Control of Diffeomorphisms

Andrei Agrachev SISSA, Trieste

Joint work with Andrey Sarychev (Florence) motivated by the deep learning of artificial neural networks treated as an interpolation problem. Maps interpolation:

Given a class of "good" maps \mathcal{F} we look for $F \in \mathcal{F}$ that is close to Φ at the marked points.

In neural networks, the class of "good maps" \mathcal{F} consists of the "input – output" transformations of discrete time control systems of the form:

$$x(t+1) = \overline{\sigma}(U(t)x(t) + v(t)), \quad x \in \mathbb{R}^n, \ t = 0, 1, \dots, k,$$

where the matrix U and vector v are control parameters,

$$\bar{\sigma}(x_1,\ldots,x_n)=(\sigma(x_1),\ldots,\sigma(x_n)),$$

 σ is a monotone nonlinear function with a bounded derivative, and $F: x(0) \mapsto x(k)$. Some samples:

$$\sigma(s) = \max\{o, s\}, \quad \sigma(s) = \frac{1}{1 + e^{-s}}, \quad \sigma(s) = \int_{-\infty}^{s} e^{-\tau^2} d\tau.$$

Continous time:

that

$$\dot{x} = f(x, u(t)), \quad F_{u(\cdot)} \colon x(0) \mapsto x(1), \quad \mathcal{F} = \{F_{u(\cdot)}\}.$$

The goal is to uniformly approximate given transformation $\Phi : \mathbb{R}^n \to \mathbb{R}^n$ on a compact $K \subset \mathbb{R}^n$.

Example: u = (v, w), $f(x, u) = (v_1 e^{-|x|^2} + w_1, \dots, v_n e^{-|x|^2} + w_n).$ **Theorem 1.** Let $\Phi : \mathbb{R}^n \to \mathbb{R}^n$ be an isotopic to the identity diffeomorphism, $K \in \mathbb{R}^n$, and $\varepsilon > 0$. Then there exists $u(\cdot)$ such

$$\sup_{x\in K}|F_{u(\cdot)}(x)-\Phi(x)|<\varepsilon.$$

General result:

Let M be a complete Riemannian manifold, f_1, \ldots, f_r bounded smooth vector fields and

$$\mathsf{Lie}\{f_1,\ldots,f_r\} = span\left\{[f_{i_1},[\cdots,f_{i_k}]\cdots]: k \in \mathbb{Z}_+\right\}.$$

We consider a system:

$$\dot{x} = u_1 f_1(x) + \dots + u_r f_r(x), \quad x \in M, \ u_i \in \mathbb{R};$$

 $F_u : x(0) \mapsto x(1)$, where $u = (u_1(\cdot), \dots, u_r(\cdot))$.

Theorem 2 (Rashevskij–Chow). If $\text{Lie}\{f_1, \ldots, f_r\}|_q = T_q M$, $\forall q \in M$, then, for any $q_0, q_1 \in M$, $\exists u$ such that $F_u(q_0) = q_1$.

Corollary 1. Let dim M > 1 and Lie $\{f_1, \ldots, f_r\}$ is everywhere dense in Vec(M) in the C_0 -topology. Then for any finite families of points $x_{\alpha}, y_{\alpha} \in M, \ \alpha \in \mathcal{A}, \ \#\mathcal{A} < \infty$, there exists u such that $F_u(x_{\alpha}) = y_{\alpha}, \ \forall \alpha \in \mathcal{A}$.

