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Abstract. Given a rank-two sub-Riemannian structure (M,∆) and a point x ∈M , a singular

curve is a critical point of the endpoint map F : γ 7→ γ(1) defined on the space of horizontal
curves starting at x. The typical least degenerate singular curves of these structures are often

called nice singular curves; another name is “regular abnormal geodesics”. The main goal of

this paper is to show that locally around a nice singular curve γ, once we choose a suitable
topology on the control space we can find a normal form for the endpoint map, in which F

writes as a sum of a linear map and a quadratic form. We also study the restriction of F to

the level sets of the action functional and give a Morse-like formula for the inertia index of its
Hessian at γ.

1. Introduction

1.1. Horizontal path spaces and singular curves. Let M be a smooth m dimensional
manifold and consider a smooth, totally nonholonomic distribution ∆ ⊂ TM of rank 2. Given
a point x ∈ M (which we will assume fixed once and for all) the horizontal path space Ω of
admissible (also called horizontal) curves starting at x is defined by:

Ω = {γ : I →M | γ(0) = x, γ is absolutely continuous, γ̇ ∈ ∆ a.e. and is L2-integrable}.1

The W 1,2 topology endows Ω with a Hilbert manifold structure, locally modeled on L2(I,R2).
The endpoint map F : Ω → M is the smooth map assigning to each curve its final point
F (γ) = γ(1); given y ∈M we will denote

Ω(y) := F−1(y)

to be the set of all horizontal curves joining x and y. Given an energy functional J : Ω→ R, the
sub-Riemannian length-minimizing problem consists into characterising the admissible curves
realizing min{J(γ) | γ ∈ Ω(y)}, and to solve this problem it is crucial to understand the local
geometry of Ω(y).

If y is a regular value of F , then the space Ω(y) is a smooth Hilbert manifold and its geometrical
picture can be studied by classical methods; in general however y is not regular and Ω(y) has
singularities. A singular curve is a critical point of F . Singular curves are central objects
in the theory of nonholonomic distributions, but their study is a difficult problem and many
fundamental questions related to their existence are still open. Most of the difficulties come from
the fact that the differential of F is not a Fredholm map, which makes the singularities very deep
and their local geometry essentially inaccessible as opposed, for example, to the singularities of
maps between finite dimensional manifolds. Already in the simplest case when the differential
dγF at a singular curve has corank one, that is the image of dγF is of codimension one in
TF (γ)M , the Hessian Heγ(F ) can be a degenerate quadratic form and it might not be possible
to find a normal form for the endpoint map near γ (as one could do for finite dimensional maps
with a non-degenerate Hessian, using Morse Lemma).

1Throughout this paper we denote with I the closed interval [0, 1].
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1.2. Rank-two-nice singular curves. We concentrate in this paper on singular curves γ that
satisfy the following two conditions (we say that such curves are rank-two-nice for Ω(y)):

(1) γ is a corank-one strictly abnormal regular singular curve;
(2) y = F (γ) is not a conjugate point along γ.

Condition (1) means that γ is a critical point of F such that Im (dγF ) is of codimension
one in TF (γ)M , but also that there is no covector (λ, λ0) ∈ Rm+1 with λ0 6= 0 annihilating the
differential at γ of the extended endpoint map (F, J) : Ω→M ×R. Requiring that γ is a regular
singular curve is equivalent to demand that λt ∈ (∆2

γt)
⊥ \ (∆3

γt)
⊥ for every t ∈ [0, 1], where

t 7→ λt ∈ (∆γt)
⊥ is the dual curve of covectors associated with γ, satisfying λ(1) = λ and such

that γt is the projection of λt onto M for every t ∈ I. The regularity condition on singular
curves was introduced in [17], and it reminds very much of the minimal order condition of [9].
Corank-one singular curves of minimal order are the only singular curves for the generic choice
in the C∞-Whitney topology of pairs (∆, g) (distribution and sub-Riemannian metric on it) by
[9, Theorem 2.4 and Proposition 2.7]; however, the regularity condition is much stronger, and
indeed it ensures that the given curve is smooth.

Condition (2) concerns the Hessian of F at γ, that is the quadratic form Heγ(F ) : ker(dγF )→
coker(dγF ) = T ∗F (γ)M/Im (dγF ) ' R. Recall that ker(dγF ) is a codimension m− 1 subspace of

the Hilbert space TγΩ equipped with the W 1,2-topology. The quadratic form Heγ(F ) is compact
and continuous even for a weaker L2-topology on Ω. Nonetheless, ker(dγF ) is a degenerate
quadratic form: any “tangent vector” to the reparameterizations of γ belongs to its kernel.

We say that y = F (γ) is not a conjugate point along γ, if the kernel of the extension of Heγ(F )
to the closure of ker(dγF ) in the L2-topology is equal to the closure of the tangent space to the
reparametrizations of γ (see Section 3 for details). Once a rank-two nice curve is chosen, the set
of s such that y = γ(s) is not conjugate along γ (i.e. the set of times s such that γ|[0,s] satisfies
also condition (2)) is dense in the interval of definition of γ [23, Lemma 7].

1.3. Local coordinates and the main theorem. Let γ ∈ Ω(y) be a rank-two nice singular
curve. We are going to study the endpoint map in a small neighborhood of γ in the space
of horizontal curves and we may assume without loss of generality that γ does not have self-
intersections. Indeed γ is a smooth regular curve and, if necessary, we may lift ∆ and γ to a
covering of a neighborhood of {γ(t) | t ∈ I} in M . If γ does not have self-intersections, then
there exists a pair of smooth vector fields X1 and X2 such that γ is an integral curve of the field
X1 and, in a sufficiently small neighborhood Oγ ⊂M of γ, we have

∆z = span {X1(z), X2(z)} .
With this choice of the frame, we parametrize admissible curves in Ω as integral curves on M of
the differential system (this is done in much greater detail in Section 2 below):

(1.1) ξ̇t = (1+v1(t))X1(ξt)+v2(t)X2(ξt) a.e. on I, ξ(0) = x0, (v1, v2) ∈ L2(I,R)⊕L2(I,R).

It is easy to see that the L2(I,R2) topology in the space of controls (v1, v2) corresponds to the
W 1,2(I,R2) topology in Ω.

By a slight abuse of notation we can reinterpret the endpoint map on L2(I,R2) as

F (v1, v2) = F (ξ),

where the control (v1, v2) is associated to ξ via (1.1). In particular F (γ) = F (0). The main
theorem of our paper gives a local normal form of F . “Local” in this setting does not just
mean: “in a neighborhood of 0 in L2(I,R2)”, but is a bit more delicate. Given a subspace E ⊂
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L2(I,R)⊕L2(I,R), the intersection of E with a neighborhood of the origin in L∞(I,R)⊕L2(I,R)
will be called an (∞, 2)-neighborhood of the origin in E . An (∞, 2)-neighborhood of the origin
in E ⊕ Rm is the sum of an (∞, 2)-neighborhood of the origin in E and a neighborhood of the
origin in Rm.

Theorem 1. Let γ be a rank-two nice singular curve, γ(1) = y. Then there exist an origin-
preserving homeomorphism µ : V → V′ of (∞, 2)-neighborhoods of the origin V ⊂ ker(d0F ) ⊕
Im (d0F ) and V′ ⊂ L2(I,R) ⊕ L2(I,R), and a diffeomorphism ψ : Oy → O0 of neighborhoods
Oy ⊂M and O0 ⊂ R⊕ Im (d0F ), respectively of y and 0, such that:

ψ ◦ F ◦ µ(v, w) = (He0F (v), w) , for every (v, w) ∈ V.

Remark 1. The class of available (∞, 2)-neighborhoods does not depend on a particular choice
of the frame as long as γ is an integral curve of X1, since a change of the frame would result in
a smooth change of local coordinates in the space of horizontal curves.

Let us stress that the restriction to neighborhoods in L∞(I,R) ⊕ L2(I,R) is not by chance,
and there is no hope for Theorem 1 to be true on the whole L2(I,R2). Indeed for a rank-two-nice
curve γ, the negative eigenspace N of Heγ(F ) is of finite dimension (see Proposition 13 below),
and it is known (see, e.g. [7, Proposition 2]) that the restriction of F to any subspace of finite
codimension is an open map; were Theorem 1 true in L2(I,R2), we would come to an absurd
since the projection onto the abnormal direction would have a sign (in fact, we would arrive to
the same absurd conclusion choosing any Lp(I,R) ⊕ L2(I,R) control space, with 1 ≤ p < ∞).
In this sense, our result can be seen as another instance of the rigidity phenomenon of [8]. Due
to the presence of µ which is just an homeomorphism, Theorem 1 cannot be interpreted as an
instance of a Morse Lemma, but from a topological perspective it essentially reduces Ω(y) to
the infinite-dimensional quadratic cone {He0(F ) = 0}, as soon as we choose a proper system of
coordinates. Heuristically speaking however, it would not be even reasonable to expect µ to be
a diffeomorphism, given the heavy degeneration of the Hessian map (its kernel contains all the
reparametrizations of γ); in this sense Theorem 1 is the best result that one can hope for.

To conclude with our introduction, let us lastly comment the appearance of conjugate time
moments along γ. We introduce the shorthand notation q = Heγ(F ), and denote similarly by
q̂ the Hessian of the extended endpoint map (F, J). The corank one assumption and the strict
abnormality of γ imply that (here ind denotes the negative inertia index of a given quadratic
form):

ind(q̂) ≤ ind(q) ≤ ind(q̂) + 1,

as indicated in Figure 1 (notice that ker(dγ(F, J)) = ker(dγF ) ∩ ker(dγJ) is of codimension one
in ker(dγF )). Whenever the index of either one of the two forms is zero, Theorem 1 implies
the isolation (with respect to the L∞(I,R) ⊕ L2(I,R) topology) of γ in the level set Ω(y)
(resp. in Ω(y) ∩ J−1(J(γ))), whence the local minimality of γ follows. If ind(q) = 0, this
means that γ is isolated in Ω(y), no matter the functional we are trying to minimize; if instead
(ind(q), ind(q̂)) = (1, 0) it is no longer true that γ is isolated in Ω(y), but still it retains its
minimality if we restrict ourselves to a fixed level of the energy functional J .

1.4. An explicit computation of conjugate times. Consider the following example of [25].
Let M = SO(3)× R, m = so(3)⊕ R be its Lie algebra, and let us consider X1 = (T1 + T2)⊕ 2,
X2 = T1 ⊕ 1, where T1, T2, T3 are the standard generators for so(3), that is [T1, T2] = T3,
[T2, T3] = T1, [T3, T1] = T2. We define a distribution ∆ ⊂ TM extending these vectors to vector
fields on M by left-translation:

∆ = span{X1, X2}.
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Figure 1. The relative positions between J := projker(dγF )(dγJ) and the qua-

dratic cone Ω(y) ' {q = 0}. In the first case J belongs to the negative eigenspace
of q, and q and q̂ have different indexes. In the second case, instead, J has non-
trivial projection onto the positive eigenspace of q, and the two forms have the
same index.

