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Abstract

The relative heat content associated with a subset Ω ⊂ M of a sub-Riemannian
manifold, is defined as the total amount of heat contained in Ω at time t, with
uniform initial condition on Ω, allowing the heat to flow outside the domain. In
this work, we obtain a fourth-order asymptotic expansion in square root of t of the
relative heat content associated with relatively compact non-characteristic domains.
Compared to the classical heat content that we studied in [RR21], several difficulties
emerge due to the absence of Dirichlet conditions at the boundary of the domain.
To overcome this lack of information, we combine a rough asymptotics for the
temperature function at the boundary, coupled with stochastic completeness of
the heat semi-group. Our technique applies to any (possibly rank-varying) sub-
Riemannian manifold that is globally doubling and satisfies a global weak Poincaré
inequality, including in particular sub-Riemannian structures on compact manifolds
and Carnot groups.
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1 Introduction

In this paper we study the asymptotics of the relative heat content in sub-Riemannian
geometry. The latter is a vast generalization of Riemannian geometry, indeed a sub-
Riemannian manifold M is a smooth manifold where a metric is defined only on a subset
of preferred directions Dx ⊂ TxM at each point x ∈ M (called horizontal directions).
For example, D can be a sub-bundle of the tangent bundle, but we will consider the most
general case of rank-varying distributions. Moreover, we assume that D satisfies the so-
called Hörmander condition, which ensures that M is horizontally-path connected, and
that the usual length-minimization procedure yields a well-defined metric.

Let M be a sub-Riemannian manifold, equipped with a smooth measure ω, let
Ω ⊂ M be an open relatively compact subset of M , with smooth boundary, and consider
the Cauchy problem for the heat equation in this setting:

(∂t − ∆)u(t, x) = 0, ∀(t, x) ∈ (0,∞) ×M,

u(0, ·) = 1Ω, in L2(M,ω),
(1)

where 1Ω is the indicator function of the set Ω, and ∆ is the sub-Laplacian, defined
with respect to ω. By classical spectral theory, there exists a unique solution to (1),

u(t, x) = et∆
1Ω(x), ∀x ∈ M, t > 0,

where et∆ denotes the heat semi-group in L2(M,ω), associated with ∆. The relative
heat content is the function

HΩ(t) =

∫

Ω
u(t, x)dω(x), ∀ t > 0.

This quantity has been studied in connection with geometric properties of subsets
of Rn, starting from the seminal work of De Giorgi [DG54], where he introduced the
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notion of perimeter of a set in Rn and proved a characterization of sets of finite perimeter
in terms of the heat kernel. His result was subsequently refined, using techniques of
functions of bounded variation: it was proven in [Led94] for balls in Rn, and in [MPPP07]
for general subsets of Rn, that a borel set Ω ⊂ Rn with finite Lebesgue measure has
finite perimeter à la De Giorgi if and only if

∃ lim
t→0

√
π√
t

(|Ω| −HΩ(t)
)

= P (Ω), (2)

where | · | is the Lebesgue measure and P is the perimeter measure in Rn. Notice that
(2) is equivalent to a first-order1 asymptotic expansion of HΩ(t). A further development
in this direction was then obtained in [AMM13], where the authors extended (2) to an
asymptotic expansion of order 3 in

√
t, assuming the boundary of Ω ⊂ Rn to be a C1,1

set. For simplicity, we state here the result of [AMM13, Thm. 1.1] assuming ∂Ω is
smooth2:

HΩ(t) = |Ω| − 1√
π
P (Ω)t1/2

+
(n− 1)2

12
√
π

∫

∂Ω

(
H2

∂Ω(x) +
2

(n− 1)2
c∂Ω(x)

)
dHn−1(x)t3/2 + o(t3/2), (3)

as t → 0, where Hn−1 is the Hausdorff measure and, denoting by k∂Ω
i (x) the principal

curvatures of ∂Ω at the point x,

H∂Ω(x) =
1

n− 1

n−1∑

i=1

k∂Ω
i (x), c∂Ω(x) =

n−1∑

i=1

k∂Ω
i (x)2,

In the Riemannian setting, Van den Berg and Gilkey in [vdBG15] proved the exis-
tence of a complete asympotic expansion for HΩ(t), generalizing (3), when ∂Ω is smooth.
Moreover, they were able to compute explicitly the coefficients of the expansion up to
order 4 in

√
t. Their techniques are based on pseudo-differential calculus, and cannot

be immediately adapted to the sub-Riemannian setting. In particular, what is missing
is a global parametrix estimate for the heat kernel pt(x, y), cf. [vdBG15, Sec. 2.3]: for
any k ∈ N, there exist Jk, Ck > 0 such that

∥∥∥∥pt(x, y) −
Jk∑

j=0

pj
t(x, y)

∥∥∥∥
Ck(M×M)

≤ Ckt
k, as t → 0, (4)

where pj
t(x, y) are suitable smooth functions, given explicitly in terms of the Euclidean

heat kernel and iterated convolutions. The closest estimate analogue to (4) in the sub-
Riemannian setting is the one proved recently in [CdVHT20, Thm. A] (see Theorem
2.9 for the precise statement), where the authors show an asymptotic expansion of
the heat kernel in an asymptotic neighborhood of the diagonal, which is not enough to
reproduce (4) and thus the argument of Van den Berg and Gilkey. Moreover, in this

1Here and throughout the paper, the notion of order is computed with respect to
√
t.

2The statement of Theorem 1.1 in [AMM13] differs from (3) by a sign in the third-order coefficient:
the correct sign appears a few lines below the statement, in the expansion of the function Kt(E,E

c).
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case, pj
t(x, y) is expressed in terms of the heat kernel of the nilpotent approximation and

iterated convolutions, thus posing technical difficulties for the explicit computations of
the coefficients (which would be no longer “simple” gaussian-type integrals).

In this paper, under the assumption of not having characteristic points, we prove
the existence of the asymptotic expansion of HΩ(t), up to order 4 in

√
t, as t → 0. We

remark that we include also the rank-varying case. In order to state our main results,
let us introduce the following operator, acting on C∞(M),

Nφ = 2g(∇φ,∇δ) + φ∆δ, ∀φ ∈ C∞(M),

where δ : M → R denotes the sub-Riemannian signed distance function from ∂Ω, see
Section 4 for precise definitions.

Theorem 1.1. Let M be a compact sub-Riemannian manifold, equipped with a smooth
measure ω, and let Ω ⊂ M be an open subset whose boundary is smooth and has no
characteristic points. Then, as t → 0,

HΩ(t) = ω(Ω) − 1√
π
σ(∂Ω)t1/2 − 1

12
√
π

∫

∂Ω

(
N(∆δ) − 2(∆δ)2

)
dσt3/2 + o(t2), (5)

where σ denotes the sub-Riemannian perimeter measure.

Remark 1.2. The compactness assumption in Theorem 1.1 is technical and can be re-
laxed by requiring, instead, global doubling of the measure and a global Poincaré in-
equality, see section 7 and in particular Theorem 7.3. Some notable examples satisfying
these assumptions are:

• M is a Lie group with polynomial volume growth, the distribution is generated
by a family of left-invariant vector fields satisfying the Hörmander condition and
ω is the Haar measure. This family includes also Carnot groups.

• M = Rn, equipped with a sub-Riemannian structure induced by a family of vector
fields {Y1, . . . , YN} with bounded coefficients together with their derivatives, and
satisfying the Hörmander condition.

• M is a complete Riemannian manifold, equipped with the Riemannian measure,
and with non-negative Ricci curvature.

See Section 7.1 for further details. In all these examples, Theorem 1.1 holds.

The strategy of the proof of Theorem 1.1 follows a similar strategy of [RR21], inspired
by the method introduced in [Sav98], used for the classical heat content (6). However,
as we are going to explain in Section 1.1, new technical difficulties arise, the main one
being related to the fact that now u(t, ·)|∂Ω 6= 0. At order zero, we obtain the following
result, see Section 2 for precise definitions.

Theorem 1.3. Let M be a sub-Riemannian manifold, equipped with a smooth measure
ω and let Ω ⊂ M be an open relatively compact subset, whose boundary is smooth and
has no characteristic points. Let x ∈ ∂Ω and consider a chart of privileged coordinates
ψ : U → V ⊂ Rn centered at x, such that ψ(U ∩ Ω) = V ∩ {z1 > 0}. Then,

lim
t→0

u(t, x) =

∫

{z1>0}
p̂x

1(0, z)dω̂x(z) =
1

2
, ∀x ∈ ∂Ω,
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where ω̂x denotes the nilpotentization of ω at x and p̂x
t denotes the heat kernel associated

with the nilpotent approximation of M at x and measure ω̂x.

This result can be seen as a partial generalization of [CCSGM13, Prop. 3], where
the authors proved an asymptotic expansion of u(t, x) up to order 1 in

√
t for x ∈ ∂Ω,

for a special class of non-characteristic domains in Carnot groups.

Remark 1.4. Our proof of Theorem 1.3 does not yield an asymptotic series for u(t, ·)|∂Ω

at order higher than 0. Indeed a complete asymptotic series of this quantity seems
difficult to achieve, cf. Section 6.

1.1 Strategy of the proof of Theorem 1.1

To better understand the new technical difficulties in the study of the relative heat
content HΩ(t), let us compare it with the classical heat content QΩ(t) and illustrate the
strategy of the proof of Theorem 1.1.

The classical heat content. We highlight the differences between the relative heat
content HΩ(t) and the classical one QΩ(t): let Ω ⊂ M an open set in M , then for all
t > 0, we have

HΩ(t) =

∫

Ω
u(t, x)dω(x), QΩ(t) =

∫

Ω
u0(t, x)dω(x), (6)

where u(t, x) is the solution to (1) and u0(t, x) is the solution to the Dirichlet problem
for the heat equation, associated with Ω, i.e.

(∂t − ∆)u0(t, x) = 0, ∀(t, x) ∈ (0,∞) × Ω,

u0(t, x) = 0, ∀(t, x) ∈ (0,∞) × ∂Ω,

u0(0, x) = 1, ∀x ∈ Ω,

(7)

The crucial difference is that u0(t, ·)|∂Ω = 0, for any t > 0, whereas u(t, ·)|∂Ω 6= 0 in
general. Thus, there is no a priori relation between HΩ(t) and QΩ(t): the only relevant
information is given by domain monotonicity, which implies that:

QΩ(t) ≤ HΩ(t), ∀ t > 0,

and clearly this does not give the asymptotics of the latter. See also [vdB13] for other
comparison results in the Euclidean setting.

Failure of Duhamel’s principle. In [RR21], we established a complete asymptotic
expansion of QΩ(t), as t → 0, provided that ∂Ω has no characteristic points. The proof
of this result relied on an iterated application of the Duhamel’s principle and the fact
that u0(t, x)|∂Ω = 0. Following the same strategy, we apply Duhamel’s principle to a
localized version of HΩ(t): fix a function φ ∈ C∞

c (M), compactly supported in a tubular
neighborhood around ∂Ω and such that 0 ≤ φ ≤ 1 and φ is identically 1, close to ∂Ω.
Then, using off-diagonal estimates for the heat kernel, one can prove that:

ω(Ω) −HΩ(t) = Iφ(t, 0) +O(t∞), as t → 0, (8)
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where Iφ(t, r) is defined for t > 0 and r ≥ 0 as

Iφ(t, r) =

∫

Ωr

(1 − u(t, x))φ(x)dω(x), (9)

here Ωr = {x ∈ Ω | δ(x) > r}, with δ : Ω → R denoting the distance function from
the boundary. Hence, the small-time behavior of HΩ(t) is captured by Iφ(t, 0). By
Duhamel’s principle and the sub-Riemannian mean value lemma, cf. Section 4 for details,
we obtain the following:

Iφ(t, 0) =
1√
π

∫ t

0

∫

∂Ω
(1 − u(τ, y)) φ(y)dσ(y)(t − τ)−1/2dτ +O(t), as t → 0. (10)

For the classical heat content, u0 satisfies Dirichlet boundary condition, cf. (7), hence
(10) would give the first-order asymptotics (and then one could iterate). On the con-
trary, in this case, we do not have prior knowledge of u(t, y) as y ∈ ∂Ω and t → 0.
Thus, already for the first-order asymptotics, Duhamel’s principle alone is not enough,
and we need some information on the asymptotic behavior of u(t, ·)|∂Ω.