Let $\ell > 0$, $K \Subset M$; we set:

$$\operatorname{Lie}_{K}^{\ell}\{f_{1},\ldots,f_{r}\} = \left\{g \in \operatorname{Lie}\{f_{1},\ldots,f_{r}\}: \sup_{x \in K}(|g(x)| + \|\nabla_{x}g\|) < \ell\right\}.$$

Definition 1. We say that $\{f_1, \ldots, f_r\}$ has property (A) if for any smooth vector field X and any $K \in M$ there exists $\ell > 0$ such that

$$\inf\left\{\sup_{x\in K}|g(x)-X(x)|:g\in \operatorname{Lie}_{K}^{\ell}\{f_{1},\ldots,f_{r}\}\right\}=0.$$

Theorem 3. If $\{f_1, \ldots, f_r\}$ has property (A), then for any isotopic to the identity diffeomorphism $\Phi : M \to M$, $K \Subset M$, and $\varepsilon > 0$, there exists a control function u such that $\sup_{x \in K} \delta(F_u(x), \Phi(x)) < \varepsilon$, where $\delta(\cdot, \cdot)$ is the Riemannian distance in M.

Examples:

 $M = \mathbb{R}^n$; the family of vector fields:

$$\frac{\partial}{\partial x_i}, \quad e^{-|x|^2} \frac{\partial}{\partial x_i}, \quad i = 1, \dots, n,$$

has property (A). The iterated commutators of these vector fields produce Hermit polynomials.

 $M = \mathbb{T}^n = \{(\theta_1, \dots, \theta_n) : \theta_i \in \mathbb{R}/2\pi\mathbb{Z}\}.$ The family of vector fields:

$$\frac{\partial}{\partial \theta_i}, \quad \sin(\theta_i) \frac{\partial}{\partial \theta_i}, \quad \sin(2\theta_i) \frac{\partial}{\partial \theta_i}, \quad \sum_{j=1}^n \sin(\theta_j) \frac{\partial}{\partial \theta_i}, \quad i = 1, \dots, n,$$

has property (A).

 $M = \mathbb{S}^2 = \{x \in \mathbb{R}^3 : |x| = 1\}$. Given a smooth function $a : \mathbb{R}^3 \to \mathbb{R}$, we define spherical gradient field $\nabla^s a$ and Hamiltonian field \vec{a} by the formulas:

$$\nabla_x^s a = \nabla_x a - \langle x, \nabla_x a \rangle x, \quad \vec{a}(x) = x \times \nabla_x a.$$

Let linear functions e_1, e_2, e_3 form a basis of \mathbb{R}^{3^*} , $p : \mathbb{R}^3 \to \mathbb{R}$ be a quadratic harmonic polynomial and $q : \mathbb{R}^3 \to \mathbb{R}$ be a cubic harmonic polynomial. The family of vector fields on \mathbb{S}^2 :

$$\nabla^s p, \quad \vec{p}, \quad \vec{q}, \quad \nabla^s e_i, \quad i=1,2,3,$$
 has property (A).

Sketch of proof.

Together with the system $\dot{x} = \sum_{i} u_i f_i(x)$ and generated by this system diffeomorphisms $F_u^t : x(0) \mapsto x(t), t \in [0, 1]$, we consider the extended system:

$$\dot{y} = \sum_{i} u_i f_i(y) + \sum_{i < j} u_{ij}[f_i, f_j](y), \quad y \in M, \quad u_i, u_{ij} \in \mathbb{R},$$

and diffeomorphisms $G_v^t : y(0) \mapsto y(t)$, where $v = \{u_i(\cdot), u_{ij}(\cdot)\}$.

Theorem 4. For any extended control v, any $\varepsilon > 0$, $k \ge 0$, and $K \subseteq M$ there exists an appropriate control $u = \{u_i(\cdot)\}$ such that $\|G_v^t - F_u^t\|_{k,K} < \varepsilon$ for any $t \in [0, 1]$, where $\|\cdot\|_{k,K}$ is a C^k norm for maps defined on K.

Lemma 1. Let X_t , $t \in [0, 1]$, be a time-dependent vector field, $w : [0, 1] \rightarrow \mathbb{R}$ a smooth function, and $\varepsilon > 0$. We set $u_{\varepsilon}(t) = 2\sin(t/\varepsilon^2)w(t)$ and consider systems

$$\dot{x} = X_t(x) + 1/\varepsilon \sin(t/\varepsilon^2)g(x) + \varepsilon \dot{u}_\varepsilon(t)f(x).$$
 (\varepsilon)

Then the flow generated by (ε) converges uniformly to the flow generated by the system

$$\dot{x} = X_t(x) + w(t)[f,g](x)$$

as $\varepsilon \to 0$, in any norm $\|\cdot\|_{r,K}$, $r \ge 0, K \Subset M$.

