
FEEDBACK{INVARIANT OPTIMAL CONTROL

THEORY AND DIFFERENTIAL GEOMETRY | I.

REGULAR EXTREMALS

A. A. Agra
hev, R. V. Gamkrelidze

Abstra
t. Feedba
k{invariant approa
h to smooth optimal 
ontrol problems is 
onsidered.

A Hamiltonian method of investigating regular extremals is developed, analogous to the

di�erential{geometri
 method of investigation Riemannian geodesi
s in terms of the Levi{

Civita 
onne
tion and the 
urvature tensor.

x0. Introdu
tion

1. Outline of the 
ontent. This is the �rst in a series of forth
oming papers, devoted

to the uni�
ation of the Theory of Smooth Optimal Control Problems and that part of

Di�erential Geometry whi
h is dealing with geodesi
s of di�erent kinds. The obtained

results, we believe, not merely suggest a di
tionary for translating the known results from

one language into another, but they really extend the s
ope of appli
ability of both theories.

The key notions brought into interplay are "Hamiltonian system" in optimal 
ontrol and

the "
urvature tensor" in di�erential geometry.

Sin
e the dis
overy of the Pontryagin maximum prin
iple, 
f. [11℄, �nding extremals

in problems of optimal 
ontrol is redu
ed to solving Hamiltonian systems of di�erential

equations. Even in the 
lassi
al 
ase of Riemannian geometry, the maximum prin
iple

approa
h to �nding geodesi
s leads to the �nal result mu
h simpler and shorter than the

traditional method of using the Levi{Civita 
onne
tion. If we 
onsider more general geo-

metri
 variational problems, dealing not only with regular extremals (geodesi
s), but with

singular extremals as well, then we should admit that the maximum prin
iple approa
h

has no serious alternative.

Turning now from geodesi
s to the 
urvature tensor, whi
h des
ribes quite deeply not

only lo
al but also global behavior of geodesi
s without even solving any di�erential equa-

tions, we see that it is obtained in a standard way from the Levi{Civita 
onne
tion, whereas

a Hamiltonian approa
h to the 
urvature tensor or its analogue was never 
onsidered. The

main 
ontent of this paper is devoted to su
h an approa
h.

We shall give now a brief overview of the 
ontent by se
tions. In x1 the notion of the

L{derivative is introdu
ed. The intuitive meaning of this notion, whi
h plays in the sequel

an important role, 
ould be des
ribed as follows.
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Let f : U �!M be a smooth mapping between two �nite-dimensional manifolds, with

the di�erential f

0

u

: T

u

U �! T

f(u)

M at u 2 U . The point u is 
riti
al for f if and only if

the image of f

0

u

is annihilated by some nonzero 
ove
tor �, the Lagrange multiplier,

� f

0

u

= 0; � 2 T

�

f(u)

M; � 6= 0:

In this equation, the argument � belongs to the symple
ti
 manifold T

�

M , the argument

u | to the manifold U . Linearization of the equation at the point (u; �) gives us a linear

system of equations in variables Æu 2 T

u

U; Æ� 2 T

�

(T

�

M). Let L

(u;�)

(f) be the set of all Æ�

whi
h satisfy the linear system (with some Æu). The linear subspa
e L

(u;�)

(f) � T

�

(T

�

M)

is 
alled the L{derivative of f at (u; �). It turns out that L

(u;�)

(f) is always a Lagrangian

subspa
e of the symple
ti
 spa
e T

�

(T

�

M), in parti
ular, dimL

(u;�)

(f) = dimM . Thus

the dimension of the L{derivative is independent on the 
hara
ter of the 
riti
al point; for a


onstant mapping we have L

(u;�)

(f) = T

�

(T

�

f(u)

M). The optimal 
ontrol situation is more

general, with an in�nite{dimensional U . In x1 the L{derivative for the in�nite{dimensional


ase is 
onsidered, and the important 
hain rule for the L{derivative is formulated.

In x2 we give a feedba
k{invariant de�nition of a smooth 
ontrol system whi
h in
ludes

as spe
ial 
ases many basi
 di�erential{geometri
 stru
tures. The spa
e of admissible

traje
tories is introdu
ed and the boundary{value mapping is de�ned, whi
h sends the

traje
tory into its boundary points. Criti
al points of the boundary{value mapping are

the extremal traje
tories, geodesi
s in the geometri
 terminology. At the end of the se
tion

a Hamiltonian 
hara
terization of extremal traje
tories is given in form of a feedba
k{

invariant analogue of the maximum{prin
iple.

In x3 the L{derivative of the boundary{value mapping and of its parti
ular 
ase, of the

endpoint mapping, is 
omputed. We also introdu
e regular extremals whi
h are traje
tories

of a �xed Hamiltonian system, de�ned in a region of T

�

M . For regular extremals, the L{

derivative of the boundary{value mapping is 
omputed parti
ularly simple. Let � 7! �

�

2

T

�

M; 0 � � � t, be a regular extremal, �

�

= P

�

(�

0

), where � 7! P

�

is the Hamiltonian


ow in T

�

M su
h that all of its traje
tories are regular extremals. Then the L{derivative

is the graph of the linear symple
ti
 mapping P

t�

: T

�

0

(T

�

M) �! T

�

t

(T

�

M).

In x4 Ja
obi 
urves are introdu
ed and investigated. Ja
obi 
urves are 
urves in the

Lagrangian Grassmannian 
orresponding to given extremals of a very general nature, 
er-

tainly in
luding all regular extremals, and are 
onstru
ted, roughly, in the following way.

An arbitrary segment of an extremal is again an extremal. Hen
e, varying the initial point

of the extremal with the �xed endpoint (or vi
e versa), we obtain L{derivatives of the

endpoint mapping, whi
h are Lagrangian subspa
es in a �xed symple
ti
 spa
e depending

on a time{variable, thus obtaining the Ja
obi 
urve.

We also develop here the di�erential geometry of regular 
urves in a Lagrangian Grass-

mannian. Nonregular Ja
obi 
urves, o

urring in problems with nonholonomi
 
onstraints,

will be 
onsidered in future publi
ations. The most important in�nitesimal invariants of

a regular 
urve in the Lagrangian Grassmannian are the "derivative 
urve" and the "
ur-

vature tensor". The 
urves of 
onstant s
alar 
urvature are 
hara
terized. Formulas are

derived whi
h relate the number of 
onjugate points, Maslov index and 
urvature.

The obtained results are applied in x5 to develop the di�erential geometry of Hamilton-

ian systems on T

�

M , and of di�erential equations of se
ond order on M . To a traje
tory
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of the Hamiltonian system, passing through a point � 2 T

�

M , germ of a 
urve in the

Lagrangian Grassmannian of the symple
ti
 spa
e T

�

(T

�

M) is assigned. In�nitesimal

invariants of these germs de�ne a (in general nonlinear) 
anoni
al 
onne
tion on T

�

M as-

so
iated to the Hamiltonian. The main result of this se
tion 
onsists in deriving identities,


onne
ting the 
urvature of the 
anoni
al 
onne
tion with the 
urvatures of the germs of


urves in the Lagrangian Grassmannian. A similar theory is developed for di�erential equa-

tions of the se
ond order for whi
h we have to substitute T

�

M by TM , and the Lagrangian

Grassmannian by ordinary Grassmannian. It turns out that the 
anoni
al 
onne
tion of

the equation of the geodesi
 
ow of a (pseudo){Riemannian stru
ture 
oin
ides with the

Levi{Civita 
onne
tion of this stru
ture.

In x6, for two{dimensional systems, the 
urvature of the extremals of smooth 
ontrol

systems is expressed through standard "state{invariants", the iterated Lie bra
kets of

ve
tor �elds.

2. Preliminaries. Here we introdu
e some formulas of "Chronologi
al 
al
ulus" and


ertain notions and relations related to linear symple
ti
 spa
es used in the arti
le, 
f.

[3,8℄, [1,7,9℄.

Assume M is a smooth, i.e. of 
lass C

1

, manifold, and C

1

(M) is the algebra of

smooth fun
tions on M . We identify an arbitrary di�eomorphism P :M �!M with the


orresponding automorphism of the algebra C

1

(M),

a(�) 7! a Æ P (�) = a(P (�)); a 2 C

1

(M):

Under this identi�
ation, the a
tion of P on a, i.e. the substitution of P into a, is denoted

by Pa, and the value of P at x 2M is denoted by xP , xPa

def

= a(P (x)). As usual, smooth

ve
tor �elds X onM are identi�ed with the derivations of the algebra C

1

(M), hen
e they

are R{linear mappings of C

1

(M) satisfying the Leibniz rule, X(a

1

a

2

) = a

1

Xa

2

+ a

1

Xa

2

.

The Lie bra
ket, [X

1

; X

2

℄ = X

1

ÆX

2

�X

2

ÆX

1

, turn the R{linear spa
e of ve
tor �elds into

the Lie algebra, V e
tM . For a given X, the inner derivation of the Lie algebra V e
tM is

de�ned,

adX : V e
tM �! V e
tM; (adX)Y = [X;Y ℄:

Every di�eomorphism P de�nes an inner automorphism AdP : V e
tM �! V e
tM ,

(AdP )X = P ÆX ÆP

�1

. It is easily seen that the di�erential of the inverse di�eomorphism

P

�1

, denoted by P

�1

�

, a
ts on ve
tor �elds a

ording to the formula (AdP )X = P

�1

�

X.

We also 
onsider nonstationary ve
tor �elds, i.e. measurable essentially bounded map-

pings, t 7! X

t

; t 2 R; X

t

2 V e
tM , and nonstationary 
ows, i.e. Lips
hitz mappings

t 7! P

t

; t 2 R; P

t

2 Diff M . Every nonstationary ve
tor �eld de�nes the 
orresponding

di�erential equation _x = X

t

(x) on M with an arbitrary initial 
ondition, x(t

0

) = x

0

. If

a solution of the di�erential equation exists for arbitrary x

0

2 M; t 2 R, i.e. if the �eld

X

t

is 
omplete, then it uniquely de�nes for t 2 R an absolutely 
ontinuous solution of the

operator di�erential equation

dP

dt

= P

t

ÆX

t

; P

t

0

= id; (0:1)
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whi
h we 
all the 
ow on M , de�ned by the nonstationary 
omplete ve
tor �eld X

t

, and

denote

P

t

=

�!

exp

t

Z

t

0

X

�

d�:

We also 
all this 
ow the right 
hronologi
al exponential of X

�

. For stationary ve
tor �elds

X

�

� X, the 
orresponding 
ows are denoted by P

t

= e

tX

. In the sequel, all ve
tor �elds

are assumed to be 
omplete. This will not restri
t the generality of our 
onsiderations.

The 
hronologi
al exponential admits an asymptoti
al expansion as a Volterra series,

�!

exp

t

Z

t

0

X

�

d� � id+

t

Z

t

0

X

�

d� + : : :+

t

Z

t

0

d�

1

�

1

Z

t

0

d�

2

: : :

Z

lim its

�

i�1

t

0

(X

�

i

Æ : : :ÆX

�

1

)d�

i

+ : : : :

For a stationary �eld, we obtain

e

(t�t

0

)X

� id+ (t� t

0

)X + : : :+

(t� t

0

)

i

i!

X

i

+ : : : :

In the sequel, we shall need the following important variation formula, whi
h represents the


hronologi
al exponential of the sum of two ve
tor �elds as a produ
t of two 
hronologi
al

exponentials,

�!

exp

t

Z

t

0

(X

�

+Y

�

)d� =

�!

exp

t

Z

t

0

X

�

d� Æ

�!

exp

t

Z

t

0

Ad

0

�

�!

exp

�

Z

t

X

�

d�

1

A

Y

�

d� =

�!

exp

t

Z

t

0

Ad

0

�

�!

exp

�

Z

t

0

X

�

d�

1

A

Y

�

d� Æ

�!

exp

t

Z

t

0

X

�

d�:

(0:2)

Di�erentiating the expression

Ad

0

�

�!

exp

�

Z

t

0

X

�

d�

1

A

Y =

�!

exp

�

Z

t

0

X

�

d� Æ Y Æ

0

�

�!

exp

�

Z

t

0

X

�

d�

1

A

�1

with respe
t to � , we obtain the equality

d

d�

Ad

0

�

�!

exp

�

Z

t

0

X

�

d�

1

A

Y = Ad

0

�

�!

exp

�

Z

t

0

X

�

d�

1

A

Æ adX

�

Y 8Y 2 V e
tM:

In other words, the expression Ad

 

�!

exp

�

R

t

0

X

�

d�

!

satis�es an equation, similar to (0.1),

where the �eld X

�

is substituted by the operator adX

�

. This remark should justify the

notation

Ad

0

�

�!

exp

�

Z

t

0

X

�

d�

1

A

=

�!

exp

�

Z

t

0

adX

�

d�; Ad

�

e

�X

�

= e

�adX

;
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whi
h is also supported by the validity of the asymptoti
 expansions

�!

exp

t

Z

t

0

adX

�

d� � id+

t

Z

t

0

adX

�

d� + : : :+

t

Z

t

0

d�

1

t

1

Z

t

0

d�

2

: : :

�

i�1

Z

t

0

(adX

�

i

Æ : : : Æ adX

�

1

)d�

i

+ : : :

e

� adX

� id+ � adX + : : :+

�

i

i!

(adX)

i

+ : : : :

In this notation, the variation formula (0.2) takes the form

�!

exp

t

Z

t

0

(X

�

+Y

�

)d� =

�!

exp

t

Z

t

0

X

�

d� Æ

�!

exp

t

Z

t

0

0

�

�!

exp

�

Z

t

adX

�

d�

1

A

Y

�

d� =

�!

exp

t

Z

t

0

0

�

�!

exp

�

Z

t

0

adX

�

d�

1

A

Y

�

d� Æ

�!

exp

t

Z

t

0

X

�

d�:

(0:3)

We shall also need the Hamiltonian version of the variation formula. Let TM; T

�

M be

tangent and 
otangent bundles of M , with 
anoni
al proje
tions denoted by one letter, �.

Let � be the 
anoni
al 1{form on T

�

M , < �

�

; v >=< �; �

�

v > 8� 2 T

�

M; v 2 T

�

(T

�

M).

The 2{form � = d� is the 
anoni
al symple
ti
 stru
ture on T

�

M . Every smooth fun
tion

h, de�ned on an open region of T

�

M , de�nes a Hamiltonian ve
tor �eld

!

h on the region

by the formula

!

h 
� = �dh:

The 
orresponding di�erential equation

_

� =

!

h (�) is the Hamiltonian system asso
iated to

the Hamiltonian H. The Poisson bra
ket of two Hmiltonians is given by the relation

fh

1

; h

2

g

def

= �(

!

h

1

;

!

h

2

) =

!

h

1

h

2

:

If the fun
tions h

i

are linear on �bres of T

�

M , h

i

(�) =< �;X

i

>; X

i

2 V e
tM; i = 1; 2,

then

fh

1

; h

2

g(�) =< �; [X

1

; X

2

℄ > :

A measurable essentially bounded family of Hamiltonians h

t

; t 2 R, will be 
alled a non-

stationary Hamiltonian. The 
orresponding Hamiltonian 
ow

�!

exp

t

R

t

0

!

h

�

d� preserves the

symple
ti
 stru
ture and satis�es the relation

�

�t

�!

exp

t

Z

t

0

!

h

�

d�g =

�!

exp

t

Z

t

0

!

h

�

d�fh

t

; gg 8g:
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Finally, the variation formula for Hamiltonian 
ows 
ould be redu
ed to the following

relations,

�!

exp

t

Z

t

0

(

!

h

�

+

!

g )d� =

�!

exp

t

Z

t

0

!

h

�

d� Æ

�!

exp

t

Z

t

0

(

��������!

�!

exp

�

Z

t

!

h

�

d�)g

�

d� =

�!

exp

t

Z

t

0

(

��������!