First-order asymptotics. We study the asymptotics of u(t, ·)|∂Ω. Using the notion
of nilpotent approximation of a sub-Riemannian manifold, cf. Section 2.3, we deduce
the zero-order asymptotic expansion of u(t, ·)|∂Ω as t → 0, proving Theorem 1.3. This
is enough to infer the first-order expansion of HΩ(t), by means of (10). At this point,
we iterate the Duhamel’s principle to obtain the higher-order terms of the expansion of
HΩ(t). However, already at the first iteration, we obtain the following formula for Iφ:

Iφ(t, 0) =
1√
π

∫ t

0

∫

∂Ω
(1 − u(τ, ·))φdσ(t − τ)−1/2dτ

+
1

2π

∫ t

0

∫ τ

0

∫

∂Ω
(1 − u(τ̂ , ·))Nφdσ((τ − τ̂)(t − τ))−1/2dτ̂dτ +O(t3/2), (11)

as t → 0. Therefore, the zero-order asymptotic expansion of u(t, ·)|∂Ω no longer suffices
for obtaining the second-order asymptotics of HΩ(t).

The outside contribution Icφ. We mentioned that the crucial difference between
HΩ(t) and QΩ(t), defined in (6), is related to the fact that u(t, ·)|∂Ω 6= 0, whereas
u0(t, ·)|∂Ω = 0, for any t > 0. From a physical viewpoint, this distinction comes from
the fact that, since the boundary ∂Ω is no longer insulated, the heat governed by the
Cauchy problem u(t, x), solution to (1), can flow also outside of Ω, whereas u0(t, x),
solution to the Dirichlet problem (7), is confined in Ω, and the external temperature
is 0. Hence, we can imagine that the asymptotic expansion of HΩ(t) is affected by the
boundary, both from the inside and from the outside of Ω.

Interpreting Iφ as the inside contribution to the asymptotics of HΩ, we are going to
formalize the physical intuition of having heat flowing outside of Ω, defining an outside
contribution, Icφ to the asymptotics3. The starting observation is the following simple

3The notation “superscript c” stands for complement. Indeed the outside contribution is the inside
contribution of the complement of Ω, see Section 5.1.
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relation: setting

KΩ(t) =

∫

M\Ω
u(t, x)dω(x), ∀ t > 0,

we have, by divergence theorem,

HΩ(t) +KΩ(t) = ω(Ω), ∀ t > 0. (12)

Similarly to (9), for a suitable smooth function φ, one may define a localized version of
KΩ(t), which we call Icφ(t, r), so that

KΩ(t) = Icφ(t, 0) +O(t∞), as t → 0, (13)

see Section 5.1 for precise definitions. Using (8), (12) and (13), we show the following
relation:

Iφ(t, 0) − Icφ(t, 0) = O(t∞), as t → 0,

for a suitable smooth function φ. On the other hand, for the localized quantity Iφ(t, 0)−
Icφ(t, 0) we have a Duhamel’s principle, thanks to which we are able to study the
asymptotic expansion, up to order 3, of the integral of u(t, x) over ∂Ω, cf. Theorem
5.4. The limitation to the order 3 of the asymptotics is technical and seems difficult to
overcome, cf. Remark 5.5. Inserting this asymptotics in (11), we obtain the asymptotics
up to order 3 of the expansion of HΩ(t), as t → 0.

Fourth-order asymptotics. Since we have at disposal only the asymptotics of the
integral of u(t, x) over ∂Ω, up to order 3, we need a finer argument to obtain the fourth-
order asymptotics of HΩ(t). The simple but compelling relation is based once again on
(8), (12) and (13), thanks to which we can write:

ω(Ω) −HΩ(t) =
1

2
(Iφ(t, 0) + Icφ(t, 0)) +O(t∞), as t → 0.

Now for the sum of the contributions Iφ(t, 0)+Icφ(t, 0), the Duhamel’s principle implies
the following:

Iφ(t, 0) + Icφ(t, 0) =
2√
π
σ(∂Ω)t1/2

+
1

2π

∫ t

0

∫ τ

0

∫

∂Ω
(1 − 2u(τ̂ , x)Nφ(y)dσ(y) ((τ − τ̂)(t − τ))−1/2 dτ̂dτ + o(t).

This time notice how the integral of u(t, x) over ∂Ω appears in a first-order term (as
opposed to what happened in (10) or (11)), thus its asymptotic expansion up to order
3 implies a fourth-order expansion for HΩ(t), concluding the proof of Theorem 1.1.

1.2 From the heat kernel asymptotics to the relative heat content

asymptotics

In [CdVHT20, Thm. A], the authors proved the existence of small-time asymptotics of
the hypoelliptic heat kernel, pt(x, y), see Theorem 2.9 below for the precise statement.

7



In Theorem 1.3 we are able to exploit this result to obtain the zero-order asymptotics
of the function

u(t, x) = et∆
1Ω(x) =

∫

Ω
pt(x, y)dω(y), ∀ t > 0, x ∈ ∂Ω.

However, we are not able to extend Theorem 1.3 to higher-order asymptotics since,
roughly speaking, the remainder terms in Theorem 2.9 are not uniform as t → 0. If
we had a better control on the remainders, we could indeed integrate (in a suitable
way) the small-time heat kernel asymptotics to obtain the corresponding expansion for
u(t, x). Finally, from such an expansion, the relative heat content asymptotics would
follow from the localization principle (8) and the (iterated) Duhamel’s principle (10).
This is done in Section 6.

1.3 Characteristic points

In order to prove our main results, we need the non-characteristic assumption on the
domain Ω. We recall that for a subset Ω ⊂ M with smooth boundary, x ∈ ∂Ω is a
characteristic point if Dx ⊂ Tx(∂Ω). As was the case for the classical heat content,
cf. [RR21], the non-characteristic assumption is crucial to follow our strategy, since it
guarantees the smoothness of the signed distance function close to ∂Ω, cf. Theorem 4.1.
Nevertheless, one might ask whether Theorem 1.1 holds for domains with characteristic
points, at least formally.

On the one hand, the coefficients, up to order 2, are well-defined even in presence
of characteristic points, cf. [Bal03]. While, for what concerns the integrand of the
third-order coefficient, its integrability, with respect to the sub-Riemannian induced
measure σ, is related to integrability of the sub-Riemannian mean curvature H, with
respect to the Riemannian induced measure. The latter is a non-trivial property, which
has been studied in [DGN12], and holds in the Heisenberg group, for surfaces with
mildly-degenerate characteristic points in the sense of [Ros21b].

On the other hand, differently from what happens in the case of the Dirichlet prob-
lem, the heat kernel pt(x, y) associated with (1) is smooth at the boundary of Ω, for
positive times, even in presence of characteristic points. Thus, in principle, there is no
obstacle in obtaining an asymptotic expansion of HΩ(t) also in that case. Moreover, in
Carnot groups of step 2, a similar result to (2) holds, cf. [BMP12, GT20]. In particular,
the characterization of sets of finite horizontal perimeter in Carnot groups of step 2
is independent of the presence of characteristic points, indicating that an asymptotic
expansion such as (5) may still hold, dropping the non-characteristic assumption.

1.4 Notation

Throughout the article, for a set U ⊂ M , we will use the notation C∞
c (U), even in the

compact case, so that all the statements need not be modified in the non-compact case,
when the generalization is possible, cf. Theorem 7.3. Moreover, in the non-compact and
complete case, the set Ω ⊂ M is assumed to be open and bounded.

Acknowledgments. This work was supported by the Grant ANR-18-CE40-0012 of
the ANR, by the Project VINCI 2019 ref. c2-1212 and by the European Research Council
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We thank Yves Colin de Verdière, Luc Hillairet and Emmanuel Trélat for stimulating
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2 Preliminaries

We recall some essential facts in sub-Riemannian geometry, following [ABB20].

2.1 Sub-Riemannian geometry

LetM be a smooth, connected finite-dimensional manifold. A sub-Riemannian structure
on M is defined by a set of N global smooth vector fields X1, . . . ,XN , called a generating
frame. The generating frame defines a distribution of subspaces of the tangent spaces
at each point x ∈ M , given by

Dx = span{X1(x), . . . ,XN (x)} ⊆ TxM. (14)

We assume that the distribution satisfies the Hörmander condition, i.e. the Lie algebra
of smooth vector fields generated by X1, . . . ,XN , evaluated at the point x, coincides
with TxM , for all x ∈ M . The generating frame induces a norm on the distribution at
x, namely

‖v‖g = inf

{
N∑

i=1

u2
i |

N∑

i=1

uiXi(x) = v

}
, ∀ v ∈ Dx,

which, in turn, defines an inner product on Dx by polarization, which we denote by
gx(v, v). Let T > 0. We say that γ : [0, T ] → M is a horizontal curve, if it is absolutely
continuous and

γ̇(t) ∈ Dγ(t), for a.e. t ∈ [0, T ].

This implies that there exists u : [0, T ] → RN , such that

γ̇(t) =
N∑

i=1

ui(t)Xi(γ(t)), for a.e. t ∈ [0, T ].

Moreover, we require that u ∈ L2([0, T ],RN ). If γ is a horizontal curve, then the map
t 7→ ‖γ̇(t)‖g is integrable on [0, T ]. We define the length of a horizontal curve as follows:

ℓ(γ) =

∫ T

0
‖γ̇(t)‖gdt.

The sub-Riemannian distance is defined, for any x, y ∈ M , by

dSR(x, y) = inf{ℓ(γ) | γ horizontal curve between x and y}.
By the Chow-Rashevsky Theorem, the distance dSR : M ×M → R is finite and contin-
uous. Furthermore it induces the same topology as the manifold one.

Remark 2.1. The above definition includes all classical constant-rank sub-Riemannian
structures as in [Mon02, Rif14] (where D is a vector distribution and g a symmetric and
positive tensor on D), but also general rank-varying sub-Riemannian structures. More-
over, the same sub-Riemannian structure can arise from different generating families.
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2.2 The relative heat content

Let M be a sub-Riemannian manifold. Let ω be a smooth measure on M , i.e. by a
positive tensor density. The divergence of a smooth vector field is defined by

divω(X)ω = LXω, ∀X ∈ Γ(TM),

where LX denotes the Lie derivative in the direction of X. The horizontal gradient of
a function f ∈ C∞(M), denoted by ∇f , is defined as the horizontal vector field (i.e.
tangent to the distribution at each point), such that

gx(∇f(x), v) = v(f)(x), ∀ v ∈ Dx,

where v acts as a derivation on f . In terms of a generating frame as in (14), one has

∇f =
N∑

i=1

Xi(f)Xi, ∀ f ∈ C∞(M).

We recall the divergence theorem (we stress that M is not required to be orientable):
let Ω ⊂ M be open with smooth boundary, then

∫

∂Ω
fg(X, ν)dσ =

∫

Ω
(fdivωX + g(∇f,X)) dω, (15)

for any smooth function f and vector field X, such that the vector field fX is compactly
supported. In (15), ν is the outward-pointing normal vector field to Ω and σ is the
induced sub-Riemannian measure on ∂Ω (i.e. the one whose density is σ = |iνω|∂Ω).

The sub-Laplacian is the operator ∆ = divω ◦ ∇, acting on C∞(M). Again, we may
write its expression with respect to a generating frame (14), obtaining

∆f =
N∑

i=1

{
X2

i (f) +Xi(f)divω(Xi)
}
, ∀ f ∈ C∞(M). (16)

We denote by L2(M,ω), or simply by L2, the space of real functions on M which are
square-integrable with respect to the measure ω. Let Ω ⊂ M be an open relatively com-
pact set with smooth boundary. This means that the closure Ω̄ is a compact manifold
with smooth boundary. We consider the Cauchy problem for the heat equation on Ω,
that is we look for functions u such that

(∂t − ∆)u(t, x) = 0, ∀(t, x) ∈ (0,∞) ×M,

u(0, ·) = 1Ω, in L2(M,ω),
(17)

where u(0, ·) is a shorthand notation for the L2-limit of u(t, x) as t → 0. Notice that ∆
is symmetric with respect to the L2-scalar product and negative, moreover, if (M,dSR)
is complete as a metric space, it is essentially self-adjoint, see [Str86]. Thus, there exists
a unique solution to (17), and it can be represented as

u(t, x) = et∆
1Ω(x), ∀x ∈ M, t > 0,

10



where et∆ : L2 → L2 denotes the heat semi-group, associated with ∆. We remark that
for all ϕ ∈ L2, the function et∆ϕ is smooth for all (t, x) ∈ (0,∞)×M , by hypoellipticity
of the heat operator and there exists a heat kernel associated with (17), i.e. a positive
function pt(x, y) ∈ C∞((0,+∞) ×M ×M) such that:

u(t, x) =

∫

M
pt(x, y)1Ω(y)dω(y) =

∫

Ω
pt(x, y)dω(y). (18)

Definition 2.2 (Relative heat content). Let u(t, x) be the solution to (17). We define
the relative heat content, associated with Ω, as

HΩ(t) =

∫

Ω
u(t, x)dω(x), ∀ t > 0.

