
FEEDBACK{INVARIANT OPTIMAL CONTROL

THEORY AND DIFFERENTIAL GEOMETRY | I.

REGULAR EXTREMALS

A. A. Agrahev, R. V. Gamkrelidze

Abstrat. Feedbak{invariant approah to smooth optimal ontrol problems is onsidered.

A Hamiltonian method of investigating regular extremals is developed, analogous to the

di�erential{geometri method of investigation Riemannian geodesis in terms of the Levi{

Civita onnetion and the urvature tensor.

x0. Introdution

1. Outline of the ontent. This is the �rst in a series of forthoming papers, devoted

to the uni�ation of the Theory of Smooth Optimal Control Problems and that part of

Di�erential Geometry whih is dealing with geodesis of di�erent kinds. The obtained

results, we believe, not merely suggest a ditionary for translating the known results from

one language into another, but they really extend the sope of appliability of both theories.

The key notions brought into interplay are "Hamiltonian system" in optimal ontrol and

the "urvature tensor" in di�erential geometry.

Sine the disovery of the Pontryagin maximum priniple, f. [11℄, �nding extremals

in problems of optimal ontrol is redued to solving Hamiltonian systems of di�erential

equations. Even in the lassial ase of Riemannian geometry, the maximum priniple

approah to �nding geodesis leads to the �nal result muh simpler and shorter than the

traditional method of using the Levi{Civita onnetion. If we onsider more general geo-

metri variational problems, dealing not only with regular extremals (geodesis), but with

singular extremals as well, then we should admit that the maximum priniple approah

has no serious alternative.

Turning now from geodesis to the urvature tensor, whih desribes quite deeply not

only loal but also global behavior of geodesis without even solving any di�erential equa-

tions, we see that it is obtained in a standard way from the Levi{Civita onnetion, whereas

a Hamiltonian approah to the urvature tensor or its analogue was never onsidered. The

main ontent of this paper is devoted to suh an approah.

We shall give now a brief overview of the ontent by setions. In x1 the notion of the

L{derivative is introdued. The intuitive meaning of this notion, whih plays in the sequel

an important role, ould be desribed as follows.
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Let f : U �!M be a smooth mapping between two �nite-dimensional manifolds, with

the di�erential f

0

u

: T

u

U �! T

f(u)

M at u 2 U . The point u is ritial for f if and only if

the image of f

0

u

is annihilated by some nonzero ovetor �, the Lagrange multiplier,

� f

0

u

= 0; � 2 T

�

f(u)

M; � 6= 0:

In this equation, the argument � belongs to the sympleti manifold T

�

M , the argument

u | to the manifold U . Linearization of the equation at the point (u; �) gives us a linear

system of equations in variables Æu 2 T

u

U; Æ� 2 T

�

(T

�

M). Let L

(u;�)

(f) be the set of all Æ�

whih satisfy the linear system (with some Æu). The linear subspae L

(u;�)

(f) � T

�

(T

�

M)

is alled the L{derivative of f at (u; �). It turns out that L

(u;�)

(f) is always a Lagrangian

subspae of the sympleti spae T

�

(T

�

M), in partiular, dimL

(u;�)

(f) = dimM . Thus

the dimension of the L{derivative is independent on the harater of the ritial point; for a

onstant mapping we have L

(u;�)

(f) = T

�

(T

�

f(u)

M). The optimal ontrol situation is more

general, with an in�nite{dimensional U . In x1 the L{derivative for the in�nite{dimensional

ase is onsidered, and the important hain rule for the L{derivative is formulated.

In x2 we give a feedbak{invariant de�nition of a smooth ontrol system whih inludes

as speial ases many basi di�erential{geometri strutures. The spae of admissible

trajetories is introdued and the boundary{value mapping is de�ned, whih sends the

trajetory into its boundary points. Critial points of the boundary{value mapping are

the extremal trajetories, geodesis in the geometri terminology. At the end of the setion

a Hamiltonian haraterization of extremal trajetories is given in form of a feedbak{

invariant analogue of the maximum{priniple.

In x3 the L{derivative of the boundary{value mapping and of its partiular ase, of the

endpoint mapping, is omputed. We also introdue regular extremals whih are trajetories

of a �xed Hamiltonian system, de�ned in a region of T

�

M . For regular extremals, the L{

derivative of the boundary{value mapping is omputed partiularly simple. Let � 7! �

�

2

T

�

M; 0 � � � t, be a regular extremal, �

�

= P

�

(�

0

), where � 7! P

�

is the Hamiltonian

ow in T

�

M suh that all of its trajetories are regular extremals. Then the L{derivative

is the graph of the linear sympleti mapping P

t�

: T

�

0

(T

�

M) �! T

�

t

(T

�

M).

In x4 Jaobi urves are introdued and investigated. Jaobi urves are urves in the

Lagrangian Grassmannian orresponding to given extremals of a very general nature, er-

tainly inluding all regular extremals, and are onstruted, roughly, in the following way.

An arbitrary segment of an extremal is again an extremal. Hene, varying the initial point

of the extremal with the �xed endpoint (or vie versa), we obtain L{derivatives of the

endpoint mapping, whih are Lagrangian subspaes in a �xed sympleti spae depending

on a time{variable, thus obtaining the Jaobi urve.

We also develop here the di�erential geometry of regular urves in a Lagrangian Grass-

mannian. Nonregular Jaobi urves, ourring in problems with nonholonomi onstraints,

will be onsidered in future publiations. The most important in�nitesimal invariants of

a regular urve in the Lagrangian Grassmannian are the "derivative urve" and the "ur-

vature tensor". The urves of onstant salar urvature are haraterized. Formulas are

derived whih relate the number of onjugate points, Maslov index and urvature.

The obtained results are applied in x5 to develop the di�erential geometry of Hamilton-

ian systems on T

�

M , and of di�erential equations of seond order on M . To a trajetory
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of the Hamiltonian system, passing through a point � 2 T

�

M , germ of a urve in the

Lagrangian Grassmannian of the sympleti spae T

�

(T

�

M) is assigned. In�nitesimal

invariants of these germs de�ne a (in general nonlinear) anonial onnetion on T

�

M as-

soiated to the Hamiltonian. The main result of this setion onsists in deriving identities,

onneting the urvature of the anonial onnetion with the urvatures of the germs of

urves in the Lagrangian Grassmannian. A similar theory is developed for di�erential equa-

tions of the seond order for whih we have to substitute T

�

M by TM , and the Lagrangian

Grassmannian by ordinary Grassmannian. It turns out that the anonial onnetion of

the equation of the geodesi ow of a (pseudo){Riemannian struture oinides with the

Levi{Civita onnetion of this struture.

In x6, for two{dimensional systems, the urvature of the extremals of smooth ontrol

systems is expressed through standard "state{invariants", the iterated Lie brakets of

vetor �elds.

2. Preliminaries. Here we introdue some formulas of "Chronologial alulus" and

ertain notions and relations related to linear sympleti spaes used in the artile, f.

[3,8℄, [1,7,9℄.

Assume M is a smooth, i.e. of lass C

1

, manifold, and C

1

(M) is the algebra of

smooth funtions on M . We identify an arbitrary di�eomorphism P :M �!M with the

orresponding automorphism of the algebra C

1

(M),

a(�) 7! a Æ P (�) = a(P (�)); a 2 C

1

(M):

Under this identi�ation, the ation of P on a, i.e. the substitution of P into a, is denoted

by Pa, and the value of P at x 2M is denoted by xP , xPa

def

= a(P (x)). As usual, smooth

vetor �elds X onM are identi�ed with the derivations of the algebra C

1

(M), hene they

are R{linear mappings of C

1

(M) satisfying the Leibniz rule, X(a

1

a

2

) = a

1

Xa

2

+ a

1

Xa

2

.

The Lie braket, [X

1

; X

2

℄ = X

1

ÆX

2

�X

2

ÆX

1

, turn the R{linear spae of vetor �elds into

the Lie algebra, V etM . For a given X, the inner derivation of the Lie algebra V etM is

de�ned,

adX : V etM �! V etM; (adX)Y = [X;Y ℄:

Every di�eomorphism P de�nes an inner automorphism AdP : V etM �! V etM ,

(AdP )X = P ÆX ÆP

�1

. It is easily seen that the di�erential of the inverse di�eomorphism

P

�1

, denoted by P

�1

�

, ats on vetor �elds aording to the formula (AdP )X = P

�1

�

X.

We also onsider nonstationary vetor �elds, i.e. measurable essentially bounded map-

pings, t 7! X

t

; t 2 R; X

t

2 V etM , and nonstationary ows, i.e. Lipshitz mappings

t 7! P

t

; t 2 R; P

t

2 Diff M . Every nonstationary vetor �eld de�nes the orresponding

di�erential equation _x = X

t

(x) on M with an arbitrary initial ondition, x(t

0

) = x

0

. If

a solution of the di�erential equation exists for arbitrary x

0

2 M; t 2 R, i.e. if the �eld

X

t

is omplete, then it uniquely de�nes for t 2 R an absolutely ontinuous solution of the

operator di�erential equation

dP

dt

= P

t

ÆX

t

; P

t

0

= id; (0:1)
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whih we all the ow on M , de�ned by the nonstationary omplete vetor �eld X

t

, and

denote

P

t

=

�!

exp

t

Z

t

0

X

�

d�:

We also all this ow the right hronologial exponential of X

�

. For stationary vetor �elds

X

�

� X, the orresponding ows are denoted by P

t

= e

tX

. In the sequel, all vetor �elds

are assumed to be omplete. This will not restrit the generality of our onsiderations.

The hronologial exponential admits an asymptotial expansion as a Volterra series,

�!

exp

t

Z

t

0

X

�

d� � id+

t

Z

t

0

X

�

d� + : : :+

t

Z

t

0

d�

1

�

1

Z

t

0

d�

2

: : :

Z

lim its

�

i�1

t

0

(X

�

i

Æ : : :ÆX

�

1

)d�

i

+ : : : :

For a stationary �eld, we obtain

e

(t�t

0

)X

� id+ (t� t

0

)X + : : :+

(t� t

0

)

i

i!

X

i

+ : : : :

In the sequel, we shall need the following important variation formula, whih represents the

hronologial exponential of the sum of two vetor �elds as a produt of two hronologial

exponentials,

�!

exp

t

Z

t

0

(X

�

+Y

�

)d� =

�!

exp

t

Z

t

0

X

�

d� Æ

�!

exp

t

Z

t

0

Ad

0

�

�!

exp

�

Z

t

X

�

d�

1

A

Y

�

d� =

�!

exp

t

Z

t

0

Ad

0

�

�!

exp

�

Z

t

0

X

�

d�

1

A

Y

�

d� Æ

�!

exp

t

Z

t

0

X

�

d�:

(0:2)

Di�erentiating the expression

Ad

0

�

�!

exp

�

Z

t

0

X

�

d�

1

A

Y =

�!

exp

�

Z

t

0

X

�

d� Æ Y Æ

0

�

�!

exp

�

Z

t

0

X

�

d�

1

A

�1

with respet to � , we obtain the equality

d

d�

Ad

0

�

�!

exp

�

Z

t

0

X

�

d�

1

A

Y = Ad

0

�

�!

exp

�

Z

t

0

X

�

d�

1

A

Æ adX

�

Y 8Y 2 V etM:

In other words, the expression Ad

 

�!

exp

�

R

t

0

X

�

d�

!

satis�es an equation, similar to (0.1),

where the �eld X

�

is substituted by the operator adX

�

. This remark should justify the

notation

Ad

0

�

�!

exp

�

Z

t

0

X

�

d�

1

A

=

�!

exp

�

Z

t

0

adX

�

d�; Ad

�

e

�X

�

= e

�adX

;

4



whih is also supported by the validity of the asymptoti expansions

�!

exp

t

Z

t

0

adX

�

d� � id+

t

Z

t

0

adX

�

d� + : : :+

t

Z

t

0

d�

1

t

1

Z

t

0

d�

2

: : :

�

i�1

Z

t

0

(adX

�

i

Æ : : : Æ adX

�

1

)d�

i

+ : : :

e

� adX

� id+ � adX + : : :+

�

i

i!

(adX)

i

+ : : : :

In this notation, the variation formula (0.2) takes the form

�!

exp

t

Z

t

0

(X

�

+Y

�

)d� =

�!

exp

t

Z

t

0

X

�

d� Æ

�!

exp

t

Z

t

0

0

�

�!

exp

�

Z

t

adX

�

d�

1

A

Y

�

d� =

�!

exp

t

Z

t

0

0

�

�!

exp

�

Z

t

0

adX

�

d�

1

A

Y

�

d� Æ

�!

exp

t

Z

t

0

X

�

d�:

(0:3)

We shall also need the Hamiltonian version of the variation formula. Let TM; T

�

M be

tangent and otangent bundles of M , with anonial projetions denoted by one letter, �.

Let � be the anonial 1{form on T

�

M , < �

�

; v >=< �; �

�

v > 8� 2 T

�

M; v 2 T

�

(T

�

M).

The 2{form � = d� is the anonial sympleti struture on T

�

M . Every smooth funtion

h, de�ned on an open region of T

�

M , de�nes a Hamiltonian vetor �eld

!

h on the region

by the formula

!

h � = �dh:

The orresponding di�erential equation

_

� =

!

h (�) is the Hamiltonian system assoiated to

the Hamiltonian H. The Poisson braket of two Hmiltonians is given by the relation

fh

1

; h

2

g

def

= �(

!

h

1

;

!

h

2

) =

!

h

1

h

2

:

If the funtions h

i

are linear on �bres of T

�

M , h

i

(�) =< �;X

i

>; X

i

2 V etM; i = 1; 2,

then

fh

1

; h

2

g(�) =< �; [X

1

; X

2

℄ > :

A measurable essentially bounded family of Hamiltonians h

t

; t 2 R, will be alled a non-

stationary Hamiltonian. The orresponding Hamiltonian ow

�!

exp

t

R

t

0

!

h

�

d� preserves the

sympleti struture and satis�es the relation

�

�t

�!

exp

t

Z

t

0

!

h

�

d�g =

�!

exp

t

Z

t

0

!

h

�

d�fh

t

; gg 8g:
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Finally, the variation formula for Hamiltonian ows ould be redued to the following

relations,

�!

exp

t

Z

t

0

(

!

h

�

+

!

g )d� =

�!

exp

t

Z

t

0

!

h

�

d� Æ

�!

exp

t

Z

t

0

(

��������!

�!

exp

�

Z

t

!

h

�

d�)g

�

d� =

�!

exp

t

Z

t

0

(

��������!

�!

exp

�

Z

t

0

!

h

�

d�)g

�

d� Æ

�!

exp

t

Z

t

0

!

h

�

d�

We introdue now some notions and formulate ertain fats of linear sympleti geometry

used in the sequel. For details f. [1,7,9℄.