A sub-Riemannian metric on ∆ is defined by declaring the two fields {X1, X2} orthonormal at
every point. The energy of a horizontal curve is defined by integrating the square of the sub-
Riemannian norm of its velocity. We consider the curve γ associated to the control u(t) = (1, 0).
This curve satisfies condition (1) above (it is a corank-one strictly abnormal singular curve of
minimal order) by the general recipe for producing such kind of curves given in [25, Section 8].
Let us denote by γs the restriction of this curve to the interval [0, s], by qs the Hessian of the
endpoint map F at γs and by q̂s its restriction to ker(dγsJ) (equivalently, q̂s is the Hessian at
γs of the extended endpoint map (F, J)). One finds that the conjugate points for qs and for q̂s
are given by the zeros of the functions

a(s) =
1√
2

sin(
√

2s) and â(s) =
1

2
(1− cos(

√
2s))− 1

3
s

1√
2

sin(
√

2s)

(the plot of these two functions is as in Figure 2). We will explain later at the end of Section 6.2.1
how to derive such equations. If we pick a point s0 which is not a zero of neither one of these
two functions, the curve γs0 satisfies also conditions (2) above for the point y = γ(s0) and is a
rank-two-nice singular curve. Incidentally, we observe that the sequence of pairs of indexes for
the two forms proceeds on the consecutive intervals, separated by the zeros of these functions,
as:

(ind(qs), ind(q̂s)) = (0, 0), (1, 0), (2, 1), (2, 2), (3, 2), (4, 3), (4, 4), (5, 4), (6, 5), . . .

and so on. In fact, along corank-one singular trajectories of minimal order, the Morse index of a
control system equals the sum of the multiplicities of the conjugate points along the curve [23,
Theorem 1]. In particular, there exist time intervals arbitrarily far from zero on which either
the two forms have the same index, or where their indexes differ by one.

Remark 2. It is interesting to reinterpret the previous example in terms of its compact version
on SU(2)× S1 ' U(2). The isomorphism between so(3) and su(2) is given by

2T1 ↔
(

0 −i
−i 0

)
, 2T2 ↔

(
0 −1
1 0

)
, 2T3 ↔

(
−i 0
0 i

)
,

and therefore, supposing that we start from x = (Id,±1), the nice singular curve s 7→ x ◦ esX1 ,
s ∈ [0, 1], is explicitly computed as

x0 ◦ esX1 =

 cos
(
s√
2

)
−
√

2(1 + i) sin
(
s√
2

)
−
√

2(−1 + i) sin
(
s√
2

)
cos
(
s√
2

)  ,±1

 .
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Figure 2. Plot of the functions a(s) and â(s)

1.5. Structure of the paper. All technical preliminaries needed to prove our main theorem
are given in Section 2, where we introduce the geometrical setting of our problem, and we start to
investigate first and second-order conditions coming from the expansion of the endpoint map F .
Section 3 is devoted to the study of conjugate points along rank-two-nice singular curves, and we
develop here all the tools needed to understand their main properties. Section 4 is devoted to the
construction of an homeomorphism ρ, which is needed to cut out the kernel of the Hessian map,
even though this requires the passage to the space L∞(I,R)⊕ L2(I,R). Section 5 is the core of
the paper, where we prove the existence of a normal form for the endpoint map F locally around
γ and we give the proof of Theorem 1 in Section 5.2; as a consequence, we are able to discuss
some nontrivial isolation properties of rank-two-nice singular curves in Ω(y). The main tool
used here is a generalized version of the Morse Lemma, Proposition 21, and the homeomorphism
µ is obtained as the composition of ρ with the diffeomorphism provided by this Proposition.
Finally, Section 6 contains the needed details for the computations of conjugate points along
rank-two-nice singular curves for a whole family of examples, while we reserve Appendix A for
a minor technical proof.

Acknowledgments. The second author has been supported by the ANR SRGI (reference ANR-
15-CE40-0018) and by a public grant as part of the Investissement d’avenir project, reference
ANR-11-LABX-0056-LMH, LabEx LMH, in a joint call with Programme Gaspard Monge en
Optimisation et Recherche Opeérationnelle.

2. Rank-two sub-Riemannian manifolds

2.1. The endpoint map, the energy and the extended endpoint map. Let M be a
smooth, connected m-dimensional manifold. A rank-two sub-Riemannian manifold on M is
specified by a pair (M,∆), where ∆ is a rank-two, totally nonholonomic distribution ∆ ⊂ TM
(a more intrinsic characterization can be found, for example, in [1]). For any given x0 ∈M , we
call Ω the space of all admissible curves starting at x0, that is

Ω = {γ : I →M | γ(0) = x0, γ is absolutely continuous, γ̇ ∈ ∆ a.e. and is L2 − integrable}.

We endow Ω with the W 1,2-topology, defining on it a Hilbert manifold structure 2 locally
modelled on L2(I,R2). We call this topology the strong topology in contrast with the weak
topology that can also be considered on Ω. We refer to [19, 22, 16] for more details on these
topologies. The endpoint map F is the map that gives the final point of a horizontal curve
starting at x0,

F : Ω→M, F (γ) = γ(1).

2 In order to be able to integrate, one should define in principle a metric on ∆. Nevertheless, the property of
being integrable is independent on the chosen metric.
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We recall in the following proposition some useful properties of F (see [26, 7])

Proposition 2. The endpoint map F : Ω→ M is smooth (with respect to the Hilbert manifold
structure on Ω). Moreover if γn ⇀ γ weakly, then γn → γ uniformly on I (in particular
F (γn)→ F (γ), F is continuous for the weak topology) and dγnF → dγF in the operator norm.

If y ∈M , we denote by

Ω(y) = F−1(y)

the preimage under F of the point y, that is the set of all horizontal curves joining x0 and y.

Definition 3. We say that γ ∈ Ω is a singular curve if γ is a critical point of F , or equivalently
if dγF : Ω → TF (γ)M is not a submersion. The corank of γ as a singular curve is then defined
as the codimension of the image of dγF in TF (γ)M .

The subspace ∆⊥ ⊂ T ∗M is intrinsically defined in the cotangent space by the condition

∆⊥ := {λ ∈ T ∗M | 〈λ, v〉 = 0, for every v ∈ ∆},

where the notation 〈·, ·〉 stands for the duality product between vectors and covectors. We also
recall that T ∗M is canonically endowed with a symplectic form ω, that is a closed non-degenerate
differential two form ω· : M → Λ2(T ∗M). The restriction ω of ω to ∆⊥ no longer needs to be
non-degenerate and may admit characteristic lines [19].

Definition 4. An absolutely continuous curve λ : I → ∆⊥ is an abnormal extremal if λ̇t ∈
Tλt∆

⊥ belongs to kerωλt for every t ∈ I, that is if

ωλt(λ̇t, ξ) = 0

for every t ∈ I and every ξ ∈ Tλt∆⊥.

The following result of [14] establishes a clear geometrical characterization of singular curves
in terms of abnormal extremals.

Proposition 5. An admissible curve γ ∈ Ω is a singular curve if and only if t 7→ γt, t ∈ I, is
the projection of an abnormal extremal t 7→ λt, t ∈ I. As a matter of terminology, we say that
λt is an abnormal lift of γt.

Let us equip (M,∆) with a sub-Riemannian metric |· |, that is a scalar product on ∆ smoothly
depending on the base point. Then the triple (M,∆, | · |) defines a rank-two sub-Riemannian
structure on M . Once we have fixed a sub-Riemannian structure, we define an energy functional
J : Ω→ R by

J(γ) =
1

2

∫ 1

0

|γ̇(t)|2dt.

The energy functional J is evidently smooth on Ω (and only lower semicontinuous with respect
to the weak W 1,2-topology).

Definition 6. The extended endpoint map Φ : Ω→M × R denotes the pair

Φ(γ) = (F (γ), J(γ)).

The problem of finding admissible curves γ that minimize the energy J , can be reformulated
as a constrained minimum problem on Φ. The Lagrange multiplier’s rule implies that a curve γ
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is a candidate minimizer if there exists a nonzero covector λ = (λ, λ0) ∈ (T ∗γ(1)M × R), defined

up to scalar multiples, such that

(2.1) λΦ = λdγF + λ0dγJ = 0.

If λ0 = 0, then γ is singular and it is the projection of an abnormal lift starting at λ, in the
sense of Proposition 5. If λ0 = −1, γ is instead a normal extremal curve, and small pieces of γ
are geodesics in the classical sense, i.e. short enough pieces of γ are energy minimizers among
all admissible curves connecting the two endpoints. These two possibilities are not mutually
exclusive in principle, and an admissible curve may be at the same time both normal and
abnormal. This motivates the following definition.

Definition 7. An admissible curve γ is strictly abnormal if it is not normal, that is if it does
not admit a normal extremal lift.

Singular curves may be minimizing admissible curves [18], and their appearance is at the core
of all the major difficulties in the sub-Riemannian setting. We refer the interested reader to
[4, 21, 22] for a more comprehensive discussion of these points.

2.2. Nice singular curves. Let γ ∈ Ω be a singular curve and λ : I → ∆⊥ its abnormal lift.
It is well-known [5, 9, 10] that for a rank-two sub-Riemannian distribution

〈λt, [X,Y ](γt)〉 = 0

for any X,Y local smooth sections of ∆, that is λt ∈ (∆2
γt)
⊥ for every t ∈ I (i.e. λt satisfies the

so-called Goh condition).

Definition 8. A curve λ : I → ∆⊥ ⊂ T ∗M is a nice abnormal extremal if, letting π : T ∗M →M
be the canonical projection, it holds that

λt ∈ (∆2
γt)
⊥ \ (∆3

γt)
⊥, γt := π(λt)

for every t ∈ I.

We remark that nice abnormal extremals coincide with the so-called regular abnormal ex-
tremals introduced in [17]. If γ ∈ Ω is the projection of a nice abnormal extremal, it will be
called a nice singular curve.

Remark 3. The property of being a nice singular curve depends just on the curve γ. On the
contrary, the property of being rank-two-nice as in Section 1.2 is rather a requirement on the pair
(γ, y), where y = γ(1) is a point on γ which is not conjugate along the curve. For the moment
we will just investigate properties of nice singular curves, without any further assumption on
their final points.

Nice singular curves satisfy the generalized Legendre condition [6, Theorem 4.4] which is a
necessary, second-order condition for the optimality of γ. Let us call Heγ(F ) the Hessian map
at γ of the endpoint map F , that is let us consider the bilinear application

Heγ(F ) : ker(dγF )× ker(dγF )→ TF (γ)M/Im (dγF ).