Remark 2.3. If we consider, instead of Ω, a set which is the closure of an open set,
then the Cauchy problem (17) has a unique solution and relative heat content is still
well-defined.

We recall here a property of the solution to (17): it satisfies a weak maximum
principle, meaning that

0 ≤ u(t, x) ≤ 1, ∀x ∈ Ω, ∀ t > 0. (19)

This can be proven following the blueprint of the Riemannian proof (see [Gri09, Thm.
5.11]).

Definition 2.4 (Characteristic point). We say that x ∈ ∂Ω is a characteristic point, or
tangency point, if the distribution is tangent to ∂Ω at x, that is

Dx ⊆ Tx(∂Ω).

We will assume that ∂Ω has no characteristic points. We say in this case that Ω is
a non-characteristic domain.

2.3 Nilpotent approximation of M

We introduce the notion of nilpotent approximation of a sub-Riemannian manifold, see
[Jea14, Bel96] for details. This will be used only in Sections 3 and 6.

Sub-Riemannian flag. Let M be an n-dimensional sub-Riemannian manifold with
distribution D. We define the flag of D as the sequence of subsheafs Dk ⊂ TM such
that

D1 = D, Dk+1 = Dk + [D,Dk], ∀ k ≥ 1,

with the convention that D0 = {0}. Under the Hörmander condition, the flag of the
distribution defines an exhaustion of TxM , for any point x ∈ M , i.e. there exists
r(x) ∈ N such that:

{0} = D0
x ⊂ D1

x ⊂ . . . ⊂ Dr(x)−1
x ( Dr(x)

x = TxM. (20)

11



The number r(x) is called degree of nonholonomy at x. We set nk(x) = dim Dk
x, for any

k ≥ 0, then the collection of r(x) integers
(
n1(x), . . . , nr(x)(x)

)

is called growth vector at x, and we have nr(x)(x) = n = dimM . Associated with the
growth vector, we can define the sub-Riemannian weights wi(x) at x, setting for any
i ∈ {1, . . . , n},

wi(x) = j, if and only if nj−1(x) + 1 ≤ i ≤ nj(x). (21)

A point x ∈ M is said to be regular if the growth vector is constant in a neighborhood of
x, and singular otherwise. The sub-Riemannian structure on M is said to be equiregular
if all points ofM are regular. In this case, the weights are constant as well on M . Finally,
given any x ∈ M , we define the homogeneous dimension of M at x as

Q(x) =

r(x)∑

i=1

i(ni(x) − ni−1(x)) =
n∑

i=1

wi(x).

We recall that, if x is regular, then Q(x) coincides with the Hausdorff dimension of
(M,dSR) at x, cf. [Mit85]. Moreover, Q(x) > n, for any x ∈ M such that Dx ( TxM .

Privileged coordinates. Let M be a sub-Riemannian manifold with generating
frame (14) and f be the germ of a smooth function f at x ∈ M . We call nonholo-
nomic derivative of order k ∈ N of f , the quantity

Xj1 · · ·Xjk
f(x),

for any family of indexes {j1, . . . , jk} ⊂ {1, . . . , N}. Then, the nonholonomic order of
f at the point x is

ordx(f) = min {k ∈ N | ∃{j1, . . . , jk} ⊂ {1, . . . , N} s.t. Xj1 · · ·Xjk
f(x) 6= 0} .

Definition 2.5 (Privileged coordinates). Let M be a n-dimensional sub-Riemannian
manifold and x ∈ M . A system of local coordinates (z1, . . . , zn) centered at x is said to
be privileged at x if

ordx(zj) = wj(x), ∀ j = 1, . . . , n.

Notice that privileged coordinates (z1, . . . , zn) at x satisfy the following property

∂zi |x ∈ Dwi
x , ∂zi |x /∈ Dwi−1

x , ∀i = 1, . . . , n. (22)

A local frame of TM consisting of n vector fields {Z1, . . . , Zn} and satisfying (22) is said
to be adapted to the flag (20) at x. Thus, privileged coordinates are always adapted
to the flag. In addition, given a local frame adapted to the sub-Riemannian flag at
x, say {Z1, . . . , Zn}, we can define a set of privileged coordinates at x, starting from
{Z1, . . . , Zn}, i.e.

Rn ∋ (z1, . . . , zn) 7→ ez1Z1 ◦ · · · ◦ eznZn(x). (23)

Moreover, in these coordinates, the vector field Z1 is exactly ∂z1.

12



Nilpotent approximation. Let M be a sub-Riemannian manifold and let x ∈ M
with weights as in (21). Consider ψ = (z1, . . . , zn) : U → V a chart of privileged
coordinates at x, where U ⊂ M is a relatively compact neighborhood of x and V ⊂ Rn

is a neighborhood of 0. Then, for any ε ∈ R, we can define the dilation at x as

δε : Rn → Rn; δε(z) =
(
εw1(x)z1, . . . , ε

wn(x)zn

)
. (24)

Using such dilations, we obtain the nilpotent (or first-order) approximation of the gen-
erating frame (14), indeed setting Yi = ψ∗Xi, for any i = 1 . . . , N , define

X̂x
i = lim

ε→0
εδ 1

ε
∗(Yi), ∀ i = 1 . . . , N, (25)

where the limit is taken in the C∞-topology of Rn. Notice that the vector field X̂x
i is

defined on the whole Rn, even though Yi was defined only on V ⊂ Rn.

Theorem 2.6. Let M be a n-dimensional sub-Riemannian manifold with generating
frame {X1, . . . ,XN } and consider its first-order approximation at x as in (25). Then,
the frame {X̂x

1 , . . . , X̂
x
N } of vector fields on Rn generates a nilpotent Lie algebra of step

r(x) = wn(x) and satisfies the Hörmander condition.

The proof of this theorem can be found in [Jea14]. Recall that a Lie algebra is said
to be nilpotent of step s if s is the smallest integer such that all the brackets of length
greater than s are zero.

Definition 2.7 (Nilpotent approximation). Let M be a sub-Riemannian manifold and
let x ∈ M . Then, Theorem 2.6 implies that the frame {X̂x

1 , . . . , X̂
x
N} is a generating

frame for a sub-Riemannian structure on Rn: we denote the resulting sub-Riemannian
manifold M̂x. This is the so-called nilpotent approximation of M at the point x.

Notice that the sub-Riemannian distance of M̂x, denoted by d̂x, is 1-homogeneous
with respect to the dilations (24).

Remark 2.8. Up to isometries, the nilpotent approximation of M at x coincides with the
Gromov-Hausdorff metric tangent space of (M,dSR) at x. Moreover, M̂x is isometric
to a quotient of a Carnot group. See [Gro96, Bel96, Mon02] for further details.

Nilpotentized sub-Laplacian. Let M be a sub-Riemannian manifold, equipped
with a smooth measure ω, and let (z1, . . . , zn) be a set of privileged coordinates at
x ∈ M . We will use the same symbol ω to denote measure in coordinates. The nilpo-
tentization ω̂x of ω at x is defined as follows:

〈ω̂x, f〉 = lim
ε→0

1

|ε|Q(x)
〈δ∗

εω, f〉, ∀ f ∈ C∞
c (Rn). (26)

Notice that, denoting by dz = dz1 . . . dzn the Lebesgue measure on Rn, we have

δ∗
ε (dz) = |ε|Q(x) dz, ∀ ε 6= 0,
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thus, the limit in (26) exists. Finally, we can define the nilpotentized sub-Laplacian
according to (16), acting on C∞(Rn), i.e.

∆̂x = divω̂x

(
∇̂x
)

=
N∑

i=1

(X̂x
i )2. (27)

We remark that in (27) there is no divergence term, since

divω̂x(X̂x
i ) = 0 ∀i ∈ {1, . . . , N}.

As in the general sub-Riemannian context, in the nilpotent approximation M̂x, we may
consider the Cauchy heat problem (17) in L2(Rn, ω̂x). We will the denote the associated
heat kernel as

p̂x
t (z, z′) ∈ C∞((0,+∞) × Rn × Rn).

Heat kernel asymptotics. Let M be a sub-Riemannian manifold, equipped with a
smooth measure ω and denote by pt(x, y) the heat kernel (18). We have the following
result.

Theorem 2.9 ([CdVHT20, Thm. A]). Let M be a sub-Riemannian manifold and let
ψ : U → V be a chart of privileged coordinates at x ∈ M . Then, for any m ∈ N,

|ε|Q(x)pε2τ (δε(z), δε(z′)) = p̂x
τ (z, z′) +

m∑

i=1

εifx
i (τ, z, z′) + o(|ε|m), as ε → 0, (28)

in the C∞-topology of (0,∞) × V × V , where fx
i ’s are smooth functions satisfying the

following homogeneity property: for i = 0, . . . ,m

|ε|Q(x)ε−ifx
i (ε2τ, δε(z), δε(z′)) = fx

i (τ, z, z′), ∀ (τ, z, z′) ∈ (0,∞) × Rn × Rn, (29)

where, for i = 0, we set fx
0 (τ, z, z′) = p̂x

τ (z, z′). In (28), we are considering the heat
kernel pt in coordinates, with a little abuse of notation.

Remark 2.10. We will drop the dependence on the center of the privileged coordinates
if there is no confusion.

3 Small-time asymptotics of u(t, x) at the boundary

We prove here Theorem 1.3, regarding the zero-order asymptotics of u(t, ·)|∂Ω as t → 0.

Theorem 3.1. Let M be a compact sub-Riemannian manifold, equipped with a smooth
measure ω and let Ω ⊂ M be an open subset, whose boundary is smooth and has no
characteristic points. Let x ∈ ∂Ω and consider a chart of privileged coordinates ψ : U →
V ⊂ Rn centered at x, such that ψ(U ∩ Ω) = V ∩ {z1 > 0}. Then,

lim
t→0

u(t, x) =

∫

{z1>0}
p̂x

1(0, z)dω̂x(z) =
1

2
, ∀x ∈ ∂Ω,

where ω̂x denotes the nilpotentization of ω at x and p̂x
t denotes the heat kernel associated

with the nilpotent approximation of M at x and measure ω̂x.
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Remark 3.2. A chart of privileged coordinates, such that ψ(U ∩ Ω) = V ∩ {z1 > 0}
always exists, provided that ∂Ω has no characteristic points. Indeed, in this case, there
exists a tubular neighborhood of the boundary, cf. Theorem 4.1, which is built through
the flow of ∇δ, namely

G : (−r0, r0) × ∂Ω → Ωr0
−r0

; G(t, q) = et∇δ(q),

is a diffeomorphism such that G∗∂t = ∇δ and δ(G(t, q)) = t. Here δ : M → R is the
signed distance function and Ωr0

−r0
= {−r0 < δ < r0}, see Section 4.1 for precise defini-

tions. Therefore, choosing an adapted frame for the distribution at x, say {Z1, . . . , Zn}
where Z1 = ∇δ, we can define a set of privileged coordinates as in (23):

Rn ∋ (z1, . . . , zn) 7→ ez1Z1 ◦ ez2Z2 ◦ · · · ◦ eznZn(x)︸ ︷︷ ︸
ϕ(z2,...,zn)

= G(z1, ϕ(z2, . . . , zn)). (30)

The resulting set of coordinates ψ satisfies ψ∗(∇δ) = ∂z1 and, denoting by V the
neighborhood of 0 in Rn where ψ is invertible, ψ(U ∩ Ω) = {z1 > 0} ∩ V . Here,
esX(q) denotes the flow of the vector field X, starting at q, evaluated at time s.

Proof of Theorem 3.1. Let pt(x, y) be the heat kernel of M , then we may write

u(t, x) =

∫

Ω
pt(x, y)dω(y), ∀x ∈ M.

