requires more computations.

2.11. SOLUTION OF THE ISOPERIMETRIC PROBLEM IN THE GENERAL
CONTACT CASE

Let us consider the general case of an isoperimetric strucjyre (E, M, g, m,
A)g4,- Leta be the lift of the volume form oved/, and letn be the curvature form
of the connectiony = ¥ «. In the contact casej(gq) # 0.

We refer to our previous papers [2, 4, 9], about general contact sub-Riemannian
structures. In these papers, two main invariants appear, denoted in [4,(®} by
and Vs.

In fact, Q, and V3 are defined via the (nonisoperimetric) sub-Riemannian nor-
mal form of Theorem 2.2: In sub-Riemannian normal coordinates, using the de-
composition of tensors introduced in the Section 228, = (Q),, Va3 = (V)3
where is the quadratic formD?Z y (qo), andV = D? |y (qo).

0, belongs ta((D? A*), and V3 belongs to((D® A*)s.

Set:

x2 = vilog(y),  x3=vilog(y), (2.20)

2 3
X2 € @A*, X3€@A*.

Denote byx; , (resp.x33) the component ok, (resp.xs) in (@2 A*), (resp.
(@3 A*)3). Computations show the following:

THEOREM 2.5 (Contact case)?, is a nonzero multiple of, » and Vs is a non-
zero multiple of3 3.

Hence, it is clear that, for an open dense set of contact isoperimetric sructures
over a 2-d manifold, Q, # 0 except at isolated points 81, and at these isolated
points, V3 # 0.
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Thereforethe study of generic isoperimetric problems is equivalent to the study
of generic sub-Riemannian problerfgnce most of the properties that we study
are completely determined kY, if nonzero, orVs if O, = 0). In particular, the
optimal synthesis for the isoperimetric problem follows.

The conjugate loci, cut loci, and sub-Riemannian spheres were described com-
pletely in our uppermentioned papers. These papers, in particular, solve the local
isoperimetric problem. We refer to these papers for details.

An interesting remark is that, for these generic contact isoperimetric problems,
the invariantsg*, that is,the invariants of the Riemannian structuseer the quo-
tientM = E/ X, play absolutely no rolén the shape of the local optimal synthesis,
and have no influence on the singularities of spheres, on the shape of conjugate loci
and cut loci.

2.12. DIDO CASE

Inthat case, the situation is completely differgftn (2.20) is a constant. Hence all
covariant derivatives/* log(y) vanish identically. In particulaQ, = 0, V3 = 0.

Therefore, all our previous results do not apgur main purpose in the re-
maining of the paper is to study this “Dido case”

2.13. WAVE FRONTS, SPHERES CONJUGATE LOC| CUT LOCI

The wave front of radius is W, = &(Cop s), the sphere of radius is the set
Sy =1{q € E | d(q,q0) = s}.

Standard arguments (of Filippov’s type for instance) show that,s femall
enough, ifd(q, go) = s, there is at least a geodesic segment of lengjthining
qoto g. HenceS; C W;.

Also, any geodesic is optimal on small pieces of itself. For such a geodesic
e(c,.), c € Cy, we define the conjugate-time (of the polgynj(c) (resp. the cut-
time squi(c)) as the first time at which the geodesic ceases to be locally optimal —
i.e., optimal among admissible curves having the same endpoints and lying in a
certainC° neighbourhood of the geodesic segment (resp. globally optimal).

It is possible to check thatonj(c) is also the minimal strictly positive time at
which the exponential mapping has not full rank.

The conjugate locusC L is the unionUceCog(c, sconj(€)), i.e. the set off{rst)
singular values of the exponential mappiagThe cut locus Cuk is the union
Ueecy €65 Scut(€))-

By homogeneity ofH, s(c, As) = &(X ¢, s). Hence, we can also consideas
amape: Co — E, e(p) = g o expH(p). In that case, let us denote it by

The conjugate locus is again part of the set of singular values 6§ is a
Lagrangian submanifold df*E, which is mapped by exid (p) into another La-
grangian submanifold, henéds a Lagrangian mapping (in the sense of [6]), and
the conjugate locus is part of the associated “caustic”.
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On the same way, = ¢(.,s): Co — E can be considered as a Legendre
mapping (in the same sense), and its image is a standard “wave front”.

Therefore, all the objects we will study (spheres, conjugate loci, cut loci) are,
at the local level, elementary objects of the theory of Lagrangian and Legendrian
singularities, in dimension 3. Of course, we will show nothing new at this level.
What will be new is that, the elementary singularities appearing in our study con-
sist of nontrivial arrangements of classicgstablg Lagrangian and Legendrian
singularities These collections of elementary stable singular#iesnot organized
in an arbitrary way In fact, we will study and classify thglobal (Lagrange and
Legendre) “first” singularities of the mappingsand ;. As the reader will see,
they are very special.

Note 7.(a) We have already done this classification for generic sub-Riemannian
metrics in our uppermentioned papers.

(b) We have shown (Section 2.11) above that the general case of generic isoperi-
metric structures falls down in this classification. We will do the same classification
for Dido structures in the next sections.

(c) Let us recall what can occur for generic sub-Riemannian metrics, as ele-
mentary Lagrange and Legendre singularities. The following statements (c1), (c2)
follow from a careful examination of our previous papers:

(cl) For caustics (conjugate loci), at generic points whege=£ 0, the only
singularities ared 3 (cuspidal lines). At points wher@, = 0 but V3 # 0, the same
happens. Apparently, singularities of typg, D, don't appear generically. This is
due to the fact (also true for Dido structures, as we shall see) that the exponential
mappinge is also the suspension of a stable (in the classical Thom—Mather sense)
mapping between 2-dimensional manifoltievertheless, it is shown in the paper
[9] that, in the transition between generic and nongeneric points, a singularity of
type A4 (swallow tai) appears

(c2) For wave fronts, the generic singularities that can appear are all the stable
elementary Legendre singularities of dimension 3, thatsgcuspidal lines) and
A3 (swallow tails) only.

2.14. REPARAMETRIZATION OF GEODESICS

(x,y,w, p, g, r) are the isoperimetric normal coordinates and dual coordinates in
T*E. Forr #0, set:

1

’ P = ) t

S I

p=-, q= rs (2.21)

(¢ is thenew time s is the arclength).

In these coordinates, the cylind€g = {p = p coSyp), g = p Sin(p)}, ande is
a mapping of the variable®, ¢, r), which is smootkeven atp = 0. We denote it
again bys(p, ¢, t). Settingz = (x, y), ¢, denotes the two first components sof
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ande,, denotes the third one,, ¢,, have expansions in terms pf at p = 0, of
the form:

e, = peit, @) + pes(t, @) + - + p"el(t, @) + 0(p" )
= & +o(p"h (2.22)

(note the very important point that therm of order2 is missing,

ew = P51, )+ pted (t, ) + -+ p el (t, ¢) +0(p" ™)
= &Y 4 o(p"tY). (2.23)

Let us set alsey = (pei(r, ), P25 (1, 9)), & = (EL(t, @), EV 1 (1, 9)).

Note 8.(a) &, = &; is just the exponential mapping of the “Heisenberg” right-
invariant metric, which is the basic model. Everything will be computed by using
formulas (2.22), (2.23), as a perturbation of this basic (and totally degenerate)
exponential mapping. Half a wave front of this Heisenberg metric is shown on
the Figure 2 (the panb > 0).

(b) These formulas (2.22), (2.23) hold in the Dido case, in the isoperimetric nor-
mal coordinates, and in other cases in the sub-Riemannian normal coordinates. In
particular, they don'’t hold in the generic isoperimetric case, for isoperimetric nor-
mal coordinates. But, in that case, we can forget with the isoperimetric character,
as we said in the Section 2.11.

€1 can be computed easily:
e1(p, @, 1) = (p&i(t, ), p°e3 (1, 9)), (2.24)

g;(t,9) = (2cogg —t/2)sin(t/2), 2sin(p —t/2) sin(t/2)),
ey (t, ¢) (t —sin(t))/2.

We will show in Section 3.1 how to compute the other terms that we need in the
formulas (2.22), (2.23). Depending on the context, we will need to conipute
n=50rn =6.

2.15. SUFFICIENT JETS FOR THE EXPONENTIAL MAPPING

There are three ways to consider the exponential mappingdénotes the ar-
clength parameter, then, (1) we can consiglers a Lagrangian mapping, or (2)
we can consider, far fixed, e, as a Legendrian mapping. As we shall see in Sec-
tion 3.2, it will be also possible and convenient (3) to considas the suspension
of an ordinary smooth mapping between 2-dimensional manifolds.

Similarly to the case of generic sub-Riemannian problems, or to the case of
generic isoperimetric problems, the exponential mapping wilstableas an or-
dinary mapping (in restriction to a neighbourhood of its first singular set). All
singularities that will appear will just be suspensions of stable singularities of
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Figure 3. Conjugate locus, nondegenerate case.

ordinary mappings between 2-d manifolds (3), stable singularities of Lagrangian
mappings (1), or stable singularities of Legendrian mappings (2).

As a standard (suspended) map, the exponential mapping will have “sufficient
jets” with respect te (at the local level around the palg, p has to be smallp is
any, andr has to be close to the Heisenberg conjugate tigne 27).

By a “sufficient jet”, we mean always that, in restriction to certain neighbour-
hoods of the singular sets at the source of both the mapping and the jet, the mapping
and the jet are left-right equivalent. Moreover the equivalence is such that the
diffeomorphisms at the image preserve thecoordinate (which is intrinsic, the
germ of Dido structure being given).

Also, the sufficient jet will be determined by certain finite jets of the sub-
Riemannian structure oH, or, in the Dido case, by certain jets of the Riemannian
structure oo = E/ X.

Due to a certairasymptotic symmetrhat will appear, it is very complicated
to compute “global” sufficient jets of in all generic cases (this has been done
for generic sub-Riemannian metrics in the paper [4]). We will say a few words
about that in Section 3.4 for the Dido case. But, we will show that, to describe the
(global) singularities of the spherdscal stability onlyof ¢ along its singular set
is sufficient.

Precisely, we will have to consider two situations:

(a) pointsgg of E such that, ifpg = mx(qo), v%k(po) # 0. In that casegs
will be a globally sufficient jet fore, with respect to left-right equivalence, on a
neighbourhood of the first singular set.

(b) pointsgo of E such thatyzk(po) = 0 butv3k(po) # O. In that case, we
need the jeEg. Along its singular setg is only locally equivalent to this jet.
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3. The Dido Case
3.1. COMPUTATION OF THE EXPONENTIAL MAPPING

As we said, we will have to compute all terms in formulas (2.22), (2.23); ter5
if v2k(po) # 0, and forn = 6 if /2k(po) = O.

To compute these terms, one can proceed as follows:

Setc = (x, y, p, g). Then, our geodesics have the expansion:

s(p. @, 1) = ¢"(p, 9. 1) +0(p" ), (3.1)
S"(p. 9. 1) = psile. 1) + p3sa(@, 1) + - + p"Gu(p, 1),
c1(p, @, 1) is the “Heisenberg term”, the two first components of which are given
in (2.24). LetB denote thex, y, p, g) components of our vector field, in which

moreover we set =1, p = p, ¢ = ¢q. Let B, denote the:th jet of B with respect
toc = (x, y, p, g). Then, we can compute, (¢, ¢t) by induction, because:

t
" = pei(e. 1) +/0 e (B,11 — B1)(s" (0, ¢, 5)) ds +
o), (3.2)

whereA(x, y, p, q) =B1(x, v, p, q) isthe Heisenberg linear operator with matrix:

0o 12 1 0

12 0 0o 1

14 0 0 12
0 -1/4 -1/2 0

A=

After this the components ef’ are obtained by simple integration because our

HamiltonianH does not depend on the variable:
dw 0H
— = — (&) =1 3.3
O oy (=1 (3.3)

These computations are rather long. We did similar computations by the hand in
our previous papers, for generic sub-Riemannian metrics. Here, we used a Formal
program (using Mathematica) to compute these terms. This program is given in our
Appendix Al. Itis just based upon the formula (3.2). We show here the expressions
of ¢5 ande}’. The other expressions are too long.

In the following formulaspg = 1/6 k(po).

g5 = op/2(6t cos(p —t) — 65SiN(p) + 2sin(p — 2t) +
+3sin(p —t) + sin(g + 1),
6¢ sin(p — t) + 6coge) —2codp — 2t) —
—3cogy — 1) — cody + 1)),

ey = 30p/8(—2t — 4t cos(t) + 4sin(t) + sin(2t)). (3.4)
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3.2. THE EXPONENTIAL MAPPING AS A SUSPENSION

It is possible, and very convenient for our purposes to chose coordinates at the
source of the exponential mapping so that it is in suspended form. A simple compu-
tation shows that the conjugate time for the Heisenberg approximatipne, 1),

isty = 2. Hence all the phenomena of importance occur folose to 2r. We

will set, forw > 0 andp > 0O:

h=w/m, o= (s—2mh)/h, (3.5

and we will use the coordinatés, y, #) at the image andp, o, 1) at the source.
One can check that these coordinate changes are valid, in a certain neigh-
bourhood of{r = s/p = 27} at the source (just using the expression (2.24) of

€y).