The projection of Heγ(F ) along the abnormal direction λ ∈ Im (dγF )⊥ ⊂ T ∗F (γ)M induces a

well-defined quadratic form

λHeγ(F ) : ker(dγF )→ R;
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if both the negative and the positive index of λHeγ(F ) are infinite, then γ cannot be optimal
by [4, Theorem 20.6]. In particular, since the abnormal covector is defined up to real nonzero
multipliers, we may select λ so that

(2.2) ind(λHeγ(F )) < +∞,
and in this setting the generalized Legendre condition becomes a necessary condition for the
validity of (2.2).

More is actually true: indeed nice singular curves are smooth [5, Theorem 3.3], and for every
such γ, there exists 0 < s ≤ 1 such that γ

∣∣
[0,s]

is a strict local minimizer for the W 1,2-topology

on the space of admissible curves joining x0 and γ(s). This property depends just on the sub-
Riemannian manifold (M,∆), and not on the metric chosen on it. More details on nice singular
curves can be found in [5] and in [2, Chapter 12].

2.3. Adapted coordinates. We briefly present a procedure [1, 3, 16, 22] that permits to pass
from admissible curves to their associated controls.

Let (M,∆) be a rank-two sub-Riemannian structure and γ ∈ Ω a reference admissible curve.
Our study being local in the space of horizontal curves around γ, by possibly lifting both ∆ and
γ to a covering of the neighborhood {γ(t) | t ∈ I}, it is not restrictive to assume that γ has no
self-intersections. Then there exist a neighborhood Oγ ⊂ M of γ, and X1, X2 smooth vector
fields on M such that:

(i) γ is an integral curve of X1 associated with the control (1, 0), satisfying γ̇t = X1(γt), for
a.e. t ∈ I;

(ii) ∆x = span{X1(x), X2(x)}, for every x ∈ Oγ .

The horizontal curves contained in Oγ are then described by the solutions t 7→ xt, t ∈ I of the
differential system

ẋt = u1(t)X1(xt) + u2(t)X2(xt) a.e. on I, x(0) = x0, u ∈ U1 ⊂ L2(I,R2),

where the open set U1 ⊂ L2(I,R2) is a neighborhood of (1, 0) that consists of all the pairs
(u1, u2) such that the curve t 7→ xt is defined on the whole of I.

Definition 9. A local chart on U1 is the choice of a neighborhood V1 ⊂ L2(I,R2) of zero and
a system of coordinates

(u1, u2) 7→ (1 + v1, v2)

on U1 and centered at (1, 0).

With the choice of a local chart, any admissible curve t 7→ xt, t ∈ I, can be written as

(2.3) ẋt = (1 + v1(t))X1(xt) + v2(t)X2(xt), x(0) = x0, a.e. t ∈ I.
Finally, let us consider the map A : V1 → Ω that associates to the pair (v1, v2) ∈ V1 the only
solution (up to zero-measure sets) γ ∈ Ω to (2.3) (see [1]). In particular A is a submersion, and
permits to reinterpret both the endpoint map F and the energy J as defined on V1, that is

(2.4) J(A(v1, v2)) =
1

2
‖(1 + v1, v2)‖2L2(I,R2)

and F (v1, v2) := F (A(v1, v2)) for every (v1, v2) ∈ V1.

We can now compute F by the formula

F (v1, v2) = x0 ◦ −→exp

∫ 1

0

(1 + v1(t))X1 + v2(t)X2dt,
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and with our conventions, a control v ∈ V1 is said singular if and only if

dvF = dA(v)F ◦ dvA
is not a submersion, and its corank is the corank of dvF .

2.4. The endpoint map near a nice singular curve. Let γ ∈ Ω(y) be a reference nice
singular curve for (M,∆), and let us choose local coordinates on M centered at (1, 0), so that γ
becomes an integral curve of

γ̇t = X1(γt), a.e. on I, γ(0) = x0.

From now on we will always assume that γ is a corank-one strictly abnormal singular curve, as
anticipated in Section 1.2. By the corank-one assumption on γ, the subspace

(d0F )
⊥ ⊂ T ∗F (0)M

has dimension one. On the other hand, the strict abnormality of γ implies that if we choose
λ as in (2.1), then forcedly λ0 = 0. In particular γ admits a unique extremal lift up to real
multiples, which is necessarily abnormal. By the variation of the constants’ formula [4, Chapter
2] we describe, locally around γ, the endpoint map F (v1, v2) as a perturbation of y = F (0).

Setting

gt := e
(1−t)X1
∗ X2, t ∈ I,

we write

F (v1, v2) = x0 ◦ −→exp

∫ 1

0

(1 + v1(t))X1 + v2(t)X2dt(2.5)

= x0 ◦ eX1 ◦ −→exp

∫ 1

0

v1(t)X1 + v2(t)gtdt

= y ◦ −→exp

∫ 1

0

v1(t)X1 + v2(t)gtdt.

Then we define G : V1 →M to be the endpoint map associated to the (non-autonomous) system

ż = v1X1(z) + v2gt(z) a.e. on I, z0 = y, z ∈M, (v1, v2) ∈ R2

and we have the identity

(2.6) Fx0
(v1, v2) = Gy(v1, v2),

where we made explicit the initial datum in each map. Since x0 and y are fixed in this paper, we
can indifferently use F or G to analyze the geometry of (M,∆) around γ, and we will extensively
use this flexibility in the sequel if there is no ambiguity.

2.4.1. First-order conditions. Starting from (2.5), the differential d0G (or equivalently d0F ) is
computed by [5, Section 4]

(2.7) d0G(v1, v2) =

∫ 1

0

v1(t)dtX1(y) +

∫ 1

0

v2(t)gt(y)dt, for every (v1, v2) ∈ L2(I,R2).

Let us split the space of controls L2(I,R2) as the direct sum

L2(I,R2) = ker(d0G)⊕ E
where E ' Rm−1 is a finite-dimensional complement of ker(d0G). For future purposes, we need
the following result.
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Lemma 10. J := projker(d0G)(d0J) is nonzero.

Proof. Let us split the space of controls L2(I,R2) as

L2(I,R2) = L2(I,R)⊕ L2(I,R) =
(
Z1 ⊕ C1

)
⊕
(
V2 ⊕W2

)
,

where V2 denotes the restriction of ker(d0G) to the second component of the control, W2 is its
finite-dimensional complement, C1 are the constants and Z1 the zero-mean controls. We claim
that, since γ is a strictly abnormal singular curve, then

(2.8) Im (d0G) = {d0G(0, w2) | w2 ∈W2} .

Let us first show how to conclude once we have established the claim. By (2.8), we can find
w0

2 ∈W2 different from zero such that:

d0G(0, w0
2) =

∫ 1

0

w0
2(t)gt(y)dt = X1(y) ∈ Im (d0G).

Setting ŵ := (1,−w0
2) we have the following orthogonal decomposition of ker(d0G), namely

ker(d0G) = Z1 ⊕ Rŵ ⊕ V2.

Finally, since d0J = (1, 0) (compare with (2.4)), we deduce that

J = projker(d0G)(d0J) =
ŵ

‖ŵ‖2
6= 0,

thus proving the lemma.

Now we prove the claim, and we reason by contradiction assuming

{d0G(0, w2) | w2 ∈W2} ⊂ Im (d0G).

In particular, we see from (2.7) that X1(y) is the only direction in Im (d0G) which is not covered
by elements of the form {d0G(0, w2) | w2 ∈W2}. Let λ ∈ Im (d0G)⊥ ⊂ T ∗yM . Since 〈λ,X1(y)〉 =
0, we deduce that there exists ξ 6= λ ∈ Rm∗ such that

〈ξ, d0G(w2, 0)〉 = 0

for every w2 ∈ W2, and such that 〈ξ,X1(y)〉 6= 0. From (2.7) we see that {d0G(v1, 0) | v1 ∈
C1 ⊕ Z1} = R(1, 0) is one-dimensional and spanned by the constants, with

〈ξ, d0G(c1, 0)〉 = c1〈ξ,X1(y)〉,

while from (2.4) we have the identity:

d0J(v1, v2) = 〈1, v1〉L2(I,R) =

∫ 1

0

v1(t)dt,

so that constant controls in C1 suffice also to span the differential of J . Choosing λ0 ∈ R \ {0}
satisfying:

〈ξ,X1(y)〉 = 〈ξ, d0G(1, 0)〉 = λ0d0J(1, 0) = λ0,

we see that (ξ,−λ0) ∈ Rm+1 is a normal covector, that is

ξd0F (v1, v2) = ξd0G(v1, v2) = λ0d0J(v1, v2)

for every (v1, v2) ∈ L2(I,R2). Then we have the absurd, since γ is strictly abnormal by assump-
tion. �
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Corollary 11. The control space admits the following orthogonal decomposition:

(2.9) L2(I,R2) = ker(d0G)⊕ E = Z1 ⊕ RJ⊕ V2 ⊕ E,

where:

(a) Z1 is the set of zero-mean controls in L2(I,R)⊕ {0},
(b) J = projker(d0G)(d0J), and

(c) V2 denotes the restriction of ker(d0G) to the subspace {0} ⊕ L2(I,R).

2.4.2. First-order conditions on the extended endpoint map. Let us briefly discuss the kernel
ker(d0Φ) of the differential of the extended endpoint map Φ = (F, J) introduced in Definition 6.
In particular, since

Im (d0J) = R(1, 0),

let us just notice that

(2.10) ker(d0Φ) = ker(d0F ) ∩ ker(d0J) = (Z1 ⊕ RJ⊕ V2) ∩ ker(d0J) = Z1 ⊕ V2,

is of codimension one in ker(d0F ).

2.5. Second-order conditions. We analyze in this section the quadratic form

q := λHe0(G),

which, we recall, is a well-defined real-valued quadratic form on ker(d0G). To begin with, we
observe from (2.7) that the relation λ ∈ Im (d0G)⊥ translates into the conditions

(2.11) 〈λ,X1(y)〉 = 0 and 〈λ, gt(y)〉 ≡ 0, for every t ∈ I.

Differentiating the second of these equalities and recalling that

gt := e
(1−t)X1
∗ X2, t ∈ I,

we obtain

(2.12)
d

dt
〈λ, gt(y)〉 = −〈λ, [X1, gt](y)〉 ≡ 0 i.e. 〈λ, [X1, gt](y)〉 ≡ 0, for every t ∈ I.

