Control of Diffeomorphisms

Andrei Agrachev SISSA, Trieste

Joint work with Andrey Sarychev (Florence) motivated by the deep learning of artificial neural networks treated as an interpolation problem.

Maps interpolation:

Given a class of "good" maps \mathcal{F} we look for $F \in \mathcal{F}$ that is close to Φ at the marked points.

In neural networks, the class of "good maps" \mathcal{F} consists of the "input - output" transformations of discrete time control systems of the form:

$$
x(t+1)=\bar{\sigma}(U(t) x(t)+v(t)), \quad x \in \mathbb{R}^{n}, t=0,1, \ldots, k,
$$

where the matrix U and vector v are control parameters,

$$
\bar{\sigma}\left(x_{1}, \ldots, x_{n}\right)=\left(\sigma\left(x_{1}\right), \ldots, \sigma\left(x_{n}\right)\right),
$$

σ is a monotone nonlinear function with a bounded derivative, and $\quad F: x(0) \mapsto x(k)$. Some samples:

$$
\sigma(s)=\max \{o, s\}, \quad \sigma(s)=\frac{1}{1+e^{-s}}, \quad \sigma(s)=\int_{-\infty}^{s} e^{-\tau^{2}} d \tau
$$

Continous time:

$$
\dot{x}=f(x, u(t)), \quad F_{u(\cdot)}: x(0) \mapsto x(1), \quad \mathcal{F}=\left\{F_{u(\cdot)}\right\}
$$

The goal is to uniformly approximate given transformation $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ on a compact $K \subset \mathbb{R}^{n}$.

Example: $u=(v, w)$,

$$
f(x, u)=\left(v_{1} e^{-|x|^{2}}+w_{1}, \ldots, v_{n} e^{-|x|^{2}}+w_{n}\right)
$$

Theorem 1. Let $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be an isotopic to the identity diffeomorphism, $K \Subset \mathbb{R}^{n}$, and $\varepsilon>0$. Then there exists $u(\cdot)$ such that

$$
\sup _{x \in K}\left|F_{u(\cdot)}(x)-\Phi(x)\right|<\varepsilon
$$

General result:

Let M be a complete Riemannian manifold, f_{1}, \ldots, f_{r} bounded smooth vector fields and

$$
\operatorname{Lie}\left\{f_{1}, \ldots, f_{r}\right\}=\operatorname{span}\left\{\left[f_{i_{1}},\left[\cdots, f_{i_{k}}\right] \cdots\right]: k \in \mathbb{Z}_{+}\right\} .
$$

We consider a system:

$$
\dot{x}=u_{1} f_{1}(x)+\cdots+u_{r} f_{r}(x), \quad x \in M, u_{i} \in \mathbb{R} ;
$$

$F_{u}: x(0) \mapsto x(1)$, where $u=\left(u_{1}(\cdot), \ldots, u_{r}(\cdot)\right)$.
Theorem 2 (Rashevskij-Chow). If Lie $\left.\left\{f_{1}, \ldots, f_{r}\right\}\right|_{q}=T_{q} M$, $\forall q \in M$, then, for any $q_{0}, q_{1} \in M, \exists u$ such that $F_{u}\left(q_{0}\right)=q_{1}$.

Corollary 1. Let $\operatorname{dim} M>1$ and $\operatorname{Lie}\left\{f_{1}, \ldots, f_{r}\right\}$ is everywhere dense in $\operatorname{Vec}(M)$ in the C_{0}-topology. Then for any finite families of points $x_{\alpha}, y_{\alpha} \in M, \alpha \in \mathcal{A}, \# \mathcal{A}<\infty$, there exists u such that $F_{u}\left(x_{\alpha}\right)=y_{\alpha}, \forall \alpha \in \mathcal{A}$.

