FEEDBACK-INVARIANT OPTIMAL CONTROL
THEORY AND DIFFERENTIAL GEOMETRY — I
REGULAR EXTREMALS

A. A. AGracHEV, R. V. GAMKRELIDZE

ABsTRACT. Feedback—invariant approach to smooth optimal control problems is considered.
A Hamiltonian method of investigating regular extremals is developed, analogous to the
differential-geometric method of investigation Riemannian geodesics in terms of the Levi—
Civita connection and the curvature tensor.

§0. INTRODUCTION

1. Outline of the content. This is the first in a series of forthcoming papers, devoted
to the unification of the Theory of Smooth Optimal Control Problems and that part of
Differential Geometry which is dealing with geodesics of different kinds. The obtained
results, we believe, not merely suggest a dictionary for translating the known results from
one language into another, but they really extend the scope of applicability of both theories.
The key notions brought into interplay are "Hamiltonian system” in optimal control and
the ”curvature tensor” in differential geometry.

Since the discovery of the Pontryagin maximum principle, cf. [11], finding extremals
in problems of optimal control is reduced to solving Hamiltonian systems of differential
equations. Even in the classical case of Riemannian geometry, the maximum principle
approach to finding geodesics leads to the final result much simpler and shorter than the
traditional method of using the Levi-Civita connection. If we consider more general geo-
metric variational problems, dealing not only with regular extremals (geodesics), but with
singular extremals as well, then we should admit that the maximum principle approach
has no serious alternative.

Turning now from geodesics to the curvature tensor, which describes quite deeply not
only local but also global behavior of geodesics without even solving any differential equa-
tions, we see that it is obtained in a standard way from the Levi—Civita connection, whereas
a Hamiltonian approach to the curvature tensor or its analogue was never considered. The
main content of this paper is devoted to such an approach.

We shall give now a brief overview of the content by sections. In §1 the notion of the
L—derivative is introduced. The intuitive meaning of this notion, which plays in the sequel
an important role, could be described as follows.
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Let f: U — M be a smooth mapping between two finite-dimensional manifolds, with
the differential f;, : T, U — Ty, )M at u € U. The point v is critical for f if and only if
the image of f; is annihilated by some nonzero covector A, the Lagrange multiplier,

In this equation, the argument A belongs to the symplectic manifold 7% M, the argument
u — to the manifold U. Linearization of the equation at the point (u, A) gives us a linear
system of equations in variables du € T,U, 6\ € T\(T*M). Let L, x)(f) be the set of all 6A
which satisfy the linear system (with some du). The linear subspace L, x)(f) C Tx(T* M)
is called the L-derivative of f at (u, A). It turns out that L, x)(f) is always a Lagrangian
subspace of the symplectic space T (T*M), in particular, dim L, x)(f) = dim M. Thus
the dimension of the L-derivative is independent on the character of the critical point; for a
constant mapping we have L, ) (f) = Tx (T;‘(U)M). The optimal control situation is more
general, with an infinite-dimensional U. In §1 the L-derivative for the infinite-dimensional
case is considered, and the important chain rule for the L—derivative is formulated.

In §2 we give a feedback—invariant definition of a smooth control system which includes
as special cases many basic differential-geometric structures. The space of admissible
trajectories is introduced and the boundary—value mapping is defined, which sends the
trajectory into its boundary points. Critical points of the boundary-value mapping are
the extremal trajectories, geodesics in the geometric terminology. At the end of the section
a Hamiltonian characterization of extremal trajectories is given in form of a feedback—
invariant analogue of the maximum-principle.

In §3 the L—derivative of the boundary—value mapping and of its particular case, of the
endpoint mapping, is computed. We also introduce regular extremals which are trajectories
of a fixed Hamiltonian system, defined in a region of T*M. For regular extremals, the £
derivative of the boundary—value mapping is computed particularly simple. Let 7 — A, €
T*M, 0 < 7 < t, be a regular extremal, A\, = P;(\g), where 7 — P, is the Hamiltonian
flow in T M such that all of its trajectories are regular extremals. Then the £-derivative
is the graph of the linear symplectic mapping Py : T, (T*M) — T, (T*M).

In §4 Jacobi curves are introduced and investigated. Jacobi curves are curves in the
Lagrangian Grassmannian corresponding to given extremals of a very general nature, cer-
tainly including all regular extremals, and are constructed, roughly, in the following way.
An arbitrary segment of an extremal is again an extremal. Hence, varying the initial point
of the extremal with the fixed endpoint (or vice versa), we obtain L-derivatives of the
endpoint mapping, which are Lagrangian subspaces in a fixed symplectic space depending
on a time-variable, thus obtaining the Jacobi curve.

We also develop here the differential geometry of regular curves in a Lagrangian Grass-
mannian. Nonregular Jacobi curves, occurring in problems with nonholonomic constraints,
will be considered in future publications. The most important infinitesimal invariants of
a regular curve in the Lagrangian Grassmannian are the ”derivative curve” and the ”cur-
vature tensor”. The curves of constant scalar curvature are characterized. Formulas are
derived which relate the number of conjugate points, Maslov index and curvature.

The obtained results are applied in §5 to develop the differential geometry of Hamilton-
ian systems on T* M, and of differential equations of second order on M. To a trajectory
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of the Hamiltonian system, passing through a point A € T*M, germ of a curve in the
Lagrangian Grassmannian of the symplectic space T»(T*M) is assigned. Infinitesimal
invariants of these germs define a (in general nonlinear) canonical connection on T*M as-
sociated to the Hamiltonian. The main result of this section consists in deriving identities,
connecting the curvature of the canonical connection with the curvatures of the germs of
curves in the Lagrangian Grassmannian. A similar theory is developed for differential equa-
tions of the second order for which we have to substitute 7% M by T'M, and the Lagrangian
Grassmannian by ordinary Grassmannian. It turns out that the canonical connection of
the equation of the geodesic flow of a (pseudo)-Riemannian structure coincides with the
Levi-Civita connection of this structure.

In §6, for two—dimensional systems, the curvature of the extremals of smooth control
systems is expressed through standard ”state-invariants”, the iterated Lie brackets of
vector fields.

2. Preliminaries. Here we introduce some formulas of ”Chronological calculus” and
certain notions and relations related to linear symplectic spaces used in the article, cf.
[3,8], [1,7,9].

Assume M is a smooth, i.e. of class C°°, manifold, and C°°(M) is the algebra of
smooth functions on M. We identify an arbitrary diffeomorphism P : M — M with the
corresponding automorphism of the algebra C'*° (M),

a() = ao P() = a(P(-), a € C=(M).

Under this identification, the action of P on a, i.e. the substitution of P into a, is denoted

by Pa, and the value of P at x € M is denoted by P, zPa &f a(P(z)). As usual, smooth
vector fields X on M are identified with the derivations of the algebra C°°(M), hence they
are R-linear mappings of C°° (M) satisfying the Leibniz rule, X (a1a2) = a1 Xags + a1 X as.
The Lie bracket, [X1, Xa] = X7 0 X5 — Xs0 X1, turn the R-linear space of vector fields into
the Lie algebra, Vect M. For a given X, the inner derivation of the Lie algebra Vect M is
defined,

ad X : Vect M — Vect M, (adX)Y = [X,Y].

Every diffeomorphism P defines an inner automorphism AdP : Vect M — Vect M,
(AdP)X = PoXoP™1. Tt is easily seen that the differential of the inverse diffeomorphism
P! denoted by P!, acts on vector fields according to the formula (Ad P)X = P;1X.

We also consider nonstationary vector fields, i.e. measurable essentially bounded map-
pings, t — X;, t € R, X; € Vect M, and nonstationary flows, i.e. Lipschitz mappings
t— P, teR, P, e Diff M. Every nonstationary vector field defines the corresponding
differential equation & = X;(z) on M with an arbitrary initial condition, z(ty) = z¢. If
a solution of the differential equation exists for arbitrary xo € M, t € R, i.e. if the field
X is complete, then it uniquely defines for t € R an absolutely continuous solution of the
operator differential equation

dpP

—r =Pio Xy, P, =id, (0.1)
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which we call the flow on M, defined by the nonstationary complete vector field X;, and
denote

¢
P, = exp / X, dr.
to
We also call this flow the right chronological exponential of X ;. For stationary vector fields
X, = X, the corresponding flows are denoted by P, = e*¥. In the sequel, all vector fields

are assumed to be complete. This will not restrict the generality of our considerations.
The chronological exponential admits an asymptotical expansion as a Volterra series,

—

t t t T1
el'p/XTdT%id+/XTdT+...—{—/dTl/dTg.../hm’&.tSZS1(XTiO...OX7—1)dTi+...
to to to

to
For a stationary field, we obtain
t—to)' .
elt=to)X zid+(t—t0)X+...+%X’+...

In the sequel, we shall need the following important variation formula, which represents the
chronological exponential of the sum of two vector fields as a product of two chronological
exponentials,

t t t T
e_x}))/(XT—I—YT)dT: @B/XTdToe?ZB/Ad e?};/)(gde Y, dr =
to t

to to
t (0.2)

—

T t
exp | Ad e?ﬁ/xgde YTdToe?;S/XTdT.
to to to
Differentiating the expression

-1

Ad egg_})/xgde Y:egg_})/)(gdeoyo e?;)/xgde
to to to

with respect to 7, we obtain the equality

d T T

- Ad ex_})/nge Y = Ad ex_})/nge oad X,Y VY € Vect M.

=
to tO

.
In other words, the expression Ad | exp [ Xpd0 | satisfies an equation, similar to (0.1),
to

where the field X, is substituted by the operator ad X,. This remark should justify the

notation
-

Ad e?zé/xgde = eﬁé/adxgde, Ad (e7X) = eTad X
to

to
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which is also supported by the validity of the asymptotic expansions

t t

t t1 Ti—1
e_a:]))/adXTdT%id+/adXTdT+...+/d7’1/d7'2... /(adXTio...oadXTl)dT,-—i—...
to to to

to to

X N id+rad X +... 4 —(ad X)' + ...
1.

In this notation, the variation formula (0.2) takes the form

t t t T
%/(XT+YT)dT: e?f)/XTdroe?i)/ ac_})/adxgde Y.dr =
to t toT to t t (03)
exp e?f)/adxgde YTdToe?})/XTdT.
to to to

We shall also need the Hamiltonian version of the variation formula. Let TM, T* M be
tangent and cotangent bundles of M, with canonical projections denoted by one letter, .
Let 6 be the canonical 1-form on T*M, < 0y,v >=< A\, mv > YA€ T*M, v € T\(T*M).
The 2—form o = df is the canonical symplectic structure on T* M. Every smooth function

H
h, defined on an open region of T* M, defines a Hamiltonian vector field h on the region
by the formula

.
h|o = —dh.

. —
The corresponding differential equation A = h(A) is the Hamiltonian system associated to
the Hamiltonian H. The Poisson bracket of two Hmiltonians is given by the relation

def - = —
{hl,hz} = O'(hl, hz) = hlhz.

If the functions h; are linear on fibres of T*M, h;(\) =< A\, X; >, X; € Vect M, i = 1,2,
then

{h1, ha}(A) =< A, [ X1, Xo] > .
A measurable essentially bounded family of Hamiltonians h;, ¢ € R, will be called a non-

t—

stationary Hamiltonian. The corresponding Hamiltonian flow 67]3 [ hrdr preserves the
to

symplectic structure and satisfies the relation

t
0 —

— N t—>
Ee:cp thngexp/thT{htag} Vyg.
to

to
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Finally, the variation formula for Hamiltonian flows could be reduced to the following
relations,

! ‘ .
— — —
e@/(hﬁ?)cﬁ: 6?13/ hrdr o exp (e?}o/ hod0)g,dr =
to to to t
t T t
— — - — [

exp (ea:p/ hgdG)gTdToe:cp/ h.,dr

to to to

We introduce now some notions and formulate certain facts of linear symplectic geometry
used in the sequel. For details cf. [1,7,9].

