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Joint work with Andrey Sarychev (Florence) motivated by the

deep learning of artificial neural networks treated as an interpo-

lation problem.
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Maps interpolation:

Given a class of “good” maps F we look for F ∈ F that is close

to Φ at the marked points.
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In neural networks, the class of “good maps” F consists of the

“input – output” transformations of discrete time control sys-

tems of the form:

x(t+ 1) = σ̄(U(t)x(t) + v(t)), x ∈ Rn, t = 0,1, . . . , k,

where the matrix U and vector v are control parameters,

σ̄(x1, . . . , xn) = (σ(x1), . . . , σ(xn)),

σ is a monotone nonlinear function with a bounded derivative,

and F : x(0) 7→ x(k). Some samples:

σ(s) = max{o, s}, σ(s) =
1

1 + e−s
, σ(s) =

s∫
−∞

e−τ
2
dτ.
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Continous time:

ẋ = f(x, u(t)), Fu(·) : x(0) 7→ x(1), F = {Fu(·)}.

The goal is to uniformly approximate given transformation

Φ : Rn → Rn on a compact K ⊂ Rn.

Example: u = (v, w),

f(x, u) = (v1e
−|x|2 + w1, . . . , vne

−|x|2 + wn).

Theorem 1. Let Φ : Rn → Rn be an isotopic to the identity

diffeomorphism, K b Rn, and ε > 0. Then there exists u(·) such

that

sup
x∈K
|Fu(·)(x)−Φ(x)| < ε.
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General result:

Let M be a complete Riemannian manifold, f1, . . . , fr bounded

smooth vector fields and

Lie{f1, . . . , fr} = span
{

[fi1, [· · · , fik] · · · ] : k ∈ Z+

}
.

We consider a system:

ẋ = u1f1(x) + · · ·+ urfr(x), x ∈M, ui ∈ R;

Fu : x(0) 7→ x(1), where u = (u1(·), . . . , ur(·)).

Theorem 2 (Rashevskij–Chow). If Lie{f1, . . . , fr}|q = TqM,

∀ q ∈M , then, for any q0, q1 ∈M , ∃u such that Fu(q0) = q1.
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Corollary 1. Let dimM > 1 and Lie{f1, . . . , fr} is everywhere

dense in Vec(M) in the C0-topology. Then for any finite families

of points xα, yα ∈ M, α ∈ A, #A < ∞, there exists u such that

Fu(xα) = yα, ∀α ∈ A.

Let ` > 0, K bM ; we set:

Lie`K{f1, . . . , fr} =

{
g ∈ Lie{f1, . . . , fr} : sup

x∈K
(|g(x)|+ ‖∇xg‖) < `

}
.

Definition 1. We say that {f1, . . . , fr} has property (A) if for any

smooth vector field X and any K b M there exists ` > 0 such

that

inf

{
sup
x∈K
|g(x)−X(x)| : g ∈ Lie`K{f1, . . . , fr}

}
= 0.
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Theorem 3. If {f1, . . . , fr} has property (A), then for any isotopic

to the identity diffeomorphism Φ : M → M , K b M , and ε > 0,

there exists a control function u such that sup
x∈K

δ (Fu(x),Φ(x)) < ε,

where δ(·, ·) is the Riemannian distance in M .

Examples:

M = Rn; the family of vector fields:

∂

∂xi
, e−|x|

2 ∂

∂xi
, i = 1, . . . , n,

has property (A). The iterated commutators of these vector

fields produce Hermit polynomials.
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M = Tn = {(θ1, . . . , θn) : θi ∈ R/2πZ}. The family of vector fields:

∂

∂θi
, sin(θi)

∂

∂θi
, sin(2θi)

∂

∂θi
,

n∑
j=1

sin(θj)
∂

∂θi
, i = 1, . . . , n,

has property (A).