Combining (2.11) and (2.12), the Hessian

q(v1, v2) := λHe0(G)(v1, v2) =

〈
λ,

(∫ 1

0

∫ t

0

(v1(τ)X1 + v2(τ)gτ ) ◦ (v1(t)X1 + v2(t)gt)dτdt

)
(y)

〉
can be rewritten [4, Exercise 20.4] as:

q(v1, v2) =

∫ 1

0

〈
λ,

[∫ t

0

v1(τ)X1 + v2(τ)gτdτ, v1(t)X1 + v2(t)gt

]
(y)

〉
dt(2.13)

=

∫ 1

0

〈
λ,

[∫ t

0

v2(τ)gτdτ, v2(t)gt

]
(y)

〉
dt for every (v1, v2) ∈ ker(d0G).

Notice that q has no explicit dependence on the first component v1. It then follows from (2.7)
and Corollary 11 that the kernel of its associated bilinear form b contains the subspace Z1 of zero-
mean controls. The space of controls L2(I,R2) admits then a second orthogonal decomposition

(2.14) L2(I,R2) = ker(d0G)⊕ E = N ⊕ Z ⊕ P ⊕ E,

where N and P are, respectively, the negative and the positive eigenspaces of q, Z is its kernel
and we have the inclusion Z1 ⊂ Z (compare with (2.9)).
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2.5.1. On the Hessian of the extended endpoint map. In analogy with Section 2.4.2, we discuss
here the Hessian He0(Φ) of the extended endpoint map Φ = (F, J). We have already observed
that γ admits, up to scalar multiples, only one abnormal covector λ = (λ, 0) ∈ T ∗yM × R with

λ ∈ d0G
⊥. This implies that

q̂ := λHe0(Φ)
∣∣
ker(d0Φ)

has formally the same expression of q in (2.13) (the component λ0 of the abnormal covector λ
being zero along d0J), although its domain is strictly smaller than the domain of q.

3. Conjugate points

We present in this section the study of conjugate points along the nice singular curve γ. All
the results presented in this section apply to the Hessian q̂ introduced in Section 2.5.1, with the
obvious modifications needed to take care of its smaller domain of definition.

3.1. Adapted norms and completion spaces. By virtue of the equality:

F (v1, v2) = x0 ◦ −→exp

∫ 1

0

(1 + v1(t))X1 + v2(t)X2dt

(3.1)

= x0 ◦ −→exp

∫ 1

0

(1 + v1(t))e
−w2(t)X2
∗ X1dt ◦ ew2(1)X2 = F (v1, w2), w2(t) :=

∫ t

0

v2(τ)dτ,

F can be thought as a map on the space

L2(I,R)⊕H1(I,R).

The map G in (2.6) can also be expressed as a function of the pair (v1, w2), by:

(3.2) y ◦ −→exp

∫ 1

0

(1 + v1(t))e
−w2(t)gt
∗ X1 −X1dt ◦ ew2(1)X2 .

In these coordinates, we have:

ker(d0G) =

{
(v1, w2) ∈ L2(I,R)⊕H1(I,R)

∣∣∣∣ c1 :=

∫ 1

0

v1(τ)dτ and(3.3)

c1X1(y) + w2(1)X2(y)−
∫ 1

0

w2(t)ġt(y)dt = 0

}
,

The last equality in (3.3) implies that there exists a constant C > 0, such that for every (v1, w2) ∈
ker(d0G) there hold the estimates

(3.4) |c1| ≤ C‖w2‖L2(I,R), |w2(1)| ≤ C‖w2‖L2(I,R).

On L2(I,R)⊕H1(I,R), q has the following expression3:

(3.5)

q(w2) =

∫ 1

0

〈λ, [ġt, gt](y)〉w2(t)2dt+

∫ 1

0

〈
λ,

[
w2(1)X2 +

∫ t

0

w2(τ)ġτdτ, w2(t)ġt

]
(y)

〉
dt.

3Recall that q does not explicitly depend on v1 (compare with (2.13)).
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Since t 7→ γ(t) = x0 ◦ etX1 is by assumption a nice singular curve, there exists a constant κ > 0
such that for every t ∈ I, there holds the Legendre condition

(3.6) 〈λ, [ġt, gt](y)〉 ≥ κ;

in fact, were the above product zero for some t ∈ I, then so would be

〈λ, e(1−t)X1
∗ [[X1, X2], X2](γ(t))〉 = 〈λt, [[X1, X2], X2](γ(t))〉, λt :=

(
e(1−t)X1

)∗
λ,

and λt would annihilate ∆3
γt , contradicting the assumptions 4.

Let us equip H1(I,R) with the norm ‖ · ‖2, defined by

‖w2‖2 = |w2(1)|R + ‖w2‖L2(I,R).

The completion of the space H1(I,R) with respect to the norm ‖ · ‖2 is then isomorphic to

R⊕ L2(I,R) ' H−1(I,R).

The completion ker(d0G) of ker(d0G) in L2(I,R)⊕ R⊕ L2(I,R) is the set:

ker(d0G) =

{
(v1, c2, w2) ∈ L2(I,R)⊕ R⊕ L2(I,R)

∣∣∣∣ c1 :=

∫ 1

0

v1(τ)dτ and(3.7)

c1X1(y) + c2X2(y)−
∫ 1

0

w2(t)ġt(y)dt = 0

}
;

also, we see from (3.4) that for every (v1, c2, w2) ∈ ker(d0G), we have

(3.8) |c1| ≤ C‖w2‖L2(I,R), |c2| ≤ C‖w2‖L2(I,R).

3.2. Conjugate points. Consider again the Hessian map q of (3.5), and extend it to ker(d0G)
by

(3.9) q(c2, w2) =

∫ 1

0

〈λ, [ġt, gt](y)〉w2(t)2dt+

∫ 1

0

〈
λ,

[
c2X2 +

∫ t

0

w2(τ)ġτdτ, w2(t)ġt

]
(y)

〉
dt.

By a slight abuse of notation we don’t introduce any new terminology for this extension; however
it will be convenient in what follows to denote

ker(d0G)2 := ker(d0G)
∣∣
R⊕L2(I,R)

,

the restriction of ker(d0G) to the second coordinates of the control.

Definition 12. The point y is a conjugate point along γ if and only if the quadratic form q
in (3.9) is degenerate on ker(d0G)2. Equivalently, denoting with b the bilinear form associated

with q, y is a conjugate point if and only if there exists a nonzero (c2, w2) ∈ ker(d0G)2, such
that the linear operator

b((c2, w2), ·) : ker(d0G)2 → R

is zero. The multiplicity of y as a conjugate point is given by the dimension of ker(q) in ker(d0G)2.

4The sign convention is not important, since we can always consider −λ instead of λ.
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We summarize some known facts (see [23, Theorem 1], [5, Section 4]) about conjugate points
along rank-two-nice singular curves that we will use in the sequel. These results are obtained
applying the above arguments to the restrictions γs := γ|[0,s] for every s ∈ I, and noticing that
the Hessian rescales accordingly as follows:

qs(c2, w2) =

∫ s

0

〈λ, [ġt, gt](γ(s))〉w2(t)2dt+

∫ s

0

〈
λ,

[
c2X2 +

∫ t

0

w2(τ)ġτdτ, w2(t)ġt

]
(γ(s))

〉
dt.

Proposition 13. For a rank-two-nice singular curve γ the following properties hold true.

(a) For sufficiently small times s ∈ I, the Hessian map is positive definite.
(b) Conjugate points are isolated along γ, and every conjugate point has a finite multiplicity.
(c) The negative index of q equals the sum of the multiplicities of all conjugate points along

γ. In particular, it is finite.

The definition of conjugate points motivates our second assumption in Section 1.2, that is we
suppose from now on that y is not a conjugate point along γ. In particular, from now on γ will
be a rank-two-nice singular curve.

3.3. Analytical properties of q. The goal of this section is to show that the choice of the
norm ‖ · ‖2 allows the decomposition of q as the sum of a coercive and a compact operator.

Proposition 14. Let us consider the linear operator T : ker(d0G)2 → R⊕ L2(I,R), associated
to the bilinear form induced by

Q(c2, w2) := q(c2, w2)−
∫ 1

0

〈λ, [ġt, gt](y)〉w2(t)2dt, (c2, w2) ∈ ker(d0G)2.

Then T is a compact and self-adjoint operator on ker(d0G)2, with respect to the product topology
on R⊕ L2(I,R).

Proof. Starting from (3.9), the linear operator T is given by:

T (c2, w2) =

( ∫ 1

0
〈λ, [X2, ġt](y)〉w2(t)dt

c2〈λ, [X2, ġt](y)〉+
〈
λ,
[∫ t

0
w2(τ)ġτdτ, ġt

]
(y)
〉
−
〈
λ,
[∫ 1

t
w2(τ)ġτdτ, ġt

]
(y)
〉 ) .

Recall indeed that for any a, b ∈ L2(I,R) and any two smooth vector fields Xt, Yt ∈ Vec(M),
t ∈ I, one has the following identity:∫ 1

0

〈
λ,

[∫ t

0

a(τ)Xτdτ, b(t)Yt

]
(y)

〉
dt =

∫ 1

0

〈
λ,

[
a(t)Xt,

∫ 1

t

b(τ)Yτdτ

]
(y)

〉
dt,

from which the polarization of Q follows.

The self-adjointness of T follows directly from the fact that it is a linear operator associated
to a bilinear form, so that it remains to prove its compactness. Observe that the last component
of T can be expressed as the sum

c2〈λ, [X2, gt](y)〉+

∫ 1

0

K(t, τ)w2(τ)dτ,

with

K(t, τ) := 〈λ, [ġτ , ġt](y)〉χ[0,t](τ)− 〈λ, [ġτ , ġt](y)〉χ[t,1](τ), K(t, τ) ∈ L2(I × I,R),
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and therefore it is a compact operator. In fact, c2 7→ c2〈λ, [X2, ġt](y)〉 is a rank-one operator,
while the compactness of

w2 7→
∫ 1

0

K(t, τ)w2(τ)dτ

is classical, and proved e.g. in [13, Chapter 6]. �

Let us consider the following operator R : ker(d0G)2 → R⊕ L2(I,R):

R(c2, w2) =

(
0

〈λ, [ġt, gt](y)〉w2(t)

)
.

Following Proposition 14, we have the identity

q(c2, w2) = 〈(R+ T )(c2, w2), (c2, w2)〉, (c2, w2) ∈ ker(d0G)2.

The Legendre condition (3.6) and the estimates (3.8) imply that R induces a norm on ker(d0G)2,
say ‖ · ‖R, which is equivalent to the product norm on R⊕ L2(I,R). It is given by the formula:

(3.10) ‖(c2, w2)‖2R = 〈R(c2, w2), (c2, w2)〉 = 〈R1/2(c2, w2), R1/2(c2, w2)〉,
where 〈·, ·〉 denotes the standard R⊕ L2(I,R) inner product. In fact, notice that

‖〈λ, [ġ·, g·](y)〉w2‖L2(I,R) = 0⇔ ‖w2‖L2(I,R) = 0⇔ ‖(c2, w2)‖R⊕L2(I,R) = 0.