�!

exp

�

Z

t

0

!

h

�

d�)g

�

d� Æ

�!

exp

t

Z

t

0

!

h

�

d�

We introdu
e now some notions and formulate 
ertain fa
ts of linear symple
ti
 geometry

used in the sequel. For details 
f. [1,7,9℄.

Let � be a 2n{dimensional symple
ti
 spa
e with the skew-symmetri
 form �(�; �), for

example, the 
otangent spa
e T

�

(T

�

M). For every subspa
e S � � put S

\

= f� 2

�

�

�

�

�(S; �) = 0g, hen
e dimS + dimS

\

= 2n. The subspa
e S is 
alled isotropi
 if

S

\

� S. An n{dimensional subspa
e � � � is 
alled Lagrangian if �

\

= �. The set

of all Lagrangian subspa
es is organized into a smooth

n(n+1)

2

{dimensional manifold, the

Lagrangian Grassmannian, L(�) = f� � �

�

�

�

�

\

= �g.

The tangent spa
e T

�

L(�); � 2 L(�), is identi�ed in a natural way with the spa
e of

quadrati
 forms de�ned on the n{dimensional spa
e �. Indeed, let t 7! �

t

be a germ of

a smooth 
urve in L(�). We 
orrespond to the tangent ve
tor

d

dt

� the quadrati
 form

_

�

0

: �

0

7! �(�

0

;

d

dt

�

0

), where t 7! �

t

is a germ of a smooth 
urve in �; �

t

2 �

t

. It

is easy to show that

_

�

0

(�

0

) is 
orre
tly de�ned, i.e. it does depend on

d

dt

�

0

; �

0

, but is

independent on the 
hoi
e of the germs �

�

; �

�

.

The symple
ti
 group Sp(�) is the group of linear transformations of � preserving �,

hen
e transforming Lagrangian subspa
es into Lagrangian subspa
es. Sp(�) a
ts on L(�)

transitively, thus L(�) is a homogeneous spa
e for the group Sp(�).

Let h be a quadrati
 form (quadrati
 Hamiltonian) on �, then e

t

!

h

2 Sp(�). Put

�

t

= e

t

!

h

(�

0

), then

_

�

0

= 2h

�

�

�

�

0

. A smooth 
urve in L(�), t 7! �

t

, is 
alled monotoni
ally

nonde
reasing (nonin
reasing) if

_

�

t

� 0 (

_

�

t

� 0). The subset

M

�

0

=

n

� 2 L(�)

�

�

�

�

\

�

0

6= 0

o

� �

is 
alled the train of the Lagrangian subspa
e �

0

. M

�

0

is an algebrai
 hypersurfa
e in

L(�), smooth beyond some set of 
odimension 3 in �, hen
e M

�

0

is a pseudomanifold.

Moreover, the hypersurfa
e M

�

0


arries a natural 
oorientation, de�ned in su
h a way

that the monotoni
ally in
reasing 
urves interse
t M

�

0

in the positive dire
tion, and

monotoni
ally de
reasing 
urves | in the negative dire
tion.

Thus for every 
ontinuous 
urve t 7! �(t); t 2 [t

0

; t

1

℄, su
h that �(t

i

) =2 M

�

0

; i = 0; 1,

the interse
tion number, �(�) � M

�

0

, is de�ned, and �(�) � M

�

0

� 0 (� 0), if the 
urve

�(�) is nonde
reasing (nonin
reasing).
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The 
urve is 
alled simple if there exists � 2 L(�) su
h that �(t)

T

� = 0 8t 2 [t

0

; t

1

℄.

If the 
urve �(�) is simple, then �(�) � M

�

0

� n. Finally, if �(�) is 
losed, �(t

0

) = �(t

1

),

then the interse
tion number �(�) � M

�

0

does not depend on �

0

and is denoted Ind�(�).

This is the Maslov index of the 
losed 
urve.

x1. L{derivatives of smooth mappings

We start with some de�nitions and 
onstru
tions relevant to 
riti
al points of smooth

mappings. The exposition is 
arried out for in�nite dimensional 
ase, suÆ
iently general

for handling variational and 
ontrol problems dis
ussed further.

The di�erential of a s
alar{valued fun
tion on a Bana
h spa
e (evaluated at an arbitrary

point) is an element of the dual spa
e. In the �nite{dimensional situation we 
an make

no di�eren
e between the initial spa
e and its dual, but in the in�nite{dimensional 
ase

the dual might be less 
omprehensible than the initial spa
e. A standard example | the

spa
e L

1

[0; 1℄ of admissible 
ontrols in optimal 
ontrol problems, whi
h is very natural and

simplest possible to be 
onsidered in most situations, but its dual is pretty involved. Due

to the restri
tive nature of the fun
tionals involved in smooth 
ontrol problems, the �nal

results, if appropriately formulated, do not use the dual spa
e at all, though some 
um-

bersome analyti
al e�orts are needed for eliminating the dual spa
e in �nal formulations.

Meanwhile, a natural modi�
ation of some basi
 de�nitions makes it possible to avoid

all arti�
ial 
ompli
ations 
onne
ted with this phenomenon. The simple tri
k 
onsists in


onsidering the initial spa
e as a dual to some "a

eptable" Bana
h spa
e, in our example,


onsidering from the beginning the spa
e of 
ontrols L

1

[0; 1℄ as the dual to L

1

[0; 1℄, and

appropriately de�ning (sti�ening) the notion of the di�erential of a smooth mapping on

su
h a spa
e. Formally, we pro
eed in the following way.

Let B be a Bana
h spa
e, B

�

| its dual. We shall always suppose the natural (isometri
)

in
lusion B � B

��

.

A di�erentiable s
alar{valued fun
tion a on B

�

(a "nonlinear fun
tional") is said to be

of 
lass �{C

1

, or �{di�erentiable of 
lass C

1

, if it is of 
lass C

1

in the usual sense and

its di�erential d

x

a at an arbitrary point x 2 B, whi
h is an element of the se
ond dual,

d

x

a 2 B

��

, belongs in fa
t to B,

d

x

a 2 B(� B

��

) 8x 2 B

�

:

Equivalently, we 
an say that a is of 
lass �{C

1

if da is a 
ontinuous mapping from B

�

to

B,

da : B

�

�! B; x 7! d

x

a 2 B:

A s
alar{valued fun
tion a of 
lass �{C

1

is said to be of 
lass �{C

k

, if it is of 
lass C

k

(in

the usual sense), and for 8� 2 B

�

the s
alar valued fun
tion on B

�

,

< �; da >: B

�

�! R; x 7!< �; d

x

a >;

where < �; � > is the pairing between B

�

and B, is of 
lass �{C

k�1

(de�nition by indu
tion).
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Finally, we say that a di�erentiable mapping of 
lass C

k

(in the usual sense), � :

B

�

1

�! B

�

2

, is of 
lass �{C

k

, if for every s
alar{valued fun
tion a of 
lass �{C

k

on B

�

2

, the


omposition

a Æ � : B

�

1

�

�! B

�

2

a

�! R

is of 
lass �{C

k

on B

�

1

. We shall also say that � is �{di�erentiable of 
lass C

k

. Evidently,

the 
omposition of two �{di�erentiable mappings of 
lass C

k

is again a �{di�erentiable

mapping of 
lass C

k

. The 
hain rule for di�erentiation implies that the mapping � is of


lass �{C

k

, if every 
omposition

� Æ � : B

�

1

�

�! B

�

2

�

�! R; x 7!< �;�(x) >; 8� 2 B

2

;

is a s
alar{valued fun
tion of 
lass �{C

k

on B

�

1

.

A Bana
h manifold, modeled on a spa
e B

�

, is said to be �{smooth of 
lass C

k

, or

of 
lass �{C

k

, if the mappings B

�

�! B

�

, indu
ed by the overlapping neighborhoods of


orresponding atlases, are of 
lass �{C

k

. Between two su
h manifolds, mappings of 
lass

�{C

k

are well de�ned in an obvious way. For a �xed k, all �{C

k

manifolds and all �{C

k

mappings between them form a 
ategory. Cotangent spa
es in this 
ategory 
onsist, by

de�nition, of di�erentials of �{smooth s
alar valued fun
tions at 
orresponding points,

hen
e they are isomorphi
 to B, not to B

��

. Tangent spa
es are isomorphi
 to B

�

.

Let U be a �{smooth manifold modeled on a Bana
h spa
e B

�

, f : U �! M be a

�{smooth mapping into an n{dimensional manifold M of appropriate 
lass. A pair

(u; �); u 2 U; � 2

�

T

�

f(u)

M

�

n f0g;

will be 
alled a Lagrangian point of f if �f

0

u

= 0; where �f

0

u

is the 
omposition of the

di�erential f

0

u

: T

u

U �! T

f(u)

M with the linear fun
tional � : T

f(u)

U �! R, i.e., is the

image of � under the adjoint f

0

�

u

,

�f

0

u

def

= � Æ f

0

u

= f

0

�

u

� : T

u

U �! R:

Thus for an arbitrary pair (u; �); u 2 U; � 2 T

�

f(u)

M , we have

�f

0

u

2 T

�

u

U � B;

and, if (u; �) is a Lagrangian point, �f

0

u

is the zero element of the �bre T

�

u

U . The �rst


omponent u of every Lagrangian point (u; �) of f is a 
riti
al point of f , the se
ond


omponent � is a Lagrange multiplier asso
iated with the 
riti
al point u.

Consider the indu
ed bundle f

�

(T

�

M) over U de�ned by the mapping f : U �! M

and the 
otangent bundle T

�

M ,

f

�

(T

�

M) =

n

(u; �)

�

�

�

u 2 U; � 2 T

�

f(u)

M

o

=

[

u2U

T

�

f(u)

M:

Besides the 
anoni
al proje
tion (u; �) 7! u, it de�nes 
anoni
ally two additional mappings

f

0

�

: (u; �) 7! �f

0

u

; ' : (u; �) 7! �;

8



represented in the diagram

f

�

(T

�

M)

f

0

�

.

'

&

T

�

U T

�

M

:

Identifying U with the trivial se
tion of T

�

U; U � T

�

U , we 
an assert that the set of the

Lagrangian points of f is identi
al with the preimage of U under the mapping f

0

�

less

the trivial se
tion of f

�

(T

�

M). Furthermore, every tangent spa
e to T

�

U at an arbitrary

point of the trivial se
tion is 
anoni
ally represented as a dire
t sum of its horizontal and

verti
al subspa
es,

T

u

T

�

U = T

u

U � T

�

u

U; 8u 2 U � T

�

U:

Denote by

V er

u

: T

u

T

�

U �! T

�

u

U; u 2 U � T

�

U;

the proje
tor onto the verti
al subspa
e. Let (u; �) be a Lagrangian point of f . The linear

mapping

f

00

(u;�)

def

= V er

u

Æ (f

0

�

)

0

(u;�)

: T

(u;�)

f

�

(T

�

M)

(f

0

�

)

0

(u;�)

�! T

u

T

�

U

V er

u

�! T

�

u

U


ontains a 
omplete information about the se
ond order approximation of f at u.

Note that

ker '

0

(u;�)

� ker f

0

u

� T

u

U:

Thus f

00

(u;�)

�

�

�

ker '

0

(u;�)

is a well{de�ned mapping from ker f

0

u

to T

�

u

U . We 
all this mapping

the se
ond derivative of f at the Lagrangian point (u; �) and denote in the sequel by

D

2

(u;�)

f : ker f

0

u

�! T

�

u

U:

This de�nition needs some 
lari�
ation. At the �rst site, the natural 
hoi
e for the se
ond

derivative is the mapping (f

0

�

)

0

(u;�)

de�ned at all points (u; �) 2 f

�

(T

�

M). But su
h a

de�nition would be 
ompletely useless, sin
e, by virtue of the impli
it fun
tion theorem, in

some neighborhood of every regular point, lo
al 
oordinates 
ould be introdu
ed in whi
h

f is linear, hen
e it is senseless to 
onsider in su
h points se
ond derivatives. Con
erning

the horizontal 
omponent of the mapping (f

0

�

)

0

(u;�)

at a Lagrangian point, it is easy to see

that it 
oin
ides with the di�erential of the 
anoni
al proje
tion (u; �) 7! u and has no


onne
tions with the di�erential properties of the mapping f .

De�ne, �nally,

L

(u;�)

(f) = '

0

(u;�)

(ker f

00

(u;�)

) � T

�

(T

�

M):

The 
hoi
e of arbitrary lo
al 
oordinates in U leads to the representation

T

(u;�)

f

�

(T

�

M) = T

�

(T

�

f(u)

M)� T

u

U = T

�

(T

�

f(u)

M)� B

�

:

If lo
al 
oordinates are introdu
ed in M as well, then we obtain the representation

� = (p; f(u)); p 2 R

n�

; T

�

f(u)

M = R

n�

; T

(�;u)

f

�

(T

�

M) = R

n�

� B

�

:

9



The mappings '

0

u

and f

00

(u;�)

take the form

'

0

u

: (�; v) 7! (�; f

0

u

v); � 2 R

n�

; v 2 B

�

; f

00

(u;�)

: (�; v) 7! �f

0

u

+ pf

00

u

v; (1:1)

where pf

00

u

is the se
ond derivative at u of the �{smooth fun
tion pf : B

�

�! R. Thus the

linear mapping pf

00

u

: B

�

�! B is symmetri
 (selfadjoint). Denote

F =

n

�f

0

u

�

�

�

� 2 R

n�

o

; E =

n

pf

00

u

v

�

�

�

v 2 B

�

o

:

Note that F is the image of the tangent spa
e to the �bre of the bundle f

�

(T

�

M) under

the mapping f

00

(u;�)

. At the same time the subspa
e E depends on the 
hoi
e of the lo
al


oordinates in U . Denote

Æ

(u;�)

= dim(F \E)� dim(F \E):

The following Proposition shows that the number Æ

(u;�)

is independent on the 
oordinate


hoi
e.

Proposition 1.1. L

(u;�)

(f) is an isotropi
 subspa
e of dimension (n � Æ

(u;�)

f) in the

(2n{dimensional) tangent spa
e T

�

(T

�

M) to the 
otangent bundle T

�

M with the natural

symple
ti
 stru
ture.

Proof. First we proof the isotropy. The 
hoi
e of lo
al 
oordinates inM identi�es T

�

(T

�

M)

with R

n�

� R

n

, and the 
anoni
al symple
ti
 form � takes the form

� ((�

1

; �

1

); (�

2

; �

2

)) = �

1

�

2

� �

2

�

1

; �

i

2 R

n�

; �

i

2 R

n

:

We must prove the impli
ation

(�

i

; �

i

) 2 L

�

(f) =) �

1

�

2

= �

2

�

1

:

We have �

i

= f

0

u

v

i

, where v

i

2 B

�

; �

i

f

0

u

+ pf

00

u

v

i

= 0. Hen
e

�

1

�

2

= �

1

f

0

u

v

2

= � < v

2

; pf

00

u

v

1

>;

and the identity to be proved follows from the symmetry of the operator pf

00

u

.

Now we turn to the dimension of L

(u;�)

(f). Formula (1.1) and the symmetry of pf

00

u

imply that

ker f

00

(u;�)

� 
oker f

0

u

�E \ F � E

?

; E

?

= ker pf

00

u

= ker f

00

(u;�)

\ B

�

:

Furthermore, ker f

0

u

= F

?

. Hen
e

L

(u;�)

(f) � 
oker f

0

u

� E \ F �E

?

=E

?

\ F

?

:
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Thus

DimL

(u;�)

(f) = 
orank f

0

u

+ dimF � Æ

(u;�)

f = 
orank f

0

u

+ rank f

0

u

� Æ

(u;�)

f:

If dimL

(u;�)

(f) = n, then L

(u;�)

(f) is a Lagrangian subspa
e in T

�

(T

�

M). In this 
ase

we 
all L

(u;�)

the Lagrangian derivative of f , or L{derivative, at the Lagrangian point

(u; �).