Let ¥ be a 2n-dimensional symplectic space with the skew-symmetric form o(-,-), for
example, the cotangent space T\(T*M). For every subspace S C X put S¢ = {( €

Y| 0(S,¢) = 0}, hence dim S + dim S = 2n. The subspace S is called isotropic if

S4 c S. An n-dimensional subspace A C ¥ is called Lagrangian if A“ = A. The set
of all Lagrangian subspaces is organized into a smooth %fdimensional manifold, the

Lagrangian Grassmannian, L(X) = {A C E‘ A4 = A},

The tangent space ThL(X), A € L(X), is identified in a natural way with the space of
quadratic forms defined on the n—dimensional space A. Indeed, let ¢ — A; be a germ of
a smooth curve in L(X). We correspond to the tangent vector £ A the quadratic form
Ag : Ao — a(Xo, %)\0), where ¢ — \; is a germ of a smooth curve in X, Ay € Ay, It
is easy to show that AO(/\O) is correctly defined, i.e. it does depend on %AO, Ao, but is
independent on the choice of the germs A., A.

The symplectic group Sp(X) is the group of linear transformations of ¥ preserving o,
hence transforming Lagrangian subspaces into Lagrangian subspaces. Sp(X) acts on L(X)
transitively, thus L(X) is a homogeneous space for the group Sp(X).

Let h be a quadratic form (quadratic Hamiltonian) on ¥, then et € Sp(¥). Put
At = Gth(Ao), then A() =2h

. A smooth curve in L(X), t — Ay, is called monotonically
Ao

nondecreasing (nonincreasing) if A, >0 (At < 0). The subset
My, = {A e L(E)‘ A Ao # 0} cy

is called the train of the Lagrangian subspace Ag. My, is an algebraic hypersurface in
L(Y), smooth beyond some set of codimension 3 in ¥, hence M,, is a pseudomanifold.
Moreover, the hypersurface M, carries a natural coorientation, defined in such a way
that the monotonically increasing curves intersect My, in the positive direction, and
monotonically decreasing curves — in the negative direction.

Thus for every continuous curve t — A(t), t € [to,t1], such that A(t;) € My,, i =0,1,
the intersection number, A(-) - My, is defined, and A(-) - My, > 0(< 0), if the curve
A(-) is nondecreasing (nonincreasing).
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The curve is called simple if there exists A € L(X) such that A(¢) (A =0Vt € [to, t1].
If the curve A(:) is simple, then A(-) - Ma, < n. Finally, if A(+) is closed, A(to) = A(t1),
then the intersection number A(-) - My, does not depend on Ay and is denoted Ind A(:).
This is the Maslov index of the closed curve.

§1. L-DERIVATIVES OF SMOOTH MAPPINGS

We start with some definitions and constructions relevant to critical points of smooth
mappings. The exposition is carried out for infinite dimensional case, sufficiently general
for handling variational and control problems discussed further.

The differential of a scalar—valued function on a Banach space (evaluated at an arbitrary
point) is an element of the dual space. In the finite-dimensional situation we can make
no difference between the initial space and its dual, but in the infinite-dimensional case
the dual might be less comprehensible than the initial space. A standard example — the
space Ly [0, 1] of admissible controls in optimal control problems, which is very natural and
simplest possible to be considered in most situations, but its dual is pretty involved. Due
to the restrictive nature of the functionals involved in smooth control problems, the final
results, if appropriately formulated, do not use the dual space at all, though some cum-
bersome analytical efforts are needed for eliminating the dual space in final formulations.
Meanwhile, a natural modification of some basic definitions makes it possible to avoid
all artificial complications connected with this phenomenon. The simple trick consists in
considering the initial space as a dual to some ”acceptable” Banach space, in our example,
considering from the beginning the space of controls L.,[0, 1] as the dual to L]0, 1], and
appropriately defining (stiffening) the notion of the differential of a smooth mapping on
such a space. Formally, we proceed in the following way.

Let B be a Banach space, B* — its dual. We shall always suppose the natural (isometric)
inclusion B C B**.

A differentiable scalar—valued function a on B* (a "nonlinear functional”) is said to be
of class x~C*, or x—differentiable of class C', if it is of class C' in the usual sense and
its differential d,a at an arbitrary point © € B, which is an element of the second dual,
d,a € B**, belongs in fact to B,

d,a € B(C B*) Vx € B*.

Equivalently, we can say that a is of class +~C* if da is a continuous mapping from B* to
B

Y

da: B* — B, v+ dya € B.

A scalar-valued function a of class x—C* is said to be of class x-C¥, if it is of class C* (in
the usual sense), and for V¢ € B* the scalar valued function on B*,

<&da> B — R, v—=<&dea>,

where < -, - > is the pairing between B* and B, is of class *~C*~1 (definition by induction).
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Finally, we say that a differentiable mapping of class C* (in the usual sense), ® :
Bt — B3, is of class x—C* | if for every scalar—valued function a of class *~C* on B}, the
composition

aod: B 2 B %R

is of class *~C* on B}. We shall also say that ® is x—differentiable of class C*. Evidently,
the composition of two *differentiable mappings of class C* is again a % differentiable
mapping of class C*. The chain rule for differentiation implies that the mapping @ is of
class +-C¥, if every composition

no@:BI&B;iﬂR, z—=<n,®(x) >, Vn € By,

is a scalar—valued function of class *~C* on B?.

A Banach manifold, modeled on a space B*, is said to be *—smooth of class C¥, or
of class +~C*, if the mappings B* — B*, induced by the overlapping neighborhoods of
corresponding atlases, are of class +~C*. Between two such manifolds, mappings of class
%«~C* are well defined in an obvious way. For a fixed k, all +~C* manifolds and all «+-C*
mappings between them form a category. Cotangent spaces in this category consist, by
definition, of differentials of x—smooth scalar valued functions at corresponding points,
hence they are isomorphic to B, not to B**. Tangent spaces are isomorphic to B*.

Let U be a s—smooth manifold modeled on a Banach space B*, f : U — M be a
x—smooth mapping into an n—dimensional manifold M of appropriate class. A pair

(w,)), ueU, \é (T;(U)M) \ {0},

will be called a Lagrangian point of f if Af} = 0, where Af] is the composition of the
differential f, : T,U — TyM with the linear functional A : Ty, )U — R, i.e., is the

image of A under the adjoint f,;*,

AL Aol = £ AT, U — R

u

Thus for an arbitrary pair (u,\), u € U, A € T}yM, we have
A, € TiU ~ B,

and, if (u,\) is a Lagrangian point, Af, is the zero element of the fibre T,)U. The first
component u of every Lagrangian point (u,A) of f is a critical point of f, the second
component A is a Lagrange multiplier associated with the critical point w.

Consider the induced bundle f*(T*M) over U defined by the mapping f : U — M
and the cotangent bundle T* M,

) = {(w )| we v, xeTjyM} = | T M.
uelU

Besides the canonical projection (u, A\) — u, it defines canonically two additional mappings

P A) = AL @ (u,A) = A,
8



represented in the diagram
f*(1 M)
F* e
Y
™U T*M

Identifying U with the trivial section of T*U, U C T*U, we can assert that the set of the
Lagrangian points of f is identical with the preimage of U under the mapping f * less
the trivial section of f*(T*M). Furthermore, every tangent space to T*U at an arbitrary
point of the trivial section is canonically represented as a direct sum of its horizontal and

vertical subspaces,
T.,7°U =T, U T,U, Vvu € U C T*U.

Denote by
Ver, : T,7°U — T,;U, we U C T*U,

the projector onto the vertical subspace. Let (u, A) be a Lagrangian point of f. The linear
mapping

/ F ) or
lony EVera o (F ) uny : T f(T*M) =8 7,770 "5 T;U

contains a complete information about the second order approximation of f at w.
Note that
ker <p'(u7)\) ~ ker f, C T,U.

Thus f(’; SIA is a well-defined mapping from ker f,, to T,;U. We call this mapping
o ker o, 5

the second derivative of f at the Lagrangian point (u, A) and denote in the sequel by
D%U,A)f s ker f, — TrU.

This definition needs some clarification. At the first site, the natural choice for the second
derivative is the mapping (f *)’(%)\) defined at all points (u,A) € f*(T*M). But such a
definition would be completely useless, since, by virtue of the implicit function theorem, in
some neighborhood of every regular point, local coordinates could be introduced in which
f is linear, hence it is senseless to consider in such points second derivatives. Concerning
the horizontal component of the mapping (f *)’(u » ab a Lagrangian point, it is easy to see
that it coincides with the differential of the canonical projection (u,A) — u and has no

connections with the differential properties of the mapping f.
Define, finally,

Ly () = @lun (ker fl, ) € TA(T*M).

The choice of arbitrary local coordinates in U leads to the representation
T(uj)\)f*(T*M) = TA(T;(U)M) eT,U= T)\(T}k(u)M) @ B*.
If local coordinates are introduced in M as well, then we obtain the representation

A=(p, f(w), p €R™, Ti M =R", Ty f*(T"M) =R" @ B".
9



The mappings ¢!, and f('; ») take the form

@, (E,0) s (€, fuv), € ER™, v e B fll 1 (€.0) = EfL +pfio,  (L1)

where pf!’ is the second derivative at u of the x—smooth function pf : B* — R. Thus the
linear mapping pf) : B* — B is symmetric (selfadjoint). Denote

F={es.

cer™}, BE={pflv

UEB*}.

Note that F' is the image of the tangent space to the fibre of the bundle f*(7*M) under
the mapping f(’; NS At the same time the subspace F depends on the choice of the local
coordinates in U. Denote

S(uny = dim(F N E) —dim(FNE).

The following Proposition shows that the number d, ) is independent on the coordinate
choice.

Proposition 1.1. L, »(f) is an isotropic subspace of dimension (n — 0, x)f) in the
(2n—dimensional) tangent space T\(T*M) to the cotangent bundle T*M with the natural

symplectic structure.

Proof. First we proof the isotropy. The choice of local coordinates in M identifies T (T*M)
with R™ @ R"™, and the canonical symplectic form o takes the form

o ((&1,m), (&2,m2)) = &1z — Eam, & € R, n; € R™.

We must prove the implication
(&ismi) € LaA(f) = &1na = Eamn.-
We have n; = flv;, where v; € B*, & f. + pfllv; = 0. Hence
§1m2 = E1fv2 = — < w2, pfyu1 >,
and the identity to be proved follows from the symmetry of the operator pf/.
Now we turn to the dimension of L, x)(f). Formula (1.1) and the symmetry of pf,’
imply that
ker f(’;)\) ~ coker fL @ ENF ® E*, B+ = kerpf!! = ker f(':w\) N B*.

Furthermore, ker f! = F+. Hence

Lo (f) =~ coker f, ® ENF @ E+-/E- N F*.
10



Thus
Dim Ly, x(f) = corank fo, + dim F — 6, x)f = corank f, + rank f, — 6, ) f-
If dim Ly, 2 (f) = n, then L, »)(f) is a Lagrangian subspace in T (7*M). In this case
we call L, x) the Lagrangian derivative of f, or L-derivative, at the Lagrangian point
(u, A).

The L-derivative, i.e., the image 2m go’(u ) , could be considered as a dual object

ker f(';,/\)

to the second derivative. Note that
ker D(Zu)\)f = ker ¢(, ) Nker fi, 5)-
In coordinates we obtain
D(zuj)\)f cv = pfiv, v € ker f.
The following assertion is a result of direct calculations.

Lemma. The relations (1), (2) below are equivalent:

(1) ker D(2u7>\)f =0
(2) imfp, = T,U.

