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Abstract

In this second paper of the series we specify general theory developed in the
first paper. Here we study the structure of Jacobi fields in the case of an analytic
system and piece-wise analytic control. Moreover, we consider only 1-dimensional
control variations. Jacobi fields are piece-wise analytic in this case but may have
much more singularities than the control. We derive ODEs that these fields satisfy
on the intervals of regularity and study behavior of the fields in a neighborhood of a
singularity where the ODE becomes singular and the Jacobi fields may have jumps.

Introduction

In this paper we continue the study of the second variation of optimal control problems.
Our main technique are the so-called L-derivatives that were introduced in [6, 1]. One
can think of them as a rule that for a given critical point assigns to a certain space of
variations a Lagrangian space in some symplectic space. In the first article we presented
the theoretical basis and gave an algorithm how to compute an approximation of an
L-derivative with arbitrary good precision.

In this article we focus on examples and simpler characterization of Jacobi curves. To
be more precise we study the following optimal control problem

q̇ = f(q, u), u ∈ U ⊂ R, q ∈M (1)

q(0) = q0, q(T ) = qT ,

JT [u] =

∫ T

0

L(u, q)dt→ min .

Here M is a n-dimensional manifold. For simplicity we assume that f(u, q) and L(u, q)
are analytic in both variables, that U is a polytope or a one-dimensional smooth manifold,
that controls are L∞ functions and that the time T is fixed. For simplicity and conceptual
clarity we make the assumption that extremal control takes values in the vertices or one-
dimensional edges of U .
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We begin by recalling the necessary results from symplectic geometry in Section 1.
This part is standard and can be found in several books like [16] or [17]. We present
this section for reader’s convenience and in order to fix the basic notations. Then we
recall all the necessary results from the previous article [3] about the L-derivatives and
the construction of Jacobi curves for optimal control problems in Sections 2 and 3.

Using these techniques we then proceed to the study of singular and bang-bang cases
in Sections 4 and 5, where we give efficient algorithms for characterizing Jacobi curves.
These cases were already studied by many authors (see for example [12, 26, 25, 21, 23, 10]).
These results can be recovered using the constructions from this paper and Morse-type
theorems from our previous article [3].

In the second part we study extremals along which at a single point the Legendre
condition becomes degenerate. In this case the Jacobi curve should be a solution of a
singular Jacobi DE, but it can not be characterized as the usual boundary value problem,
because we lose both existence and uniqueness of solutions. This kind of systems were
previously studied in the classical calculus of variations, in particular by Morse himself and
some of his students [19, 18] using functional-analytic technique or in [28] using differential
geometry and fields of extremals. Some special examples with similar singularities were
recently studied in [13]. We show how using the technique of L-derivatives we can still
characterize the desired Jacobi curve in a simplest singular example as boundary value
problem of an ODE, but with conditions on the first k-jet of a solution (and not just the
initial value).

In Section 6 we show that if we restrict ourselves only to one-dimensional variations,
using a change of variables under some non-degeneracy conditions we can separate the
dynamics of the system into a regular and singular part in an invariant symplectic subspace
of a dimension at most four. In Section 7 we explain the idea heuristically when the
dimension of the manifold on which the control system is defined is equal to one. In
the remaining sections we make all those ideas rigorous. In Section 8, we find sufficient
conditions for existence and non-existence of L-derivatives and in Section 9 we characterize
Jacobi curves as singular BVPs.

1 Linear symplectic geometry and Lagrangian Grass-

manian

In this sections we recall basic facts from symplectic geometry and fix notations that we
use in the article.

Given a symplectic space (R2n, σ), where σ is a symplectic form we can always assume
by the Darboux theorem that

σ(λ1, λ2) = λT1 Jλ2, ∀λi ∈ R2n,

where J is the standard complex structure

J =

(
0 idn
− idn 0

)
.
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In particular J2 = − id2n. Coordinates in which σ has such a form are called Darboux
coordinates. We use usual position-momenta notations in this case, i.e. we write λ =
(p, q) = (p1, ..., pn, q1, ..., qn).

In Darboux coordinates a Hamiltonian system with a perhaps time-dependent Hamil-
tonian H : R2n × R→ R is a system of ODEs

λ̇ = −J∇H(t, λ),

where ∇H is the R2n-gradient of H. In particular, if H is quadratic of the form

H(t, λ) = pTC(t)p− 2qTA(t)p− qTB(t)q,

where B(t), C(t) are symmetric matrices, we obtain a linear Hamiltonian system

d

dt

(
p
q

)
=

(
A(t) B(t)
C(t) −AT (t)

)(
p
q

)
. (2)

Given J we can define the symplectic group Sp(2n) and the corresponding symplectic
algebra sp(2n) as

Sp(2n) =
{
M ∈ Mat(2n× 2n,R) : MTJM = J

}
,

sp(2n) =
{
X ∈ Mat(2n× 2n,R) : XTJ + JX = 0

}
.

If we write down X ∈ sp(2n) as block matrix, we will see that it has the same form as the
matrix in the Hamiltonian system (2). Therefore we immediately can see that the flow
Φ(t) of (2) is symplectic.

We define the skew-orthogonal complement of a linear subspace Γ as

Γ∠ = {µ ∈ R2n : σ(µ, λ) = 0, ∀λ ∈ Γ}.

A subspace Γ is called

– isotropic if Γ ⊂ Γ∠ or equivalently if σ|Γ = 0,

– Lagrangian if Γ = Γ∠ or if equivalently σ|Γ = 0 and dim Γ = n,

– coisotropic if Γ ⊃ Γ∠,

– symplectic if dim(Γ ∩ Γ∠) = 0 or if equivalently σ|Γ is non-degenerate.

Since σ is skew-symmetric, any one-dimensional direction Rv, v ∈ R2n is isotropic.
Two main examples of Lagrangian subspaces are the horizontal subspace Σ and the vertical
subspace Π defined as

Π =
{

(p, q) ∈ R2n : q = 0
}
,

Σ =
{

(p, q) ∈ R2n : p = 0
}
.
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We can construct other examples as follows. Let S = ST be a symmetric matrix. Then

ΛS = {(p, Sp) ∈ R2n : p ∈ Rn}

is a Lagrangian subspace transversal to Σ. Conversely to any and Lagrangian subspace
Λ transversal to Σ (we denote this by Λ t Σ) we can associate a symmetric operator S
from Π to Σ.

We call the set of all Lagrangian planes Lagrangian Grassmanian and denote it by
L(n). It is a manifold, whose atlas is given by Λt, which are the sets of Lagrangian planes
transversal to Λ ∈ L(n). Coordinate charts are maps from Λt to the space of symmetric
matrices constructed like above. Throughout this paper we use another representation of
a Lagrangian plane Λ ∈ L(n) as a span of n independent vectors vi. It is clear that such
a representation is not unique. We can replace vi by any linear span of the same vectors
as long as they remain independent. This means that in general we need to quotient a
natural GL(n) action. We can arrange vi in a single n× 2n matrix and we write

Λ =
[
v1 ... vn

]
,

where the square brackets indicate the equivalence class under the GL(n) action. We
denote this action by

g
[
v1 ... vn

]
:=
[
gv1 ... gvn

]
, g ∈ GL(n).

For example, if Λ ∈ Σt we can write

Λ =

[
idn
S

]
,

where S is a symmetric matrix like in the example above. Or we can assume that vi form
an orthonormal basis of Λ in R2n. Then

Λ =

[
X
Y

]
,

where XTX + Y TY = idn (orthonormality property) and XTY − Y TX = 0 (Lagrangian
property) are satisfied. A matrix X + iY that satisfies these properties is unitary and the
converse is true as well. We can choose vi in such a way up to a O(n)-action, which is
given by (

O 0
0 O

)[
X
Y

]
, O ∈ O(n).

This gives the usual identification of L(n) ' U(n)/O(n).
We will use this idea many times when we will consider the singular case, so at this

point it makes sense to consider a simple example that will be useful for us later.
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Example 1.1. Suppose that we would like to find a simple representation of a Lagrangian
plane Λ ∈ L(2) knowing that dim(Λ ∩ Σ) = 1. Then it must be of the form

Λ =
[
v1 v2

]
=


x1 0
y1 0
z1 z2

w1 w2

 , x2
1 + y2

1 6= 0.

We can assume that v1 and v2 are orthonormal. We then apply a rotation O ∈ O(n), so
that y component of v1 becomes zero. Then

Λ =
[
Ov1 Ov2

]
=


√
x2

1 + y2
1 0

0 0
z̃1 z̃2

w̃1 w̃2

 ,
but since Λ is Lagrangian we must have z̃2 = 0. Changing the basis we then find

Λ =

[
Ov1 − (w̃1/w̃2)Ov2√

x2
1 + y2

1

Ov2

w̃2

]
=


1 0
0 0
z 0
0 1

 .
Given an isotropic subspace Γ and a Lagrangian plane Λ, we can construct a new

Lagrangian plane ΛΓ, which is a Lagrangian plane that contains Γ and the dimension of
Λ ∩ ΛΓ is maximal. It is defined as

ΛΓ = (Λ ∩ Γ∠) + Γ = (Λ + Γ) ∩ Γ∠.

If Γ = RX for some vector X ∈ R2n we will simply write ΛX instead of ΛRX .
Let us have a look at another example that will be useful in future.

Example 1.2. Assume that X =
(
1 0 0 0

)T
and we would like to construct ΛX for

Λ ∈ L(2). We have that

Λ =
[
v1 v2

]
=


x1 x2

y1 y2

z1 z2

w1 w2

 .
Subspace X∠ consists of vectors v ∈ R4 whose z-component is zero. So assume first that
z1 = z2 = 0. Then σ(X, v1) = σ(X, v2) = 0. But since it is a Lagrangian subspace, it
means that X ∈ Λ and by definition ΛX = Λ. Thus we can take v1 = X. In this case we
obtain

ΛX =
[
X v2

]
=
[
X v2 − x2X

]
=


1 0
0 y2

0 0
0 w2

 .
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Suppose that X /∈ Λ. Then z2
1 + z2

2 6= 0 and as a result σ(X, z1v1 + z2v2) 6= 0, but
σ(X, z1v2 − z2v1) = 0. So Λ ∩X∠ = z1v2 − z2v1 and by definition

ΛX =
[
X z1v2 − z2v1

]
=


1 z1x2 − z2x1

0 z1y2 − z2y1

0 0
0 z1w2 − z2w1

 =


1 0
0 z1y2 − z2y1

0 0
0 z1w2 − z2w1

 .
Our main objects of study are going to be curves in the Lagrangian Grassmanian.

The curves will always come from a flow Φ(t) of a linear Hamiltonian system (2). We
will simply take a point Λ and consider a curve Λ(t) = Φ(t)Λ. More generally a linear
Hamiltonian system induces a dynamical system on L(n). We can write down an ODE
for that system using local charts. Indeed, let (p(t), q(t)) be a solution of (2) and S(t)
be a curve of symmetric matrices that correspond to Λ(t). Then q(t) = S(t)p(t) and we
differentiate this expression. This way we obtain a Riccati equation of the form

Ṡ + SA+ ATS + SBS − C = 0. (3)

Since a coordinate chart Σt is dense in L(n) the opposite is also true: a Riccati equation
of the form above gives rise to a Hamiltonian system and a well defined flow on L(n).
In order to write down a Riccati equation in a different chart we can apply a symplectic
transformation to the corresponding Hamiltonian, s.t. a given Lagrangian plane Λ is
mapped to Σ. Then we simply insert the new expressions for A,B and C in (3).

The last ingredient that we need is the Maslov index, which is a topological symplectic
invariant of curves in the Lagrangian Grassmanian. Maslov index is the same for different
curves in the same homotopy class, thus it does not change under small perturbations.
We are going to give a simple coordinate definition, but one should remember that this
number has many equivalent invariant definitions (see for example [14]).

Let Λ : [0, 1] → L(n) be a continuous curve. We assume that the curve Λ(t) lies
completely in some coordinate chart, i.e. there exists a plane ∆ ∈ L(n), s.t. Λ(t) ∈ ∆t

for all t ∈ [0, 1]. We call such a curve simple. Let Π ∈ ∆t, and assume that end-points
Λ(0) and Λ(1) are transversal to Π. We can then associate to Λ(0),Λ(1) symmetric
matrices S0, S1 that correspond to symmetric operators from Π to ∆. Maslov index of
Λ(t) with respect to Π is defined as

MiΠ Λ(t) =
1

2
(signS1 − signS0) .

One can check that this definition does not depend on the choice of ∆. To define the
Maslov index for a general curves Λ : [0, 1] → L(n) one should split it in a number of
simple arcs Λi(t), s.t. each of them lies in its own coordinate chart. Then Maslov index
of the whole curve is defined as a sum of the corresponding indices of simple arcs:

MiΠ Λ(t) =
N∑
i=1

MiΠ Λi(t).
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From this definition we can easily see that the index of a simple curve depends only on
the relative position of its end-points and remains the same if we perturb the curve as
long as the transversality conditions are preserved. Using this one can prove that Maslov
index of a curve is a homotopy invariant.

We have two very important properties of the Maslov index related to a change of the
reference plane.

Theorem 1.1 ([7]). If a curve Λ(τ) ⊂ L(n) is closed, then its Maslov index does not
depend on the choice of the reference plane, i.e.

Mi∆1 Λ(τ) = Mi∆2 Λ(τ) = Mi Λ(τ), ∀∆i ∈ L(n).

If it is not closed we have the following estimate

|Mi∆1 Λ(τ)−Mi∆2 Λ(τ)| ≤ n.

There exist several other equivalent definitions of the Maslov index [16, 14]. Usually
one defines it as an intersection index, but this definition is rather long and has many
subtleties. Nevertheless it allows to prove easily the following theorem that we will use in
Section 8.