The L{derivative, i.e., the image im'

0

(u;�)

�

�

�

ker f

00

(u;�)

, 
ould be 
onsidered as a dual obje
t

to the se
ond derivative. Note that

ker D

2

(u;�)

f = ker '

0

(u;�)

\ ker f

00

(u;�)

:

In 
oordinates we obtain

D

2

(u;�)

f : v 7! pf

00

u

v; v 2 ker f

0

u

:

The following assertion is a result of dire
t 
al
ulations.

Lemma. The relations (1), (2) below are equivalent:

(1) ker D

2

(u;�)

f = 0

(2) imf

00

(u;�)

= T

�

u

U:

Suppose that D

2

(u;�)

f is inje
tive and U is �nite{dimensional. Then the impli
it fun
tion

theorem implies that the germ at (u; �) of the set of Lagrangian points is a germ of a smooth

n{dimensional manifold. The restri
tion of ' on this germ is a Lagrange immersion into

T

�

M , and L

(u;�)

(f) is the tangent spa
e to the obtained germ of a Lagrange submanifold.

Finally, we 
all the Hessian of the mapping f at (u; �) the quadrati
 form

Hess

(u;�)

f : ker f

0

u

�! R; Hess

(u;�)

f(v) =< v;D

2

(u;�)

fv > :

Negative and positive indi
es of the quadrati
 formHess

(u;�)

f(v)*, (whi
h are nonnegative

integers or +1) are important 
hara
teristi
s of the Lagrangian point (u; �). In parti
ular,

for the optimization problems they give essential information about the 
on�guration of

the image of a small neighborhood of the point under f . We formulate here only the

simplest assertion of this kind. For deeper results in this respe
t and parti
ularities 
f.

[2,5,6℄.

Proposition 1.2. Let e
 be a non
onstant germ of a smooth 
urve on M with the initial

point f(u). Assume that im 
 \ f(O

u

) = f(u) for a 
ertain representative 
 of the germ e


*The negative (positive) index of a quadrati
 form Q on a linear spa
e B; ind

�

Q; (ind

+

Q), is the

maximal dimension of subspa
es in B where Q is negative (positive).
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and 
ertain neighborhood O

u

of u in U . Then there exists a Lagrangian point (u; �) su
h

that

< �; _
(0) >� 0 and ind

�

Hess

(u;�)

f < 
orank f

0

u

:

There is an intimate tie between the indi
es of the Hessian and the Lagrangian deriv-

ative. Certainly, the Lagrangian derivative at a �xed point 
ould not give any estimates

for the indi
es of the Hessian in that point, but it is possible to express the in
rements of

the indi
es along a one{parametri
 family of Lagrangian points through the Maslov index

of the 
orresponding family of Lagrangian derivatives. Cf. [7℄ and x4 of this paper.

We emphasize that the isotropi
 subspa
e L

(u;�)

(f) is 
alled L{derivative only in 
ase

when its dimension is n, i.e. when it is a Lagrangian subspa
e. This is always the 
ase if

U is �nite{dimensional, but by far not always in in�nite{dimensional 
ase. It turns out

that if one of the indi
es of Hess

(u;�)

f is �nite then L

(u;�)

(f) 
ould always be extended

in a natural way to an n{dimensional Lagrangian subspa
e, whi
h should be 
alled the

L{derivative. Below we give a pre
ise formulation of this result. In this paper the result

is not used, therefore the proof will be given in subsequent publi
ations.

Let (u; �) be a Lagrangian point of f and N be a germ of a submanifold in U at u,

hen
e (u; �) is a Lagrangian point of f

�

�

�

N

. If N is �nite{dimensional then L

(u;�)

(f

�

�

�

N

)

is a Lagrangian subspa
e. Denote by N the set of all su
h germs partially ordered by

in
lusion. Then

n

L

(u;�)

(f

�

�

�

N

)

o

N2N

is a generalized sequen
e of points of the Lagrangian

Grassmannian L(T

�

(T

�

M)).

Theorem. The limit N -limL

(u;�)

(f

�

�

�

N

) exists if one of the indi
es of Hess

(u;�)

f is �nite.

This limit is the pre
ise de�nition of the L{derivative at the Lagrangian point (u; �). It


ontains the isotropi
 subspa
e L

(u;�)

(f). But it is not enough to prove the existen
e of

the limit, we must 
ompute it. Introdu
ing lo
al 
oordinates, we 
an assume that U is a

Bana
h spa
e and u its origin. Let U

0

� U be an arbitrary linear subspa
e whi
h is dense

in U , and N

0

be the set of all �nite{dimensional subspa
es N

0

� U

0

, partially ordered by

in
lusion. Thus, N

0

� N . The following assertion is an essential addition to the Theorem,

making possible to expli
itly 
ompute the limit indi
ated in the Theorem.

Proposition 1.3. Under the hypothesis of the Theorem the limit

N

0

-limL

(u;�)

(f

�

�

�

N

0

) = N -limL

(u;�)

(f

�

�

�

N

):

Remark. A

ording to the de�nition of the L{derivative we have

T

�

(imf

0

u

)

?

� L

(u;�)

(f):

In parti
ular,

T

�

(R�) � L

(u;�)

(f):
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Thus the subspa
e L

(u;�)

(f) 
ontains a one{dimensional subspa
e whi
h depends only on �

and not on f . This makes possible to make all our 
onstru
tions in the 2(n�1){dimensional

symple
ti
 spa
e T

�

(R�)

\

=T

�

(R�) and not in the 2n{dimensional spa
e T

�

(T

�

M), 
on-

sidering L

(u;�)

(f) as a ( (n� 1){dimensional ) Lagrangian subspa
e in T

�

(R�)

\

=T

�

(R�).

Certainly, the same redu
tion 
ould be des
ribed in the language of 
onta
t geometry, 
on-

sidering not T

�

M but its proje
tivization PT

�

M , whi
h possesses the natural stru
ture

of a (2n � 1){dimensional 
onta
t manifold. In a 
ertain sense the 
onta
t formulation

is more natural, though we shall not use it here for the following reasons. Even 
onsid-

ering PT

�

M instead of T

�

M , we would be led to 
onsider homogeneous 
oordinates on

proje
tive spa
es PT

�

q

M , thus 
onstantly returning to the same spa
e T

�

M .

The following assertion formulates the "
hain rule" for L{derivatives. It easily follows

from the de�nitions and has many useful 
onsequen
es.

Proposition 1.4. Suppose f

i

: U �! M

i

are �{smooth mappings, u 2 U; �

i

2

T

�

f

i

(u)

M

i

, i = 1; 2; 3. Suppose further that (u; (��

0

; �

1

)) is a Lagrangian point for the

mapping (f

0

; f

1

) : U �!M

0

�M

1

, (u; (��

1

; �

2

)) is a Lagrangian point for (f

1

; f

2

) : U �!

M

1

�M

2

, and

(��

1

; �

2

) 2 L

(u;(��

0

;�

1

))

(f

0

; f

1

) � T

��

0

(T

�

M

0

)� T

�

1

(T

�

M

1

);

(��

0

; �

1

) 2 L

(u;(��

1

;�

2

))

(f

1

; f

2

) � T

��

1

(T

�

M

1

)� T

�

2

(T

�

M

2

);

then (u; (��

2

; �

0

)) is a Lagrangian point of the mapping (f

2

; f

0

) : U �! M

2

�M

0

, and

(��

2

; �

0

) 2 L

(u;(��

2

;�

0

))

(f

2

; f

0

).

Suppose now that M

i

=M; i = 1; 2; 3; and that the proje
tions

�

(0;1)

i

: (��

0

; �

1

) 7! �

i

; (��

0

; �

1

) 2 L

(u;(��

0

;�

1

))

(f

0

; f

1

); i = 0; 1

�

(1;2)

j

: (��

1

; �

2

) 7! �

j

; (��

1

; �

2

) 2 L

(u;(��

1

;�

2

))

(f

1

; f

2

); j = 1; 2;

are invertible mappings of L

(u;(��

0

;�

1

))

on T

�

i

(T

�

M); i = 0; 1, and of L

(u;(��

1

;�

2

))

on

T

�

j

(T

�

M); j = 1; 2, respe
tively. Then, Proposition 1.3 implies that the mappings

�

(2;0)

k

: (��

2

; �

0

) 7! �

k

; (��

2

; �

0

) 2 L

(u;(��

2

;�

0

))

(f

2

; f

0

); k = 2; 0;

are also invertible.

Set

�

ij

= �

(i;j)

i

Æ (�

(i;j)

j

)

�1

; �

ji

= �

�1

ij

:

The property for the subspa
es L

(u;(��

i

;�

j

))

(f

i

; f

j

) to be Lagrangian is equivalent to the

fa
t that the mappings �

ij

: T

�

j

(T

�

M) �! T

�

i

(T

�

M) are symple
ti
. Proposition 1.3

also implies the important 
omposition rule

�

20

= �

21

Æ �

10

:

We shall meet below 
on
rete appli
ations of this rule to 
ontrol systems 
onsidering the

boundary{value mappings on admissible 
urves, 
f. x3.

13



The proje
tions �

(0;1)

i

; i = 0; 1, are invertible only if f

0

and f

1

are submersions

at u. The symple
ti
 mapping �

10

whi
h represents the 2n{dimensional L{derivative

of the mapping (f

0

; f

1

) represents also the n{dimensional L{derivative of the mapping

f

1

�

�

�

f

0

=
onst

, the restri
tion of f

1

to the level of f

0

through u. Dire
t 
al
ulations imply

L

(u;�

1

)

(f

1

�

�

�

f

0

=
onst

) = �

10

(T

�

0

(T

�

f

0

(u)

M)).

x2. Smooth 
ontrol systems and basi


stru
tures of Differential Geometry

1. De�nition of smooth 
ontrol systems. Suppose a smooth (lo
ally trivial) �bre

bundle over a smooth n{dimensional manifold M is given,

pr : W �!M; (2:1)

with the typi
al �bre U , a smooth r{dimensional manifold. Furthermore, suppose an

arbitrary smooth �brewise mapping of W into the tangent bundle TM is de�ned over the

identity mapping of M ,

f :W �! TM; f(W

x

) � T

x

M 8x 2M ; W

x

= pr

�1

fxg: (2:2)

We 
all the data (1.1){(1.2) a smooth 
ontrol system, (2.1) (or W ) is 
alled the 
ontrol

spa
e of the system, the typi
al �bre U is 
alled the spa
e of 
ontrol parameters; M is the

state spa
e, the 
otangent bundle T

�

M is the phase spa
e of the system.

Morphisms between two 
ontrol systems f

i

: W

i

�! TM

i

; i = 1; 2, are, by de�nition,

arbitrary 
ommutative diagrams

W

1

f

1

�! TM

1

� # F

�

#

W

2

f

2

�! TM

2

;

(2:3)

where � is a smooth �brewise mapping of 
ontrol spa
es, F : M

1

�! M

2

is a di�eomor-

phism. We denote the morphism (2.3) by (�; F

�

). If (�

0

; F

0

�

) is a se
ond morphism,

W

2

f

2

�! TM

2

�

0

# F

0

�

#

W

3

f

3

�! TM

3

;

then their 
omposition is de�ned, (�

0

Æ �; F

0

�

Æ F

�

), whi
h again is a morphism between

f

1

: W

1

�! TM

1

, and f

3

: W

3

�! TM

3

. The identity morphisms are de�ned in an

obvious way. Thus a 
ategory of smooth 
ontrol systems is introdu
ed.

If � in (2.3) is a di�eomorphism and F

�

= id; (M

1

= M

2

), then the morphism (�; id)

is 
alled a feedba
k transformation, and the 
orresponding 
ontrol systems are said to be

feedba
k equivalent. Feedba
k transformations are smooth �bre transformations of the


ontrol spa
e over the identity map. If W

1

= W

2

, then the feedba
k transformations are

14



also 
alled guage transformations. Two feedba
k equivalent 
ontrol systems are equivalent

in our 
ategory, hen
e the given de�nition of a 
ontrol system is "feedba
k{invariant".

A

ording to the usual "state{invariant" de�nition, a smooth 
ontrol system,

_x = f(x; u) 2 T

x

M; (x; u) 2M � U; (2:4)

is a family of smooth ve
tor �elds on the state manifoldM , indexed by a 
ontrol parameter

u 2 U . The 
ontrol spa
e is the dire
t produ
tW =M�U with the 
anoni
al trivialization,

pr : M � U �!M; (x; u) 7! x; (2:5)

and the mapping W �! TM is given by f . Evidently, this de�nition, though invariant

under 
oordinate transformations in M , is not feedba
k{invariant.

A measurable essentially bounded 
urve in the 
ontrol spa
e,*

� : [0; t℄ �!W; (2:6)

is 
alled an admissible 
ontrol spa
e traje
tory of the system (2.1){(2.2) if its proje
tion

on M ,

x = pr � : [0; t℄ �!M; (2:7)

is a Lips
hitz 
urve in M satisfying for almost all � the di�erential equation

dx

d�

(�) = f Æ �(�); 0 � � � t: (2:8)

The 
urve x(�) is 
alled an admissible state spa
e traje
tory. Admissible 
ontrol spa
e

traje
tories will be also 
alled admissible 
ontrols.

The set of all measurable essentially bounded mappings w will be 
onsidered as a spa
e

with the following natural topology. Consider a metri
 �, 
ompatible with the topology of

W , and de�ne the "{neighborhood of a given ew by the relation

O("; ew) =

�

w

�

�

�

ess sup

0���t

�(w(�); ew(�)) = k �(w; ew) k

1

< "

�

:

Sin
e the 
losure of the image of ~w is 
ompa
t, the introdu
ed topology is independent on

the 
hoi
e of the metri
.

Denote by 


t

the spa
e of all admissible 
ontrols (2.6), (
onsidered as a subspa
e of the

spa
e of all measurable essentially bounded 
urves [0; t℄ �!W ).

Proposition 2.1 The spa
e 


t

of all admissible 
ontrols 
an be given, in a natural way,

the stru
ture of a �{smooth Bana
h manifold modeled on the dire
t produ
t

R

n

� (L

r

1

[0; t℄)

�

= R

n

� L

r

1

[0; t℄; n = dimM; r = dimU:

*A measurable mapping w : [0; t℄ �! W is said to be essentially bounded if the 
losure of the image

under w of a subset of [0; t℄ of full measure is 
ompa
t. For simpli
ity, we shall assume in the sequel that

the 
losure of the image of w is 
ompa
t.

15



Proof. First we proof that the spa
e of essentially bounded mappings u : [0; t℄ �! U is, in

a natural way, a �{smooth Bana
h manifold modeled on L

r

1

[0; t℄.

For this we de�ne 
oordinate mappings of "{neighborhoods of an arbitrary element

eu : [0; t℄ �! U into L

r

1

[0; t℄, assuming that a Riemannian metri
 � is �xed on U .

Denote by Q the (
ompa
t) 
losure of the image of eu and 
onsider a �nite 
over of Q

by "{balls B

"

(p

i

); i = 1; : : : ; s, 
entered at p

i

2 Q �

s

S

�=1

B

"

(p

�

) = B. Set " small enough

to se
ure the following two 
onditions.

(1) The exponential mapping,

exp : TU �! U � U;

is invertible on

S

p2Q

(p;B

"

(p)) � Q�B,

exp

�1

:

[

p2Q

(p;B

"

(p)) �!