Note 9.The casav < 0, p < 0 is absolutely similar, and leads to completely
parallel results. Also, the results far < 0 can be obtained from results for> 0
just by reversing the orientation a posteridgfiom now on, we will consider the
casew > Oonly.

Note 10.In our previous papers, we used the coordinate systems i) or
(p,t, p) at the source. As we shall see, this new couple of coordinate systems
(¢, 0, h) and(x, y, h) is very convenient for the computation the cut locus.

Also, the next lemma shows that it is very convenient for the computation of the
conjugate locus.

LEMMA 3.1. Inthe coordinatesx, y, k) atthe image, andp, o, /) at the source,
the following properties hotd

(i) the conjugate time is given by the equatiyde = 0,
(i) the conjugate timeron(e, ), for h constant, is a function ap having its
extrema at the positiop of cusp points of the conjugate locus.

Proof. For the same reason as in our previous papers, the conjugate time is a
smooth functionoeonj(, 1). We consider the exponential mapping in suspended
form, denoted here b§(g, h, o) = (Z(¢, h, o), h) for convenience. The regular
exponential mapping, with coordinatés, p, s) at the source and, y, ) at the
image is denoted by(yp, p, s) (remember that = \/g ando = (s — 2h)/h).

The coordinate change at the sourc&i®, i, o) = (¢, p(¢, h, (6 +27)h), (o +
2m)h). We fix h and we assume tha is a cusp point of the conjugate locushat
The conjugate time function is denoted dﬁ&nj(w). The Liouville form restricted
to Hy, is a contact form which gives tél;, its contact structure. It is denoted
by w.

Letng: T*E — E. If V € TE((p,p,S)Ev V=TrngW), W e TeXpSH((p,p)T*Ea
thenw (W) = expsH(p, p)(V). If W is tangent to a Legendre submanifold of
Hyp, thenw (W) = expsH (g, p)(V) = 0. Let us write alsav for expsH (¢, p).
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So thatw evaluates oV = 2 s(E(p o)) and V' = L (8(p, h,0)). But,

V= @ oF + 2 38 oF £ 35 (0@, h, (cr + 27)h)), andw vanlshes org—s % pecause
they are pro;ectlons o’ﬁE of tangent vectors to a Legendre manlfoio[V) =0.
Also, V' = %o F h+ 3; o FZ(p(¢, h, (o + 27)h)). Again, w vanishes org;

anda)(g—i) = 1 (the reason of this last property is that the Hamiltonian is quadratic
in the adjoint variablesv (H) = 2H). Thereforew (V') = h.
If o is a cusp point% (&(po, h, Gchonj(fﬂo))) = 0. Hence,

08 98\ 90 ¢on;
O=0—)+o|—)=(0).
a do ) d¢

O.h i
Therefore,8 C°”‘ (o ) =

Conversely, if 2 °°”'(<p ) = 0, then %(5(¢0,h,0fonj(¢o))) = 0 by (i). This
shows (ii).

To show (i), let us first writev = @ dz + w, dh = @1 dx + @2 dy + w, dh. @ is
nonzero because (V') = k. w;, is nonzero becauseis constant along geodesics
(it is easy to see that far = 0, there is no conjugate point close to the pole
qo). Seta = —d)zdx + a1 dy. (¢, h, cr) belongs to the singular set &fiff (v A
oA dh)(aw, aj, 8h) =0, or(® /\O‘)(aw’ 8U) =0, or equwalentlyw(az)oz( £y —

(= )a(BZ) =0, buta)(az) =0, &(L) = h. Hence,a(az) = Oanda)(a’) = 0.
kB
5o = 0. O

Remark 3.1lt follows from the asymptotics given in the next sections that, for
h sufficiently small:

2 h

(1) If g is such that e °°”' (o) = 0, then C°”‘ (¢o) # 0. This shows that local

extrema of the conjugate time are characterlzed by the con&ﬁ[@wo) =0.

(2) If goiis such thatl (3(go, h, 0y(¢0))) = 0, then-; (2 (go, h, 0l (90)) #
0. This shows that simple cusp points of the conjugate locus are characterized by
the condltlon (8((p0, h, ocom((po))) =

These two facts are implicitly used in the proof above.

From now on in this sectiorgoordinates at the image and at the source of the
exponential mapping will be the suspended coordinates, ) and(g, o, h).

It is just a matter of tedious but trivial computations (done in the Appendices
2-3) to get the expression ofin these coordinates, from its expression computed
in Section 3.1.

We use the following notationsiy = 1/6 k(po), and, with the notations of our
Section 2.8,

B1(po) = r1cogty) dx — rysin(ty) dy = 1/12v k(po), (3.6)
B2 = raR.(€"2(dx + i dy)?), B3 = T2(dx? + dy?),
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Figure 4. Conjugate locus, degenerate case.

B3 = (rs1C0S(ta1) dx — r318in(tzy) dy) © (dx? + dy?),
B3 = raaR.(€%2(dx + i dy)?).
By Section 2.10y75k = 0iff r, = 0, v3k = 0 iff r3, = 0.
Settinge (@, o, h) = (&,(p, 0), h) = (x,(p, 0), ys (@, o), h), we get:
(1) if v5k(po) # O:
(@, 0, h) = (x,(p. 0, h), ys(p. 0. b)) = 2(¢, 0, h) + 0°(h, 0),
xs(@, 0, h)
= h/48((T20oh’r — 197(ao)’h*n — 36Mh*rr, + 480 + 320 1y) X
x cog¢) + 6(20h*mr, cos3¢) + Nag)?h*m? sin(p) +
+ 12uh?m o sin(e) + 4o sin(g) + 24h3mry sin(ty))) + 0%(h, o), (3.7)

ys(p, 0, h)
= h/48((7T200h’m — 197(a0)?h*n + 480h*mrry + 480 + 320 10) X
x sin(g) — 6(3aoh?r + 20)? cosp) + 144h3mr cost) +
+ 24007 r, cO29) Sin(@)) + 08(h, o), (3.8)
in which 0®(k, o) has order 6 i, o, whenh and o have respectively weights

and2.
(2) If w3k = 0 (or equivalently-, = 0), we find the following more complicated

expressions, at the next order 6/ino, that are computed in the program of our
Appendix 3:
Z(p, 0, h) = (% (9, 0, h), Y5 (9, 0, b)) = 22(p, 0, h) + 0" (h, o),

% (¢, 0, h)
= h/48(7200h%n — 197(cg)2h*n + 480 + 320h*n 15) coqp) +
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+ 6(3h3 i (Baoh?m + 20) costr) + (Qaoh®m%ry + 6h3nri0) %

x €0S2¢ + t1) + Nag)?h*m? sin(g) + 120ph?m o sin(g) + 4o? sin(p) —
— 120057135 SIN(2p) + 60h° 32 SIN(4p) + (24h° — 1240oh®)mrry X

x sin(ty) — 100h°7r31 SiN(f31))) + o' (h, o), (3.9)

Vs(p, 0, h)
= —h/48(6(3aoh’T + 20)? cosp) + 36 r3x(2 cOS2¢) + co4yp)) —
— 144371 codty) + TA%xoh®nrl codry) — 600h°rg; cOKr31) +
+ aoh7 sin(p) (197h%ag — 72) — 480 sin(g) — 320h* 1, sin(p) +
+ 36h37 10 Sin(ry) + 54agh®m2ry(sin(ry) — sin(2p + 1)) —
—36h3nr10 siN(2p + 1)) + o' (h, o). (3.10)

3.3. CONJUGATE LOCI AND LEFFRIGHT STABILITY OF THE EXPONENTIAL
MAPPING

To compute the conjugate time, we use the expressions of the exponential map-
ping in suspended form that we just computed. We have just to apply our Lemma
3.1tozs(p,0,h) = (x,(p, 0, h), ys(¢, 0, h)). The computation, based upon the
preceding formulas gives:

(1) caseysk # 0 (r2 # 0):
0 = —3/2aoh’7 + 197/48(c0)’h*n — 0 —
—20/3h*n 1o — 15h*r, c0929) + 0°(h, o) (3.11)
(for the sake of simplicityin that case we sap = 0),
(2) case, = 0:
0 = —3/2uoh’t + 197/48(ag)?h*n — o — 20/3h*m 1, —
— 3/2h3nr1(Baoh®nt + 20°) co ¢ + t1) — 60k 35 SiN(Bp) +
+06(h, o) (3.12)
(in that case, we set, = 0).
We obtain the expansion of the conjugate time in both cases:
r 75 0:
Ocon(@, h) = h?m /48(—T200 + 197(at0)?h? — 320h%1, —
— 720h%r, cog2¢)) + 0°(h), (3.13)

1"220:

Geonf(9s ) = —h%m [A8(T200 — 197(ctg)*h? + 320h%1, +
+ 2880:%r3, siN(3p)) + 0°(h). (3.14)
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Just replacing in the expressions (3.7), (3.8), (3.9), (3.10), gives the asymptotics
of the conjugate locus in suspended coordinates:

1"27502

Zeonf(@: 1) = Zgon(@: 1) + 0°(h)
= h*7(3r18in(t1) — 15hr; cOp) — 5h.ro co3p),
3r1 cogty) 4 20hr, sin(e)®) + 0®(h). (3.15)

1"220:

Zeon(@: h) = Z&on(@, B) + 07 (h) (3.16)
= —h*7/2(—6rysin(ty) +
+ h2(3lagry Sin(f1) + 25031 Sin(t31)) +
+ 45h°rg5(2 SiN(29) + Sin(49)),
— 6r1 COS(t1) — h?(25r31 COSt31) —
— 3lagry COS(t1)) + 45h°r3p(2 COL2p) — COS49))) +
+0'(h). (3.17)

The two Figures 3, 4, show the shapes of these conjugate loci (cuttihg=by
cst).
The following theorem is not hard to prove:

THEOREM 3.2. On a2-d dimensional manifold/, there is an open-dense gat
the Whitney topologyof Riemannian metrics such that:

(a) on an open dense subsetMfwhich is the complement of a discrete subset,
r2 # 0 (equivalently,75k # 0),

(b) at the remaining isolated pointss, # 0 (equivalentlyy3k # 0).

DEFINITION 3.1. We call these germs of generic Riemannian metrics (or Dido
structures) at points o#/, nondegenerate in the case (a) and degenerate in the
case (b).

Remark 3.2:75k, 3k take values in 2-dimensional spaces (spaces of nontriv-
ial real irreducible representations of &Y. It is why the conditionvgk = 0 has
codimension 2 and gives rise to isolated points.

Note 11.(a) As we see, sections by = cst of the conjugate locus in the
nondegenerate case are still astroids (asymptotically). They are smaller than in the
nondegenerate general sub-Riemannian case: in that case, the size is afprder
and here they have ordéP. Moreover now, these astroids are shifted by a term
which is normal to the gradient of the curvature, the length of this term having
orderh?®.

(b) In the degenerate case, the conjugate locus hasiSime place of#* in
the case of general sub-Riemannian metrics. For this 6th approximation, sections
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Figure 5. Cut locus, nondegenerate case.

by h = cst are still double closed curves with 3 cusp points (6, in fact). This
asymptotic symmetry afis very importantas in the general sub-Riemannian case.

(c) These estimates use the expansignse respectively, that is the 6th and
7th jets of the exponential mapping with respecptfthis is due to the presence of
&y, ,in the definition ofg,). These jets are determined respectively by the 2nd and
3rd jets of the curvature at the pgbg in M.

Let us now examine the finite determinacyesah the sense of left-right equiv-
alence. The results will be also perfectly parallel to those of the general case.

It follows from the computations above that the two mappinyg®, o, #) and
7%(¢, o, h) have the following properties for fixed, small enough, as mappings
between two dimensional manifoldg, o) — (x, y):

(a) their (first) singular locus at the source, are smooth curves,

(b) the image curves by the mappings present only fold points and cusp points
(for definition, see Whitney [18], or Mather [14]),

(c) for z2(g, o, h), the restriction to this smooth cun, of the mapping is
injective and proper. Fa®(p, o, h), this is true locally only.

We call such maps “Whitney maps”. A Whitney map is stable (for left-right
equivalence).

If S denotes the (first) singular set of the exponential mappirand Ss (resp.

Se) denote the singular set of thhe-jet &5 (resp.g), then, using this stability prop-
erty and exactly the same arguments as in our paper [9], it is easy to shavatitht

g5 (resp.gg), are left-right equivalent when restricted to certain neighbourhoods of
S andSs (resp.S). This last statement is true globally on a neighbourhood of the
singular sefS in the nondegenerate case and locally only al§mgthe degenerate
case. The diffeomorphisms at the image can be chespreserving.