Let � be a 2n{dimensional sympleti spae with the skew-symmetri form �(�; �), for

example, the otangent spae T

�

(T

�

M). For every subspae S � � put S

\

= f� 2

�

�

�

�

�(S; �) = 0g, hene dimS + dimS

\

= 2n. The subspae S is alled isotropi if

S

\

� S. An n{dimensional subspae � � � is alled Lagrangian if �

\

= �. The set

of all Lagrangian subspaes is organized into a smooth

n(n+1)

2

{dimensional manifold, the

Lagrangian Grassmannian, L(�) = f� � �

�

�

�

�

\

= �g.

The tangent spae T

�

L(�); � 2 L(�), is identi�ed in a natural way with the spae of

quadrati forms de�ned on the n{dimensional spae �. Indeed, let t 7! �

t

be a germ of

a smooth urve in L(�). We orrespond to the tangent vetor

d

dt

� the quadrati form

_

�

0

: �

0

7! �(�

0

;

d

dt

�

0

), where t 7! �

t

is a germ of a smooth urve in �; �

t

2 �

t

. It

is easy to show that

_

�

0

(�

0

) is orretly de�ned, i.e. it does depend on

d

dt

�

0

; �

0

, but is

independent on the hoie of the germs �

�

; �

�

.

The sympleti group Sp(�) is the group of linear transformations of � preserving �,

hene transforming Lagrangian subspaes into Lagrangian subspaes. Sp(�) ats on L(�)

transitively, thus L(�) is a homogeneous spae for the group Sp(�).

Let h be a quadrati form (quadrati Hamiltonian) on �, then e

t

!

h

2 Sp(�). Put

�

t

= e

t

!

h

(�

0

), then

_

�

0

= 2h

�

�

�

�

0

. A smooth urve in L(�), t 7! �

t

, is alled monotonially

nondereasing (noninreasing) if

_

�

t

� 0 (

_

�

t

� 0). The subset

M

�

0

=

n

� 2 L(�)

�

�

�

�

\

�

0

6= 0

o

� �

is alled the train of the Lagrangian subspae �

0

. M

�

0

is an algebrai hypersurfae in

L(�), smooth beyond some set of odimension 3 in �, hene M

�

0

is a pseudomanifold.

Moreover, the hypersurfae M

�

0

arries a natural oorientation, de�ned in suh a way

that the monotonially inreasing urves interset M

�

0

in the positive diretion, and

monotonially dereasing urves | in the negative diretion.

Thus for every ontinuous urve t 7! �(t); t 2 [t

0

; t

1

℄, suh that �(t

i

) =2 M

�

0

; i = 0; 1,

the intersetion number, �(�) � M

�

0

, is de�ned, and �(�) � M

�

0

� 0 (� 0), if the urve

�(�) is nondereasing (noninreasing).
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The urve is alled simple if there exists � 2 L(�) suh that �(t)

T

� = 0 8t 2 [t

0

; t

1

℄.

If the urve �(�) is simple, then �(�) � M

�

0

� n. Finally, if �(�) is losed, �(t

0

) = �(t

1

),

then the intersetion number �(�) � M

�

0

does not depend on �

0

and is denoted Ind�(�).

This is the Maslov index of the losed urve.

x1. L{derivatives of smooth mappings

We start with some de�nitions and onstrutions relevant to ritial points of smooth

mappings. The exposition is arried out for in�nite dimensional ase, suÆiently general

for handling variational and ontrol problems disussed further.

The di�erential of a salar{valued funtion on a Banah spae (evaluated at an arbitrary

point) is an element of the dual spae. In the �nite{dimensional situation we an make

no di�erene between the initial spae and its dual, but in the in�nite{dimensional ase

the dual might be less omprehensible than the initial spae. A standard example | the

spae L

1

[0; 1℄ of admissible ontrols in optimal ontrol problems, whih is very natural and

simplest possible to be onsidered in most situations, but its dual is pretty involved. Due

to the restritive nature of the funtionals involved in smooth ontrol problems, the �nal

results, if appropriately formulated, do not use the dual spae at all, though some um-

bersome analytial e�orts are needed for eliminating the dual spae in �nal formulations.

Meanwhile, a natural modi�ation of some basi de�nitions makes it possible to avoid

all arti�ial ompliations onneted with this phenomenon. The simple trik onsists in

onsidering the initial spae as a dual to some "aeptable" Banah spae, in our example,

onsidering from the beginning the spae of ontrols L

1

[0; 1℄ as the dual to L

1

[0; 1℄, and

appropriately de�ning (sti�ening) the notion of the di�erential of a smooth mapping on

suh a spae. Formally, we proeed in the following way.

Let B be a Banah spae, B

�

| its dual. We shall always suppose the natural (isometri)

inlusion B � B

��

.

A di�erentiable salar{valued funtion a on B

�

(a "nonlinear funtional") is said to be

of lass �{C

1

, or �{di�erentiable of lass C

1

, if it is of lass C

1

in the usual sense and

its di�erential d

x

a at an arbitrary point x 2 B, whih is an element of the seond dual,

d

x

a 2 B

��

, belongs in fat to B,

d

x

a 2 B(� B

��

) 8x 2 B

�

:

Equivalently, we an say that a is of lass �{C

1

if da is a ontinuous mapping from B

�

to

B,

da : B

�

�! B; x 7! d

x

a 2 B:

A salar{valued funtion a of lass �{C

1

is said to be of lass �{C

k

, if it is of lass C

k

(in

the usual sense), and for 8� 2 B

�

the salar valued funtion on B

�

,

< �; da >: B

�

�! R; x 7!< �; d

x

a >;

where < �; � > is the pairing between B

�

and B, is of lass �{C

k�1

(de�nition by indution).
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Finally, we say that a di�erentiable mapping of lass C

k

(in the usual sense), � :

B

�

1

�! B

�

2

, is of lass �{C

k

, if for every salar{valued funtion a of lass �{C

k

on B

�

2

, the

omposition

a Æ � : B

�

1

�

�! B

�

2

a

�! R

is of lass �{C

k

on B

�

1

. We shall also say that � is �{di�erentiable of lass C

k

. Evidently,

the omposition of two �{di�erentiable mappings of lass C

k

is again a �{di�erentiable

mapping of lass C

k

. The hain rule for di�erentiation implies that the mapping � is of

lass �{C

k

, if every omposition

� Æ � : B

�

1

�

�! B

�

2

�

�! R; x 7!< �;�(x) >; 8� 2 B

2

;

is a salar{valued funtion of lass �{C

k

on B

�

1

.

A Banah manifold, modeled on a spae B

�

, is said to be �{smooth of lass C

k

, or

of lass �{C

k

, if the mappings B

�

�! B

�

, indued by the overlapping neighborhoods of

orresponding atlases, are of lass �{C

k

. Between two suh manifolds, mappings of lass

�{C

k

are well de�ned in an obvious way. For a �xed k, all �{C

k

manifolds and all �{C

k

mappings between them form a ategory. Cotangent spaes in this ategory onsist, by

de�nition, of di�erentials of �{smooth salar valued funtions at orresponding points,

hene they are isomorphi to B, not to B

��

. Tangent spaes are isomorphi to B

�

.

Let U be a �{smooth manifold modeled on a Banah spae B

�

, f : U �! M be a

�{smooth mapping into an n{dimensional manifold M of appropriate lass. A pair

(u; �); u 2 U; � 2

�

T

�

f(u)

M

�

n f0g;

will be alled a Lagrangian point of f if �f

0

u

= 0; where �f

0

u

is the omposition of the

di�erential f

0

u

: T

u

U �! T

f(u)

M with the linear funtional � : T

f(u)

U �! R, i.e., is the

image of � under the adjoint f

0

�

u

,

�f

0

u

def

= � Æ f

0

u

= f

0

�

u

� : T

u

U �! R:

Thus for an arbitrary pair (u; �); u 2 U; � 2 T

�

f(u)

M , we have

�f

0

u

2 T

�

u

U � B;

and, if (u; �) is a Lagrangian point, �f

0

u

is the zero element of the �bre T

�

u

U . The �rst

omponent u of every Lagrangian point (u; �) of f is a ritial point of f , the seond

omponent � is a Lagrange multiplier assoiated with the ritial point u.

Consider the indued bundle f

�

(T

�

M) over U de�ned by the mapping f : U �! M

and the otangent bundle T

�

M ,

f

�

(T

�

M) =

n

(u; �)

�

�

�

u 2 U; � 2 T

�

f(u)

M

o

=

[

u2U

T

�

f(u)

M:

Besides the anonial projetion (u; �) 7! u, it de�nes anonially two additional mappings

f

0

�

: (u; �) 7! �f

0

u

; ' : (u; �) 7! �;

8



represented in the diagram

f

�

(T

�

M)

f

0

�

.

'

&

T

�

U T

�

M

:

Identifying U with the trivial setion of T

�

U; U � T

�

U , we an assert that the set of the

Lagrangian points of f is idential with the preimage of U under the mapping f

0

�

less

the trivial setion of f

�

(T

�

M). Furthermore, every tangent spae to T

�

U at an arbitrary

point of the trivial setion is anonially represented as a diret sum of its horizontal and

vertial subspaes,

T

u

T

�

U = T

u

U � T

�

u

U; 8u 2 U � T

�

U:

Denote by

V er

u

: T

u

T

�

U �! T

�

u

U; u 2 U � T

�

U;

the projetor onto the vertial subspae. Let (u; �) be a Lagrangian point of f . The linear

mapping

f

00

(u;�)

def

= V er

u

Æ (f

0

�

)

0

(u;�)

: T

(u;�)

f

�

(T

�

M)

(f

0

�

)

0

(u;�)

�! T

u

T

�

U

V er

u

�! T

�

u

U

ontains a omplete information about the seond order approximation of f at u.

Note that

ker '

0

(u;�)

� ker f

0

u

� T

u

U:

Thus f

00

(u;�)

�

�

�

ker '

0

(u;�)

is a well{de�ned mapping from ker f

0

u

to T

�

u

U . We all this mapping

the seond derivative of f at the Lagrangian point (u; �) and denote in the sequel by

D

2

(u;�)

f : ker f

0

u

�! T

�

u

U:

This de�nition needs some lari�ation. At the �rst site, the natural hoie for the seond

derivative is the mapping (f

0

�

)

0

(u;�)

de�ned at all points (u; �) 2 f

�

(T

�

M). But suh a

de�nition would be ompletely useless, sine, by virtue of the impliit funtion theorem, in

some neighborhood of every regular point, loal oordinates ould be introdued in whih

f is linear, hene it is senseless to onsider in suh points seond derivatives. Conerning

the horizontal omponent of the mapping (f

0

�

)

0

(u;�)

at a Lagrangian point, it is easy to see

that it oinides with the di�erential of the anonial projetion (u; �) 7! u and has no

onnetions with the di�erential properties of the mapping f .

De�ne, �nally,

L

(u;�)

(f) = '

0

(u;�)

(ker f

00

(u;�)

) � T

�

(T

�

M):

The hoie of arbitrary loal oordinates in U leads to the representation

T

(u;�)

f

�

(T

�

M) = T

�

(T

�

f(u)

M)� T

u

U = T

�

(T

�

f(u)

M)� B

�

:

If loal oordinates are introdued in M as well, then we obtain the representation

� = (p; f(u)); p 2 R

n�

; T

�

f(u)

M = R

n�

; T

(�;u)

f

�

(T

�

M) = R

n�

� B

�

:

9



The mappings '

0

u

and f

00

(u;�)

take the form

'

0

u

: (�; v) 7! (�; f

0

u

v); � 2 R

n�

; v 2 B

�

; f

00

(u;�)

: (�; v) 7! �f

0

u

+ pf

00

u

v; (1:1)

where pf

00

u

is the seond derivative at u of the �{smooth funtion pf : B

�

�! R. Thus the

linear mapping pf

00

u

: B

�

�! B is symmetri (selfadjoint). Denote

F =

n

�f

0

u

�

�

�

� 2 R

n�

o

; E =

n

pf

00

u

v

�

�

�

v 2 B

�

o

:

Note that F is the image of the tangent spae to the �bre of the bundle f

�

(T

�

M) under

the mapping f

00

(u;�)

. At the same time the subspae E depends on the hoie of the loal

oordinates in U . Denote

Æ

(u;�)

= dim(F \E)� dim(F \E):

The following Proposition shows that the number Æ

(u;�)

is independent on the oordinate

hoie.

Proposition 1.1. L

(u;�)

(f) is an isotropi subspae of dimension (n � Æ

(u;�)

f) in the

(2n{dimensional) tangent spae T

�

(T

�

M) to the otangent bundle T

�

M with the natural

sympleti struture.

Proof. First we proof the isotropy. The hoie of loal oordinates inM identi�es T

�

(T

�

M)

with R

n�

� R

n

, and the anonial sympleti form � takes the form

� ((�

1

; �

1

); (�

2

; �

2

)) = �

1

�

2

� �

2

�

1

; �

i

2 R

n�

; �

i

2 R

n

:

We must prove the impliation

(�

i

; �

i

) 2 L

�

(f) =) �

1

�

2

= �

2

�

1

:

We have �

i

= f

0

u

v

i

, where v

i

2 B

�

; �

i

f

0

u

+ pf

00

u

v

i

= 0. Hene

�

1

�

2

= �

1

f

0

u

v

2

= � < v

2

; pf

00

u

v

1

>;

and the identity to be proved follows from the symmetry of the operator pf

00

u

.

Now we turn to the dimension of L

(u;�)

(f). Formula (1.1) and the symmetry of pf

00

u

imply that

ker f

00

(u;�)

� oker f

0

u

�E \ F � E

?

; E

?

= ker pf

00

u

= ker f

00

(u;�)

\ B

�

:

Furthermore, ker f

0

u

= F

?

. Hene

L

(u;�)

(f) � oker f

0

u

� E \ F �E

?

=E

?

\ F

?

:
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Thus

DimL

(u;�)

(f) = orank f

0

u

+ dimF � Æ

(u;�)

f = orank f

0

u

+ rank f

0

u

� Æ

(u;�)

f:

If dimL

(u;�)

(f) = n, then L

(u;�)

(f) is a Lagrangian subspae in T

�

(T

�

M). In this ase

we all L

(u;�)

the Lagrangian derivative of f , or L{derivative, at the Lagrangian point

(u; �).

The L{derivative, i.e., the image im'

0

(u;�)

�

�

�

ker f

00

(u;�)

, ould be onsidered as a dual objet

to the seond derivative. Note that

ker D

2

(u;�)

f = ker '

0

(u;�)

\ ker f

00

(u;�)

:

In oordinates we obtain

D

2

(u;�)

f : v 7! pf

00

u

v; v 2 ker f

0

u

:

The following assertion is a result of diret alulations.