[

p2Q

T

p

U:

(2) The tangent subbundles TB

"

(p

i

) � TU; i = 1; : : : ; s; are trivial, with trivializa-

tions

�

i

: TB

"

(p

i

) �! R

r

:

Introdu
e the (measurable) mapping

� : TB �! R

r

; �(z) = �

i

(z); i = min

�

n

�

�

�

�

z 2 TB; pr(z) 2 B

"

(p

�

)

o

:

For every measurable 
urve u(�); 0 � � � t, in the "{neighborhood of eu, u(�) 2 B

"

(eu(�))

0 � � � t, we 
an de�ne a measurable 
urve v(�); 0 � � � t, in R

r

a

ording to the


orresponden
e

u(�) 7! � Æ exp

�1

(eu(�); u(�)) = v(�) 2 R

r

;

whi
h is an inje
tion and satis�es the relation

ess sup

0���t

jv(�)j = k v k

1

� Æ(")! 0 ("! 0):

Conversely, every measurable 
urve v(�); 0 � � � t, in R

r

, satisfying the relation k v k

1

�

Æ; with Æ suÆ
iently small, 
ould be obtained in this way. Indeed, denote the restri
tion

of � to T

p

B; p 2 Q, by �

p

. Then

u(�) = exp Æ �

�1

eu(�)

v(�) = (� Æ exp

�1

)

�1

v(�) 2 B

"

(eu(�)):

From here the assertion is easily dedu
ed. We now turn to the proof of the Proposition.

We shall show that there is a natural one{to{one 
orresponden
e between admissible


ontrols, suÆ
iently 
lose to a given admissible 
ontrol

e

�, and arbitrary pairs (x(0); u),

where x(0) is suÆ
iently 
lose to the initial 
ondition ex(0) = pr

e

�(0) and u : [0; t℄ �! U

16



is suÆ
iently 
lose (in the ess sup topology) to the mapping eu : [0; t℄ �! U 
orresponding

to

e

�.

To de�ne the 
orresponden
e 
onsider the proje
tion

ex(�) = pr

e

�(�); � 2 [0; t℄;

and take a "tubular" "{neighborhood of ex,

T : [0; t℄�B

"

�!M; T (�; 0) = ex(�); � 2 [0; t℄; (2:9)

where B

"

� R

n

is an "{ball 
entered at the origin, T is a di�eomorphism for every �xed

� , Lips
hitz in � ,

T (�; �) = T

�

: B

"

�!M ; x = T

�

(q); q = T

�1

�

(x); q 2 B

"

; x 2 T

�

(B

"

):

Sin
e [0; t℄�B

"

is 
ontra
tible, the indu
ed bundle T

�

(W ) is trivial,

T

�

(W ) =

[

(�;q)

�

(�; q);W

T (�;q)

�

� ([0; t℄�B

"

)� U; (�; q) 2 [0; t℄� B

"

:

Every trivialization

# : ([0; t℄� B

"

)� U �! T

�

(W )

generates a 
ontinuous family of di�eomorphisms

#(�; q) : U �!W

T (�;q)

; � 2 [0; t℄; q 2 B

"

; u 2 U;

smooth in q and Lips
hitz in � . Introdu
e the mapping

(�; x; u) 7! f

�

(x; u)

def

= f Æ #(�; T

�1

�

(x))(u); � 2 [0; t℄; x 2 T

�

B; u 2 U;

whi
h is smooth in x; u and Lips
hitz in � .

Every admissible state spa
e traje
tory x(�) = pr �(�); 0 � � � t, in the tubular

neighborhood (2.9) of ex, x(�) 2 T (�; B

"

), is a solution of the equation

dx

d�

= f

�

(x; u(�)); 0 � � � t; (2:10)

where u(�) is uniquely de�ned on [0; t℄, (up to a set of measure zero), by the relation

u(�) = #

�1

(�; T

�1

�

(x(�)))(�(�)); 0 � � � t: (2:11)

For any preassigned Æ > 0, all suÆ
iently small " > 0, and all admissible 
ontrols �,

suÆ
iently 
lose (in the ess sup topology) to

e

�, the inequality k �(u; eu) k

1

< Æ holds,

where eu 
orresponds to

e

� a

ording to (2.11). Conversely, for every u(�), satisfying the

last inequality for a suÆ
iently small Æ, there exists a solution x(�); 0 � � � t, of the

equation (2.10) with the initial 
ondition jx(0)� ex(0)j < Æ. This solution is an admissible

17



state spa
e traje
tory 
orresponding to the admissible 
ontrol spa
e traje
tory �, obtained

by inverting the relation (2.11),

�(�) = #(�; T

�1

�

(x(�)))(u(�)); 0 � � � t:

� is arbitrarily 
lose to

e

� for suÆ
iently small Æ > 0. Thus, every pair

(x(0); u); u : [0; t℄ �! U; k �(u; eu) k

1

< Æ; jx(0)� ex(0)j < Æ;

uniquely de�nes, for suÆ
iently small Æ, an admissible 
ontrol in a 
ertain neighborhood

of

e

�, and all su
h 
ontrols 
ould be obtained in this way. This proves the Proposition.

De�nition of smooth 
ontrol systems introdu
ed here is general enough to in
lude as

spe
ial 
ases basi
 di�erential{geometri
 stru
tures. Below we give several examples.

An extensive and important 
lass of 
ontrol systems is de�ned by (lo
ally trivial) smooth

subbundles of the tangent bundle TM , 
onsidered as 
ontrol spa
esW , and the 
orrespond-

ing in
lusion maps

f :W � TM:

Many standard geometri
 stru
tures are redu
ed to su
h systems, the stru
ture type de-

pending on the 
hoi
e of the typi
al �bre U of the 
ontrol spa
e whi
h, in this 
ase, is a

submanifold of R

n

,

U � R

n

; n = dimM:

(1) U is an ellipsoid with 
enter at the origin. We obtain the Riemannian geometry.

Admissible traje
tories in the state spa
e are arbitrary Lips
hitz 
urves x(t) of

length t, parametrized by the ar
 length.

(2) U is a strongly 
onvex body in R

n

, symmetri
 with respe
t to the origin. This is

the 
ase of the Finsler geometry.

(3) U is a hyperboloid, symmetri
 with respe
t to the origin | the 
ase of pseudo{

Riemannian geometry.

(4) U is a linear subspa
e in R

n

of an arbitrary dimension. We 
ome to the theory

of distributions (in the di�erential{geometri
 sense). Admissible 
urves are the

integral 
urves of the distribution.

(5) U is the interse
tion of an ellipsoid 
entered at the origin with a linear subspa
e.

We obtain the sub{Riemannian geometry.

(6) The "aÆne" versions (i.e. translates with respe
t to the origin) of the stru
tures

(1){(5). Though not very popular in geometry, they are of utmost importan
e in

appli
ations to Me
hani
s and Mathemati
al Physi
s.

Examples (1){(6) 
ould be generalized in the following way. Suppose the 
ontrol spa
e

(2.1) is a (lo
ally trivial) subbundle of an arbitrary ve
tor bundle over M , E �!M , with

the typi
al �bre 
oin
iding with one of the above mentioned types (1){(6), and f in (2.2)

is the restri
tion on W of a 
ertain �brewise mapping E �! TM , linear on �bres; in

the examples 
onsidered f was an embedding. These broader 
lasses of systems in
lude

"singular" versions of geometri
 stru
tures (1){(6) with degenerations at 
ertain points.
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2. The boundary{value mapping. The mapping

F

�

: 


t

�!M; F

�

(�) = pr Æ �(�);

whi
h evaluates the admissible state{spa
e traje
tory x = pr Æ � at the moment � , is a

�{smooth submersion for 8� 2 [0; t℄. At the same time, the boundary{value mapping

(F

0

; F

t

) : 


t

�!M �M; (F

0

; F

t

)(�) = (F

0

(�); F

t

(�))

is, in general, not a submersion. Criti
al points of boundary{value mappings are 
alled

extremal 
ontrols of the 
ontrol system.

Denote by 


t

x

0

the set of admissible 
ontrols � 2 


t

subje
t to the 
ondition x(0) =

prÆ�(0) = x

0

. In other words, 


t

x

0

is the level set over the point x

0

2M of the submersion

F

0

. Evidently, 


t

x

0

is a �{smooth Bana
h manifold modeled on L

r

1

[0; t℄.

We introdu
e the endpoint mapping

F

0t

= F

t

�

�

�




t

x

0

: 


t

x

0

�!M:

Criti
al points of F

0t

are exa
tly the extremal 
ontrols in 


t

x

0

.

Let � be the natural symple
ti
 form on T

�

M and put

H(�; z) = �f(z)

def

= � Æ f(z); z 2 W; � 2 T

�

pr(z)

M:

H is a smooth fun
tion on the dire
t produ
t of the �bred manifolds W; T

�

M over M .

We 
all it the Hamiltonian of the 
ontrol system (2.1){(2.2).

Proposition 2.2. The triple

(�; (��

0

; �

t

)); � 2 


t

; �

0

2 T

�

pr �(0)

M; �

t

2 T

�

pr �(t)

M

is a Lagrangian point of the boundary value mapping (F

0

; F

t

) i� there exists a Lips
hitz


urve

� 7! �

�

2 T

�

pr �(�)

M; � 2 [0; t℄;

satisfying the 
ondition

j

�

2

�

d�

�

d�


�

�

= �dH;

where j

1

; j

2

are the natural proje
tions,

W � T

�

M

M

j

1

.

j

2

&

W T

�

M:
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Proof. If the 
urve � 7! �

�

exists then it is unique (for a given Lagrangian point). Indeed,

a

ording to Proposition 2.1, (see (2.10)), for an appropriate trivialization of W along the

traje
tory pr � the admissible 
ontrol � is represented as � 7! (eu(�); ex(�)) 2 U �M; and

the 
ontrols 
lose to � are exa
tly the solutions of the equation

dx

d�

= f

�

(x; u(�)); 0 � � � t; u 2 U; x 2M;


lose to (eu(�); ex(�)).

The Lips
hitz 
urve � 7! �

�

2 T

�

ex(�)

M satis�es the assumptions of the Proposition 2.2

if and only if it satis�es the equations

d�

�

d�

=

!

H

�

(�

�

; eu(�)); (2:12)

�H

�

�u

(�

�

; eu(�)) = 0; (2:13)

where � 7!

!

H

�

(�; u) is the Hamiltonian ve
tor �eld on T

�

M 
orresponding to the Hamil-

tonian

� 7! �f

�

(x; u) = H

�

(�; u); � 2 T

�

x

M; x 2M:

To prove the Proposition, we shall 
ompute expli
itly the di�erential of the mapping F

t

,

using the variation formula, 
f. Introdu
tion. We have

F

t

(x

0

; u(�)) =x

0

�!

exp

Z

t

0

f

�

(�; u(�))d� =

x

0

�!

exp

Z

t

0

e

f

�

d� Æ

�!

exp

Z

t

0

�!

exp

Z

�

t

ad

e

f

�

d�(f

�

(�; u(�))�

e

f

�

)d�;

where

e

f

�

(x) = f

�

(x; eu(�)). Thus,

�F

0

t

�

�

�

eu

(Æu; Æx

0

) =

Z

t

0

�

�!

exp

Z

�

t

ad

e

f

�

d�

�f

�

�u

�

�

�

eu(�)

Æu(�)d� + �(

�!

exp

Z

t

0

e

f

�

d�)

�

Æx

0

=

Z

t

0

�!

exp

Z

�

t

!

e

H

�

d�

�H

�

�u

(�; eu(�))Æu(�)d� + �(

�!

exp

Z

t

0

e

f

�

d�)

�

Æx

0

;

where

e

H

�

(�) = H

�

(�; eu(�)). Hen
e,

�

t

F

0

t

�

�

�

eu

(Æu; Æx

0

) =

Z

t

0

�H

�

�u

(�

�

; eu(�))Æu(�)d� + �

0

Æx

0

;

where � 7! �

�

satis�es (2.12). The equality �

t

F

0

t

�

�

�

~u

� �

0

= 0 implies (2.13).

The 
urves � 7! (�(�); �

�

) in Proposition 2.2 will be 
alled extremals.
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x3. L{Derivatives of Endpoint Mappings. Regular Extremals

We preserve the notations of the previous se
tion. Put

g

�

(�; u) = �(

�!

exp

�

Z

t

ad

e

f

�

d�(f

�

(�; u)�

e

f

�

)):

All Lagrangian points (�

0

; �

0

t

) of the mapping F

0t

, suÆ
iently 
lose to (�; �

t

), are 
hara
-

terized by the 
ondition: there exists a Lips
hitz 
urve � 7! �

0

�

2 T

�

x

0

(�)

M su
h that

_

�

0

�

=

!

g

�

(�

0

�

; u

0

(�));

�

�u

g

�

((�

0

�

; u

0

(�)) = 0; (3:1)

where �

0

(�) = (x

0

(�); u

0

(�)); x

0

(0) = ex(t). Note also, that g

�

�

�

�

u=eu(�)

� 0.

Linearising (3.1), we obtain

Proposition 3.1. The relations

�

t

2 L

(�;�

t

)

(F

0t

) � T

�

t

(T

�

M)

are equivalent to the relations:

there exist 
urves � 7! �

�

2 T

�

t

(T

�

M); � 7! v(�) 2 T

eu(�)

U su
h that

_�

�

=

�

�u

!

g

�

v(�);

�

2

g

�

�u

2

(v(�); �) = � < d

�

�

(

�g

�

�u

�

�

�

eu(�)

�); �

�

>;

�

0

2 T

�

t

(T

�

ex(t)

M); 0 � � � t:

The last two equations 
an be written in a more symmetri
 form as

_�

�

=

�

!

g

�

�u

v(�);

�

2

g

�

�u

2

(v(�); �) = �(

�

!

g

�

�u

�; �

�

) (3:2)

In x1, from general 
onsiderations, we derived that L

(�;�

�

)

(F

0t

) is an isotropi
 spa
e. This

follows easily also from (3.2). Indeed,

�(�

1

t

; �

2

t

) =

t

Z

0

d

d�

�(�

1

�

; �

2

�

)d� ;

d

d�

�(�

1

�

; �

2

�

) = �(

�

!

g

�

�u

v

1

(�); �

2

�

) + �(�

1

�

;

�

!

g

�

�u

v

2

(�)) =

�

2

g

�

�u

2

(v

2

(�); v

1

(�))�

�

2

g

�

�u

2

(v

1

(�); v

2

(�)) = 0:

We use further the following notation:

�

2

g

�

�u

2

(�; �) denotes a symmetri
 bilinear form on

T

eu(�)

U ; the 
orresponding quadrati
 form is denoted by

�

2

g

�

�u

2

(�). Furthermore,

21



�

2

g

�

�u

2

: T

eu(�)

U �! T

�

~u(�)

U is a selfadjoint linear mapping. If it is nondegenerate, then

the mapping

�

�

2

g

�

�u

2

�

�1

: T

�

eu(�)

U �! T

eu(�)

U is de�ned and is also selfadjoint. The 
orre-

sponding quadrati
 form on T

�

eu(�)

U is denoted by

�

�

2

g

�

�u

2

�

�1

(�). Observe also that the

expression

�

k

g

�

�u

k

�

�

�

�

�

=

�

k

�u

k

�

�

f

�

; k = 1; 2; : : : (3:3)

is the k{th derivative of the fun
tion �f , restri
ted on the �bre W

ex(�)

of the bundle W .

The �rst derivative has an invariant meaning, independent on the lo
al trivialization of W

and on the 
hoi
e of 
oordinates in the typi
al �bre. The �rst derivative vanishes along

the extremals, hen
e at these points the se
ond derivative has an invariant meaning, whi
h

is the Hessian of the fun
tion u 7! �

�

f

�

(ex(�); u) at the point eu(�).

An extremal � 7! (�(�); �

�

) is 
alled regular if the quadrati
 form

�

2

�u

2

�

�

f

�

�

�

�

eu(�)

is

nondegenerate at every � 2 [0; t℄. The following proposition is an evident 
onsequen
e of

the relations (3.2).

Proposition 3.2. Assume � 7! (�(�); �

�

) is a regular extremal. Then the relation �

t

2

L

(�;�

t

)

(F

t

) is equivalent to the requirement that the solution �

�

; 0 � � � t, of the linear

Hamiltonian system on T

�

t

(T

�

M) with the nonstationary quadrati
 Hamiltonian

q

�

(�) = �

1

2

�

�

2

g

�

�u

2

�

�1

 

�(

�

!

g

�

�u

�; �)

!

; � 2 T

�

t

(T

�

M);

and the "end{
ondition", �

t

satis�es the "initial 
ondition" �

0

2 T

�

t

(T

�

ex(t)

M).