M = S2 = {x ∈ R3 : |x| = 1}. Given a smooth function a : R3 →
R, we define spherical gradient field ∇sa and Hamiltonian field ~a
by the formulas:

∇sxa = ∇xa− 〈x,∇xa〉x, ~a(x) = x×∇xa.
Let linear functions e1, e2, e3 form a basis of R3∗, p : R3 → R
be a quadratic harmonic polynomial and q : R3 → R be a cubic
harmonic polynomial. The family of vector fields on S2:

∇sp, ~p, ~q, ∇sei, ~ei, i = 1,2,3,

has property (A).
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Sketch of proof.

Together with the system ẋ =
∑
i
uifi(x) and generated by this

system diffeomorphisms F tu : x(0) 7→ x(t), t ∈ [0,1], we consider

the extended system:

ẏ =
∑
i

uifi(y) +
∑
i<j

uij[fi, fj](y), y ∈M, ui, uij ∈ R,

and diffeomorphisms Gtv : y(0) 7→ y(t), where v = {ui(·), uij(·)}.

Theorem 4. For any extended control v, any ε > 0, k ≥ 0, and

K b M there exists an appropriate control u = {ui(·)} such that

‖Gtv−F tu‖k,K < ε for any t ∈ [0,1], where ‖ · ‖k,K is a Ck norm for

maps defined on K.
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Lemma 1. Let Xt, t ∈ [0,1], be a time-dependent vector field,

w : [0,1] → R a smooth function, and ε > 0. We set

uε(t) = 2 sin(t/ε2)w(t) and consider systems

ẋ = Xt(x) + 1/ε sin(t/ε2)g(x) + εu̇ε(t)f(x). (ε)

Then the flow generated by (ε) converges uniformly to the flow

generated by the system

ẋ = Xt(x) + w(t)[f, g](x)

as ε→ 0, in any norm ‖ · ‖r,K, r ≥ 0,K bM .

The proof is based on a factorization of system (ε): the flow

generated by εu̇ε(t)f(x) is taken out.
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Chronological notations: let f ∈ Vec(M), we set etf : x(0) 7→ x(t)
in virtue of ẋ = f(x). Then:

etf : M →M, e
tf
∗ : Vec(M)→ Vec(M).

Moreover, etf∗ = e−tadf , where (adf)g = [f, g].

Given a time-varying vector field fτ , we set −→exp
t∫

0
fτdτ : x(0) 7→

x(t), in virtue of ẋ = fτ(x). If [fτ , fs] = 0 for all 0 ≤ τ, s ≤ 1,

then −→exp
t∫

0
fτdτ = e

∫ t
0 fτdτ .

Variations formula:

−→exp
t∫

0

fτ + gτdτ = −→exp
t∫

0

fτdτ ◦ −→exp
t∫

0

(−→exp
τ∫

0

adfsds)gτdτ.
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Let:

fτ = εu̇ε(τ)f(x), gτ = Xτ(x) + 1/ε sin(τ/ε2)g(x).

We have:

−−→exp

t∫
0

Xτ + 1/ε sin(τ/ε2)g + εu̇ε(τ)f dτ =

eεuε(τ)f ◦ −−→exp

t∫
0

eεuε(τ)adf(Xτ + 1/ε sin(τ/ε2)g) dτ

= (I +O(ε)) ◦ −−→exp

t∫
0

Xτ + w(τ)[f, g] +O(ε) dτ.
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We have a sample family of points xα, α ∈ A, and we wish Fu(xα)

to be close to yα. A functional to minimize is:

ϕ(u) =
∑
α∈A
|Fu(xα)− yα|2 + ν

1∫
0

|u(t)|2 dt.

We have:

∂ϕ

∂ui
(t) =

∑
α
〈fi,∇|F t,1u − yα|2〉

∣∣∣
F

0,t
u (xα)

+2νui(t),

where F
τ,s
u : x(τ) 7→ x(s) in virtue of ẋ =

∑
i
uifi(x); in particular,

Fu = F
0,1
u .
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Simulations (Alessandro Scagliotti, SISSA). Gradient descent for

the discretized system, ν = 0.

. Transformation Approximation
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. Test
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