Theorem 1.2 ([7]). Let H(t) be a quadratic non-autonomous Hamiltonian and let Φ(t)
be a flow of the corresponding Hamiltonian system. Fix two transversal Lagrangian planes
∆ and Λ and assume that ∆ t Φ(T )Λ. If H(t)|∆ ≥ 0 for t ∈ [0, T ], then

Mi∆ Φ(t)Λ =
∑
t∈[0,T ]

dim (∆ ∩ Φ(t)Λ) .

If H(t)|∆ ≤ 0, then the same formula holds with a minus sign in front of the sum.

These two theorems will be our main tool in proving oscillation results in Section 8.

2 L-derivatives
We will derive the Jacobi equations and study them using the so called L-derivatives. A
L-derivative is a rule that assigns to an admissible space of variations a Lagrangian plane
in some symplectic space. As we add variations we can compare the relative positions of
the corresponding L-derivatives and deduce from that how the inertia indices and nullity
of the Hessian change as we consider a bigger and bigger space of variations. As a result
one can recover the classical theory of Jacobi and much more. This theory is applicable
in a great variety of cases, even when there is no Jacobi equation at all. We begin
by explaining the abstract setting and then we specialize the results to optimal control
problems.

Assume that we have following constrained variational problem. Let J : U → R be a
smooth functional and F : U →M be a smooth map, where U is a Banach manifold and
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M is a finite-dimensional manifold. Given a point q ∈ M , we are interested in finding
ũ ∈ F−1(q) that minimize J among all other points u ∈ F−1(q). In the case of optimal
control problems U is the space of admissible controls. The map F is usually taken to be
the end-point map, which we will introduce in the next section.

The first step is to apply the Lagrange multiplier rule that says that if ũ is a minimal
point then there exists a covector λ ∈ T ∗qM and a number ν ∈ {0, 1}, s.t.

〈λ, dF [ũ](w)〉 − νdJ [ũ](w) = 0, ∀w ∈ TũU . (4)

A pair (ũ, λ) that satisfies the equation above is called a Lagrangian point and ũ is called
a critical point of (F, J). There are of course many critical points that a not minimal. So
in order to find the minimal ones we have to apply higher order conditions for minimality.
For example, we can look at the Hessian Hess(F, νJ)[ũ, λ] at a Lagrangian point (ũ, λ)
that we define as

Hess(F, νJ)[ũ, λ] :=
(
νd2J [ũ]− 〈λ, d2F [ũ]〉

)
|ker dF [ũ]. (5)

In the normal case this expression coincides with the Hessian of J restricted to the level
set F−1(q). The index and the nullity of the Hessian are directly related to optimality of
the critical point ũ [9].

We are now ready to define L-derivatives. We linearise (4) with respect to λ and u,
and obtain the following equation

〈ξ, dF [ũ](w)〉+ 〈λ, d2F [ũ](v, w)〉 − νd2J [ũ](v, w) = 0.

Or if we define Q(v, w) := 〈λ, d2F [ũ](v, w)〉+ νd2J [ũ](v, w), we can rewrite this as

〈ξ, dF [ũ](w)〉+Q(v, w) = 0. (6)

A L-derivative of a pair (F, J) at a Lagrangian point (ũ, λ) constructed over a finite-
dimensional space of variations V ⊂ TũU is the set

L(F, J)[ũ, λ](V ) = {(ξ, dF [ũ](v)) ∈ Tλ(T ∗M) : (ξ, v) ∈ (Tλ(T
∗
qM), V ) solve (6) for ∀w ∈ V }.

This set is a Lagrangian plane [2]. The reason why we do not take directly TũU instead
of V is that it is a linear equation defined on an infinite-dimensional space and it might
be ill-posed. In this case L(F, J)[ũ, λ](V ) is just isotropic. But if we have chosen the
right topology for our space of variations, we are going to get exactly dimM independent
solutions.

To define a L-derivative over an infinite-dimensional space V ⊂ TũU we must take a
generalized limit or a limit of a net over all finite dimensional subspaces U ⊂ V :

L(F, J)[ũ, λ](V ) = lim
U1V
L(F, J)[ũ, λ](U),

with the partial ordering given by inclusion. When V is the whole space of available
variations, we simply write L(F, J)[ũ, λ] for the corresponding L-derivative.

We have the following important theorem proved in [1], that gives the existence of this
limit and a way to compute it.
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Theorem 2.1. Let (λ, ũ) be a Lagrangian point of (F, J).

1. If either the positive or the negative inertia index of Hess(F, νJ)[ũ, λ] is finite, then
L(F, J)[ũ, λ] exists;

2. L(F, J)[ũ, λ] = L(F, J)[ũ, λ](V ) for any V dense in TũU .

L-derivatives contain information about the inertia indices and nullity of the Hessian
(5) restricted to some space of variations. By comparing two L-derivatives constructed
over two subspace V ⊂ W , we can see how the inertia indices change as we add variations
to our variations space [1].

In the next section we will write down explicit expressions for the optimal control
problem we are studying, and define Jacobi curves. In the previous article [3] we gave a
general algorithm for their approximation. In this article we focus on situations when an
exact characterization is possible.

3 L-derivatives for optimal control systems

Let us consider the optimal control problem (1). We introduce another type of variations
called time variations. They can be used to obtain necessary [5] and sufficient [10] opti-
mality conditions. We have discussed them in detail in [4] (see also [3]), so we just give a
quick recap.

Let us consider a change of time

t(s) =

∫ s

0

(1 + α(θ))dθ,

where we assume α(θ) > −1, in order to have invertibility of t(s). Then in the new time
we can write

q̇ = (1 + α(s))f(q, u(t(s))),

ṫ = 1 + α(s),∫ t−1(T )

0

(1 + α(s))L(q, u(t(s)))ds→ min,

where we have added the time as a new variable in order not to added any additional
constraints on the controls. One can then proceed to show that ũ(t) is minimal if and
only if the control (α(s), u(s)) = (0, ũ(t(s)) is minimal in the new problem above. We will
denote Û = U × (−1,∞) the new space of control values and û a critical control in Û .
By abusing slightly the notations we consider the original control parameter u and time
variations α as a new control, that we denote again by u.

In order to reformulate the optimal control problem above as a constrained variational
problem of the previous section one introduces the end-point map Et : L∞([0, T ], Û)→M .
It takes an admissible control u(t) and associates to it final point of the trajectory which
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is a solution of the Cauchy problem (??) with q(0) = q0. Then in the notations of the
previous section J = JT , E = ET . Applying the Lagrange multiplier rule we find that
if (ũ(t), q̃(t)) is an optimal control and the corresponding optimal trajectory, then there
must exist a covector λ(T ) ∈ T ∗q̃(T )M and a number ν ∈ {0, 1}, s.t.

〈λ(T ), dET [ũ](w)〉 − νdJT [ũ](w) = 0,

for suitable variations w. Let P T
t be the flow of (??) under the control ũ(t) from time t to

time T . From the definitions it clear that dET |L∞([0,T ],Û) = (P T
t )∗dEt and dJT |L∞([0,T ],Û) =

dJt, where (P T
t )∗ is the differential of P T

t . If we denote λ(t) = (P T
t )∗λ(T ) ∈ T ∗q̃(t)M then,

we have along q̃(t)
〈λ(t), dEt[ũ](w)〉 − νdJt[ũ](w) = 0.

These first order conditions are equivalent to a weak version of the Pontryagin maximum
principle which states that λ(t) must satisfy a Hamiltonian system

λ̇ = ~hũ(t)λ, (7)

where
h(u, λ) = 〈λ, f(u, q)〉 − νL(u, q),

and along the extremal curve an extremum condition

∂h(u, λ(t))

∂u

∣∣∣∣
u=ũ

= 0

is satisfied.
From the previous discussion it would seem natural to compute L-derivatives of (Et, Jt)

in order to study the second variation. In this case we would obtain a one-parametric
family of Lagrangian planes which encode information about the corresponding Hessian.
However in this case Lagrangian planes will lie in different symplectic spaces and thus we
can not compare directly their relative position. To fix this problem, we simply take the
flow of the Hamiltonian system (7) that we denote as Φt and compute Φ∗tL(Et, Jt)[ũ, λ](V ).

It remains to give an explicit expression of (6). We define

b(τ) =
∂2

∂u2

∣∣∣∣
u=ũ

h(u, λ(t))

and

X(τ) =
∂

∂u

∣∣∣∣
u=ũ

−−−−−−−−−−−→
Φ∗t (h(u, ·))(λ(0)),

which is essentially the linearization of a pull-back of the PMP Hamiltonian using the
flow Φt. In [3] we have proven the following characterization of the mentioned previously
L-derivatives of optimal control problems.
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Proposition 3.1. L(Et, Jt)[ũ, λ] consists of the vectors of the form

ηt = η0 +

∫ t

0

X(τ)v(τ)dτ, (8)

where η0 ∈ Tλ0(T ∗q0M) and v ∈ V satisfying∫ t

0

(
σ

(
η0 +

∫ τ

0

X(θ)v(θ)dθ,X(τ)w(τ)

)
+ b(τ)(v(τ), w(τ))

)
dτ = 0, ∀w ∈ V. (9)

One can use this proposition directly as a working definition. It immediately allows
to prove an important property of L-derivatives of optimal control problems.

Lemma 3.1. Let 0 < t1 < t2 and assume that L(Et2 , Jt2)[ũ, λ] exists. We denote by V
some finite-dimensional subspace of L∞([t1, t2], Û) and we consider the following equation∫ t2

t1

(
σ

(
λ+

∫ τ

0

X(θ)v(θ)dθ,X(τ)w(τ)

)
+ b(τ)(v(τ), w(τ))

)
dτ = 0, ∀w ∈ V,

(10)
where v ∈ V and λ ∈ L(Et1 , Jt1)[ũ, λ]. Then we can characterize alternatively L(Et2 , Jt2)[ũ, λ]
as a generalized limit of Lagrangian subspaces{

λ+

∫ t2

t1

X(τ)v(τ)dτ : λ ∈ L(t1), v ∈ V satisfy (10) for any w ∈ V
}
.

This lemma implies that we can construct L(Et, Jt)[ũ, λ] by knowing already the same
L-derivative at time τ < t. This is obvious when we have a Jacobi DE, since in this case
L(Et, Jt)[ũ, λ] can be defined using the flow of Jacobi equation.

To include maximum information about the Hessian one should take L∞([0, T ], Û) as
the space of admissible variations, but for simplicity and conceptional clarity we will take
a smaller space U ⊂ L∞([0, T ], Û) defined in the following way. If on some interval ũ(τ)
takes values on the boundary ∂U , then we only use time variations. Otherwise we use
variations of the control u. Therefore we always use only one-dimensional variations. We
define Jacobi curves as Lt = L(Et, Jt)[ũ, λ](U ∩ L∞([0, t], Û)).

In this paper we make the following assumption on the regularity of our system and
extremal controls:

Assumption 1. Functions b(t), X(t) and the extremal control ũ(t) are piece-wise analytic
as functions of t.

Assumption 2. We assume that the extremal control ũ(t) takes values either on a vertex
or on an edge of the polytope U .

Assumption 3. When extremal control ũ(t) is on a vertex, we only use time variations,
when ũ(t) is on a an edge, we only use variations along that edge.
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Remark 1. These assumptions are not as restrictives as it might seem. Time variations
have no effect if the extremal control ũ(τ) is smooth, because in this situation any time
variation α can be realised as a variation of the control parameter u [4]. Therefore the
effect of time variations is concentrated at discontinuities of the reference control ũ(τ).
Under the piecewise analyticity assumption we can have discontinuities only at isolated
points. The constructed Jacobi curve will be weaker then the one constructed using all
possible variations. But even in this case we can obtain useful optimality conditions, and
it is possible to generalize this argument to other situations by simply considering any
subspace of one-dimensional two-sided variations.

In [3] by using Lemma 3.1 we gave an iterative algorithm for the construction of the
Jacobi curve Lt. The idea was to split the time interval [0, T ] into small pieces and on each
piece to use the space of constant functions as V . This way one obtains an approximation
of the Jacobi curve which by Theorem 2.1 converges point-wise to it, when the length of
the biggest interval of the splitting goes to zero. This algorithm becomes particularly nice
if we have a single control parameter, like in the considered problem. In this case b(τ) is
just a function and X(τ) is a R2n-valued vector function.

Proposition 3.2. Consider a single control parameter system. Given a L-derivative
Lt(V ), where V is some space of variations defined on [0, t], we have Lt(V ⊕ Rχ[t,t+ε]) =
Lt(V )η(t+ε), where χ[t,t+ε] is the characteristic function of the corresponding interval and
η(t+ ε) is determined by one of the two alternatives

1. If ∫ t+ε

t

X(τ)dτ ∈ Lt(V )

then Lt(V ⊕Rχ[t,t+ε]) = Lt(V ) and we can take η(t+ε) to be any vector from Lt(V )

2. Else we fix any η(t) ∈ Lt(V ) satisfying

σ

(
η(t),

∫ t+ε

t

X(τ)dτ

)
6= 0

and take

η(t+ ε) = Kη(t) +
1

ε

∫ t+ε

t

X(τ)dτ

where

K = −

1

ε

∫ t+ε

t

[
σ

(∫ τ

t

X(θ)dθ,X(τ)

)
+ b(τ)

]
dτ

σ

(
η(t),

∫ t+ε

t

X(τ)dτ

) .

In [3] we have also proven the following useful lemma.

Lemma 3.2. The Jacobi curve Lt is left continuous.

12



At the end of this section we briefly summarize the key-points regarding L-derivatives.

1. A L-derivative is a map that assigns to a critical point of the functional and a
subspace of admissible variations a Lagrangian plane. In the case of optimal control
problems proposition 3.1 gives an effective definition;

2. A L-derivative exists if the restriction of the Hessian at the considered critical point
has a finite positive or negative inertia index;

3. The set of all L-derivatives over all subspaces of variations contains all the infor-
mation about nullity, positive and negative inertia indices. By comparing relative
positions of the corresponding Lagrangian planes one can track how those numbers
change as we add variations;

4. L-derivatives do not change if we replace an infinite-dimensional space of variations
by some dense subspace.

Our goal is to specialize the definition of the Jacobi curve Lt by precomputing the
corresponding generalized limits. This way we are going to obtain simple constructions
of Lt in several cases. As a result we will recover some already known results and a
completely new dynamical systems characterization of the Jacobi curve in the presence
of a singularity that would be hard to guess without this general definition. Using this
we can construct Jacobi curves of combinations of different extremals.