Lemma. The relations (1), (2) below are equivalent:

(1) ker D

2

(u;�)

f = 0

(2) imf

00

(u;�)

= T

�

u

U:

Suppose that D

2

(u;�)

f is injetive and U is �nite{dimensional. Then the impliit funtion

theorem implies that the germ at (u; �) of the set of Lagrangian points is a germ of a smooth

n{dimensional manifold. The restrition of ' on this germ is a Lagrange immersion into

T

�

M , and L

(u;�)

(f) is the tangent spae to the obtained germ of a Lagrange submanifold.

Finally, we all the Hessian of the mapping f at (u; �) the quadrati form

Hess

(u;�)

f : ker f

0

u

�! R; Hess

(u;�)

f(v) =< v;D

2

(u;�)

fv > :

Negative and positive indies of the quadrati formHess

(u;�)

f(v)*, (whih are nonnegative

integers or +1) are important harateristis of the Lagrangian point (u; �). In partiular,

for the optimization problems they give essential information about the on�guration of

the image of a small neighborhood of the point under f . We formulate here only the

simplest assertion of this kind. For deeper results in this respet and partiularities f.

[2,5,6℄.

Proposition 1.2. Let e be a nononstant germ of a smooth urve on M with the initial

point f(u). Assume that im  \ f(O

u

) = f(u) for a ertain representative  of the germ e

*The negative (positive) index of a quadrati form Q on a linear spae B; ind

�

Q; (ind

+

Q), is the

maximal dimension of subspaes in B where Q is negative (positive).
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and ertain neighborhood O

u

of u in U . Then there exists a Lagrangian point (u; �) suh

that

< �; _(0) >� 0 and ind

�

Hess

(u;�)

f < orank f

0

u

:

There is an intimate tie between the indies of the Hessian and the Lagrangian deriv-

ative. Certainly, the Lagrangian derivative at a �xed point ould not give any estimates

for the indies of the Hessian in that point, but it is possible to express the inrements of

the indies along a one{parametri family of Lagrangian points through the Maslov index

of the orresponding family of Lagrangian derivatives. Cf. [7℄ and x4 of this paper.

We emphasize that the isotropi subspae L

(u;�)

(f) is alled L{derivative only in ase

when its dimension is n, i.e. when it is a Lagrangian subspae. This is always the ase if

U is �nite{dimensional, but by far not always in in�nite{dimensional ase. It turns out

that if one of the indies of Hess

(u;�)

f is �nite then L

(u;�)

(f) ould always be extended

in a natural way to an n{dimensional Lagrangian subspae, whih should be alled the

L{derivative. Below we give a preise formulation of this result. In this paper the result

is not used, therefore the proof will be given in subsequent publiations.

Let (u; �) be a Lagrangian point of f and N be a germ of a submanifold in U at u,

hene (u; �) is a Lagrangian point of f

�

�

�

N

. If N is �nite{dimensional then L

(u;�)

(f

�

�

�

N

)

is a Lagrangian subspae. Denote by N the set of all suh germs partially ordered by

inlusion. Then

n

L

(u;�)

(f

�

�

�

N

)

o

N2N

is a generalized sequene of points of the Lagrangian

Grassmannian L(T

�

(T

�

M)).

Theorem. The limit N -limL

(u;�)

(f

�

�

�

N

) exists if one of the indies of Hess

(u;�)

f is �nite.

This limit is the preise de�nition of the L{derivative at the Lagrangian point (u; �). It

ontains the isotropi subspae L

(u;�)

(f). But it is not enough to prove the existene of

the limit, we must ompute it. Introduing loal oordinates, we an assume that U is a

Banah spae and u its origin. Let U

0

� U be an arbitrary linear subspae whih is dense

in U , and N

0

be the set of all �nite{dimensional subspaes N

0

� U

0

, partially ordered by

inlusion. Thus, N

0

� N . The following assertion is an essential addition to the Theorem,

making possible to expliitly ompute the limit indiated in the Theorem.

Proposition 1.3. Under the hypothesis of the Theorem the limit

N

0

-limL

(u;�)

(f

�

�

�

N

0

) = N -limL

(u;�)

(f

�

�

�

N

):

Remark. Aording to the de�nition of the L{derivative we have

T

�

(imf

0

u

)

?

� L

(u;�)

(f):

In partiular,

T

�

(R�) � L

(u;�)

(f):

12



Thus the subspae L

(u;�)

(f) ontains a one{dimensional subspae whih depends only on �

and not on f . This makes possible to make all our onstrutions in the 2(n�1){dimensional

sympleti spae T

�

(R�)

\

=T

�

(R�) and not in the 2n{dimensional spae T

�

(T

�

M), on-

sidering L

(u;�)

(f) as a ( (n� 1){dimensional ) Lagrangian subspae in T

�

(R�)

\

=T

�

(R�).

Certainly, the same redution ould be desribed in the language of ontat geometry, on-

sidering not T

�

M but its projetivization PT

�

M , whih possesses the natural struture

of a (2n � 1){dimensional ontat manifold. In a ertain sense the ontat formulation

is more natural, though we shall not use it here for the following reasons. Even onsid-

ering PT

�

M instead of T

�

M , we would be led to onsider homogeneous oordinates on

projetive spaes PT

�

q

M , thus onstantly returning to the same spae T

�

M .

The following assertion formulates the "hain rule" for L{derivatives. It easily follows

from the de�nitions and has many useful onsequenes.

Proposition 1.4. Suppose f

i

: U �! M

i

are �{smooth mappings, u 2 U; �

i

2

T

�

f

i

(u)

M

i

, i = 1; 2; 3. Suppose further that (u; (��

0

; �

1

)) is a Lagrangian point for the

mapping (f

0

; f

1

) : U �!M

0

�M

1

, (u; (��

1

; �

2

)) is a Lagrangian point for (f

1

; f

2

) : U �!

M

1

�M

2

, and

(��

1

; �

2

) 2 L

(u;(��

0

;�

1

))

(f

0

; f

1

) � T

��

0

(T

�

M

0

)� T

�

1

(T

�

M

1

);

(��

0

; �

1

) 2 L

(u;(��

1

;�

2

))

(f

1

; f

2

) � T

��

1

(T

�

M

1

)� T

�

2

(T

�

M

2

);

then (u; (��

2

; �

0

)) is a Lagrangian point of the mapping (f

2

; f

0

) : U �! M

2

�M

0

, and

(��

2

; �

0

) 2 L

(u;(��

2

;�

0

))

(f

2

; f

0

).

Suppose now that M

i

=M; i = 1; 2; 3; and that the projetions

�

(0;1)

i

: (��

0

; �

1

) 7! �

i

; (��

0

; �

1

) 2 L

(u;(��

0

;�

1

))

(f

0

; f

1

); i = 0; 1

�

(1;2)

j

: (��

1

; �

2

) 7! �

j

; (��

1

; �

2

) 2 L

(u;(��

1

;�

2

))

(f

1

; f

2

); j = 1; 2;

are invertible mappings of L

(u;(��

0

;�

1

))

on T

�

i

(T

�

M); i = 0; 1, and of L

(u;(��

1

;�

2

))

on

T

�

j

(T

�

M); j = 1; 2, respetively. Then, Proposition 1.3 implies that the mappings

�

(2;0)

k

: (��

2

; �

0

) 7! �

k

; (��

2

; �

0

) 2 L

(u;(��

2

;�

0

))

(f

2

; f

0

); k = 2; 0;

are also invertible.

Set

�

ij

= �

(i;j)

i

Æ (�

(i;j)

j

)

�1

; �

ji

= �

�1

ij

:

The property for the subspaes L

(u;(��

i

;�

j

))

(f

i

; f

j

) to be Lagrangian is equivalent to the

fat that the mappings �

ij

: T

�

j

(T

�

M) �! T

�

i

(T

�

M) are sympleti. Proposition 1.3

also implies the important omposition rule

�

20

= �

21

Æ �

10

:

We shall meet below onrete appliations of this rule to ontrol systems onsidering the

boundary{value mappings on admissible urves, f. x3.
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The projetions �

(0;1)

i

; i = 0; 1, are invertible only if f

0

and f

1

are submersions

at u. The sympleti mapping �

10

whih represents the 2n{dimensional L{derivative

of the mapping (f

0

; f

1

) represents also the n{dimensional L{derivative of the mapping

f

1

�

�

�

f

0

=onst

, the restrition of f

1

to the level of f

0

through u. Diret alulations imply

L

(u;�

1

)

(f

1

�

�

�

f

0

=onst

) = �

10

(T

�

0

(T

�

f

0

(u)

M)).

x2. Smooth ontrol systems and basi

strutures of Differential Geometry

1. De�nition of smooth ontrol systems. Suppose a smooth (loally trivial) �bre

bundle over a smooth n{dimensional manifold M is given,

pr : W �!M; (2:1)

with the typial �bre U , a smooth r{dimensional manifold. Furthermore, suppose an

arbitrary smooth �brewise mapping of W into the tangent bundle TM is de�ned over the

identity mapping of M ,

f :W �! TM; f(W

x

) � T

x

M 8x 2M ; W

x

= pr

�1

fxg: (2:2)

We all the data (1.1){(1.2) a smooth ontrol system, (2.1) (or W ) is alled the ontrol

spae of the system, the typial �bre U is alled the spae of ontrol parameters; M is the

state spae, the otangent bundle T

�

M is the phase spae of the system.

Morphisms between two ontrol systems f

i

: W

i

�! TM

i

; i = 1; 2, are, by de�nition,

arbitrary ommutative diagrams

W

1

f

1

�! TM

1

� # F

�

#

W

2

f

2

�! TM

2

;

(2:3)

where � is a smooth �brewise mapping of ontrol spaes, F : M

1

�! M

2

is a di�eomor-

phism. We denote the morphism (2.3) by (�; F

�

). If (�

0

; F

0

�

) is a seond morphism,

W

2

f

2

�! TM

2

�

0

# F

0

�

#

W

3

f

3

�! TM

3

;

then their omposition is de�ned, (�

0

Æ �; F

0

�

Æ F

�

), whih again is a morphism between

f

1

: W

1

�! TM

1

, and f

3

: W

3

�! TM

3

. The identity morphisms are de�ned in an

obvious way. Thus a ategory of smooth ontrol systems is introdued.

If � in (2.3) is a di�eomorphism and F

�

= id; (M

1

= M

2

), then the morphism (�; id)

is alled a feedbak transformation, and the orresponding ontrol systems are said to be

feedbak equivalent. Feedbak transformations are smooth �bre transformations of the

ontrol spae over the identity map. If W

1

= W

2

, then the feedbak transformations are

14



also alled guage transformations. Two feedbak equivalent ontrol systems are equivalent

in our ategory, hene the given de�nition of a ontrol system is "feedbak{invariant".

Aording to the usual "state{invariant" de�nition, a smooth ontrol system,

_x = f(x; u) 2 T

x

M; (x; u) 2M � U; (2:4)

is a family of smooth vetor �elds on the state manifoldM , indexed by a ontrol parameter

u 2 U . The ontrol spae is the diret produtW =M�U with the anonial trivialization,

pr : M � U �!M; (x; u) 7! x; (2:5)

and the mapping W �! TM is given by f . Evidently, this de�nition, though invariant

under oordinate transformations in M , is not feedbak{invariant.

A measurable essentially bounded urve in the ontrol spae,*

� : [0; t℄ �!W; (2:6)

is alled an admissible ontrol spae trajetory of the system (2.1){(2.2) if its projetion

on M ,

x = pr � : [0; t℄ �!M; (2:7)

is a Lipshitz urve in M satisfying for almost all � the di�erential equation

dx

d�

(�) = f Æ �(�); 0 � � � t: (2:8)

The urve x(�) is alled an admissible state spae trajetory. Admissible ontrol spae

trajetories will be also alled admissible ontrols.

The set of all measurable essentially bounded mappings w will be onsidered as a spae

with the following natural topology. Consider a metri �, ompatible with the topology of

W , and de�ne the "{neighborhood of a given ew by the relation

O("; ew) =

�

w

�

�

�

ess sup

0���t

�(w(�); ew(�)) = k �(w; ew) k

1

< "

�

:

Sine the losure of the image of ~w is ompat, the introdued topology is independent on

the hoie of the metri.

Denote by 


t

the spae of all admissible ontrols (2.6), (onsidered as a subspae of the

spae of all measurable essentially bounded urves [0; t℄ �!W ).

Proposition 2.1 The spae 


t

of all admissible ontrols an be given, in a natural way,

the struture of a �{smooth Banah manifold modeled on the diret produt

R

n

� (L

r

1

[0; t℄)

�

= R

n

� L

r

1

[0; t℄; n = dimM; r = dimU:

*A measurable mapping w : [0; t℄ �! W is said to be essentially bounded if the losure of the image

under w of a subset of [0; t℄ of full measure is ompat. For simpliity, we shall assume in the sequel that

the losure of the image of w is ompat.
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Proof. First we proof that the spae of essentially bounded mappings u : [0; t℄ �! U is, in

a natural way, a �{smooth Banah manifold modeled on L

r

1

[0; t℄.

For this we de�ne oordinate mappings of "{neighborhoods of an arbitrary element

eu : [0; t℄ �! U into L

r

1

[0; t℄, assuming that a Riemannian metri � is �xed on U .

Denote by Q the (ompat) losure of the image of eu and onsider a �nite over of Q

by "{balls B

"

(p

i

); i = 1; : : : ; s, entered at p

i

2 Q �

s

S

�=1

B

"

(p

�

) = B. Set " small enough

to seure the following two onditions.

(1) The exponential mapping,

exp : TU �! U � U;

is invertible on

S

p2Q

(p;B

"

(p)) � Q�B,

exp

�1

:

[

p2Q

(p;B

"

(p)) �!

[

p2Q

T

p

U:

(2) The tangent subbundles TB

"

(p

i

) � TU; i = 1; : : : ; s; are trivial, with trivializa-

tions

�

i

: TB

"

(p

i

) �! R

r

:

Introdue the (measurable) mapping

� : TB �! R

r

; �(z) = �

i

(z); i = min

�

n

�

�

�

�

z 2 TB; pr(z) 2 B

"

(p

�

)

o

:

For every measurable urve u(�); 0 � � � t, in the "{neighborhood of eu, u(�) 2 B

"

(eu(�))

0 � � � t, we an de�ne a measurable urve v(�); 0 � � � t, in R

r

aording to the

orrespondene

u(�) 7! � Æ exp

�1

(eu(�); u(�)) = v(�) 2 R

r

;

whih is an injetion and satis�es the relation

ess sup

0���t

jv(�)j = k v k

1

� Æ(")! 0 ("! 0):

Conversely, every measurable urve v(�); 0 � � � t, in R

r

, satisfying the relation k v k

1

�

Æ; with Æ suÆiently small, ould be obtained in this way. Indeed, denote the restrition

of � to T

p

B; p 2 Q, by �

p

. Then

u(�) = exp Æ �

�1

eu(�)

v(�) = (� Æ exp

�1

)

�1

v(�) 2 B

"

(eu(�)):

From here the assertion is easily dedued. We now turn to the proof of the Proposition.