Suppose that D(2u7 ) f is injective and U is finite—dimensional. Then the implicit function

theorem implies that the germ at (u, A) of the set of Lagrangian points is a germ of a smooth

n—dimensional manifold. The restriction of ¢ on this germ is a Lagrange immersion into

T*M, and L, »)(f) is the tangent space to the obtained germ of a Lagrange submanifold.
Finally, we call the Hessian of the mapping f at (u, A) the quadratic form

Hessu ) [« ker fl — R Hessgya f(v) =< ’U,D(qu)\)f’l) > .

Negative and positive indices of the quadratic form Hess, x)f(v)*, (which are nonnegative
integers or +00) are important characteristics of the Lagrangian point (u, A). In particular,
for the optimization problems they give essential information about the configuration of
the image of a small neighborhood of the point under f. We formulate here only the
simplest assertion of this kind. For deeper results in this respect and particularities cf.
[2,5,6].

Proposition 1.2. Let ¥ be a nonconstant germ of a smooth curve on M with the initial
point f(u). Assume that im~yN f(O,) = f(u) for a certain representative -y of the germ 7y

*The negative (positive) index of a quadratic form @ on a linear space B, ind_Q, (ind4+ @), is the
maximal dimension of subspaces in B where @ is negative (positive).
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and certain neighborhood O,, of u in U. Then there exists a Lagrangian point (u, A) such
that
< A 4(0) >< 0 and ind_ Hess(, x f < corank f,.

There is an intimate tie between the indices of the Hessian and the Lagrangian deriv-
ative. Certainly, the Lagrangian derivative at a fixed point could not give any estimates
for the indices of the Hessian in that point, but it is possible to express the increments of
the indices along a one—parametric family of Lagrangian points through the Maslov index
of the corresponding family of Lagrangian derivatives. Cf. [7] and §4 of this paper.

We emphasize that the isotropic subspace L, A)( f) is called L—derivative only in case
when its dimension is n, i.e. when it is a Lagrangian subspace. This is always the case if
U is finite-dimensional, but by far not always in infinite-dimensional case. It turns out
that if one of the indices of Hess(, x)f is finite then L, »)(f) could always be extended
in a natural way to an n—dimensional Lagrangian subspace, which should be called the
L—derivative. Below we give a precise formulation of this result. In this paper the result
is not used, therefore the proof will be given in subsequent publications.

Let (u,A) be a Lagrangian point of f and N be a germ of a submanifold in U at w,

hence (u,\) is a Lagrangian point of f ‘ . If N is finite-dimensional then L, x)(f| )
N N
is a Lagrangian subspace. Denote by A the set of all such germs partially ordered by

inclusion. Then {E(u, N (f ‘N)} N is a generalized sequence of points of the Lagrangian
Ne
Grassmannian L(T\(T*M)).

Theorem. The limit N-lim L, ») (f‘N) exists if one of the indices of Hess, x)f is finite.

This limit is the precise definition of the L—derivative at the Lagrangian point (u, A). It
contains the isotropic subspace L, A)( f). But it is not enough to prove the existence of
the limit, we must compute it. Introducing local coordinates, we can assume that U is a
Banach space and w its origin. Let Uy C U be an arbitrary linear subspace which is dense
in U, and Ny be the set of all finite—dimensional subspaces Ny C Uy, partially ordered by
inclusion. Thus, Ny C N. The following assertion is an essential addition to the Theorem,
making possible to explicitly compute the limit indicated in the Theorem.

Proposition 1.3. Under the hypothesis of the Theorem the limit

No-lim Lo (F| ) = Nlim Lo (f] -

Ny

Remark. According to the definition of the £L—derivative we have

Tr(imf)" C Ly (f)-

In particular,

TA(RA) C Luny(f)-
12



Thus the subspace L, )(f) contains a one-dimensional subspace which depends only on A
and not on f. This makes possible to make all our constructions in the 2(n—1)-dimensional
symplectic space T)(R\)4/Tx(R)\) and not in the 2n—dimensional space T (T*M), con-
sidering L, »)(f) as a ( (n — 1)~dimensional ) Lagrangian subspace in Tx(RA)¢ /T (RX).
Certainly, the same reduction could be described in the language of contact geometry, con-
sidering not T* M but its projectivization PT* M, which possesses the natural structure
of a (2n — 1)—dimensional contact manifold. In a certain sense the contact formulation
is more natural, though we shall not use it here for the following reasons. Even consid-
ering PT* M instead of T* M, we would be led to consider homogeneous coordinates on
projective spaces PT M, thus constantly returning to the same space T* M.

The following assertion formulates the ”chain rule” for £L-derivatives. It easily follows
from the definitions and has many useful consequences.

Proposition 1.4. Suppose f; : U — M, are x—smooth mappings, u € U, \; €
T}:(U)Mi7 i = 1,2,3. Suppose further that (u,(—MXg,A1)) is a Lagrangian point for the
mapping (fo, f1) : U — Mo x My, (u, (—A1, A2)) is a Lagrangian point for (f1, f2) : U —
My x Ms, and

(=1, m2) € Liu,(=2r0,0)) (fo, 1) T T2, (T Mp) x Ty, (1™ M),
(=n0,m1) € Lu,(=x1,00)) (1, f2) CTT_x, (T*My1) x Ty, (T*M>),

then (u, (—A2, o)) is a Lagrangian point of the mapping (fa, fo) : U — Ms x My, and
(=n2,70) € L(u,(=2s,70)) (f25 fo)-

Suppose now that M; = M, + = 1,2, 3, and that the projections

7‘-1'(071) : (_7707771) = 1, (_7707771) S E(u,(—)\o,)\l))(f()vfl)? 1= 0,1

7‘-]('172) : (_7717772) = 15, (_7717772) < /:'(u7(—)\1,)\2))(f17f2)7 =12

are invertible mappings of Ly (—xg,a,)) on Ty, (T*M), i = 0,1, and of Ly, (—a,,x,)) On
T, (T*M), j = 1,2, respectively. Then, Proposition 1.3 implies that the mappings

7‘-15;270) : (_7727770) = ks (_7727770) < E(u,(—)\g,)\o)) (f27 f0)7 k= 2,0,

are also invertible.
Set, . .
Dy = 7Ti(m) ° (Wém))_la Q= q)i_jl-

The property for the subspaces Ly (-, x;))(fi, fj) to be Lagrangian is equivalent to the
fact that the mappings ®;; : Ty, (T*M) — Ty, (1*M) are symplectic. Proposition 1.3
also implies the important composition rule

Dy = Py 0 Py

We shall meet below concrete applications of this rule to control systems considering the
boundary-value mappings on admissible curves, cf. §3.
13



The projections 7%'(0’1)7 ¢t = 0,1, are invertible only if fy and f; are submersions

at u. The symplectic mapping ®;7 which represents the 2n-dimensional L-derivative

of the mapping (fo, f1) represents also the n—dimensional L—derivative of the mapping

f1 ; , the restriction of f; to the level of fy through w. Direct calculations imply
o=const

Lo (1] ) = B1(T, (T3, 1y M)).

fo=const

§2. SMOOTH CONTROL SYSTEMS AND BASIC
STRUCTURES OF DIFFERENTIAL GEOMETRY

1. Definition of smooth control systems. Suppose a smooth (locally trivial) fibre
bundle over a smooth n—dimensional manifold M is given,

pr: W — M, (2.1)

with the typical fibre U, a smooth r—dimensional manifold. Furthermore, suppose an
arbitrary smooth fibrewise mapping of W into the tangent bundle T'M is defined over the
identity mapping of M,

f:W —TM, f(W,) CTuM Vo € M; W, = pr—{z}. (2.2)

We call the data (1.1)—(1.2) a smooth control system, (2.1) (or W) is called the control
space of the system, the typical fibre U is called the space of control parameters; M is the
state space, the cotangent bundle 7" M is the phase space of the system.

Morphisms between two control systems f; : W; — T'M;, i = 1,2, are, by definition,
arbitrary commutative diagrams

e Fol (2.3)

where @ is a smooth fibrewise mapping of control spaces, ' : My — M- is a diffeomor-
phism. We denote the morphism (2.3) by (®, F,). If (¥, F}) is a second morphism,

W3 — TMg,

then their composition is defined, (®’ o ®, F o F,), which again is a morphism between
f1: Wy — TMy, and f3 : W3 — T'M3. The identity morphisms are defined in an
obvious way. Thus a category of smooth control systems is introduced.

If @ in (2.3) is a diffeomorphism and F, = id, (M; = M>), then the morphism (@, id)
is called a feedback transformation, and the corresponding control systems are said to be
feedback equivalent. Feedback transformations are smooth fibre transformations of the
control space over the identity map. If W, = W, then the feedback transformations are

14



also called guage transformations. Two feedback equivalent control systems are equivalent
in our category, hence the given definition of a control system is ”feedback—invariant”.
According to the usual "state—invariant” definition, a smooth control system,

&= f(z,u) € TyM, (z,u) e M x U, (2.4)

is a family of smooth vector fields on the state manifold M, indexed by a control parameter
u € U. The control space is the direct product W = M xU with the canonical trivialization,

pr: M xU— M, (z,u) — z, (2.5)

and the mapping W — T'M is given by f. Evidently, this definition, though invariant
under coordinate transformations in M, is not feedback—invariant.
A measurable essentially bounded curve in the control space,*

£:0,t] — W, (2.6)

is called an admissible control space trajectory of the system (2.1)—(2.2) if its projection
on M,
x=pré: [0,t] — M, (2.7)

is a Lipschitz curve in M satisfying for almost all 7 the differential equation

Z—i(T):fog(T), 0<r<t. (2.8)

The curve z(7) is called an admissible state space trajectory. Admissible control space
trajectories will be also called admissible controls.
The set of all measurable essentially bounded mappings w will be considered as a space

with the following natural topology. Consider a metric p, compatible with the topology of
W, and define the e—neighborhood of a given w by the relation

O(e.) = { ] exs suppt(). 7)) = | o) I <}

Since the closure of the image of w is compact, the introduced topology is independent on
the choice of the metric.

Denote by Qf the space of all admissible controls (2.6), (considered as a subspace of the
space of all measurable essentially bounded curves [0,¢] — W).

Proposition 2.1 The space Q! of all admissible controls can be given, in a natural way,
the structure of a *—smooth Banach manifold modeled on the direct product

R™ x (L{[0,t])* =R™" x LT_[0,t], n =dim M, r = dimU.

*A measurable mapping w : [0,t] — W is said to be essentially bounded if the closure of the image
under w of a subset of [0, t] of full measure is compact. For simplicity, we shall assume in the sequel that
the closure of the image of w is compact.

15



Proof. First we proof that the space of essentially bounded mappings u : [0,¢] — U is, in
a natural way, a *—smooth Banach manifold modeled on L]0, t].

For this we define coordinate mappings of e-neighborhoods of an arbitrary element
u: [0,t] — U into L7_[0, t], assuming that a Riemannian metric p is fixed on U.

Denote by @ the (compact) closure of the image of u and consider a finite cover of @

S
by e-balls B.(p;), i =1,...,s, centered at p; € Q C |J B:(pn) = B. Set ¢ small enough
1

o=
to secure the following two conditions.

(1) The exponential mapping,
exp: TU — U x U,

is invertible on |J (p, B<(p)) C Q x B,
peER

exp™t: U (p, Be(p)) — U T,U.
PEQ PER

(2) The tangent subbundles TB.(p;) C TU, i = 1,...,s, are trivial, with trivializa-
tions
Ci : TBe(pz) — R".

Introduce the (measurable) mapping
(:TB—R", ((2) =C(i(z), i =min {a‘ ze€TB, pr(z) € Ba(pa)} i

For every measurable curve u(7),0 < 7 < ¢, in the e-neighborhood of u, u(r) € B (u(7))
0 < 7 < t, we can define a measurable curve v(7),0 < 7 < ¢, in R" according to the
correspondence

u(T) = C o expHu(7), u(r)) = v(1) € R",

which is an injection and satisfies the relation

esssup|v(T)| = || v ||, <6(e) = 0(e = 0).
0<r<t

Conversely, every measurable curve v(7), 0 < 7 < ¢, in R", satisfying the relation || v ||, <
0, with ¢ sufficiently small, could be obtained in this way. Indeed, denote the restriction
of ( to T,B, p € @, by (p. Then

u(r) = ewpo Gl o(r) = (¢ o exp™)~\o(r) € Bu(ii()).