THEOREM 3.3. For & > 0, small enough: the suspended exponential mapping
e(p, 0, h) for a generic Dido structure is left-right equivalent viapreserving



312 ANDREI A. AGRACHEV AND JEAN-PAUL A. GAUTHIER

diffeomorphismgin restriction to a certain open neighbourhood of its first singular
set S at the sourcgto its 5th jet (resp. 6th) w.r.t. & at the pointsqo where the
structure is nondegenerateesp. degeneraje This statement is true globally along
S for nondegenerate pointg, and locally only for degenerate ones.

Note 12.In [4], we examined the question of global stability 0fn a neigh-
bourhood ofS in the degenerate case, for general sub-Riemannian metrics. Itis an
interesting problem in itself, but it is rather difficult. We gave a complete generic
classification, in which appear 7 different types of degeneracy, and we computed all
sufficient jets, that can have high order. However, it appears that this classification
has absolutely no influence on the optimal synth&ie optimal parts of the wave
fronts (i.e., the spheresyjo not depend on this classificatiobifferences can be
seen only at the level of nonoptimal parts of wave fronts (although &ose to
th = 27'[)

Here, the situation will be the samtis question of finding all globally suf-
ficient jets is of no importance for the optimal synthesis in the Dido prablem
Nevertheless, all detailed computations have been done for the Dido problem in [7].

Due to the extra symmetry, there are several differences with the nonisoperi-
metric sub-Riemannian case, even for general isoperimetric problems. In the next
section, we state the main result, in Dido case, without the proof which is very
similar to that of [4].

3.4. SYMBOLS FOR CONJUGATE LOCI

For generic Riemannian metrics in the degenerate case, the asymptotic symmetry,
which appears at the level of the approximatiqnis broken at the level of higher
order jets.

That is, considering higher order jets, when cutiby cst, germs of conjugate
loci at the polegg are closed curves in general position, presenting 6 cusp points,
and transversal self-intersections. These curves are typically denoted by

This happens at the level of the approximatisrfor the highest codimension
case.

In the Dido case, the asymptotic symmetry, which appears at the level of the jet
&6, i broken at the level of the approximatiég (which is determined by the 5th
jet of the curvature at the pole of M). In that case the curvds,, sections of the
conjugate locus by = cst, are also closed curves in general position, with 6 cusp
points and transversal self-intersections.

As in the general case, let us define fiyenbolof a conjugate locus as follows:
We select any cusp point dn, and any orientation orh. We count the number
of self intersections of;, between theéth and(i + 1)th cusp point, and divide by
two. This produces a sequence of 6 numbers, that could be rational numbers (in the
general sub-Riemannian case, they are), but that are in fact integers. The symbol is
this sequence, modulo reflections and cyclic permutations.
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The list of possible symbols in the Dido case is a sublist of the list of symbols
in the general case. There are 3 possible symbols in place of 7:

THEOREM 3.4. For generic Dido structuregor Riemannian metrigs at the
isolated degenerate points, the possible symbols for conjugate loci are:

$1=(211210), $2=(2,11111, $3=(011111.

These symbols give a complete classification of conjugate loci of degenerate
Dido structures, under the action @rigin preserving homeomorphisms that are
smooth together with their inverse, outside the origin.

This is due to the extra symmetby dw. Because of this extra symmetry, high
codimension cases, that appeared in the general case disappear. The same holds in
the general isoperimetric case.

Another difference with the general case is also (due again to the extra sym-
metry d/dw): the symbols for conjugate loci are the sameuor- 0 andw < O.

This is true also for the general isoperimetric case, but it is not true in the general
sub-Riemannian case, as shown in our paper [4].

As stated in the theorem, the symbol determines completely the conjugate locus,
and the rules allowing to recover the conjugate locus from the symbol are the same
as for “semi-conjugate loci” of general sub-Riemannian metrics in [4].

Standard arguments of singularity theory show moreover that these symbols are
complete invariants under left-right equivalencem{qo} of germs of exponential
mappings at degenerate points, in restriction to a certain neighbourhood of their
(first) singular set.

3.5. CUT LOCI AND SPHERES

Simple general arguments show that, in our case, a point of QUL is such that
several optimal geodesics join this point to the pole at the same arclength-time
(see [2]). As a consequence, @QUIC L is justthe optimal part of the union of self
intersections of all wave fronts

Therefore, to compute the asymptotics of the cut locus, we just write, for the
exponential mapping in suspended form:

Zs((pa g, h) — Zs (90/7 g, h) = Oa (318)

by definition of the coordinates andi. We sety’ = ¢ + do.
In both the degenerate and nondegenerate case, we have asymptotics of the
form:

z5(p, 0, h) = 2%(p, 0, h) + 0" (h, o). (3.19)

Obviously, siri(¢’ — ¢)/2) factors out the Equation (3.18), to give an equation
of the form:

F(dg, ¢,0,h) = F"(dp, ¢, 0, h) + 0" 1 (h, o) = 0. (3.20)
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Setting:
V1= (cosdy/2+¢), sin(dp/2+¢)), V> = (—sin(dp/2+¢), cosdp/2+¢)),
we consider first the equations:
F(dp, ¢,0,h) AVy =0, (3.21)
F(dp, ¢,0,h) A Vo =0. (3.22)

The computations show that we can solve the Equation (3.21) with the implicit
function theorem (these computations are shown in details in our Appendices 2, 3,
for those who know how to read Mathematica). We get an expansian, foirthe
form:

o, = ol (dp, @, h) + o(h"™), (3.23)

in which, as expecteds!” has order2 w.r.t. 4. In this expressiong = 4 in the
nondegenerate case, ane= 5 in the degenerate one:

o, = 4£8h2(_72a0 + 19702h? — 320r,h% — (3.24)

— 1200%r,(cos2¢) + 4 cogdyp + 2¢)) —
— 1200°r, cos(2(dg + ¢))) + o(h°),

o 418h2(—72a0 + 19703h? — 320r,h% — (3.25)

— 3607 °r32(sin(3(dp + @) + 3sin(de + 3p) +
+3sin(2 dp + 3p) + sin(3p)) + o(h°).

The next step is to replace this estimation in the Equation (3.22). It gives, for
the nondegenerate case:

hA(sin(de/2))? sin(dy + 2¢) + o(h°) = 0, (3.26)
and for the degenerate case:
h3(sin(de /2))? cos(de /2) cos3/2(dg + 2¢)) + o(h®) = 0. (3.27)

Remark(about formulas (3.26), (3.27)The term siridy/2) is easy to under-
stand: it corresponds to the conjugate locus, which obviously should also satisfy
our equations for@d = 0. It correspond also to singularities of the wave fronts that
are cuspidal lines.

LEMMA 3.5. In formulas(3.26), (3.27)the term(sin(dg/2))? factors out.
Proof. We use the notations in force from the beginning of this section. We have
to solve an equation of the type:

Zs (90/3 0) - ZS((p’ 0)
sin((¢" — ¢)/2)

=F(¢',9,0) =0,
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Figure 6. Wave front, nondegenerate case.

Figure 7. Wave front, nondegenerate case.
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Figure 8. Wave front from above, nondegenerate case.

whereF (¢', ¢, o) issmoothF(¢’, 9, 0) = F(p,¢',0) andF(p, ¢,0) = 2%—2 (o,
o). Moreover, ifw is the Liouville form restricted tdy»,

1
(@dz + 27h dh).
p(p, 0, h)
For®, we have the trivial smooth estimat@:= h coS¢) dx + /4 sin(p) dy +o(h?).
Let us chose again the two vectorsRrf:

Vile', @) = <cos<(p ;‘p),sin<¢ ;‘p))
Vo(¢', @) = (—sin((p ;r¢>,cos(¢ JZHD))

Note thatVi(¢’, ¢) = Vi(e, ¢), Va(¢', ¢) = Va(p, ¢'), and if V is any nonzero
vector, the relationd, (¢, ¢) A V = 0 anda(V) = 0 cannot hold simultaneously
for h sufficiently small. We know that the equatidi(¢’, ¢) A F(¢', ¢, 0) =0
has a smooth solutian.(¢’, ¢): this is just the Equation (3.21). Also, by symmetry,
0@, ) = 0.(9,¢"). Now, setV = 3F (¢, ¢, 0c(9, 9)) = (9, 0.(¢, 9)). We
also know thato, 4.y, (V) = 0 (see the proof of Lemma 3.1). Therefore, simul-
taneouslyw(V) = 0 andVi(¢, ¢) AV = 0. Hence,V = 0. It follows from the
Lemma 3.1 that, in factr.(¢, ¢) = oconj(¢), the conjugate time.

w(expsH (g, p)) =
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SetF (¢, ¢,0.(¢', ) = F(£52, £2) = F(u, v). By the definition ofF,
F(—u,v) = F(u, v).

Therefore,F (u, v) = Fo(v) + u?Fy(u, v). But, Fo(v) = F(0,¢) = F(g, ¢,
0.9, 9) = F(¢,0c(9, 9)) = 0. This shows thatF (¢', ¢, 0c(¢', 9)) = (¢’ —
©)2F (¢, @), for a certain smooth functioff (¢’, ). Therefore (¢’ — ¢)? factors
out in the Equation (3.22) in which one plugs the solution (3.23) of the Equation

(3.21). O

Hence our Equations (3.26), (3.27) can be rewritten:
sin(dy + 2¢) + o(h) = 0, (3.28)
coqdy/2) cox3/2(dy + 2¢)) + o(h) = 0. (3.29)

Let us first do the job in details in the non degenerate case, and second, just
explain the difficulties and state the results in the degenerate one.

By the implicit function theorem, the Equation (3.28) has two smooth solutions,
for h small enough:

dp1 = —2¢ + o(h), dpp = —2¢ + 7 + o(h). (3.30)

Replacing these expressions in (3.24), we get two smooth functiohsgof
that are estimates of the cut time, the difference between thenmkfsr29 which
shows that one only can be optimal. It correspondsgto dnd is given by:

ocut = h?m (=720 + 197agh? — 160h?(3ry 4 212) — (3.31)
— 240h%r, c092¢)) /48 + o(h°).
The corresponding estimate of the cut-locus is:
Zeut = h*m (3rysin(r1) — 20hr, cosy), 3r1 cogt1)) + o(h®). (3.32)

Similarly to the conjugate locus, it is shifted by a vector which is normal to the
gradient of the curvature, of ordéf, and it has sizé?®.

This estimate is drawn, together with (a sectiorh at cst of) the conjugate
locus on the Figure 5.

Also, at this step, it is interesting to watch the shape of the estimates of the
wave fronts (and spheres) of small radius, in a neighbourhood of the Heisenberg
conjugate timefy = 27. These estimates can be drawn just by plugging-
=2tk in the formulas (3.7), (3.8). This has been done, to get the Figures 6, 7, 8.

As we see on the Figures 5, 8 (and as is expected), the boundary of the cut-
locus coincides with cusps of the conjugate locus. This can be seen from the
general theory of Legendre singularities: it can be checked that we get on the wave
fronts four swallow tails, connected by four cuspidal lines, that are stable Legendre
singularities. This also can be seen directly. Let us show only the following:

LEMMA 3.6. The boundary of the cut locus coincides with the cuspidal lines of
the conjugate locu§.e., at these points, there are swallow tails on wave frlonts
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Proof. First the differencei(¢) between the conjugate time and cut time es-
timates (relative to @) is > 0 as expected, out of a neighbourhood of cusps:
d(p) = 20w hr, Sin(p)? + o(hd).

We have three functions under consideration: (1) the conjugate time function,
oconj(@, h), (2) the self-intersection function, called abaxg;, but calleds; (¢, h)
here, (3) the cut time functioay(e, k), i.e., the first time at which the geo-
desic(g, h) ceases to be globally optimal. Hetgoni(¢, 1), o;(¢, h) are smooth
functions, and form fixed, sufficiently small, both of them attain strict local min-
ima oconj(@c (h), h), o:(¢;(h), h) in a neighbourhood of = 0 (we treat the case
¢ = 0 only, the cas@ = m is similar). It follows from the general theory (see
for instance [2]) that: (a) aftesconi(¢, 1), the geodesicyp, i) is no more locally
optimal, (b) ocu(p, h) is either equal tarcon(p, ), oOr to o;(p, h). Therefore,
ocu(@, h) = inf(ocon(, h), 0i (@, h)).

Assume that for some, o; (¢, h) > oconj(@, h), then,o; (¢, h) is not the optimal
time, and the same is true for the (uniggékuch thav; (¢, h) = 0;(¢’, h). There-
fore,o;(¢’, h) > oconj(¢’, h). Let us call this fact (F). The second fact @ is that
oconj(@i (h), h) = oi(¢;(h), h). We will prove it in a moment. This, with fact
implies thaty; (h) = ¢.(h). Therefore, eithescy(., h) = oconi(., h), OF oew(., h) =
o;(., h). The formulas show that the differeneg(p, 1) — oconj(¢, h) = —20n*m
r» sin(p)? + o(h®) is also a smooth function, with a local strict maximum, for
@ close to zero. This maximum is zero, henegy(p, h) = o;(¢, h). For h fixed,
oconj(@, h) andocui(e, h) are smooth functions, with the same strict local minimum
atg;(h) = @c(h).