We shall show that there is a natural one{to{one orrespondene between admissible

ontrols, suÆiently lose to a given admissible ontrol

e

�, and arbitrary pairs (x(0); u),

where x(0) is suÆiently lose to the initial ondition ex(0) = pr

e

�(0) and u : [0; t℄ �! U

16



is suÆiently lose (in the ess sup topology) to the mapping eu : [0; t℄ �! U orresponding

to

e

�.

To de�ne the orrespondene onsider the projetion

ex(�) = pr

e

�(�); � 2 [0; t℄;

and take a "tubular" "{neighborhood of ex,

T : [0; t℄�B

"

�!M; T (�; 0) = ex(�); � 2 [0; t℄; (2:9)

where B

"

� R

n

is an "{ball entered at the origin, T is a di�eomorphism for every �xed

� , Lipshitz in � ,

T (�; �) = T

�

: B

"

�!M ; x = T

�

(q); q = T

�1

�

(x); q 2 B

"

; x 2 T

�

(B

"

):

Sine [0; t℄�B

"

is ontratible, the indued bundle T

�

(W ) is trivial,

T

�

(W ) =

[

(�;q)

�

(�; q);W

T (�;q)

�

� ([0; t℄�B

"

)� U; (�; q) 2 [0; t℄� B

"

:

Every trivialization

# : ([0; t℄� B

"

)� U �! T

�

(W )

generates a ontinuous family of di�eomorphisms

#(�; q) : U �!W

T (�;q)

; � 2 [0; t℄; q 2 B

"

; u 2 U;

smooth in q and Lipshitz in � . Introdue the mapping

(�; x; u) 7! f

�

(x; u)

def

= f Æ #(�; T

�1

�

(x))(u); � 2 [0; t℄; x 2 T

�

B; u 2 U;

whih is smooth in x; u and Lipshitz in � .

Every admissible state spae trajetory x(�) = pr �(�); 0 � � � t, in the tubular

neighborhood (2.9) of ex, x(�) 2 T (�; B

"

), is a solution of the equation

dx

d�

= f

�

(x; u(�)); 0 � � � t; (2:10)

where u(�) is uniquely de�ned on [0; t℄, (up to a set of measure zero), by the relation

u(�) = #

�1

(�; T

�1

�

(x(�)))(�(�)); 0 � � � t: (2:11)

For any preassigned Æ > 0, all suÆiently small " > 0, and all admissible ontrols �,

suÆiently lose (in the ess sup topology) to

e

�, the inequality k �(u; eu) k

1

< Æ holds,

where eu orresponds to

e

� aording to (2.11). Conversely, for every u(�), satisfying the

last inequality for a suÆiently small Æ, there exists a solution x(�); 0 � � � t, of the

equation (2.10) with the initial ondition jx(0)� ex(0)j < Æ. This solution is an admissible

17



state spae trajetory orresponding to the admissible ontrol spae trajetory �, obtained

by inverting the relation (2.11),

�(�) = #(�; T

�1

�

(x(�)))(u(�)); 0 � � � t:

� is arbitrarily lose to

e

� for suÆiently small Æ > 0. Thus, every pair

(x(0); u); u : [0; t℄ �! U; k �(u; eu) k

1

< Æ; jx(0)� ex(0)j < Æ;

uniquely de�nes, for suÆiently small Æ, an admissible ontrol in a ertain neighborhood

of

e

�, and all suh ontrols ould be obtained in this way. This proves the Proposition.

De�nition of smooth ontrol systems introdued here is general enough to inlude as

speial ases basi di�erential{geometri strutures. Below we give several examples.

An extensive and important lass of ontrol systems is de�ned by (loally trivial) smooth

subbundles of the tangent bundle TM , onsidered as ontrol spaesW , and the orrespond-

ing inlusion maps

f :W � TM:

Many standard geometri strutures are redued to suh systems, the struture type de-

pending on the hoie of the typial �bre U of the ontrol spae whih, in this ase, is a

submanifold of R

n

,

U � R

n

; n = dimM:

(1) U is an ellipsoid with enter at the origin. We obtain the Riemannian geometry.

Admissible trajetories in the state spae are arbitrary Lipshitz urves x(t) of

length t, parametrized by the ar length.

(2) U is a strongly onvex body in R

n

, symmetri with respet to the origin. This is

the ase of the Finsler geometry.

(3) U is a hyperboloid, symmetri with respet to the origin | the ase of pseudo{

Riemannian geometry.

(4) U is a linear subspae in R

n

of an arbitrary dimension. We ome to the theory

of distributions (in the di�erential{geometri sense). Admissible urves are the

integral urves of the distribution.

(5) U is the intersetion of an ellipsoid entered at the origin with a linear subspae.

We obtain the sub{Riemannian geometry.

(6) The "aÆne" versions (i.e. translates with respet to the origin) of the strutures

(1){(5). Though not very popular in geometry, they are of utmost importane in

appliations to Mehanis and Mathematial Physis.

Examples (1){(6) ould be generalized in the following way. Suppose the ontrol spae

(2.1) is a (loally trivial) subbundle of an arbitrary vetor bundle over M , E �!M , with

the typial �bre oiniding with one of the above mentioned types (1){(6), and f in (2.2)

is the restrition on W of a ertain �brewise mapping E �! TM , linear on �bres; in

the examples onsidered f was an embedding. These broader lasses of systems inlude

"singular" versions of geometri strutures (1){(6) with degenerations at ertain points.
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2. The boundary{value mapping. The mapping

F

�

: 


t

�!M; F

�

(�) = pr Æ �(�);

whih evaluates the admissible state{spae trajetory x = pr Æ � at the moment � , is a

�{smooth submersion for 8� 2 [0; t℄. At the same time, the boundary{value mapping

(F

0

; F

t

) : 


t

�!M �M; (F

0

; F

t

)(�) = (F

0

(�); F

t

(�))

is, in general, not a submersion. Critial points of boundary{value mappings are alled

extremal ontrols of the ontrol system.

Denote by 


t

x

0

the set of admissible ontrols � 2 


t

subjet to the ondition x(0) =

prÆ�(0) = x

0

. In other words, 


t

x

0

is the level set over the point x

0

2M of the submersion

F

0

. Evidently, 


t

x

0

is a �{smooth Banah manifold modeled on L

r

1

[0; t℄.

We introdue the endpoint mapping

F

0t

= F

t

�

�

�




t

x

0

: 


t

x

0

�!M:

Critial points of F

0t

are exatly the extremal ontrols in 


t

x

0

.

Let � be the natural sympleti form on T

�

M and put

H(�; z) = �f(z)

def

= � Æ f(z); z 2 W; � 2 T

�

pr(z)

M:

H is a smooth funtion on the diret produt of the �bred manifolds W; T

�

M over M .

We all it the Hamiltonian of the ontrol system (2.1){(2.2).

Proposition 2.2. The triple

(�; (��

0

; �

t

)); � 2 


t

; �

0

2 T

�

pr �(0)

M; �

t

2 T

�

pr �(t)

M

is a Lagrangian point of the boundary value mapping (F

0

; F

t

) i� there exists a Lipshitz

urve

� 7! �

�

2 T

�

pr �(�)

M; � 2 [0; t℄;

satisfying the ondition

j

�

2

�

d�

�

d�

�

�

= �dH;

where j

1

; j

2

are the natural projetions,

W � T

�

M

M

j

1

.

j

2

&

W T

�

M:
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Proof. If the urve � 7! �

�

exists then it is unique (for a given Lagrangian point). Indeed,

aording to Proposition 2.1, (see (2.10)), for an appropriate trivialization of W along the

trajetory pr � the admissible ontrol � is represented as � 7! (eu(�); ex(�)) 2 U �M; and

the ontrols lose to � are exatly the solutions of the equation

dx

d�

= f

�

(x; u(�)); 0 � � � t; u 2 U; x 2M;

lose to (eu(�); ex(�)).

The Lipshitz urve � 7! �

�

2 T

�

ex(�)

M satis�es the assumptions of the Proposition 2.2

if and only if it satis�es the equations

d�

�

d�

=

!

H

�

(�

�

; eu(�)); (2:12)

�H

�

�u

(�

�

; eu(�)) = 0; (2:13)

where � 7!

!

H

�

(�; u) is the Hamiltonian vetor �eld on T

�

M orresponding to the Hamil-

tonian

� 7! �f

�

(x; u) = H

�

(�; u); � 2 T

�

x

M; x 2M:

To prove the Proposition, we shall ompute expliitly the di�erential of the mapping F

t

,

using the variation formula, f. Introdution. We have

F

t

(x

0

; u(�)) =x

0

�!

exp

Z

t

0

f

�

(�; u(�))d� =

x

0

�!

exp

Z

t

0

e

f

�

d� Æ

�!

exp

Z

t

0

�!

exp

Z

�

t

ad

e

f

�

d�(f

�

(�; u(�))�

e

f

�

)d�;

where

e

f

�

(x) = f

�

(x; eu(�)). Thus,

�F

0

t

�

�

�

eu

(Æu; Æx

0

) =

Z

t

0

�

�!

exp

Z

�

t

ad

e

f

�

d�

�f

�

�u

�

�

�

eu(�)

Æu(�)d� + �(

�!

exp

Z

t

0

e

f

�

d�)

�

Æx

0

=

Z

t

0

�!

exp

Z

�

t

!

e

H

�

d�

�H

�

�u

(�; eu(�))Æu(�)d� + �(

�!

exp

Z

t

0

e

f

�

d�)

�

Æx

0

;

where

e

H

�

(�) = H

�

(�; eu(�)). Hene,

�

t

F

0

t

�

�

�

eu

(Æu; Æx

0

) =

Z

t

0

�H

�

�u

(�

�

; eu(�))Æu(�)d� + �

0

Æx

0

;

where � 7! �

�

satis�es (2.12). The equality �

t

F

0

t

�

�

�

~u

� �

0

= 0 implies (2.13).

The urves � 7! (�(�); �

�

) in Proposition 2.2 will be alled extremals.
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x3. L{Derivatives of Endpoint Mappings. Regular Extremals

We preserve the notations of the previous setion. Put

g

�

(�; u) = �(

�!

exp

�

Z

t

ad

e

f

�

d�(f

�

(�; u)�

e

f

�

)):

All Lagrangian points (�

0

; �

0

t

) of the mapping F

0t

, suÆiently lose to (�; �

t

), are hara-

terized by the ondition: there exists a Lipshitz urve � 7! �

0

�

2 T

�

x

0

(�)

M suh that

_

�

0

�

=

!

g

�

(�

0

�

; u

0

(�));

�

�u

g

�

((�

0

�

; u

0

(�)) = 0; (3:1)

where �

0

(�) = (x

0

(�); u

0

(�)); x

0

(0) = ex(t). Note also, that g

�

�

�

�

u=eu(�)

� 0.

Linearising (3.1), we obtain

Proposition 3.1. The relations

�

t

2 L

(�;�

t

)

(F

0t

) � T

�

t

(T

�

M)

are equivalent to the relations:

there exist urves � 7! �

�

2 T

�

t

(T

�

M); � 7! v(�) 2 T

eu(�)

U suh that

_�

�

=

�

�u

!

g

�

v(�);

�

2

g

�

�u

2

(v(�); �) = � < d

�

�

(

�g

�

�u

�

�

�

eu(�)

�); �

�

>;

�

0

2 T

�

t

(T

�

ex(t)

M); 0 � � � t:

The last two equations an be written in a more symmetri form as

_�

�

=

�

!

g

�

�u

v(�);

�

2

g

�

�u

2

(v(�); �) = �(

�

!

g

�

�u

�; �

�

) (3:2)

In x1, from general onsiderations, we derived that L

(�;�

�

)

(F

0t

) is an isotropi spae. This

follows easily also from (3.2). Indeed,

�(�

1

t

; �

2

t

) =

t

Z

0

d

d�

�(�

1

�

; �

2

�

)d� ;

d

d�

�(�

1

�

; �

2

�

) = �(

�

!

g

�

�u

v

1

(�); �

2

�

) + �(�

1

�

;

�

!

g

�

�u

v

2

(�)) =

�

2

g

�

�u

2

(v

2

(�); v

1

(�))�

�

2

g

�

�u

2

(v

1

(�); v

2

(�)) = 0:

We use further the following notation:

�

2

g

�

�u

2

(�; �) denotes a symmetri bilinear form on

T

eu(�)

U ; the orresponding quadrati form is denoted by

�

2

g

�

�u

2

(�). Furthermore,
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�

2

g

�

�u

2

: T

eu(�)

U �! T

�

~u(�)

U is a selfadjoint linear mapping. If it is nondegenerate, then

the mapping

�

�

2

g

�

�u

2

�

�1

: T

�

eu(�)

U �! T

eu(�)

U is de�ned and is also selfadjoint. The orre-

sponding quadrati form on T

�

eu(�)

U is denoted by

�

�

2

g

�

�u

2

�

�1

(�). Observe also that the

expression

�

k

g

�

�u

k

�

�

�

�

�

=

�

k

�u

k

�

�

f

�

; k = 1; 2; : : : (3:3)

is the k{th derivative of the funtion �f , restrited on the �bre W

ex(�)

of the bundle W .

The �rst derivative has an invariant meaning, independent on the loal trivialization of W

and on the hoie of oordinates in the typial �bre. The �rst derivative vanishes along

the extremals, hene at these points the seond derivative has an invariant meaning, whih

is the Hessian of the funtion u 7! �

�

f

�

(ex(�); u) at the point eu(�).

An extremal � 7! (�(�); �

�

) is alled regular if the quadrati form

�

2

�u

2

�

�

f

�

�

�

�

eu(�)

is

nondegenerate at every � 2 [0; t℄. The following proposition is an evident onsequene of

the relations (3.2).

Proposition 3.2. Assume � 7! (�(�); �

�

) is a regular extremal. Then the relation �

t

2

L

(�;�

t

)

(F

t

) is equivalent to the requirement that the solution �

�

; 0 � � � t, of the linear

Hamiltonian system on T

�

t

(T

�

M) with the nonstationary quadrati Hamiltonian

q

�

(�) = �

1

2

�

�

2

g

�

�u

2

�

�1

 

�(

�

!

g

�

�u

�; �)

!