4 Jacobi DE under the strengthened generalized Leg-

endre condition

Let us assume that the control ũ(t) takes values in the interior of the set U . Our goal is
going to be give a characterization of the Jacobi curve using an ODE, like in the classical
theory. As we have discussed in the previous sections we will only use variations of the
control parameter u to construct the corresponding Jacobi curve.

We consider a sequence of functions bi(τ) that we define as

bi(τ) =

{
b(τ), if i = 0,

σ
(
X(i+1)(τ), X(i)(τ)

)
, if i ≥ 1.

For the sake of simplicity we will often to drop in the future the explicit dependence on
time τ and simply write bi or σ

(
X(i+1), X(i)

)
, when there is no confusion.

The strengthened Legendre condition of order m is a series of identities of the form

bm ≤ β < 0, bj ≡ 0, j < m

for some m ∈ Z≥0, where β is just a constant. We say that an extremal curve q̃(τ) is a
singular curve of order m, if along it the strengthened Legendre condition of order m is

13



satisfied. If along a trajectory bi ≡ 0 for all i ∈ Z≥0, we say that the trajectory has order
infinity.

We define the Goh subspaces as

Γi(τ) = span{X(j)(τ) : j ≤ i}.

Lemma 4.1. Assume that the strengthened Legendre condition of order m is satisfied
along an extremal trajectory q̃(τ). Then Γm−1(τ) is an isotropic subspace. Moreover
Xm(τ) ∈ Γm−2(τ)∠

Proof. The proof is a simple inductive argument. For i = 1 the statement is obvious since
Γ1 = X. Assume that the statement is true for i < m− 1. Then in particular we have

σ
(
X(i), X(j)

)
= 0, ∀j < i.

Differentiating this identity and using the induction assumption we find that

σ
(
X(i+1), X(j)

)
= 0, ∀j < i.

The equality for j = i is obviously true, because i < m − 1 and the Legendre condition
has order m.

The fact thatXm(τ) ∈ Γm−2(τ)∠ now follows from the differentiation of σ(X(m−1), X(i)) =
0.

We are going to prove the following characterization of the Jacobi curve.

Theorem 4.1. Let q̃(τ) be a regular or a singular extremal of order m. Then Lt for t > 0
is a linear span of Γm−1(t) and the solutions of the following linear ODE

µ̇ =
σ(X(m), µ)

bm
X(m),

with boundary conditions µ(0) ∈ Tλ(0)(T
∗
q0
M) ∩ (Γm−1(0))∠.

If the trajectory has infinite order, then we can define

Γ(τ) =
∞⋃
i=1

Γi(τ)

and Lt = (Tλ(0)(T
∗
q0
M))Γ(0+).

Proof. The proof is based on the technique called the Goh transformations. The idea
of that technique is that if an extremal is singular, then the differentials of maps and
quadratic forms in the definition of the L-derivative remain continuous in a much weaker
topology. So we can extend this map by continuity to a bigger space, in which the original
space is dense. From the Theorem 2.1 we know that this will not change the L-derivative.
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Let us assume first that the extremal trajectory is regular. If a vector

η(t) = η +

∫ t

0

X(τ)v(τ)dτ, η ∈ L0

is in Lt, then it satisfies∫ t

0

σ

(
η +

∫ τ

0

X(θ)v(θ)dθ,X(τ)w(τ)

)
+ b(τ)v(τ)w(τ)dτ = 0, ∀w ∈ L2[0, t] (11)

From (11) we get that v(τ) must satisfy

σ(η(τ), X(τ)) + b(τ)v(τ) = 0 ⇐⇒ v(τ) = −b(τ)−1σ(η(τ), X(τ)), a.e.τ ∈ [0, t]

But on the other hand from the definition of η(τ) we have

η̇(τ) = X(τ)v(τ) ⇒ η̇(τ) = −X(τ)b(τ)−1σ(η(τ), X(τ))

which gives us the classical Jacobi equation [9].
We assume now that the extremal is singular of order m. It is clear that this derivation

is not going to work anymore, since b(τ) ≡ 0, so we modify it in the following way. We
denote

Pmv(t) =

∫ t

0

∫ τ1

0

...

∫ τm−1

0

v(τm)dτm...dτ1, Pmw(t) =

∫ t

0

∫ τ1

0

...

∫ τm−1

0

w(τm)dτm...dτ1

the m-th primitives of v and m. We integrate by parts m times the first summand of (11)

σ

(
η,

∫ t

0

X(τ)w(τ)dτ

)
= σ

(
η,

m−1∑
i=0

(−1)iX(i)(t)(P i+1w(t)) + (−1)m
∫ t

0

X(m)(τ)(Pmw(τ))dτ

)

Now we integrate by parts the other summand of (11). Exchanging the order of integra-
tion, using Lemma 4.1 and the assumption on the order of our extremal curve:∫ t

0

σ

(∫ τ

0

X(θ)v(θ)dθ,X(τ)w(τ)

)
dτ = (integration by parts) =

=

∫ t

0

σ

(
X(τ)(Pv(τ))−

∫ τ

0

Ẋ(θ)(Pv(θ))dθ,X(τ)w(τ)

)
dτ = (exchanging order) =

=

∫ t

0

σ

(
−Ẋ(τ)(Pv(τ)),

∫ t

τ

X(θ)w(θ)dθ

)
dτ = (integration by parts) =

=

∫ t

0

σ

(
−Ẋ(τ)(Pv(τ)), X(t)(Pw(t))−X(τ)(Pw(τ))−

∫ t

τ

Ẋ(θ)(Pw(θ))dθ

)
dτ = (assumption) =

=σ

(
−
∫ t

0

Ẋ(τ)(Pv(τ))dτ,X(t)(Pw(t))

)
+

∫ t

0

σ

(∫ τ

0

Ẋ(θ)(Pv(θ))dθ, Ẋ(τ)(Pw(τ))

)
dτ
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We continue to integrate by parts both summands and use Lemma 4.1, until the Legendre
term σ(X(m)(t), X(m−1)(t)) will not appear explicitly. At the end we get∫ t

0

σ

(∫ τ

0

X(θ)v(θ)dθ,X(τ)w(τ)

)
dτ =

=σ

(
(−1)m

∫ t

0

X(m)(τ)(Pmv(τ))dτ,
m−1∑
i=0

(−1)iX(i)(t)(P i+1w(t))

)
+

+

∫ t

0

σ
(
X(m)(τ)(Pmv(τ)), X(m−1)(τ)(Pmw(τ)

)
dτ+

+

∫ t

0

σ

(∫ τ

0

X(m)(θ)(Pmv(θ))dθ,X(m)(τ)(Pmw(τ))

)
dτ

Thus (11) is transformed into

m−1∑
i=0

σ

(
η + (−1)m

∫ t

0

X(m)(τ)(Pmv(τ))dτ, (−1)iX(i)(t)(P i+1w(t))

)
+

+

∫ t

0

σ

(
(−1)mη +

∫ τ

0

X(m)(θ)(Pmv(θ))dθ,X(m)(τ)(Pmw(τ)

)
dτ+ (12)

+

∫ t

0

σ
(
X(m)(τ)(Pmv(τ)), X(m−1)(τ)(Pmw(τ))

)
dτ = 0

We also integrate by parts the integral representation of η(t), to get

η(t) = η +
m−1∑
i=0

(−1)iX i(t)(P i+1v(t)) + (−1)m
∫ t

0

X(m)(τ)(Pmv(τ))dτ

We can see that the right hand side of this expression and quadratic form in (12) are
continuous in the topology Ĥ−m[0, t] given by the norm

||v||−m =

√√√√m−1∑
i=0

(P iv(t))2 + ||Pmv||2L2 .

So we extend by continuity on Ĥ−m[0, t]. It is important to note that in the Ĥ−m[0, t] the
end-points P iv(t) represent separate variables. This implies immediately that Γm−1(t) ⊂
Lt. Indeed, we can see that the right-hand side of (12) does not depend on P iv(t) at all.
So if we take η = 0 and Pmv(τ) ≡ 0, then (12) will be satisfied automatically. But then
η(t) ∈ Γm−1(t) and every vector of Γm−1(t) can be realized this way.

This means that Lt actually consists of vectors

µ(t) = η + (−1)m
∫ t

0

X(m)(τ)(Pmv(τ))dτ
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and vectors from Γm−1(t).
The derivative of µ(τ) is given by

µ̇(τ) = (−1)mX(m)(τ)(Pmv(τ)).

We only need to find Pmv(τ). We do this by solving (12), which gives us a system of
equations

σ
(
µ(t), X(i)(t)

)
= 0, 0 ≤ i ≤ m− 1, (13)

(−1)mσ
(
µ(τ), X(m)(τ)

)
+ bm(τ)Pmv(τ) = 0, a.e. τ ∈ [0, t]. (14)

Then from the last equation we recover

Pmv(τ) = (−1)(m+1)(bm(τ))−1σ
(
µ(τ), X(m)(τ)

)
and so

µ̇(τ) = −X(m)(τ)(bm(τ))−1σ
(
µ(τ), X(m)(τ)

)
.

From (13) we recover boundary conditions

µ(t) ∈ Γm−1(t)∠. (15)

We can prove that this identity is true not only for the chosen time t, but for any
τ ∈ [0, t]. Indeed, from the explicit form of the Jacobi DE we can see that X(m−1)(τ) is
a particular solution. But since all solutions lie in Lτ we have σ(µ(τ), X(m−1)(τ)) = 0
for any solution µ(τ). Assume that the same is true for X(i)(τ), i ≤ m − 1. Then for
X(i−1)(τ) we have

d

dτ
σ
(
µ(τ), X(i−1)(τ)

)
= −

σ
(
X(m)(τ), µ(τ)

)
bm(τ)

σ
(
X(m)(τ), X(i−1)(τ)

)
+σ
(
µ(τ), X(i)(τ)

)
≡ 0

by Lemma 4.1 and the induction assumption.
So we see that µ(τ) ∈ Γm−1(τ)∠ is satisfied automatically if µ(0+) = (Tλ(0)(T

∗
q0
M))Γm−1(0).

It means that by fixing the appropriate boundary conditions all n independent solutions
will lie in Lt.

Let us now look at what can happen if the singularity is of an infinite order. Since we
have already established that Γ(τ) is an isotropic subspace, its dimension is limited. This
can happen only if higher derivatives of X become dependent from the lower derivatives.
Let us assume that the first l derivatives are generically independent and the (l + 1)-th
is not. Then Γl(τ) is a fixed subspace. Indeed, we can represent Γl(τ) as an element of
∧lR2n

Γl(τ) = X(τ) ∧ Ẋ(τ) ∧ ... ∧X(l)(τ).

Then Γ̇l(τ) = κ(τ)Γl(τ) for some function κ(τ). Since ∧lR2n is a linear space, the solution
of this equation is simply

Γl(τ) = e
∫ τ
s κ(θ)dθΓl(s).
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So we see that Γ(τ) = Γ is constant except maybe a finite number of points, where the
first l derivatives of X can become dependent. Therefore Γ can be taken to be equal to
Γ(0+).

By assumption on the infinite order we have that the elements of Lt must satisfy∫ t

0

σ

(
η +

∫ τ

0

X(l)(θ)P lv(θ), X(l)(τ)w(τ)

)
dτ = 0.

We look for a solution with P lv(τ) = 0, then the equation above is transformed to

σ

(
η,

∫ t

0

X(l)(τ)w(τ)dτ

)
= 0.

But we have seen that X(l)(τ) never leaves Γ. Therefore all η ∈ (Tλ(0)(T
∗
q0
M)) ∩ Γ∠

satisfy the equation above as well as the boundary conditions (13). Therefore those
vectors together with vectors from Γ(τ) give n independent solutions whenever dim(Γ(τ))
is maximal. At the isolated points where the dimension of this space drops we simply use
the left-continuity property from Lemma 3.2.

5 Bang-bang extremals

In the case of bang-bang extremals the extremal control is always on the boundary of U .
In this case we use time variations to construct the Jacobi curve.

Let
f(q, ũ(t)) =: fi(q), L(q, ũ(t)) =: Li(q) t ∈ [ti, ti+1].

be the controled system and the minimized functional on an interval of constancy [ti, ti+1]
of u(t). Since the system under consideration was autonomous we have that X(τ) is also
a piece-wise constant function. We define Xi = X(τ), τ ∈ (ti, ti+1]. These Xi have a
particularly nice form, when we consider an optimal time problem. In this case

(P τ
0 )−1
∗ f(q, ũτ) = e−t1f1

∗ (e(t1−t2)f2
∗ (...(e(ti+1−ti)fi−1

∗ fi)...)), τ ∈ (ti, ti+1]

Let hi(λ) = 〈λ, (P τ )−1
∗ f(q, ũ(τ))〉, t ∈ (ti, ti+1]. Then Xi = ~hi.

We can now apply proposition 3.2 to find an approximation of the Jacobi curve. We
take Vj to be the space of variations constant on the intervals [ti, ti+1] and which are zero
for t ≥ tj. We have Lt({0}) = Tλ(0)(T

∗
q0
M) and it is possible now to apply inductively

proposition 3.2.
Since the new system and the Lagrangian are linear in controls, we obtain b(τ) ≡ 0.

Then

σ

(∫ τ

ti

X(θ)dθ,X(τ)

)
+ b(τ) = (τ − ti)σ(Xi, Xi) = 0, ∀τ ∈ [ti, ti+1)
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and so K = 0 on each step. Similarly we have

η(ti+1) =
1

ti+1 − ti

∫ ti+1

ti

X(τ)dτ = Xi.