Corollary. If the Lagrangian point (�; �

t

) de�nes a regular extremal, then L

(�;�

t

)

(F

0t

) is

a Lagrangian subspa
e, hen
e an L{derivative of the mapping F

0t

at (�; �

t

).

In the sequel only regular extremals will be 
onsidered.

Put

D =

�

(w; �) 2W�

M

(T

�

M)

�

�

�

�

�u

(�f)

�

�

�

w

= 0;

�

2

�u

2

(�f)

�

�

�

w

is invertible.

�

Proposition 3.3

(1) All regular extremals are 
ontained in D.

(2) D is a smooth submanifold of dimension 2n.

(3) Through every point of D passes a unique 
ontinuous regular extremal.

Proof.

(1) is evident.

(2) follows from impli
it fun
tion theorem.

(3) follows from impli
it fun
tion theorem and the relations (2.12), (2.13).
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The mapping ' : (w; �) 7! �; (w; �) 2 D; is lo
ally one{to{one, and its image, D

r

, (pos-

sibly empty), is open in T

�

M . For many important problems, whi
h in
lude all examples

of x2, this mapping is globally one{to{one, hen
e is a di�eomorphism. In this 
ase the

smooth fun
tion is de�ned,

h(�) = �f('

�1

(�)); � 2 D

r

;

whi
h will be 
alled the master{Hamiltonian of the 
orresponding 
ontrol system. Evi-

dently, the restri
tions of h to �bres D

T

T

�

x

M are positively homogeneous fun
tions of

degree one. If the master{Hamiltonian exists, then the regular extremals are exa
tly the


urves � 7! ('

�1

(�

�

); �

�

), where �

�

is an arbitrary traje
tory of the Hamiltonian system

_

� =

!

h(�); � 2 D

r

:

All regular extremals are smooth.

We now des
ribe the domains D

r

and the master{Hamiltonians for 
ontrol systems (1)

| (6) enumerated in x2. The 
orresponding 
omputations are straightforward. For Rie-

mannian geometry we have D

r

= T

�

M nM , and the restri
tion of the master{Hamiltonian,

h

�

�

�

T

�

x

M

is the square root of a positive quadrati
 form on T

�

x

M . For the Finsler stru
ture, D

r

again 
oin
ides with T

�

M nM , and h

�

�

�

T

�

x

M

is the support fun
tion to the unit Finsler ball

in T

x

M , hen
e, is 
onvex. For pseudo{Riemannian geometry of a given signature, h

�

�

�

T

�

x

M

is the square root of a quadrati
 form of the same signature, D

r

T

T

�

x

M is the positive


one of the quadrati
 form. For a distribution, D

r

= ;. Finally, in 
ase of sub{Riemannian

geometry we have D

r

T

T

�

x

M = T

�

x

M n (spanW

x

)

?

, the master{Hamiltonian h

�

�

�

T

�

x

M

is the

square root of a nonnegative quadrati
 form, with kernel equal to (spanW

x

)

?

. For the

"aÆne versions" of the 
onsidered stru
tures the domains D

r

remain un
hanged, and to

the Hamiltonians s
alar fun
tions are added, whi
h are linear on �bres.

Returning to the L{derivative, we note that, for regular extremals, the proje
tion of the

Lagrangian subspa
e

L

(�;(��

0

;�

t

))

(F

0

; F

t

) � T

�

0

(T

�

M)� T

�

t

(T

�

M)

onto the fa
tors in the right{hand side is one{to{one. Thus we are in a situation dis
ussed

at the end of x1. Hen
e the symple
ti
 mappings are de�ned, �

t

1

t

0

: T

�

0

(T

�

M) �!

T

�

t

(T

�

M), satisfying the 
onditions

�

t

2

t

0

= �

t

2

t

1

Æ �

t

1

t

0

; L

(�;�

t

)

(F

0t

) = �

t0

(T

�

0

(T

�

q

0

M)):

It is easily seen that �

t

1

t

0

=

�

e

(t

1

�t

0

)

!

h

�

�

, where h is the master{Hamiltonian.
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x4. Ja
obi Curves

For an arbitrary � 2 T

�

M 
onsider the hyperplane (R�)

\

in the symple
ti
 spa
e

T

�

(T

�

M)y and 
onsider the fa
tor spa
e �

�

= T

�

(T

�

M)=(R�)

\

; whi
h is a symple
ti


spa
e of dimension 2(n� 1). Let L(�

�

) be the 
orresponding Lagrangian Grassmannian,

the manifold of the Lagrangian subspa
es in �

�

. At the same time L(�

�

) is the manifold

of Lagrangian subspa
es in T

�

(T

�

M) 
ontaining �.

Let � 7! (

e

�(�); �

�

) be a regular extremal, ex(�) = pr

e

�(�); 0 � � � t. Denote by

F

�;t

: 


t��

ex(�)

�!M the end{point mapping, de�ned on admissible state spa
e traje
tories,

starting at ex(�). For every � 2 [0; t℄ the L{derivative L

(�;�

t

)

(F

�;t

) 2 L(�

�

t

) is de�ned.

Consider the 
urve

J

(�;�)

: � 7! L

(�;�

t

)

(F

�;t

)

in the Lagrangian Grassmannian L(�

�

t

), whi
h will be 
alled the Ja
obi 
urve asso
iated

with the regular extremal � 7! (�(�); �

�

).

Note that the line R�

t

belongs to the kernel of the quadrati
 forms q

�

from Proposition

3.2. Hen
e the Hamiltonians q

�

are 
orre
tly de�ned on �

�

t

. Every linear Hamiltonian

�eld on �

�

t

de�nes a ve
tor �eld on L(�

�

t

) whi
h we also 
all Hamiltonian. From the

Proposition 3.2 and the variation formula for Hamiltonian systems, 
f. Introdu
tion, it

follows that J

(�;�)

is a traje
tory of the Hamiltonian system on L(�

�

t

), de�ned by the

Hamiltonian �(

�!

exp

t

R

�

!

q

0

d�)q

�

. Furthermore, the relations at the end of x3 imply

J

(�;�)

(�) =

�

e

(t�t

1

)

!

h

�

�

J

(�;�

�

)j

[t

0

;t

1

℄

(�); 0 � t

0

� � � t

1

� t: (4:1)

The Ja
obi 
urve belongs to the Lagrangian Grassmannian, whi
h is a homogeneous spa
e

for the symple
ti
 group. We shall 
onsider two 
urves in a Lagrangian Grassmannian to be

equivalent if one is transformed into the other by a symple
ti
 transformation. From (4.1)

the following basi
 assertion follows: the germ of the Ja
obi 
urve J

(�;�)

at � is de�ned, (up

to the equivalen
e), by the germ at � of the extremal (�; �

�

). To fully appre
iate this fa
t,

we should emphasize that the Ja
obi 
urve is a 
urve in a spe
ial remarkable homogeneous

spa
e of the symple
ti
 group, whereas the extremal belongs to a smooth manifold with a


ompletely in
omprehensible group of transformations.

We remind that the tangent ve
tors to the Lagrangian Grassmannian at the point

� 2 L(�) are quadrati
 forms on � � �. Des
ending from germs of 
urves to 1{jets, we

obtain

Proposition 4.1.

d

d�

J

(�;�)

(�) is a quadrati
 form of rank dimU and signature

sgn

�

2

�u

2

�

�

f

�

�

�

�

e

�(�)

.

Before investigating the germs of Ja
obi 
urves, we remind an important result, re-

lated to the 
urve as a whole, namely, to the indi
es of the Hessian of the end{point

yWe identify � with the 
orresponding tangent ve
tor to the linear spa
e T

�

�(�)

M .
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mapping. First of all, the negative (positive) index of Hess

(�;�

t

)

F

t

is �nite if and only if

�

2

�u

2

�

�

f

�

�

�

�

e

�(�)

> 0 (< 0), i.e. when the Ja
obi 
urve J

(�;�)

is monotoni
ally nonde
reasing

(nonin
reasing). Suppose the �niteness 
ondition is satis�ed, and let J

(�;�)

be the 
losed


urve in L(�

�

), obtained by adding to J

(�;�)

of an arbitrary nonde
reasing (nonin
reasing)

simple 
urve 
onne
ting J

(�;�)

(t) with J

(�;�)

(0).y Then,

�ind

�

Hess

(�;�

t

)

F � rank F

0

0t

�

�

�

= Ind J

(�;�)

; (4:2)

where dimU � rank F

0

0t

�

�

�

�

� n� 1. Here, Ind is the Maslov index of a 
losed 
urve on a

Lagrangian Grassmannian, 
f. Introdu
tion. Details and proofs 
ould be found in [1,4℄.

Now we turn to the geometry of germs of a 
urve on the Lagrangian Grassmannian

L(�) of a given 2(n� 1){dimensional symple
ti
 spa
e �.

Lemma. Take an arbitrary �

0

2 L(�). The set

�

t

0

=

n

� 2 L(�)

�

�

�

�

0

\

� = 0

o


an be given invariantly the stru
ture of an aÆne spa
e over the ve
tor spa
e of linear

selfadjoint mappings of �

�

0

into �

0

.

Proof. First, we remark that the set of all (n� 1){dimensional subspa
es in �, transversal

to �

0

, has the stru
ture of an aÆne spa
e over the spa
e of all linear mappings from

�=�

0

into �

0

, and this aÆne stru
ture does not depend on the symple
ti
 stru
ture in

�. Indeed, if � = �

0

� �, then the subspa
e � interse
ts every 
oset (z + �

0

) 2 �=�

0

exa
tly at one point. De�ne the mapping (�

1

� �

0

) : �=�

0

�! �

0

by the formula

(�

1

��

0

)(z + �

0

) = �

1

T

(z + �

0

)��

0

T

(z + �

0

). It is easy to see that the introdu
ed

operation of di�eren
e of two subspa
es de�nes the desired aÆne stru
ture. Furthermore,

the symple
ti
 stru
ture on � de�nes a nondegenerate pairing between �

0

and �=�

0

, hen
e

we 
an identify �=�

0

with �

�

0

. Sin
e the subspa
es �

0

;�

1

2 �

t

0

are Lagrangian, their

di�eren
e, (�

1

� �

0

) : �

�

0

�! �

0

is selfadjoint. By 
ounting dimensions it is easily seen

that every selfadjoint mapping from �

�

0

into �

0

is realized as su
h a di�eren
e.

Let � 7! �(�); � 2 [0; t℄, be a smooth 
urve in L(�). We 
all the 
urve �(�) regular

if

_

�(�) is a nondegenerate quadrati
 form on �(�) for every � . In this arti
le we restri
t

to 
onsidering only regular 
urves, postponing more general 
ases, (highly important and

informative), to further publi
ations. The Ja
obi 
urve of a regular extremal is a regular


urve if and only if dimU = n� 1, 
f. Proposition 4.1.

Let �(�) be a regular 
urve, and 
onsider its germ at an arbitrary point t. We have

�(�) 2 �(t)

t

for all � 6= t, suÆ
iently 
lose to t. More pre
isely, � 7! �(�) de�nes the

germ of the 
urve in the aÆne spa
e �(t)

t

with a simple pole at t. We shall give a


oordinate representation of this fa
t.

Let � =

n

(p; q)

�

�

�

p; q 2 R

(n�1)

o

, and the symple
ti
 form has the 
anoni
al expression

�((p

1

; q

1

); (p

2

; q

2

)) =< p

1

; q

2

> � < p

2

; q

1

>. Without restri
ting generality, we 
an

yA 
urve in a Lagrangian Grassmannian is a family of Lagrangian subspa
es of a symple
ti
 spa
e. The


urve is said to be simple if there exists a Lagrangian subspa
e, transversal to all subspa
es of the family.
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assume that �(t) =

n

(p; 0)

�

�

�

p 2 R

(n�1)

o

. Then for every � 
lose to t, �(�) is represented as

�(�) =

n

(p; S

�

p)

�

�

�

p 2 R

(n�1)

o

, where S

�

is a smooth family of symmetri
 (n�1)�(n�1){

matri
es, S

t

= 0. The regularity of the 
urve �(�) means that det

_

S

�

6= 0. Every � 2 �

t

0

has the form � =

n

(A

�

q; q)

�

�

�

q 2 R

(n�1)

o

, where A

�

is a (n � 1) � (n � 1) symmetri


matrix, and the mapping � 7! A

�

from �

t

t

onto the spa
e of symmetri
 matri
es de�nes


oordinates on �

t

t

, 
ompatible with the invariant aÆne stru
ture. In these 
oordinates the


urve � 7! �(�) 2 �

t

t

has the expression

� 7! S

�1

�

=

1

� � t

_

S

�1

t

�

1

2

_

S

�1

t

�

S

t

_

S

�1

t

�

(� � t)

3

�

((2

_

S

t

)

�1

�

S

t

)

.

� ((2

_

S

t

)

�1

�

S

t

)

2

�

_

S

�1

t

+O((��t)

2

):

(4:3)

To write down the Laurent series of the 
urve in the aÆne spa
e we have to use some


oordinates, but the 
oeÆ
ients of the series have a 
lear invariant meaning. Indeed,

translation of the aÆne spa
e by a ve
tor of the 
orresponding linear spa
e leaves all


oeÆ
ients of the series un
hanged, with the ex
eption of the free term, to whi
h the

translating ve
tor is added. Thus, all 
oeÆ
ients of the Laurent series, ex
ept the free

term, are elements of the linear spa
e, and the free term is an element of the aÆne spa
e.

For a regular 
urve �(�) in L(�) we obtain

�(�) �

1

� � t

�

�1

(t) + �

0

(t) +

1

X

i=1

(� � t)

i

�

i

(t);

where �

0

(t) 2 �(t)

t

, and �

�1

(t);�

1

(t);�

2

(t); : : : are selfadjoint linear mappings from

�

�

(t) into �(t). Note that �

�1

(t) =

�

_

�(t)

�

�1

. Put

R(t) = �3�

1

(t) Æ (�

�1

(t))

�1

= �3�

1

(t) Æ

_

�(t):

Then, R(t) : �(t) �! �(t) is a linear operator, symmetri
 with respe
t to the (pseudo){

Eu
lidean stru
ture on �(t), de�ned by the quadrati
 form

_

�(t). A

ording to (4.3), the

operator R(t) is expressed in 
oordinates as the S
hwarz derivative

R(t) =

�

(2

_

S

t

)

�1

�

S

t

�

.

�

�

(2

_

S

t

)

�1

�

S

t

�

2

(4:4)

The 
urve in L(�), t 7! �

0

(t), is 
alled the derivative 
urve of �(�). The operator

R(t) : �(t) �! �(t) is 
alled the 
urvature operator of the 
urve �(�) at the point t.

Straightforward 
al
ulations in 
oordinates show that the derivative 
urve of a regular


urve is smooth, though not ne
essarily regular. We have � = �(t)� �

0

(t). Hen
e

�

0

(t)

�

=

�=�(t) = �(t)

�

; �(t)

�

=

�=�

0

(t) = �

0

(t)

�

:

Hen
e,

_

�(t) also is a linear mapping from �(t) into �

0

(t), and

_

�

0

(t) is a linear mapping

from �

0

(t) into �(t). Their 
al
ulation in 
oordinates leads us to the following important

identity

R(t) = �

_

�

0

(t) Æ

_

�(t); (4:5)
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whi
h 
ould be 
onsidered as another equivalent de�nition of the 
urvature operator. Sin
e

_

�(t) is nondegenerate, we have

_

�

0

(t) = 0 () R(t) = 0: We shall 
all a regular 
urve


at if it satis�es one of the equivalent 
onditions,

_

�

0

(t) � 0 () R(t) � 0. If R(t) �

{ id; { 2 R, then the 
urve �(�) is said to have a 
onstant 
urvature {.

Proposition 4.2. Germs of two regular 
urves of 
onstant 
urvature { are equivalent i�

the signatures of their velo
ities are equal.