This yields the following result.

Corollary 15. The linear operator L induced by the quadratic form q admits on ker(d0G)2 a
decomposition of the form: L = R + T , where R is a coercive operator and T is compact with
respect to the product topology on R⊕ L2(I,R).

Proposition 16. There exists a constant K > 0 such that, if we define5 qP := q
∣∣
P

: P → R,
then

qP (c2, w2) ≥ K‖(c2, w2)‖2R⊕L2(I,R)

for every (c2, w2) ∈ P .

Proof. Let us define RP and TP to be the restrictions to the subspace P of the operators R and
T , respectively. If ‖ · ‖R denotes the norm appearing in (3.10), and provided by the Legendre
condition, then 〈RP (c2, w2), (c2, w2)〉 ≡ 1 on the set {(c2, w2) ∈ P , ‖(c2, w2)‖R = 1}. Let us
consider:

α = inf{qP (c2, w2) | (c2, w2) ∈ P , ‖(c2, w2)‖R = 1}
= 1 + inf{〈TP (c2, w2), (c2, w2)〉 | (c2, w2) ∈ P , ‖(c2, w2)‖R = 1}.

Clearly, α ≥ 0. We claim that, in fact, α > 0, and this will conclude the proof, since then as a
consequence of (3.6) we would have

qP (c2, w2) ≥ α‖(c2, w2)‖R ≥
√
κα‖w2‖L2(I,R) ≥

√
καmin{1, C−1}

2
‖(c2, w2)‖R⊕L2(I,R),

where C is the constant appearing in (3.8).

Assume then that α = 0. Since TP is the restriction of a compact, self-adjoint operator by
Proposition 14, it is itself compact and self-adjoint. In particular its eigenvalues are bounded,
countable, and can only accumulate at zero (see e.g., [15]). Clearly,

−1 = inf{〈TP (c2, w2), (c2, w2)〉 | (c2, w2) ∈ P , ‖(c2, w2)‖R = 1},

5Here P denotes the completion of the positive eigenspace P of q (see (2.14)).
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and therefore −1 coincides with the lowest bound of the spectrum σ(TP ), which is actually
an eigenvalue as a consequence of the Fredholm alternative. This implies that we can find
(c2, w2) ∈ P , such that ‖(c2, w2)‖R = 1, and such that qP (c2, w2) = 0. But then, since qP
is a nonnegative quadratic form, this implies that qP is actually degenerate on ker(d0G)2 ([12,
Lemma 6.2]), which is absurd since y is not conjugate, and the proof is concluded. �

Proposition 16 implies that the eigenvalues of q do not accumulate towards zero on P ; since
this is clearly true on N and ker(d0G)2 does not intersect the kernel Z, Proposition 16 yields
the following fundamental Corollary.

Corollary 17. Let L : ker(d0G)2 → ker(d0G)2 be the linear operator associated to the bilinear
form b induced by q, i.e. such that:

〈L(c2, w2), (c′2, w
′
2)〉 = b((c2, w2), (c′2, w

′
2))

for every (c′2, w
′
2) ∈ ker(d0G)2. Then L is bounded from below, hence invertible on ker(d0G)2.

4. Cutting the kernel of the hessian map

4.1. A change of coordinates. We restrict in this section to the Banach space L∞(I,R) ⊕
L2(I,R). Let us introduce the Banach subspace

L∞(I,R)0 :=

{
v0

1 ∈ L∞(I,R)

∣∣∣∣ ∫ 1

0

v0
1(t)dt = 0

}
⊂ L∞(I,R).

Every element v1 ∈ L∞(I,R) can be decomposed uniquely as an orthogonal (with respect to the
L2(I,R) product) sum v1 = v1 + v0

1 , where v0
1 ∈ L∞(I,R)0 and v1 ∈ R is the average over I of

v1. This implies that L∞(I,R)⊕L2(I,R) ' R⊕L∞(I,R)0 ⊕L2(I,R), and that (v1, v
0
1 , v2) is a

coordinate system on L∞(I,R)⊕ L2(I,R).

Given α > 0, and define the two open neighborhoods of the origin V0
2,V

0
3 ⊂ L∞(I,R) by:

V0
2 =

{
v0

1 ∈ L∞(I,R)0 | 1 + v0
1(t) > α, a.e. on I

}
,

V0
3 =

{
v0

1 ∈ L∞(I,R)0

∣∣∣∣ 1 +
v0

1(t)

1 + v1
> α, a.e. on I

}
.

We set as well V2 = R⊕ V0
2 ⊕ L2(I,R) and V3 = R⊕ V0

3 ⊕ L2(I,R).

Definition 18. We define ρ : V2 → V3 by:

ρ
(
v1, v

0
1 , v2

)
=
(
v1, (1 + v1)v0

1 , φ̇v (v2 ◦ φv)
)
,

where

φv(t) =

∫ t

0

1 + v0
1(τ)dτ.

Given any v ∈ V2, the time-reparametrization φv : I → I is well-defined on the set

Sv =
{
s ∈ I | s = φv(t) and φ̇v(t) exists different from zero

}
,

which is of full measure by the Sard lemma for real-valued absolutely continuous functions (see,
e.g. [27, Theorem 16]). Moreover, it is not difficult to see that ρ induces a system of coordinates
on V3, whose inverse is given explicitly by:

(4.1)
(
v1, v

0
1 , v2

)
7→
(
v1,

v0
1

1 + v1
,
v2 ◦ φ−1

v

φ̇v ◦ φ−1
v

)
, φv(t) =

∫ t

0

1 +
v0

1(τ)

1 + v1
dτ.
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In these coordinates, the endpoint map has then the following expression:

F (ρ(v1, v2)) = x0 ◦ −→exp

∫ 1

0

(1 + v0
1(s))(1 + v1)X1 + φ̇v(s)v2(φv(s))X2ds

= x0 ◦ −→exp

∫ 1

0

(1 + v1)X1 + v2(t)X2dt

= y ◦ −→exp

∫ 1

0

v1X1 + v2(t)gtdt.

where the passage from the first to the second line follows by the change of variable t = φv(s),

noticing that 1+v0
1(s) = φ̇v(s). In particular, we see that there is no more explicit dependence on

the zero mean part v0
1 in this new system of coordinates. Thus we may regard ρ as a “functional

change of coordinates” on V3, which hides the dependence of F on the zero mean part of the
control v0

1 , within the time reparametrization φv.

4.2. Regularity properties of ρ. We turn now to prove that ρ is an homeomorphism, and
we begin stating a technical lemma which is crucial to show that ρ−1 is continuous, and whose
proof is postponed in Appendix A for the sake of completeness.

Lemma 19. Let v ∈ V3, and (vn)n∈N be a sequence converging to v in L∞(I,R) ⊕ L2(I,R).
Define, for every n ∈ N, φn : I → I to be the time-reparametrization associated with vn. Then:

(a) φn → φv uniformly on I;
(b) φ−1

n → φ−1
v pointwise on Su.

Proposition 20. The reparametrization map ρ : V2 → V3 is a continuous homeomorphism onto
its image, i.e. V2 ' V3.

Proof. The inverse map ρ−1 has been explicitly computed in (4.1), thus it only remains to prove
that ρ and ρ−1 are continuous. Actually we will just prove the continuity of ρ−1, since the
conclusion for ρ follows along similar (and somewhat simpler) reasonings. Let v ∈ V3 and let

(vn)n∈N be any sequence converging to v in L∞(I,R)⊕L2(I,R). Then v0,n
1 → v0

1 and vn1 → v1 in

L∞(I,R). Call w0,n
1 := v0,n

1 /(1 + vn1 ), and let w0
1 be defined similarly. Trivially, w0,n

1 converges
to w0

1 in L∞(I,R), whence it suffices to establish:

(4.2) lim
n→∞

∫
Σ

∣∣∣∣∣ vn2 (φ−1
n (s))

(1 + w0,n
1 )(φ−1

n (s))
− v2(φ−1

v (s))

(1 + w0
1)(φ−1

v (s))

∣∣∣∣∣
2

ds = 0,

where Σ ⊂ I is the following full-measured set:

Σ :=
{
s ∈ I | s = φv(t) and ∃φ̇v(t) 6= 0

}
∩
⋂
n∈N

{
s ∈ I | s = φn(t) and ∃φ̇n(t) 6= 0

}
.

By the triangular inequality, (4.2) can be bounded in two steps. Indeed:∫
Σ

∣∣∣∣ vn2 (φ−1
n (s))

(1 + w0,n
1 )(φ−1

n (s))
− v2(φ−1

v (s))

(1 + w0
1)(φ−1

v (s))

∣∣∣∣2ds
≤ 2

(∫
Σ

∣∣∣∣∣ vn2 (φ−1
n (s))

(1 + w0,n
1 )(φ−1

n (s))
− v2(φ−1

n (s))

(1 + w0
1)(φ−1

n (s))

∣∣∣∣∣
2

ds

+

∫
Σ

∣∣∣∣ v2(φ−1
n (s))

(1 + w0
1)(φ−1

n (s))
− v2(φ−1

v (s))

(1 + w0
1)(φ−1

v (s))

∣∣∣∣2 ds).
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By the change of variables z = φ−1
n (s), the first summand is bounded, for n big enough, by∫

φ−1
n (Σ)

|(1 + w0
1)(z)vn2 (z)− (1 + w0,n

1 )(z)v2(z)|2

(1 + w0,n
1 )(z)(1 + w0

1)2(z)
dz

≤ 2

α3

∫ 1

0

|1 + w0
1(z)|2|vn2 (z)− v2(z)|2 + |w0

1(z)− w0,n
1 (z)|2|v2(z)|2dz,

and the convergence to zero follows. The convergence to zero of∫
Σ

∣∣∣∣ v2(φ−1
n (s))

(1 + w0
1)(φ−1

n (s))
− v2(φ−1

v (s))

(1 + w0
1)(φ−1

v (s))

∣∣∣∣2 ds
follows instead from Lemma 19 and the Lebesgue’s dominated convergence theorem. �

5. Normal forms around rank-two-nice singular curves

5.1. A generalized Morse Lemma. The reparametrization map ρ yields a local system of
coordinates on L∞(I,R) ⊕ L2(I,R), where the kernel Z of the Hessian map q disappears. To
put it in more geometrical terms, notice that V3 = R⊕V0

3⊕H1(I,R) has a natural fiber bundle

structure V3
π−→ V0

3 over V0
3 (which is an open submanifold of the Banach manifold L∞(I,R)0),

where the fiber is the Hilbert space H = R ⊕ H1(I,R). The fact that the endpoint map F
does not depend on the zero mean part of the first control v0

1 allows therefore to study F on H,
agreeing that we identify H with the fiber π−1({0}). Thus F has the following expression:

F (c1, w2) = x0 ◦ −→exp

∫ 1

0

(1 + c1)X1 + ẇ2(t)X2dt

= y ◦ −→exp

∫ 1

0

c1X1 + ẇ2(t)gtdt.