Let $\ell>0, K \Subset M$; we set:
$\operatorname{Lie}_{K}^{\ell}\left\{f_{1}, \ldots, f_{r}\right\}=\left\{g \in \operatorname{Lie}\left\{f_{1}, \ldots, f_{r}\right\}: \sup _{x \in K}\left(|g(x)|+\left\|\nabla_{x} g\right\|\right)<\ell\right\}$.
Definition 1. We say that $\left\{f_{1}, \ldots, f_{r}\right\}$ has property (A) if for any smooth vector field X and any $K \Subset M$ there exists $\ell>0$ such that

$$
\inf \left\{\sup _{x \in K}|g(x)-X(x)|: g \in \operatorname{Lie}_{K}^{\ell}\left\{f_{1}, \ldots, f_{r}\right\}\right\}=0
$$

Theorem 3. If $\left\{f_{1}, \ldots, f_{r}\right\}$ has property (A), then for any isotopic to the identity diffeomorphism $\Phi: M \rightarrow M, K \Subset M$, and $\varepsilon>0$, there exists a control function u such that $\sup _{x \in K} \delta\left(F_{u}(x), \Phi(x)\right)<\varepsilon$, where $\delta(\cdot, \cdot)$ is the Riemannian distance in M.

Examples:

$M=\mathbb{R}^{n}$; the family of vector fields:

$$
\frac{\partial}{\partial x_{i}}, \quad e^{-|x|^{2}} \frac{\partial}{\partial x_{i}}, \quad i=1, \ldots, n
$$

has property (A). The iterated commutators of these vector fields produce Hermit polynomials.
$M=\mathbb{T}^{n}=\left\{\left(\theta_{1}, \ldots, \theta_{n}\right): \theta_{i} \in \mathbb{R} / 2 \pi \mathbb{Z}\right\}$. The family of vector fields:

$$
\frac{\partial}{\partial \theta_{i}}, \quad \sin \left(\theta_{i}\right) \frac{\partial}{\partial \theta_{i}}, \quad \sin \left(2 \theta_{i}\right) \frac{\partial}{\partial \theta_{i}}, \quad \sum_{j=1}^{n} \sin \left(\theta_{j}\right) \frac{\partial}{\partial \theta_{i}}, \quad i=1, \ldots, n
$$

has property (A).
$M=\mathbb{S}^{2}=\left\{x \in \mathbb{R}^{3}:|x|=1\right\}$. Given a smooth function $a: \mathbb{R}^{3} \rightarrow$ \mathbb{R}, we define spherical gradient field $\nabla^{s} a$ and Hamiltonian field \vec{a} by the formulas:

$$
\nabla_{x}^{s} a=\nabla_{x} a-\left\langle x, \nabla_{x} a\right\rangle x, \quad \vec{a}(x)=x \times \nabla_{x} a
$$

Let linear functions e_{1}, e_{2}, e_{3} form a basis of $\mathbb{R}^{3^{*}}, p: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a quadratic harmonic polynomial and $q: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be a cubic harmonic polynomial. The family of vector fields on \mathbb{S}^{2} :

$$
\nabla^{s} p, \quad \vec{p}, \quad \vec{q}, \quad \nabla^{s} e_{i}, \quad \vec{e} i, \quad i=1,2,3
$$

has property (A).

Sketch of proof.

Together with the system $\dot{x}=\sum_{i} u_{i} f_{i}(x)$ and generated by this system diffeomorphisms $F_{u}^{t}: x(0) \mapsto x(t), t \in[0,1]$, we consider the extended system:

$$
\dot{y}=\sum_{i} u_{i} f_{i}(y)+\sum_{i<j} u_{i j}\left[f_{i}, f_{j}\right](y), \quad y \in M, \quad u_{i}, u_{i j} \in \mathbb{R},
$$

and diffeomorphisms $G_{v}^{t}: y(0) \mapsto y(t)$, where $v=\left\{u_{i}(\cdot), u_{i j}(\cdot)\right\}$.

Theorem 4. For any extended control v, any $\varepsilon>0, k \geq 0$, and $K \Subset M$ there exists an appropriate control $u=\left\{u_{i}(\cdot)\right\}$ such that $\left\|G_{v}^{t}-F_{u}^{t}\right\|_{k, K}<\varepsilon$ for any $t \in[0,1]$, where $\|\cdot\|_{k, K}$ is a C^{k} norm for maps defined on K.

Lemma 1. Let $X_{t}, t \in[0,1]$, be a time-dependent vector field, $w:[0,1] \rightarrow \mathbb{R}$ a smooth function, and $\varepsilon>0$. We set $u_{\varepsilon}(t)=2 \sin \left(t / \varepsilon^{2}\right) w(t)$ and consider systems

$$
\dot{x}=X_{t}(x)+1 / \varepsilon \sin \left(t / \varepsilon^{2}\right) g(x)+\varepsilon \dot{u}_{\varepsilon}(t) f(x)
$$

Then the flow generated by (ε) converges uniformly to the flow generated by the system

$$
\dot{x}=X_{t}(x)+w(t)[f, g](x)
$$

as $\varepsilon \rightarrow 0$, in any norm $\|\cdot\|_{r, K}, r \geq 0, K \Subset M$.