For a fixed x ∈ M , denoting by U any relatively compact neighborhood of x, we have

u(t, x) =

∫

U∩Ω
pt(x, y)dω(y) +

∫

Ω\U
pt(x, y)dω(y)

=

∫

U∩Ω
pt(x, y)dω(y) +O(t∞),

as t → 0. Indeed, since the heat kernel is exponentially decaying outside the diagonal,
cf. [JSC86, Prop. 3],

∫

Ω\U
pt(x, y)dω(y) ≤ ω(Ω \ U)CUe

− cU
t = O(t∞), as t → 0. (31)

as t → 0. Now, for x ∈ ∂Ω, fix the set of privileged coordinates ψ : U → V ⊂ Rn,
defined as in the statement and assume without loss of generality that δε(V ) ⊂ V for
any |ε| ≤ 1, where δε is the dilation (24) of the nilpotent approximation of M . Also set

Vε = δε (V ∩ {z1 > 0}) , ∀ |ε| ≤ 1.

when the limits exist, we have:

lim
t→0

u(t, x) = lim
t→0

∫

U∩Ω
pt(x, y)dω(y) = lim

t→0

∫

V1

pt(0, z)dω(z), (32)

where, in the last equation, we are considering the expression of the heat kernel and the
measure in coordinates. We want to apply (28) at order 1 in ε, so let us rephrase the
statement as follows: for any compact set K ⊂ V ,

|ε|Qpε2τ (0, δε(z)) = p̂τ (0, z) + εR(ε, τ, z), as ε → 0, (33)
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where R is a smooth function such that

sup
ε∈[−1,1]

z∈K

|R(ε, τ, z)| ≤ C(τ,K), (34)

with C(τ,K) > 0. Notice that (34) is not uniform in τ , in the sense that τ 7→ C(τ,K)
can explode as τ → 0, in general. Moreover, without loss of generality and, up to
restrictions of U , we can assume that (34) holds globally on V 1. For a fixed parameter
L > 1, we set τ = 1/L and ε2 = tL in (33), obtaining:

|tL|Q/2pt(0, δ√
tL(z)) = p̂1/L(0, z) +

√
tLR(

√
tL, 1/L, z), as t → 0,

where the remainder R is bounded as t → 0 on the compact sets of V , but with
a constant depending on L. Inserting the above expansion in (32), and writing the
measure in coordinates dω(z) = ω(z)dz with ω(·) ∈ C∞(V1), we have:

u(t, x) =

∫

V1

pt(0, z)ω(z)dz +O(t∞)

=

∫

V√
tL

pt(0, z)ω(z)dz +

∫

V1\V√
tL

pt(0, z)dω(z) +O(t∞)

=

∫

V1

|tL|Q/2pt(0, δ√
tL(z))ω(δ√

tL(z))dz +

∫

V1\V√
tL

pt(0, z)dω(z) +O(t∞)

=

∫

V1

(
p̂1/L(0, z) +

√
tLR(

√
tL, 1/L, z)

)
ω(δ√

tL(z))dz (35)

+

∫

V1\V√
tL

pt(0, z)dω(z) +O(t∞), (36)

where in the third equality we performed the change of variable z 7→ δ1/
√

tL(z) in the

first integral. Let us discuss the terms appearing in (35) and (36). First of all, for any
L > 1, by definition of the nilpotentization of ω given in (26), we get

lim
t→0

∫

V1

p̂1/L(0, z)ω(δ√
tL(z))dz =

∫

V1

p̂1/L(0, z)dω̂(z).

Moreover, for a fixed L > 1, the integral of R is bounded as t → 0, therefore, using
(34), we have:

∣∣∣∣
√
tL

∫

V1

R(
√
tL, 1/L, z)dω(z)

∣∣∣∣ ≤ CL

√
t, ∀ t ≤ 1,

where CL > 0 is a constant depending on the fixed L. Secondly, by an upper Gaussian
bound for the heat kernel in compact sub-Riemannian manifold, [JSC86, Thm. 2], we
obtain the following estimate for (36):

∫

V1\V√
tL

pt(0, z)dω(z) ≤
∫

V1\V√
tL

C1e
− βd2

SR
(0,z)

t

tQ/2
dω(z), (37)
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where C1, β > 0 are positive constants. Now, by the Ball-Box Theorem [Jea14, Thm.
2.1], the sub-Riemannian distance function at the origin is comparable with the sub-
Riemannian distance of M̂x, denoted by d̂. In particular, there exists a constant c > 0
such that

d2
SR(0, z) ≥ c d̂2(0, z), ∀ z ∈ V.

Since in (37) we are integrating over the set V1 \ V√
tL and d̂ is 1-homogeneous with

respect to δε, we conclude that

d2
SR(0, z) ≥ c tL, ∀ z ∈ V1 \ V√

tL.

Therefore the term (37) can be estimated as follows:

∫

V1\V√
tL

pt(0, z)dω(z) ≤ C1e
− cβL

2

∫

V1

e− βd2
SR

(0,z)

2t

tQ/2
dω(z) ≤ C̃e− cβL

2 , (38)

where C̃ > 0 is independent of t and L. The last inequality in (38) follows from the
fact that, by a lower Gaussian bound for the heat kernel [JSC86, Thm. 4], there exists
C2 > 0 such that

∫

V1

e− βd2
SR

(0,z)

2t

tQ/2
dω(z) ≤ C2

∫

V1

pt̃(0, z), (39)

where t̃ > 0 depends on t. Then, thanks to the weak maximum principle, we conclude
that the integral (39) is bounded uniformly with respect to t ∈ [0,∞).

Therefore, for any L > 1, we obtain the following estimates for the limit of u:

lim sup
t→0

u(t, x) ≤
∫

V1

p̂1/L(0, z)dω̂(z) + C̃e− cβL
2 ,

lim inf
t→0

u(t, x) ≥
∫

V1

p̂1/L(0, z)dω̂(z) − C̃e− cβL
2 .

(40)

In order to evaluate the limits in (40), let us firstly notice that, since p̂ enjoys upper
and lower Gaussian bounds (see for example [CdVHT20, App. C]), reasoning as we did
for (38), we can prove the following:

∫

V1

p̂1/L(0, z)dω̂(z) =

∫

{z1>0}
p̂1/L(0, z)dω̂(z) +O

(
e−β′L

)
. (41)

Secondly, thanks to (29) for p̂, we have the following parity property

p̂t(0, z) = p̂t(0, δ−1(z)), ∀ t > 0, z ∈ Rn,

and, by the choice of privileged coordinates, δ−1({z1 > 0}) = {z1 < 0}. Thus, using also
the stochastic completeness of the nilpotent approximation, we obtain for any t ≥ 0,

1 =

∫

Rn
p̂t(0, z)dω̂(z) =

∫

{z1>0}
p̂t(0, z)dω̂(z) +

∫

{z1<0}
p̂t(0, z)dω̂(z)

= 2

∫

{z1>0}
p̂t(0, z)dω̂(z),
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having performed the change of variables z 7→ δ−1(z) in the last equality. Hence, the
integral in (41) is ∫

V1

p̂1/L(0, z)dω̂(z) =
1

2
+O

(
e−β′L

)
.

Finally, we optimize the inequalities (40) with respect to L, taking L → ∞ and con-
cluding the proof.

Remark 3.3. In the non-compact case, if M is globally doubling and supports a global
Poincaré inequality, the proof above is still valid, cf. Theorem 7.3. Otherwise, a different
proof is needed, see [Ros21a, App. D] for details.

4 First-order asymptotic expansion of HΩ(t)

In this section, we introduce the technical tools that allow us to prove the first-order
asymptotic expansion of the relative heat content starting from Theorem 3.1. The new
ingredient is a definition of an operator IΩ, which depends on the base set Ω.

4.1 A mean value lemma

Define δ : M → R to be the signed distance function from ∂Ω, i.e.

δ(x) =

{
δ∂Ω(x) x ∈ Ω,

−δ∂Ω(x) x ∈ M \ Ω,

where δ∂Ω : M → [0,+∞) denotes the usual distance function from ∂Ω. Let us introduce
the following notation: for any a, b ∈ R, with a < b, we set

Ωb
a = {x ∈ M | a < δ(x) < b},

with the understanding that if b (or a) is omitted, it is assumed to be +∞ (or −∞),
for example4

Ωr = Ω+∞
r = {x ∈ M | r < δ(x)}.

In the non-characteristic case, [FPR20, Prop. 3.1] can be extended without difficulties
to the signed distance function.

Theorem 4.1 (Double-sided tubular neighborhood). Let M be a sub-Riemannian man-
ifold and let Ω ⊂ M be an open relatively compact subset of M whose boundary is smooth
and has no characteristic points. Let δ : M → R be the signed distance function from
∂Ω. Then, we have:

i) δ is Lipschitz with respect to the sub-Riemannian distance and ‖∇δ‖g ≤ 1 a.e.;

ii) there exists r0 > 0 such that δ : Ωr0
−r0

→ R is smooth;

4Notice that the set Ω+∞
−∞ = M , thus omitting both indexes can create confusion. We will never do

that and Ω will always denote the starting subset of M .
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iii) there exists a smooth diffeomorphism G : (−r0, r0) × ∂Ω → Ωr0
−r0

, such that

δ(G(t, y)) = t and G∗∂t = ∇δ, ∀ (t, y) ∈ (−r0, r0) × ∂Ω.

Moreover, ‖∇δ‖g ≡ 1 on Ωr0
−r0

.

In particular, the following co-area formula for the signed distance function holds
∫

Ωr
0

v(x)dω(x) =

∫ r

0

∫

∂Ωs

v(s, y)dσ(y)ds, ∀ r ≥ 0, (42)

from which we deduce the sub-Riemannian mean value lemma, see [RR21, Thm. 4.1]
for a proof.

Proposition 4.2. Let M be a compact sub-Riemannian manifold, equipped with a
smooth measure ω, let Ω ⊂ M be an open subset of M with smooth boundary and
no characteristic points and let δ : M → R be the signed distance function from ∂Ω. Fix
a smooth function v ∈ C∞(M) and define

F (r) =

∫

Ωr

v(x)dω(x), ∀ r ≥ 0. (43)

Then there exists r0 > 0 such that the function F is smooth on [0, r0) and, for 0 ≤ r < r0:

F ′′(r) =

∫

Ωr

∆v(x)dω(x) +

∫

∂Ωr

v(y)divω (νr(y)) dσ(y),

where νr is the outward-pointing unit normal to Ωr, σ is the induced measure on ∂Ωr.

Remark 4.3. If v ∈ C∞
c (M), then neither M nor Ω is required to be compact for

Proposition 4.2 to be true, indeed its proof relies on (42), which continues to hold, and
the divergence theorem (15), which applies if supp(v) is compact. Moreover, we remark
that νr is equal to ∇δ up to sign. We prefer to keep νr in (43), since we are going to
apply it when the integral is performed over Ωr or its complement.

If we choose the function v in the definition of F to be 1 − u(t, x), where u(t, ·) =
et∆

1Ω, then, F satisfies a non-homogeneous one-dimensional heat equation.

Corollary 4.4. Under the hypotheses of Proposition 4.2, the function

F (t, r) =

∫

Ωr

(1 − u(t, x)) dω(x), ∀ t > 0, r ≥ 0, (44)

where u(t, x) = et∆
1Ω(x), satisfies the following non-homogeneous one-dimensional heat

equation:

(∂t − ∂2
r )F (t, r) = −

∫

∂Ωr

(1 − u(t, ·)) divω(νr)dσ, t > 0, r ∈ [0, r0), (45)

where νr is the outward-pointing unit normal to Ωr, σ is the induced measure on ∂Ωr.

Corollary 4.4 holds only for r ≤ r0, however we would like to extend it to the whole
positive half-line, in order to apply a Duhamel’s principle. This can be done up to an
error which is exponentially small.
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4.2 Localization principle

Proposition 4.5. Let M be a compact sub-Riemannian manifold, equipped with a
smooth measure ω, and let Ω ⊂ M be an open subset of M , with smooth boundary.
Moreover, let K ⊂ M be a closed set such that K ∩ ∂Ω = ∅. Then

1Ω(x) − u(t, x) = O(t∞), uniformly for x ∈ K,

where u(t, x) = et∆
1Ω(x).

Proof. The statement is a direct consequence of the off-diagonal estimate for the heat
kernel in compact sub-Riemannian manifold (see [JSC86, Prop. 3]):

pt(x, y) ≤ Cae
−ca/t, ∀x, y with d(x, y) ≥ a, t < 1, (46)

for suitable constants Ca, ca > 0, depending only on a. Now, since K ∩ ∂Ω = ∅, we can
write K as a disjoint union

K = K1 ⊔K2 with K1 ⊂ Ω, K2 ⊂ M \ Ω.