We already know by our Lemma 3.1 that(k) corresponds to a cusp of the
conjugate locus, and it is obvious now tha{k) corresponds to a point of the
boundary of the cut locus.

It remains only to show that i holds.

This is more or less obvious: fixing there are sequences, ¢, both converg-
ing to g = ¢;(h), and a sequence,, converging taosg = o;(¢; (h), k), such that

M?M 0. The limit has to belZ (¢, o). Henced: (o, 00) = 0. By the

Lemma 3.1z(go, 0p) has to be a conjugate point. O

Note 13.In the previous lemma, we gave the proof for the cut locus, but a
(trivial) variation of this proof also works for the non-optimal part of the self-
intersection of the wave fronts (corresponding @ @ (3.30)), because it corre-
sponds also to local extrema of the cut time and conjugate time. The boundary of
this nonoptimal part coincides with the remaining two cusp points of the conjugate
locus.

THEOREM 3.7 (Cut locus and sphere in the nondegenerate chlse)ut time and
the cut locus have the smooth asymptofi@s81), (3.32) In particular, the cut
locus has sizé® (in place ofi® for generic sub-Riemannian metrics or generic
isoperimetric problemys
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Figure 9. Degenerate case, 1st part of the self-intersection of the wave front.

Sections by: = c¢st of the cut-locus are curve segments joining two cusp points
among those of the conjugate locus.

The small spheres are homeomorphic to Euclidean spheres, but they are not
smooth: the subset where they are not differentiable consists of two curve segments.

Singularities of the small wave fronts, that are close to the sphere are shown
on the Figures, 7, 8 The Figure8 also shows the shape of the spheres seen from
above(in normal isoperimetric coordinates

Asymptotics for the singular part of the spheres and the first singularities of the
wave fronts are given by the asymptotics of the exponential maf@irg (3.8)in
which one plugs = 5*}21”’1, s the radius. For the sphere, moreoveg, (¢, h) >
#. (In these asymptotics, we consider> 0 only, the upper hemispheye.

The singularities of the typical small wave front fall in two paftgper and
lower hemisphene Each of them consists of a closed cuspidal curve, with 4 cusp
points. At the cusp points appear swallow tails. On each part, there are also two
curve segmentgeach of them joining two of the cusp pointthe nonboundary
points of these segments correspond to transversal self-intersections of the wave
front. One of these segments is thpper or lowe) singular set of the sphere.

Now, let us study more briefly th#egenerate casé\ll computations are done
in details in the program of our Appendix 3, and are easy to follow.

The results are more complicated, and more difficult to understand, due to the
already mentioned asymptotic symmetry, mainly.

Difficulties start with the formula (3.29): for the valugs= k7 /3 and & = x,
the two terms vanish simultaneously. This is, as we shall see, the first effect of the
asymptotic symmetry, and will be the cause of unstable phenomena at this level
of approximation, which disappear when considering higher order jets. The point
is that these phenomena are of no importance for the spheres, and the optimal
synthesis. They play a role for singularities of wave fronts only.
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If we are interested only with the optimal synthesis (the cut-locus and the
spheres), then, we can easily forget this difficulty, as follows:

— first, in a neighbourhood of the poings= kx/3, we have a number of well
defined self-intersection-time functioms ; (¢, h): those obtained by solving the
Equation (3.29), whengis not close tor, i.e. dp; (¢, h) = —2¢ + (2i + D)t /3+
o(h), i # k + 3l + 1 for some integet.

— second, using the smooth expression= o>(dy, ¢, h) + 0(h®), (3.23), for
the values @ = 7 + ¢, ¢ small, we can compare this expression to the values
corresponding tod@ (¢, h):

SetA; (¢, h, &) = o5,(p, h) —a.(7 + ¢, ¢, h). Computations give:

Ai(@, h, &) = —60h°mras(—1) cos(w - %(21' + 1)) + 0(h®) + o(h®),

A (k” h )
i ga , €
= —60h°mrap(—1) cos(%(Z(k —i) — 1)) + o(h® +o(h%).  (3.33)

This shows that, in adequate neighbourhoods of these ppintskz/3 and
dp = m, this difference can be made strictly smaller thanh®, for a > O,
constant. Hencer, ; (¢, h) will always be smaller than the solution fopdlose
to =, if any. We conclude that the cut-time is among the well defined solutions
os.i(p, h), or is the conjugate time.

When g is not close takzr /3, the solution corresponding tapdclose torn is
well defined, smooth, and is:

do, = 7 + 0o(h); (3.34)
0 (0, h) = h?m (=720 4+ 1973 — 320h°1,) /48 + 0(h®).

Again, it is easy to compare this solution to the (¢, /), and to check directly
that it is in fact never optimal. By comparison with the conjugate time, it is also
easy to show (except near cusp points of the conjugate locus), that the cut time is
among thes, ; (¢, h).

What happens in a neighbourhood of cusp points of the conjugate locus, is ex-
actly similar to the nondegenerate case (the proofs work without any modification).
Again, these points correspond to swallow tails on the wave fronts.

At the end, we get the following estimates, for the cut-time and cut locus:

dei(p, h) = —2¢ + (2i + /3 + o(h), (3.35)
oyi(p, ) = 62(dpi(p, h), ¢, h) + 0(h®),

ocutlp, h) = Inf;(oy,i(p, h)),

Zcut((/), h) = ZS((pa cht((P, h)’ h)a

wherea > comes from (3.25), wherg is given in formulas (3.9), (3.10),= 1,2
or3
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1A

Figure 10. Degenerate case, wave front.

Figure 11. Degenerate case, wave front.
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Figure 12. Degenerate case, wave front from above.

The Figure 9 shows the interesting part (calRadt 1) of the self-intersection of
the wave fronts (i.e., the union of the 3 images of the mapgings o, ; (¢, h), h)).

The Figures 10, 11, 12 show the interesting part of the wave fronts (i.e., the part
close tory = 2, the Heisenberg conjugate time).

It is easy to check that the 3 (estimate) pieces of the self intersection Part 1
of the wave fronts are §uadruplecurves, which intersect at a single point (the
equations are given in the Appendix 3, or can be computed easily by the hand).
The curves are double because any self-intersection curve should be double, and
they are quadruple because of the asymptotic symmetry. The intersection of this
locus with a single wave front, is a curve which is double only.

On the Figure 9, we see these 3 pieces, together with the conjugate locus.
Examining the wave front, on the Figures 10, 11, 12, we see that the common
intersection of these 3 curves is a stable phenomenon: it corresponds to transversal
intersection of 3 surfaces. Itis clear that the sections of the cut loclisbys: are
formed by 3 segments, issued from a single point, and the other endpoints of these
segments correspond to 3 among the base points of the 6 swallow tails appearing
on the wave fronts.

THEOREM 3.8 (Cut locus and sphere at degenerate pointsYh@ut angle, cut
time and cut locus have the asymptot{8s35) In particular, the cut locus has
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sizeh® (in place ofh* in the case of generic sub-Riemannian metrics, or generic
isoperimetric problens

(2) Sections of the cut locus y= cst (and not only their asymptotitgonsist
of 3 curve segments with a common endpoint.

(3) The other endpoints of thé segments coincide with cusps of the conju-
gate locus(Again, this is true for the cut locus and not only for the asymptotics,
despite the fact that the conjugate locus is not well described at this level of
approximation).

(4) The small spheres are homeomorphic to Euclidean spheres, but they are
not differentiable. The singular set of the sphere falls in two pi¢icelsoth hemi-
sphere}, each of them consisting of 3 curve segments, with one common endpoint.
The other endpoints are basepoints of swallow-tails on the corresponding wave
fronts.

As we announced, the remarkable fact is thatdegeneracy due to this asymp-
totic symmetry does not play any role for spheres and cut loci.

On the contrary, it does play an important role for the wave front and its self-
intersection. The first point is about the second part 2 of the self-intersection,

i.e., the part corresponding to the asymptotics (3.34). This part is shown on the
Figure 13, together with the conjugate locus. It is also a double curve presenting 3
cusp points.

The most unstable thing of this approximation of the wave-front is at the level
of these cusp points on Part 2. They correspong tok /3, i.e. to the bad points
treated above, for which we just concluded to nonoptimality.

After breaking the symmetry with higher order jets, the conjugate locus will
become a simple curve, with 6 cusp points and transversal self-intersections.

One can see on the Figure 11 that the cuspidal closed singular curve on the
wave front (with 6 cusps points) has 3 self-intersections (one of them is shown on
the figure). This is unstable. These points coincide with the cusp points of Part 2.

In fact, after breaking the symmetry, we will just get 3 times 2 cusps (closer and
closer whem: goes to zero). Even with the computer, it is difficult to show what
happens, but it is easy to understand.

THEOREM 3.9 (Wave front at degenerate point3he singularities of the wave
fronts that are close to the corresponding spheres fall in two pi¢opper and
lower hemisphene One of these pieces is shown on the Figutés 11, 12 It
consists of:

(1) a closed cuspidal curve withicusp points, that are basepoints@$wallow
tails. At the level of the approximatioif(¢, o, ), there are3 self-intersection
points on this closed curve, which disappear at higher order approximation for a
generic problem.

(2) There is a certain self-intersection locus, with endpoints onétseallow
tails, and with6 cusps. The intersection of this locus and the cut locus is the
singular set of the sphere.
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Figure 13. Degenerate case: Part 2 of the self-intersection of the wave front.

Figure 14. Conjugate locus, 8 cusps.

4. Complements
4.1. GETTING AN ARBITRARILY LARGE NUMBER OF CUSPS

In the generic situation, the number of cusps of the conjugate lagiigis equal

to the double of the number of free endpoints of the singular segments on the
hemispheresn,., and is also equal to the numbey,, of swallow tails close to the
(hemi)sphere on the (hemi)wave front of same radius

Neusp= 2”6 = Rgy- (41)

Alsoncysy/2 is equal to the first integej > 1 such thatv-jk(qo) # 0, where
k is the Gaussian curvaturg, is the pole, and the notation for the decomposition
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of tensors is the one given in Section 2.8. It seems that there is something general
beyond these facts.

OPEN PROBLEM. (For any (nongeneric) gernyaiof Riemannian metric which
is “nonflat” in the sense that, for some inteder 1, vik(qo) # 0.) Setj = first

integer> 1 such thatv-]fk(qo) # 0. Is it still true that:

(@) Ncusps= 2j7?
(b) the formula (4.1) holds?
(c) if j is odd, then the conjugate locus is asymptotically double?

The same problem also makes sense in the general case of (isoperimetric or not)
sub-Riemannian metrics. ‘

Perhaps, accordingly to the generic cases, this tgj'lquo) dominatesall other
terms. We are unable to prove this in general. Nevertheless, what we can do is to
compute the conjugate locus for a (germ of) Riemannian metric such that all tensors
are 0, in the decomposition of the successive covariant derivatives of the curvature,
except onesz’k(qo) for some;.

We did this computation, fof = 4, and forj = 5.

We obtained the following asymptotics, in normal coordinates, for the conjugate
locus:

Xconj(9, p) = p° COLp)*(—2 + 3c0%20)),
Yooni(@, p) = —p°Sin(p)3(2 + 3 cog2p)).

j=5: (4.3)
Xconj(@, p) = 8p° cosp)*(—3 sin(p) + 2sin(3p)),
Yooni(@, p) = p°(3cog4p) — 2c0%6y)).

Both asymptotics of these conjugate loci are drawn on the Figures 14, 15.

4.2. COLLISION OF PARTICLES IN A STRONG MAGNETIC FIELD

It is explained in [15], that the motion of a particle in a magnetic field over a 2-
d Riemannian manifold is related with the above considerations. If we have
a principal circle bundleE over M, with a connectione being the connection
form, dx defines a 2-formy on M. The valueyr of the magnetic field is defined by

n = (Volume)y,. The motionz(s) of a particle with charge is described by:

kg(z(s)) = cr(z(s)), (4.4)

wherek, (z(s)) is the geodesic curvature ofs).
It is easily checked that this equation is exactly the equation of projectioms on
of the geodesics of our corresponding isoperimetric metric: using the isoperimetric



326 ANDREI A. AGRACHEV AND JEAN-PAUL A. GAUTHIER

Figure 15. Conjugate locus, 10 cusps (asymptotic symmetry).

Figure 16. Nondegenerate case, collision locus.

normal form (2.11), it is sufficient to check that (4.4) is verified at the pole. But

at the pole,w = % because coordinates on the quotient are just standard
normal Riemannian coordinates. Five lines of small computations with the normal
form give the result.

Here, we study only the case of constant charge particles in a strong magnetic
field. The field has to be much stronger than the charge in order to neglect interac-
tions, because we are interested with the simultaneous motion of several particles
and their collision. We work with a constant magnetic field, which corresponds to
the Dido case. The same work can be done for generic isoperimetric problems, i.e.
non constant magnetic field. It leads to similar results (at different scales).