The proof is based on a factorization of system (ε) : the flow generated by $\varepsilon \dot{u}_{\varepsilon}(t) f(x)$ is taken out.

Chronological notations: let $f \in \operatorname{Vec}(M)$, we set $e^{t f}: x(0) \mapsto x(t)$ in virtue of $\dot{x}=f(x)$. Then:

$$
e^{t f}: M \rightarrow M, \quad e_{*}^{t f}: \operatorname{Vec}(M) \rightarrow \operatorname{Vec}(M)
$$

Moreover, $e_{*}^{t f}=e^{-\operatorname{tad} f}$, where $(\operatorname{ad} f) g=[f, g]$.
Given a time-varying vector field f_{τ}, we set $\overrightarrow{e x p} \int_{0}^{t} f_{\tau} d \tau: x(0) \mapsto$ $x(t)$, in virtue of $\dot{x}=f_{\tau}(x)$. If $\left[f_{\tau}, f_{s}\right]=0$ for all $0 \leq \tau, s \leq 1$, then $\overrightarrow{e x p} \int_{0}^{t} f_{\tau} d \tau=e^{\int_{0}^{t} f_{\tau} d \tau}$.

Variations formula:

$$
\overrightarrow{e x p} \int_{0}^{t} f_{\tau}+g_{\tau} d \tau=\overrightarrow{e x p} \int_{0}^{t} f_{\tau} d \tau \circ \overrightarrow{e x p} \int_{0}^{t}\left(\overrightarrow{e x p} \int_{0}^{\tau} \mathrm{ad} f_{s} d s\right) g_{\tau} d \tau
$$

Let:

$$
f_{\tau}=\varepsilon \dot{u}_{\varepsilon}(\tau) f(x), \quad g_{\tau}=X_{\tau}(x)+1 / \varepsilon \sin \left(\tau / \varepsilon^{2}\right) g(x)
$$

We have:

$$
\begin{gathered}
\overrightarrow{\exp } \int_{0}^{t} X_{\tau}+1 / \varepsilon \sin \left(\tau / \varepsilon^{2}\right) g+\varepsilon \dot{u}_{\varepsilon}(\tau) f d \tau= \\
e^{\varepsilon u_{\varepsilon}(\tau) f} \circ \overrightarrow{\exp } \int_{0}^{t} e^{\varepsilon u_{\varepsilon}(\tau) \operatorname{ad} f}\left(X_{\tau}+1 / \varepsilon \sin \left(\tau / \varepsilon^{2}\right) g\right) d \tau \\
=(I+O(\varepsilon)) \circ \overrightarrow{\exp } \int_{0}^{t} X_{\tau}+w(\tau)[f, g]+O(\varepsilon) d \tau .
\end{gathered}
$$

We have a sample family of points $x_{\alpha}, \alpha \in \mathcal{A}$, and we wish $F_{u}\left(x_{\alpha}\right)$ to be close to y_{α}. A functional to minimize is:

$$
\varphi(u)=\sum_{\alpha \in \mathcal{A}}\left|F_{u}\left(x_{\alpha}\right)-y_{\alpha}\right|^{2}+\nu \int_{0}^{1}|u(t)|^{2} d t .
$$

We have:

$$
\left.\frac{\partial \varphi}{\partial u_{i}}(t)=\sum_{\alpha}\left\langle f_{i}, \nabla\right| F_{u}^{t, 1}-\left.y_{\alpha}\right|^{2}\right\rangle\left.\right|_{F_{u}^{0, t}\left(x_{\alpha}\right)}+2 \nu u_{i}(t),
$$

where $F_{u}^{\tau, s}: x(\tau) \mapsto x(s)$ in virtue of $\dot{x}=\sum_{i} u_{i} f_{i}(x)$; in particular, $F_{u}=F_{u}^{0,1}$.

Simulations (Alessandro Scagliotti, SISSA). Gradient descent for the discretized system, $\nu=0$.

Transformation

Approximation

Test

Azat Miftakhov