A regular 
urve is 
at i� its Laurent series in the powers of (�� t) has no positive power

terms for every t.

Proof. Introdu
e in � 
oordinates in whi
h the symple
ti
 stru
ture has 
anoni
al form

and

� =

n

(p; q)

�

�

�

p; q 2 R

n�1

o

; �(t) =

n

(p; 0)

�

�

�

p 2 R

n�1

o

; �

0

(t) =

n

(0; q)

�

�

�

q 2 R

n�1

o

:

Then, �(�) =

n

(p; S

�

p)

�

�

�

p 2 R

n�1

o

, where S(t) =

�

S(t) = 0. If �(�) is a 
urve of 
onstant


urvature {, then

�

(2

_

S

�

)

�1

�

S

�

�

.

=

�

(2

_

S

�

)

�1

�

S

�

�

2

+ { id:

Solving the matrix di�erential equation with the initial 
ondition at � = t, we obtain

S

�

=

8

>

>

>

<

>

>

>

:

j2{j

�

1

2

tg

�

j2{j

1

2

(� � t)

�

_

S

t

; { > 0;

(� � t)

_

S

t

; { = 0;

j2{j

�

1

2

th

�

j2{j

1

2

(� � t)

�

_

S

t

; { < 0:

(4:6)

Furthermore, under symple
ti
 transformations, whi
h leave �xed �(t) and �

0

(t), the

matrix

_

S

t

is transformed as the matrix of a quadrati
 form, and sin
e it is, by assumption,

nondegenerate, the signature is its only invariant.

We give now another equivalent de�nitions of the derivative 
urve and the 
urvature

operator, whi
h are more geometri
 and justify the 
hoi
e of the term "
urvature". We

shall use a natural approa
h to 
onstru
ting di�erential geometry of 
urves on arbitrary

homogeneous manifolds. The stru
ture of a homogeneous spa
e, i.e. a transitive a
tion

of a given Lie group, singles out a 
lass of "distinguished" 
urves | the orbits of one{

parameter subgroups of the group. Consider an arbitrary germ of a smooth 
urve, and

�nd a "distinguished" 
urve whi
h has the same jet of the maximal possible order, as the


orresponding jet of the given jet. On the spa
e of "distinguished" 
urves the group is, in

general, nontransitive. The invariants of the approximating "distinguished" 
urves are the

most important di�erential invariants of the initial germ. This is how the 
urvature and

torsion appear in R

3

. Certainly, every homogeneous spa
e brings its own spe
i�
 features

into the general methodology.

One{parameter subgroups of Sp(�) are the 
ows of linear stationary Hamiltonian sys-

tems. They de�ne the family of distinguished 
urves on L(�). Elementary 
al
ulations

imply to the following
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Proposition 4.3. Let �(�) be a regular 
urve in L(�), and h be a quadrati
 form on �, su
h

that the 2{jet of the 
urve � 7! e

(��t)

!

h

(�(t)) 
oin
ides with the 2{jet of the 
urve �(�) at

t, and the subspa
e �(t)

?

h

=

n

y 2 �

�

�

�

h(y;�(t)) = 0

o

is Lagrangian. Then �(t)

?

h

= �

0

(t).

If, in addition, the 3{jet of the 
urve � 7! e

(��t)

!

h

�(t) 
oin
ides with the 3{jet of the 
urve

�(�) at t, then the form h is uniquely de�ned, where

_

�(t) = 2h

�

�

�

�(t)

;

_

�

0

(t) = 2h

�

�

�

�

0

(t)

.

The 
urvature operator is de�ned by the germ of the 
urve, but it also enables to make


on
lusions about global properties of the 
urve.

The points t

0

; t

1

are said to be 
onjugate for the 
urve �(�) if �(t

0

)

T

�(t

1

) 6= 0; the

number dim (�(t

0

)

T

�(t

1

)) is the multipli
ity of the 
onjugate pair.

The following Proposition is a dire
t 
onsequen
e of elementary fa
ts of symple
ti


geometry, and we formulate it as a separate assertion for the 
onvenien
e of referen
es.

Proposition 4.4. Let � : [0; T ℄ �! L(�) be a smooth 
urve,

_

�(t) > 0 8t; �(0)

T

�(T ) =

0, and �(�) is a 
losed 
urve obtained from �(�) by adding to it of a regular simple non-

de
reasing 
urve. Then every t 2 [0; T ℄ is 
onjugate only to a �nite number of points,

and

Ind�(�) = n� 1 +

X

0<t<T

dim(�(0)

\

�(t)) = n� 1 +

X

0<t<T

dim(�(t)

\

�(T )):

The last assertion of this se
tion is the "
omparison theorem", whi
h estimates the index

through the 
urvature.

Theorem. Assume �(�) is a smooth 
urve in L(�) and

_

�(t) > 0 for 8t. If R(t) � C id

for some C � 0 and 8t, then jt

1

� t

0

j �

�

p

C

for every pair of 
onjugate points t

0

; t

1

. In

parti
ular, if R(t) � 0, then there are no 
onjugate points.

Assume tr R(t) � (n � 1)
 for some 
 > 0 and for 8t, then for arbitrary t

0

� t the

interval [t; t+

�

p




℄ 
ontains a point 
onjugate to t

0

. Both estimates are exa
t.

Proof.We start with the 
ase R(t) � 0. The absen
e of 
onjugate points under this assump-

tion easily follows from the standard fa
ts about Lagrangian Grassmannian 
ontained, for

example, in [7℄. In this 
ase, lo
al 
oordinates exist from the standard aÆne atlas in whi
h

�(t

0

) is represented by the zero matrix, and �

0

(t

0

) | by a symmetri
 positive matrix. Let

S

t

be the matrix 
orresponding to �(t), S

0

t

be the matrix 
orresponding to �

0

(t). Then

_

S

t

> 0 and det(S

0

t

� S

t

) 6= 0, sin
e �(�) is monotoni
ally in
reasing and �

0

(t)

T

�(t) = 0.

The operator R(t) is represented by the matrix (S

0

t

�S

t

)

�1

_

S

0

t

(S

0

t

�S

t

)

�1

_

S

t

. Hen
e,

_

S

0

t

� 0.

The given relations hold until �(t) and �

0

(t) remain in the 
oordinate neighborhood. How-

ever, the relations imply that 0 � S

t

< S

0

t

� S

0

t

0

, hen
e, �(t) and �

0

(t) do not leave the


oordinate neighborhood at all.

Now assume that R(t) � C id. We shall make use of the following formula, a dire
t


onsequen
e of (4.4). Assume ' : R �! R is a smooth fun
tion, _'(�) > 0, and R

'

(�) is
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the 
urvature operator of the 
urve � 7! �('(�)). Then

R

'

(�) = _'

2

(�)R('(�)) +

�

(

�'

2 _'

)

.

(t)� (

�'(t)

2 _'(t)

)

2

�

id (4:7)

Put

'

t

(�) =

1

p

C

�

ar
 tg(

p

C�) +

�

2

�

+ t; '

t

(R) = (t; t+

�

p

C

):

We obtain,

R

'

t

(�) =

1

(C�

2

+ 1)

2

(R('

t

(�))� C id) � 0:

Hen
e the 
urve � 7! �('

t

(�)) has no 
onjugate points on the interval (t; t+

�

p

C

).

Assume now that tr R(t) � (n � 1)
. We shall prove that, if �

T

�(�) = 0 for some

� 2 L(�) and 8� 2 [t; t℄, then t� t <

�

p




.

Indeed, if su
h a � exists, then �

�

�

�

[t;t℄

is 
ompletely 
ontained in a 
oordinate neigh-

borhood, therefore the 
urvature operator R(�) is de�ned by the formula (4.4). Put

Z(�) = (2

_

S

�

)

�1

�

S

�

, z(�) = tr Z(�); � 2 [�; t℄. Then,

_

Z(�) = Z

2

(�) + R(�); _z(�) = tr Z

2

(�) + tr R(�):

Sin
e for an arbitrary symmetri
 (n� 1)� (n� 1){matrix A we have tr A

2

�

1

n�1

(tr A)

2

,

the inequality _z �

z

2

n� 1

+ (n� 1)
 holds. Hen
e, z(�) � x(�); t � � � t, where x(�) is a

solution of the equation

_x =

x

2

n� 1

+ (n� 1)
;

i.e. x(�) = (n� 1)

p


 tg(

p


(� � �

0

)).

The fun
tion z(�), together with x(�), are bounded on the interval [t; t℄. Hen
e, t�t <

�

p




.

To verify that the estimates are exa
t, it is enough to 
onsider 
urves of 
onstant


urvature.

Applying the theorem to the Ja
obi 
urve J

(�;�)

, one 
an obtain expli
it estimates of

the index of Hess

(�;�

t

)

f through the 
urvature of the Ja
obi 
urve in 
ase of a �nite index.

Indeed, formula (4.2) and Proposition 4.4 imply the following form of the 
lassi
al Morse

formula,

indHess

(�;�

t

)

f =

X

0<�<t

dim(J

(�;�)

(�)

\

J

(�;�)

(t)):

In other words, the more 
onjugate points, the bigger the index. If there are no 
onjugate

points at all, then Hess

(�;�

t

)

f is sign{de�nite.
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x5. Canoni
al Conne
tions of Hamiltonian Systems

and of Differential Equations of Se
ond Order.

1. Nonlinear 
onne
tions on �bre bundles. Assume a smooth (lo
ally trivial) �bre

bundle E =

S

x2M

E

x

over M is given, with the 
anoni
al proje
tion � : E �! M . In the

tangent bundle TE the "verti
al" subbundle is de�ned,

T

ver

E =

[

e2E

T

e

E

�(e)

� TE =

[

e2E

T

e

E; ker �

�

= T

ver

E; im�

�

= TM:

Any dire
t 
omplement to T

ver

E in TE will be 
alled a (nonlinear) 
onne
tion on E,

ve
tor �elds on TE with values in the dire
t 
omplement will be 
alled horizontal, ve
tor

�elds with values in T

ver

E will be 
alled verti
al.

Assume a 
onne
tion is �xed on E. Then, for every e 2 E, the restri
tion �

�

�

�

�

T

e

E

de�nes a one{to{one mapping of the spa
e of horizontal tangent ve
tors at e onto T

�(e)

M .

Hen
e there exists a uniquely de�ned mapping, X 7! r

X

; X 2 V e
tM , of the spa
e

of ve
tor �elds on M into the spa
e of horizontal �elds on E, satisfying the relation

�

�

r

X

= X 8X 2 V e
tM . Evidently, the 
orresponden
e X 7! r

X

is a C

1

(M){linear

( or tensorial) mapping:

r

X+Y

= r

X

+r

Y

; r

aX

= (a Æ �)r

X

8a 2 C

1

(M):

For every verti
al �eld V , the 
ommutator [r

X

; V ℄ is a verti
al �eld, and the mapping

X 7! [r

X

; V ℄ is C

1

(M){linear (tensorial). In parti
ular, the restri
tion [r

X

; V ℄

�

�

�

E

x

is

uniquely de�ned by X(x) and V . To emphasize this remark expli
itly, as well as for

some te
hni
al reasons whi
h will be 
lear below, we omit the bra
kets in the 
ommutator

[r

X

; V ℄, and 
all the expression r

X

V

def

= [r

X

; V ℄ the 
ovariant derivative of the (verti
al)

�eld V along X. For every v 2 T

x

M the 
ovariant derivative, r

v

V 2 V e
tE

x

, is 
orre
tly

de�ned.

Every horizontal ve
tor �eld is represented as e 7! r

�(e)

; e 2 E, where �(e) 2 T

�(e)

M .

The restri
tion of the mapping e 7! �(e) to E

x

is a ve
tor{fun
tion with values in the

ve
tor spa
e T

x

M . Sin
e we 
an a
t on every smooth ve
tor{fun
tion by an arbitrary

ve
tor �eld, de�ned on the domain of de�nition of the fun
tion, by di�erentiating the

ve
tor{fun
tion along the 
orresponding dire
tions, the a
tion of verti
al �elds on the

mapping e 7! �(e) is 
orre
tly de�ned. The following evident, though very useful, formula

gives the de
omposition of the 
ommutator of a horizontal and a verti
al �eld into the

horizontal and verti
al 
omponents,

[r

�

; V ℄(e) = (r

�(e)

V �r

V �

)(e): (5:1)

The 
ommutator of verti
al �elds is verti
al, at the same time the 
ommutator of horizontal

�elds might not be horizontal. The des
ription of the verti
al 
omponent of the 
ommu-

tator of two horizontal ve
tor �elds leads us to the important notion of the 
urvature of a


onne
tion. Put

R

r

(X;Y ) = [r

X

;r

Y

℄�r

[X;Y ℄

; 8X;Y 2 V e
tM:
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Evidently, the �eld R

r

(X;Y ) is verti
al, and the mapping X^Y 7! R

r

(X;Y ) is tensorial,

(is a homomorphism of a C

1

(M){module V e
tM ^ V e
tM into the module of verti
al

ve
tor �elds). In parti
ular, R

r

(X;Y )

�

�

�

E

x

is depending only on X(x); Y (x), hen
e for

8v

1

; v

2

2 T

x

M the �eld R

r

(v

1

; v

2

) 2 V e
tE

x

is 
orre
tly de�ned. Now let e 7! r

�

i

(e)

; i =

1; 2, be arbitrary horizontal �elds. It is easy to show that the �eld e 7! R

r

(�

1

(e); �

2

(e)) is

the verti
al 
omponent of the �eld [r

�

1

;r

�

2

℄, i.e. [r

�

1

;r

�

2

℄ � R

r

(�

1

; �

2

) is a horizontal

�eld.

For a nonstationary �eld X

�

on M the 
ow t 7!

�!

exp

t

R

t

0

r

X

�

d� 
onsists of �brewise

di�eomorphisms of the bundle E. Let x(t) = x

0

�!

exp

t

R

t

0

r

X

�

d�; hen
e t 7! x(t) is a traje
tory

of the 
ow on M , de�ned by the �eld X

�

. Sin
e the mapping X 7! r

X

is tensorial, the

di�eomorphism

�!

exp

t

1

Z

t

0

r

X

�

d�

�

�

�

E

x

(t

0

)

: E

x

(t

0

) �! E

x

(t

1

)

depends only on the 
onne
tion and on the 
urve x(�); 0 � � � t, and is independent on

the values of the �eld X

�

o� the 
urve x(�). This di�eomorphism is 
alled the parallel

translation along the 
urve x(�); 0 � � � t.

Assume that E is a linear bundle. The 
onne
tion is 
alled linear if the �elds r

X

preserve the spa
e of fun
tions, linear on �bres. If the 
onne
tion is linear, then the parallel

translation

�!

exp

t

R

t

0

r

X

�

d�

�

�

�

E

x(t

0

)

is a linear mapping. We shall 
onsider below nonlinear


onne
tions on linear bundles.

So far we were 
on
erned only with main de�nitions related to 
onne
tions, and all

assertions were almost trivial. They 
ould be 
he
ked by introdu
ing lo
al 
oordinates,

or algebrai
ally, identifying ve
tor �elds on M or E with 
orresponding derivations of

algebras C

1

(M) or C

1

(E), verti
al �elds on E | with the annihilator of the subalgebra

in C

1

(E) of fun
tions, 
onstant on �bres.

2. Conne
tions asso
iated with Hamiltonians. Assume now that the bundle E is

not arbitrary, but rather a region in T

�

M , E

x

= E\T

�

x

M; x 2M . Denote by h : E �! R

a smooth Hamiltonian on E, by Dh | the verti
al di�erential of h,

D

�

h

def

= d

�

(h

�

�

�

E

x

); � 2 E

x

; x 2M:

Thus D

�

h 2 (T

�

x

M)

�

= T

x

M , hen
e Dh : E �! TM is a smooth �brewise mapping.

Note that D

�

h = �

�

!

h (�). We assume that D

�

h 6= 0; � 2 E. Sin
e E

x

is a region in a

linear spa
e, the se
ond verti
al derivative is also well de�ned, D

2

�

h = d

2

�

(h

�

�

�

E

x

), and is a

quadrati
 form on T

�

M .