Accordingly, when we pass to the completion space H = R ⊕ R ⊕ H1(I,R), F and G rewrite
respectively as (see (3.1) and (3.2)):

F (c1, c2, w2) = x0 ◦ −→exp

∫ 1

0

(1 + c1)e
−w2(t)X2
∗ X1dt ◦ ec2X2 ,

G(c1, c2, w2) = y ◦ −→exp

∫ 1

0

(1 + c1)e
−w2(t)gt
∗ X1 −X1dt ◦ ec2X2 .

The hessian q is now non-degenerate on ker(d0G), and therefore there holds a version of the
“Generalized Morse Lemma”, much in the spirit of [24, Lemma 1.2], and whose proof is reported
below for the sake of completeness. Before giving the actual proof, let us fix the notation
v := (c1, c2, w2) ∈ H, and let us write G(v) = G(0) + d0G(v) + d2

0G(v) +R(v), where R denotes
a remainder term whose first and second derivatives at zero vanish. Let us also temporarily
consider variables v = (vker, vE) adapted to the splitting

H = ker(d0G)⊕ E.

Proposition 21 (Generalized Morse Lemma). There exist neighborhoods W ⊂ H and O ⊂ M
of the origin, and origin-preserving diffeomorphisms σ : W → W and ψ : O → O, such that for
every v ∈W there holds the identity:

(ψ ◦G ◦ σ) (v) = y + d0G(vE) + λHe0G(vker).
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W

W

O

O

G(0) + d0G+ d2
0
G+ tR

G(0) + d0G+ d2
0
G

Pt Qt

Figure 3.

Proof. We begin by proving the following statement: there exist neighborhoods W ⊂ H and
O ⊂ M , respectively of the origin and of y such that for every t ∈ I, there exist an origin-
preserving diffeomorphism Pt : W→W and a diffeomorphism Qt : O→ O that preserves y, for
which the diagram in Figure 3 commutes. More specifically, we will look for families (Pt)t∈I ,

(Qt)t∈I of diffeomorphisms of the form Pt = −→exp
∫ t

0
Xτdτ and Qt = ←−exp

∫ t
0
Yτdτ , for suitable

locally Lipschitz time-dependent vector fields 6 Xτ and Yτ on W and O (compare with the
classical Moser’s trick [20]).

Let us fix local coordinates on a neighborhood O ⊂ M of y, subordinated to the splitting
TyM ' Rm = coker(d0G) ⊕ Im (d0G), and let us suppose, without loss of generality, that

G(0) = 0. Any function f : H → Rm can be decomposed as a sum f = fλ + fE , where
fλ = 〈λ, f〉 denotes the projection of f along the abnormal direction.

The commutativity condition reads Pt ◦
(
d0G + d2

0G + tR
)
◦ Qt = d0G + d2

0G. Notice that for
t = 0 the identity holds. Differentiating this equation we obtain:

(5.1) Pt ◦
(
Xt ·

(
d0G+ d2

0G+ tR
)

+R+
(
d0G+ d2

0G+ tR
)
◦ Yt

)
◦Qt = 0.

We look for solutions to (5.1) of the form Xt = Xker
t +XE

t and Yt = Y λt , where Xker
t ∈ ker(d0G)

and Y λt is parallel to λ in Rm. Solving (5.1) is thus equivalent to solve the following system of
equations:

(5.2)

{
d0GXt(v) + 2BE (v,Xt(v)) + tdvR

EXt(v) = −RE(v)

2Bλ (v,Xt(v)) + tdvR
λXt(v) + Y λt

(
d0G(v) + d0G

2(v, v) + tR(v)
)

= −Rλ(v),

where we may forget about Pt and Qt since they are diffeomorphisms, and B : H × H → Rm
denotes the vector-valued bilinear form associated to d2

0G. Let d0G
−1 : Im (d0G) → E denotes

the right pseudo-inverse to d0G. Then we solve the first equation of (5.2) with respect to XE
t as

follows: let JEt (v) : E → E be defined as

JEt (v) := IdE + 2d0G
−1BE(v, ·) + td0G

−1dvR
E .

For every t ∈ I, JEt (0) = IdE , therefore there exists a neighborhood Wt
1 ⊂ H of the origin such

that JEt (v) is invertible for every v ∈Wt
1. By compactness, we find W1 independently on t, and

for v ∈W1 we have:

XE
t (v) = −JEt (v)−1d0G

−1
(
RE(v) + 2BE

(
v,Xker

t (v)
)

+ tdvR
EXker

t (v)
)
.

6For the definition of the right and left chronological exponentials we refer to [4, Chapter 2]. For us, it will

only be important to recall that d
dt
Pt = Pt ◦Xt and d

dt
Qt = Yt ◦Qt.
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It remains to find Xker
t . Once we know it, we substitute in the equation above to find Xker

t ,
which in turn will solve (5.2). We turn to the scalar equation:

(5.3)
〈
At(v), Xker

t (v)
〉

+ Y λt
(
d0G(v) + d2

0G(v, v) + tR(v)
)

= −Sλt (v),

where 〈·, ·〉 denotes the Hilbert product on H, and

〈At(v), ·〉 = 2λB(v, ·)− 2λB
(
v, JEt (v)−1d0G

−1
(
2BE (v, ·) + tdvR

E(·)
))

+ tλdvR(·)− tλdvR
(
JEt (v)−1d0G

−1
(
2BE (v, ·) + tdvR

E(·)
))
,

Sλt (v) = λR(v) + 2λB
(
v, JEt (v)−1d0G

−1RE(v)
)

+ tλdvR
(
JEt (v)−1d0G

−1RE(v)
)
.

Notice that the first and the second derivatives at zero of Sλt vanish for every t ∈ I.

Actually, since Xker
t (v) ∈ ker(d0G) for every v ∈W1, we only need to consider the projection

π ◦ At : W1 → ker(d0G) (here π denotes the orthogonal projection onto ker(d0G)). Moreover,
the operator

π ◦ d0At
∣∣
ker(d0G)

: ker(d0G)→ ker(d0G)

coincides for every t ∈ I with the operator L of Corollary 17, and therefore it is invertible. Let
us introduce a new system of coordinates in a neighborhood W ⊂ W1 of the origin, namely we
consider the map

(5.4) Φt(v) =
(
π ◦At(v), d0G

∗ (d0G+ d2
0G(v, v) + tR(v)

))
,

where d0G
∗ : Rm → E denotes an operator adjoint to d0G. An easy computation shows that for

every t ∈ I there holds:

(5.5) d0Φt =

(
L ∗
0 d0G

∗d0G

)
.

Thus we can find a neighborhood W of the origin, where (5.5) holds independently on t, and

Φt(v) =
(
wker
t (v), wEt (v)

)
defines a local diffeomorphism on W. By the Hadamard Lemma there

exists a smooth function S̃t : W→ ker(d0G) such that

Sλt (v) = Sλt
(
Φ−1
t

(
wker
t (v), wEt (v)

))
(5.6)

=
(
Sλt ◦ Φ−1

t

)
(0, wEt (v)) +

〈
S̃t(v), wker

t (v)
〉
.

Comparing (5.3), (5.4) and (5.6), it suffices to set

Xker
t := S̃t, Y λt := Sλt ◦ Φ−1

t ◦ d0G
∗

to find Xt. Finally, it is not difficult to see that Xker
t is Lipschitz, and that its first derivative

at the origin vanishes, and that also Y λt and XE
t are Lipschitz with respect to their arguments,

and their first and second order derivatives at the origin vanish.

The previous argument proves that P1 exists in the completion space H. It thus remains
to show that P1 induces a local diffeomorphism σ on some open neighborhood W ⊂ H of the
origin, and the proposition will follow setting ψ = Q1. We know from [24, Theorem 3.2] that P1

is explicitly given by a system of nonlinear Urysohn integral equations of the second kind with
small kernels, of the form

P1(v)(t) = v(t)−
∫ 1

0

K(v, τ, t)dτ,

where the K is differentiable with respect to the t-variable. It follows that P1(v) ∈ H =
R⊕H1(I,R) if and only if v ∈ H, yielding that the L2(I,R) component of P1(v) is differentiable
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with respect to time if and only if so is the L2(I,R) component of v. To complete the proof it
is then sufficient to set

W := W ∩H, and σ := P1

∣∣
W
.

�

5.2. Proof of Theorem 1. Let V3
π−→ V0

3 be the fiber bundle consider at the beginning of the
previous section. We consider the sets O and W as in Proposition 21, so that the set π−1(W) ⊂ V3

is an open neighborhood of the origin in L∞(I,R)⊕ L2(I,R). Then we define

V := (π ◦ ρ)
−1

(W) ⊂ V2,

which is also open because the map ρ is continuous by Proposition 20, and ρ(V) ⊂ V3. The
diffeomorphisms

ϕ : π−1(W)→ π−1(W), ϕ :=
(
σ, IdL∞(I,R)0

)
and ψ : O → O, with σ and ψ as in Proposition 21 provides the desired changes of coordinates
on ρ(V) and O, respectively, and the theorem is completely proved once we define

µ := ϕ ◦ ρ, µ : V→ π−1(W) ⊂ L∞(I,R)⊕ L2(I,R)

(notice that we tacitly assumed the decomposition L∞(I,R)⊕L2(I,R) = R⊕L2(I,R)⊕L∞(I,R)0

in the component-wise definition of ϕ).

5.3. Isolation of rank-two-nice singular curves. We discuss in this section some isolation
properties of rank-two-nice singular curves in Ω(y), both among extremal curves (i.e. critical
points of the extended endpoint map (G, J)) and among singular curves (which are critical points
for G).

Proposition 22. There exists a neighborhood V4 ⊂ V, such that the only extremal controls
contained in V4 ∩ Ω(y) are of the form (v0

1 , 0), with v0
1 of zero mean. Then γ is isolated (up

to reparametrizations) among singular curves in Ω(y), with respect to the L∞(I,R) ⊕ L2(I,R)
topology.

Proof. We begin by showing that there are no extremal controls u ∈ ρ(V) ∩ Ω(y) which have
nonzero second component. By Theorem 1, there exists an origin-preserving diffeomorphism
ϕ : ρ(V)→ ρ(V) such that:

(5.7)
〈
λ,G(ϕ(wker, 0))

〉
= 〈λ,G(0)〉+ λHe0(G)(wker)︸ ︷︷ ︸

q(wker)

, for every w = (wker, 0) ∈ ρ(V).