From here the assertion is easily deduced. We now turn to the proof of the Proposition.
We shall show that there is a natural one—to—one correspondence between admissible
controls, sufficiently close to a given admissible control £, and arbitrary pairs (z(0),u),

where 2(0) is sufficiently close to the initial condition Z(0) = pr&(0) and u : [0,t] — U
16



is sufficiently close (in the ess sup topology) to the mapping w : [0,t] — U corresponding
to &.
To define the correspondence consider the projection

#(t) = pré(r), T €[0,1],
and take a ”tubular” e—neighborhood of z,
T :[0,t] x Be — M, T(7,0)=z(1), T € [0,¢], (2.9)

where B, C R is an e-ball centered at the origin, 7" is a diffeomorphism for every fixed
7, Lipschitz in T,

T(r,)=T,:B. — M; v =T,(q), ¢ =T (x), ¢ € Be,w € T-(B.).

Since [0,t] X B, is contractible, the induced bundle T* (W) is trivial,
(W) = |J ((1,0), Wr(rg) = ([0,t] x Be) x U, (7,q) € [0,t] X Be.
(m.9)

Every trivialization

9 :([0,t] x Be) x U — T*(W)

generates a continuous family of diffeomorphisms
N1, q) : U — Wrirq), T €[0,t],g€ Be,u €U,

smooth in ¢ and Lipschitz in 7. Introduce the mapping

(1,2 u) = fr(x,u) d:effoﬁ(T,TT_l(m))(u), Tel0,tl,zeT:B,uel,

which is smooth in z,u and Lipschitz in 7.
Every admissible state space trajectory xz(7) = pré(r), 0 < 7 < ¢, in the tubular
neighborhood (2.9) of z, x(7) € T(r, Be), is a solution of the equation

Z—i = fr(z,u(r)), 0 <7 <t (2.10)

where u(7) is uniquely defined on [0, ¢], (up to a set of measure zero), by the relation

u(t) =97 Y7, T Hx(r)(E(T)), 0 < 1 < ¢t (2.11)

T

For any preassigned 6 > 0, all sufficiently small ¢ > 0, and all admissible controls &,

sufficiently close (in the ess sup topology) to &, the inequality || p(u,a) < ¢ holds,

where @ corresponds to & according to (2.11). Conversely, for every u(r), satisfying the

last inequality for a sufficiently small §, there exists a solution z(7), 0 < 7 < ¢, of the

equation (2.10) with the initial condition |z(0) — z(0)| < 6. This solution is an admissible
17
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state space trajectory corresponding to the admissible control space trajectory &, obtained
by inverting the relation (2.11),
&(r) = 9(7, T7 (a(r)))(u(r)), 0 < 7 < L.

T

¢ is arbitrarily close to E for sufficiently small § > 0. Thus, every pair
(@(0), ), w: [0, — U, || plu,) [l < 6, J(0) — F0)] <&,

uniquely defines, for sufficiently small 9, an admissible control in a certain neighborhood
of £, and all such controls could be obtained in this way. This proves the Proposition.
Definition of smooth control systems introduced here is general enough to include as
special cases basic differential-geometric structures. Below we give several examples.
An extensive and important class of control systems is defined by (locally trivial) smooth
subbundles of the tangent bundle 7'M, considered as control spaces W, and the correspond-
ing inclusion maps

f:WcCTM.

Many standard geometric structures are reduced to such systems, the structure type de-
pending on the choice of the typical fibre U of the control space which, in this case, is a
submanifold of R™,

UCR", n=dimM.

(1) U is an ellipsoid with center at the origin. We obtain the Riemannian geometry.
Admissible trajectories in the state space are arbitrary Lipschitz curves z(t) of
length t, parametrized by the arc length.

(2) U is a strongly convex body in R™, symmetric with respect to the origin. This is
the case of the Finsler geometry.

(3) U is a hyperboloid, symmetric with respect to the origin — the case of pseudo—
Riemannian geometry.

(4) U is a linear subspace in R” of an arbitrary dimension. We come to the theory
of distributions (in the differential-geometric sense). Admissible curves are the
integral curves of the distribution.

(5) U is the intersection of an ellipsoid centered at the origin with a linear subspace.
We obtain the sub-Riemannian geometry.

(6) The "affine” versions (i.e. translates with respect to the origin) of the structures
(1)-(5). Though not very popular in geometry, they are of utmost importance in
applications to Mechanics and Mathematical Physics.

Examples (1)—(6) could be generalized in the following way. Suppose the control space
(2.1) is a (locally trivial) subbundle of an arbitrary vector bundle over M, E — M, with
the typical fibre coinciding with one of the above mentioned types (1)-(6), and f in (2.2)
is the restriction on W of a certain fibrewise mapping £ — T M, linear on fibres; in
the examples considered f was an embedding. These broader classes of systems include
”singular” versions of geometric structures (1)—(6) with degenerations at certain points.

18



2. The boundary—value mapping. The mapping
F,:Qf — M, F (&) =proé&(r),

which evaluates the admissible state—space trajectory x = pr o ¢ at the moment 7, is a
«—smooth submersion for V7 € [0,¢]. At the same time, the boundary—value mapping

(Fo, Fy) : Q" — M x M, (Fo, F)(€) = (Fo(€), Fi(§))

is, in general, not a submersion. Critical points of boundary-value mappings are called
extremal controls of the control system.

Denote by €f = the set of admissible controls £ € Q' subject to the condition x(0) =
pro&(0) = xg. In other words, Qio is the level set over the point z¢g € M of the submersion
Fy. Evidently, Qf is a +-smooth Banach manifold modeled on L0, ].

We introduce the endpoint mapping

FOt:Ft tho—>M
Ot

z0o

Critical points of Fjy; are exactly the extremal controls in Qﬁ:o.
Let o be the natural symplectic form on T* M and put

H(A2) = Af(2) © Xo f(2), 2 € W, A€ T\ M.

H is a smooth function on the direct product of the fibred manifolds W, T*M over M.
We call it the Hamiltonian of the control system (2.1)—(2.2).

Proposition 2.2. The triple
(57 (_>\07 At))? 5 € Qt) >\0 € T;rg(O)M7 )\t € T;rg(t)M
is a Lagrangian point of the boundary value mapping (Fy, F;) iff there exists a Lipschitz

curve
T+ )\7- € T];k’l‘g(T)M7 T € [O,t],

dA
M T =—dH
]2 ( dT J0> ?

where j1, jo are the natural projections,

satisfying the condition

w x T*M
. M .

J1 J2
Ve N\

W T M.
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Proof. If the curve 7 — A, exists then it is unique (for a given Lagrangian point). Indeed,
according to Proposition 2.1, (see (2.10)), for an appropriate trivialization of W along the
trajectory pr& the admissible control ¢ is represented as 7 — (u(7),%(7)) € U x M, and
the controls close to & are exactly the solutions of the equation

d
d_x:fT(m7u(7—))7 0§T§t7 u < U’ 'TEM’
T
close to (u(7),z(1)).
The Lipschitz curve 7 — A, € T g(T)M satisfies the assumptions of the Proposition 2.2
if and only if it satisfies the equations

ddAT — H. (A, (7)), (2.12)
OH,
ou ()\T,U( )) =0, (2.13)

%
where 7 +— H (A, u) is the Hamiltonian vector field on T*M corresponding to the Hamil-
tonian

A= Mo(x,u) = He (A u), Ae TyM, z € M.

To prove the Proposition, we shall compute explicitly the differential of the mapping F3,
using the variation formula, cf. Introduction. We have

Fi(zo,u(-)) =zoexp / fr(u =
xoe?}o/ ﬁdm%/ e?{g/ ad Fod0(fr (-, u(r)) — . )dr
0 0 t

where f;(z) = fr(z,u(r)). Thus,

! — " r afT
(0w, dxp) :/ )\e:cp/ ad fodf o

T —

¢
/ exp Hngagl (A, a(7))ou(T)dr + X( ea:p/ Frdr) 00,
0

t

AF!

t
Su(r)dT + A(exp / frdr) S0 =
0

u(r)

where Hy(\) = Hg(\, (). Hence,

At

o,
v (du, 0mp) = / 0 — (Ar, u(7))0u(7T)dT + Ao,
u 0 8U

where 7 i+ ), satisfies (2.12). The equality ,\tFt" — Xo = 0 implies (2.13).

The curves 7 — (£(7), A;) in Proposition 2.2 will be called extremals.
20



§3. L—DERIVATIVES OF ENDPOINT MAPPINGS. REGULAR EXTREMALS
We preserve the notations of the previous section. Put

T

0O ) = A [ ad fadd (. (u) = F.).

t

All Lagrangian points (§', A}) of the mapping Fo, sufficiently close to (£, A¢), are charac-
terized by the condition: there exists a Lipschitz curve 7 — A, € T o (r )M such that

3 = G0, g (Xl () =0, (3.1)

where ¢'(7) = (2'(1),4/ (7)), 2/(0) = Z(¢). Note also, that g, i) = 0.
Linearising (3.1), we obtain

Proposition 3.1. The relations
N € *C(g,)\t)(FOt) C T)\t (T*M)
are equivalent to the relations:

there exist curves 7w n, € Ty, (T*M), 7+ v(7) € Ty;)U such that

8 — ngT

: dgr
T = 5 Y9r ) y ') — d )yl ~
=5 gro(r), 5 5 (v(r),) <, (5o ﬂ(T)) e >

7o € T)\t (Tj(t)M), 0 S T S t.

g

The last two equations can be written in a more symmetric form as

. 99, 929, 99+
i = — o(r), == (0(r), ) = o (S L) (3.2)

In §1, from general considerations, we derived that L x y(Fo¢) is an isotropic space. This
follows easily also from (3.2). Indeed,

t
77t777t :/
0
0%g

1 8297’ 1 2 o
auz( (1), v (7)) — D02 (v (1), v%(T)) = 0.

— —

d_ 1 2y 897- 1 1 agT 2 _
777'7777- dTO-(nTvnT) _O-( 8” ( ) 777)+‘7(7777 au v (T)) -

3k

32

We use further the following notation: 5 ng (+,-) denotes a symmetric bilinear form on
u

T5)U; the corresponding quadratic form is denoted by Ir (-).  Furthermore,

ou?
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0%g,
(992 U — T~(T)U is a selfadjoint linear mapping. If it is nondegenerate, then
U
2

-1
the mapping ( 5 ng ) : U(T)U — T5(r)U is defined and is also selfadjoint. The corre-
u

02g,\ "
sponding quadratic form on 7’ ui‘(T)U is denoted by ( 5 92 > (-). Observe also that the
u
expression
8kgT 8k
— A fr E=1,2,... 3.3
ouF Ix, — Ouk o (8:3)

is the k—th derivative of the function Af, restricted on the fibre Wz(;) of the bundle W.
The first derivative has an invariant meaning, independent on the local trivialization of W
and on the choice of coordinates in the typical fibre. The first derivative vanishes along
the extremals, hence at these points the second derivative has an invariant meaning, which

is the Hessian of the function u — A, fr(z(7), u) at the point u(7).
2

A fr
Ju? f~(>

nondegenerate at every 7 € [0,t]. The following proposition is an evident consequence of
the relations (3.2).

An extremal 7 — (£(7), ;) is called regular if the quadratic form

Proposition 3.2. Assume 7 — (£(7), A;) is a regular extremal. Then the relation n; €
L ¢ r,) (Fy) is equivalent to the requirement that the solution n,, 0 < 7 < t, of the linear
Hamiltonian system on Ty, (T* M) with the nonstationary quadratic Hamiltonian

1 (0%, \ [ dg- )
QT(U):_§<(9U2> (0’( ou 777) ) nGT)\t(T M)7

and the ”end—condition”, n satisfies the ”initial condition” ny € T}, (Ti(t)M)

Corollary. If the Lagrangian point (£, \;) defines a regular extremal, then L x,)(Fot) is
a Lagrangian subspace, hence an L—derivative of the mapping Fy; at (£, A¢).