; � 2 T

�

t

(T

�

M);

and the "end{ondition", �

t

satis�es the "initial ondition" �

0

2 T

�

t

(T

�

ex(t)

M).

Corollary. If the Lagrangian point (�; �

t

) de�nes a regular extremal, then L

(�;�

t

)

(F

0t

) is

a Lagrangian subspae, hene an L{derivative of the mapping F

0t

at (�; �

t

).

In the sequel only regular extremals will be onsidered.

Put

D =

�

(w; �) 2W�

M

(T

�

M)

�

�

�

�

�u

(�f)

�

�

�

w

= 0;

�

2

�u

2

(�f)

�

�

�

w

is invertible.

�

Proposition 3.3

(1) All regular extremals are ontained in D.

(2) D is a smooth submanifold of dimension 2n.

(3) Through every point of D passes a unique ontinuous regular extremal.

Proof.

(1) is evident.

(2) follows from impliit funtion theorem.

(3) follows from impliit funtion theorem and the relations (2.12), (2.13).
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The mapping ' : (w; �) 7! �; (w; �) 2 D; is loally one{to{one, and its image, D

r

, (pos-

sibly empty), is open in T

�

M . For many important problems, whih inlude all examples

of x2, this mapping is globally one{to{one, hene is a di�eomorphism. In this ase the

smooth funtion is de�ned,

h(�) = �f('

�1

(�)); � 2 D

r

;

whih will be alled the master{Hamiltonian of the orresponding ontrol system. Evi-

dently, the restritions of h to �bres D

T

T

�

x

M are positively homogeneous funtions of

degree one. If the master{Hamiltonian exists, then the regular extremals are exatly the

urves � 7! ('

�1

(�

�

); �

�

), where �

�

is an arbitrary trajetory of the Hamiltonian system

_

� =

!

h(�); � 2 D

r

:

All regular extremals are smooth.

We now desribe the domains D

r

and the master{Hamiltonians for ontrol systems (1)

| (6) enumerated in x2. The orresponding omputations are straightforward. For Rie-

mannian geometry we have D

r

= T

�

M nM , and the restrition of the master{Hamiltonian,

h

�

�

�

T

�

x

M

is the square root of a positive quadrati form on T

�

x

M . For the Finsler struture, D

r

again oinides with T

�

M nM , and h

�

�

�

T

�

x

M

is the support funtion to the unit Finsler ball

in T

x

M , hene, is onvex. For pseudo{Riemannian geometry of a given signature, h

�

�

�

T

�

x

M

is the square root of a quadrati form of the same signature, D

r

T

T

�

x

M is the positive

one of the quadrati form. For a distribution, D

r

= ;. Finally, in ase of sub{Riemannian

geometry we have D

r

T

T

�

x

M = T

�

x

M n (spanW

x

)

?

, the master{Hamiltonian h

�

�

�

T

�

x

M

is the

square root of a nonnegative quadrati form, with kernel equal to (spanW

x

)

?

. For the

"aÆne versions" of the onsidered strutures the domains D

r

remain unhanged, and to

the Hamiltonians salar funtions are added, whih are linear on �bres.

Returning to the L{derivative, we note that, for regular extremals, the projetion of the

Lagrangian subspae

L

(�;(��

0

;�

t

))

(F

0

; F

t

) � T

�

0

(T

�

M)� T

�

t

(T

�

M)

onto the fators in the right{hand side is one{to{one. Thus we are in a situation disussed

at the end of x1. Hene the sympleti mappings are de�ned, �

t

1

t

0

: T

�

0

(T

�

M) �!

T

�

t

(T

�

M), satisfying the onditions

�

t

2

t

0

= �

t

2

t

1

Æ �

t

1

t

0

; L

(�;�

t

)

(F

0t

) = �

t0

(T

�

0

(T

�

q

0

M)):

It is easily seen that �

t

1

t

0

=

�

e

(t

1

�t

0

)

!

h

�

�

, where h is the master{Hamiltonian.
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x4. Jaobi Curves

For an arbitrary � 2 T

�

M onsider the hyperplane (R�)

\

in the sympleti spae

T

�

(T

�

M)y and onsider the fator spae �

�

= T

�

(T

�

M)=(R�)

\

; whih is a sympleti

spae of dimension 2(n� 1). Let L(�

�

) be the orresponding Lagrangian Grassmannian,

the manifold of the Lagrangian subspaes in �

�

. At the same time L(�

�

) is the manifold

of Lagrangian subspaes in T

�

(T

�

M) ontaining �.

Let � 7! (

e

�(�); �

�

) be a regular extremal, ex(�) = pr

e

�(�); 0 � � � t. Denote by

F

�;t

: 


t��

ex(�)

�!M the end{point mapping, de�ned on admissible state spae trajetories,

starting at ex(�). For every � 2 [0; t℄ the L{derivative L

(�;�

t

)

(F

�;t

) 2 L(�

�

t

) is de�ned.

Consider the urve

J

(�;�)

: � 7! L

(�;�

t

)

(F

�;t

)

in the Lagrangian Grassmannian L(�

�

t

), whih will be alled the Jaobi urve assoiated

with the regular extremal � 7! (�(�); �

�

).

Note that the line R�

t

belongs to the kernel of the quadrati forms q

�

from Proposition

3.2. Hene the Hamiltonians q

�

are orretly de�ned on �

�

t

. Every linear Hamiltonian

�eld on �

�

t

de�nes a vetor �eld on L(�

�

t

) whih we also all Hamiltonian. From the

Proposition 3.2 and the variation formula for Hamiltonian systems, f. Introdution, it

follows that J

(�;�)

is a trajetory of the Hamiltonian system on L(�

�

t

), de�ned by the

Hamiltonian �(

�!

exp

t

R

�

!

q

0

d�)q

�

. Furthermore, the relations at the end of x3 imply

J

(�;�)

(�) =

�

e

(t�t

1

)

!

h

�

�

J

(�;�

�

)j

[t

0

;t

1

℄

(�); 0 � t

0

� � � t

1

� t: (4:1)

The Jaobi urve belongs to the Lagrangian Grassmannian, whih is a homogeneous spae

for the sympleti group. We shall onsider two urves in a Lagrangian Grassmannian to be

equivalent if one is transformed into the other by a sympleti transformation. From (4.1)

the following basi assertion follows: the germ of the Jaobi urve J

(�;�)

at � is de�ned, (up

to the equivalene), by the germ at � of the extremal (�; �

�

). To fully appreiate this fat,

we should emphasize that the Jaobi urve is a urve in a speial remarkable homogeneous

spae of the sympleti group, whereas the extremal belongs to a smooth manifold with a

ompletely inomprehensible group of transformations.

We remind that the tangent vetors to the Lagrangian Grassmannian at the point

� 2 L(�) are quadrati forms on � � �. Desending from germs of urves to 1{jets, we

obtain

Proposition 4.1.

d

d�

J

(�;�)

(�) is a quadrati form of rank dimU and signature

sgn

�

2

�u

2

�

�

f

�

�

�

�

e

�(�)

.

Before investigating the germs of Jaobi urves, we remind an important result, re-

lated to the urve as a whole, namely, to the indies of the Hessian of the end{point

yWe identify � with the orresponding tangent vetor to the linear spae T

�

�(�)

M .
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mapping. First of all, the negative (positive) index of Hess

(�;�

t

)

F

t

is �nite if and only if

�

2

�u

2

�

�

f

�

�

�

�

e

�(�)

> 0 (< 0), i.e. when the Jaobi urve J

(�;�)

is monotonially nondereasing

(noninreasing). Suppose the �niteness ondition is satis�ed, and let J

(�;�)

be the losed

urve in L(�

�

), obtained by adding to J

(�;�)

of an arbitrary nondereasing (noninreasing)

simple urve onneting J

(�;�)

(t) with J

(�;�)

(0).y Then,

�ind

�

Hess

(�;�

t

)

F � rank F

0

0t

�

�

�

= Ind J

(�;�)

; (4:2)

where dimU � rank F

0

0t

�

�

�

�

� n� 1. Here, Ind is the Maslov index of a losed urve on a

Lagrangian Grassmannian, f. Introdution. Details and proofs ould be found in [1,4℄.

Now we turn to the geometry of germs of a urve on the Lagrangian Grassmannian

L(�) of a given 2(n� 1){dimensional sympleti spae �.

Lemma. Take an arbitrary �

0

2 L(�). The set

�

t

0

=

n

� 2 L(�)

�

�

�

�

0

\

� = 0

o

an be given invariantly the struture of an aÆne spae over the vetor spae of linear

selfadjoint mappings of �

�

0

into �

0

.

Proof. First, we remark that the set of all (n� 1){dimensional subspaes in �, transversal

to �

0

, has the struture of an aÆne spae over the spae of all linear mappings from

�=�

0

into �

0

, and this aÆne struture does not depend on the sympleti struture in

�. Indeed, if � = �

0

� �, then the subspae � intersets every oset (z + �

0

) 2 �=�

0

exatly at one point. De�ne the mapping (�

1

� �

0

) : �=�

0

�! �

0

by the formula

(�

1

��

0

)(z + �

0

) = �

1

T

(z + �

0

)��

0

T

(z + �

0

). It is easy to see that the introdued

operation of di�erene of two subspaes de�nes the desired aÆne struture. Furthermore,

the sympleti struture on � de�nes a nondegenerate pairing between �

0

and �=�

0

, hene

we an identify �=�

0

with �

�

0

. Sine the subspaes �

0

;�

1

2 �

t

0

are Lagrangian, their

di�erene, (�

1

� �

0

) : �

�

0

�! �

0

is selfadjoint. By ounting dimensions it is easily seen

that every selfadjoint mapping from �

�

0

into �

0

is realized as suh a di�erene.

Let � 7! �(�); � 2 [0; t℄, be a smooth urve in L(�). We all the urve �(�) regular

if

_

�(�) is a nondegenerate quadrati form on �(�) for every � . In this artile we restrit

to onsidering only regular urves, postponing more general ases, (highly important and

informative), to further publiations. The Jaobi urve of a regular extremal is a regular

urve if and only if dimU = n� 1, f. Proposition 4.1.

Let �(�) be a regular urve, and onsider its germ at an arbitrary point t. We have

�(�) 2 �(t)

t

for all � 6= t, suÆiently lose to t. More preisely, � 7! �(�) de�nes the

germ of the urve in the aÆne spae �(t)

t

with a simple pole at t. We shall give a

oordinate representation of this fat.

Let � =

n

(p; q)

�

�

�

p; q 2 R

(n�1)

o

, and the sympleti form has the anonial expression

�((p

1

; q

1

); (p

2

; q

2

)) =< p

1

; q

2

> � < p

2

; q

1

>. Without restriting generality, we an

yA urve in a Lagrangian Grassmannian is a family of Lagrangian subspaes of a sympleti spae. The

urve is said to be simple if there exists a Lagrangian subspae, transversal to all subspaes of the family.
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assume that �(t) =

n

(p; 0)

�

�

�

p 2 R

(n�1)

o

. Then for every � lose to t, �(�) is represented as

�(�) =

n

(p; S

�

p)

�

�

�

p 2 R

(n�1)

o

, where S

�

is a smooth family of symmetri (n�1)�(n�1){

matries, S

t

= 0. The regularity of the urve �(�) means that det

_

S

�

6= 0. Every � 2 �

t

0

has the form � =

n

(A

�

q; q)

�

�

�

q 2 R

(n�1)

o

, where A

�

is a (n � 1) � (n � 1) symmetri

matrix, and the mapping � 7! A

�

from �

t

t

onto the spae of symmetri matries de�nes

oordinates on �

t

t

, ompatible with the invariant aÆne struture. In these oordinates the

urve � 7! �(�) 2 �

t

t

has the expression

� 7! S

�1

�

=

1

� � t

_

S

�1

t

�

1

2

_

S

�1

t

�

S

t

_

S

�1

t

�

(� � t)

3

�

((2

_

S

t

)

�1

�

S

t

)

.

� ((2

_

S

t

)

�1

�

S

t

)

2

�

_

S

�1

t

+O((��t)

2

):

(4:3)

To write down the Laurent series of the urve in the aÆne spae we have to use some

oordinates, but the oeÆients of the series have a lear invariant meaning. Indeed,

translation of the aÆne spae by a vetor of the orresponding linear spae leaves all

oeÆients of the series unhanged, with the exeption of the free term, to whih the

translating vetor is added. Thus, all oeÆients of the Laurent series, exept the free

term, are elements of the linear spae, and the free term is an element of the aÆne spae.

For a regular urve �(�) in L(�) we obtain

�(�) �

1

� � t

�

�1

(t) + �

0

(t) +

1

X

i=1

(� � t)

i

�

i

(t);

where �

0

(t) 2 �(t)

t

, and �

�1

(t);�

1

(t);�

2

(t); : : : are selfadjoint linear mappings from

�

�

(t) into �(t). Note that �

�1

(t) =

�

_

�(t)

�

�1

. Put

R(t) = �3�

1

(t) Æ (�

�1

(t))

�1

= �3�

1

(t) Æ

_

�(t):

Then, R(t) : �(t) �! �(t) is a linear operator, symmetri with respet to the (pseudo){

Eulidean struture on �(t), de�ned by the quadrati form

_

�(t). Aording to (4.3), the

operator R(t) is expressed in oordinates as the Shwarz derivative

R(t) =

�

(2

_

S

t

)

�1

�

S

t

�

.

�

�

(2

_

S

t

)

�1

�

S

t

�

2

(4:4)

The urve in L(�), t 7! �

0

(t), is alled the derivative urve of �(�). The operator

R(t) : �(t) �! �(t) is alled the urvature operator of the urve �(�) at the point t.

Straightforward alulations in oordinates show that the derivative urve of a regular

urve is smooth, though not neessarily regular. We have � = �(t)� �

0

(t). Hene

�

0

(t)

�

=

�=�(t) = �(t)

�

; �(t)

�

=

�=�

0

(t) = �

0

(t)

�

:

Hene,

_

�(t) also is a linear mapping from �(t) into �

0

(t), and

_

�

0

(t) is a linear mapping

from �

0

(t) into �(t). Their alulation in oordinates leads us to the following important

identity

R(t) = �

_

�

0

(t) Æ

_

�(t); (4:5)
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whih ould be onsidered as another equivalent de�nition of the urvature operator. Sine

_

�(t) is nondegenerate, we have

_

�

0

(t) = 0 () R(t) = 0: We shall all a regular urve

at if it satis�es one of the equivalent onditions,

_

�

0

(t) � 0 () R(t) � 0. If R(t) �

{ id; { 2 R, then the urve �(�) is said to have a onstant urvature {.