Let (wker, 0) ∈ ρ(V) have nonzero second component. Since q is non-degenerate, differentiating
(5.7) we see that

λdϕ(wker,0)G : ker(d0G)→ R
is not the zero operator. More specifically, there exists z ∈ ker(d0G) such that d(wker,0)ϕ(z)
generates its image.

Let u be contained in ρ(V)∩Ω(y) and have nonzero second component; without loss of generality
we suppose that du(G, J) is of corank one. Then u has the form u = ϕ(wker, 0) for some
(wker, 0) ∈ ρ(V), which necessarily has nonzero second component as well, and thus by the above
reasoning duG is of full rank. We can also suppose, shrinking ρ(V) if necessary, that even duJ
is nonzero (recall that d0J = (1, 0)), but this would contradict the fact that u is an extremal
control. To conclude, let us notice that since ρ is an homeomorphism,

V4 := V ∩ ρ(V)
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is an open neighborhood of the origin in L∞(I,R)⊕L2(I,R). All the extremal controls contained
in V4 ∩ Ω(y) have zero second component, and satisfy the relation

y = F (v1, 0) = x0 ◦ e(1+
∫ 1
0
v1(t)dt)X1 = y ◦ e

∫ 1
0
v1(t)dtX1 ,

yielding that v1 = v0
1 has zero mean, whence the proposition follows. �

Corollary 23. There exists a weak neighborhood of the origin V5 ⊂ L2(I,R2), such that the only
singular controls contained in V5 are of the form (v0

1 , 0), with v0
1 of zero mean. In particular,

γ is isolated (up to reparametrizations) among the singular curves in Ω(y), with respect to the
weak L2(I,R2) topology.

Proof. Assume by contradiction that (vn)n∈N ⊂ Ω(y) is a sequence of abnormal controls weakly
converging to zero in L2(I,R). By Proposition 2, γvn → γ uniformly on I and dvnF → d0F
strongly as operators. In particular, dvnF becomes eventually of corank-one, and the (unique)
abnormal norm-one covector λvn tends to λ in Rm. The two conditions in Section 1.2, defining
a rank-two nice singular curve, are open in the set of all singular curves in Ω(y). Therefore we
may assume without loss of generality that all the curves γvn are rank-two nice, and in turn
that all the controls vn are smooth. Finally, the relations γvn → γ and dvnF → d0F yield the
uniform convergence on I even for the dual extremal trajectories t 7→ λvn(t):

lim
n→∞

sup
t∈I
‖λvn(·)− λ(·)‖ = 0.

All these facts together yield that vn → 0 in L∞(I,R) ⊕ L2(I,R), therefore Proposition 22
implies that eventually vn has to be of the form (v0

n,1, 0), with v0
n,1 of zero mean, and the claim

follows. �

6. Examples

6.1. The general framework. We explain in this last section how to compute conjugate points.
Let us consider a rank-two totally nonholonomic distribution ∆ ⊂ TM , and let us suppose for
simplicity that ∆x = span{X1(x), X2(x)} in the domain under consideration. We consider as in
Definition 9 a local chart V1 ∈ L2(I,R2) centered at the origin.

Definition 24. For every s ∈ I we define the subset Vs1 ⊂ L2([0, s],R2) by

Vs1 :=
{
v[0,s] | v ∈ V1

}
.

We consider the time-s endpoint map F s : Vs1 → M and the time-s energy map Js : Vs1 → M ,
defined respectively as:

F s(v1, v2) := x0 ◦ −→exp

∫ s

0

(1 + v1(t))X1 + v2(t)X2dt,

Js(v1, v2) :=
1

2
‖(1 + v1(t), v2(t))‖2L2([0,s],R2) .

The time-s extended endpoint map Φs : Vs1 →M × R will denote as usual the pair

Φs(v1, v2) = (F s(v1, v2), Js(v1, v2)) .

For any s ∈ I, let us consider the restriction of the nice abnormal t 7→ γ(t) onto [0, s]. The
extremal lift t 7→ λt of γ is then parametrized on [0, s] by

λt = (e−tX1)∗λ0, (e−tX1)∗ : T ∗x0
M → T ∗γ(t)M,
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where (e−tX1)∗ denotes the adjoint of the differential of the flow map t 7→ etX1 , and λ0 ∈ T ∗x0
M

is the initial covector of each such restriction.

There are two quadratic maps that evolve in time, namely the Hessians:

qs := λHe0(F s), and q̂s := λHe0(Φs),

and to detect conjugate times we introduce appropriate “Jacobi equations” that naturally live
on the cotangent space T ∗M . Since qs and q̂s have formally the same expression, we will try
as much as possible to treat them at the same time, pointing out when necessary the important
differences.

6.1.1. The symplectic setting. Given any Hamiltonian function a ∈ C∞(T ∗M), we define its
Hamiltonian lift ~a ∈ Vec(T ∗M) by

σµ(·,~a) = dµa(·), for every µ ∈ T ∗M,

where σ denotes the canonical symplectic form on T ∗M .

Definition 25. Let s ∈ I. For any t ∈ [0, s], let

gst := e
(s−t)X1
∗ X2.

Let us then define the fiber-wise linear Hamiltonians ξ1, η
s
t : T ∗M → R by:

ξ1(µ) = 〈µ,X1(π(µ))〉, ηst (µ) = 〈µ, gst (π(µ))〉,

where π : T ∗M → M denotes the canonical projection, and let ~ξ1, ~η
s
t , t ∈ [0, s], be their

corresponding Hamiltonian lifts.

By (3.7) and (2.10) we have (notice that there is no c1 component in ker(d0Φs)):

ker(d0F s) =

{
w2 ∈ L2([0, s],R)

∣∣∣∣ ∫ s

0

w2(t)ġst (γ(s))dt ∈ span{X1(γ(s)), X2(γ(s))}
}
,(6.1)

ker(d0Φs) =

{
w2 ∈ L2([0, s],R)

∣∣∣∣ ∫ s

0

w2(t)ġst (γ(s))dt ∈ span{X2(γ(s))}
}
.

In both cases the Hessian is given by:
(6.2)

qs(c2, w2) =

∫ s

0

〈λs, [ġst , gst ](γ(s))〉w2(t)2dt+

∫ s

0

〈
λs,

[
c2g

s
s +

∫ t

0

w2(τ)ġsτdτ, w2(t)ġst

]
(γ(s))

〉
dt,

therefore for clarity’s sake we avoid the notation q̂s when referring to the Hessian λHe0(Φs) in
the sequel.

We now translate these informations on the cotangent bundle T ∗M . It is convenient to identify
in the standard way T ∗γ(s)M with Tλs(T

∗
γ(s)M), interpreting any covector ν ∈ T ∗γ(s)M as the value

at λs of the Euler vector field e on T (T ∗γ(s)M). This means that in a system (p1, . . . , pm) of local

coordinates on T ∗γ(s)M we identify ν = (ν1, . . . , νm) with

e(ν) = ν1∂p1 + · · ·+ νm∂pm .

We declare Σ = λ∠s /Rλs to be the skew-orthogonal complement of λs in the symplectic space
Tλs(T

∗M), and we call Π = T ∗γ(s)M/Rλs. Then Σ is a symplectic subspace of Tλs(T
∗M) of

dimension 2(m − 1), and Π is a Lagrangian subspace of Σ, therefore of dimension m − 1. For
every µ ∈ T ∗γ(s)M , we have that

σλs(µ,
~ξ1) = 〈µ,X1〉γ(s), σλs(µ, ~η

s
t ) = 〈µ, gst 〉γ(s),
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and thus σλs(λs,
~ξ1) = σλs(λs, ~η

s
t ) = 0 for every t ∈ [0, s]. In particular, we can treat both ~ξ1

and ~ηst as elements of Σ.

Let l0t,s := σλs(~̇η
s
t , ~η

s
t ). The quadratic form (6.2) becomes

(6.3) qs(w2) =

∫ s

0

l0t,sw2(t)2dt+

∫ s

0

σλs

(
c2~η

s
s +

∫ s

0

w2(τ)~̇ηsτdτ, w2(t)~̇ηst

)
dt,

while the kernel conditions (6.1) read

ker(d0F s) =

{
w2 ∈ L2([0, s],R)

∣∣∣∣ ∫ s

0

w2(t)~̇ηst dt ∈ Π + span{~ξ1, ~ηss}
}
,(6.4)

ker(d0Φs) =

{
w2 ∈ L2([0, s],R)

∣∣∣∣ ∫ s

0

w2(t)~̇ηst dt ∈ Π + span{~ηss}
}

or, equivalently,

ker(d0F s) =

{
w2 ∈ L2([0, s],R)

∣∣∣∣ ∫ s

0

σλs(ν, ~̇η
s
t )w2(t)dt = 0, for every ν ∈ Π ∩ {~ξ1, ~ηss}∠ + R~ξ1

}
,

(6.5)

ker(d0Φs) =

{
w2 ∈ L2([0, s],R)

∣∣∣∣ ∫ s

0

σλs(ν, ~̇η
s
t )w2(t)dt = 0, for every ν ∈ Π ∩ {~ηss}∠ + R~ξ1

}
.

Remark 4. In (6.5), we can define ν modulo R~ξ1 since σλs(
~ξ1, ~̇η

s
t ) ≡ 0 for every t ∈ [0, s]. We

choose to write it explicitly for later convenience.

6.1.2. Conjugate points. Following [5, 6] we begin recalling the symplectic definition of a conju-
gate point along γ (compare with Definition 12).

Definition 26. Conjugate points along the nice abnormal trajectory γ are time instants s ∈ R
at which the quadratic form qs in (6.3), whose domain is determined by either one of the two
conditions in (6.5), has a nontrivial kernel. The multiplicity of s as a conjugate point equals the
dimension of this kernel.

Starting from the definition of qs in (6.3), we see that its kernel is composed by all elements

w0
2 ∈ ker(d0F s) (or to ker(d0Φs)), such that∫ s

0

(
l0t,sw

0
2(t) + σλs

(
c02~η

s
s +

∫ t

0

w0
2(τ)~̇ηsτdτ, ~̇η

s
t

))
w2(t)dt = 0

for every w2 ∈ ker(d0F s) (resp. for every w2 ∈ ker(d0Φs)). By (6.5), this implies that for all
t ∈ [0, s]

(6.6) l0t,sw
0
2(t) + σλs(c

0
2~η
s
s +

∫ t

0

w0
2(τ)~̇ηsτdτ, ~̇η

s
t ) = σλs(−ν, ~̇ηst ),

for some ν that belongs to Π ∩ {~ξ1, ~ηss}∠ + R~ξ1 (respectively, to Π ∩ {~ηss}∠ + R~ξ1).

Let k(t) :=
∫ t

0
w0

2(τ)~̇ηsτdτ + c02~η
s
s + ν. Multiplying both its sides by ~̇ηst , we rewrite (6.6) as

(6.7) l0t,sk̇(t) = σλs(~̇η
s
t , k(t))~̇ηst .