In the sequel only regular extremals will be considered.
Put

82

D= {(w,)\) € Wxu (T*M)‘ %(Af)‘w =0, 5 (Af)| s invertible.}

Proposition 3.3

(1) All regular extremals are contained in D.
(2) D is a smooth submanifold of dimension 2n.
(3) Through every point of D passes a unique continuous regular extremal.

Proof.
(1) is evident.
(2) follows from implicit function theorem.
(3) follows from implicit function theorem and the relations (2.12), (2.13).
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The mapping ¢ : (w, A) — A, (w, A) € D, is locally one-to—one, and its image, D,., (pos-
sibly empty), is open in T*M. For many important problems, which include all examples
of §2, this mapping is globally one-to—one, hence is a diffeomorphism. In this case the
smooth function is defined,

h(X) = Af(e™ (), A€ Dy,

which will be called the master—Hamiltonian of the corresponding control system. KEvi-
dently, the restrictions of h to fibres D (T M are positively homogeneous functions of
degree one. If the master-Hamiltonian exists, then the regular extremals are exactly the
curves 7 — (¢~ 1(A;), Ar), where A, is an arbitrary trajectory of the Hamiltonian system

. —
A= h(A), AED,.

All regular extremals are smooth.

We now describe the domains D, and the master-Hamiltonians for control systems (1)
— (6) enumerated in §2. The corresponding computations are straightforward. For Rie-
mannian geometry we have D, = T*M \ M, and the restriction of the master—Hamiltonian,

h is the square root of a positive quadratic form on 7y M. For the Finsler structure, D,
T>M

again coincides with T*M \ M, and h is the support function to the unit Finsler ball
T*M

in T, M, hence, is convex. For pseudo-Riemannian geometry of a given signature, h‘

T M
is the square root of a quadratic form of the same signature, D, (|TxM is the positive
cone of the quadratic form. For a distribution, D, = (). Finally, in case of sub—Riemannian
geometry we have D, TxM = TxM \ (span W)L, the master—Hamiltonian h‘ is the

T: M
square Toot of a nonnegative quadratic form, with kernel equal to (span W,)L. For the
"affine versions” of the considered structures the domains D, remain unchanged, and to
the Hamiltonians scalar functions are added, which are linear on fibres.

Returning to the L-derivative, we note that, for regular extremals, the projection of the
Lagrangian subspace

L (=xone)) (Fo, Fr) C T (T*M) x T, (T*M)

onto the factors in the right—hand side is one—to—one. Thus we are in a situation discussed
at the end of §1. Hence the symplectic mappings are defined, @y, : Th,(T*M) —
Ty, (T*M), satisfying the conditions

Doty = Piyty © Piytyy Ligny)(For) = Pro(Th, (T, M)).

It is easily seen that @y ;, = (e(tl_tO)h> , where h is the master-Hamiltonian.
*
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§4. JAacoBi CURVES

For an arbitrary A € T*M consider the hyperplane (RA)“ in the symplectic space
Tx(T*M)t and consider the factor space Xy = Tx(T*M)/(R\)%, which is a symplectic
space of dimension 2(n — 1). Let L(3,) be the corresponding Lagrangian Grassmannian,
the manifold of the Lagrangian subspaces in . At the same time L(X,) is the manifold
of Lagrangian subspaces in T (T*M) containing A.

Let 7 — (£(7),Ar) be a regular extremal, Z(7) = pré(r),0 < 7 < t. Denote by
Fr.: Q;ZTT) — M the end—point mapping, defined on admissible state space trajectories,
starting at 2(7). For every 7 € [0,t] the L-derivative L x,)(Frt) € L(Xy,) is defined.
Consider the curve

J(&A) T = ﬁ(g,At)(Fv-,t)

in the Lagrangian Grassmannian L(X,), which will be called the Jacobi curve associated
with the regular extremal 7 — (£(7), A;).

Note that the line RA\; belongs to the kernel of the quadratic forms ¢, from Proposition
3.2. Hence the Hamiltonians ¢, are correctly defined on X,,. Every linear Hamiltonian
field on Xy, defines a vector field on L(X),) which we also call Hamiltonian. From the
Proposition 3.2 and the variation formula for Hamiltonian systems, cf. Introduction, it
follows that Ji¢ ) is a trajectory of the Hamiltonian system on L(Xy,), defined by the

t
Hamiltonian —(e_:c;z)) I aode)qT. Furthermore, the relations at the end of §3 imply
T

J(f,)\)(T) = (e(t—m)h) J(Ev)\-)|[t0,t1](7—)’ 0<ty <7<t <Ht. (41)

*

The Jacobi curve belongs to the Lagrangian Grassmannian, which is a homogeneous space
for the symplectic group. We shall consider two curves in a Lagrangian Grassmannian to be
equivalent if one is transformed into the other by a symplectic transformation. From (4.1)
the following basic assertion follows: the germ of the Jacobi curve Ji¢ ) at 7 is defined, (up
to the equivalence), by the germ at 7 of the extremal (£, A.). To fully appreciate this fact,
we should emphasize that the Jacobi curve is a curve in a special remarkable homogeneous
space of the symplectic group, whereas the extremal belongs to a smooth manifold with a
completely incomprehensible group of transformations.

We remind that the tangent vectors to the Lagrangian Grassmannian at the point
A € L(Y) are quadratic forms on A C ¥X. Descending from germs of curves to 1-jets, we
obtain

Proposition 4.1. I Jen(T) is a quadratic form of rank dimU and signature
’7'
2

— M frl. .
Sgnc‘)uQ / &(r)

Before investigating the germs of Jacobi curves, we remind an important result, re-

lated to the curve as a whole, namely, to the indices of the Hessian of the end—point

tWe identify A with the corresponding tangent vector to the linear space T;(A)M.
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mapping. First of all, the negative (positive) index of Hess x,)F} is finite if and only if

82

W)\T fr &) > 0(<0), i.e. when the Jacobi curve Ji¢ ) is monotonically nondecreasing
u T

(nonincreasing). Suppose the finiteness condition is satisfied, and let 7(57 ) be the closed

curve in L(X),), obtained by adding to Ji¢ x) of an arbitrary nondecreasing (nonincreasing)

simple curve connecting Ji¢ x)(f) with Jig 5)(0).f Then,

tindx Hess zF = rank Fét‘g = Indj(“), (4.2)

where dimU < rank Fj,| < n — 1. Here, Ind is the Maslov index of a closed curve on a

Lagrangian Grassmannian, cf. Introduction. Details and proofs could be found in [1,4].
Now we turn to the geometry of germs of a curve on the Lagrangian Grassmannian
L(X) of a given 2(n — 1)—dimensional symplectic space 3.

Lemma. Take an arbitrary Ag € L(X). The set

A — {AGL(Z)‘ AoﬂA:o}

can be given invariantly the structure of an affine space over the vector space of linear
selfadjoint mappings of Afj into Ay.

Proof. First, we remark that the set of all (n — 1)-dimensional subspaces in ¥, transversal
to Ag, has the structure of an affine space over the space of all linear mappings from
Y/Ap into Ag, and this affine structure does not depend on the symplectic structure in
Y. Indeed, if ¥ = Ay @ A, then the subspace A intersects every coset (z + Ag) € E/Ag
exactly at one point. Define the mapping (A; — Ap) : ¥/A¢ — Ap by the formula
(A1 — Ag)(z+ Ao) = A1z + Ao) — Ao [(z + Ap). It is easy to see that the introduced
operation of difference of two subspaces defines the desired affine structure. Furthermore,
the symplectic structure on ¥ defines a nondegenerate pairing between Ag and /A, hence
we can identify ¥/Ao with Af. Since the subspaces Ag, A; € A are Lagrangian, their
difference, (A; — Ap) : A — Ap is selfadjoint. By counting dimensions it is easily seen
that every selfadjoint mapping from Af into Ay is realized as such a difference.

Let 7 — A(7), 7 € [0,t], be a smooth curve in L(X). We call the curve A(-) regular
if A(7) is a nondegenerate quadratic form on A(7) for every 7. In this article we restrict
to considering only regular curves, postponing more general cases, (highly important and
informative), to further publications. The Jacobi curve of a regular extremal is a regular
curve if and only if dimU = n — 1, cf. Proposition 4.1.

Let A(-) be a regular curve, and consider its germ at an arbitrary point ¢. We have
A(T) € A(t)™ for all 7 # ¢, sufficiently close to £. More precisely, 7 — A(7) defines the
germ of the curve in the affine space A(t)™ with a simple pole at t. We shall give a
coordinate representation of this fact.

Let ¥ = {(p, q)‘ p,q € Rv=1) }, and the symplectic form has the canonical expression
o((p1,q1), (p2,q2)) =< p1,q2 > — < pa2,q1 >. Without restricting generality, we can

tA curve in a Lagrangian Grassmannian is a family of Lagrangian subspaces of a symplectic space. The
curve is said to be simple if there exists a Lagrangian subspace, transversal to all subspaces of the family.
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assume that A(t) = {(p, 0)‘ p € R(»—1 } Then for every 7 close to t, A(7) is represented as
A(r) = {(p, STp)‘ p € R(v—1) }, where S; is a smooth family of symmetric (n—1) x (n—1)—
matrices, S; = 0. The regularity of the curve A(-) means that det S, # 0. Every A € A
has the form A = {(AAq,q) q € R(”_l)}, where A is a (n — 1) x (n — 1) symmetric

matrix, and the mapping A — Aa from AP onto the space of symmetric matrices defines
coordinates on AZ“, compatible with the invariant affine structure. In these coordinates the
curve 7 — A(7) € A has the expression

s Sl = %s’;l-%s‘;léts;l— (r - ) (2807280 — (280728)°) S[1+O((T—t)2).|

(4.3)
To write down the Laurent series of the curve in the affine space we have to use some
coordinates, but the coefficients of the series have a clear invariant meaning. Indeed,
translation of the affine space by a vector of the corresponding linear space leaves all
coefficients of the series unchanged, with the exception of the free term, to which the
translating vector is added. Thus, all coefficients of the Laurent series, except the free
term, are elements of the linear space, and the free term is an element of the affine space.
For a regular curve A(-) in L(X) we obtain

1

T—1

Alr) =

Aa(®) + Aolt) + 3 (7 — DAL,

where Ag(t) € A(t)™, and A_y(t), A1(t), Ax(t),... are selfadjoint linear mappings from
, —1
A*(t) into A(f). Note that A_1 () = (A(t)) . Put

R(t) = —=3A1(t) o (A_1(£)) ™" = —3A1(t) o A(t).

Then, R(t) : A(t) — A(t) is a linear operator, symmetric with respect to the (pseudo)-
Euclidean structure on A(t), defined by the quadratic form A(¢). According to (4.3), the
operator R(t) is expressed in coordinates as the Schwarz derivative

R = (28078) - (2$)78) (4.4)

The curve in L(X), t — Ag(t), is called the derivative curve of A(-). The operator
R(t) : A(t) — A(t) is called the curvature operator of the curve A(-) at the point .
Straightforward calculations in coordinates show that the derivative curve of a regular
curve is smooth, though not necessarily regular. We have ¥ = A(t) @ Ao(¢). Hence

Ao(t) X T/A() = A@)", A(t) 2 X/Ao(t) = Ao(t)".