This way we obtain a sequence of Lagrangian subspace Lt(Vj), defined inductively as

Lt(V0) = Lt({0}) = Tλ(0)(T
∗
q0
M), Lt(Vi+1) = Lt(Vi)Xi .

If we take a finer splitting of the interval the corresponding approximation to the Jacobi
curve is the same as above, because (Lt(Vi)Xi)Xi = Lt(Vi)Xi .

The final algorithm of constructing the Jacobi curve goes as follows. One defines
L0 = Tλ(0)(T

∗
q0
M). The Jacobi curves Lτ is constant for τ ∈ (ti, ti+1] and after a switching

it jumps to L(ti+) = L(ti)
Xi . This is the same algorithm that was obtained in [10].

We note that Lemma 3.1 allows to generalize the previous discussion to a wider range
of situations. For example, using the results of the previous two sections we can treat the
Fuller phenomena, at least when bang-bang arcs are followed by a non-degenerate singular
arc. We know from the bang-bang algorithm that in order to construct the Jacobi curve
we have to put X(τ) at each switching time inside of the L-derivative. Left-continuity
ensures that this procedure will give a convergent sequence if the index of the Hessian is
finite. After the limit Λ of the corresponding planes has been found, we can define the
Jacobi curve using the flow of the Jacobi DE with the right boundary conditions. From
Lemma 3.1 it follows that we have to replace in Theorem 4.1 Tλ(0)(T

∗
q0
M) with Λ.

6 Normal form for the Jacobi DE for the simplest

singularity

In this section we consider the simplest singularity when b(τ) = 0 for some moment of
time τ . Due to analyticity assumption such a moment of time must be isolated. We would
like to construct the Jacobi curve after we pass the singularity. In the following sections
we are going to prove the following result.

Theorem 6.1. Let q̃(τ) be an extremal curve for which b(τ) = 0 and b(τ +ε) = bmε
m+ ...

is negative for all ε > 0 sufficiently small. Assume that at τ the following conditions are
satisfied

1. σ(X(τ), Ẋ(τ)) 6= 0 and 4σ(X(τ), Ẋ(τ)) + b2 6= 0 if m = 2;

2. dim span{Ẍ(s), Ẋ(s), X(s)} = const for s ∈ [τ, τ + ε].

Then if the right limit of the Jacobi curve L(s) at s = τ exists, it is equal to

L(τ+) = LX(τ)
τ . (16)

Before we proceed we would like to make some remarks about the statement of the
theorem.
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1. The assumptions we make allow us to have a simplest possible singularity that is in
some sense is generic. It is possible to replace those conditions with different ones
and to study even more singular cases;

2. The Jacobi curve may not be well defined, due to an infinite inertia index of the
Hessian. We will give sufficient conditions for existence and non-existence using
oscillation theorems for Hamiltonian systems in Section 8;

3. It is not true that after the singularity the Jacobi curve is determined only by its
jump. Indeed, it must satisfy the Jacobi equation, but at the same time the right
hand-side of the Jacobi equation is not even continuous. So we do not have neither
existence nor uniqueness of solutions and we need more information to isolate the
right solution. In Section 9 for m = 1, 2 we will prove that Jacobi curve can be
uniquely characterized by a one-jet.

Due to analyticity singular points can not cluster. That is why without any loss of
generality from now on we assume that b(0) = 0 and that b(τ) < 0 for τ sufficiently small.
To give a characterization of the Jacobi curve after a singularity of the considered type,
we use once again the theory of L-derivatives.

Even in this case we still have a Jacobi equation of the form

η̇ =
σ(X, η)

b
X,

and it governs the behaviour of the Jacobi curve away from singularity. In order to under-
stand how to proceed at the singularity, we must recall that by definition L-derivatives
are constructed by adding more and more variations and in the limit we get pointwise
convergence to the Jacobi curve. Assume that we use only variations whose support does
not intersect [0, ε]. Then using the same argument as in the previous section we obtain a
slightly different Jacobi equation of the form

η̇ =

{
σ(X,η)
b

X, if τ /∈ [0, ε],

0, if τ ∈ [0, ε].

It is equivalent to the following construction. We will denote by Λε(τ) a solution of
the induced Jacobi equation in the Lagrangian Grassmanian. We use the Jacobi flow to
determine the Jacobi curve until time 0. We assume that the left limit exist and is equal
to the corresponding L-derivative Λε(0) = L0. Then the flow does nothing for a while,
meaning that Λε(τ) = L0 for τ ∈ [0, ε] and then we continue with the flow after the
moment of time ε, where the dynamics in non-singular until the next zero of b(τ). This
means that the Jacobi curve is going to be a point-wise limit of solutions of the Jacobi
equation on the Lagrangian Grassmanian that satisfy Λε(ε) = L0. Since outside of the
singularity we have uniqueness and existence, for each ε we obtain a unique curve in L(n).
The pointwise limit of these curves is the Jacobi curve we seek.

To realize this strategy we first simplify the Jacobi DE and reduce the dimension of the
considered problem by separating singular and regular dynamics of the Jacobi equation.
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Let J be the complex structure associated to the symplectic form σ. Then we can rewrite
the Jacobi DE as

η̇ =
XXTJ

b
η.

We make a time-dependent change of variables µ(τ) = M−1(τ)η(τ). We get

µ̇ = −M−1Ṁµ+
M−1XXTJM

b
µ.

First we look carefully at the second term. We assume that the matrix M is symplectic.
Then M−1 = −JMTJ and we obtain

M−1XXTJM = (M−1X)(MTJTX)T = (M−1X)(JTJMTJTX)T = (M−1X)(M−1X)TJ.

We also make a choice for the first column of M by assuming

M−1(τ)X(τ) =


1
0
...
0

 .

All this implies that we get an equation of the form

µ̇ = −M−1Ṁµ+
1

b



0

1 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

0 0


µ. (17)

Now we work with the first term M−1Ṁ . Since we choose M to be symplectic, its columns
form a Darboux basis. Denote the first n columns by ei and the last by fi. Then we can
write

−M−1Ṁ =

(
σ(f, ė) σ(f, ḟ)

σ(e, ė) σ(e, ḟ)

)
=

(
σ(f, ė) σ(f, ḟ)
σ(e, ė) −σ(f, ė)

)
,

where σ(x, y) means a matrix whose elements are σ(xi, yj), for two n-tuples of vectors
x = (x1, ..., xn) and y = (y1, ..., yn). The last equality follows from the fact that the basis
is Darboux, i.e.

σ(e, f) = idn ⇒ σ(ė, f) + σ(e, ḟ) = 0.

Let us first assume that n = 1. Since by assumption of Theorem 6.1 σ(X(0), Ẋ(0)) 6=
0, we can choose

e(τ) = e1(τ) = X(τ), f(τ) = f1(τ) =
Ẋ(τ)

σ(X(τ), Ẋ(τ))
, (18)
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The Jacobi DE reduces then to the following normal form

d

dτ

(
µ1

µn+1

)
=

 0
σ(Ẋ, Ẍ)

σ(X, Ẋ)2
+

1

b

σ(X, Ẋ) 0

( µ1

µn+1

)
(19)

Let us now assume, that n ≥ 2. We want to separate the singular dynamics from
the regular dynamics. If we look at the singular part in (17), then we see that the only
non-zero element is in the first row and (n + 1) column. So in the new coordinates we
want at least some of the expressions for µ̇i for i 6= 1, n+ 1 to be independent of µ1, µn+1.
Moreover the assumption, that M(τ) is symplectic, is going to imply in addition that we
will have two invariant symplectic subspaces: a subspace containing µ1, µn+1 coordinates,
where the singular dynamics happens and its complement where the dynamics is smooth.

So we look for ei, fi such that

σ (ei, e1) = 0, σ (fi, e1) = 0, σ (ei, f1) = 0, σ (fi, f1) = 0. (20)

From the assumption 2) in Theorem 6.1 that we have made it follows that dim span{Ẍ(τ), Ẋ(τ), X(τ)}
must be equal either to two or three. In the first case Ẍ(τ) is simply in the span
of X(τ), Ẋ(τ) for small τ ≥ 0. So we make the same choice (18) for e1, f1 and the
rest of the columns we take to be a smooth Darboux basis for the symplectic space
span{X(τ), Ẋ(τ)}∠. Then the conditions (20) are indeed satisfied and we obtain exactly
the equation (19) for the singular part.

In the second case we can not guarantee that conditions (20) are satisfied for i ≥ 2,
since now Ẍ(τ) has to be accounted for. To isolate the singular dynamics we choose a
Darboux basis e1, e2, f1, f2 as follows. The vectors e1, f1 are as before, e2 is defined as

e2 = Ẍ − σ(Ẍ,X)

σ(Ẋ,X)
Ẋ +

σ(Ẍ, Ẋ)

σ(Ẋ,X)
X.

and f2 is chosen to be any vector such that we get a Darboux basis. In this case it just
means that

σ(X, f2) = σ(Ẋ, f2) = σ(Ẍ, f2)− 1 = 0.

The rest of the columns of Mτ are chosen to be a smooth Darboux basis of the sym-
plectic space (span{e1, e2, f1, f2})∠. Again, the derivatives of e1, f1 are contained in
span{e1, e2, f1, f2}, so the dynamics splits. The singular dynamics takes place in the plane
with (µ1, µ2, µn+1, µn+2) coordinates. Thus we get an invariant subsystem containing the
singular part

d

dt


µ1

µ2

µn+1

µn+2

 =


σ(f1, ė1) σ(f1, ė2) σ(f1, ḟ1) + 1

b
σ(f1, ḟ2)

σ(f2, ė1) σ(f2, ė2) σ(f2, ḟ1) σ(f2, ḟ2)

σ(e1, ė1) σ(e1, ė2) σ(e1, ḟ1) σ(e1, ḟ2)

σ(e2, ė1) σ(e2, ė2) σ(e2, ḟ1) σ(e2, ḟ2)




µ1

µ2

µn+1

µn+2

 .

and so we have proven our first result about the jump of the Jacobi curve Lτ
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Proposition 6.1. If b(τ) = 0, then dim(Lτ ∩ Lτ+) ≥ n− 2.

Let us simplify this equation even more. Since M−1Ṁ is a matrix from the symplectic
Lie algebra, not all the entries above are independent. More precisely, the first and the
last diagonal 2x2 minors are minus transpose of each other and the off diagonal 2x2 minors
are symmetric. We can find explicitly

σ(f1, ė1) = σ(f1, ė2) = σ(f2, ė1) = σ(e1, ė2) = 0;

σ(e1, ḟ1) = σ(e1, ḟ2) = σ(e2, ḟ1) = σ(e2, ė1) = 0;

σ(f2, ḟ1) = σ(f1, ḟ2) = − 1

σ(X, Ẋ)
;

σ(f2, ė2) = −σ(e2, ḟ2) = σ(f2,
...
X) +

σ(Ẍ,X)

σ(Ẋ,X)
;

σ(e1, ė1) = σ(X, Ẋ);

σ(e2, ė2) = σ(Ẍ,
...
X)− σ(

...
X,X)σ(Ẍ, Ẋ) + σ(Ẍ,X)σ(

...
X, Ẋ)

σ(Ẋ,X)
;

σ(f1, ḟ1) =
σ(Ẋ, Ẍ)

σ(X, Ẋ)2
.

So we get an equation of the form

d

dt


µ1

µ2

µn+1

µn+2

 =


0 0 σ(f1, ḟ1) + 1

b
σ(f2, ḟ1)

0 σ(f2, ė2) σ(f2, ḟ1) σ(f2, ḟ2)
σ(e1, ė1) 0 0 0

0 σ(e2, ė2) 0 −σ(f2, ė2)




µ1

µ2

µn+1

µn+2

 . (21)

Note that if σ(f2, ḟ1) ≡ 0 for τ small enough, we obtain a n = 1 normal form of the Jacobi
DE as a subsystem. So without any loss of generality from now on we can assume that
n ≥ 2.

We can simplify the last equation even more by taking

Q(τ) =

(
1 0

0 exp
(∫ τ

0
σ(ḟ2(s), e2(s))ds

))
.

Note that Q(0) = idn. We introduce new variables
p1

p2

q1

q2

 =

(
Q−1 0

0 Q

)
µ1

µ2

µn+1

µn+2

 .
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If we write p = (p1, p2), q = (q1, q2), we obtain a normal form

d

dt

(
p
q

)
=

(
0 B(τ)

τm

C(τ) 0

)(
p
q

)
(22)

where m is the first non zero coefficient of the Taylor expansion of b(τ),

C(τ) = Q

(
σ(e1, ė1) 0

0 σ(e2, ė2)

)
Q =

(
c11(τ) 0

0 c22(τ)

)
and

B(τ)

τm
=

(
1/b 0
0 0

)
+Q−1

(
σ(f1, ḟ1) σ(f2, ḟ1)

σ(f2, ḟ1) σ(f2, ḟ2)

)
Q−1 =

( 1
b(τ)

+ b11(τ) b12(τ)

b12(τ) b22(τ)

)
Note that (22) is still a Hamiltonian system and a normal form for the singular part of the
Jacobi DE. Moreover we can choose our frame so that B(τ) is positive for small τ > 0.
Indeed, this is going to be true if the trace and the diagonal entries are non-negative.
Since b(τ) = bmτ

m +O(τm+1) < 0 for τ > 0 small and the frame {ei, fi} was chosen to be
analytic, we obviously have that the trace and the upper diagonal element are negative
for τ > 0 sufficiently small. We claim that f2 can be chosen in such a way that also the
lower diagonal term is negative as well for small τ > 0. Indeed, the only freedom that we
have is to replace f2(τ) with f2(τ) + a(τ)e2(τ) for some analytic function a(τ). Then we
have

σ(f2 + ae2, ḟ2 + ȧe2 + aė2) = σ(f2, ḟ2)− ȧ+ a2σ(e2, ė2),

where we have used that σ(e2, f2) = 1 and σ(ė2, f2) + σ(e2, ḟ2) = 0. Then it is clear that
we can simply choose a(t) = sin kt, with k sufficiently large and the explicit form of Q
implies that we can assume without any loss of generality that B(τ) is negative for τ
small.