Proposition 4.2. Germs of two regular urves of onstant urvature { are equivalent i�

the signatures of their veloities are equal.

A regular urve is at i� its Laurent series in the powers of (�� t) has no positive power

terms for every t.

Proof. Introdue in � oordinates in whih the sympleti struture has anonial form

and

� =

n

(p; q)

�

�

�

p; q 2 R

n�1

o

; �(t) =

n

(p; 0)

�

�

�

p 2 R

n�1

o

; �

0

(t) =

n

(0; q)

�

�

�

q 2 R

n�1

o

:

Then, �(�) =

n

(p; S

�

p)

�

�

�

p 2 R

n�1

o

, where S(t) =

�

S(t) = 0. If �(�) is a urve of onstant

urvature {, then

�

(2

_

S

�

)

�1

�

S

�

�

.

=

�

(2

_

S

�

)

�1

�

S

�

�

2

+ { id:

Solving the matrix di�erential equation with the initial ondition at � = t, we obtain

S

�

=

8

>

>

>

<

>

>

>

:

j2{j

�

1

2

tg

�

j2{j

1

2

(� � t)

�

_

S

t

; { > 0;

(� � t)

_

S

t

; { = 0;

j2{j

�

1

2

th

�

j2{j

1

2

(� � t)

�

_

S

t

; { < 0:

(4:6)

Furthermore, under sympleti transformations, whih leave �xed �(t) and �

0

(t), the

matrix

_

S

t

is transformed as the matrix of a quadrati form, and sine it is, by assumption,

nondegenerate, the signature is its only invariant.

We give now another equivalent de�nitions of the derivative urve and the urvature

operator, whih are more geometri and justify the hoie of the term "urvature". We

shall use a natural approah to onstruting di�erential geometry of urves on arbitrary

homogeneous manifolds. The struture of a homogeneous spae, i.e. a transitive ation

of a given Lie group, singles out a lass of "distinguished" urves | the orbits of one{

parameter subgroups of the group. Consider an arbitrary germ of a smooth urve, and

�nd a "distinguished" urve whih has the same jet of the maximal possible order, as the

orresponding jet of the given jet. On the spae of "distinguished" urves the group is, in

general, nontransitive. The invariants of the approximating "distinguished" urves are the

most important di�erential invariants of the initial germ. This is how the urvature and

torsion appear in R

3

. Certainly, every homogeneous spae brings its own spei� features

into the general methodology.

One{parameter subgroups of Sp(�) are the ows of linear stationary Hamiltonian sys-

tems. They de�ne the family of distinguished urves on L(�). Elementary alulations

imply to the following
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Proposition 4.3. Let �(�) be a regular urve in L(�), and h be a quadrati form on �, suh

that the 2{jet of the urve � 7! e

(��t)

!

h

(�(t)) oinides with the 2{jet of the urve �(�) at

t, and the subspae �(t)

?

h

=

n

y 2 �

�

�

�

h(y;�(t)) = 0

o

is Lagrangian. Then �(t)

?

h

= �

0

(t).

If, in addition, the 3{jet of the urve � 7! e

(��t)

!

h

�(t) oinides with the 3{jet of the urve

�(�) at t, then the form h is uniquely de�ned, where

_

�(t) = 2h

�

�

�

�(t)

;

_

�

0

(t) = 2h

�

�

�

�

0

(t)

.

The urvature operator is de�ned by the germ of the urve, but it also enables to make

onlusions about global properties of the urve.

The points t

0

; t

1

are said to be onjugate for the urve �(�) if �(t

0

)

T

�(t

1

) 6= 0; the

number dim (�(t

0

)

T

�(t

1

)) is the multipliity of the onjugate pair.

The following Proposition is a diret onsequene of elementary fats of sympleti

geometry, and we formulate it as a separate assertion for the onveniene of referenes.

Proposition 4.4. Let � : [0; T ℄ �! L(�) be a smooth urve,

_

�(t) > 0 8t; �(0)

T

�(T ) =

0, and �(�) is a losed urve obtained from �(�) by adding to it of a regular simple non-

dereasing urve. Then every t 2 [0; T ℄ is onjugate only to a �nite number of points,

and

Ind�(�) = n� 1 +

X

0<t<T

dim(�(0)

\

�(t)) = n� 1 +

X

0<t<T

dim(�(t)

\

�(T )):

The last assertion of this setion is the "omparison theorem", whih estimates the index

through the urvature.

Theorem. Assume �(�) is a smooth urve in L(�) and

_

�(t) > 0 for 8t. If R(t) � C id

for some C � 0 and 8t, then jt

1

� t

0

j �

�

p

C

for every pair of onjugate points t

0

; t

1

. In

partiular, if R(t) � 0, then there are no onjugate points.

Assume tr R(t) � (n � 1) for some  > 0 and for 8t, then for arbitrary t

0

� t the

interval [t; t+

�

p



℄ ontains a point onjugate to t

0

. Both estimates are exat.

Proof.We start with the ase R(t) � 0. The absene of onjugate points under this assump-

tion easily follows from the standard fats about Lagrangian Grassmannian ontained, for

example, in [7℄. In this ase, loal oordinates exist from the standard aÆne atlas in whih

�(t

0

) is represented by the zero matrix, and �

0

(t

0

) | by a symmetri positive matrix. Let

S

t

be the matrix orresponding to �(t), S

0

t

be the matrix orresponding to �

0

(t). Then

_

S

t

> 0 and det(S

0

t

� S

t

) 6= 0, sine �(�) is monotonially inreasing and �

0

(t)

T

�(t) = 0.

The operator R(t) is represented by the matrix (S

0

t

�S

t

)

�1

_

S

0

t

(S

0

t

�S

t

)

�1

_

S

t

. Hene,

_

S

0

t

� 0.

The given relations hold until �(t) and �

0

(t) remain in the oordinate neighborhood. How-

ever, the relations imply that 0 � S

t

< S

0

t

� S

0

t

0

, hene, �(t) and �

0

(t) do not leave the

oordinate neighborhood at all.

Now assume that R(t) � C id. We shall make use of the following formula, a diret

onsequene of (4.4). Assume ' : R �! R is a smooth funtion, _'(�) > 0, and R

'

(�) is
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the urvature operator of the urve � 7! �('(�)). Then

R

'

(�) = _'

2

(�)R('(�)) +

�

(

�'

2 _'

)

.

(t)� (

�'(t)

2 _'(t)

)

2

�

id (4:7)

Put

'

t

(�) =

1

p

C

�

ar tg(

p

C�) +

�

2

�

+ t; '

t

(R) = (t; t+

�

p

C

):

We obtain,

R

'

t

(�) =

1

(C�

2

+ 1)

2

(R('

t

(�))� C id) � 0:

Hene the urve � 7! �('

t

(�)) has no onjugate points on the interval (t; t+

�

p

C

).

Assume now that tr R(t) � (n � 1). We shall prove that, if �

T

�(�) = 0 for some

� 2 L(�) and 8� 2 [t; t℄, then t� t <

�

p



.

Indeed, if suh a � exists, then �

�

�

�

[t;t℄

is ompletely ontained in a oordinate neigh-

borhood, therefore the urvature operator R(�) is de�ned by the formula (4.4). Put

Z(�) = (2

_

S

�

)

�1

�

S

�

, z(�) = tr Z(�); � 2 [�; t℄. Then,

_

Z(�) = Z

2

(�) + R(�); _z(�) = tr Z

2

(�) + tr R(�):

Sine for an arbitrary symmetri (n� 1)� (n� 1){matrix A we have tr A

2

�

1

n�1

(tr A)

2

,

the inequality _z �

z

2

n� 1

+ (n� 1) holds. Hene, z(�) � x(�); t � � � t, where x(�) is a

solution of the equation

_x =

x

2

n� 1

+ (n� 1);

i.e. x(�) = (n� 1)

p

 tg(

p

(� � �

0

)).

The funtion z(�), together with x(�), are bounded on the interval [t; t℄. Hene, t�t <

�

p



.

To verify that the estimates are exat, it is enough to onsider urves of onstant

urvature.

Applying the theorem to the Jaobi urve J

(�;�)

, one an obtain expliit estimates of

the index of Hess

(�;�

t

)

f through the urvature of the Jaobi urve in ase of a �nite index.

Indeed, formula (4.2) and Proposition 4.4 imply the following form of the lassial Morse

formula,

indHess

(�;�

t

)

f =

X

0<�<t

dim(J

(�;�)

(�)

\

J

(�;�)

(t)):

In other words, the more onjugate points, the bigger the index. If there are no onjugate

points at all, then Hess

(�;�

t

)

f is sign{de�nite.
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x5. Canonial Connetions of Hamiltonian Systems

and of Differential Equations of Seond Order.

1. Nonlinear onnetions on �bre bundles. Assume a smooth (loally trivial) �bre

bundle E =

S

x2M

E

x

over M is given, with the anonial projetion � : E �! M . In the

tangent bundle TE the "vertial" subbundle is de�ned,

T

ver

E =

[

e2E

T

e

E

�(e)

� TE =

[

e2E

T

e

E; ker �

�

= T

ver

E; im�

�

= TM:

Any diret omplement to T

ver

E in TE will be alled a (nonlinear) onnetion on E,

vetor �elds on TE with values in the diret omplement will be alled horizontal, vetor

�elds with values in T

ver

E will be alled vertial.

Assume a onnetion is �xed on E. Then, for every e 2 E, the restrition �

�

�

�

�

T

e

E

de�nes a one{to{one mapping of the spae of horizontal tangent vetors at e onto T

�(e)

M .

Hene there exists a uniquely de�ned mapping, X 7! r

X

; X 2 V etM , of the spae

of vetor �elds on M into the spae of horizontal �elds on E, satisfying the relation

�

�

r

X

= X 8X 2 V etM . Evidently, the orrespondene X 7! r

X

is a C

1

(M){linear

( or tensorial) mapping:

r

X+Y

= r

X

+r

Y

; r

aX

= (a Æ �)r

X

8a 2 C

1

(M):

For every vertial �eld V , the ommutator [r

X

; V ℄ is a vertial �eld, and the mapping

X 7! [r

X

; V ℄ is C

1

(M){linear (tensorial). In partiular, the restrition [r

X

; V ℄

�

�

�

E

x

is

uniquely de�ned by X(x) and V . To emphasize this remark expliitly, as well as for

some tehnial reasons whih will be lear below, we omit the brakets in the ommutator

[r

X

; V ℄, and all the expression r

X

V

def

= [r

X

; V ℄ the ovariant derivative of the (vertial)

�eld V along X. For every v 2 T

x

M the ovariant derivative, r

v

V 2 V etE

x

, is orretly

de�ned.

Every horizontal vetor �eld is represented as e 7! r

�(e)

; e 2 E, where �(e) 2 T

�(e)

M .

The restrition of the mapping e 7! �(e) to E

x

is a vetor{funtion with values in the

vetor spae T

x

M . Sine we an at on every smooth vetor{funtion by an arbitrary

vetor �eld, de�ned on the domain of de�nition of the funtion, by di�erentiating the

vetor{funtion along the orresponding diretions, the ation of vertial �elds on the

mapping e 7! �(e) is orretly de�ned. The following evident, though very useful, formula

gives the deomposition of the ommutator of a horizontal and a vertial �eld into the

horizontal and vertial omponents,

[r

�

; V ℄(e) = (r

�(e)

V �r

V �

)(e): (5:1)

The ommutator of vertial �elds is vertial, at the same time the ommutator of horizontal

�elds might not be horizontal. The desription of the vertial omponent of the ommu-

tator of two horizontal vetor �elds leads us to the important notion of the urvature of a

onnetion. Put

R

r

(X;Y ) = [r

X

;r

Y

℄�r

[X;Y ℄

; 8X;Y 2 V etM:
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Evidently, the �eld R

r

(X;Y ) is vertial, and the mapping X^Y 7! R

r

(X;Y ) is tensorial,

(is a homomorphism of a C

1

(M){module V etM ^ V etM into the module of vertial

vetor �elds). In partiular, R

r

(X;Y )

�

�

�

E

x

is depending only on X(x); Y (x), hene for

8v

1

; v

2

2 T

x

M the �eld R

r

(v

1

; v

2

) 2 V etE

x

is orretly de�ned. Now let e 7! r

�

i

(e)

; i =

1; 2, be arbitrary horizontal �elds. It is easy to show that the �eld e 7! R

r

(�

1

(e); �

2

(e)) is

the vertial omponent of the �eld [r

�

1

;r

�

2

℄, i.e. [r

�

1

;r

�

2

℄ � R

r

(�

1

; �

2

) is a horizontal

�eld.

For a nonstationary �eld X

�

on M the ow t 7!

�!

exp

t

R

t

0

r

X

�

d� onsists of �brewise

di�eomorphisms of the bundle E. Let x(t) = x

0

�!

exp

t

R

t

0

r

X

�

d�; hene t 7! x(t) is a trajetory

of the ow on M , de�ned by the �eld X

�

. Sine the mapping X 7! r

X

is tensorial, the

di�eomorphism

�!

exp

t

1

Z

t

0

r

X

�

d�

�

�

�

E

x

(t

0

)

: E

x

(t

0

) �! E

x

(t

1

)

depends only on the onnetion and on the urve x(�); 0 � � � t, and is independent on

the values of the �eld X

�

o� the urve x(�). This di�eomorphism is alled the parallel

translation along the urve x(�); 0 � � � t.

Assume that E is a linear bundle. The onnetion is alled linear if the �elds r

X

preserve the spae of funtions, linear on �bres. If the onnetion is linear, then the parallel

translation

�!

exp

t

R

t

0

r

X

�

d�

�

�

�

E

x(t

0

)

is a linear mapping. We shall onsider below nonlinear

onnetions on linear bundles.

So far we were onerned only with main de�nitions related to onnetions, and all

assertions were almost trivial. They ould be heked by introduing loal oordinates,

or algebraially, identifying vetor �elds on M or E with orresponding derivations of

algebras C

1

(M) or C

1

(E), vertial �elds on E | with the annihilator of the subalgebra

in C

1

(E) of funtions, onstant on �bres.

2. Connetions assoiated with Hamiltonians. Assume now that the bundle E is

not arbitrary, but rather a region in T

�

M , E

x

= E\T

�

x

M; x 2M . Denote by h : E �! R

a smooth Hamiltonian on E, by Dh | the vertial di�erential of h,

D

�

h

def

= d

�

(h

�

�

�

E

x

); � 2 E

x

; x 2M:

Thus D

�

h 2 (T

�

x

M)

�

= T

x

M , hene Dh : E �! TM is a smooth �brewise mapping.

Note that D

�

h = �

�

!

h (�). We assume that D

�

h 6= 0; � 2 E. Sine E

x

is a region in a

linear spae, the seond vertial derivative is also well de�ned, D

2

�

h = d

2

�

(h

�

�

�

E

x

), and is a

quadrati form on T

�

M .