Hence, A(t) also is a linear mapping from A(t) into Ag(t), and Ag(t) is a linear mapping
from Ag(t) into A(t). Their calculation in coordinates leads us to the following important
identity
R(t) = —Ao(t) o A(t), (4.5)
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which could be considered as another equivalent definition of the curvature operator. Since
A(t) is nondegenerate, we have Ag(t) = 0 <= R(t) = 0. We shall call a regular curve

flat if it satisfies one of the equivalent conditions, Ay(t) =0 <= R(t) = 0. If R(t) =
»id, » € R, then the curve A(-) is said to have a constant curvature .

Proposition 4.2. Germs of two regular curves of constant curvature s are equivalent iff
the signatures of their velocities are equal.

A regular curve is flat iff its Laurent series in the powers of (T —t) has no positive power
terms for every t.

Proof. Introduce in ¥ coordinates in which the symplectic structure has canonical form
and

Y= {(1%61)‘ piqE R”_l}, At) = {(p,O)‘ pe R”‘l}, Ao(t) = {(0761)‘ q€ R”‘l}-

Then, A(7) = {(p, STp)‘ pe R }, where S(t) = S(t) = 0. If A() is a curve of constant

curvature s, then
(28)78,) = (28)718,)" + eid.

Solving the matrix differential equation with the initial condition at 7 = ¢, we obtain

25 Aty (1263 (7 = 1)) 81, 3¢ > 0,
Sy =< (1—1)8;, »=0, (4.6)
|2%|—%th(|2%|%(7—t)) Sy, < 0.

Furthermore, under symplectic transformations, which leave fixed A(t) and Ay(t), the
matrix S; is transformed as the matrix of a quadratic form, and since it is, by assumption,
nondegenerate, the signature is its only invariant.

We give now another equivalent definitions of the derivative curve and the curvature
operator, which are more geometric and justify the choice of the term ”curvature”. We
shall use a natural approach to constructing differential geometry of curves on arbitrary
homogeneous manifolds. The structure of a homogeneous space, i.e. a transitive action
of a given Lie group, singles out a class of ”distinguished” curves — the orbits of one-
parameter subgroups of the group. Consider an arbitrary germ of a smooth curve, and
find a ”distinguished” curve which has the same jet of the maximal possible order, as the
corresponding jet of the given jet. On the space of ”distinguished” curves the group is, in
general, nontransitive. The invariants of the approximating ”distinguished” curves are the
most important differential invariants of the initial germ. This is how the curvature and
torsion appear in R3. Certainly, every homogeneous space brings its own specific features
into the general methodology.

One—parameter subgroups of Sp(X) are the flows of linear stationary Hamiltonian sys-
tems. They define the family of distinguished curves on L(X). Elementary calculations
imply to the following
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Proposition 4.3. Let A(+) be a regular curve in L(X), and h be a quadratic form on ¥, such

that the 2-jet of the curve T +— e("=9" (A(t)) coincides with the 2-jet of the curve A(-) at
t, and the subspace A(t)i = {y € Z‘ h(y, A(t)) = O} is Lagrangian. Then A(t)ik = Ao(t).

If, in addition, the 3—jet of the curve T +— (""" A(t) coincides with the 3—jet of the curve
A(-) at t, then the form h is uniquely defined, where A(t) = Qh‘A( ) Ao(t) = 2h r(t)’
t olt

The curvature operator is defined by the germ of the curve, but it also enables to make
conclusions about global properties of the curve.

The points tp,?; are said to be conjugate for the curve A(-) if A(to) (A(t1) # 0; the
number dim (A(to) () A(t1)) is the multiplicity of the conjugate pair.

The following Proposition is a direct consequence of elementary facts of symplectic
geometry, and we formulate it as a separate assertion for the convenience of references.
Proposition 4.4. Let A : [0,7] — L(X) be a smooth curve, A(t) > 0Vt, AO)NA(T) =
0, and A(-) is a closed curve obtained from A(-) by adding to it of a regular simple non-
decreasing curve. Then every t € [0,T] is conjugate only to a finite number of points,
and

IndA()=n—1+ > dim(AQ0)[)A®)=n—1+ Y dim(A(t)[AD)).

0<t<T o<t<T

The last assertion of this section is the ”comparison theorem”, which estimates the index
through the curvature.

Theorem. Assume A(-) is a smooth curve in L(X) and A(t) > 0 for Vt. If R(t) < C'id

s

for some C' > 0 and Vt, then |t; — to| > Je for every pair of conjugate points to,t1. In

particular, if R(t) < 0, then there are no conjugate points.
Assume tr R(t) > (n — 1)c for some ¢ > 0 and for Vt, then for arbitrary to < t the
interval [t,t + %] contains a point conjugate to ty. Both estimates are exact.

Proof. We start with the case R(t) < 0. The absence of conjugate points under this assump-
tion easily follows from the standard facts about Lagrangian Grassmannian contained, for
example, in [7]. In this case, local coordinates exist from the standard affine atlas in which
A(to) is represented by the zero matrix, and Ag(tp) — by a symmetric positive matrix. Let
S; be the matrix corresponding to A(t), SP be the matrix corresponding to Ag(t). Then
Sy > 0 and det(S? — S;) # 0, since A(+) is monotonically increasing and Aq(t) A(t) = 0.
The operator R(t) is represented by the matrix (S2—S,)~1S9(S%—S,)~1S;. Hence, S? < 0.
The given relations hold until A(¢) and Ay(¢) remain in the coordinate neighborhood. How-
ever, the relations imply that 0 < Sy < 5P < S, hence, A(t) and Ay(t) do not leave the
coordinate neighborhood at all.

Now assume that R(t) < C'id. We shall make use of the following formula, a direct
consequence of (4.4). Assume ¢ : R — R is a smooth function, ¢(7) > 0, and R, (7) is
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the curvature operator of the curve 7 — A(p(7)). Then

Ro() = PR + (5570 - (1)?) i (@.7)
Put
or(r) = 7= (arctg(VEr) + 3) +1, rl®) = (F+ 75
We obtain,
Rerlr) = (e (Blerd) = Cid) <0

Hence the curve 7 +— A(pz(7)) has no conjugate points on the interval (¢,¢ + \/LE)

Assume now that tr R(t) > (n — 1)c. We shall prove that, if A(JA(7) = 0 for some

A€ L(X) and V7 € [t,¢], then t — ¢ < NG

Indeed, if such a A exists, then A . is completely contained in a coordinate neigh-
£,

borhood, therefore the curvature operator R(7) is defined by the formula (4.4). Put
Z(t) = (2S;)7tS;, 2(1) = tr Z(7), T € [1,t]. Then,

Z(T) = 7%(1) + R(1), 2(1)=tr Z*(t) +tr R(7).

Since for an arbitrary symmetric (n — 1) x (n — 1)-matrix A we have tr A2 > —L-(tr 4)2,
2
‘ 7 + (n — 1)c holds. Hence, 2(7) > x(7), t < 7 <, where z(-) is a

the inequality 2z >

solution of the equation

$2

T = + (n—1)e,

n—1

Le. z(1) = (n—1)y/ctg(/e(r — 19))-

The function z(+), together with z(-), are bounded on the interval [¢,¢]. Hence, t—t < N
C

To verify that the estimates are exact, it is enough to consider curves of constant
curvature.

Applying the theorem to the Jacobi curve Ji¢ y), one can obtain explicit estimates of
the index of Hess y,)f through the curvature of the Jacobi curve in case of a finite index.
Indeed, formula (4.2) and Proposition 4.4 imply the following form of the classical Morse
formula,

Z'TldHGSS(gj)\t)f: Z dlm(J(gj)\)(T)ﬂJ(&)\)(t))
0<r<t

In other words, the more conjugate points, the bigger the index. If there are no conjugate
points at all, then Hess ,)f is sign-definite.
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§5. CANONICAL CONNECTIONS OF HAMILTONIAN SYSTEMS
AND OF DIFFERENTIAL EQUATIONS OF SECOND ORDER.

1. Nonlinear connections on fibre bundles. Assume a smooth (locally trivial) fibre

bundle £ = |J FE, over M is given, with the canonical projection 7 : E — M. In the
zeM
tangent bundle T'E the ”vertical” subbundle is defined,

T""E = | ) TBney CTE = || TLE, kerm. =T""E, imm, = TM.
ecE ecE

Any direct complement to TV¢"F in TE will be called a (nonlinear) connection on E,
vector fields on T'FE with values in the direct complement will be called horizontal, vector
fields with values in TV*" E will be called vertical.

Assume a connection is fixed on FE. Then, for every e € E, the restriction m,
e

defines a one-to-one mapping of the space of horizontal tangent vectors at e onto Ty () M.
Hence there exists a uniquely defined mapping, X — Vx, X € Vect M, of the space
of vector fields on M into the space of horizontal fields on FE, satisfying the relation

m.Vx = X VX € Vect M. Evidently, the correspondence X — Vx is a C°°(M )-linear
( or tensorial) mapping:

Vxiy =Vx +Vy, Vox = (aow)VX Ya € COO(M)

For every vertical field V', the commutator [Vx, V] is a vertical field, and the mapping
X — [Vx,V]is C°°(M)-linear (tensorial). In particular, the restriction [Vx, V]| s
E

uniquely defined by X(z) and V. To emphasize this remark explicitly, as well as for

some technical reasons which will be clear below, we omit the brackets in the commutator

[Vx, V], and call the expression VxV def [Vx, V] the covariant derivative of the (vertical)

field V' along X. For every v € T,, M the covariant derivative, V,V € Vect E,, is correctly
defined.

Every horizontal vector field is represented as e +— V¢ (., e € E, where {(e) € Ty () M.
The restriction of the mapping e — £(e) to E, is a vector—function with values in the
vector space T, M. Since we can act on every smooth vector-function by an arbitrary
vector field, defined on the domain of definition of the function, by differentiating the
vector—function along the corresponding directions, the action of vertical fields on the
mapping e — £(e) is correctly defined. The following evident, though very useful, formula
gives the decomposition of the commutator of a horizontal and a vertical field into the
horizontal and vertical components,

[Ve, Vi(e) = (Vee)V = Vve)(e). (5.1)

The commutator of vertical fields is vertical, at the same time the commutator of horizontal
fields might not be horizontal. The description of the vertical component of the commu-
tator of two horizontal vector fields leads us to the important notion of the curvature of a
connection. Put

RY(X,Y)=[Vx,Vy|—Vixy}, VX,Y € Vect M.
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Evidently, the field RV (X,Y) is vertical, and the mapping X AY +— RV (X,Y) is tensorial,
(is a homomorphism of a C*° (M )-module Vect M A Vect M into the module of vertical

vector fields). In particular, RV (X,Y) . is depending only on X (z),Y(z), hence for

Yy, vy € Ty M the field RY (vy, v2) € Vect lgc?m is correctly defined. Now let e — V¢, (¢), @ =
1,2, be arbitrary horizontal fields. It is easy to show that the field e — RY (£1(e), &2(e)) is
the vertical component of the field [Vg,, Ve, ], i.e. [V, Ve,] — RV (€1,&2) is a horizontal
field.

t
For a nonstationary field X, on M the flow ¢t — exp [ Vx, dr consists of fibrewise
to

¢

diffeomorphisms of the bundle E. Let x(t) = zoexp [ Vx, dr, hence t — z(t) is a trajectory
to

of the flow on M, defined by the field X,. Since the mapping X — Vx is tensorial, the

diffeomorphism

EL(t E.(t
E,(to) ( 0) 7 ( 1)

ty
exp / Vx. dr
to

depends only on the connection and on the curve z(7),0 < 7 < ¢, and is independent on
the values of the field X, off the curve z(7). This diffeomorphism is called the parallel
translation along the curve x(1),0 < 7 < t.

Assume that E is a linear bundle. The connection is called linear if the fields Vx
preserve the space of functions, linear on fibres. If the connection is linear, then the parallel

t

translation e?;l)) f Vx dr . is a linear mapping. We shall consider below nonlinear
t z(tg)

connections on lfnear bundles.