At this point, for i = 1, 2, set ai = dSR(Ki, ∂Ω) > 0 by hypothesis, and let x ∈ K1.
Then, using the stochastic completeness of M , we have:

|1Ω(x) − u(t, x)| = 1 − u(t, x) =

∫

M\Ω
pt(x, y)dω(y) ≤ C1e

−c1/tω(M \ Ω), (47)

which is exponentially decaying, uniformly in K1. Analogously, if x ∈ K2, we have

|1Ω(x) − u(t, x)| = u(t, x) =

∫

M
pt(x, y)1Ω(y)dω(y) =

∫

Ω
pt(x, y)dω(y) ≤ C2e

−c2/tω(Ω),

uniformly in K2.

Remark 4.6. In the non-compact case, Proposition 4.5 may fail. Indeed, on the one hand
the off-diagonal estimate (46) is not always available, on the other hand the measure of
M \ Ω appearing in (47) is infinite. Under additional assumption on M , we are able to
recover a localization principle, see Section 7.

Let M be compact. Thanks to Proposition 4.5, we can extend the function F defined
in (44), to a solution to a non-homogeneous heat equation such as (45) on the whole
half-line. More precisely, let φ, η ∈ C∞

c (M) such that

φ+ η ≡ 1, supp(φ) ⊂ Ωr0
−r0

, supp(η) ⊂ Ω−r0/2 ∪ Ωr0/2, (48)

where r0 is defined in Proposition 4.2. We have then, for r ∈ [0, r0),

F (t, r) =

∫

Ωr

(1 − u(t, x))φ(x)dω(x) +

∫

Ωr

(1 − u(t, x)) η(x)dω(x)

=

∫

Ωr

(1 − u(t, x))φ(x)dω(x) +

∫

supp(η)∩Ωr

(1 − u(t, x)) η(x)dω(x)

=

∫

Ωr

(1 − u(t, x))φ(x)dω(x) +O(t∞), (49)

where we used Proposition 4.5 to deal with the second term, having set K = supp(η) ∩
Ωr. For this reason, we may focus on the first term in (49).
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Definition 4.7. For all t > 0 and r ≥ 0, we define the one-parameter families of
operators IΩ and ΛΩ, associated with Ω and acting on the space C∞

c (Ωr0
−r0

), by

IΩφ(t, r) =

∫

Ωr

(1 − u(t, x)) φ(x)dω(x),

ΛΩφ(t, r) = −∂rIΩφ(t, r) = −
∫

∂Ωr

(1 − u(t, y)) φ(y)dσ(y),

for any φ ∈ C∞
c (Ωr0

−r0
), and where σ denotes the induced measure on ∂Ωr and u(t, ·) =

et∆
1Ω(·).

Lemma 4.8. Let L = ∂t − ∂2
r be the one-dimensional heat operator. Then, for any

φ ∈ C∞
c (Ωr0

−r0
),

L (IΩφ(t, r)) = IΩ∆φ(t, r) − ΛΩNrφ(t, r), ∀ t > 0, r ≥ 0,

where Nr is the operator defined by:

Nrφ = 2g (∇φ, νr) + φdivω(νr), ∀φ ∈ C∞
c (M), (50)

and νr is the outward-pointing unit normal to Ωr.

Thanks to the localization principle, we can improve Corollary 4.4, obtaining the
following result for Iφ(t, r).

Corollary 4.9. For any φ ∈ C∞
c (Ωr0

−r0
), the function IΩφ(t, r), cf. Definition 4.7,

satisfies the non-homogeneous one-dimensional heat equation on the half-line:

(∂t − ∂2
r )IΩφ(t, r) = IΩ∆φ(t, r) − ΛΩNrφ(t, r), ∀ t > 0, r ≥ 0.

4.3 Duhamel’s principle for IΩφ

We recall for the convenience of the reader a one-dimensional version of the Duhamel’s
principle, see [RR21, Lem. 5.4].

Lemma 4.10 (Duhamel’s principle). Let f ∈ C((0,∞) × [0,∞)), v0, v1 ∈ C([0,∞)),
such that f(t, ·) and v0 are compactly supported and assume that

∃ lim
t→0

f(t, r), ∀r ≥ 0.

Consider the non-homogeneous heat equation on the half-line:

Lv(t, r) = f(t, r), for t > 0, r > 0,

v(0, r) = v0(r), for r > 0,

∂rv(t, 0) = v1(t), for t > 0,

(51)

where L = ∂t − ∂2
r . Then, for t > 0, the solution to (51) is given by

v(t, r) =

∫ ∞

0
e(t, r, s)v0(s)ds+

∫ t

0

∫ ∞

0
e(t − τ, r, s)f(τ, s)dsdτ

−
∫ t

0
e(t − τ, r, 0)v1(τ)dτ, (52)
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where e(t, r, s) is the Neumann heat kernel on the half-line, that is

e(t, r, s) =
1√
4πt

(
e−(r−s)2/4t + e−(r+s)2/4t

)
. (53)

Finally, we apply Lemma 4.10 to obtain an asymptotic equality for IΩφ. The main
difference with the result of [RR21, Thm. 5.6] is that the former will not be a true
first-order asymptotic expansion.

Corollary 4.11. Let M be a compact sub-Riemannian manifold, equipped with a smooth
measure ω, and let Ω ⊂ M be an open subset whose boundary is smooth and has no
characteristic points. Then, for any function φ ∈ C∞

c (Ωr0
−r0

),

IΩφ(t, 0) =
1√
π

∫ t

0

∫

∂Ω
(1 − u(τ, y))φ(y)dσ(y)(t − τ)−1/2dτ +O(t),

as t → 0, where u(t, ·) = et∆
1Ω(·).

Proof. By Corollary 4.9, the function IΩφ(t, r) satisfies the following Neumann problem
on the half-line:

LIΩφ(t, r) = f(t, r), for t > 0, r > 0,

IΩφ(0, r) = 0, for r > 0,

∂rIΩφ(t, 0) = −ΛΩφ(t, 0), for t > 0,

where the source is given by Lemma 4.8, i.e. f(t, r) = IΩ∆φ(t, r) − ΛΩNrφ(t, r). Thus,
applying Duhamel’s formula (52), we have:

IΩφ(t, 0) =

∫ t

0

∫ +∞

0
e(t − τ, 0, s)f(τ, s)dsdτ +

1√
π

∫ t

0

1√
t− τ

ΛΩφ(t, 0)dτ.

Since the source is uniformly bounded by the weak maximum principle (19), the first
integral is a remainder of order t, as t → 0, concluding the proof.

Remark 4.12. We mention that a relevant role in the sequel will be played by the
operators IΩ, cf. Definition 4.7, associated with either Ω or its complement Ωc.

4.4 First-order asymptotics

In this section we prove the first-order asymptotic expansion of HΩ(t), cf. Theorem 1.1
at order 1. We will use Corollary 4.11, for the inside contribution:

Iφ(t, r) =

∫

Ωr

(1 − u(t, x))φ(x)dω(x), ∀ t > 0, r ≥ 0, (54)

for any φ ∈ C∞
c (Ωr0

−r0
), and where σ denotes the induced measure on ∂Ωr and u(t, ·) =

et∆
1Ω(·) is the solution to (17). The quantity (54) is just Definition 4.7, applied with

base set Ω ⊂ M .
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Theorem 4.13. Let M be a compact sub-Riemannian manifold, equipped with a smooth
measure ω, and let Ω ⊂ M be an open subset whose boundary is smooth and has no
characteristic points. Then,

HΩ(t) = ω(Ω) − 1√
π
σ(∂Ω)t1/2 +O(t), as t → 0.

Proof. Let φ ∈ C∞
c (Ωr0

−r0
) be as in (48), namely

0 ≤ φ ≤ 1, and φ ≡ 1 in Ω
r0/2
−r0/2.

Then, by the localization principle, cf. (49), we have that

ω(Ω) −HΩ(t) = Iφ(t, 0) +O(t∞), as t → 0. (55)

Applying Corollary 4.11, we have:

Iφ(t, 0) =
1√
π

∫ t

0

∫

∂Ω
(1 − u(τ, y)) φ(y)dσ(y)(t − τ)−1/2dτ +O(t), as t → 0. (56)

Thus, to infer the first-order term of the asymptotic expansion we have to compute the
following limit:

lim
t→0

Iφ(t, 0)

t1/2
= lim

t→0

1

t1/2
√
π

∫ t

0

∫

∂Ω
(1 − u(τ, y))φ(y)dσ(y)(t − τ)−1/2dτ. (57)

Firstly, by the change of variable in the integral τ 7→ tτ , we rewrite the argument of the
limit (57) as

1√
π

∫ 1

0

∫

∂Ω
(1 − u(tτ, y))φ(y)dσ(y)(1 − τ)−1/2dτ.

Secondly, we apply the dominated convergence theorem. Indeed, on the one hand, by
Theorem 3.1 we have point-wise convergence

(1 − u(tτ, y))φ(y)
t→0−−→ 1

2
φ(y), ∀ y ∈ ∂Ω, τ ∈ (0, 1),

and on the other hand, by the maximum principle
∣∣∣∣
∫

∂Ω
(1 − u(tτ, y))φ(y)dσ(y)(1 − τ)−1/2

∣∣∣∣ ≤
∫

∂Ω
|φ|dσ(1 − τ)−1/2 ∈ L1(0, 1),

for any t > 0. Therefore, we finally obtain that:

Iφ(t, 0) =

√
t

π

∫

∂Ω
φ(y)dσ(y) + o(t1/2), as t → 0.

Recalling that φ|∂Ω ≡ 1, we conclude the proof.

Remark 4.14. The above technique used to evaluate the first-order coefficient causes
a loss of precision in the remainder, with respect to the expression (56), where the
remainder is O(t). This loss comes from the application of Theorem 3.1, which does
not contain any remainder estimate.
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5 Higher-order asymptotic expansion of HΩ(t)

We iterate Duhamel’s formula (52) for the inside contribution to study the higher-order
asymptotics of HΩ(t). We obtain the following expression for Iφ, at order 3:

Iφ(t, 0) =
1√
π

∫ t

0

∫

∂Ω
(1 − u(τ, ·))φdσ(t − τ)−1/2dτ

+
1

2π

∫ t

0

∫ τ

0

∫

∂Ω
(1 − u(τ̂ , ·))Nφdσ((τ − τ̂)(t − τ))−1/2dτ̂dτ +O(t3/2), (58)

where u(t, ·) = et∆
1Ω(·) denotes the solution to (17) and N is the operator acting on

smooth functions defined by

Nφ = 2g(∇φ,∇δ) + φ∆δ, ∀φ ∈ C∞(M), (59)

with δ : M → R the signed distance function from ∂Ω. The computations for deriving
(58) are technical. We refer to Appendix A for further details, and in particular to
Lemma A.6. Motivated by (58), we introduce the following functional.

Definition 5.1. Let M be a sub-Riemannian manifold, equipped with a smooth mea-
sure ω, let Ω ⊂ M be a relatively compact subset with smooth boundary and let
v ∈ C∞((0,+∞) ×M). Define the functional Gv, for any φ ∈ C∞

c (Ωr0
−r0

) as:

Gv[φ](t) =
1

2
√
π

∫ t

0

∫

∂Ω
v(τ, ·)φdσ(t − τ)−1/2dτ, ∀ t ≥ 0, (60)

where σ is the sub-Riemannian induced measure on ∂Ω.

Notice that the functional Gv is linear with respect to the subscript function v, by
linearity of the integral. Moreover, when the function v is chosen to be the solution to
(17), we easily obtain the following corollary of Theorem 3.1, which is just a rewording
of (57).

Corollary 5.2. Let M be a compact sub-Riemannian manifold, equipped with a smooth
measure ω, and let Ω ⊂ M be an open subset whose boundary is smooth and has no
characteristic points. Let φ ∈ C∞

c (Ωr0
−r0

), then,

Gu[φ](t) =
1

2
√
π

∫

∂Ω
φ(y)dσ(y)t1/2 + o(t1/2), as t → 0.

Then, we can rewrite (58) in a compact notation:

Iφ(t, 0) = 2G1−u[φ](t) +
1√
π

∫ t

0
G1−u[Nφ](t)dσ(t − τ)−1/2dτ +O(t3/2). (61)

However, on the one hand, the application of Corollary 5.2 to (58) does not give any new
information on the asymptotics of HΩ(t), as the first term produces an error of o(t1/2).
On the other hand, it is clear the an asymptotic series of Gu is enough to deduce the
small-time expansion of HΩ(t).
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5.1 The outside contribution and an asymptotic series for Gu[φ]

In this section, we deduce an asymptotic series, at order 3, of Gu[φ](t) as t → 0. This is
done exploiting the fact that the diffusion of heat is not confined in Ω, and as a result
we can define an outside contribution, namely the quantity obtained from Definition
4.7, applied with base set Ωc ⊂ M :

Icφ(t, r) =

∫

(Ωc)r

(1 − uc(t, x))φ(x)dω(x), ∀ t > 0, r ≥ 0, (62)

for any φ ∈ C∞
c (Ωr0

−r0
), and where σ denotes the induced measure on the boundary of

(Ωc)r and uc(t, x) = et∆
1Ωc(x). We remark that, since Ω and its complement share the

boundary, then (Ωc)r0
−r0

= Ωr0
−r0

. It is convenient to introduce (62), because it turns out
that the quantity Iφ − Icφ, where Iφ is the inside contribution (54), has an explicit
asymptotic series in integer powers of t.