Before we start proving Theorem 6.1, it is very helpful to understand the idea of the
proof using some simple heuristics in the case n = 1. Later we will make all the steps
rigorous. In the next section we will see under which conditions L-derivatives exist and
how to characterize the Jacobi curve as a solution to the singular Jacobi equation with
certain boundary conditions when n = 1.

7 An heuristic argument for n = 1

Assume that n = 1 and let bmτ
m + ... be the right series of b(τ) at τ = 0, with bm < 0.

We would like to determine whether or not L0+ exists at all. To do this we rewrite (19)
as a second order ODE of the form

µ̈1 + a1(τ)µ̇1 + a0(τ)µ1 = 0. (23)

We say that this equation is oscillating on a given interval, if any solution µ1(τ) has an
infinite number of zeroes on that interval. Equivalently the classical Sturm theory of
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second order ODEs implies that this equation is oscillating whenever any solution of (19)
makes an infinite number of turns around the origin in the (µ1, µn+1) plane. Recall that
for n = 1 the Lagrange Grassmanian is nothing but a projective line P1 and that the
Jacobi curve is just the line R(µ1, µn+1). Therefore Jacobi curves of oscillating equations
have an infinite Maslov index.

For second order ODEs there exist various oscillation and non-oscillation criteria, but
among them there is a particularly simple one called the Kneser criteria [27]. It states
that a second order ODE of the form

ẍ+ a(s)x = 0 (24)

is oscillating on [p,∞), for any p > 0 if

lim
s→∞

s2a(s) >
1

4

and it is non-oscillating if

lim
s→∞

s2a(s) <
1

4
.

If the limit is exactly 1/4, Kneser criteria gives us no information and we have to use
a different criteria. In order to put the equation (23) into form (24), we simply make a
change of the time variable s = 1/τ and then make a change of the dependent variable

x(s) = µ(s) exp

(∫ s

p

2θ − a1(θ)

2θ2
dθ

)
.

Then we obtain exactly equation (24).
After applying the Kneser criteria, we find that for any sufficiently small interval [0, ε]

1. equation (23) is oscillating if m = 2 and 4σ(X(0), Ẋ(0)) + b2 > 0 or if m > 2 and
σ(X(0), Ẋ(0)) > 0;

2. equation (23) is non-oscillating if 1 ≤ m < 2 or m = 2 and 4σ(X(0), Ẋ(0))+ b2 < 0,
or if m > 2 and σ(X(0), Ẋ(0)) >< 0.

Thus we conclude that in the first case the Jacobi curve has no right limit and therefore
it also has an infinite Maslov index.

Since we just want to give an idea of how the proof works, we assume that the Jacobi
DE (19) is of the simplest form

d

dτ

(
µ1

µn+1

)
=

(
0

1

τ 2

C 0

)(
µ1

µn+1

)
, (25)

where C is constant. We then make a time-dependent change of variables(
p
q

)
=

(
τ 1/2 0

0 τ−1/2

)(
µ1

µn+1

)
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and obtain
d

dτ

(
p
q

)
=

1

τ

(
1
2

1
C −1

2

)(
p
q

)
= −τ−1JH

(
p
q

)
(26)

Note that this change of variables can not change whether or not the Maslov index is
finite. It is clear that τ−1 multiplier just scales the speed along solutions, but does not
change the trajectories. We could have actually got rid off it using a change of time
variable. This means that if we drop τ−1 in the equation above, the overall phase-portrait
does not change. It will be completely determined by the structure of the matrix −JH.

A description of various phase portraits on the Lagrangian Grassmanian was given
in [24]. We will use the results from that article to work out the general case. For
example, for n = 1 we can only have fixed points or periodic trajectories, which depend
on the eigenvalues and eigenvectors of the matrix −JH. Its eigenvalues are

λ1,2 = ±
√

1 + 4C

2
.

If 1 + 4C < 0, then we have only a single closed trajectory and no equilibrium points.
Thus the trajectory rotates on P1, and because of the τ−1 multiplier in (26) the curve
rotates faster and faster as we get closer to τ = 0 and therefore we get an infinite Maslov
index. If 1 + 4C > 0, then we have two equilibrium points: a stable and a non-stable
one, that are given by two lines spanned by the eigenvectors of −JH. Thus all solutions
except the equilibrium ones tend to the unstable equilibrium as τ → 0 and to the stable
one as τ → ∞. In this case the Maslov index is finite. Note that in our example
C = σ(X(0), Ẋ(0))/b2 and thus we recover the classical Kneser criteria. From here we
can also see very well why the case 1 + 4C = 0 is excluded. It is not stable under small
perturbations and corresponds to a resonant situation when the two equilibrium points
merge.

Having a small dimensional situation allows us to actually draw the extend-phase
portrait. We introduce new variables U and V defined as µn+1 = Uµ1, p = V q. It is
clear from the definitions that V = τU−1. Since we work in a coordinate chart of the
Grassmanian we can assume that U, V 6= 0. We differentiate expressions in the definition
to obtain a couple of related Riccati equations

U̇ = C − U2

τ 2
,

V̇ =
1 + V − CV 2

τ
.

In the picture 1 the non-oscillating extended phase portrait before and after the change
of variables is depicted. We can see clearly, that the extended phase portrait is separated
by two separatrix into three regions. After the blow up the two separatrix solutions have
different initial values correspond to the equilibrium solutions. The stable solution after
a blow-up can be described using an initial value problem, where as the unstable one can
not. There is an infinite number of solutions that start from the unstable equilibrium.
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Figure 1: Phase portrait of a non-oscillating system: (a) before blow-up; (b) after blow-up.

We claim that the stable separatrix is the Jacobi curve for τ > 0. To see this we do as
discussed in the previous subsection. Assume that L0 is given by U0 6= 0. Then the Jacobi
curve is the limit of solutions of the Riccati equations with U(ε) = U0. Similarly after
a blow up it corresponds to a limit of solutions with boundary conditions V (ε) = εU−1

0 .
On the picture 7 we can see this convergence numerically in the original phase portrait.
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Figure 2: Point convergence of Λ(τ) to the Jacobi curve for C = 2.

In the next sections our goal is to make all the ideas from this section rigorous. Our
proves are mostly perturbative and we will first prove them for the constant matrix case
and then expand it to the general case. Following the outline of this section we first prove
an analogue the Kneser criteria and identify the non-oscillating cases. Such a criteria is a
necessary optimality condition on its own. Then using the general theory of ODEs with
singular regular points we are going to characterize the jump of the Jacobi curve. Finally
using the results from article [22] we are going to characterize the first derivative of the
Jacobi curve for m = 1, 2 and prove that conditions on the first derivative guarantee
uniqueness of the solution of the extended Jacobi equation that characterizes Lt.
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8 Kneser oscillation criteria for a simple class of Hamil-

tonian systems

In the case n = 1, the Kneser criteria gives sufficient conditions under which a second
order ODE is oscillating or non-oscillating. This result is just a consequence of the Sturm
comparison theorem and an explicit solution of an Euler-type linear equation [27].

Kneser criteria can be derived as a consequence of more general integral criteria and
the modern theory of oscillation of ODE systems tends to generalize those. As a result,
we were not able to find in the literature a similar simple point-criteria. Thus we would
like to slightly generalize the Kneser criteria to a special class of Hamiltonian systems that
include system (22). Our main tool will be a straightforward consequence of Theorem 1
in [11, 7], that can be seen as a generalization of the Strum-comparison theorem

Theorem 8.1. Let I be an open interval and Ai(τ), Bi(τ), Ci(τ), i = 1, 2 quadratic ma-
trices whose elements are differentiable on I. Assume that Bi(t) and Ci(t) are symmetric.
We consider the corresponding Hamiltonians

Hi =

(
Ci(τ) −ATi (τ)
−Ai(τ) −Bi(τ)

)
If the Hamiltonians Hi(τ) satisfy

H2(τ) ≥ H1(τ)

then for any two trajectories Λi(t) whose endpoints are transversal to Λ, we have the
following inequality

MiΛ Λ1(t)− n ≤ MiΛ Λ2(t).

We are going to use a simple direct corollary of that result

Corollary 8.1. Let I be an open interval and Ai(τ), Bi(τ), Ci(τ), i = 1, 2 quadratic
matrices whose elements are differentiable on any compact subset [a, b] ⊂ I. Assume that
Bi(t) and Ci(t) are symmetric and denote by Hi(τ) the corresponding Hamiltonians, s.t.
H2(τ) ≥ H1(τ). Then we have the following implications:

1. If ∃Λ ∈ L(n), s.t. H2(τ)|Λ ≤ 0 for all τ ∈ I and the second system is oscillating,
then the first system is oscillating as well;

2. If ∃Λ ∈ L(n), s.t. H1(τ)|Λ ≥ 0 for all τ ∈ I and the first system is oscillating, then
the second system is oscillating as well;

3. If ∃Λ ∈ L(n), s.t. Hi(τ)|Λ ≤ 0 for all τ ∈ I and the first system is non-oscillating,
then the second system is non-oscillating as well;

4. If ∃Λ ∈ L(n), s.t. Hi(τ)|Λ ≥ 0 for all τ ∈ I and the second system is non-oscillating,
then the first system is oscillating as well;
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Proof. The proof is just a corollary of Theorem 8.1 and Theorem 1.2. For example, in
the first case Theorem 1.2 implies that

MiΛ Λ2(τ) ≤ 0.

The assumption that the corresponding system is oscillating means that the Maslov index
of any solution is infinite. Then from the comparison Theorem 8.1 we obtain

MiΛ Λ1(τ) ≤ MiΛ Λ2(τ) + n = −∞.

The remaining implications are proven in the same way.

The goal of this section is to prove the following result

Theorem 8.2. Consider a Hamiltonian system

d

dτ

(
p
q

)
=

(
A(τ) B(τ)

τm

C(τ) −AT (τ)

)(
p
q

)
,

s.t. the following assumptions are satisfied

1. B(τ) is a semi-definite smooth symmetric n × n-matrix, s.t. B(τ) is sign-definite
for τ > 0;

2. C(τ) is a smooth symmetric n× n-matrix;

3. A(τ) an arbitrary smooth n× n-matrix;

Then the following statements are true:

1. Let m = 2. If all the eigenvalues of the matrix C(0)B(0) are strictly greater than
−1/4, then the system is non-oscillating on (0, ε). If at least one eigenvalue is
smaller than −1/4, then the system is oscillating on the same interval;

2. If 0 ≤ m < 2, then the system is not oscillating on (0, ε);

3. Let m > 2. If C(0) is sign definite on the eigenspace that is transversal to the
kernel of B(0) with the same sign as B(0), then the system is non-oscillating on
(0, ε). If C(0) is not semi-definite on this subspace with the same sign as B(0), then
the system is oscillating on the same interval.

We are pretty sure that this theorem can be derived as a consequence of some existing
oscillation criteria for Hamiltonian systems, but we prefer to give here a simple geometric
proof of the result using Theorem 8.1, that seems to be new.

As it can be seen from the statement the matrix A plays no essential role. Similarly
to a change of variables in the Section 7, we make a time-dependent change of variables(

p
q

)
7→
(

Φ 0
0 (Φ−1)T

)(
p
q

)
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where Φ(t) satisfies {
Φ̇ = AΦ,

Φ(0) = idn .

Then Φ(t) is the fundamental matrix of the corresponding linear equation and it is smooth.
Therefore our change of variables is a non-degenerate symplectic change of variables and
it does not change oscillatory properties of the Hamiltonian systems.

Our Hamiltonian system now takes the form

d

dτ

(
p
q

)
=

(
0 Φ−1B(Φ−1)T

τm

ΦTCΦ 0

)(
p
q

)
,

We can now simply redefine matrices B and C. This implies that without any loss of
generality, we can assume that A(τ) ≡ 0.

In order to apply the comparison Theorem 8.1, we need a model example, which
oscillating properties we understand very well. Such model is given in the next lemma

Lemma 8.1. Consider a Hamiltonian system of the form

d

dτ

(
p
q

)
=

(
0 B

τ2

C 0

)(
p
q

)
, (27)

where B and C are constant symmetric matrices. This Hamiltonian system is oscillating
on an interval (0, ε) if and only if there exists at least one real eigenvalue λ of the matrix
BC, s.t. λ < −1/4.

This result is a consequence of the following theorem proven in [8].

Theorem 8.3. A linear autonomous Hamiltonian system

d

dt

(
p
q

)
= −JH

(
p
q

)
,

is oscillating on an unbounded interval if and only if the matrix −JH has a purely imag-
inary eigenvalue.

Proof of the Lemma 8.1. We do another symplectic transformation of the form(
p
q

)
7→
(
τ−1/2 0

0 τ 1/2

)(
p
q

)
The transformation is smooth for τ > 0 and therefore oscillating property is preserved.
Our Hamiltonian system then becomes

τ
d

dt

(
p
q

)
=

(
1
2

idn B
C −1

2
idn

)(
p
q

)
= −JH

(
p
q

)
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Let us perform a change of time variable

s = ln τ.

Then we obtain a linear autonomous Hamiltonian system of the form

d

ds

(
p
q

)
= −JH

(
p
q

)
Note that the change of time that we have made, maps the bounded interval (0, ε) to an
unbounded one. So by the Theorem 8.3 it just remains to compute the eigenvalues of the
matrix −JH, i.e. to solve

det(−JH − λ id2n) = 0.

In this case the diagonal blocks are multipliers of the identity and hence commute with
all the other blocks. Under this assumption it is easy to show that

det(−JH − λ id2n) = det

((
λ2 − 1

4

)
−BC

)
.

If a matrix −JH has a pair of purely complex eigenvalues λ = ±ib, we obtain that the
matrix BC has an eigenvalue −b2 − 1/4 < −1/4. It is obvious that the converse holds as
well. So the result follows from Theorem 8.3.