To every � there orresponds a urve J

�

in the Lagrangian Grassmannian L(T

�

(T

�

M)),

aording to the formula

J

�

(t) = (e

�t

!

h

)

�

T

�

t

(T

�

�(�

t

)

M); �

t

= �e

t

!

h

:
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If h is a omposition of the master{Hamiltonian of a ontrol system with a funtion of a

real variable, for example, some power of the master{Hamiltonian, then the urve

t 7! J

�

(t)

\

ker d

�

h 2 L

�

!

h (�)

\

=

!

h(�)

�

is the Jaobi urve of the orresponding geodesi, f. x4. Let �(�) = x, then J

�

(0) =

T

�

(E

x

) = T

�

x

M . It is easily seen that

_

J

�

(0) = D

2

�

h.

As in x4, we restrit ourself to regular urves, J

�

, postponing more general ases, (quite

important and interesting for optimal problems), until further publiations. Thus, we

suppose that D

2

�

h is a nondegenerate quadrati form on T

�

x

M .

Remark. At �rst sight, the nondegeneray requirement might seem too exessive. For

example, the master{Hamiltonian, being positive{de�nite of �rst degree, does not satisfy

it. But, if the master{Hamiltonian is not zero at � and generates a regular Jaobi urve,

then the square of the master{Hamiltonian satis�es the ondition.

To every regular urve t 7! J

�

(t) orresponds the derivative urve t 7! J

�0

(t). Aording

to its de�nition, f. x4,

J

�0

2 L(T

�

(T

�

M)); T

�

(T

�

M) = T

�

(E

x

)� J

�0

(0):

Evidently, J

�0

(0) is smooth in �. We all the Lagrangian bundle J

�0

(0); � 2 E, the

anonial onnetion on E, assoiated with the Hamiltonian h.

Let r

X

be a horizontal �eld for the anonial onnetion, �

�

r

X

= X; X 2 V etM .

Lemma 5.1. Assume that the restrition h

�

�

�

E

x

of the Hamiltonian h to an arbitrary �bre

E

x

is a positively homogeneous funtion of degree r+1; r 6= 0;�1. Then

!

h = r

D

�

h

; � 2 E,

hene the �eld

!

h is horizontal.

Proof. We identify � 2 E

x

� T

�

x

M with the orresponding tangent vetor from T

�

E

x

=

T

�

x

M . The homogeneity of the Hamiltonian implies the identity

(s�)e

t

!

h

= s

�

�e

s

r

t

!

h

�

8s > 0;

from whih the relations follow,

�

�� rt

!

h(�)

�

2 J

�

(t) � T

�

(T

�

M). Moreover, sine the

Hamiltonian ow preserves h, and

!

h (�)

\

= ker d

�

h, we obtain,

J

�

(t) = R

�

�� rt

!

h(�)

�

� J

�

(t)

\

!

h (�)

\

: (5:2)

From here we onlude that

!

h(�) 2 J

�0

(t), hene

!

h is a horizontal �eld. To omplete the

prove, we remark that �

�

!

h = Dh.
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Denote by R

J

�

the urvature operator of the urve � 7! J

�

(t) for t = 0. Sine J

�

(0) =

T

�

E

x

= T

�

x

M , where � 2 E

x

, R

J

�

: T

�

x

M �! T

�

x

M is a linear operator. By R

r

we

denoted the urvature of the anonial onnetion. Despite of ompletely di�erent ways of

de�nition of these two urvatures, they are intimately onneted and the use of the same

term "urvature" in both ases is ompletely justi�ed.

Theorem 5.1. Under the onditions of Lemma 5.1 the following identity holds,

R

J

�

l = R

r

(D

�

h; lD

2

�

h); 8� 2 E

x

; x 2M; l 2 T

�

x

M:

Proof. Let x

�

(t) be the projetion on M of the point �e

t

!

h

, and l | a vertial �eld, whih

has a restrition to E

x

�

(t)

oiniding with the parallel translation of the onstant �eld l on

E

x

along the urve x

(

�) for 8t. Then,

r

Dh

l

�

�

�

�e

t

!

h

= 0: (5:3)

Sine the ation of

�

e

�t

!

h

�

�

on the vetor �elds oinides with the the ation of e

t ad

!

h

, f.

Introdution, we obtain J

�

(t) =

��

e

t ad

!

h

l

�

(�)

�

�

�

l 2 T

�

x

M

�

: Let r

A

t

l

be the horizontal

omponent of the vetor

�

e

t ad

!

h

l

�

(�); and B

t

l be its vertial omponent, so that A

t

:

T

�

x

M �! T

x

M , B

t

: T

�

x

M �! T

�

x

M , are linear mappings, where

J

�

(t) =

n

B

t

l +r

A

t

l

�

�

�

l 2 T

�

x

M

o

; A

0

= 0; B

0

= id:

Thus the germ at zero of the urve J

�

is represented by the matrix urve t 7! S

t

= A

t

B

�1

t

,

J

�

(t) =

n

l +r

S

t

l

�

�

�

l 2 T

�

x

M

o

, and the urvature operator R

J

�

has, aording to (4.4), the

form

R

J

�

=

�

(2

_

S

0

)

�1

�

S

0

�

.

�

�

(2

_

S

0

)

�1

�

S

0

�

2

: (5:4)

Formulas (5.1) and (5.3) imply

d

dt

e

t ad

!

h

l(�) = e

t ad

!

h

[

!

h; l℄(�) = e

t ad

!

h

[r

Dh

; l℄(�) = �

�

e

t ad

!

h

r

lD

2

h

�

(�):

Hene

_

A

0

l = �r

lD

2

�

h

;

_

B

0

= 0. Furthermore, the derivative urve of J

�

at t = 0 has the

form, f. (4.3), J

�0

=

n

�

1

2

_

S

�1

0

�

S

0

_

S

�1

0

v +r

v

�

�

�

v 2 T

x

M

o

. At the same time, aording to

the de�nition of the anonial onnetion, J

�0

onsists of horizontal vetors. Therefore

�

S

0

= 0, and the formula (5.4) takes the form R

J

�

=

1

2

_

S

�1

0

...

S

0

: Furthermore, sine A

0

= 0

and

�

S

0

= 0, we have

�

A

0

= 0. Hene the vetor �eld

d

2

dt

2

e

t ad

!

h

l

�

�

�

t=0

= �

d

dt

e

t ad

!

h

r

l D

2

h

= [r

l D

2

h

;

!

h ℄ = [r

l D

2

h

;r

Dh

℄
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is vertial at �. Sine the vertial omponent of the ommutator of two horizontal �elds

is the urvature, we have

[r

l D

2

h

;r

Dh

℄(�) = R

r

(lD

2

�

h;D

�

h):

Furthermore, the point � is indistinguishable from any other point of the form �e

t

!

h

, hene

the last identity is satis�ed for all suh points, we have only to substitute l by the value

of the �eld l at �e

t

!

h

. We obtain,

d

2

dt

2

e

t ad

!

h

l(�) = e

t ad

!

h

R

r

(l D

2

h;Dh)(�):

Thus

�

B

0

l = R

r

(l D

2

�

h;D

�

h), and

...

A

0

l is the horizontal omponent of the vetor

[

!

h;R

r

(l D

2

h;Dh)℄(�) = [r

Dh

; R

r

(l D

2

h;Dh)℄(�):

Aording to formula (5.1), we have

...

A

0

l = R

r

(D

�

h; l D

2

�

h) D

2

�

h. Colleting the obtained

formulas together, we an write,

...

S

0

l =

...

A

0

l� 3

_

A

0

�

B

0

l = 2R

r

(l D

2

�

h;D

�

h)D

2

�

h; R

J

�

l =

1

2

_

A

�1

0

...

S

0

l = R

r

(D

�

h; l D

2

�

h):

3. Connetions assoiated with seond order di�erential equations. We have

onsidered above anonial onnetions assoiated with Hamiltonian systems, a natural

lass of di�erential equations on the otangent bundle. Now we desribe onnetions with

similar properties for di�erential equations of the seond order, a natural lass of di�erential

equations on the tangent bundle.

Assume E is a region in TM; E

x

= E

T

T

x

M; x 2M . We shall say that a vetor �eld Z

on E is a di�erential equation of the seond order or that it de�nes a di�erential equation

of the seond order, if �

�

Z(v) = v 8v 2 E. For s 2 R denote by s

�

: T (TM) �! T (TM)

the di�erential of the homothety v 7! sv; v 2 TM . The �eld Z, de�ning the di�erential

equation of the seond order, is alled a spray if Z(sv) = s

�

Z(v) 8v 2 E; s 2 R suh that

sv 2 E. In loal oordinates, the di�erential equation of the seond order, de�ned by a

spray, has the form �x = '(x; _x), where ' is homogeneous in _x of degree 2. We should note

that no other degrees of homogeneity are preserved under the oordinate hange on M .

For every di�erential equation of the seond order Z and every v 2 E we de�ne a urve

I

v

in the Grassmannian G

n

(T

v

(TM)) of all n{dimensional subspaes in T

v

(TM)) by the

formula

I

v

(t) =

�

e

�tZ

�

�

T

v

t

E

�(v

t

)

; v

t

= ve

tZ

:

Before moving further we shall make few remarks about urves in the Grassmannian

G

n

(R

2n

). So far, we onsidered urves only in Lagrangian Grassmannians. De�nitions

and properties mentioned below are similar to those in the Lagrangian Grassmannian,

and are proved even easier sine no additional sympleti struture should be taken in

onsideration.
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Put

K

0

2 G

n

(R

2n

); K

t

0

=

n

K 2 G

n

(R

2n

)

�

�

�

K

0

\

K = 0

o

:

Then K

t

0

has a natural struture, (independent on the hoie of a basis in R

2n

), of an aÆne

spae over the vetor spae Hom(R

2n

=K

0

; K

0

). We already desribed this aÆne struture

in the proof of the Lemma in x4. Furthermore, the tangent spae T

K

0

G

n

(R

2n

) is naturally

identi�ed with the spae Hom(K

0

;R

2n

=K

0

) in the following way. Assume t 7! K

t

is

a smooth urve in G

n

(R

2n

). We orrespond to the tangent vetor

_

K

0

=

d

dt

K

t

�

�

�

t=0

the

mapping k

0

7!

d

dt

k

t

�

�

�

t=0

+K

0

, where k

t

2 K

t

. It is easy to show that this mapping depends

only on

_

K

0

and does not depend on the hoie of the urves K

t

and k

t

.

The urve � 7! K

�

in G

n

(R

2n

) is regular if its veloities

dK

�

d�

are regular linear map-

pings from K

�

into R

2n

=K

�

8� . It is easy to show that the urve I

v

in G

n

(T

v

(TM))

is nondegenerate. In partiular, for � = 0 we have I

v

(0) = I

v

(T

x

M) = ker �

�

�

�

�

T

v

(TM)

,

where x = �(v). Identifying the spaes T

v

(T

x

M) and T

v

(TM)=T

v

(T

x

M) � �

�

T

v

(TM)

with T

x

M , we obtain

d

d�

I

v

(0) = id.

The germ at t of a regular urve � 7! K(�) in G

n

(R

2n

) de�nes a urve in the aÆne

spae K(t)

t

with a simple pole at � = t. In other words,

K(�) �

1

� � t

K

�1

(t) +K

0

(t) +

1

X

i=1

(� � t)

i

K

i

(t); K

0

(t) 2 K(t)

t

;

K

i

(t) 2 Hom(R

2n

=K(t); K(t)); i 6= 0; K

�1

(t) = (

_

K(t))

�1

:

Put R(t) = �3K

1

(t)

_

K(t). The urve t 7! K

0

(t) in G

n

(R

2n

) is alled the derivative urve

of K(�). The operator R(t) : K(t) �! K(t) is alled the urvature operator of the urve

K(�) at t. In loal oordinates the urvature operator is represented, as in the Lagrangian

ase, by the matrix Shwarz derivative (4.4), with matries not neessarily symmetri.

Let t 7! I

v0

(t) be the derivative urve of I

v

. We have T

v

(TM) = I

v

E

x

+ I

v0

(0), and

I

v0

(0) smoothly depends on v. The subbundle in TE with the �bres I

v0

(0); v 2 E, is alled

the anonial onnetion assoiated with the �eld Z. Below, in this subsetion, we assume

that the symbol r

X

denotes the horizontal �eld for the de�ned anonial onnetion, suh

that �

�

r

X

= X; X 2 V etM .

Lemma 5.2. If Z is a spray, then Z is a horizontal �eld for the anonial onnetion,

Z(v) = r

v

8v 2 E.

Proof. We identify the vetor v 2 E

x

� T

x

M with the orresponding vertial tangent

vetor in T

v

E

x

= T

x

M . Sine Z is a spray, we have (sv)e

tZ

= s(ve

stZ

); s 2 R. From here,

we obtain

(v � tZ(v)) 2 I

v

(t) � T

v

(TM): (5:5)

The subspae I

v

(t) is represented as I

v

(t) =

n

l+r

S

t

l

�

�

�

l 2 T

v

E

x

= T

x

M

o

, where S

t

:

T

x

M �! T

x

M is a linear operator smooth in t, S

0

= 0. Moreover,

_

S

0

= id.

35



From (4.3) it follows that the value at t = 0 of the derivative urve of I

v

has the form

I

v0

=

�

�

1

2

�

S

0

l +r

l

�

�

�

l 2 T

x

M

�

:

Sine I

v0

onsists of horizontal vetors, we have

�

S

0

= 0. Let Z(v) = l

0

+ r

v

, i.e., l

0

is the vertial omponent of the vetor Z(v). Then aording to (5.5), tv = S

t

(tl

0

� v).

Di�erentiating 2 times in t yields

�

S

0

v = l

0

. Hene l

0

= 0; Z(v) = r

v

.

Denote by R

I

v

the urvature operator of the urve t 7! I

v

(t) at t = 0. Sine I

v

(0) =

T

x

M , where x = �(v), the mapping R

I

v

: T

x

M �! T

x

M is a linear operator. The symbol

R

r

denotes the urvature of the anonial onnetion assoiated with the �eld Z.

Theorem 5.2. If Z is a spray, then

R

I

v

l = R

r

(v; l) 8v 2 E

x

; x 2M; l 2 T

x

M:

The proof is a repeating of the proof of Theorem 5.1 with orresponding simpli�ations.