If several particles with same charge and same speed are emitted from the pole at
time zero in different directions, then, collisions can happen in arbitrary short time.
The locus where such collisions appear we call the “collision locus”. Computing
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Figure 17. Nondegenerate case, collision locus (near conjugate locus).

the collision locus is clearly a problem very similar to the one of computing the
cut locus of the underlaying sub-Riemannian metric. We only want to point out the
apparentlystrange following factThe collision locus is very different from the cut
locus: it has sizé* in place ofA® in the nondegenerate case, adn place of;®

in the degenerate case. Hence, it is even much bigger than the conjugate locus.

We will not say much here in. We will just state results and show pictures.

If the charge is 1 = 1/p is the magnetic field. The trajectories are projections
on M of geodesics of our isoperimetric metric. The map under consideration is
now the mag(s, ¢, p). Setz,(s, ¢) = z(s, ¢, p). The collision locus is the set of
points at the image of the map, that are double with respect §g exactly as the
cut locus is the set of points at the image of the map, ¢) = z(s, ¢, h), that are
double with respect to.

The two following points are important:

(a) we can consider our Hamiltonidih as a Hamiltonian off"*M, depending
on p. (Note that this Hamiltoniar, is no more homogeneous.) The trajectories
of the motion are trajectories éf,.

(b) It can be easily computed that the singular set of this méapasthe same
asymptotic expansion as the conjugate lootithe sub-Riemannian metric (note
that itis not clear that it is exactly the same). The cusps that appear in this expansion
are stable for the same reasons as previously: They are just singularities of the
ordinary map,: R?> — R2, and this map is Whitney.

We can compute asymptotics for the collision locus using exactly the same
method as for the cut-locus. We did this for both the degenerate and nondegenerate
case. Results are more complicated, hence we don’'t show formulas.

As we said, although the singular locus is the same as the conjugatewatius (
same sizg the collision locus has ordene lesgwith respect tq or equivalently
w.rt. h).

On the Figures 16, 17, we show the non-degenerate case (the Figure 17 is a
zoom at the level of the conjugate locus, which is also the set of singular values of
the mapz,). The Figure 18 shows the degenerate case.
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Figure 18. Degenerate case, collision locus.

Appendices. All the programs were developed under Mathematica 3.0
Appendix 1

Here is the program computing the asymptotic expansion with respgcbftthe
exponential mapping, given by the formulas (2.22), (2.23). The results are at the
end of the program. The computation is done at the higher order we need, but last
terms assume thatk = 0. The method is the brute force method explained in the
Section 3.1. We do not print all results here, because some of them are too long.
For instance, the expressions3f ¢, are several pages long. The reader has to
execute the program to get them.

y, z-> ttt" pds[[3]] z, w->ttt" pds[[4]] w,u->ttt" pds[[5]] u};GGG1 = Table[0, {i,1,n+1}];
GGG2 = GGG /.ttt->0;GGG1[[1]] = GGG ;Do[(GGGL1][[i]] =D[GGG1][[i-1]}/(i-1),ttt];
pds_]:= (GGG =F /. {x->ttt" pds[[1]] x,y->ttt" pds[[2]] y,z- ttt" pds[[3]] z, w->ttt" pds[[4]]
w,u->ttt" pds[[5]] u};GGG1 = Table[0, {i,1,n+1}];GGG1[[1]] =GGG ;Do[GGG1][i]] =
D[GGG1[[i-1]}/ (i-1), ttt], {i, 2,n+1}]; GGG1 /.ttt->0 );

Eat[t_]:={{Cos[t/2]" 2, Sin[t]/2, Sin[t], 2 Sin[t/2]" 2} {-Sin[t])/2, Cos[t/2]" 2, -2 Sin[t/2]
"2 .,Sin[t]}, {- Sin[t)/4, - 1/2 Sin[t/2]" 2, Cos[t/2]" 2, Sin[t])/2},{1/2 Sin[t/2]" 2, -Sin][t])/4,
-Sin[t)/2, Cos [t/2]°2 }}; Z1 [t_] := {2 * Cos[phi - t/2]*Sin[t/2],2*Sin[phi - t/2]*Sin[t/2],
Coslphi - t/2]*Cos[t/2],Cos][t/2]*Sin[phi - t/2]};

Alpha= Alpha0 + Alphal + Alpha2+Alpha3;Alphal = r1(Cos[t1] x -Sin[t1] y);Alpha2
=t02 (X"2 +y"2) +r2(Cos[t2](x" 2-y" 2)-2 Sin[t2] x y);Alpha3 =r31 (x"2 + y" 2)(Cos|[t31]
X + Sin[t31] y) +r32(Cos[t32] x(x"2-3 y"2) - Sin[t32] y* (3 X" 2-y"2)); t32 = 0; Gaux
=1 /(1+ "2 (X" 2+ y" 2)*(Alpha/. {x-> tttt x, y-> tttt y}));Gauxl = Expndl[Gaux,5,
tttt, aaal,aa?,aaa3,aaa4,{1,1,1,1,1}]; Gaux2 = Integrate[2 tttt Gaux1, {tttt,0,1}];Gaux3 =
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(1+(x"2+y" 2) Alpha) Gaux2;Gaux4 = Expnd1[Gaux3, 5, x,y,aal,aa?,aa3,{1,1,1,1,1}];wl
=y/2 Gaux4; w2 = -x/2 Gaux4;x1 =1 +y" 2 Alpha; y1 = -x y Alpha;x2 = - x y Alpha;y2
=1+x"2 Alpha;

Le Hamiltonien, H. Le champ Hamiltonien dont les

composantes sont Hx, Hy, Hw, Hp, Hq, Hr, par rapport

au nouveau temps, dt = r(s) ds, s = longueur d’arc.

H=1/2 (px1+qyl+rwl) 2+ 1/2 (p X2 + q y2 + r w2)"2; Hx = D[H,p]; Hy =
D[H, q]; Hp = - D[H, x]; Hq = -D[H,y[;Hx =Hx /. r->1; Hy = Hy /. r->1;Hp=Hp /. r
->1; Hq=Hq/. r->1;Hw = D[H,r]; Hw = Hw/. r->1;Hflechew = Expnd[Hw, 7, X,y,p,q,aaal,
{1,1,1,1,1}];Hflechew = Simplify[Hflechew/. t2->0];Hflechew= InputForm[Hflechew]

Hflechex =Expnd1[HXx,6,x,y,p,q,aaal,{1,1,1,1,1}];Hflechey=Expnd1[Hy,6 ,x,y,p,q,aaal
{1,1,1,1,1}]; Hflechep =Expnd1[Hp,6,x,y,p,q,aaal,{1,1,1,1,1}];Hflecheq=Expnd1[Hq,6,
XY, p,q,aaal, {1,1,1,1,1}]; Al ={p +y/2,q - x/2, (q - x/2)/2, -(p + y/2)/2}; B = {Hflechex
,Hflechey, Hflechep, Hflecheq } -A1;

***Calcul du developpementde x,y,p,q,en rho, a l'ordre6 en rho pour x y et 7 pour w

*kkkkkkkkkkkkkkkhkhhhhkkkkkhkhhhhhhkkkkkhhhhhk

B = InputForm[Simplify[B]]t2=0;Z2Z3 = Eat[t-s] . (B /.{x- rho Z1[s][[1]], y-> rho
Z1[s][[2]],p->rho Z1[s][[3]],9->rho Z1[s][[4]]});Aux = Expnd1[ZZ3,3, rho, aal,aa2,aa3
,aa4, {1,1,1,1,1}];Z3 = Integrate[Aux, {s, 0, t}];Z3 = Simplify[(Z3) /. rho->1]; Input-
Form[Z3]

Zu3s =rho Z1[s] ;BB=Expand[B];ZZ4 = Eat[t-s] . (BB /. {x->Zu3s][[1]], y->Zu3s[[2]],
p->Zu3s[[3]],9->Zu3s[[4]]});Z41 = Expnd[ZZ4,4,rho,aaal, aaa?,aaa3, aaa4,{1,1,1,1,1}];
Z42 = Integrate[Z41][[5]],s];Int = (Z42 /. s->t)- (Z42 |. s->s1);Z4 = Simplify[Limit[int,
s1->0]]; InputForm[Z4/. rho->1]

t2=0; BB = Expnd[B,5,x,y,p,q,aal1,{1,1,1,1,1}]; Zu3s3 = rho Z1[s]+ rho"3 ( Z3 /. t-
>s) ;Zu3sl = rho Z1[s] ;ZZ5p = Eat[t-s] . (BB[[4]] /. {x->Zu3s3[[1]],y-> Zu3s3[[2]],
p->Zu3s3[[3]], g->Zu3s3[[4]]}); ZZ5p1 = Eat[t-s] .( (BB[[5]] +BB[[6]])/. {x->Zu3s1[[1]],
y->Zu3s1[[2]],p->Zu3s1][[3]], g-> Zu3s1[[4]] });ZZ5 = ZZ5p1+ZZ5p;Z51 = Expnd[ZZ5[[
1]],5,rho, aaal,aaa?,aaa3,aaa4,{1,1,1,1,1}]; Z52 = Expnd[ZZ5][2]],5,rh0, aaal,aaa2,aaa3,
aaa4, {1,1, 1,1, 1}];Z53 = Expnd[ZZ5][3]] ,5, rho, aaal,aaa2,aaa3,aaa4, {1,1,1,1,1}];254
= Expnd[ZZ5[[4]],5.rho, aaal, aaa2,aaa3,aaa4,{1,1,1,1,1}];Zp5 = {Z51][[6]],Z52[[6]],.Z53
[[6]1,Z54[[6]]}; Zpp5= TrigReduce[Zp5]; Aux = Expand[TrigToExp[Zpp5]]; Auxl =
Integrate[Aux,s]; Zpp5 = Simplify [ExpToTrig [Aux1 ]]; Z5 = Simplify[((Zpp5)/.{ rho-
>1,s->t})- ((Zpp5)/.{ rho->1,s->0})];InputForm[Z5]

t2=0;Zu3s4 =(rho Z1[s]+ rho" 3( Z3 /. t->s)+ rho™4( Z4 /. t->s))/. r2->0 ; Zu3s3=( rho
Z1[s]+ rho™3( Z3 /. t->8)); Zu3sl=rho Z1[s];BB = Expnd[B,6,x,y,p, q,aal1,{1,1,1,1, 1}];
2763 = Eat[t-s] . ((BB[[4]}/. r2->0) /. {x->Zu3s4[[1]], y-> Zu3s4[[2]], p->Zu3s4[[3]].g-
>Zu3s4[[4]] D;Z2Z64 = Eat[t-s] . ((BB[[5]]) /. {x->Zu3s3[[1]], y-> Zu3s3[[2]], p->Zu3s3
[[311,9->Zu3s3[[4]] });ZZ65= Eat[t-s] . ((BB[[6]]) /. {x->Zu3s1][[1]], y-> Zu3s1[[2]], p-
>7u3s1[[3]].q->Zu3s1[[4]] }); ZZ66=Eat[t-s] . ((BB[[7])/. r2->0) /. {x-> Zu3s1[[1]],y-
>Zu3s1[[2]], p->Zu3s1[[3]],q->Zu3s1[[4]] }); ZZ6 = ZZ63+ZZ64+72765+27Z66; Z61 =
Expnd[ZZ6[[1]],6,rho, aaal,aaa2, aaa3,aaa4, {1,1,1,1,1}]; Z61= Simplify[Z61[[7]]]; Z62
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=Expnd[ZZ6][[2]],6,rh0,aaal,aaa?, aaa3 ,aaa4, {1,1,1,1,1}]; 262=Simplify[262[[7]]]; 263
= Expnd[Z2Z6][3]], 6,rh0, aaal,aaa?,aaa3,aaa4,{1,1,1,1,1}]; Z63=Simplify[263[[7]]]; Z64
= Expnd[ZZ6[[4]], 6,rho, aaal,aaa2,aaa3,aaa4,{1,1,1,1,1}]; Z64=Simplify[264[[7]]]; Z6E=
{261,262, 263,264}; InputForm[Z6E]

Zpp6=TrigReduce[Z6E]; Aux=Expand[TrigToEXp[Zpp6]]; Aux1= Integrate[Aux,s];
Zpp6 = Simplify [ExpToTrig[Aux1]]; Z6 = Simplify[((Zpp6)/.{ rho->1,s->t})- ((Zpp6)/.{
rho->1,s->0})]; ZZ =rho Z1[t] + rho" 3 Z3 + rho" 4 Z4 + rho" 5 Z5+ rho™ 6 Z6; ZZ1={Z1[t]
([, Z1ft) [[21] % ZZ3= {Z3[[1]], Z3[[2]]}; ZZ4={ZA[[1]]. Z4[[2]]};ZZ5={Z5][[1]],

Z5[[2]1}; Zz6={Z6[[1]], Z6[[2]]};