The corresponding boundary conditions become, respectively,
(6.8)

(a)

{
k(0) ∈ Π ∩ {~ξ1, ~ηss}∠ + R~ξ1 + R~ηss ,
k(s) ∈ Π + R~ξ1 + R~ηss ,

(b)

{
k(0) ∈ Π ∩ {~ηss}∠ + R~ξ1 + R~ηss ,
k(s) ∈ Π + R~ηss .
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Remark 5. Recall that, given a Lagrangian subspace Λ and an isotropic subspace Γ, then ΛΓ =
Λ ∩ Γ∠ + Γ = (Λ + Γ) ∩ Γ∠ is again a Lagrangian subspace (see, e.g. [4]).

Remark 6. Notice that ~ξ1 and ~ηst are solutions to (6.7). The point is to verify whether or not
they also satisfy the boundary conditions in (6.8).

6.2. Regular distributions. We specify now the Jacobi equations for a particular class of rank-
two sub-Riemannian structures, the so-called regular distributions, that have been intensively
investigated starting from the seminal works [25, 17]. Assume M is an (m + 2)-dimensional
manifold, and that ∆ = span{X1, X2} in the domain under consideration. Moreover we assume
that:

i) X1, X2, . . . , (adX1)m−1X2 are linearly independent.
ii) There exist smooth functions β, {αi, i = 0, . . . ,m− 1} on M , such that

(6.9) (adX1)mX2 = βX1 +

n−1∑
i=0

αi(adX1)iX2.

iii) [[X1, X2], X2] is linearly independent from V = span{X1, X2, . . . , (adX1)m−1X2}.

Under these hypotheses it turns out [25, Section 8] that integral curves of the vector field X1 are
indeed corank-one abnormal geodesics for ∆. Moreover, these curves are also strictly abnormal
as soon as β 6= 0 along the trajectory.

Let i ∈ N, and let us define

g
s,(i)
t := ∂

(i)
t gst = (−1)ie

(s−t)X1
∗ (adX1)iX2,

with gst as in Definition 25, and

l
(i)
t,s := 〈λs, [gs,(1)

t , g
s,(i)
t ](γ(s))〉 = (−1)i+1〈λt, [[X1, X2], (adX1)iX2](γ(t))〉.

Calling βt := β(γ(t)) and αit := αi(γ(t)), it is immediate to deduce from (6.9) its symplectic
version along the abnormal curve t 7→ γ(t), that is

(6.10) ~η
s,(m)
t = βt~ξ1 +

m−1∑
i=0

αit~η
s,(i)
t .

Observe that Σ admits the decomposition Σ = Π⊕{~ξ1, ~ηst , t ∈ [0, s]} and that, thanks to (6.10),

the set {~ξ1, ~ηsτ , . . . , ~η
s,(m−1)
τ } is a basis for Z = {~ξ1, ~ηst , t ∈ [0, s]}, for every τ ∈ [0, s]. Notice that

Z is not a Lagrangian subspace, nonetheless the symplectic form σλs defines a non-degenerate
splitting between Π and Z. Returning to (6.7), we write k(t) = zt + θt, with zt ∈ Z and θt ∈ Π.
Then (6.7) splits as the differential system of equations

(6.11) l0t,sżt = σλs(~η
s,(1)
t , zt + θt)~η

s,(1)
t , θ̇t = 0.

The boundary conditions read, in this formulation,

z0 = 0, zs ∈ Π + span{~ξ1, ~ηss} and σλs(~η
s
s , θ0) = σλs(

~ξ1, θ0) = 0

in the first case, while we have

z0 = 0, zs ∈ Π + span{~ηss} and σλs(~η
s
s , θ0) = 0

in the second. In both cases the condition on zs is derived from the kernel conditions (6.4).
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We can further present zt as zt = zft
~ξ1 +

∑m−1
i=0 zit~η

s,(i)
t , and define ζt := σλs(~η

s
t , θ0). In this

way, (6.11) is equivalent to the following system of equations:

(6.12)



żft = −βtzm−1
t ,

ż0
t = −α0

t z
m−1
t ,

l0t,s(ż
1
t + α1

t z
m−1
t ) =

∑m−1
j=2 l

(j)
t,s z

j
t + ζ̇t, z1

0 = 0,

żtj + αjtz
m−1
t = −zj−1

t , zj0 = 0, j = 2, . . . ,m− 1,

ζ
(m)
t = βtσλs(

~ξ1, θ0) +
∑m−1
i=0 αitζ

(i)
t , ζ0 = 0.

In particular, s is a conjugate point along the abnormal trajectory t 7→ γt if and only if (6.12)
admits a nontrivial solution that further satisfies zis = 0 for all i = 1, . . . ,m− 1, and also zfs = 0
in the second case

6.2.1. The four-dimensional case. We specialize the theory of the conjugate points for a rank-two
sub-Riemannian structure on a four dimensional manifold. In this case the vector field X1, that
satisfies all the Lie bracket configurations required in the previous part exists if the structure is
of maximal growth, that is if it is of Engel type [11]. We study in this case the Jacobi equations
for the Hessian map both of the endpoint F s and of the extended endpoint map Φs.

We begin with the endpoint map F s. In this case we also have that σλs(
~ξ1, θ0) = 0, and the

relevant equations are:

(6.13)

{
l0t,s(ż

1
t + α1

t z
1
t ) = ζ̇t, z1

0 = 0,

ζ̈t = α0
t ζt + α1

t ζ̇t, ζ0 = 0, ζ̇0 = 1.

Moreover, from (6.10) we easily calculate that

l̇0t,s =
d

dt
〈λs, [ġst , gst ](γ(s))〉 = α1

t l
0
t,s, l00,s = 1,

that is l0s,t = e
∫ t
0
α1
τdτ . From here it is immediate to compute that z1

t = ζte
−

∫ t
0
α1
τdτ . In particular

z1
0 = 0 if, and only if ζ0 = 0 (notice instead that ζs = 0 and, in turn, z1

s = 0, is granted by
construction).

It is also possible to give a totally intrinsic description of a conjugate point in this case. In

fact, we have that σλs(~η
s
s , θ0) = σλs(~η

s
0, θ0) = σλs(

~ξ1, θ0) = 0. On the other hand, θ0 ∈ Π =
T ∗γ(s)M/Rλs, which is three dimensional. Then the linear map σλs(·, θ0) = 〈·, θ0〉γ(s) cannot have

a three dimensional kernel, for otherwise θ0 would be zero, and this implies that

X1(γ(s)) ∧X2(γ(s)) ∧ gs0(γ(s)) = 0.

For the extended endpoint map Φs, the relevant equations become:

(6.14)


żft = −βtz1

t ,

l0t,s(ż
1
t + α1

t z
1
t ) = ζ̇t, z1

0 = 0,

ζ̈t = α0
t ζt + α1

t ζ̇t + βtσλs(
~ξ1, θ0), ζ0 = 0, ζ̇0 = 1.

In addition to the equations found before, we also need to guarantee zfs = 0, that is to say

−
∫ s

0
βtζte

−
∫ t
0
α1
rdrdt = 0. This can as well be nicely reinterpreted in terms of vector fields by

saying that, at conjugate points, all the equalities found so far imply that

X2(γ(s)) ∧ gs0(γ(s)) ∧
∫ s

0

βte
−

∫ t
0
α1
τdτgst (γ(s))dt = 0.
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Remark 7. With this discussion we can finally complete the explanation of the four-dimensional
example presented in Section 1.4. Indeed we find from the structural equations that α0

t ≡ −2,
α1
t ≡ 0 and βt ≡ 1, whence the computations for a(s) and â(s) easily follow from (6.13) and

(6.14).

Appendix A. A technical proof

Proof of Lemma 19. We begin with the proof of (a), and we begin observing that the con-
dition limn→∞ ‖vn1 − v1‖L∞(I,R) = 0, implies both that limn→∞ ‖vn1 − v1‖L∞(I,R) = 0 and

limn→∞ ‖v0,n
1 − v0

1‖L∞(I,R) = 0. Using the triangular inequality we find then that

lim
n→∞

∥∥∥∥∥ v0,n
1

1 + vn1
− v0

1

1 + v1

∥∥∥∥∥
L∞(I,R)

= 0,

which proves the first point. As for point (b), for every s ∈ I, we can define φ−1
v (respectively,

φ−1
n ) by:

φ−1
v (s) := inf{t ∈ I | φv(t) = s}.

Let s ∈ Sv, t := φ−1
v (s) and tn := φ−1

n (s), and assume that

lim
n→∞

tn = t > t.

We claim that, for every ε > 0, there exists nε ∈ N such that for every n ≥ nε one has:

(A.1) s ≤ φv(t) ≤ φn(tn) + 3ε ≤ s+ 3ε.

Notice that this would imply φv(t) = s, yielding that s ∈ I \ Sv (that is, either φv(t) does
not exists, or it exists and it is equal to zero, as φv would be constant on [t, t]), which is a

contradiction. For every n ∈ N, let us make the position w0,n
1 :=

v0,n1

1+vn1
, and similarly define w0

1

(notice that w0,n
1 converges to w0

1 in L∞(I,R) by point (a)). Thus (A.1) follows from:

s ≤ φv(t) =

∫ t

0

1 + w0
1(τ)dτ −

∫ tn

0

1 + w0
1(τ)dτ

+

∫ tn

0

1 + w0
1(τ)dτ −

∫ tn

0

1 + w0,n
1 (τ)dτ

+

∫ tn

0

1 + w0,n
1 (τ)dτ ≤ φn(tn) + 3ε = s+ 3ε,

since both the difference terms on the first and the second line go to zero as n → ∞. On the
other hand, let us assume that

lim
n→∞

tn = t < t.

By similar arguments, we find even in this case that for every ε > 0, there exists nε ∈ N big
enough such that

φv(t) = s > φv(t) =

∫ t

0

1 + w0
1(τ)dτ ≥ φn(tn)− 3ε = s− 3ε

for every n ≥ nε, yielding again an absurd. �
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[26] E. Trélat. Some properties of the value function and its level sets for affine control systems with quadratic

cost. J. Dynam. Control Systems, 6(4):511–541, 2000.

[27] D. E. Varberg. On absolutely continuous functions. Amer. Math. Monthly, 72:831–841, 1965.

https://webusers.imj-prg.fr/~davide.barilari/2017-11-17-ABB.pdf


STRUCTURE OF THE ENDPOINT MAP NEAR NICE SINGULAR CURVES 29

SISSA (Trieste) and Steklov Institute (Moscow)

Email address: agrachev@sissa.it

Dipartimento di Matematica Tullio Levi-Civita, Università degli studi di Padova, Italy
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