Finally we need the following fact proven in (theorems in Horn’s Matrix Analysis):

Theorem 8.4. Let B,C be two constant symmetric matrices, s.t. one of them is semidef-
inite. Then the spectrum of BC is real.

Proof of the Theorem 8.2. We assume that B(τ) < 0 for sufficiently small τ > 0. The
case B(τ) > 0 is proven in a similar way. In this case the corresponding Hamiltonian H
is positive semidefinite on the horizontal plane Σ (the q-plane).

1) Let us start with the case m = 2. We know by the previous theorem that all the
eigenvalues of B(0)C(0) are real, and let us assume first that the minimum one is strictly
less then −1/4. We define

B1(τ) = B(0) + ε idn, B2(τ) = Bτ ,

C1(τ) = C(0)− ε idn, C2(τ) = C(τ).

By assumption of the theorem and Lemma 8.1 the Hamiltonian system (27) with
B = B(0) and C = C(0) is oscillating. This implies that a system of the form with
B = B(0) + ε idn and C = C(0)− ε idn must be oscillating as well. Indeed, eigenvalues of
BC are solutions of the characteristic equation whose coefficients depend continuously on
the coefficients of matrices B,C. Therefore a small perturbation of matrices produces a
small change in the eigenvalues of BC. But we have chosen such a perturbation in a way,
that according to Theorem 8.4, the spectrum of BC remains real. So all the eigenvalues
shift on the real axis, and if we choose ε > 0 small enough, the minimum eigenvalue of the
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perturbed matrix will stay strictly smaller then −1/4 and the corresponding Hamiltonian
system (27) stays oscillating by Lemma 8.1.

So we can use the implication 2) of Corollary 8.1. By smoothness assumption, indeed,
for sufficiently small times H1(τ) ≤ H2(τ).

2) The non-oscillating case for m = 2 is proven using exactly the same argument and
matrices

B1(τ) = B(τ), B2(τ) = B(0)− ε idn,

C1(τ) = C(τ) C2(τ) = C(0) + ε idn .

3) The case 0 ≤ m < 2 is now just a consequence of what we have proven so far.
Indeed, we can consider the Hamiltonian as having a singularity with m = 2 and with
a new matrix B̂(τ) = τ 2−mB(τ). Then B̂(0)C(0) = 0 and all the eigenvalues are zero.
Hence the system is not oscillating.

4) Let us now assume that m > 2. We first we apply a symplectic transform(
R 0
0 RT

)
,

where R ∈ SO(n). Then in the new coordinates B(τ) and C(τ) will be replaced by the
same matrices conjugated with R. Let us choose R, s.t. in the new coordinates B(0) is
diagonalized.

We take

B1(τ) = −kτm−2

(
idl 0
0 0

)
B2(τ) = B(τ),

C1(τ) = C(τ), C2(τ) = C(τ),

where k is some constant. If C(0) is not negative semi-definite on the eigenspace of B(0)
that corresponds to the non-zero eigenvalue, then by taking k large enough, we find that
the system one is oscillating by Lemma 8.1. We also have that B1(τ) − B2(τ) is non-
negative for sufficiently small τ > 0. Thus we can use the implication 2) of Corollary 8.1
to deduce that the second system is going to be oscillating as well.

If C(0) is negative definite on the eigenspace of B(0), we repeat the proof with exactly
the same B1, C1. In this case we know from what we have proven already, that the system
one is not oscillating. Then the result follows from the implication 3) from Corollary 8.1
with Λ = Π being the vertical plane (the p-plane).

Let us apply the theorem to our case. We are not oscillating for 0 ≤ m < 2 and for
m = 2 whenever the eigenvalues of the

B(0)C(0) =

(
1
b2

0

0 0

)(
σ(e1(0), ė1(0)) 0

0 σ(e2(0), ė2(0))

)
=

(
σ(X(0), Ẋ(0))/b2 0

0 0

)
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are bigger then −1/4, i.e. whenever the only non-zero element above is bigger then −1/4.
If m > 2 then we must have σ(X(0), Ẋ(0)) < 0.

So from now on, we assume that our Hamiltonian system is non-oscillating, ensuring
that the right limit L0+ exists.

9 Computing the jump when n ≥ 2

We are now ready to make the first step and compute the jump of the Jacobi curve. We
will give three similar but separate proofs for m = 1, m = 2 and m ≥ 3. For m = 1
we will do this using the general theory of linear ODEs with regular singular points. For
m = 2 and m ≥ 3 the strategy of the proof is going to be very similar to the proof of the
Kneser theorem in the previous section. Namely we first look at some model examples
and then we use the comparison theory of Riccati equations, to obtain the result in the
most general case.

9.1 Jump for m = 1

Let λ = (p, q). We rewrite the system (22) in the following form

λ̇ =

(
H−1

τ
+H(τ)

)
λ, (28)

where H(τ) is an analytic matrix function and as can be easily seen

H−1 =


0 0 1

b1
0

0 0 0 0
0 0 0 0
0 0 0 0

 .

This matrix up to a reordering of coordinates is in its Jordan normal form, and all of its
eigenvalues are zero. Therefore by a well known theorem [15], the fundamental matrix
Φ(τ) of the system (28) can be written as

Φ(τ) = P (τ)τH−1 ,

where P (τ) is an analytic matrix function with P (0) = id2n. A power series expansion can
be obtained by plugging this solution into (28) and expanding all the analytic functions
into their Taylor series. It is easy to check that

τH−1 =


1 0 ln τ

b1
0

0 1 0 0
0 0 1 0
0 0 0 1


Let L0 be the L-derivative at moment of time τ = 0. The flow of the Hamiltonian

system Φ(τ) induces a flow on the Lagrangian Grassmanian L(2) that we denote using
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the same symbol. As we have discussed previously the Jacobi curve Lτ is going to be
a pointwise limit of the solutions of the Jacobi DE on L(2) with boundary conditions
Λ(ε) = L0. Since we know explicitly the flow, we can write the solution of this boundary
problem as

Lτ = lim
ε→0+

Φ(τ)Φ−1(ε)L0. (29)

We note that Φ(τ) is smooth and invertible for τ > 0. Therefore we can exchange the
limit with Φ(τ), and we just need to compute the limit of Φ−1(ε)L0. To do this we
use a concrete representation of Lagrangian planes as span of a couple of vectors like in
Section 1

Φ−1(ε)L0 =
[
λ1(ε) λ2(ε)

]
.

Let us find the limits of λi(ε) as ε→ 0. We have

(εH−1)−1 =


1 0 − ln ε

b1
0

0 1 0 0
0 0 1 0
0 0 0 1

 .

Assume that X(0) ∈ L0. Then as we have seen in the Example 1.2 we can assume

L0 =


1 0
0 y2

0 0
0 w2

 (30)

Then since P (0) = id2n, we obtain

lim
ε→0+

Φ−1(ε)L0 = lim
ε→0+

(εH−1)−1P−1(ε)


1 0
0 y2

0 0
0 w2

 =


1 0
0 y2

0 0
0 w2

 ,
because (εH−1)−1 acts as the identity on L0. For the same reason

lim
τ→0+

Λ(τ) =


1 0
0 y2

0 0
0 w2


and so L0+ = L0 and the Jacobi curve is actually continuous.

If X(0) /∈ L0, then again from Example 1.2 we know that we can take

L0 =
[
λ1(ε) λ2(ε)

]
=


x1 x2

y1 y2

1 0
w1 w2

 (31)
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Similarly to the previous case we find that

lim
ε→0+

λ2(ε) =


x2

y2

0
z2

 .

Let us see what happens to the limit of the first vector. We have

lim
ε→0+

λ1(ε) = lim
ε→0+

Φ−1(ε)


x1

y1

1
w1

 = lim
ε→0+


x1 −

ln ε

b1

y1

1
w1


which is equal to infinity. As we have said before a representation of a Lagrangian plane
as a span of two vectors is not unique. We can scale them as we want as we take the
limit. So we take

lim
ε→0+

− b1

ln ε
λ1(ε) =


1
0
0
0

 .

So

lim
ε→0+

Φ−1(ε)L0 =


1 x2

0 y2

0 0
0 w2

 .
Then as before we find that

lim
τ→0+

Λ(τ) =


1 x2

0 y2

0 0
0 w2

 =


1 0
0 y2

0 0
0 w2

 .
So summarizing everything we have done in a more invariant manner the jump can be

computed as follows. Given L0, the new L-derivative L0+ is going to be a direct sum of

L0∩X(0)∠ and X(0). But this is by definition LX(0)
0 . The goal of the following subsections

is to prove the same for m ≥ 2.

9.2 Model examples for m = 2

For m ≥ 2 we proceed in a different way. One can reduce by a change of variables the
system (22) to a system with a regular singular point at τ = 0. Thus all the methods from
the theory of linear systems of ODE’s can be used. But these techniques work well under
some non-resonance conditions. In our case we can use techniques from Hamiltonian
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dynamics to arrive at the results even in the presence of resonances. First we prove the
result for some model problems similarly as we have done in the case m = 1. Then we
apply Riccati comparison theorems, to prove the general result.

For m = 2 we choose the following Hamiltonian systems as our models

d

dt

(
p
q

)
=


0 0 b11

τ2 0
0 0 0 b22

c11 0 0 0
0 c22 0 0

(pq
)
, (32)

where bii, cii are constants, b11 6= 0 (or else there is no singularity) and c11 6= 0 (because we
have σ(X(0), Ẋ(0)) 6= 0). First of all we notice that this system splits into two invariant
sub-systems

d

dt

(
p1

q1

)
=

(
0 b11

τ2

c11 0

)(
p1

q1

)
, (33)

d

dt

(
p2

q2

)
=

(
0 b22

c22 0

)(
p2

q2

)
. (34)

We denote by Φi(t) the corresponding fundamental matrices. Without any loss of gener-
ality, we can assume that Φ2(0) = id2. In order to find Φ1, we do a symplectic change of
variables (

p̃1

q̃1

)
=

(
τ 1/2 0

0 τ−1/2

)(
p1

q1

)
.

Then the first system is transformed to

d

dt

(
p̃1

q̃1

)
=

1

τ

(
1/2 b11

c11 −1/2

)(
p̃1

q̃1

)
=
Y

τ

(
p̃1

q̃1

)
which is a simple linear system with a regular singular point. Therefore the fundamental
solution Φ1 is the following matrix function

Φ1(τ) =

(
τ−1/2 0

0 τ 1/2

)
τY

or in a more detailed form

Φ1(τ) =


τ
−1−∆

2 (−1 + ∆ + (1 + ∆)τ∆)

2∆

b11τ
−1−∆

2 (−1 + τ∆)

∆
c11τ

1−∆
2 (−1 + τ∆)

∆

τ
1−∆

2 (1 + ∆ + (−1 + ∆)τ∆)

2∆

 ,

where ∆ =
√

1 + 4b11c11. Under the non-oscillation assumption we have ∆ > 0. It is easy
to check that det Φ1(τ) = det Φ2(τ) ≡ 1, so the inverse matrix of Φ(τ) can be computed
easily.
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The Jacobi curve is given by (29) and as in the previous subsection the fundamental
matrix Φ(τ) is smooth for τ > 0, so we can exchange it with the limit. So first of all we
need to find the limit

lim
ε→0+

Φ−1(ε)L0.

As in the previous case we are going to separate two situations: when X(0) ∈ L0 and
when X(0) /∈ L0.

As before if X(0) ∈ L0 we can assume that L0 is given by (30). Then the first and
the second vector lie in its own invariant subspace. For example since Φ2(0) = id2, we
immediately get that

lim
τ→0+

Φ(τ) lim
ε→0+

Φ−1(ε)


0
y2

0
w2

 =


0
y2

0
w2

 .

Let us see what happens to the first vector. We have

Φ−1(ε)


1
0
0
0

 =


ε

1−∆
2 (1 + ∆ + (−1 + ∆)ε∆)

2∆
0

−c11ε
1−∆

2 (−1 + ε∆)

∆
0

 .

Then we find that

lim
ε→0+

Φ−1(ε)


1
0
0
0


 = lim

ε→0+

ε− 1−∆
2 Φ−1(ε)


1
0
0
0


 =


1+∆
2∆

0
c11

∆

0

 ∈ lim
ε→0+

Φ−1(ε)L0

and

lim
τ→0+

τ 1+∆
2 Φ(τ)


1+∆
2∆

0
c11

∆

0


 =


1
0
0
0

 , (35)

which means that the limit is up to a constant the vector X(0). Thus in this case L0+ = L0

and the Jacobi curve is actually continuous as expected.
We now look at the situation when X(0) /∈ L0. Then L0 can be assumed to be of

the form (31). We consider the vectors λi(ε) and their projection onto the first invariant
subspace

n1(ε) = Φ−1
1 (ε)

(
x1

1

)
, n2(ε) = Φ−1

1 (ε)

(
x2

0

)
. (36)
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We have

n1(ε) = ε−
1+∆

2

−2b11(−1 + ε∆) + ε(1 + ∆ + (−1 + ∆)ε∆)x1

2∆
−1 + ∆ + 2c11εx1 + ε∆(1− 2c11εx1 + ∆)

2∆


So it is clear that

lim
ε→0+

ε
1+∆

2 λ1(ε) =


b11

∆
0

−1 + ∆

2∆
0

 .

Then the formula (35) proves that X(0) ∈ L0+. Now we need to find an independent
from X(0) limit vector that would lie in L0+.

Writing down n2(ε) we get

n2(ε) = ε
1−∆

2

(1 + ∆ + ε∆(−1 + ∆))x2

2∆
c11(1− ε∆)x2

∆

 .

If 0 < ∆ < 1 or x2 = 0, then it is clear that

lim
ε→0+

λ2(ε) =


0
y2

0
w2

 ,

where we have used that Φ2(0) = id2. For the same reason the very same vector is going
to lie in L0+ and the result follows.