********Calcul de W***************

*kkkkkkkkkkkkkkkhhhhhhkkkkkhkhkhhhhix

Hfw7=Hflechew[[8]])/.{x->rho Z1[t][[1]],y-> rho Z1[t][[2]], p->rho Z1[t][[3]], g->rho
Z1[t][[411}; Hfw7=Simplify[Hfw7]; Hfw7={0,0,0,0,0,0,0,Hfw7}; Hfw6= Hflechew [[7]]/.
{x->rho Z1[t] [[ 1]], y ->rho Z1[t][[2]], p->rho Z1][t][[3]],q->rho Z1[t][[4]]}; Hfw6 =Sim-
plify[Hfw6]; Hfw6={0,0, 0,0,0,0, Hfw6,0}; Zus=rho Z1[t]+ rho~3 Z3; Hffw5=Hflechew
[[6])/. {x-> Zus][[1]].y->Zus[[2]], p->Zus[[3]].q->Zus[[4]]}; Hfw5= Expnd[ Hffw5,7,rho,
aal,aa?,aa3, aa4,{1,1,1,1,1}]; Hfw5 = Simplify [Hfw5 ]; Zus=rho Z1[t]+ rho"3 Z3
+rho” 4 Z4; Hffw4= Hflechew[[5]]/. {x-> Zus[[1]], y->Zus[[2]], p->Zus[[3]], g->Zus[[4]]};
Hfw4=Expnd[Hffw4,7,rho,aal,aa?,aa3,aa4,{1,1,1,1,1}]; Hfw4= Simplify[Hfw4]; Zus=rho
Z1[t]+rho”3Z3 +rho”™ 4 Z4+rho™ 5 Z5+ rho” 6 Z6; Hffw2= Hflechew([[3]}/.{x-> Zus[[1]],y-
>Zus[[2]], p->Zus[[3]],9->Zus][[4]]}; Hfw2= Expnd[Hffw2, 7 ,rho, aal,aa2, aa3,aa4, {1,1,
1,1,1}]; Hfiw2=Simplify[Hfw2]; Hffw=Hfw2+ Hfw4+ Hfw5+ Hfw6+ Hfw7; Hfw= Hffw
[[3]]+ Hffw[[5]]+ Hffw[[6]]+Hffw[[7]]+ Hffw[[8]]; Wpp7= TrigReduce[Hfw]; Aux1= Ex-
pand[ TrigToExp[ Wpp7 ]]; Aux2=Integrate[Aux1,t]; Wpp6= Simplify[ExpToTrig[Aux2]];
Aux3 = Simplify[Wpp6 -( Wpp6 /. {t-> 0})]; Aux4= Expnd[ Aux3,7,rho,aal,aa2,aa3,
aa4,{1,1,1,1,1}]; Aux3= Simplify[ Aux4]; W2 = Aux3[[3]]; InputForm[W?2]

W4 = Aux3|[[5]]; InputForm[W4] W5 = Aux3[[6]]; InputForm[W5]

W6 = Aux3[[7]];InputForm[W6] W7 = Simplify[Aux3[[8]]/. r2->0];InputForm[W7]

WW = W2+ W4+ W5+ W6+ W7;

R esu |tats skkkkkkkkkkkkkkkkkkkhkk

*kkkkkkkkkkkkkkkhhhhhhkkxkkiik

InputForm[ZZ1] InputForm[ZZ3] InputForm[ZZ4] InputForm[ZZ5] InputForm[ZZ6]
InputForm[ W2/.rho->1] InputForm[W4/.rho->1] InputForm[W5/.rho->1] InputForm[ W6
/. rho ->1] InputForm[ W7/.rho->1]

Z1={2*Coslphi - t/2]*Sin[t/2], 2*Sin[phi - t/2]*Sin[t/2]};

Z3= {(Alpha0*(6*t*Cos[phi - t] - 6*Sin[phi] +2*Sin[phi - 2*t] + 3*Sin[phi - t] +
Sin[phi + 1]))/2,-(Alpha0*(-6*Cos|[phi] + 2*Cos|[phi - 2*t] +3*Cos|[phi - t] + Cos[phi +
t] - 6*t*Sin[phi - t]))/2};

Z4=:;75=;76=;

W2= (t - Sin[t])/2;

W4= (3*Alpha0*(-2*t - 4*t*Cos[t] + 4*Sin[t] + Sin[2*t]))/8;
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W5= -(r1*(9*Cos|phi - 3*t + t1] - 85*Cos|[phi - 2*t + t1] -120*Cos[phi - t + t1] +
175*Cos[phi + t + t1] + 21*Cos[phi + 2*t + t1] + 180*t*Sin[phi + t1] + 180*t* Sin[phi - t
+ t1] + 120*t*Sin[phi + t + t1]))/ 80;

W6=W7=,

Appendix 2

The next program uses the results of Appendix 1 to compute everything in the
nondegenerate case wheyék # 0 (or r, # 0). It computes first the conjugate
locus just with the expansion ip of the exponential mapping, using the trick
(consequence of Liouville’s theorem) which allows to write that the equation for
conjugate time is just:

0 0
_Z A _Z — O’
dp  dp
in normal coordinates.
After that, it computes the expansion of the exponential mapping in suspended
form.
Using this suspended form, it recomputes the approximation of the conjugate
locus.
The last step is the computation of the cut locus (using the method explained in
Section 3.5).

Z =rho Z1+rho" 3 Z3+rho™4 Z4+rho™5 Z5;

*rikkkCalcul du lieu conjugué ds le cas non degenere**

kkkkkkkkkkkkkkhkkhhhhhkkkkkhkhhhhhkhkkhkkhhhhhhkkkxixikx

Zto = Z /. t->(2 Pi+to); Zto5= Expnd1[Zto,5,rho,t0,aaal,aaa?, aaa3,{1,2,1,1,1}]; Zto5=
InputForm[Simplify[Zto5]]

Zto5={(6*Alpha0*Pi*rho"3 - 55*Alpha0” 2*Pi*rho"5 - 20*Pi*r2*rho™5 + rho*to +
40* Pi* rho”5* to2)*Cos[phi] - 10*Pi*r2*rho”5* Cos[3*phi] + 18*Alpha0” 2* Pi"2 *
rho”™ 5* Sin[ phi] + 6* Alpha0 * Pi* rho™ 3*to*Sin[phi] + (rho*to” 2*Sin[phi])/2 + 9*Pi*r1*
rho”™ 4*Sin[tl] + 6*Pi*rl*rho”4*Sin[2*phi + t1], -(rho*(6*Alpha0*Pi*rho"2 + to)" 2*
Cos[phi])/2 + 9*Pi* r1* rho™ 4* Cos[ t1] - 6*Pi*rl *rho” 4 *Cos[2*phi + t1] + 6*AlphaO*
Pi*rho” 3* sin[phi] - 55* Alpha0” 2 *Pi* rho™5 * Sin[phi] + 20*Pi* r2* rho™ 5* Sin[phi] +
rho*to* Sin[phi] + 40*Pi*rho” 5*to2*Sin[phi] - 10* Pi*r2* rho™5 *Sin[ 3*phi]};

Al = Simplify[-((2 Pi+to)/rho) D[Zt05,t0]];DZphi = D[Zto5,phi];DZr = D[Zt05,rho]
+A1l; Aux = Det[{DZphi,DZr}];Auxl = Expnd1[Aux,5,rho,t0,aaa2,aaa3, aaa4, {1,2,1, 1,1}];
Aux3 = Simplify[Aux1/(2 Pi rho)];tto= (to-Aux3);ttol = tto/. to->tto; toconj = Expndl
[ttol, 4,rho, to, aaal ,aaa2, aaa3, {1,2,1,1,1}]; toconj = InputForm[Simplify[tocon]]]

toconj =Pi*rho”2*(-6*Alpha0+55*Alpha0”2*rho™2 - 40*rho™2* t02+10*rho™ 2*r2*
Cos [2* phi] - 12*rho*r1*Sin[phi + t1]);

Conjl1 = Zto5 /. {to->toconj};Conj = InputForm[ Expnd1[Conjl1,5,rho,aaal, aaa2,
aaa3, aaa4,{1,1,1,1,1}]; Conj = Simplify[Conjl2]]
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Conj={-20*Pi*rho” 5*r2*Cos|[phi]  3+3*Pi*rho” 4*r1*Sin[t1], 3*Pi*rho” 4* r1*Cos[t1]
+ 20*Pi*rho” 5*r2*Sin[phi]" 3};

Datanum1 = {Alpha0->0.5,t02->0.3, r2->0.7, t1->2.5,r1 -> 0.3,rho->0.001}; Conjnum
= Conj /. Datanum1;ParametricPlot[Conjnum, {phi,0,2 Pi}];

********Calcul de W***************

*kkkkkkkkkkkkkkkhhhhhhkkkkkhkhhhhixx

WW=rho" 2 W2+rho™ 4 W4+rho™5 W5+rho™ 6 W6;WWto = Expnd1[(WW/. t->2 Pi+to),
6, rho,to,aaal, aaa2, aaa3, {1,2,1,1,1}]; Wto = InputForm[ Collect[Simplify[ WW1o], rho]]

Wto = Pi*rho” 2 - (9*AlphaO*Pi*rho”4)/ 2 + rho” 6*((275*Alpha0” 2*Pi)/6 - (100*Pi*
t02)/3 + 25*Pi*r2*Cos[2*phi]) - 12*Pi*rho” 5*r1*Sin[phi + t1];

rrxxkkkxrkCalcul de la suspension de 'Exponentielle****

*kkkkkkkkkkkkkkkhhhhhhkkkkhkhhhhhhkkhkkhkhhhhhkrkxikrikx

h = (Wto/Pi)" (1/2), sig = (s-2 h Pi)/h

HH =rho((Pi-(9*Alpha0*Pi*rho"2)/2+rho™ 4*((275*Alpha0” 2*Pi)/6 - (100*Pi*t02)/3
+ 25*Pi*r2* Cos[2*phi]) - 12*Pi*rho” 3*r1*Sin[phi + t1])/Pi)" (1/2);

HH1 =InputForm[ Expnd1[HH,5,rh0,aaal,aaa?,aaa3,aaa4,{1,1,1,1,1}]]

HH1=rho - (9*Alpha0*rho”3)/4 + ((-1215*Alpha0” 2*rho"5)/4 + (60*rho”5* ((275*
Alpha0” 2* Pi)/6 - (100*Pi*t02)/3 + 25*Pi*r2*Cos[2*phi]))/Pi)/120 - 6*r1*rho” 4*Sin[phi
+t1];HH2 = rho+h-HH1;HH3 = HH2 /. {rho->HH2}; HH4 = Expnd1[ HH3,5,rho, h, aaal,
aaa2,aaa3,{1,1,1,1,1}];HH5 = HH4 /. {rho->HH4};HH6 =Expndl[ HH5,5,rho,h, aaal,
aaa2,aaa3, {1,1,1,1,1}];RRho = InputForm[Simplify[HH6]]

RRho =h + (9*Alpha0*h”3)/4 - (499*Alpha0” 2*h" 5)/96 + (50*h" 5*t02)/3 - (25* h" 5*
r2*Cos[2*phi])/2 + 6*h” 4*r1*Sin[phi + t1];SS1 = (2 Pi + to) RRho; SS2 = Expnd1[SS1,
5,h,to,aaal, aaa2,aaa3,{1,2,1,1,1}]; SS = InputForm[ Simplify[SS2]]

SS =2*h*Pi + (9*Alpha0*h”3*Pi)/2 - (499*Alpha0” 2*h"5*Pi)/48 + h*to + (9*Al-
pha0*h” 3*t0)/4 + (100*h" 5*Pi*t02)/3 - 25*h™ 5* Pi*r2*Cos[2*phi] + 12*h" 4*Pi*r1*Sin
[phi + t1]; SSig = InputForm[Simplify[(SS-2 h Pi)/h]]

SSig =(9*Alpha0*h” 2*Pi)/2 - (499*Alpha0” 2*h" 4*Pi)/48 + to + (9*Alpha0* h™ 2*to)/

4 + (100*h™ 4*Pi*t02)/3 - 25*h" 4*Pi*r2*Cos[2*phi] + 12*h™ 3*Pi*r1*Sin[phi + t1];TTol

= sig+to-SSig; TTo2 = TTol /. {to-> TTol};TTo2 = Expndl[ TTol,4,h,sig, to,aaa2,aaa3,
{1,2,2,1,1}];TTo3=TTo2 /. {to->TTo2}; TTod=Expnd1[ TTo3,4,h,sig,to, aaa2,aaa3, {1,2,
2,1,1}]; TTo = InputForm[Simplify[TTo4]]

TTo =(-9*Alpha0*h” 2*Pi)/2 + (985*Alpha0” 2*h" 4*Pi)/48 + sig - (9*Alpha0* h” 2*sig
)4 - (100*h™ 4*Pi*t02)/3 + 25*h™ 4*Pi*r2*Cos[2*phi] - 12*h™ 3*Pi*r1*Sin[phi+t1];Zsusl
=Zto5/. {rho->RRho, to->TTo};Zsus2 = Expnd1[ Zsusl,5,h,sig,aaal, aaa2, aaa3, {1,2,1,1,
1}]; Zsus =InputForm[ Simplify[Zsus2] ]