Proposition 5.3. Let M be a compact sub-Riemannian manifold, equipped with a
smooth measure ω, and let Ω ⊂ M be an open subset with smooth boundary. Let
φ ∈ C∞

c (Ωr0
−r0

), then, for any k ∈ N,

Iφ(t, 0) − Icφ(t, 0) =
k∑

i=1

ai(φ)ti +O(tk+1), as t → 0, (63)

where

ai(φ) =

∫

∂Ω
g(∇(∆i−1φ),∇δ)dσ, for i ≥ 1.

Proof. Recall that in the definition of the outside contribution (62), the integrand func-
tion involves uc(t, x) = et∆

1Ωc(x). Since M is compact, and hence stochastically com-
plete, we have:

1 − uc(t, x) = et∆1(x) − et∆
1Ωc(x) = u(t, x), ∀t > 0, x ∈ M,

having used the point-wise equality 1 − 1Ωc = 1Ω in M \ ∂Ω. Therefore, we can write
the difference Iφ(t, 0) − Icφ(t, 0) as follows:

Iφ(t, 0) − Icφ(t, 0) =

∫

Ω
(1 − u(t, ·)) φdω −

∫

Ωc
(1 − uc(t, ·)) φdω

=

∫

Ω
(1 − u(t, ·)) φdω −

∫

Ωc
u(t, ·)φdω

=

∫

Ω
φ(x)dω(x) −

∫

M
u(t, x)φ(x)dω(x). (64)

Since u(t, x) is the solution to (17), the function (64) is smooth as t ∈ [0,∞). Indeed, the
smoothness in the open interval is guaranteed by hypoellipticity of the sub-Laplacian.
At t = 0, the divergence theorem, together with the fact that φ has compact support
in M , implies that

∂i
t

(∫

M
u(t, x)φ(x)dω(x)

)
=

∫

M
∂i

t (u(t, x)φ(x)) dω(x) =

∫

M
∆iu(t, x)φ(x)dω(x)

=

∫

M
u(t, x)∆iφ(x)dω(x)

t→0−−→
∫

Ω
∆iφ(x)dω(x).
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The previous limit shows that (64) is smooth at t = 0, and also that its asymptotic
expansion at order k, as t → 0, coincides with its k-th Taylor polynomial at t = 0.
Finally, we recover (63), applying once again the divergence theorem:

∫

Ω
∆iφdω =

∫

∂Ω
g(∇(∆i−1φ), ν)dσ = −

∫

∂Ω
g(∇(∆i−1φ),∇δ)dσ,

recalling that ν = −∇δ is the outward-pointing normal vector to Ω at its boundary.

Applying the (iterated) Duhamel’s principle (52) to the difference Iφ− Icφ, we are
able to obtain relevant information on the functional Gu.

Theorem 5.4. Let M be a compact sub-Riemannian manifold, equipped with a smooth
measure ω, and let Ω ⊂ M be an open subset whose boundary is smooth and has no
characteristic points. Then, for any φ ∈ C∞

c (Ωr0
−r0

),

Gu[φ](t) =
1

2
√
π

∫

∂Ω
φdσt1/2 +

1

8

∫

∂Ω
φ∆δdσt + o(t3/2), as t → 0. (65)

Proof. Let us study the difference of the inside and outside contributions Iφ(t, 0) −
Icφ(t, 0): on the one hand, we have an iterated Duhamel’s principle, cf. Lemma A.7,
which we report here:

(Iφ− Icφ) (t, 0) = 2G1−2u[φ](t) +
1

2

∫

∂Ω
Nφdσt (66)

+
1

2π

∫ t

0

∫ τ

0
G1−2u[N2φ](τ̂) ((τ − τ̂)(t− τ))−1/2 dτ̂dτ

+
1

4
√
π

∫ t

0

∫

∂Ω
(1 − 2u(τ, ·)) (4∆ −N2)φdσ(t − τ)1/2dτ +O(t2),

where we recall that N is the operator acting on smooth functions defined by

Nφ = 2g(∇φ,∇δ) + φ∆δ, ∀φ ∈ C∞(M).

Using Corollary 5.2 and the linearity of Gv with respect to v, we know that

G1−2u[φ](t) = o(t1/2), as t → 0, ∀φ ∈ C∞
c (Ωr0

−r0
). (67)

In addition, an application of Theorem 3.1 and dominated convergence theorem implies
that

∫ t

0

∫

∂Ω
(1 − 2u(τ, ·)) (4∆ −N2)φdσ(t − τ)1/2dτ = o(t3/2) as t → 0. (68)

Thus, using (67) and (68), we can improve (66), obtaining

Iφ(t, 0) − Icφ(t, 0) = 2G1−2u[φ](t) +
1

2

∫

∂Ω
Nφdσt + o(t3/2). (69)

On the other hand, the quantity Iφ(t, 0) − Icφ(t, 0) has a complete asymptotic series
by Proposition 5.3, which at order 3 becomes:

Iφ(t, 0) − Icφ(t, 0) =

∫

∂Ω
g(∇φ,∇δ)dσt + o(t3/2), as t → 0. (70)
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Comparing (69) and (70), we deduce that, as t → 0,

2G1−2u[φ](t) = −1

2

∫

∂Ω
Nφdσt+ o(t3/2) +

∫

∂Ω
g(∇φ,∇δ)dσt + o(t3/2)

= −1

2

∫

∂Ω
φ∆δdσt + o(t3/2).

Finally, using the linearity of the functional Gv[φ] with respect to v, we conclude the
proof.

Remark 5.5. The asymptotics (65) for the functional Gu[φ](t) is the best result that we
are able to achieve. In the expression (66), the problematic term is given by (68), i.e.

∫ t

0

∫

∂Ω
(1 − 2u(τ, ·)) (4∆ −N2)φdσ(t − τ)1/2dτ,

which can not be expressed in terms of Gu, hence the only relevant information is given
by Theorem 3.1. In conclusion, we can not repeat the strategy of the proof of Theorem
5.4, replacing the series of Gu at order 3 in (66) to deduce the higher-order terms.

5.2 Fourth-order asymptotics

In this section we prove Theorem 1.1. We recall here the statement.

Theorem 5.6. Let M be a compact sub-Riemannian manifold, equipped with a smooth
measure ω, and let Ω ⊂ M be an open subset whose boundary is smooth and has no
characteristic points. Then, as t → 0,

HΩ(t) = ω(Ω) − 1√
π
σ(∂Ω)t1/2 − 1

12
√
π

∫

∂Ω

(
2g(∇δ,∇(∆δ)) − (∆δ)2

)
dσt3/2 + o(t2).

Before giving the proof of the theorem, let us comment on its strategy. Recall that,
on the one hand, for a cutoff function φ ∈ C∞

c (Ωr0
−r0

) which is identically 1 close to ∂Ω,
cf. (48), the localization principle (55) holds, namely

ω(Ω) −HΩ(t) = Iφ(t, 0) +O(t∞), as t → 0. (71)

Moreover, by the iterated Duhamel’s principle for Iφ(t, 0), cf. Lemma A.6, we can
deduce expression (61), namely

Iφ(t, 0) = 2G1−u[φ](t) +
1√
π

∫ t

0
G1−u[Nφ](t)dσ(t − τ)−1/2dτ +O(t3/2). (72)

On the other hand, we have an asymptotic series of the functional Gu at order 3, cf.
Theorem 3.1. Therefore, if we naively insert this series in (72), we can obtain, at most,
a third-order asymptotic expansion of the relative heat content HΩ(t), whereas we are
interested in the fourth-order expansion.

Using the outside contribution, we are able to overcome this difficulty. In particular,
applying Proposition 5.3, for a function φ ∈ C∞

c (Ωr0
−r0

) which is identically 1 close to
∂Ω, we have the following asymptotic relation:

Iφ(t, 0) = Icφ(t, 0) +O(t∞), as t → 0. (73)
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Notice that (73) is a direct consequence of Proposition 5.3 since all the coefficients of
the expansion vanish. Therefore, thanks to (73), we can rephrase (71) as follows:

ω(Ω) −HΩ(t) =
1

2
(Iφ(t, 0) + Icφ(t, 0)) +O(t∞), as t → 0. (74)

The advantage of (74) is that we can now apply the iterated Dirichlet principle for the
sum Iφ+ Icφ, cf. Lemma A.8. Already at order 3, we obtain

(Iφ+ Icφ) (t, 0) =
2√
π

∫

∂Ω
φdσt1/2 +

1√
π

∫ t

0
G1−2u[Nφ](τ)(t−τ)−1/2dτ +O(t3/2), (75)

where N is the operator defined in (59). As we can see, in (75), the functional Gu occurs
for the first time in the second iteration of the Duhamel’s principle, as opposed to the
expansion for Iφ, where it appeared already in the first application, cf. (72). Hence we
gain an order with respect to the asymptotic series of Gu. More generally, if we were
able to develop the k-th order asymptotics for Gu, this would imply the (k+ 1)-th order
expansion for HΩ(t).

Proof of Theorem 5.6. Following the discussion above, it is enough to expand the sum
Iφ + Icφ, with φ ∈ C∞

c (Ωr0
−r0

). For this quantity, Lemma A.8 holds, namely we have
the following iterated version of Duhamel’s principle:

(Iφ+ Icφ) (t, 0) =
2√
π

∫

∂Ω
φdσt1/2 +

1√
π

∫ t

0
G1−2u[Nφ](τ)(t − τ)−1/2dτ (76)

+
1

6
√
π

∫

∂Ω
(4∆ +N2)φdσt3/2

+
1

4π3/2

∫ t

0

∫ τ

0

∫ τ̂

0
G1−2u[N3φ](s) ((τ̂ − s)(τ − τ̂)(t − τ))−1/2dsdτ̂dτ

+
1

4
√
π

∫ t

0
G1−2u[(6N∆ −N3 − 2∆N)φ](τ)(t − τ)1/2dτ +O(t5/2),

whereN is defined in (59). Moreover, recall that by Theorem 5.4, the functional G1−2u[φ]
has the following expansion for any φ ∈ C∞

c (Ωr0
−r0

):

G1−2u[φ](t) = −1

4

∫

∂Ω
φ∆δdσt + o(t3/2), as t → 0.

Thus, replacing the above expansion in (76), we obtain for any φ ∈ C∞
c (Ωr0

−r0
),

Iφ(t, 0) + Icφ(t, 0) =
2√
π

∫

∂Ω
φdσt1/2 − 1

3
√
π

(∫

∂Ω
Nφ∆δdσ

)
t3/2

+
1

6
√
π

∫

∂Ω
(4∆ +N2)φdσt3/2 + o(t2). (77)

In particular, if we choose φ ∈ C∞
c (Ωr0

−r0
) such that φ ≡ 1 close to ∂Ω, then on the one

hand, from (77), we obtain, as t → 0,

Iφ(t, 0) + Icφ(t, 0) =
2√
π
σ(∂Ω)t1/2

+
1

6
√
π

∫

∂Ω

(
2g(∇δ,∇(∆δ)) − (∆δ)2

)
dσt3/2 + o(t2).

On the other hand, the asymptotic relation (74) holds. This concludes the proof.
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Third-order vs fourth-order asymptotics. We stress that we could have obtained
the third-order asymptotic expansion of HΩ(t) without introducing the sum of the inside
and outside contributions Iφ + Icφ, and only using the Duhamel’s principle for Iφ,
cf. Lemma A.6, and the asymptotic series for Gu, cf. Theorem 5.4. However, for the
improvement to the fourth-order asymptotics, the argument of the sum of contributions
seems necessary.

5.3 The weighted relative heat content

Theorem 5.6 holds for any function φ ∈ C∞
c (Ωr0

−r0
) regardless of its value at the boundary

of ∂Ω. Indeed, we can prove a slightly more general result which we state here for
completeness.