If ∆ = 1, then either b11 = 0 or c11 = 0. Since we have excluded these possibilities it
only remains to see what happens, when ∆ > 1 and x2 6= 0.

We can see that the expressions for λi(ε) are just sums of power series of ε. Therefore
it is convenient to introduce the following notation

a(ε) = b(ε) mod ε>0

which means that a(ε) and b(ε) agree modulo terms of positive degree of ε. Then L0+ =

LX(0)
0 follows from the following lemma

Lemma 9.1. Let ∆ > 1 and x2 6= 0. Then there exist constants c0, c1, ..., cl, s.t.

λ2(ε)− x2ελ1(ε)
l∑

i=0

ciε
i =


k1ε

2l+1−∆
2

y2

k2ε
2l+1−∆

2

w2

 mod ε>0,

where ki are some constants.
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Indeed, the vector on the left hand side is a linear span of λ1(ε) and λ2(ε). We can
choose l sufficiently big so that 2l + 1 − ∆ > 0. Then in the limit we obtain a vector(
0 y2 0 w2

)T
, which lies in the second invariant subspace where there is no singularity

at all.

Proof of the lemma. We denote by λ(ε) the vector on the left. It is easy to see why the
second and fourth components of λ(ε) have this form. It follows from the fact that Φ2(ε)
is an analytic matrix function with Φ2(0) = id2.

So it is enough to look on the projection of λ(ε) to the singular invariant subspace.
We can write

n1(ε) =
ε−

1+∆
2

∆

(
b11
−1+∆

2

)
+
ε

1−∆
2 x1

∆

(
1+∆

2

c11

)
mod ε>0,

n2(ε) =
ε

1−∆
2 x2

∆

(
1+∆

2

c11

)
mod ε>0.

Let us denote

α(ε) =
ε

1−∆
2

∆

(
b11
−1+∆

2

)
From here we see that

x2εn1(ε) = x2α(ε) + x1εn2(ε) mod ε>0.

We then find an expression for the projection of λ(ε):

n2(ε)− x2εn1(ε)
l∑

i=1

ciε
i =

= n2(ε)− x2α(ε)c0 +
l−1∑
i=0

(x2α(ε)ci − x1n2(ε)ci−1)− εlx1n2(ε)cl−1 mod ε>0.

So it is enough to choose ci to be s.t. they solve

n2(ε)− x2α(ε)c0 = 0 mod ε>0,

x2α(ε)ci+1 − x1n2(ε)ci = 0 mod ε>0.

The first equality is satisfied, if

c0 =
1 + ∆

2b11

, (recall that ∆ =
√

1 + 4b11c11).

But then we can obtain an expression for n2(ε) from the first equation and plug it into
the second one. We get

α(ε)x2 (ci+1 − x1c0ci) = 0.

So we simply choose recursively ci+1 = x1cic0.
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9.3 Model examples for m > 2

We now consider the same model as (32) but with singularity of order m > 2. Recall
that Bii, Cii are constants and b11, c11 are non zero. It is convenient to define m = 2 + β.
Again we have two invariant subsystems and equation (33) has the form

ṗ1 =
b11

τ 2+β
q1,

q̇1 = c11p1.

We differentiate the second equation to obtain

q̈1 −
b11c11

τ 2+β
q1 = 0.

If we introduce a new independent variable

y(τ) =
q1(τ)√
τ

and a new dependent variable

s(τ) =
2
√
b11c11

β
τ
−β
2 ,

we obtain a modified Bessel equation

s2d
2y

ds2
+ s

dy

ds
−
(
s2 +

1

β2

)
y = 0.

Two independent solutions of this equation are given by two modified Bessel functions
Iβ−1(s), Kβ−1(s) [20]. Therefore the fundamental matrix Φ1(τ) is given by

Φ1(τ) =

(
1
c11

d
dτ

√
τIβ−1(s(τ)) 1

c11

d
dτ

√
τKβ−1(s(τ))√

τIβ−1(s(τ))
√
τKβ−1(s(τ))

)
We can simplify considerably the first row using the following formulas for the derivatives
of modified Bessel functions [20]

I ′a(x) =
a

x
Ia(x) + Ia+1(x),

K ′a(x) =
a

x
Ka(x)−Ka+1(x).

After some simplifications we find that

Φ1(τ) =

(
−
√

b11

c11
τ−

1+β
2 Iβ−1+1(s(τ))

√
b11

c11
τ−

1+β
2 Kβ−1+1(s(τ))

√
τIβ−1(s(τ))

√
τKβ−1(s(τ))

)
.
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Since β > 0, as τ → 0+ we get s(τ) → +∞. Therefore we need an asymptotic
expansion of modified Bessel functions as the argument goes to +∞. They are given by

Ia(x) ∼
√

1

2πx
ex, x→ +∞,

Ka(x) ∼
√

π

2x
e−x, x→ +∞.

In particular we see that the limit does not depend on the parameter, and therefore for
any real a, b we have

Ia(x)→ +∞, Ia(x)

Ib(x)
→ 1,

Ka(x)→ 0,
Ka(x)

Kb(x)
→ 1,

as x→ +∞.
The matrix Φ1(τ) is invertible and smooth for τ > 0. From the explicit form of the

equation it follows that determinant of Φ1(τ) is constant. Using the asymptotics above
we can the find that it is actually equal to −β/(2c11). The very same asymptotics and an
argument similar to the one for m = 1, 2 implies that if X(0) ∈ L0, then L0+ = L0. So
we assume that X(0) /∈ L0 and consequently that L0 is given by (31).

If x2 = 0, then it is clear that

lim
τ→0+

Φ(τ) lim
ε→0+

Φ−1(ε)


0
y2

0
w2

 =


0
y2

0
w2

 .

So it remains to find a single independent vector in L0+ in this case. Let us slightly abuse
the notation and denote 

x1(ε)
y1(ε)
z1(ε)
w1(ε)

 = Φ−1(ε)


x1

y1

1
w1

 .

Using an explicit expression for the fundamental matrix, we find that x1(ε) is a linear
combination of the modified Bessel K-functions and z1(ε) is a linear combination of I-
functions. Due to the exponential behaviour of Ia(x) and Ka(x), we find that

lim
ε→0+

1

z1(ε)
Φ−1(ε)


x1

y1

1
w1

 =


0
0
1
0

 .
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For the same reason

lim
τ→0+

√
c11τ

1+β
2

√
b11Kβ−1+1(s(τ))

Φ(τ)


0
0
1
0

 =


1
0
0
0

 (37)

and we obtain that L0+ = LX(0)
0 .

Assume now that x2 6= 0. Then we obtain by the same argument as above

lim
ε→0+

2c11

βx2

√
εIβ−1(s(ε))

Φ−1(ε)


x2

y2

0
w2

 =


0
0
1
0

 .

Exploiting once more the formula (37), we once again find that X(0) ∈ L0+. To find an
independent vector limit let us write down explicitly the vectors n1(ε) and n2(ε) defined
in (36) of the previous subsection. We have

n1(ε) =

(
x1(ε)
z1(ε)

)
= −2c11

β

−
√
b11ε

− 1+β
2 Kβ−1+1(s(ε))
√
c11

+
√
εx1Kβ−1(s(ε))

−
√
b11ε

− 1+β
2 Iβ−1+1(s(ε))
√
c11

−
√
εx1Iβ−1(s(ε))

 ,

n2(ε) = −2c11

β

( √
εx2Kβ−1(s(ε))

−
√
εx2Iβ−1(s(ε)).

)
To find the independent limit vector above we consider

λ(ε) = λ2(ε) +

√
εx2Iβ−1(s(ε))

z1(ε)
λ1(ε).

The only component of λ1(ε) and λ2(ε) escaping to infinity are the z-components as can
be easily seen from the explicit expression of ni(ε). But the z-component of λ(ε) is equal
to zero. Moreover the coefficient in front of λ1(ε) tends to zero as ε → 0+. Thus from
the explicit expressions for x1(ε) and x2(ε) we obtain that

lim
ε→0+

λ(ε) =


0
y2

0
z2

 ,

which is a vector that does not lie in the singular invariant subspace. Thus as in the
previous sections the same vector lies in L0+ which proves the result.
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9.4 Jump for m ≥ 2

In the previous subsections we have seen, that for the autonomous models the Jacobi
curve has the right limit L0+ = LX(0)

0 . Now we are ready to prove this for a general
system (22). We use the standard Riccati comparison result from [22].

Lemma 9.2. Suppose that B(τ) and C(τ) are two symmetric continuous matrix functions
that satisfy B(τ) ≥ 0 and C(τ) ≥ 0 for almost every τ of any closed subinterval [a, b] of
a given open interval I. Then given a symmetric matrix Sa ≥ 0, any Cauchy solution of

Ṡ + SA+ ATS + SBS − C = 0, (38)

S(a) = Sa,

satisfies S(τ) ≥ 0 for all τ ∈ [a, b].

We consider now the general system (22). Let q = Sp and we write the corresponding
Riccati equation like discussed in Section 1

Ṡ +
SB(τ)S

τm
− C(τ) = 0. (39)

If the system is not oscillating, then we have existence of the Cauchy problem with the
boundary data S(t) = S on the interval (0, t] for any fixed symmetric matrix S and for t
small enough.

Assume that B1(τ) ≤ B(τ) ≤ B2(τ) ≤ 0 and C1(τ) ≥ C(τ) ≥ C2(τ) for small
τ ∈ [0, t]. We assume that Bi and Ci are diagonal matrices like in our models from the
previous subsection satisfying the non-oscillation conditions. Then we can define Sεi to
be solutions of the Cauchy problem

Ṡ +
SBi(τ)S

τm
− Ci(τ) = 0, S(ε) = SL0 ,

where SL0 is a symmetric matrix that corresponds to L0 assuming of course that L0 is
transversal to the horizontal plane q = 0. Let Sε(τ) be a solution of (39) with S(ε) = SL0 .

Let us assume, for example W ε(τ) = Sε1(τ)−Sε2(τ). Then we have that W ε(τ) satisfies

Ẇ ε+W εB1(τ)

τm
Sε2+Sε2

B1(τ)

τm
W ε+W εB1(τ)

τm
W ε+

Sε2(B1(τ)−B2(τ))Sε2
τm

−(C1(τ)−C2(τ)) = 0

with Wε(ε) = 0. But then by the Lemma 9.2 we obtain that

W ε(τ) ≥ 0 ⇐⇒ Sε1(τ) ≥ Sε2(τ),

for any τ ≥ ε as long as Sε2(τ) is defined.
By replacing B1(τ) with B(τ) and then B2(τ) with B(τ), we similarly obtain that

Sε2(τ) ≤ Sε(τ) ≤ Sε1(τ),
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for any τ ≥ ε sufficiently close to ε and ε > 0 small. By fixing τ sufficiently small and
taking limits as ε→ 0+ we find that

S1(τ) ≤ S(τ) ≤ S2(τ),

where these matrix functions are the corresponding Jacobi curves. But we have proven in
the previous subsections that for our model examples we had the same right limit. Thus
S1(0+) = S2(0+) and

S(0+) = S1(0+) = S2(0+).

If L0 or LX(0)
0 are not transversal to the horizontal space Σ, then this construction

clearly does not work, because either Sε(ε) or S(0+) do not exist. In this case we make
a change of variables of the form

(
p
q

)
7→M

(
p
q

)
, M =


α1 0 β1 0
0 α2 0 β2

γ1 0 δ1 0
0 γ2 0 δ2

 ,

s.t. ∣∣∣∣αi βi
γi δi

∣∣∣∣ = 1

Matrix M is clearly symplectic and we want to choose it in such a way that ML0 and
MLX(0)

0 are transversal to the horizontal subspace Σ. Such matrices M are actually dense
in the set of all matrices of the given form. We can prove this by an explicit computation.

If dim(L0 ∩Σ) > 0, then following along the lines of Example 1.1 we can assume that

L0 =


x 0
0 0
z 0
0 1


Then dim(ML0 ∩ Σ) = 0 is equivalent to

α1x+ β1z 6= 0, β2 6= 0.

Similarly from examples 1.1 and 1.2 we know that if dim(LX(0)
0 ∩ Σ) > 0, then

LX(0)
0 =


1 0
0 0
0 0
0 1


Then dim(MLX(0)

0 ∩ Σ) = 0 can be achieved by already taking β2 6= 0.
In the new coordinates our Jacobi equation takes the form

d

dτ

(
p
q

)
= M

(
0 B(τ)

τm

C(τ) 0

)
M−1

(
p
q

)
.
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An explicit computation gives us

M

(
0 B(τ)

τm

C(τ) 0

)
M−1 =

=


c11β1δ1 −

(
1
b

+ b11

)
γ1α1 −b12γ2α1 −c11β

2
1 +

(
1
b

+ b11

)
α2

1 b12α1α2

−b12γ1α2 c22δ2β2 − b22γ2α2 b12α1α2 −c22β
2
2 + b22α

2
2

c11δ
2
1 −

(
1
b

+ b11

)
γ2

1 −b12γ1γ2 −c11δ1β1 +
(

1
b

+ b11

)
γ1α1 b12γ1α2

−b12γ1γ2 c22δ
2
2 − b22γ

2
2 b12γ2α1 −c22δ2β2 + b22α2γ2


Recall that our original system was such that b < 0 and b22 < 0 for τ ≥ 0 small. Thus
the upper of diagonal 2x2 block will be a negative matrix function for small τ > 0, if
we choose α2 big enough. For the same reason the lower of diagonal 2x2 block will be
negative if we choose γ2 big enough. Thus we can apply the comparison lemma as before
with

B1(τ) =

(
α2

1

b(τ)
+ ε 0

0 b22(0)α2
2 − c22(0)β2

2 + ε

)
,

B2(τ) =

(
α2

1

b(τ)
+ ε 0

0 b22(0)α2
2 − c22(0)β2

2 + ε

)
,

C1(τ) =

(
− γ2

1

b(τ)
− ε 0

0 −b22(0)γ2
2 + c22(0)δ2

2 − ε

)
,

C2(τ) =

(
− γ2

1

b(τ)
+ ε 0

0 −b22(0)γ2
2 + c22(0)δ2

2 + ε

)

where ε > 0 is sufficiently small.