Zsus ={(h*((72*Alpha0*h"2*Pi - 197*Alpha0”2*h" 4*Pi - 360*h" 4*Pi*r2 + 48*sig +
320*h™ 4*Pi*to2)* Cos[phi] + 6*(20*h~ 4*Pi*r2*Cos[3*phi] + 9*Alpha0~2* h" 4 * pi~ 2*
Sin[ phi] + 12*Alpha0*h™ 2*Pi*sig*Sin[phi] + 4*sig” 2*Sin[phi] + 24*h™ 3*Pi*r1*Sin[t1]
)))/48,
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(h*(-6*(3*Alpha0*h”2*Pi + 2*sig)” 2*Cos[phi] + 144*h" 3*Pi*r1*Cosl[t1] + (72* Al-
pha0* h™2*Pi - 197*Alpha0”2*h” 4*Pi + 480*h"4*Pi*r2 + 48*sig + 320*h" 4*Pi*to2 +
240*h™ 4* Pi*r2* Cos[ 2* phi]) *Sin[phi]))/48};

***+*Recalcul du lieu conjugué, en coupant par h= Cst**

Aux = Det[{D[Zsus,phi], D[Zsus,sig]}];Aux1 = Expnd1[ Aux,6,h, sig,aaal,aaa2,aaa3,
{1,2, 1,1, 1}]; Aux2 = InputForm[Simplify[Aux1/h~2]]

Aux2 = (-3*Alpha0*h”2*Pi)/2 +(197*Alpha0” 2*h" 4*Pi)/48 - sig - (20*h™ 4* Pi*t02)/

3 - 15*h™ 4*Pi*r2*Cos[2*phi];SigConj = InputForm[Simplify[Aux2+sig]]

SigConj =(h" 2*Pi*(-72*Alpha0 + 197*Alpha0” 2*h" 2 - 320*h™2*t02 - 720*h" 2* r2*
Cos[2*phi]))/48;

Zcl = Zsus /. {sig->SigConj};Zc2 = Expndl[ Zc1,5,h,aaal,aaa2,aaa3,aaas, {1 ,1,1,
1,1}]; Zconj = InputForm[Simplify[Zc2]]

Zconj ={h”~ 4*Pi*(-15*h*r2*Cos[phi] - 5*h*r2*Cos[3*phi] + 3*r1*Sin[t1]), h" 4*Pi*

(3*r1* Cos[t1] + 20*h*r2*Sin[phi]"3)} ;

Datanum1 = {Alpha0->0.5,t02->0.3, r2->0.7, t1->2.5, r1 -> 0.3,h->0.001};Conjnum =
Zconj/. Datanum1;ParametricPlot[Conjnum, {phi,0,2 Pi}];

*****Calcul du Cut_locus**************

*kkkkkkkkkkkkkkkhhhhhkkkkkhkhhhhhhkxx

Erl = (Zsus /. {phi->(phi+dphi)}) - Zsus; Er2 = Simplify[Er1];Er = InputForm[ Er=
Simplify [ Er2 /(h* Sin[ dphi/2])]]

Er3 = Simplify[ Det[{{Cos[dphi/2+phi], Sin[dphi/2+phi]},Er}]];Erd = Expnd1[ Er3,4,h,
aaal,aaa?,aaa3, aaa4,{1,1,1,1,1}];Er5=Simplify[Er4];SigCut = InputForm[ Simplify[ 1/2(2
sig -Er5)]]

SigCut = (h” 2*Pi*(-72*Alpha0+197*Alpha0”2*h" 2 - 320*h" 2* t02-120*h" 2* r2* Cos
[2 *phi] -120* h”2*r2*Cos[2*(dphi + phi)]-480*h" 2*r2*Cos[dphi + 2*phi]))/48;Er6 =
Simplify[Er /. {sig->SigCut}];Er7 = Expndl[ Er6,4,h,aaal, aaa?,aaa3,aa4, {1,1,1,1,1}];
Er8 = Det[({{ -Sin[dphi/2+phi], Cos[dphi/2+phi]},Er7})]; Er8= InputForm[Simplify[Er8]]

Er8 =-20*h" 4*Pi*r2*Sin[dphi/2]" 2*Sin[dphi + 2*phi]; Cutll = Zsus /. {sig-> (SigCut
/. {dphi -> -2 phi})}; Cutl2 = Expnd1[ Cutl1,5,h,aaal,aaa?,aaa3,aa4, {1,1,1,1,1}];Cutl =
InputForm[Simplify[Cutl2]]

Cutl = {h™ 4*Pi*(-20*h*r2*Cos[phi] + 3*r1*Sin[t1]), 3*h" 4*Pi*r1*Cos[t1]};Cutll =
Zsus /. {sig->(SigCut/. dphi -> 0)};Cutl2 = Expnd1[ Cutl1,5,h,aaal, aaa2,aaa3,aa4, {1,1,1,
1,1}];Cutl0 =InputForm[Simplify[Cutl2]]

Cutl0 = {-20*h”5*Pi*r2*Cos[phi]"3 + 3*h”4*Pi*r1*Sin[t1], 3*h~4*Pi* r1*Cos]t1]

+ 20*h™ 5*Pi*r2*Sin[phi]”3};Cutll = Zsus /. {sig->(SigCut /. {dphi -> (-2 phi+ Pi)})};
Cutl2 = Expnd1[Cutl1,5,h aaal,aaa2,aaa3,aa4, {1,1,1,1,1}];CutlPi = InputForm[ Simplify[
Cutl2]]

CutlPi = {3*h" 4*Pi*r1*Sin[t1], ™ 4*Pi*(3*r1*Cos[t1] + 20*h*r2*Sin[phi])};

Datanuml = {Alpha0->0.5,t02->0.3, r2->0.7, t1->2.5,r1 -> 0.3,h- 0.001};Conjnum =
Zconj /. Datanuml; Cutlnum = Cutl /. Datanuml;ParametricPlot[{Conjnum,Cutlnum},
{phi,0,2 Pi}]; Cutinum = Cutl0 /. Datanum1; ParametricPlot[{Cutinum}, {phi,0,2 Pi}];
Cutlnum = CutlPi /. Datanum1;ParametricPlot[{Conjnum,Cutinum}, {phi,0,2 Pi}];
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Appendix 3

This appendix uses the results of the program in Appendix 1 (the asymptotic ex-
pansion of the exponential mapping in termsdfin order to compute everything

in the degenerate case wheyék = O (equivalently,» = 0). The organization

of the program is exactly the same as explained at the beginning of the previous
Appendix 2.

Z = (rho Z1+rho"3 Z3 + rho"4 Z4 + rho” 5 Z5 + rho” 6* Z6)/.r2->0;

*rxxxxCalcul du lieu conjugué ds le cas degenere**

Zto = Z /. t->(2 Pi+to); Zto6= Expnd1[Zt0,6,rho,t0, aaal,aaa2,aaa3,{1,2,1,1,1}]; Zto6=
Simplify[Zto6]

Al = InputForm[Simplify[-((2 Pi+to)/rho) D[Zto6,t0]]];Al

Al ={-((2*Pi + to)*(Cos[phi] + Sin[phi]*(6*Alpha0*Pi*rho™ 2 + to + 12*Pi* r1*
rho” 3* Sin[phi + t1]))), (2*Pi + to)*(-Sin[phi] + Cos[phi]*(6*Alpha0*Pi*rho"2 + to +
12*Pi* r1*rho” 3*Sin[phi + t1]))};DZphi = D[Zt06,phi];DZr = D[Zt06,rho] +Al; Aux =
Det[{Dzphi ,DZr }]; Aux1l = Expnd1[Aux,6,rho,to,aaa2,aaa3,aaa4, {1,2,1,1,1}];Aux3 =
Simplify[Aux1/(2 Pi rho)]; InputForm[Aux3]

Aux3 = 6*Alpha0*Pi*rho”2 - 109*Alpha0” 2*Pi*rho™4 + to -9*Alpha0*rho”2*to +
40*Pi * rho " 4* to2 + 15*Pi*r32*rho”5*Sin[3*phi] - 3*r1*rho” 3*(-4*Pi + 181* Alpha0*

Pi* rho™ 2 + 10*to)* Sin[phi + t1] + 75*Pi*r31*rho”5*Sin[phi - t31]; tto= (to-Aux3);
ttol = tto/. to-> tto; toconj = Expnd1[ttol,5,rho,t0,aaal,aaa?,aaa3,{1,2,1,1,1}]; toconj =
InputForm[ Simplify[toconj]]

toconj=Pi*rho” 2*(-6*Alpha0 + 55*Alpha0” 2*rho” 2 - 40*rho” 2*t02 - 15*r32* rho™ 3*
Sin[3*phi] + 3*r1*rho*(-4 + 85*Alpha0*rho”2)*Sin[phi + t1] - 75*r31* rho™ 3*Sin[phi -
t31]); Conjll = Zto6 /. {to->toconj}; Conjl2 = Expnd1[ Conjl1,6,rho, aaal,aaa2, aaa3,aaa4,
{1,1,1,1,1}]; Conj = InputForm[Simplify[Conjl2]]

Conj ={-(Pi*rho”4*(90*r32*rho" 2*Sin[2*phi] + 45*r32*rho”2* Sin[4*phi] - 6*rl*
Sin[tl] + 85*Alpha0*rl*rho”2*Sin[tl] + 25*r31*rho” 2*Sin[t31]))/2, (Pi* rho™4* (-90*
r32* rho " 2 *Cos| 2*phi] + 45*r32*rho” 2*Cos[4*phi] + 6*r1*Cos[t1] - 85*Alpha0* r1*
rho™2* Cosltl] + 25*r31 *rho”2 *Cos [t31 ]))/2}; Datanuml1 = {Alpha0->0.5,t02->0.3,
t1-> -2.5, r31 -> 0.7, t31 ->-1.2, r32 -> 1.3, r1 -> 0.3,rh0->0.01}; Conjnum = Con;j /.
Datanum1; ParametricPlot [ Conjnum {phi, 0, 2 Pi}];

WW = (W2 rho”2 + W4 rho™4 + W5 rho™5 +W6 rho™6 + W7 rho™7)/. r2->0;WWto
= Expnd1[(WW /. t->2 Pi+to),7, rho,to, aaal,aaa2, aaa3, {1,2,1,1,1}]; Wto = InputForm
[ Collect[ Simplify[WWto],rho]]

Wto =Pi*rho” 2 - (9*Alpha0*Pi*rho”4)/2 + rho” 6*((275*Alpha0” 2*Pi)/6 - (100* Pi*
to2) /3) + rho” 5*((3*Pi*r1*to*Cos[phi + t1])/2 - 12*Pi*r1*Sin[phi + t1]) + rho™ 7* (9*
Alpha0* Pi” 2*r1*Cos[phi + t1] + 45*Pi*r32*Sin[3*phi] + 255*Alpha0*Pi*r1*Sin[phi +
t1] - 75*Pi*r31*Sin[phi - t31]);

rrxkkkrrkCalcul de la suspension de 'Exponentielle****

kkkkkkkkkkkkkkkkkhkkkkkkkkkkkkkhkkkhkkkkkkhkkkkkkkkkkkkk

h = (Wto/Pi)" (1/2), sig = (s-2 h Pi)h
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*kkkkkkkkkkkkkkkhhhhkkkkkkhhhhhhkx

HH =rho (( Pi - (9*Alpha0*Pi*rho”2)/2 +rho™ 4*((275*Alpha0”2*Pi)/6 - (100* Pi*
to2) /3 + 25*Pi*r2*Cos[2*phi]) + rho” 3*((3*Pi*r1*to*Cos[phi + t1])/2 - 12*Pi* r1* Sin
[phi + t1]) + rho™ 5*(9*Alpha0*Pi" 2*r1*Cos[phi + t1] + 45*Pi*r32*Sin[3*phi] + 255*
Alpha0*Pi* r1* Sin[ phi + t1] - 75*Pi*r31*Sin[phi- t31]))/Pi)" (1/2); HH=HH/.r2->0; HH1
= Expnd1 [ HH,6, rho,t0, aaa2, aaa3, aaa4, {1,2,1,1,1}]

HH2 = rho+h-HH1; HH3 = HH2 /. {rho->HH2}; HH4 = Expnd1[HH3,6,rho,h,t0, aaa2,
aaa3, {1,1,2,1,1}];HH5 = HH4 /. {rho->HH4};HH6 =Expndl[ HH5,6, rho, h,to, aaa2,
aaa3,{1,1,2,1,1}]; RRho = Simplify[HH6]; SS1 = (2 Pi + to) RRho; SS2 = Expnd1[ SS1,
6,h,to,aaal, aaa2,aaa3, {1,2,1,1,1}]; SS = Simplify[SS2];SSig = InputForm[ Simplify[ (SS/
h-2 Pi)]]

SSig =(9*Alpha0*h” 2*Pi)/2 - (499*Alpha0”2*h" 4*Pi)/48 + to + (9*Alpha0* h” 2* to)