The proof is based on a factorization of system (ε): the flow generated by $\varepsilon \dot{u}_{\varepsilon}(t) f(x)$ is taken out.

Chronological notations: let $f \in Vec(M)$, we set $e^{tf} : x(0) \mapsto x(t)$ in virtue of $\dot{x} = f(x)$. Then:

$$e^{tf}: M \to M, \quad e^{tf}_*: \operatorname{Vec}(M) \to \operatorname{Vec}(M).$$

Moreover, $e^{tf}_* = e^{-t\operatorname{ad} f}$, where $(\operatorname{ad} f)g = [f,g].$

Given a time-varying vector field f_{τ} , we set $\overrightarrow{exp} \int_{0}^{t} f_{\tau} d\tau : x(0) \mapsto x(t)$, in virtue of $\dot{x} = f_{\tau}(x)$. If $[f_{\tau}, f_s] = 0$ for all $0 \le \tau, s \le 1$, then $\overrightarrow{exp} \int_{0}^{t} f_{\tau} d\tau = e^{\int_{0}^{t} f_{\tau} d\tau}$.

Variations formula:

$$\overrightarrow{exp} \int_{0}^{t} f_{\tau} + g_{\tau} d\tau = \overrightarrow{exp} \int_{0}^{t} f_{\tau} d\tau \circ \overrightarrow{exp} \int_{0}^{t} (\overrightarrow{exp} \int_{0}^{\tau} \operatorname{ad} f_{s} ds) g_{\tau} d\tau.$$

Let:

$$f_{\tau} = \varepsilon \dot{u}_{\varepsilon}(\tau) f(x), \quad g_{\tau} = X_{\tau}(x) + 1/\varepsilon \sin(\tau/\varepsilon^2) g(x).$$

We have:

$$\overrightarrow{\exp} \int_{0}^{t} X_{\tau} + 1/\varepsilon \sin(\tau/\varepsilon^{2})g + \varepsilon \dot{u}_{\varepsilon}(\tau)f \, d\tau =$$

$$e^{\varepsilon u_{\varepsilon}(\tau)f} \circ \overrightarrow{\exp} \int_{0}^{t} e^{\varepsilon u_{\varepsilon}(\tau) \operatorname{ad} f} (X_{\tau} + 1/\varepsilon \sin(\tau/\varepsilon^{2})g) \, d\tau$$

$$= (I + O(\varepsilon)) \circ \overrightarrow{\exp} \int_{0}^{t} X_{\tau} + w(\tau)[f,g] + O(\varepsilon) \, d\tau.$$

We have a sample family of points x_{α} , $\alpha \in A$, and we wish $F_u(x_{\alpha})$ to be close to y_{α} . A functional to minimize is:

$$\varphi(u) = \sum_{\alpha \in \mathcal{A}} |F_u(x_\alpha) - y_\alpha|^2 + \nu \int_0^1 |u(t)|^2 dt$$

We have:

$$\frac{\partial \varphi}{\partial u_i}(t) = \sum_{\alpha} \langle f_i, \nabla | F_u^{t,1} - y_\alpha |^2 \rangle \Big|_{F_u^{0,t}(x_\alpha)} + 2\nu u_i(t),$$

where $F_u^{\tau,s} : x(\tau) \mapsto x(s)$ in virtue of $\dot{x} = \sum_i u_i f_i(x)$; in particular, $F_u = F_u^{0,1}$. Simulations (Alessandro Scagliotti, SISSA). Gradient descent for the discretized system, $\nu = 0$.

Transformation

Approximation

Test

•

Azat Miftakhov