To every � there 
orresponds a 
urve J

�

in the Lagrangian Grassmannian L(T

�

(T

�

M)),

a

ording to the formula

J

�

(t) = (e

�t

!

h

)

�

T

�

t

(T

�

�(�

t

)

M); �

t

= �e

t

!

h

:
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If h is a 
omposition of the master{Hamiltonian of a 
ontrol system with a fun
tion of a

real variable, for example, some power of the master{Hamiltonian, then the 
urve

t 7! J

�

(t)

\

ker d

�

h 2 L

�

!

h (�)

\

=

!

h(�)

�

is the Ja
obi 
urve of the 
orresponding geodesi
, 
f. x4. Let �(�) = x, then J

�

(0) =

T

�

(E

x

) = T

�

x

M . It is easily seen that

_

J

�

(0) = D

2

�

h.

As in x4, we restri
t ourself to regular 
urves, J

�

, postponing more general 
ases, (quite

important and interesting for optimal problems), until further publi
ations. Thus, we

suppose that D

2

�

h is a nondegenerate quadrati
 form on T

�

x

M .

Remark. At �rst sight, the nondegenera
y requirement might seem too ex
essive. For

example, the master{Hamiltonian, being positive{de�nite of �rst degree, does not satisfy

it. But, if the master{Hamiltonian is not zero at � and generates a regular Ja
obi 
urve,

then the square of the master{Hamiltonian satis�es the 
ondition.

To every regular 
urve t 7! J

�

(t) 
orresponds the derivative 
urve t 7! J

�0

(t). A

ording

to its de�nition, 
f. x4,

J

�0

2 L(T

�

(T

�

M)); T

�

(T

�

M) = T

�

(E

x

)� J

�0

(0):

Evidently, J

�0

(0) is smooth in �. We 
all the Lagrangian bundle J

�0

(0); � 2 E, the


anoni
al 
onne
tion on E, asso
iated with the Hamiltonian h.

Let r

X

be a horizontal �eld for the 
anoni
al 
onne
tion, �

�

r

X

= X; X 2 V e
tM .

Lemma 5.1. Assume that the restri
tion h

�

�

�

E

x

of the Hamiltonian h to an arbitrary �bre

E

x

is a positively homogeneous fun
tion of degree r+1; r 6= 0;�1. Then

!

h = r

D

�

h

; � 2 E,

hen
e the �eld

!

h is horizontal.

Proof. We identify � 2 E

x

� T

�

x

M with the 
orresponding tangent ve
tor from T

�

E

x

=

T

�

x

M . The homogeneity of the Hamiltonian implies the identity

(s�)e

t

!

h

= s

�

�e

s

r

t

!

h

�

8s > 0;

from whi
h the relations follow,

�

�� rt

!

h(�)

�

2 J

�

(t) � T

�

(T

�

M). Moreover, sin
e the

Hamiltonian 
ow preserves h, and

!

h (�)

\

= ker d

�

h, we obtain,

J

�

(t) = R

�

�� rt

!

h(�)

�

� J

�

(t)

\

!

h (�)

\

: (5:2)

From here we 
on
lude that

!

h(�) 2 J

�0

(t), hen
e

!

h is a horizontal �eld. To 
omplete the

prove, we remark that �

�

!

h = Dh.
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Denote by R

J

�

the 
urvature operator of the 
urve � 7! J

�

(t) for t = 0. Sin
e J

�

(0) =

T

�

E

x

= T

�

x

M , where � 2 E

x

, R

J

�

: T

�

x

M �! T

�

x

M is a linear operator. By R

r

we

denoted the 
urvature of the 
anoni
al 
onne
tion. Despite of 
ompletely di�erent ways of

de�nition of these two 
urvatures, they are intimately 
onne
ted and the use of the same

term "
urvature" in both 
ases is 
ompletely justi�ed.

Theorem 5.1. Under the 
onditions of Lemma 5.1 the following identity holds,

R

J

�

l = R

r

(D

�

h; l
D

2

�

h); 8� 2 E

x

; x 2M; l 2 T

�

x

M:

Proof. Let x

�

(t) be the proje
tion on M of the point �e

t

!

h

, and l | a verti
al �eld, whi
h

has a restri
tion to E

x

�

(t)


oin
iding with the parallel translation of the 
onstant �eld l on

E

x

along the 
urve x

(

�) for 8t. Then,

r

Dh

l

�

�

�

�e

t

!

h

= 0: (5:3)

Sin
e the a
tion of

�

e

�t

!

h

�

�

on the ve
tor �elds 
oin
ides with the the a
tion of e

t ad

!

h

, 
f.

Introdu
tion, we obtain J

�

(t) =

��

e

t ad

!

h

l

�

(�)

�

�

�

l 2 T

�

x

M

�

: Let r

A

t

l

be the horizontal


omponent of the ve
tor

�

e

t ad

!

h

l

�

(�); and B

t

l be its verti
al 
omponent, so that A

t

:

T

�

x

M �! T

x

M , B

t

: T

�

x

M �! T

�

x

M , are linear mappings, where

J

�

(t) =

n

B

t

l +r

A

t

l

�

�

�

l 2 T

�

x

M

o

; A

0

= 0; B

0

= id:

Thus the germ at zero of the 
urve J

�

is represented by the matrix 
urve t 7! S

t

= A

t

B

�1

t

,

J

�

(t) =

n

l +r

S

t

l

�

�

�

l 2 T

�

x

M

o

, and the 
urvature operator R

J

�

has, a

ording to (4.4), the

form

R

J

�

=

�

(2

_

S

0

)

�1

�

S

0

�

.

�

�

(2

_

S

0

)

�1

�

S

0

�

2

: (5:4)

Formulas (5.1) and (5.3) imply

d

dt

e

t ad

!

h

l(�) = e

t ad

!

h

[

!

h; l℄(�) = e

t ad

!

h

[r

Dh

; l℄(�) = �

�

e

t ad

!

h

r

l
D

2

h

�

(�):

Hen
e

_

A

0

l = �r

l
D

2

�

h

;

_

B

0

= 0. Furthermore, the derivative 
urve of J

�

at t = 0 has the

form, 
f. (4.3), J

�0

=

n

�

1

2

_

S

�1

0

�

S

0

_

S

�1

0

v +r

v

�

�

�

v 2 T

x

M

o

. At the same time, a

ording to

the de�nition of the 
anoni
al 
onne
tion, J

�0


onsists of horizontal ve
tors. Therefore

�

S

0

= 0, and the formula (5.4) takes the form R

J

�

=

1

2

_

S

�1

0

...

S

0

: Furthermore, sin
e A

0

= 0

and

�

S

0

= 0, we have

�

A

0

= 0. Hen
e the ve
tor �eld

d

2

dt

2

e

t ad

!

h

l

�

�

�

t=0

= �

d

dt

e

t ad

!

h

r

l 
D

2

h

= [r

l 
D

2

h

;

!

h ℄ = [r

l 
D

2

h

;r

Dh

℄
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is verti
al at �. Sin
e the verti
al 
omponent of the 
ommutator of two horizontal �elds

is the 
urvature, we have

[r

l 
D

2

h

;r

Dh

℄(�) = R

r

(l
D

2

�

h;D

�

h):

Furthermore, the point � is indistinguishable from any other point of the form �e

t

!

h

, hen
e

the last identity is satis�ed for all su
h points, we have only to substitute l by the value

of the �eld l at �e

t

!

h

. We obtain,

d

2

dt

2

e

t ad

!

h

l(�) = e

t ad

!

h

R

r

(l 
D

2

h;Dh)(�):

Thus

�

B

0

l = R

r

(l 
D

2

�

h;D

�

h), and

...

A

0

l is the horizontal 
omponent of the ve
tor

[

!

h;R

r

(l 
D

2

h;Dh)℄(�) = [r

Dh

; R

r

(l 
D

2

h;Dh)℄(�):

A

ording to formula (5.1), we have

...

A

0

l = R

r

(D

�

h; l 
D

2

�

h) 
D

2

�

h. Colle
ting the obtained

formulas together, we 
an write,

...

S

0

l =

...

A

0

l� 3

_

A

0

�

B

0

l = 2R

r

(l 
D

2

�

h;D

�

h)
D

2

�

h; R

J

�

l =

1

2

_

A

�1

0

...

S

0

l = R

r

(D

�

h; l 
D

2

�

h):

3. Conne
tions asso
iated with se
ond order di�erential equations. We have


onsidered above 
anoni
al 
onne
tions asso
iated with Hamiltonian systems, a natural


lass of di�erential equations on the 
otangent bundle. Now we des
ribe 
onne
tions with

similar properties for di�erential equations of the se
ond order, a natural 
lass of di�erential

equations on the tangent bundle.

Assume E is a region in TM; E

x

= E

T

T

x

M; x 2M . We shall say that a ve
tor �eld Z

on E is a di�erential equation of the se
ond order or that it de�nes a di�erential equation

of the se
ond order, if �

�

Z(v) = v 8v 2 E. For s 2 R denote by s

�

: T (TM) �! T (TM)

the di�erential of the homothety v 7! sv; v 2 TM . The �eld Z, de�ning the di�erential

equation of the se
ond order, is 
alled a spray if Z(sv) = s

�

Z(v) 8v 2 E; s 2 R su
h that

sv 2 E. In lo
al 
oordinates, the di�erential equation of the se
ond order, de�ned by a

spray, has the form �x = '(x; _x), where ' is homogeneous in _x of degree 2. We should note

that no other degrees of homogeneity are preserved under the 
oordinate 
hange on M .

For every di�erential equation of the se
ond order Z and every v 2 E we de�ne a 
urve

I

v

in the Grassmannian G

n

(T

v

(TM)) of all n{dimensional subspa
es in T

v

(TM)) by the

formula

I

v

(t) =

�

e

�tZ

�

�

T

v

t

E

�(v

t

)

; v

t

= ve

tZ

:

Before moving further we shall make few remarks about 
urves in the Grassmannian

G

n

(R

2n

). So far, we 
onsidered 
urves only in Lagrangian Grassmannians. De�nitions

and properties mentioned below are similar to those in the Lagrangian Grassmannian,

and are proved even easier sin
e no additional symple
ti
 stru
ture should be taken in


onsideration.
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Put

K

0

2 G

n

(R

2n

); K

t

0

=

n

K 2 G

n

(R

2n

)

�

�

�

K

0

\

K = 0

o

:

Then K

t

0

has a natural stru
ture, (independent on the 
hoi
e of a basis in R

2n

), of an aÆne

spa
e over the ve
tor spa
e Hom(R

2n

=K

0

; K

0

). We already des
ribed this aÆne stru
ture

in the proof of the Lemma in x4. Furthermore, the tangent spa
e T

K

0

G

n

(R

2n

) is naturally

identi�ed with the spa
e Hom(K

0

;R

2n

=K

0

) in the following way. Assume t 7! K

t

is

a smooth 
urve in G

n

(R

2n

). We 
orrespond to the tangent ve
tor

_

K

0

=

d

dt

K

t

�

�

�

t=0

the

mapping k

0

7!

d

dt

k

t

�

�

�

t=0

+K

0

, where k

t

2 K

t

. It is easy to show that this mapping depends

only on

_

K

0

and does not depend on the 
hoi
e of the 
urves K

t

and k

t

.

The 
urve � 7! K

�

in G

n

(R

2n

) is regular if its velo
ities

dK

�

d�

are regular linear map-

pings from K

�

into R

2n

=K

�

8� . It is easy to show that the 
urve I

v

in G

n

(T

v

(TM))

is nondegenerate. In parti
ular, for � = 0 we have I

v

(0) = I

v

(T

x

M) = ker �

�

�

�

�

T

v

(TM)

,

where x = �(v). Identifying the spa
es T

v

(T

x

M) and T

v

(TM)=T

v

(T

x

M) � �

�

T

v

(TM)

with T

x

M , we obtain

d

d�

I

v

(0) = id.

The germ at t of a regular 
urve � 7! K(�) in G

n

(R

2n

) de�nes a 
urve in the aÆne

spa
e K(t)

t

with a simple pole at � = t. In other words,

K(�) �

1

� � t

K

�1

(t) +K

0

(t) +

1

X

i=1

(� � t)

i

K

i

(t); K

0

(t) 2 K(t)

t

;

K

i

(t) 2 Hom(R

2n

=K(t); K(t)); i 6= 0; K

�1

(t) = (

_

K(t))

�1

:

Put R(t) = �3K

1

(t)

_

K(t). The 
urve t 7! K

0

(t) in G

n

(R

2n

) is 
alled the derivative 
urve

of K(�). The operator R(t) : K(t) �! K(t) is 
alled the 
urvature operator of the 
urve

K(�) at t. In lo
al 
oordinates the 
urvature operator is represented, as in the Lagrangian


ase, by the matrix S
hwarz derivative (4.4), with matri
es not ne
essarily symmetri
.

Let t 7! I

v0

(t) be the derivative 
urve of I

v

. We have T

v

(TM) = I

v

E

x

+ I

v0

(0), and

I

v0

(0) smoothly depends on v. The subbundle in TE with the �bres I

v0

(0); v 2 E, is 
alled

the 
anoni
al 
onne
tion asso
iated with the �eld Z. Below, in this subse
tion, we assume

that the symbol r

X

denotes the horizontal �eld for the de�ned 
anoni
al 
onne
tion, su
h

that �

�

r

X

= X; X 2 V e
tM .

Lemma 5.2. If Z is a spray, then Z is a horizontal �eld for the 
anoni
al 
onne
tion,

Z(v) = r

v

8v 2 E.

Proof. We identify the ve
tor v 2 E

x

� T

x

M with the 
orresponding verti
al tangent

ve
tor in T

v

E

x

= T

x

M . Sin
e Z is a spray, we have (sv)e

tZ

= s(ve

stZ

); s 2 R. From here,

we obtain

(v � tZ(v)) 2 I

v

(t) � T

v

(TM): (5:5)

The subspa
e I

v

(t) is represented as I

v

(t) =

n

l+r

S

t

l

�

�

�

l 2 T

v

E

x

= T

x

M

o

, where S

t

:

T

x

M �! T

x

M is a linear operator smooth in t, S

0

= 0. Moreover,

_

S

0

= id.
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From (4.3) it follows that the value at t = 0 of the derivative 
urve of I

v

has the form

I

v0

=

�

�

1

2

�

S

0

l +r

l

�

�

�

l 2 T

x

M

�

:

Sin
e I

v0


onsists of horizontal ve
tors, we have

�

S

0

= 0. Let Z(v) = l

0

+ r

v

, i.e., l

0

is the verti
al 
omponent of the ve
tor Z(v). Then a

ording to (5.5), tv = S

t

(tl

0

� v).

Di�erentiating 2 times in t yields

�

S

0

v = l

0

. Hen
e l

0

= 0; Z(v) = r

v

.

Denote by R

I

v

the 
urvature operator of the 
urve t 7! I

v

(t) at t = 0. Sin
e I

v

(0) =

T

x

M , where x = �(v), the mapping R

I

v

: T

x

M �! T

x

M is a linear operator. The symbol

R

r

denotes the 
urvature of the 
anoni
al 
onne
tion asso
iated with the �eld Z.

Theorem 5.2. If Z is a spray, then

R

I

v

l = R

r

(v; l) 8v 2 E

x

; x 2M; l 2 T

x

M:

The proof is a repeating of the proof of Theorem 5.1 with 
orresponding simpli�
ations.