/4 + (100*h™ 4*Pi*t02)/3 - (3*h” 3*Pi*r1*(6*Alpha0*h”2*Pi + to)*Cos[phi + t1])/2 - 45*
h” 5*Pi*r32*Sin[3*phi] + 12*h"~ 3*Pi*r1*Sin[phi+ t1] - 39* Alpha0* h” 5*Pi* r1* Sin[phi
+ t1] + 6*h” 3*r1*to*Sin[phi + t1] + 75*h" 5*Pi*r31*Sin[phi - t31];

TTol =sig+to-SSig; TTo2=TTol/. {to->TTol}; TTo2 = Expndl1[TTol,5,h,sig, to,aaa2,
aaa3,{1,2,2,1,1}];TTo3=TTo2/. {to->TTo2}; TTod=Expnd1[ TTo3,5,h,sig,to, aaa2, aaa3,
{1,2,2,1,1}]; TTo = Simplify[TTo4];Zsusl = Zto6 /. {rho->RRho, to-> TTo}; Zsus2 =
Expnd1[Zsusl,6,h,sig,to,aaa2,aaa3, {1,2,2,1,1}];Zsus = InputForm[ Simplify[ Zsus2 ]]

Zsus = {(h*((72*Alpha0*h~2*Pi - 197*Alpha0”2*h" 4*Pi + 48*sig + 320* h™ 4*Pi*
to2)* Cos[phi] + 6*(3*h”~ 3*Pi*r1*(3*Alpha0*h”2*Pi + 2*sig)*Cos[t1] + 9*Alpha0* h" 5*
Pi"2 *rl *Cos [2* phi + t1] + 6*h™ 3*Pi*rl*sig*Cos[2*phi + t1] + 9*AlphaQ”2* h™4*
Pi”2* Sin[phi] + 12*Alpha0*h”2*Pi*sig*Sin[phi] + 4*sig” 2*Sin[phi] - 120*h"5* Pi*
r32* Sin[2*phi] + 60*h"™5 *Pi* r32* Sin[ 4*phi] + 24*h" 3*Pi*r1*Sin[t1] - 124* Alpha0*
h™ 5* Pi*r1*Sin[t1] - 100*h"5 *Pi*r31* Sin[t31])))/48,

-(h*(6*(3*Alpha0*h”2*Pi + 2*sig)” 2*Cos[phi] + 720*h" 5*Pi*r32*Cos[2*phi] + 360*
h”5* Pi*r32*Cos[4*phi] - 144*h™ 3*Pi*r1*Cos[t1] + 744* Alpha0* h” 5*Pi* r1* Cos]t1]

- 600*h” 5*Pi*r31*Cos[t31] - 72*Alpha0*h™ 2*Pi*Sin[phi] + 197*Alpha0”2* h” 4*Pi*
Sin[phi] - 48*sig*Sin[phi] - 320*h" 4*Pi*t02*Sin[phi] + 54*Alpha0* h™~ 5*Pi~ 2* r1*Sin[t1]
+ 36*h™3* Pi* r1* sig*Sin[tl] - 54*Alpha0*h”5*Pi" 2*r1*Sin[2*phi + t1] - 36* h™ 3*
Pi*rl *sig* Sin[2*phi + t1]))/48};

***+*Recalcul du lieu conjugué, en coupant par h= Cst**

Aux = Det[{D[Zsus,phi], D[Zsus,sig]}];Aux1 = Expnd1[ Aux,7,h,sig, aaal,aaa2, aaa3,
{1,2,1,1,1}]; Aux2 = Simplify[Aux1/h"2]; SigConj = Simplify[Aux2+sig];SigC = SigConj
/. sig->SigConj; SigC1 = Expnd1[SigC,5,h,sig,aaal,aaa2,aaa3, {1,2,1,1,1}]; SigConj =
InputForm[Simplify[SigC1]]

SigConj =-(h"2*Pi*(72*Alpha0 - 197*Alpha0”2*h"2 + 320*h™2*t02 + 2880* h™ 3*
r32* Sin[3*phi]))/48; Zc1 = Zsus /. {sig->SigConj}; Zc2 = Expndl[Zcl, 6,h,aaal,aaa?2,
aaa3, aaa4, {1,1,1,1,1}]; Zconj = InputForm[Simplify[Zc2]]

Zconj = {-(h" 4*Pi*(90*h" 2*r32*Sin[2*phi] + 45*h" 2*r32*Sin[4*phi] - 6*r1*Sin[t1]

+ 31* AlphaO*h™ 2*r1*Sin[tl] + 25*h”2*r31*Sin[t31]))/2, (h~4*Pi* (-90* h~2* r32*
Cos[2*phi] + 45* h™2* r32* Cos[4*phi] + 6*r1*Cos[t1] - 31*Alpha0*h” 2*r1*Cos[t1] +
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25* h™ 2*r31* Cos| t31] ))/2}; Datanum1 = {Alpha0->0.5,t02->0.3, t1->2.5,r31 -> 0.7,t31
->-1.2,r32 -> 1.3, r1 -> 0.3,h->0.01}; Conjnum = Zconj /. Datanum1; ParametricPlot
[Conjnum, {phi,0,2 Pi}];

*****Calcul du Cut_locus**************

Erl = (Zsus /. {phi->(phi+dphi)}) - Zsus; Er2 = Simplify[Erl]; Er = Simplify[ Er2/
(h* Sin[dphi/2])]; Er3 = Det[{{Cos[dphi/2+phi], Sin[dphi/2+phi]},Er}]; Er3= Simplify[
Er3]; Erd = Expnd1[Er3,5,h,aaal,aaa2,aaa3,aaa4,{1,1,1,1,1}];Er5 =Simplify[Er4]; SigCut
= Simplify[1/2(2 sig -Er5)]; SigC1 = SigCut /. sig-> SigCut;SigC2 = Expnd1[ SigC1, 5,h,
sig, aaal,aaa2,aaa3, {1,2,1,1,1}]; SigCu = InputForm[Simplify[SigC2]]

SigCu = -(h” 2*Pi*(72*Alpha0 - 197*Alpha0” 2*h" 2 + 320*h" 2*t02 + 360* h"~ 3* r32*
Sin[3*phi] + 360*h" 3*r32*Sin[3*(dphi + phi)] + 1080*h"~ 3*r32*Sin[dphi + 3*phi] + 1080*
h™3* r32* Sin[2* dphi + 3*phi]))/48;Er6 =Simplify[ Er /. {sig->SigCu}];Er7 = Expnd1l
[Er6,5,h,aaal,aaa2,aaa3,aa4, {1,1,1,1,1}];Er8 = Det[({{-Sin[dphi/2+phi], Cos[ dphi/ 2+
phil} ,Er7}]; InputForm[ Simplify[ Er81]]

Er8 =120*h"~5*Pi*r32*Cos[dphi/2]*Cos[(3*(dphi + 2*phi))/2]* Sin[dphi/2]" 2; Cutlx1
= Zsus /. {sig->(SigCu/. {dphi -> -2 phi+Pi/3}),dphi -> -2 phi+Pi/3}; Cutlpl = Expndl
[Cutlx1,6,h, aaal,aaa?,aaa3,aa4, {1,1,1,1,1}]; Cutll = InputForm[ Simplify[ Cutlp1]]

Cutll ={-(h" 4*Pi*(75*h" 2*r32*Sin[2*phi] - 15*n"~2*r32*Sin[4*phi] + 30* h™ 2* r32*
Cos|[phi]* (Sin[3*phi] - 3*Sin[phi - (2*Pi)/3] + 3*Sin[phi + Pi/3]) - 12*r1*Sin[t1] + 62*
Alpha0*h”2*r1*Sin[tl] + 50*h"2*r31*Sin[t31]))/4, -(h~ 4*Pi*(-15*h~2*r32*(-3 + Cos
[2*phi]) *Cos[ 2*phi] + 15* h™ 2* r32*Cos[4*phi] - 6*r1*Cos[t1] + 31*Alpha0O* h™ 2*r1*
Cosltl] - 25*h™2*r31*Cos[t31] + 15*h™2*r32*Sin[phi]"2 + 15*h"2* r32* Sin[phi]* Sin
[3*phi] - 45* h™ 2* r32* Sin[phi]* Sin[phi - (2* Pi) /3] + 45*h" 2* r32* Sin[phi]* Sin[phi
+ Pi/3]))/2}; Cutlx2 = Zsus /. {sig->(SigCu/. {dphi -> -2 phi+Pi/3+ 2 Pi/3}),dphi -> -2 phi
+Pi/3+ 2 Pi/3}; Cutlp2 = Expnd1] Cutlx2,6,h, aaal,aaa?, aaa3,aa4, {1,1,1,1,1}]; Cutl2 =
InputForm[Simplify[Cutlp2]]

Cutl2 = {-(h"4*Pi*((-6 + 31*Alpha0*h” 2)*r1*Sin[t1] + 25*h" 2*r31*Sin[t31]))/2, -
(h™4 *Pi* (90* h™ 2* r32*Cos[2*phi] + (-6 + 31*Alpha0*h”~2)*r1*Cos[t1] - 5*h" 2*(9*r32
+ 5*r31* Cos[t31])))/2};

Cutlx3 = Zsus /. {sig->(SigCu/. {dphi -> -2 phi +Pi/3+ 4 Pi/3}),dphi -> -2 phi +Pi/3+
4 Pi/3};Cutlp3 = Expnd1[Cutlx3,6,h,aaal,aaa2,aaa3,aa4,{1,1,1,1,1}];Cutl3 = InputForm
[Simplify[ Cutlp3]]

Cutl3 = {-(h" 4*Pi*(75*h" 2*r32*Sin[2*phi] - 15*h~ 2*r32*Sin[4*phi] + 30*h" 2* r32*
Cos[phi]* (Sin[3*phi] - 3*Sin[phi - (10*Pi)/3] + 3*Sin[phi + (5*Pi)/3]) - 12*r1* Sin[t1]

+ 62*Alpha0*h” 2*r1*Sin[t1] + 50*h~ 2*r31*Sin[t31]))/4, -(h~ 4* Pi* (-15* h™ 2* r32* (-3
+ Cos[2*phi])*Cos[2*phi] + 15*h" 2*r32*Cos[4*phi] - 6*r1*Cos[t1] + 31* AlphaO* h™ 2*
r1* Cos| t1] - 25*h"2*r31*Cos[t31] + 15*h™2*r32*Sin[phi]"2 + 15*h" 2* r32* Sin[phi]
*Sin[3*phi] - 45* h™ 2* r32* Sin[phi]* Sin[phi - (10* Pi)/3 ] + 45*h™2* r32* Sin[phi]*
Sin[phi + (5*Pi)/3]))/2};

Cutlx0 = Zsus /. {sig->(SigCu/. dphi -> 0), dphi->0}; CutlpO = Expnd1[ Cutlx0,6,h,
aaal, aaa2,aaa3,aa4,{1,1,1,1,1}];Cutl0 = InputForm[Simplify[CutlpO]]
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Cutl0 = {-(h" 4*Pi*(90*h" 2*r32*Sin[2*phi] + 45*h" 2*r32*Sin[4*phi] - 6*r1*Sin[t1]
+ 31*AlphaO*h™ 2*r1*Sin[tl] + 25*h"2*r31*Sin[t31]))/2, (h"4*Pi* (-90*h~2*r32*
Cos[2* phi] + 45*h" 2*r32*Cos[4*phi] + 6*r1*Cos[t1] - 31*AlphaO*h"2*r1*Cos[t1] +
25* h™2*r31* Cos[ t31 ]))/ 2}; Cutlxp0 = Zsus /. {sig->(SigCu/. dphi -> Pi), dphi->Pi};
Cutlpp0 = Expndl[ Cutlxp0,6,h, aaal,aaa2,aaa3,aa4, {1,1,1,1,1}]; Cutlp0 = InputForm
[Simplify[ CutlppO]]

Cutlp0 ={(h~ 4*Pi*(-30*h" 2*r32*Sin[2*phi] + 15*h~ 2*r32*Sin[4*phi] + 6*r1* Sin[t1]
- 31*Alpha0*h™ 2*r1*Sin[tl] - 25*h~2*r31*Sin[t31]))/2, -(h"4* Pi*(30* h~2*r32*
Cos[2*phi] + 15*h" 2*r32*Cos[4*phi] - 6*r1*Cos[t1] + 31*Alpha0*h” 2*r1*Cos]t1] - 25*
h™2*r31* Cos[t3 1 ]) )/2} ; Datanuml = {Alpha0->0.5,t02-> 0.3, t1->2.5,r31 -> 0.7,t31
->-1.2,r32 -> 1.3,r1 -> 0.3,h->0.01 }; Conjnum = Zconj /. Datanum1;CutinumO = CutlO
/. Datanuml; CutlnumpO = Cutlp0 /. Datanum1; Cutinuml = Cutll /. Datanuml; Cutl-
numz2 = Cutl2 /. Datanum1; Cutlnum3 = Cutl3 /. Datanum1; ParametricPlot[ {Conjnum,
Cutlnum1, Cutinum2,Cutlnum3}, {phi,0,2 Pi}]; ParametricPlot[{CutlnumO,Cutinump0},
{phi,0,2 Pi}];
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