Proposition 5.7. Let M be a compact sub-Riemannian manifold, equipped with a
smooth measure ω, and let Ω ⊂ M be an open subset whose boundary is smooth and has
no characteristic points. Let χ ∈ C∞

c (M) and define the weighted relative heat content

Hχ
Ω(t) =

∫

Ω
u(t, x)χ(x)dω(x), ∀ t > 0.

Then, as t → 0,

Hχ
Ω(t) =

∫

Ω
χdω − 1√

π

∫

∂Ω
χdσt1/2 − 1

2

∫

∂Ω
g(∇χ,∇δ)dσt

−
(

1

12
√
π

∫

∂Ω
(4∆ +N2)χdσ − 1

6
√
π

∫

∂Ω
(Nχ)∆δdσ

)
t3/2

− 1

2

∫

∂Ω
g(∇(∆χ),∇δ)dσt2 + o(t2).

Proof. Let us consider a cutoff function φ as in (48). Then, applying the usual local-
ization argument, cf. (49), we have:

∫

Ω
χ(x)dω(x) −Hχ

Ω(t) = I[φχ](t, 0) +O(t∞), as t → 0,

where now the function φχ ∈ C∞
c (Ωr0

−r0
) and φχ = χ close to ∂Ω.

As we did in the proof of Theorem 5.6, we relate Hχ
Ω(t) with the sum of contributions.

Applying Proposition 5.3, we have the following asymptotic relation at order 4:

I[φχ](t, 0) − Ic[φχ](t, 0) =

∫

∂Ω
g(∇χ,∇δ)dσt +

∫

∂Ω
g(∇(∆χ),∇δ)dσt2 + o(t2),

as t → 0, having used the fact that φχ ≡ χ close to ∂Ω. Notice that this relation
coincides with (73) when χ ≡ 1 close to ∂Ω. Thus, we obtain

∫

Ω
χ(x)dω(x) −Hχ

Ω(t) =
1

2
(I[φχ](t, 0) + Ic[φχ](t, 0))

+

∫

∂Ω
g(∇χ,∇δ)dσt +

∫

∂Ω
g(∇(∆χ),∇δ)dσt2 + o(t2), as t → 0.

Finally, applying (77) for I[φχ](t, 0) + Ic[φχ](t, 0), we conclude.
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Remark 5.8. We compare the coefficients of the expansions of HΩ(t) and QΩ(t), defined
in (6), respectively. On the one hand, by [RR21, Thm. 5.8], the k-th coefficient of the
expansion of QΩ(t) is of the form

−
∫

∂Ω
Dk(χ)dσ, ∀χ ∈ C∞

c (M),

where Dk is a differential operator acting on C∞
c (M) and belonging to spanR{∆, N} as

algebra of operators. On the other hand, Proposition 5.7 shows that this is no longer
true for the third coefficient of the expansion of HΩ(t), as we need to add the operator
multiplication by ∆δ.

6 An alternative approach using the heat kernel asymp-

totics

As we can see by a first application of Duhamel’s principle, cf. (10), and its iterations, the
small-time asymptotics of u(t, ·)|∂Ω, together with uniform estimates on the remainder
with respect to x ∈ ∂Ω, would be enough to determine the asymptotic expansion of the
relative heat content, at any order.

In Theorem 3.1, we studied the zero-order asymptotics of u(t, ·)|∂Ω. The technique
used for its proof does not work at higher-order, since the exponential remainder term
in (40) would be unbounded as t → 0. In this section, we comment how such an higher-
order asymptotics of u(t, ·)|∂Ω can be obtained exploiting the asymptotic formula for
the heat kernel proved in [CdVHT20, Thm. A].

Let M be a compact sub-Riemannian manifold and Ω ⊂ M an open subset with
smooth boundary. For x ∈ ∂Ω, let us consider ψ = (z1, . . . , zn) : U → V a chart of
privileged coordinates centered at x, with U a relatively compact set. Since the heat
kernel is exponentially decaying outside the diagonal, cf. (31),

u(t, x) =

∫

Ω
pt(x, y)dω(y) =

∫

Ω∩U
pt(x, y)dω(y) +O(t∞)

=

∫

V1

pt(0, z)dω(z) +O(t∞),
(78)

where V1 = ψ(U∩Ω), and we denote with the same symbols ω and pt(0, z) the coordinate
expression of the measure and heat kernel, respectively. For example, if x ∈ ∂Ω is non-
characteristic, we may choose ψ as in (30), then V1 = V ∩ {z1 > 0}. Recall the
asymptotic expansion of the heat kernel of Theorem 2.9, evaluated in (0, z): for any
m ∈ N and compact set K ⊂ (0,∞) × V ,

|ε|Qpε2τ (0, δε(z)) = p̂τ (0, z) +
m∑

i=0

εifi(τ, 0, z) + o(|ε|m), as ε → 0, (79)

uniformly as (τ, z) ∈ K, where Q, p̂ and fi’s are defined in Section 2. We will omit the
dependance on the center of the privileged coordinates x, it being fixed for the moment.
At this point, we would like to integrate (79) to get information of u(t, x) as t → 0.
Proceeding formally, let us choose the parameters ε, τ in (79) such that:

ε2τ = t, ε = t
α

2α+1 , τ = t
1

2α+1 , (80)
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for some α > 0 to be fixed. For convenience of notation, set

Vs = δs(V1) ∀ s ∈ [−1, 1],

then, split the integral over V1 in (78) in two, so that the first one is computed on Vε

and the second one is computed on its complement in V1, i.e. V1 \ Vε. Notice that, by
usual off-diagonal estimates, see [JSC86, Prop. 3] and our choice of the parameter ε as
in (80), the following is a remainder term, independently of the value of α:

∫

V1\Vε

pt(0, z)dω(z) = O

(
e−β ε2

t

)
= O(t∞), as t → 0.

Thus, writing the measure in coordinates dω(z) = ω(z)dz with ω(·) ∈ C∞(V1), we have,
as t → 0,

u(t, x) =

∫

Vε

pt(0, z)ω(z)dz +O(t∞) =

∫

V1

εQpε2τ (0, δε(z))ω(δε(z))dz +O(t∞)

=

∫

V1

(
p̂τ (0, z) +

m−1∑

i=0

εifi(τ, 0, z) + εmRm(ε, τ, z)

)
ω(δε(z))dz +O(t∞), (81)

where Rm is a smooth function on [−1, 1] × (0,∞) × Rn, such that

sup
ε∈[−1,1]

z∈K

|Rm(ε, τ, z)| ≤ Cm(τ,K), (82)

for any compact set K ⊂ Rn, according to (79). Up to restricting the domain of
privileged coordinates U , we can assume that (82) holds on V . By our choices (80), we
would like the following term

t
mα

2α+1

∫

V1

∣∣∣Rm

(
t

α
2α+1 , t

1
2α+1 , z

)∣∣∣ω(δtα/(2α+1) (z))dz (83)

to be an error term of order greater than m−1
2 , as t → 0. Thus, assume for the moment

that ∀K ⊂ V compact and ∀m ∈ N, ∃ℓ = ℓ(m,K) ∈ N and Cm(K) > 0 such that

sup
ε∈[−1,1]

z∈K

|Rm(ε, τ, z)| ≤ Cm(K)

τ ℓ
, ∀ τ ∈ (0, 1). (H)

Thanks to assumption (H), choosing α large enough, we see that (83) is a o(t
m−1

2 ).
Performing the change of variables z 7→ δ1/

√
τ (z) in (81), and exploiting the homogeneity

properties of p̂ and fi, namely (29), we finally obtain the following expression for u as
t → 0:

u(t, x) =

∫

V
t−1/(2(2α+1))

(
p̂1(0, z) +

m−1∑

i=0

ti/2ai(z)

)
ω(δ√

t(z))dz + o(t
m−1

2 ), (84)

having set ai(z) = fi(1, 0, z), for all i ∈ N. Therefore, we find an asymptotic expansion
of u(t, x) under assumption (H), which is crucial to overcome the fact that (79) is
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formulated on an asymptotic neighborhood of the diagonal, and not uniformly as τ → 0.
It is likely5 that (H) can be proven in the nilpotent case, and more generally when the
ambient manifold isM = Rn and the generating family of the sub-Riemannian structure,
{X1, . . . ,XN } satisfies the uniform Hörmander polynomial condition, see [CdVHT20,
App. B] for details. Although this strategy could be used to prove the existence of an
asymptotic expansion of HΩ(t), we refrain to go in this directions since two technical
difficulties would arise nonetheless:

• Uniformity of the expansion of u(t, x) with respect to x ∈ ∂Ω. In the non-
equiregular case, cf. Section 2.3 for details, the expansion (79) is not uniform as x
varies in compact subsets of M , hence the same would be true for the expansion
(84).

• Computations of the coefficients. The coefficients appearing in (84) depend on the
nilpotent approximation at x ∈ ∂Ω and are not clearly related to the invariants
of ∂Ω.

Our strategy avoids almost completely the knowledge of the small-time asymptotics
of u(t, ·)∂Ω, it being based on an asymptotic series of the auxiliary functional Gu. More-
over, we stress that our method to prove the asymptotics of HΩ(t) up to order 4, cf.
Theorem 1.1, holds for any sub-Riemannian manifold, including also the non-equiregular
ones.

Remark 6.1. In order to pass from (84) to the asymptotic expansion of HΩ(t), we would
use Duhamel’s formula, which holds under the non-characteristic assumption. This
means that, even though (79) of course is true even in presence of characteristic points,
we can’t say much about the asymptotics of HΩ(t) in the general case.

7 The non-compact case

In the non-compact case, we have the following difficulties:

• The localization principle, cf. Proposition 4.5, may fail.

• Set u(t, x) = et∆
1Ω(x) and uc(t, x) = et∆

1Ωc(x). If the manifold is not stochasti-
cally complete, the relation u(t, x) + uc(t, x) = 1 does not hold.

• The Gaussian bounds for the heat kernel and its time-derivatives, à la Jerison and
Sanchez-Calle [JSC86, Thm. 3], may not hold, thus Lemma A.3 may not be true.

Definition 7.1. Let M be a sub-Riemannian manifold, equipped with a smooth mea-
sure ω. We say that (M,ω) is (globally) doubling if there exist constants CD > 0 such
that:

V (x, 2ρ) ≤ CDV (x, ρ), ∀ ρ > 0, x ∈ M,

where V (x, ρ) = ω(Bρ(x)). We say that (M,ω) satisfies a (global) weak Poincaré in-
equality, if there exist constants CP > 0 such that,

∫

Bρ(x)
|f − fx,ρ|2 dω ≤ CP ρ

2
∫

B2ρ(x)
‖∇f‖2dω, ρ > 0, x ∈ M,

5Personal communication by Yves Colin de Verdière, Luc Hillairet and Emmanuel Trélat.
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for any smooth function f ∈ C∞(M). Here fx,ρ = 1
V (x,ρ)

∫
Bρ(x) fdω. We refer to these

properties as local whenever they hold for any ρ < ρ0.

Remark 7.2. If M is a sub-Riemannian manifold, equipped with a smooth globally
doubling measure ω, then it is stochastically complete, namely

∫

M
pt(x, y)dω(y) = 1, ∀ t > 0, x ∈ M.

This is a straightforward consequence of the characterization given by [Stu96, Thm. 4]
on the volume growth of balls.

Theorem 7.3. Let M be a complete sub-Riemannian manifold, equipped with a smooth
measure ω. Assume that (M,ω) is globally doubling and satisfies a global weak Poincaré
inequality. Then, there exist constants Ck, ck > 0, for any integer k ≥ 0, depending only
on CD, CP , such that, for any x, y ∈ M and t > 0,

|∂k
t pt(x, y)| ≤ Ckt

−k

V (x,
√
t)

exp

(
−d2

SR(x, y)

ckt

)
, (85)

where we recall V (x,
√
t) = ω(B√

t(x)).
In addition, there exists constants Cℓ, cℓ > 0, depending only on CD, CP , such that,

for any x, y ∈ M and t > 0,

pt(x, y) ≥ Cℓ

V (x,
√
t)

exp

(
−d2

SR(x, y)

cℓt

)
. (86)

Proof. Define the sub-Riemannian Hamiltonian as the smooth function H : T ∗M → R,

H(λ) =
1

2

N∑

i=1

〈λ,Xi〉2, λ ∈ T ∗M,

where {X1, . . . ,XN } is a generating family for the sub-Riemannian structure. Then,
following the notations of [Stu96], one can easily verify that

E(u, v) =

∫

M
2H(du, dv)dω, ∀u, v ∈ C∞

c (M),

where H is the sub-Riemannian Hamiltonian viewed as a bilinear form on fibers, de-
fines a strongly local Dirichlet form with domain dom(E) = C∞

c (M). Notice that the
Friedrichs extension of E is exactly the sub-Laplacian, moreover, the intrinsic metric

dI(x, y) = sup{|u(x) − u(y)| s.t. u ∈ C∞
c (M), |2H(du, du)| ≤ 1}, ∀x, y ∈ M.

coincides with the usual sub-Riemannian distance, as |2H(du, du)| = ‖∇u‖2, cf.
[BBS16, Ch. 2, Prop. 12.4]. Thus, E is also strongly regular and, by our assumptions
on (M,ω), [SC92, Thm. 4.3] holds true, proving (85). For the Gaussian lower bound
(86), it is enough to apply [Stu96, Cor. 4.10], cf. also [SC92, Thm. 4.2]. This concludes
the proof.
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Remark 7.4. Theorem 7.3 ensures that the time-derivatives of the heat kernel satisfy
Gaussian bounds, which are sufficient to prove Lemma A.3 in the non-compact case.
This lemma is crucial to obtain the asymptotics expansion of HΩ(t) at order strictly
greater than 1.