So far we were concerned only with main definitions related to connections, and all
assertions were almost trivial. They could be checked by introducing local coordinates,
or algebraically, identifying vector fields on M or E with corresponding derivations of
algebras C° (M) or C*°(F), vertical fields on F — with the annihilator of the subalgebra

in C*°(E) of functions, constant on fibres.

2. Connections associated with Hamiltonians. Assume now that the bundle F is
not arbitrary, but rather a region in 7*M, E, = ENT M, x € M. Denote by h: E — R
a smooth Hamiltonian on E, by Dh — the vertical differential of h,
Db ¥ ay(h| ), A€ B,z € M.
E

x

Thus Dyh € (TpM)* = T, M, hence Dh : E — TM is a smooth fibrewise mapping.
—)
Note that Dyh = m,h()). We assume that Dyh # 0, A € E. Since E, is a region in a

linear space, the second vertical derivative is also well defined, Dih = di(h ), and is a
E,

quadratic form on T* M.
To every A there corresponds a curve Jy in the Lagrangian Grassmannian L(T(T*M)),
according to the formula
In(t) = (€7 )T (Tiay M), A = e

™
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If h is a composition of the master-Hamiltonian of a control system with a function of a
real variable, for example, some power of the master—-Hamiltonian, then the curve

t s Ju(t) (\kerdah € L (ﬁ(x)ﬁﬁ@))

is the Jacobi curve of the corresponding geodesic, cf. §4. Let w(A) = z, then J5(0) =
T\(E;) = T¥M. Tt is easily seen that J5(0) = D3h.

As in §4, we restrict ourself to regular curves, Jy, postponing more general cases, (quite
important and interesting for optimal problems), until further publications. Thus, we
suppose that D2h is a nondegenerate quadratic form on T M.

Remark. At first sight, the nondegeneracy requirement might seem too excessive. For
example, the master—Hamiltonian, being positive—definite of first degree, does not satisfy
it. But, if the master-Hamiltonian is not zero at A and generates a regular Jacobi curve,
then the square of the master—Hamiltonian satisfies the condition.

To every regular curve t — Jy(t) corresponds the derivative curve t — Jxo(t). According
to its definition, cf. §4,

Jao € L(T)\(T*M)), T)\(T*M) = T)\(Ew) D J)\()(O).

Evidently, Jxo(0) is smooth in A. We call the Lagrangian bundle Jyo(0),A € E, the
canonical connection on F, associated with the Hamiltonian h.
Let Vx be a horizontal field for the canonical connection, 7,Vx = X, X € Vect M.

Lemma 5.1. Assume that the restriction h of the Hamiltonian h to an arbitrary fibre

€T

_)
E, is a positively homogeneous function of degreer+1, r # 0,—1. Then h = Vp,5, A€ E,

hence the field ﬁ is horizontal.

Proof. We identify A € E, C TM with the corresponding tangent vector from T\ F, =
Ty M. The homogeneity of the Hamiltonian implies the identity

(sA)eth = ()\esrth> Vs >0,

—
from which the relations follow, ()\ - rth(A)) € Jx(t) C T\(T*M). Moreover, since the

—
Hamiltonian flow preserves h, and h(\) = ker dyh, we obtain,

Ji(t) =R ()\ . mﬁ(x)) ® () Z()\)é. (5.2)

— —
From here we conclude that h(\) € Jxo(¢), hence h is a horizontal field. To complete the
—

prove, we remark that w,h = D h.
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Denote by Ry, the curvature operator of the curve A — Jy(t) for ¢ = 0. Since J5(0) =
T\E, = TfM, where A € E,, Ry, : T*M — TM is a linear operator. By RY we
denoted the curvature of the canonical connection. Despite of completely different ways of
definition of these two curvatures, they are intimately connected and the use of the same
term ”curvature” in both cases is completely justified.

Theorem 5.1. Under the conditions of Lemma 5.1 the following identity holds,

Ryl = RY(Dxh,l|D3h), VA€ E,, v € M, | € TX M.

Proof. Let x(t) be the projection on M of the point Aet”, and [ — a vertical field, which
has a restriction to E,, ;) coinciding with the parallel translation of the constant field [ on
E, along the curve z(-) for V¢. Then,

Vnl i 0. (5.3)
Since the action of (e_th on the vector fields coincides with the the action of ef 24" cf.

Introduction, we obtain Jy(t) = {(et adhi) ()\)‘ le T;M} Let V 4,1 be the horizontal

component of the vector [ e?®?"[ ) ()\), and Byl be its vertical component, so that Ay :

"M — T, M, B : TyM — T M, are linear mappings, where

Ia(t) = {Btl + VA,

leT;M}, Ay =0, By = id.

Thus the germ at zero of the curve Jy is represented by the matrix curve t — Sy = A B, 1,
Ir(t) = {l + Vsl € T;M}, and the curvature operator R, has, according to (4.4), the

form )
Ry, = ((280)750) = ((280)7"%) - (5.4)
Formulas (5.1) and (5.3) imply
d_ tad;_ _ 1£acl7L> 77 . tad?[ 7 _ 1£acl71> .
TR = e R [T = e [V, 1) = — (V7 g ) V),
Hence Aol = —V” D2hs BO = 0. Furthermore, the derivative curve of Jy at ¢ = 0 has the

form, cf. (4.3), Jxo = {—%So_lgoso_lv + V| ve TwM}. At the same time, according to
the definition of the canonical connection, Jy¢ consists of horizontal vectors. Therefore
Sy = 0, and the formula (5.4) takes the form Ry, = %SO_I'SNO. Furthermore, since Ag = 0
and Sy = 0, we have Ay = 0. Hence the vector field

—

d2 " -
az dhl‘t:o T dt 1p2n = [Vijp2ne P = Vi pen: Vion]

33

d —
_ __etadhv_



is vertical at A. Since the vertical component of the commutator of two horizontal fields
is the curvature, we have

[VHD2h7 Vnr|(A) = RV(” D§h7 Dyh).

Furthermore, the point X is indistinguishable from any other point of the form Aet”, hence
the last identity is satisfied for all such points, we have only to substitute [ by the value

of the field [ at Aet”. We obtain,

2 — —
%e”d’ﬁ(/\) _ ¢tadh ¥ (1| D2, DR)(A).

Thus Byl = RV (I |D3h, Dzh), and Al is the horizontal component of the vector

[ﬁ, RY(1|D*h, DR)](X\) = [Vpn, RV (I | D*h, Dh)](N).

According to formula (5.1), we have Aol = RV (Dxh,l | D2h) | D2h. Collecting the obtained
formulas together, we can write,

Sol = Aol —3A¢Bol = 2RV (1| D3h, DAh)|D3h, Ryl = 5Aglsoz = RY(Dyh,l|D3h).

3. Connections associated with second order differential equations. We have
considered above canonical connections associated with Hamiltonian systems, a natural
class of differential equations on the cotangent bundle. Now we describe connections with
similar properties for differential equations of the second order, a natural class of differential
equations on the tangent bundle.

Assume E is aregion in TM, E, = E(\T,M, x € M. We shall say that a vector field Z
on F is a differential equation of the second order or that it defines a differential equation
of the second order, if 7,Z(v) = v Yv € E. For s € R denote by s, : T(TM) — T(TM)
the differential of the homothety v — sv, v € TM. The field Z, defining the differential
equation of the second order, is called a spray if Z(sv) = s,Z(v) Vv € E,s € R such that
sv € E. In local coordinates, the differential equation of the second order, defined by a
spray, has the form & = ¢(x, &), where ¢ is homogeneous in & of degree 2. We should note
that no other degrees of homogeneity are preserved under the coordinate change on M.

For every differential equation of the second order Z and every v € E we define a curve
I, in the Grassmannian G, (T, (T'M)) of all n-dimensional subspaces in T,,(T'M)) by the
formula

I,(t) = (e_tZ)* Ty Er(vy), v = vel?.

Before moving further we shall make few remarks about curves in the Grassmannian
G, (R?™). So far, we considered curves only in Lagrangian Grassmannians. Definitions
and properties mentioned below are similar to those in the Lagrangian Grassmannian,
and are proved even easier since no additional symplectic structure should be taken in
consideration.
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Put
Ky € Go(R?™), KT = {K € G (R™™)

KoﬂK:o}.

Then K 8” has a natural structure, (independent on the choice of a basis in R?"), of an affine
space over the vector space Hom(R?" /Ky, Ko). We already described this affine structure
in the proof of the Lemma in §4. Furthermore, the tangent space Tk, G, (R?") is naturally
identified with the space Hom(Ko, R?"/Kj) in the following way. Assume t — K; is

a smooth curve in G, (R?"). We correspond to the tangent vector Ky = %Kt the
t=0

mapping kg — %kt + Ky, where k; € K;. It is easy to show that this mapping depends
) t=0
only on Ky and does not depend on the choice of the curves K; and k;.
The curve 7 — K, in G,,(R*™) is regular if its velocities “E= are regular linear map-

pings from K, into R>"/K, V7. It is easy to show that the curve I, in G, (T,(T'M))

is nondegenerate. In particular, for 7 = 0 we have I,,(0) = I,(T, M) = ker W*‘

T,(TM
where © = 7(v). Identifying the spaces T, (T, M) and T,(TM)/T, (T, M) ~ =T, ((T]W))
with T, M, we obtain £ I,,(0) = id.

The germ at ¢ of a regular curve 7 — K(7) in G,,(R*") defines a curve in the affine
space K (t)™ with a simple pole at 7 = . In other words,

1
K(r)~ K_y(t) + Kot +Z (T —t)'K;(t), Ko(t) e K(t)™,

T—1

Ki(t) € Hom(R™ /K (), K (1)), i 7'é 0; K_1(t) = (K1)

Put R(t) = —3K,(t)K(t). The curve t — Ko(t) in G,,(R2") is called the derivative curve
of K(-). The operator R(t) : K(t) — K(t) is called the curvature operator of the curve
K(-) at t. In local coordinates the curvature operator is represented, as in the Lagrangian
case, by the matrix Schwarz derivative (4.4), with matrices not necessarily symmetric.

Let ¢t — I,o(t) be the derivative curve of I,. We have T,(TM) = I, E, + I,0(0), and
1,,0(0) smoothly depends on v. The subbundle in TE with the fibres I,0(0),v € E, is called
the canonical connection associated with the field Z. Below, in this subsection, we assume
that the symbol V x denotes the horizontal field for the defined canonical connection, such
that 7,.Vx =X, X € Vect M.

Lemma 5.2. If 7 is a spray, then Z is a horizontal field for the canonical connection,
Z(v) =V, YveE.

Proof. We identify the vector v € E, C T,M with the corresponding vertical tangent
vector in T, E, = T, M. Since Z is a spray, we have (sv)e!? = s(ve’*?), s € R. From here,
we obtain

(v — tZ(v)) € Io(t) C To(TM). (5.5)

The subspace I,(t) is represented as I,(t) = {H— Vs,

leTEm:TM}, where S,

T.M — T, M is a linear operator smooth in ¢, Sy = 0. Moreover, So id.
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From (4.3) it follows that the value at ¢ = 0 of the derivative curve of I, has the form
1 -
Lo = {—5501 +Vi| e TwM}.

Since I, consists of horizontal vectors, we have Sy = 0. Let Z(v) = lg + Vy, ie., ly
is the vertical component of the vector Z(v). Then according to (5.5), tv = Si(tly — v).
Differentiating 2 times in ¢ yields Syv = [y. Hence Iy = 0, Z(v) = V,.

Denote by Ry, the curvature operator of the curve ¢ — I,(t) at ¢ = 0. Since [,(0) =
T, M, where x = 7(v), the mapping Ry, : T,M — T, M is a linear operator. The symbol
RY denotes the curvature of the canonical connection associated with the field Z.

Theorem 5.2. If Z is a spray, then
Rrl=RY(v,l) Yw€ Ey,x€ M, 1 €T, M.

The proof is a repeating of the proof of Theorem 5.1 with corresponding simplifications.

