On the Long-time Behaviour of Dissipative Systems

A. Agrachev

SISSA, Trieste & MIAN, Moscow

A natural mechanical system on a Riemannian manifold M:

trajectories: $\gamma: \mathbb{R} \to M, \ \dot{\gamma} \in T_{\gamma(t)}M;$

kinetic energy: $\frac{1}{2}|\dot{\gamma}(t)|^2$;

potential energy: $V(\gamma(t))$, where $V: M \to \mathbb{R}$;

Hamiltonian: $H(p,q) = \frac{1}{2}|p|^2 + V(q)$,

where $p \in T_q^*M$, $|p| = \max\{\langle p, \xi \rangle : \xi \in T_qM$, $|\xi| = 1\}$.

System with an isotropic dissipation:

$$\begin{cases} \dot{p} = -\frac{\partial H}{\partial q}(p,q) - \alpha p \\ \dot{q} = \frac{\partial H}{\partial p}(p,q), \end{cases}$$

where $\alpha > 0$ is a friction coefficient.

 $M = \mathbb{R}, \ V(q) = bq.$

$$V(q) = b \cos q, \ \frac{\alpha^2}{4} < |b|.$$

$$V(q) = b\cos q, \ |b| < \frac{\alpha^2}{4}.$$

Definition 1. "Potential stationary flow" is a gradient vector field ∇u , where $u \in C^2(M)$ and $\{d_q u : q \in M\} \subset T^*M$ is an invariant submanifold of our system.

In particular, $\dot{\gamma}(t) = \nabla_{\gamma(t)} u$ implies that $t \mapsto d_{\gamma(t)} u$ is a solution.

Definition 2. The curvature of the Hamiltonian H at $p \in T_q^*M$ is a self-adjoint linear operator $R_{(p,q)}^H: T_q^*M \to T_q^*M$ defined by the formula

$$R_{(p,q)}^H \xi = \Re(\xi, p)p + (\nabla_q^2 V)\xi, \quad \xi \in T_q^* M,$$

where ∇ is the covariant derivative and \Re the Riemannian curvature.

Assume that M is complete, \mathfrak{R} and $\nabla^2 V$ are uniformly bounded. Let $\Phi_t: T^*M \to T^*M, \ t \in \mathbb{R}$, be the flow generated by our system, $\Omega_c = \{(p,q) \in T^*M : |p| \le c\}.$

Theorem. If $R_{(p,q)}^H < \frac{\alpha^2}{4}I$, $\forall (p,q)$ s. t. $H(p,q) \leq \max V$, then \exists a potential stationary flow ∇u s. t.

$$\Phi_t(\Omega_c) \to \{d_q u : q \in M\} \ as \ t \to +\infty$$

with an exponential rate, $\forall c > 0$.

 $\{d_qu:q\in M\}$ is a normally stable submanifold of Φ^t .

If M is compact and $R_{(p,q)}^H < \frac{(k-1)\alpha^2}{k^2}I$, then $u \in C^k(M)$.

The map $(H, \alpha) \mapsto u$ is continuous in the C^2 -topology.

The least action principle:

$$u(q) = -\inf \left\{ \int_{-\infty}^{0} e^{\alpha t} \left(\frac{1}{2} |\dot{\gamma}(t)|^2 - V(\gamma(t)) \right) dt : \gamma(0) = q \right\}.$$

The modified Hamilton-Jacobi equation:

$$H(d_q u, q) + \alpha u(q) = 0.$$

Smaller dissipation:

Consider a Markov process on measures: $A: \mu \mapsto \alpha \int_{0}^{\infty} e^{-\alpha t} \Phi_{*}^{t} \mu dt$.

The limiting "velocity distribution" on T_q^*M is limit of conditional probability measures:

$$\nu_q = \lim_{\varepsilon \to 0} \lim_{n \to \infty} \left((A^n \mu) \Big|_{O_{\varepsilon}(T_q^* M)} / A^n \mu(O_{\varepsilon}(T_q^* M)) \right),$$

where μ is a volume measure on Ω_c , $q \in M$.

Proposition. If M is compact and V is a Morse function, then for a. e. $q \in M$ there exists an atomic ν_q that does not depend on μ and c; $supp(\nu_q) \subset T_q^*M \cap \{unstable \ subman. \ of \ the \ equilibria\}.$

One degree of freedom:

 $\max V'' < \frac{\alpha^2}{4}$

$$V''(q_{min}) < \frac{\alpha^2}{4} \ll \max V''$$

$$\frac{\alpha^2}{4} < V''(q_{min})$$

$$\lim_{\alpha \to 0} \mu_q^{\alpha} = \rho_q(p) dp,$$

 $\rho_q(p) = c_q Area\{z : H(z) \le H(p,q)\}, \text{ if } H(p,q) < \max V; \text{ otherwise } \rho_q(p) = 0.$