4. Linear Conne
tions. Here we shall 
onsider in more detail linear 
onne
tions on

the bundles TM and T

�

M . Assume a linear 
onne
tion is given on TM , hen
e for every

X 2 V e
tM a horizontal ve
tor �eld, r

X

, on TM is given, whi
h preserves the spa
e of

fun
tions, linear on the �bres of TM . In this 
ase, the di�eomorphism e

�tr

X

is a linear

mapping of the �bre T

xe

tX
M onto the �bre T

x

M for 8x 2 M; t 2 R. Considering the

adjoint linear mappings

�

e

�tr

X

�

�

�

T

xe

t

X

M

�

�

: T

�

x

M �! T

�

xe

tX

M;

we obtain the "adjoint" 
ow on the bundle T

�

M . The generating ve
tor �eld for this 
ow

will be denoted by r

�

X

. The mapping X 7! r

�

X

; X 2 V e
tM , de�nes a linear 
onne
tion

on T

�

M , the adjoint to the 
onne
tion X 7! r

X

. Evidently, we 
ould start with an

arbitrary linear 
onne
tion on T

�

M , and de�ne the adjoint 
onne
tion on TM , obtaining

the involution r

��

X

= r

X

. For appropriately 
hosen notation the expressions for r

X

and

r

�

X

are indistinguishable.

Indeed, every Y 2 V e
tM 
ould be 
onsidered as a 
ross{se
tion of the ve
tor bundle

TM , and as su
h 
ould be identi�ed with the verti
al ve
tor �eld on TM , 
onstant on

�bres. Hen
e, the 
ovariant derivative of the �eld Y along the �eld X is de�ned, denoted

by r

X

Y , whi
h is verti
al and 
onstant on �bres, r

X

Y 2 V e
tM . Furthermore, Y 
ould

be 
onsidered as a s
alar{valued fun
tion on T

�

M , linear on �bres. The image r

�

X

Y of

this fun
tion under the a
tion of the ve
tor �eld r

�

X

2 V e
t T

�

M is again linear on �bres,

in other words, r

�

X

Y 2 V e
tM . It is easily proved that

r

X

Y = r

�

X

Y: (5:6)

For a linear 
onne
tion on TM we de�ne in a usual way the torsion

T

r

(X;Y ) = r

X

Y �r

Y

X � [X;Y ℄; T

r

(X;Y ) 2 V e
tM:
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Lemma 5.3. The following identity holds,

T

r

(X;Y ) = �(r

�

X

;r

�

Y

); X; Y 2 V e
tM

where � is the 
anoni
al symple
ti
 stru
ture on T

�

M .

Proof. Let � be the 
anoni
al 1{form on T

�

M; � = d �. Sin
e �

�

r

�

X

= X we have

X =< �;r

�

X

>, where X in the left{hand side of the last identity is 
onsidered as a

fun
tion on T

�

M , linear on �bres. Taking into a

ount that � vanishes on verti
al �elds,

we obtain

T

r

(X;Y ) = r

X

Y�r

Y

X � [X;Y ℄ = r

�

X

< �;r

�

Y

> �r

�

Y

< �;r

�

X

> � < �;r

�

[X;Y ℄

>=

�(r

�

X

;r

�

Y

)+ < �;R(X;Y ) >= �(r

�

X

;r

�

Y

):

Corollary. Conne
tion r has a zero torsion i� r

�

de�nes a Lagrangian subbundle in

T (T

�

M).

Every linear 
onne
tion on TM de�nes a spray Z a

ording to the formula Z(v) =

r

v

(v) 8v 2 TM . The traje
tories of this spray are 
alled geodesi
s of the 
onne
tion r.

Di�erent 
onne
tions 
an de�ne identi
al sprays, but among them there exists a unique


onne
tion with vanishing torsion. Not every spray 
an be obtained in this way, only the

sprays whi
h are quadrati
 on �bres.*

Proposition 5.1. The 
anoni
al 
onne
tion asso
iated with a spray, quadrati
 on �bres,

is linear and has a vanishing torsion.

Proof. Fix an arbitrary point x

0

2 M and lo
al 
oordinates x = (x

1

; : : : ; x

n

) in the

neighborhood of x

0

, su
h that the 
orresponding di�erential equation of the se
ond order

in these 
oordinates has the form �x = '(x; _x); '(x

0

; _x) = 0 8 _x. We obtain,

I

(x

0

; _x)0

= span

�

�

�x

1

; : : : ;

�

�x

n

�

8 _x:

In other words, for the 
anoni
al 
onne
tion we have r �

�x

i

=

�

�x

i

, hen
e r is linear and

has a vanishing torsion.

Thus the 
anoni
al 
onne
tion asso
iated with a spray, quadrati
 on �bres, is linear

with vanishing torsion, and its geodesi
s are the traje
tories of the spray. In geometry,

the geodesi
s of a 
onne
tion on TM are 
onsidered as the "straightest" lines, whereas the

extremals of a variational problem as the "shortest" lines. We see that the traje
tories of

*In lo
al 
oordinates, the di�erential equation of the se
ond order de�ned by a spray has the form

�x = '(x; _x), and the property of ' to be quadrati
 in _x is independent on the 
hoi
e of the 
oordinates in

M . This is a natural 
lass of sprays, sin
e for a spray, quadrati
 on a given �bre T

x

0

M , the 
orresponding

di�erential equation of the se
ond order has, in appropriate 
oordinates, the form �x = '(x; _x), where

'(x

0

; _x) = 0 8 _x.
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every spray, not ne
essarily linear on �bres, 
ould be 
onsidered as a system of " straight-

est" lines, 
orresponding to the 
anoni
al 
onne
tion on TM , generally not linear. At the

same time, the shortest lines, being the traje
tories of the master{Hamiltonian, generate

the 
anoni
al 
onne
tion on T

�

M .

A

ording to the 
lassi
al Riemannian geometry, the "shortest" lines for the Riemannian

variational problem are also the "straightest" lines for the Levi{Civita 
onne
tion. There-

fore, it is natural to expe
t that the Levi{Civita 
onne
tion on TM is 
onjugate to the


anoni
al 
onne
tion on T

�

M , asso
iated with the 
orresponding Hamiltonian. Indeed, we

have the following

Proposition 5.2. Assume Q : TM �! T

�

M is a selfadjoint isomorphism, de�ned by a

pseudo{Riemannian stru
ture on M . Then the Levi{Civita 
onne
tion of this stru
ture

is the adjoint 
onne
tion to the 
anoni
al 
onne
tion, asso
iated with the Hamiltonian

h : � 7!

1

2

< �;Q

�1

� >; � 2 T

�

M .

Proof. The equation

_

� =

!

h(�) de�nes the pseudo{Riemannian geodesi
 
ow in T

�

M ,

where �(�)

.

= Q

�1

� along every traje
tory of this 
ow. Hen
e the isomorphism Q

�1

:

T

�

M �! TM transforms the geodesi
 
ow in T

�

M into the geodesi
 
ow in TM , where

the last 
ow is de�ned by a spray Z, quadrati
 on �bres. Let X 7! r

X

be the 
anoni
al


onne
tion for h. From the de�nition, it follows that X 7! Q

�1

�

r

X

is the 
anoni
al 
on-

ne
tion for Z. Exploiting the fa
t that the parallel translation generated by the 
anoni
al


onne
tion preserves the Hamiltonian,( the 
anoni
al 
onne
tion is tangent to the levels of

the Hamiltonian), we obtain Q

�1

�

r

X

= r

�

X

. From Proposition 5.1 follows now that r

�

X

is the Levi{Civita 
onne
tion, 
f. also the remark after the Proof of Proposition 5.1.

Remark. For pseudo{Riemannian stru
ture, the master{Hamiltonian has the form

� 7!< �;Q

�1

� >

1

2

, whi
h is de�ned, in general, not for all � 2 T

�

M .

x6. Two{Dimensional Control Systems

Consider a standard "state invariant" 
ontrol system

_x = f(x; u); x 2M; u 2 U:

It is interesting to �nd expli
it expressions of su
h a fundamental "state" and "feedba
k"

invariant as the 
urvature tensor through 
lassi
al "state"{invariants | linear relations

between iterated Lie bra
kets of ve
tor �elds f(�; u); u 2 U . We already have all ne
essary

means to derive su
h expressions, though some e�orts are still needed, and the obtained

expressions turn out to be pretty 
ompli
ated even in the simplest two{dimensional 
ase.

We restri
t ourself to the two{dimensional 
ase only.

Assume that dimM = 2; dimU = 1, hen
e U is R or S

1

= R=2�Z. Put

O =

�

(x; u) 2M � U

�

�

�

�f

�u

^

�

2

f

�u

2

�

�

�

(x;u)

6= 0

�

:

All extremal 
ontrols, 
ontained in the region O, 
orrespond to regular extremals, and

through every point of the region passes exa
tly one extremal 
ontrol, 
orresponding to a
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uniquely determined extremal, (up to a nonzero fa
tor for �). Assume R(x; u); (x; u) 2 O is

the 
urvature tensor of the uniquely determined germ of extremal, with the 
orresponding


ontrol through (x; u). The tensor is a linear operator, and sin
e it a
ts in the one{

dimensional spa
e, (x; u) 7! R(x; u) is a real{valued fun
tion on O.

Proposition 6.1. Assume �

i

1

:::i

k

; �

i

1

:::i

k

are smooth fun
tions on O, de�ned by the

formula

�

�

i

1

f

�u

i

1

;

�

�

i

2

f

�u

i

2

;

�

: : : ;

�

i

k

f

�u

i

k

�

: : :

��

= �

i

1

:::i

k

�f

�u

+ �

i

1

:::i

k

�

2

f

�u

2

:

Then

R =�

001

+ �

101

�

1

2

�

002

+

1

2

�

001

�

3

�

1

2

�

01

�

12

+

3

2

�

01

�

02

� �

02

�

01

+ �

01

�

03

�

2�

2

01

+

1

4

�

2

02

� �

01

�

01

�

3

�

3

2

�

01

�

02

�

3

+ �

3

�

2

01

�

1

2

�

2

01

�

4

+

3

4

�

2

01

�

2

3

Proof. We shall use Proposition 3.2, whi
h expresses the L{derivative of the endpoint{

mapping, hen
e the Ja
obi 
urve, through solutions of the linear Hamiltonian system.

Assume � 7! (x

�

; u

�

) is an extremal 
ontrol in O. Put

g

�

(�; u) = �

�!

exp

�

Z

t

ad f(�; u

�

)d�f(�; u)

�

�

�

x

; g

(i)

�

(�) =

�

i

�u

i

g

�

(�; u

�

); (x; u) 2 O; � 2 T

�

x

M:

Let �

t

2 T

�

x

t

M be the Lagrange multiplier 
orresponding to the given extremal 
ontrol.

Then g

(1)

�

(�

t

) = 0 identi
ally in � . Di�erentiating the last identity with respe
t to � yields

the following useful formula

d

d�

u

�

=

n

g

(1)

�

; g

(0)

�

o

g

(2)

�

�

�

�

�

t

;

where f�; �g are the Poisson bra
kets. Note that the in
lusion (x

�

; u

�

) 2 O implies that

g

(1)

�

(�

t

); g

(2)

�

(�

t

) 
an not vanish simultaneously. Assume, for de�niteness, that g

(2)

�

(�

t

) < 0.

Certainly, substituting �

t

by ��

t

and, a

ordingly, g

(2)

�

(�

t

) by g

(2)

�

(��

t

) = �g

(2)

�

(�

t

), we

do not 
hange the 
urvature. The quadrati
 Hamiltonian q

�

from Proposition 3.2 has in

our 
ase the form

q

�

(�) = �

�

�

!

g

(1)

�

(�

t

); �

�

2

2g

(2)

�

(�

t

)

:

The Hamiltonian q

�

is de�ned on a 4{dimensional symple
ti
 spa
e T

�

t

(T

�

M), though the

verti
al line R�

�

� T

�

x

�

� T

�

t

(T

�

x

t

M) 
onsists entirely of �xed points of the Hamiltonian

system. The Ja
obi 
urve is 
onstru
ted with the help of the solutions of the redu
ed

system, de�ned on �

�

t

= (R�

t

)

\

=R�

t

, 
f. the beginning of x4. There exists a unique


ove
tor e 2 T

�

t

(T

�

x

t

M) satisfying the 
onditions �(e;

!

g

(1)

t

) = 1, �(e;

!

g

(2)

t

) = 0. Consider
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the restri
tion of the Hamiltonian q

�

onto the symple
ti
 subspa
e span(e;

!

g

(1)

t

) � (R�

t

)

\

.

Let � = ye+ z

!

g

(1)

t

, then

q

�

(�) =

1

2

(a

�

y + b

�

z)

2

; a

�

=

�(

!

g

(1)

�

; e)

q

jg

(2)

�

j

; b

�

=

�(

!

g

(1)

�

;

!

g

(1)

t

)

q

jg

(2)

�

j

; b

t

= 0:

Nonstationary Hamiltonian q

�

de�nes a linear 
ow on R

2

and, a

ordingly, a 
ow on

L(R

2

) = RP

1

. The Ja
obi 
urve � 7! J(�) is a traje
tory of the 
ow on RP

1

, inverse to

the 
ow de�ned by the Hamiltonian q

t

, J(t) = Re. Let � =

�

'

11

'

12

'

21

'

22

�

; �(t) = id,

be the fundamental matrix of the linear 
ow on R

2

, inverse to the 
ow de�ned by the

Hamiltonian q

�

. Then

_

� = �

�

ab b

2

�a

2

�ab

�

; det� = 1: (6:2)

As a lo
al 
oordinate on RP

1

take

z

y

, then J(�) is represented by the 1� 1{matrix S

�

=

'

21

(�)

'

11

(�)

. For the 
urvature we obtain the expression

R(x

t

; u

t

) =

 

�

S

t

2

_

S

t

!

.

�

 

�

S

t

2

_

S

t

!

2

=

�a

t

a

t

� a

t

_

b

t

� 2

�

_a

t

a

t

�

2

:

Note that

�

��

g

(i)

�

= g

(i+1)

�

du

d�

+

n

g

(0)

�

; g

(i)

�

o

=

g

(i+1)

�

g

(2)

�

n

g

(1)

�

; g

(0)

�

o

+

n

g

(0)

�

; g

(i)

�

o

:

Furthermore, the quantities g

(i)

t

(�) = �

�

i

�u

i

f , hen
e, the Poisson bra
kets of g

(i)

t

, are

expressed through the Lie bra
kets of the �elds

�

i

�u

i

f . Therefore, the 
onse
utive derivatives

of the fun
tions a

�

; b

�

, with respe
t to � for � = t, are expressed expli
itly, though quite


umbersome, through �

i

1

:::i

k

(x

t

; u

t

); �

i

1

:::i

k

(x

t

; u

t

). Dire
t 
al
ulations give the expression

(6.1). Though pretty awkward, this formula is strongly simpli�ed in some important

spe
ial 
ases. Consider two{dimensional Riemannian and Lorentzian geometries. In the

Riemannian 
ase we have

f(x; u) = (
os u)v

1

(x) + (sin u)v

2

(x);

where v

1

; v

2

is an arbitrary orthonormal frame of the 
onsidered Riemannian stru
ture. It

is easy to eliminate in (6.1) all indi
es � 2. Indeed, from every su
h index we 
an subtra
t

2, at the same time 
hanging the sign of the 
orresponding 
oeÆ
ient. Taking into a

ount

also the symmetries of the 
oeÆ
ients as the "stru
ture 
onstants", we obtain

R = �

001

+ �

101

� 2(�

2

01

+ �

2

01

):
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Note that R is the Gaussian 
urvature of the Riemannian surfa
e, a

ording to Proposition

5.2 and Theorem 5.1.

Let [v

1

; v

2

℄ = 


1

v

1

+ 


2

v

2

, for some smooth fun
tions 


1

; 


2

. Then

R = v

1




2

� v

2




1

� 


2

1

� 


2

2

:

In the Lorentzian 
ase

f(x; u) = (
h u)v

1

(x) + (sh u)v

2

(x):

Again, 2 
ould be subtra
ted from the indi
es in (6.1), this time without 
hanging the


oeÆ
ients. For the Gaussian 
urvature we obtain,

R = �

001

� 2(�

2

01

� �

2

01

) = v

1




2

+ v

2




1

+ 


2

1

� 


2

2

:
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