4. Linear Connections. Here we shall consider in more detail linear connections on
the bundles TM and T*M. Assume a linear connection is given on T'M, hence for every
X € Vect M a horizontal vector field, Vx, on TM is given, which preserves the space of
functions, linear on the fibres of TM. In this case, the diffeomorphism e *Vx is a linear
mapping of the fibre T,.:x M onto the fibre T, M for Vo € M,t € R. Considering the
adjoint linear mappings

*
Vx| CTEM — T M,
T oM

we obtain the ”"adjoint” flow on the bundle T*M. The generating vector field for this flow
will be denoted by V% . The mapping X — V%, X € Vect M, defines a linear connection
on T*M, the adjoint to the connection X +— Vx. Evidently, we could start with an
arbitrary linear connection on 7*M, and define the adjoint connection on 7'M, obtaining
the involution V%' = V x. For appropriately chosen notation the expressions for Vx and
V% are indistinguishable.

Indeed, every Y € Vect M could be considered as a cross—section of the vector bundle
TM, and as such could be identified with the vertical vector field on TM, constant on
fibres. Hence, the covariant derivative of the field Y along the field X is defined, denoted
by VxY, which is vertical and constant on fibres, VxY € Vect M. Furthermore, Y could
be considered as a scalar—valued function on T*M, linear on fibres. The image V%Y of
this function under the action of the vector field V% € Vect T*M is again linear on fibres,
in other words, VY € Vect M. It is easily proved that

VxY = VLY. (5.6)
For a linear connection on T'M we define in a usual way the torsion

TV(X,Y)=VxY - VyX - [X,Y], TV(X,Y) € Vect M.
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Lemma 5.3. The following identity holds,
TV (X,Y) =0(V%, V%), X,Y € Vect M
where o is the canonical symplectic structure on T* M.

Proof. Let 6 be the canonical 1-form on T*M, o = df. Since m,V% = X we have
X =< 6,V% >, where X in the left-hand side of the last identity is considered as a
function on T*M, linear on fibres. Taking into account that # vanishes on vertical fields,
we obtain

TV(X,Y) =VxY-VyX — [X,Y] = V% <0,Vy > -V} <0,V > — <0,Vixy >=
o(Vx,Vy)+ <8, R(X,Y) >=0(Vk, Vy).

Corollary. Connection V has a zero torsion ifft V* defines a Lagrangian subbundle in
T(T*M).

Every linear connection on T'M defines a spray Z according to the formula Z(v) =
V(v) Yo € TM. The trajectories of this spray are called geodesics of the connection V.
Different connections can define identical sprays, but among them there exists a unique
connection with vanishing torsion. Not every spray can be obtained in this way, only the
sprays which are quadratic on fibres.*

Proposition 5.1. The canonical connection associated with a spray, quadratic on fibres,
is linear and has a vanishing torsion.

Proof. Fix an arbitrary point xy € M and local coordinates x = (x!,...,2™) in the
neighborhood of xy, such that the corresponding differential equation of the second order
in these coordinates has the form & = ¢(z, %), ¢(xo,4) = 0 Vi. We obtain,

0 0 .
Iz ,i)0 = span {ﬁ’ e ,%} V.

: : 0 -
In other words, for the canonical connection we have V.o = 92’ hence V is linear and
oz’ €T
has a vanishing torsion.
Thus the canonical connection associated with a spray, quadratic on fibres, is linear
with vanishing torsion, and its geodesics are the trajectories of the spray. In geometry,
the geodesics of a connection on T'M are considered as the ”straightest” lines, whereas the

extremals of a variational problem as the "shortest” lines. We see that the trajectories of

*In local coordinates, the differential equation of the second order defined by a spray has the form
% = p(z, &), and the property of ¢ to be quadratic in # is independent on the choice of the coordinates in
M. This is a natural class of sprays, since for a spray, quadratic on a given fibre Ty, M, the corresponding
differential equation of the second order has, in appropriate coordinates, the form & = ¢(x,z), where
w(zo,z) =0 V.
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every spray, not necessarily linear on fibres, could be considered as a system of ” straight-
est” lines, corresponding to the canonical connection on T'M, generally not linear. At the
same time, the shortest lines, being the trajectories of the master—-Hamiltonian, generate
the canonical connection on T*M.

According to the classical Riemannian geometry, the ”shortest” lines for the Riemannian
variational problem are also the ”straightest” lines for the Levi-Civita connection. There-
fore, it is natural to expect that the Levi-Civita connection on T'M is conjugate to the
canonical connection on 17" M, associated with the corresponding Hamiltonian. Indeed, we
have the following

Proposition 5.2. Assume Q : TM — T*M is a selfadjoint isomorphism, defined by a
pseudo—Riemannian structure on M. Then the Levi—Civita connection of this structure
is the adjoint connection to the canonical connection, associated with the Hamiltonian
h:)\n—>%<)\,Q_1)\>, ANeT*M.
. —

Proof. The equation A\ = h(A) defines the pseudo—Riemannian geodesic flow in T*M,
where 7(A)" = Q7 !\ along every trajectory of this flow. Hence the isomorphism Q! :
T*M — T M transforms the geodesic flow in 7*M into the geodesic flow in T'M, where
the last flow is defined by a spray Z, quadratic on fibres. Let X — Vx be the canonical
connection for h. From the definition, it follows that X — Q;'Vx is the canonical con-
nection for Z. Exploiting the fact that the parallel translation generated by the canonical
connection preserves the Hamiltonian,( the canonical connection is tangent to the levels of
the Hamiltonian), we obtain Q;'Vx = V%. From Proposition 5.1 follows now that V%
is the Levi—Civita connection, cf. also the remark after the Proof of Proposition 5.1.

Remark. For pseudo-Riemannian structure, the master-Hamiltonian has the form
A=< A, Q1A >2, which is defined, in general, not for all A € T* M.

§6. TWO—DIMENSIONAL CONTROL SYSTEMS

Consider a standard ”state invariant” control system
&= f(z,u), € M, uel.

It is interesting to find explicit expressions of such a fundamental ”state” and ”feedback”
invariant as the curvature tensor through classical ”state”—invariants — linear relations
between iterated Lie brackets of vector fields f(-,u), u € U. We already have all necessary
means to derive such expressions, though some efforts are still needed, and the obtained
expressions turn out to be pretty complicated even in the simplest two—dimensional case.
We restrict ourself to the two-dimensional case only.

Assume that dim M = 2, dimU =1, hence U is R or S' = R/27Z. Put

of 0*f }
o) #0,.

O=1(x,u EMXU‘ — N —=

{( ) du  Ou?

All extremal controls, contained in the region O, correspond to regular extremals, and

through every point of the region passes exactly one extremal control, corresponding to a
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uniquely determined extremal, (up to a nonzero factor for A). Assume R(z,u), (z,u) € Ois
the curvature tensor of the uniquely determined germ of extremal, with the corresponding
control through (z,u). The tensor is a linear operator, and since it acts in the one—
dimensional space, (z,u) — R(z,u) is a real-valued function on O.

Proposition 6.1. Assume o, i, Bi,..i, are smooth functions on O, defined by the

k

formula . . '
At O i S I S i
9w | guiz | Buin | = 4, ...4, o P10k ou2’
Then
1 1 1 3
R =opo1 + 5101 - 55002 + 5500153 - 5501512 + 50401502 - CY02501 + 501503—

1 3 1 3
2CY%1 + 1532 — ap1P0183 — 550150253 + CY3531 - 553154 + 1531592,

Proof. We shall use Proposition 3.2, which expresses the L—derivative of the endpoint—
mapping, hence the Jacobi curve, through solutions of the linear Hamiltonian system.
Assume T +— (z,,u,) is an extremal control in O. Put

T

gr(\u) = )\e?f)/adf(-,u@)def(-,u) ;gD\ = g g (N ur), (z,u) € O, A€ TrM.
T u*

t

Let Ay € T;, M be the Lagrange multiplier corresponding to the given extremal control.

Then ggl)(/\t) = 0 identically in 7. Differentiating the last identity with respect to 7 yields
the following useful formula
{ (1) (0)}
d 9r 5 97

S, =
dr gg)

Y

At

where {-,-} are the Poisson brackets. Note that the inclusion (z,,u,;) € O implies that
951)(>\t), 99)(>\t) can not vanish simultaneously. Assume, for definiteness, that gg)()\t) < 0.
Certainly, substituting A; by —A; and, accordingly, gg)()\t) by gg)(—)\t) = —gg)()\t), we
do not change the curvature. The quadratic Hamiltonian ¢, from Proposition 3.2 has in

our case the form )
o (35'1) ()‘t)v 77)

2952) ()\t)

qr (77) = -

The Hamiltonian ¢, is defined on a 4-dimensional symplectic space Ty, (T* M), though the

vertical line R\, C Ty = T, (T, M) consists entirely of fixed points of the Hamiltonian

system. The Jacobi curve is constructed with the help of the solutions of the reduced

system, defined on ), = (R\;)4/R\;, cf. the beginning of §4. There exists a unique

covector e € T, (T, M) satisfying the conditions o(e, ?El)) =1, o(e, 3%2)) = 0. Consider
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_— s . —(1
the restriction of the Hamiltonian ¢, onto the symplectic subspace span(e, gg )) C (Rn)~.
Let n = ye + ZES), then

_a(gie)

) 7 20,
QT(n) = i(ary + bTZ)27 ar =

_ o097, 9;

Nonstationary Hamiltonian ¢, defines a linear flow on R? and, accordingly, a flow on
L(R?) = RP!. The Jacobi curve 7 — J(7) is a trajectory of the flow on RP!, inverse to

the flow defined by the Hamiltonian ¢;, J(t) = Re. Let ® = (ZU 2212) , D(t) = id,
21 P22

be the fundamental matrix of the linear flow on R2?, inverse to the flow defined by the
Hamiltonian ¢,. Then

. ab b2
Q)_®<_a2 —ab> , det ® = 1. (6.2)

As a local coordinate on RP! take 5, then J(7) is represented by the 1 x 1-matrix S, =
p21(7)
p11(7)

. For the curvature we obtain the expression

.o\ - N
g g . _ N
R(a:t,ut) = —t — —t = % — atbt -2 (ﬁ) .
285 285 at ag
Note that

;—799 = gﬁ””j—ﬁ + {90,400} = % {00,900} + {g®, g0}

i 0" : i
Furthermore, the quantities gt( )()\) = /\T f, hence, the Poisson brackets of gt( ), are
ul

expressed through the Lie brackets of the fields g;i f. Therefore, the consecutive derivatives
of the functions a,,b,, with respect to 7 for 7 = ¢, are expressed explicitly, though quite
cumbersome, through o, ., (z¢,ut), Bi,.. 4, (T4, ug). Direct calculations give the expression
(6.1). Though pretty awkward, this formula is strongly simplified in some important
special cases. Consider two—dimensional Riemannian and Lorentzian geometries. In the

Riemannian case we have
flz,u) = (cosu)vy(z) + (sinu)ve(x),

where vy, v is an arbitrary orthonormal frame of the considered Riemannian structure. It
is easy to eliminate in (6.1) all indices > 2. Indeed, from every such index we can subtract
2, at the same time changing the sign of the corresponding coefficient. Taking into account
also the symmetries of the coefficients as the ”structure constants”, we obtain

R = apo1 + Bro1 — 2(ad, + BE))-
40



Note that R is the Gaussian curvature of the Riemannian surface, according to Proposition
5.2 and Theorem 5.1.
Let [v1,v2] = c1v1 + covg, for some smooth functions ¢, ca. Then

2 2
R =wvico —v2c1 — ¢] — 5.

In the Lorentzian case
f(z,u) = (chu)vi(x) + (shu)va(z).

Again, 2 could be subtracted from the indices in (6.1), this time without changing the
coefficients. For the Gaussian curvature we obtain,

2 2 2 2
R = (Xpgp1 — 2(0{01 - /601) — VU1C2 + V2C1 + Cl - C2.
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