9.5 Jacobi curve for m = 1, 2

As we have already discussed before, the jump alone does not determine the Jacobi curve,
because with a singular Jacobi DE we lose uniqueness. So we need to characterize the
right solution of the Jacobi equation. In this section we prove the following result.

Theorem 9.1. If m = 1 or m = 2 then Jacobi curve after a singularity can be charac-
terized as a boundary value problem of the extended Jacobi DE on the Lagrangian Grass-
manian with conditions on the left end-point and the first left derivative.

This will be proven in a number of steps:

1. We change coordinates so that L0 and L0+ lie in the same coordinate chart and L0+

is taken to be zero;

2. We write down the corresponding Riccati equation and perform a certain blow-up
procedure;
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3. After the blow-up we obtain a non-autonomous Riccati equation. We then proceed
in determining the Jacobi curve for the autonomous part;

4. Using a deformation argument we prove that in the non-autonomous case the Jacobi
curve is well-defined by the same jet.

For the first step we are going to have three different situations as well

1. L0 is transversal to the horizontal plane in current coordinates and in the corre-
sponding symmetric matrix S0 either S0

11 6= 0 or S0
11 = S0

12 = 0;

2. L0 is either transversal to the horizontal plane in current coordinates and in the
corresponding symmetric matrix S0

11 = 0, S0
22 6= 0 or L0 and the horizontal plane Σ

have a common line;

3. L0 is either transversal to the horizontal plane in current coordinates and in the
corresponding symmetric matrix S0

11 = S0
22 = 0, S0

12 6= 0 or L0 is the horizontal
plane Σ.

Let

S+
22 =

{
S0

22, S0
11 = 0

S0
22 −

(S0
12)2

S0
11
, S0

11 6= 0

Then depending on the case we apply one of the three symplectic transformations

M1 =


1 0 0 0
0 1 0 0
0 0 1 0
0 −S+

22 0 1

 , M2 =


1 0 0 0
0 0 0 −1
0 0 1 0
0 1 0 0

 , M3 =


1 0 −1 0
0 0 0 −1
0 0 1 0
0 1 0 0

 .

After applying those transformation L0+ will become the vertical subspace. Let us check
what happens to L0 under these transforms. We have for case 1 either

M1


1 0
0 1
S0

11 S0
12

S0
12 S0

22

 =


1 0
0 1
S0

11 S0
12

S0
12

(S0
12)2

S0
11

 or M1


1 0
0 1
0 0
0 S0

22

 =


1 0
0 1
0 0
0 0

 .
For case 2 either

M2


1 0
0 1
0 S0

12

S0
12 S0

22

 =


1 0
−S0

12 −S0
22

0 S0
12

0 1

 =


1 0
0 1

− (S0
12)2

S0
22

− (S0
12)

S0
22

− (S0
12)

S0
22

− 1
S0

22


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or

M2


1 0
0 0
z 0
0 1

 =


1 0
0 −1
z 0
0 0

 =


1 0
0 1
z 0
0 0

 .
For the case 3 either

M3


1 0
0 1
0 S0

12

S0
12 0

 =


1 −S0

12

−S0
12 0

0 S0
12

0 1

 =


1 0
0 1
−1 − 1

S0
12

− 1
S0

12
− 1

(S0
12)2


or

M3


0 0
0 0
−1 0
0 −1

 =


1 0
0 1
−1 0
0 0

 .
And this finishes the first step.

For the second step we have to rewrite the Jacobi equation in the new coordinates.
We simply have to conjugate the right-hand side of (22) by the corresponding matrix Mi.
Then to each case corresponds its own Jacobi equation of the form

d

dτ

(
p
q

)
= Mi

(
A(τ) B(τ)
C(τ) −AT (τ)

)
M−1

i

(
p
q

)
or more precisely

Case 1 :
d

dτ


p1

p2

q1

q2

 =


0 b12(τ)S+

22
1
b(τ)

+ b11(τ) b12(τ)

0 b22(τ)S+
22 b12(τ) b22(τ)

c11(τ) 0 0 0
0 c22(τ)− b22(τ)(S+

22)2 −b12(τ)S+
22 −b22(τ)S+

22



p1

p2

q1

q2

 ,

Case 2 :
d

dτ


p1

p2

q1

q2

 =


0 −b12(τ) 1

b(τ)
+ b11(τ) 0

0 0 0 −c22(τ)
c11(τ) 0 0 0

0 −b22(τ) b12(τ) 0



p1

p2

q1

q2

 ,

Case 3 :
d

dτ


p1

p2

q1

q2

 =


−c11(τ) −b12(τ) 1

b(τ)
+ b11(τ)− c11(τ) 0

0 0 0 −c22(τ)
c11(τ) 0 c11(τ) 0

0 −b22(τ) b12(τ) 0



p1

p2

q1

q2

 .

We then take q = Sp and obtain a Riccati equation of the form (3). We do a blow-up
of this equation by taking

S(τ) = τS1(τ).
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Then we obtain a Riccati equation for S1(τ). Let S̃0 be the symmetric matrix that
corresponds to L0 in the new coordinates. We denote by Sε1(τ) the solution of this Riccati
equation with

Sε1(ε) =
S̃0

ε
.

Since outside the singularity the right-hand side is analytic and we have a family of
solutions converging to a solution, it is clear that

Ṡ(τ) = lim
ε→0+

Sε1(τ).

Since in the new coordinates S(0+) = 0, we find that the discussed previously Riccati
equation has the form

τ Ṡ1 + S1 + S1

(
1
b2

0

0 0

)
S1 − C(0) = τR(τ, S) (40)

for m = 2 and
τ Ṡ1 + S1 − C(0) = τR(τ, S) (41)

for m = 1. That finishes the proof of the second step.
For the third step we are going to consider just the first case. For the second and

the third case the argument is repeated word by word. We assume that the right-hand
side of those equations is actually zero. Then we can understand very well the whole
phase portrait of this Riccati equation. Indeed, we can extend the dynamics to the whole
Lagrangian Grassmanian L(2) by rewriting the corresponding Hamiltonian system.

τ
d

dτ


p1

p2

q1

q2

 =


1
2

0 1
b2

0

0 1
2

0 0
c11(0) 0 −1

2
0

0 c22(0)− (S+
22)2b22(0) 0 −1

2



p1

p2

q1

q2

 = H


p1

p2

q1

q2


A complete description of the phase portrait of such a system was given in [24]. It

is clear that the equilibrium points are spanned by the eigenvectors. In our case, H has
eigenvalues

λ1 = −1

2

√
1 +

4c11(0)

b2

, λ2 = −1

2
, λ3 =

1

2
, λ4 =

1

2

√
1 +

4c11(0)

b2

.

From the assumptions we have that all four eigenvalues are real and different. Let Ei be
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the corresponding eigenvectors. We have

E1 =


1−

√
1 + 4c11(0)

b2

0
2c11(0)

0

 , E2 =


0
0
0
1

 ,

E3 =


0
1
0

c22(0)− b22(0)(S+
22)2

 , E4 =


1 +

√
1 + 4c11(0)

b2

0
2c11(0)

0

 .

We define Eij = span{Ei, Ej}. It is easy to see that we have four equilibrium points on
the Lagrangian Grassmanian: E12, E13, E24, E34. For each of these equilibrium points we
can find the corresponding stable and unstable manifolds W s(Eij) and W u(Eij). Then
if Sε1(ε) lies in W s(Eij), the Jacobi curve is going to be just the equilibrium solution
Lτ = Eij. Indeed, the Lagrangian Grassmanian is compact and therefore any trajectory
in the stable manifold has finite length. But every trajectory of our Riccati equation has
speed that goes to infinity as τ → 0+. So as we take ε smaller and smaller for a fixed time
τ > 0 the corresponding curve Sε(τ) is going to get closer and closer to the equilibrium
point approaching it in the limit. It remains only to describe stable manifolds of our
equilibrium points.

Luckily it was already done in [24] by M. Shayman. He proved that in order to find
the stable manifolds we need to form a flag {0} = V0 ⊂ V1 ⊂ ... ⊂ V4 = R4, where

Vi =
i⊕

j=1

Ej,

and associate to each Eij a sequence l(Eij) = (l1, l2, l3, l4), where

lk =

{
1 if k = i, j;

0 otherwise.
.

Then

W s(Eij) =

{
Λ ∈ L(2) : dim Λ ∩ Vm =

m∑
k=1

lk, lk ∈ l(Eij),m = 1, 2, 3, 4.

}
.

It remains to check for which initial data Sε1(ε) lies in which W s(Eij) for small ε > 0
and describe the corresponding W s(Eij).

Lemma 9.3. Suppose that the right hand side of (40) is zero. Then the curves Λε
1(τ)

that correspond to Sε1(τ) converge pointwise to the equilibrium solution Λ(τ) ≡ E34. Or
in local coordinates we get that

lim
ε→0+

Sε1(τ) =

(
− b2

2

(
1−

√
1 + 4c11

b2

)
0

0 c22(0)− b22(0)(S+
22)2

)
= S34

1 .
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If R(τ, S) = 0 in (40), then exists a unique solution of this equation with S1(0+) = S34
1 .

Proof. By definition we find that

W s(E34) = {Λ ∈ L(2) : dim(Λ ∩ E12) = 0} = Et
12,

which is dense in L(2). So we only need to prove that Λε(ε) ∈ Et
12 for ε > 0 small. Indeed,

in this case the unstable manifold W u(E34) = {E34} and so the only solution of (40) with
S1(0+) = S34

1 can be S1(τ) ≡ S34
1 .

We note that if S0
11 = S0

12 = 0, then Sε1(ε) = 0. In this case for small ε > 0 it is clear
that dim(Λε(ε)∩E12) = 0. If Sε1(ε) 6= 0 for small ε > 0, then dim(Λε(ε)∩E12) > 0 if and
only if

S+
12 = 0 and

S+
11

ε
= −b2

2

(
1 +

√
1 +

4c11

b2

)
,

but this can happen only for a single value

ε = − 2S+
11

b2

(
1 +

√
1 + 4c11

b2

) .
And so for small ε > 0 we indeed get Λε(ε) ∈ Et

12.

Case m = 1 is easier, since the principal part of the equation (41) is linear and has a
global stable equilibrium

S =

(
c11(0) 0

0 c22(0)− b22(0)(S+
22)2

)
.

As for m = 2, we have then S1(0+) = S and a unique solution to a Cauchy problem, that
characterizes our Jacobi curve.

For the case 2 and 3 we have a similar result. We obtain that

lim
ε→0+

Sε1(τ) =

(
− b2

2

(
1−

√
1 + 4c11

b2

)
0

0 −b22(0)

)
= S34

1

for m = 2 and

lim
ε→0+

Sε1(τ) =

(
c11(0) 0

0 −b22(0)

)
for m = 1 and that in this case indeed the Jacobi curve is fully determined by the first jet.
We keep the notation S34

1 because in the case 2 and 3 we obtain a Hamiltonian system
whose matrix has exactly the same eigenvalues as the Hamiltonian matrix of case 1 and
the same eigenvectors except E3 that must replaced by

E3 =


0
1
0

−b22(0)


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It remains now to do the last step and to show the general case. Let us assume

S1 =

(
S11 S12

S12 S22

)
and rewrite (40) or (41) as a system on R× L(2). Namely we have

Ṡ = Q(S) + τR(τ, S),

τ̇ = τ ;

where Q(S) is the autonomous Riccati part. It is clear that (S34
1 , 0) is an equilibrium

point of this system. Moreover, by linearising the right hand side at (S34
1 , 0) we obtain

that it is a hyperbolic equilibrium point, since the linearized operator has eigenvalues{
−
√

1 +
4c11

b2

,−1

2
− 1

2

√
1 +

4c11

b2

,−1, 1

}
,

the same as for the autonomous system in all three cases. So by Grobman-Hartman
theorem both systems are topologically conjugate in the neighbourhood of this equilibrium
point. Since both of them have a single unstable direction it means that there exists a
unique trajectory of the non-autonomous system that approaches (S34

1 , 0) as τ → 0+. We
claim that this trajectory must be a lift of the Jacobi curve to the extended phase-space.
This result does not follow directly from the Grobman-Hartman theorem since Sε(ε) is
far from the equilibrium and a priori we have no information about the behaviour orbits
close to infinity.

The result follows from an application of the variation formulae proved in [9] that can
be stated as follows. Given a non-autonomous vector field Zs we denote by Ft[Z·] a flow
from time 0 to time t of the corresponding vector field. If X, Y is a pair of autonomous
vector fields, the variation formulae reads as

Ft[X + Y ] = Ft[(F.−t[X])∗Y ] ◦ Ft[X].

where Fs−t[X]∗Y is just the push-forward of Y under Fs−t[X].
In our case

X =

(
Q(S)
τ

)
, Y =

(
τR(τ, S)

0

)
.

Due to smoothness of each flow the lift of the Jacobi curve will be then given by the limit
curve

lim
ε→0+

Fτ−ε[X + Y ]

(
Sε1(ε)
ε

)
= lim

ε→0+

(
Fτ−ε(F.−τ+ε[X])∗Y ] ◦ Fτ−ε[X]

(
Sε1(ε)
ε

))
=

= lim
ε→0+

(Fτ−ε(F.−τ+ε[X])∗Y ]) ◦ lim
ε→0+

(
Fτ−ε[X]

(
Sε1(ε)
ε

))
= Fτ (F.−τ [X])∗Y ] ◦ lim

ε→0+

(
Fτ−ε[X]

(
Sε1(ε)
ε

))
But the second limit corresponds to the lift of the Jacobi curve in autonomous case. Thus
if we take a limit of this expression as τ → 0+ we would obtain(

S34
1

0

)
,

like in the autonomous case. Which proves Theorem 9.1.
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