4. Linear Connetions. Here we shall onsider in more detail linear onnetions on

the bundles TM and T

�

M . Assume a linear onnetion is given on TM , hene for every

X 2 V etM a horizontal vetor �eld, r

X

, on TM is given, whih preserves the spae of

funtions, linear on the �bres of TM . In this ase, the di�eomorphism e

�tr

X

is a linear

mapping of the �bre T

xe

tX
M onto the �bre T

x

M for 8x 2 M; t 2 R. Considering the

adjoint linear mappings

�

e

�tr

X

�

�

�

T

xe

t

X

M

�

�

: T

�

x

M �! T

�

xe

tX

M;

we obtain the "adjoint" ow on the bundle T

�

M . The generating vetor �eld for this ow

will be denoted by r

�

X

. The mapping X 7! r

�

X

; X 2 V etM , de�nes a linear onnetion

on T

�

M , the adjoint to the onnetion X 7! r

X

. Evidently, we ould start with an

arbitrary linear onnetion on T

�

M , and de�ne the adjoint onnetion on TM , obtaining

the involution r

��

X

= r

X

. For appropriately hosen notation the expressions for r

X

and

r

�

X

are indistinguishable.

Indeed, every Y 2 V etM ould be onsidered as a ross{setion of the vetor bundle

TM , and as suh ould be identi�ed with the vertial vetor �eld on TM , onstant on

�bres. Hene, the ovariant derivative of the �eld Y along the �eld X is de�ned, denoted

by r

X

Y , whih is vertial and onstant on �bres, r

X

Y 2 V etM . Furthermore, Y ould

be onsidered as a salar{valued funtion on T

�

M , linear on �bres. The image r

�

X

Y of

this funtion under the ation of the vetor �eld r

�

X

2 V et T

�

M is again linear on �bres,

in other words, r

�

X

Y 2 V etM . It is easily proved that

r

X

Y = r

�

X

Y: (5:6)

For a linear onnetion on TM we de�ne in a usual way the torsion

T

r

(X;Y ) = r

X

Y �r

Y

X � [X;Y ℄; T

r

(X;Y ) 2 V etM:
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Lemma 5.3. The following identity holds,

T

r

(X;Y ) = �(r

�

X

;r

�

Y

); X; Y 2 V etM

where � is the anonial sympleti struture on T

�

M .

Proof. Let � be the anonial 1{form on T

�

M; � = d �. Sine �

�

r

�

X

= X we have

X =< �;r

�

X

>, where X in the left{hand side of the last identity is onsidered as a

funtion on T

�

M , linear on �bres. Taking into aount that � vanishes on vertial �elds,

we obtain

T

r

(X;Y ) = r

X

Y�r

Y

X � [X;Y ℄ = r

�

X

< �;r

�

Y

> �r

�

Y

< �;r

�

X

> � < �;r

�

[X;Y ℄

>=

�(r

�

X

;r

�

Y

)+ < �;R(X;Y ) >= �(r

�

X

;r

�

Y

):

Corollary. Connetion r has a zero torsion i� r

�

de�nes a Lagrangian subbundle in

T (T

�

M).

Every linear onnetion on TM de�nes a spray Z aording to the formula Z(v) =

r

v

(v) 8v 2 TM . The trajetories of this spray are alled geodesis of the onnetion r.

Di�erent onnetions an de�ne idential sprays, but among them there exists a unique

onnetion with vanishing torsion. Not every spray an be obtained in this way, only the

sprays whih are quadrati on �bres.*

Proposition 5.1. The anonial onnetion assoiated with a spray, quadrati on �bres,

is linear and has a vanishing torsion.

Proof. Fix an arbitrary point x

0

2 M and loal oordinates x = (x

1

; : : : ; x

n

) in the

neighborhood of x

0

, suh that the orresponding di�erential equation of the seond order

in these oordinates has the form �x = '(x; _x); '(x

0

; _x) = 0 8 _x. We obtain,

I

(x

0

; _x)0

= span

�

�

�x

1

; : : : ;

�

�x

n

�

8 _x:

In other words, for the anonial onnetion we have r �

�x

i

=

�

�x

i

, hene r is linear and

has a vanishing torsion.

Thus the anonial onnetion assoiated with a spray, quadrati on �bres, is linear

with vanishing torsion, and its geodesis are the trajetories of the spray. In geometry,

the geodesis of a onnetion on TM are onsidered as the "straightest" lines, whereas the

extremals of a variational problem as the "shortest" lines. We see that the trajetories of

*In loal oordinates, the di�erential equation of the seond order de�ned by a spray has the form

�x = '(x; _x), and the property of ' to be quadrati in _x is independent on the hoie of the oordinates in

M . This is a natural lass of sprays, sine for a spray, quadrati on a given �bre T

x

0

M , the orresponding

di�erential equation of the seond order has, in appropriate oordinates, the form �x = '(x; _x), where

'(x

0

; _x) = 0 8 _x.
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every spray, not neessarily linear on �bres, ould be onsidered as a system of " straight-

est" lines, orresponding to the anonial onnetion on TM , generally not linear. At the

same time, the shortest lines, being the trajetories of the master{Hamiltonian, generate

the anonial onnetion on T

�

M .

Aording to the lassial Riemannian geometry, the "shortest" lines for the Riemannian

variational problem are also the "straightest" lines for the Levi{Civita onnetion. There-

fore, it is natural to expet that the Levi{Civita onnetion on TM is onjugate to the

anonial onnetion on T

�

M , assoiated with the orresponding Hamiltonian. Indeed, we

have the following

Proposition 5.2. Assume Q : TM �! T

�

M is a selfadjoint isomorphism, de�ned by a

pseudo{Riemannian struture on M . Then the Levi{Civita onnetion of this struture

is the adjoint onnetion to the anonial onnetion, assoiated with the Hamiltonian

h : � 7!

1

2

< �;Q

�1

� >; � 2 T

�

M .

Proof. The equation

_

� =

!

h(�) de�nes the pseudo{Riemannian geodesi ow in T

�

M ,

where �(�)

.

= Q

�1

� along every trajetory of this ow. Hene the isomorphism Q

�1

:

T

�

M �! TM transforms the geodesi ow in T

�

M into the geodesi ow in TM , where

the last ow is de�ned by a spray Z, quadrati on �bres. Let X 7! r

X

be the anonial

onnetion for h. From the de�nition, it follows that X 7! Q

�1

�

r

X

is the anonial on-

netion for Z. Exploiting the fat that the parallel translation generated by the anonial

onnetion preserves the Hamiltonian,( the anonial onnetion is tangent to the levels of

the Hamiltonian), we obtain Q

�1

�

r

X

= r

�

X

. From Proposition 5.1 follows now that r

�

X

is the Levi{Civita onnetion, f. also the remark after the Proof of Proposition 5.1.

Remark. For pseudo{Riemannian struture, the master{Hamiltonian has the form

� 7!< �;Q

�1

� >

1

2

, whih is de�ned, in general, not for all � 2 T

�

M .

x6. Two{Dimensional Control Systems

Consider a standard "state invariant" ontrol system

_x = f(x; u); x 2M; u 2 U:

It is interesting to �nd expliit expressions of suh a fundamental "state" and "feedbak"

invariant as the urvature tensor through lassial "state"{invariants | linear relations

between iterated Lie brakets of vetor �elds f(�; u); u 2 U . We already have all neessary

means to derive suh expressions, though some e�orts are still needed, and the obtained

expressions turn out to be pretty ompliated even in the simplest two{dimensional ase.

We restrit ourself to the two{dimensional ase only.

Assume that dimM = 2; dimU = 1, hene U is R or S

1

= R=2�Z. Put

O =

�

(x; u) 2M � U

�

�

�

�f

�u

^

�

2

f

�u

2

�

�

�

(x;u)

6= 0

�

:

All extremal ontrols, ontained in the region O, orrespond to regular extremals, and

through every point of the region passes exatly one extremal ontrol, orresponding to a
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uniquely determined extremal, (up to a nonzero fator for �). Assume R(x; u); (x; u) 2 O is

the urvature tensor of the uniquely determined germ of extremal, with the orresponding

ontrol through (x; u). The tensor is a linear operator, and sine it ats in the one{

dimensional spae, (x; u) 7! R(x; u) is a real{valued funtion on O.

Proposition 6.1. Assume �

i

1

:::i

k

; �

i

1

:::i

k

are smooth funtions on O, de�ned by the

formula

�

�

i

1

f

�u

i

1

;

�

�

i

2

f

�u

i

2

;

�

: : : ;

�

i

k

f

�u

i

k

�

: : :

��

= �

i

1

:::i

k

�f

�u

+ �

i

1

:::i

k

�

2

f

�u

2

:

Then

R =�

001

+ �

101

�

1

2

�

002

+

1

2

�

001

�

3

�

1

2

�

01

�

12

+

3

2

�

01

�

02

� �

02

�

01

+ �

01

�

03

�

2�

2

01

+

1

4

�

2

02

� �

01

�

01

�

3

�

3

2

�

01

�

02

�

3

+ �

3

�

2

01

�

1

2

�

2

01

�

4

+

3

4

�

2

01

�

2

3

Proof. We shall use Proposition 3.2, whih expresses the L{derivative of the endpoint{

mapping, hene the Jaobi urve, through solutions of the linear Hamiltonian system.

Assume � 7! (x

�

; u

�

) is an extremal ontrol in O. Put

g

�

(�; u) = �

�!

exp

�

Z

t

ad f(�; u

�

)d�f(�; u)

�

�

�

x

; g

(i)

�

(�) =

�

i

�u

i

g

�

(�; u

�

); (x; u) 2 O; � 2 T

�

x

M:

Let �

t

2 T

�

x

t

M be the Lagrange multiplier orresponding to the given extremal ontrol.

Then g

(1)

�

(�

t

) = 0 identially in � . Di�erentiating the last identity with respet to � yields

the following useful formula

d

d�

u

�

=

n

g

(1)

�

; g

(0)

�

o

g

(2)

�

�

�

�

�

t

;

where f�; �g are the Poisson brakets. Note that the inlusion (x

�

; u

�

) 2 O implies that

g

(1)

�

(�

t

); g

(2)

�

(�

t

) an not vanish simultaneously. Assume, for de�niteness, that g

(2)

�

(�

t

) < 0.

Certainly, substituting �

t

by ��

t

and, aordingly, g

(2)

�

(�

t

) by g

(2)

�

(��

t

) = �g

(2)

�

(�

t

), we

do not hange the urvature. The quadrati Hamiltonian q

�

from Proposition 3.2 has in

our ase the form

q

�

(�) = �

�

�

!

g

(1)

�

(�

t

); �

�

2

2g

(2)

�

(�

t

)

:

The Hamiltonian q

�

is de�ned on a 4{dimensional sympleti spae T

�

t

(T

�

M), though the

vertial line R�

�

� T

�

x

�

� T

�

t

(T

�

x

t

M) onsists entirely of �xed points of the Hamiltonian

system. The Jaobi urve is onstruted with the help of the solutions of the redued

system, de�ned on �

�

t

= (R�

t

)

\

=R�

t

, f. the beginning of x4. There exists a unique

ovetor e 2 T

�

t

(T

�

x

t

M) satisfying the onditions �(e;

!

g

(1)

t

) = 1, �(e;

!

g

(2)

t

) = 0. Consider
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the restrition of the Hamiltonian q

�

onto the sympleti subspae span(e;

!

g

(1)

t

) � (R�

t

)

\

.

Let � = ye+ z

!

g

(1)

t

, then

q

�

(�) =

1

2

(a

�

y + b

�

z)

2

; a

�

=

�(

!

g

(1)

�

; e)

q

jg

(2)

�

j

; b

�

=

�(

!

g

(1)

�

;

!

g

(1)

t

)

q

jg

(2)

�

j

; b

t

= 0:

Nonstationary Hamiltonian q

�

de�nes a linear ow on R

2

and, aordingly, a ow on

L(R

2

) = RP

1

. The Jaobi urve � 7! J(�) is a trajetory of the ow on RP

1

, inverse to

the ow de�ned by the Hamiltonian q

t

, J(t) = Re. Let � =

�

'

11

'

12

'

21

'

22

�

; �(t) = id,

be the fundamental matrix of the linear ow on R

2

, inverse to the ow de�ned by the

Hamiltonian q

�

. Then

_

� = �

�

ab b

2

�a

2

�ab

�

; det� = 1: (6:2)

As a loal oordinate on RP

1

take

z

y

, then J(�) is represented by the 1� 1{matrix S

�

=

'

21

(�)

'

11

(�)

. For the urvature we obtain the expression

R(x

t

; u

t

) =

 

�

S

t

2

_

S

t

!

.

�

 

�

S

t

2

_

S

t

!

2

=

�a

t

a

t

� a

t

_

b

t

� 2

�

_a

t

a

t

�

2

:

Note that

�

��

g

(i)

�

= g

(i+1)

�

du

d�

+

n

g

(0)

�

; g

(i)

�

o

=

g

(i+1)

�

g

(2)

�

n

g

(1)

�

; g

(0)

�

o

+

n

g

(0)

�

; g

(i)

�

o

:

Furthermore, the quantities g

(i)

t

(�) = �

�

i

�u

i

f , hene, the Poisson brakets of g

(i)

t

, are

expressed through the Lie brakets of the �elds

�

i

�u

i

f . Therefore, the onseutive derivatives

of the funtions a

�

; b

�

, with respet to � for � = t, are expressed expliitly, though quite

umbersome, through �

i

1

:::i

k

(x

t

; u

t

); �

i

1

:::i

k

(x

t

; u

t

). Diret alulations give the expression

(6.1). Though pretty awkward, this formula is strongly simpli�ed in some important

speial ases. Consider two{dimensional Riemannian and Lorentzian geometries. In the

Riemannian ase we have

f(x; u) = (os u)v

1

(x) + (sin u)v

2

(x);

where v

1

; v

2

is an arbitrary orthonormal frame of the onsidered Riemannian struture. It

is easy to eliminate in (6.1) all indies � 2. Indeed, from every suh index we an subtrat

2, at the same time hanging the sign of the orresponding oeÆient. Taking into aount

also the symmetries of the oeÆients as the "struture onstants", we obtain

R = �

001

+ �

101

� 2(�

2

01

+ �

2

01

):
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Note that R is the Gaussian urvature of the Riemannian surfae, aording to Proposition

5.2 and Theorem 5.1.

Let [v

1

; v

2

℄ = 

1

v

1

+ 

2

v

2

, for some smooth funtions 

1

; 

2

. Then

R = v

1



2

� v

2



1

� 

2

1

� 

2

2

:

In the Lorentzian ase

f(x; u) = (h u)v

1

(x) + (sh u)v

2

(x):

Again, 2 ould be subtrated from the indies in (6.1), this time without hanging the

oeÆients. For the Gaussian urvature we obtain,

R = �

001

� 2(�

2

01

� �

2

01

) = v

1



2

+ v

2



1

+ 

2

1

� 

2

2

:
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