We prove now the non-compact analogue of Proposition 4.5.

Corollary 7.5. Under the assumptions of Theorem 7.3, let Ω ⊂ M be an open and
bounded subset with smooth boundary. Then, for any K ⊂ M compact subset of M such
that K ∩ ∂Ω = ∅, we have:

1Ω(x) − u(t, x) = O(t∞), as t → 0, uniformly for x ∈ K,

where u(t, x) = et∆
1Ω(x) is the solution to (17).

Proof. Let us assume that K ⊂ Ω such that K ∩ ∂Ω = ∅. The other part of the
statement can be done similarly.

Since M is stochastically complete, cf. Remark 7.2, for any x ∈ K, we can write:

1Ω(x) − u(t, x) = 1 − et∆
1Ω(x) = et∆1(x) − et∆

1Ω(x) =

∫

M\Ω
pt(x, y)dω(y).

Thanks to Theorem 7.3, we can apply (85) for k = 0 obtaining

∫

M\Ω
pt(x, y)dω(y) ≤

∫

M\Ω

C0

V (x,
√
t)

exp

(
−d2

SR(x, y)

c0t

)
,

for suitable constants C0, c0 > 0 not depending on x, y ∈ M , t > 0. Now, fix L > 1:
since K ⊂ Ω and is well-separated from ∂Ω, we deduce there exists a = a(K) > 0 such
that dSR(x, y) > a for any x ∈ K, y ∈ M \ Ω, and so

∫

M\Ω
pt(x, y)dω(y) ≤

∫

M\Ω

C0

V (x,
√
t)

exp

(
−d2

SR(x, y)

c0t

)
dω(y)

≤ exp

(
−C(a,L)

c0t

)∫

M\Ω

C0

V (x,
√
t)

exp

(
−d2

SR(x, y)

2Lc0t

)
dω(y), (87)

where C(a,L) = a2(2L−1)
2L > 0. Thus, if we prove that the integral in (87) is finite, we

conclude. Firstly, recall the Gaussian lower bound (86), which holds thanks to Theorem
7.3:

pt(x, y) ≥ Cℓ

V (x,
√
t)

exp

(
−d2

SR(x, y)

cℓt

)
. (88)

for suitable constants constants Cℓ, cℓ > 0, not depending on x, y ∈ M , t > 0. Secondly,
by the doubling property of ω, it is well-known that there exists C ′

D, s > 0 depending
only on CD such that

V (x,R) ≤ C ′
D

(
R

ρ

)s

V (x, ρ), ∀ ρ ≤ R. (89)
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Therefore, choosing L > 1 so big that c̃2 = (2Lc0)/cℓ > 1 and applying (89) for ρ =
√
t

and R = c̃
√
t, we have R > ρ and

V
(
x, c̃

√
t
)

≤ C̃V (x,
√
t), ∀ t > 0, (90)

having denoted by C̃ = C ′
D c̃

s > 0. Finally, using (90) and the Gaussian lower bound
(88), we can estimate the integral in (87) as follows:

∫

M\Ω

1

V (x,
√
t)

exp

(
−d2

SR(x, y)

2Lc0t

)
dω(y)

≤
∫

M

C̃

V (x, c̃
√
t)

exp

(
−d2

SR(x, y)

cℓc̃t

)
dω(y) ≤ C̃

Cℓ

∫

M
pt̃(x, y)dω(y) ≤ C̃

Cℓ
,

where t̃ = c̃t. Since the resulting constant does not depend on x ∈ K, we conclude the
proof.

Using Corollary 7.5 and adopting the same strategy of the compact case, one can
finally prove the following result.

Theorem 7.6. Let M be a complete sub-Riemannian manifold, equipped with a smooth
measure ω. Assume that (M,ω) is globally doubling and satisfies a global weak Poincaré
inequality. Let Ω ⊂ M be an open and bounded subset whose boundary is smooth and
has no characteristic points. Then, as t → 0,

HΩ(t) = ω(Ω) − 1√
π
σ(∂Ω)t1/2 − 1

12
√
π

∫

∂Ω

(
2g(∇δ,∇(∆δ)) − (∆δ)2

)
dσt3/2 + o(t2).

Remark 7.7. Theorem 7.6 holds true also for the weighted relative heat content, cf.
Section 5.3. In both cases, we do not know whether its assumptions are sharp in the
non-compact case.

7.1 Notable examples

We list here some notable examples of sub-Riemannian manifolds satisfying the assump-
tions of Theorem 7.3. For these examples Theorem 7.6 is valid.

• M is a Lie group with polynomial volume growth, the distribution is generated
by a family of left-invariant vector fields satisfying the Hörmander condition and
ω is the Haar measure. This family includes also Carnot groups. See for example
[Var96, SC92, GS12].

• M = Rn, equipped with a sub-Riemannian structure induced by a family of vec-
tor fields {Y1, . . . , YN} with bounded coefficients together with their derivatives,
and satisfying the Hörmander condition. Under these assumptions, the Lebesgue
measure is doubling, cf. [NSW85, Thm. 1], and the Poincaré inequality is verified
in [Jer86]. We remark that these works provide the local properties of Defini-
tion 7.1, with constants depending only on the Ck-norms of the vector fields Yi,
for i = 1, . . . , N . Thus, if the Ck-norms are globally bounded, we obtain the
corresponding global properties.
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• M is a complete Riemannian manifold with metric g, equipped with the Rieman-
nian measure, and with non-negative Ricci curvature.

We mention that a Riemannian manifold M with Ricci curvature bounded below by a
negative constant satisfies only locally Definition 7.1, i.e. for some ρ0 < ∞, depending
on the Ricci bound. Nevertheless, we can prove Corollary 7.5 in this case, as Li and
Yau provides an upper Gaussian bound, see [LY86, Cor. 3.1], and a lower bound as
(86) holds, cf. [BQ99, Cor. 2]. Thus, the first-order asymptotic expansion of HΩ(t), cf.
Theorem 4.13, is valid in this setting.

A Iterated Duhamel’s principle for IΩφ(t, 0)

In this section, we study the iterated Duhamel’s principle for the IΩφ, cf. Definition 4.7.
The main result is Lemma A.6, which will imply formulas (58), (66) and (76).

The next proposition is a version of the iterated Duhamel’s principle taken from
[RR21, Prop. A.1], which we recall here.

Proposition A.1. Let F ∈ C∞((0,∞)× [0,+∞)) be a smooth function compactly sup-
ported in the second variable and let L = ∂t − ∂2

r . Assume that the following conditions
hold:

(i) LkF (0, r) = lim
t→0

LkF (t, r) exists in the sense of distributions6 for any k ≥ 0;

(ii) LkF (t, 0) and ∂rL
kF (t, 0) converge to a finite limit as t → 0, for any k ≥ 0.

Then, for all m ∈ N and t > 0, we have

F (t, 0) =
m∑

k=0

(
tk

k!

∫ ∞

0
e(t, r, 0)LkF (0, r)dr − 1√

πk!

∫ t

0
∂rL

kF (τ, 0)(t − τ)k−1/2dτ

)

+
1

m!

∫ t

0

∫ ∞

0
e(t− τ, r, 0)Lm+1F (τ, r)(t − τ)mdrdτ, (91)

where e(t, r, s) is the Neumann heat kernel on the half-line, cf. (53).

We want to apply Proposition A.1 to the function IΩφ(t, 0), thus, we study in detail
the operators LkIΩ, for any k ≥ 1. Define iteratively the family of matrices of operators,
acting on smooth functions:

Mkj =

(
Qkj Skj

Pkj Rkj

)
,

as follows. Set

M10 =

(
∆ ∆Nr

−Nr −N2
r + ∆

)
and M11 =

(
0 −Nr

0 0

)
,

6Namely, for any ψ ∈ C∞([0,∞)), there exists finite limt→0

∫∞

0
f(t, r)ψ(r)dr. With a slight abuse

of notation, we define
∫∞

0
f(0, r)ψ(r)dr = limt→0

∫∞

0
f(t, r)ψ(r)dr.
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and, for all k ≥ 1 and 0 ≤ j ≤ k, set

Mkj = M10Mk−1,j +M11Mk−1,j−1, (92)

while Mkj = 0, for all other values of the indices, i.e. k < 0, j < 0 or k < j. Here Nr is
the operator defined in (50), namely

Nrφ = 2g (∇φ, νr) + φdivω(νr), ∀φ ∈ C∞
c (M), (93)

where νr is the outward-pointing normal from Ωr.
Recall the definition of IΩ and ΛΩ: for any φ ∈ C∞

c (Ωr0
−r0

) and for all t > 0, r ≥ 0,

IΩφ(t, r) =

∫

Ωr

(1 − u(t, x)) φ(x)dω(x),

ΛΩφ(t, r) = −∂rIΩφ(t, r) = −
∫

∂Ωr

(1 − u(t, y)) φ(y)dσ(y),

where u(t, ·) = et∆
1Ω(·). Iterations of LkIΩφ satisfy the following lemma.

Lemma A.2. Let M be a sub-Riemannian manifold, equipped with a smooth measure
ω, and let Ω ⊂ M be an open relatively compact subset whose boundary is smooth and
has no characteristic points. Then, as operators on C∞

c (Ωr0
−r0

), we have:

(i) LIΩ = IΩ∆ − ΛΩNr;

(ii) LΛΩ = ΛΩ

(−N2
r + ∆

)− ∂tIΩNr + IΩ∆Nr;

(iii) For any k ∈ N,

LkIΩ =
k∑

j=0

∂j

∂tj
(ΛΩPkj + IΩQkj) and LkΛΩ =

k∑

j=0

∂j

∂tj
(ΛΩRkj + IΩSkj).

Here we mean that, for any φ ∈ C∞
c (Ωr0

−r0
), the operator Lk acts on the functions

IΩφ(t, r), ΛΩφ(t, r). Analogously the right-hand side when evaluated in φ is a function
of (t, r).

Proof. The proof of items (i) and (ii) follows from Proposition 4.2 and the divergence
theorem, cf. [RR21, Lem. A.2]. We show how to recover the iterative law (92).

Consider the vector V = (IΩ,ΛΩ), then by items (i) and (ii), we have

LV = (LIΩ, LΛΩ) = VM10 + ∂tVM11. (94)

Notice that the operator Lk contains at most k derivatives with respect to t, therefore
we have

LkV =
k∑

j=0

∂j
t (VMkj) , ∀ k ≥ 0,
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On the other hand, we can evaluate LkV , using (94):

LkV = L
(
Lk−1V

)
=

k−1∑

j=0

L∂j
t (VMk−1,j) =

k−1∑

j=0

∂j
t (LVMk−1,j)

=
k−1∑

j=0

∂j
t VM10Mk−1,j +

k−1∑

j=0

∂j+1
t VM11Mk−1,j.

Reorganizing the sum, we find (92), concluding the proof.

We want to apply Proposition A.1 to IΩφ(t, r) for k ≥ 2, in order to obtain higher-
order asymptotics. However, Lemma A.2 shows that LkIΩ, for k ≥ 2, involves time
derivatives of u(t, x) which are not well-defined at ∂Ω as t → 0. Therefore, we consider
the following approximation of IΩφ and ΛΩφ, respectively: fix ǫ > 0 and define, for any
t > 0, r ≥ 0,

Iǫφ(t, r) = =

∫

Ωr

(1 − uǫ(t, x))φ(x)dω(x),

Λǫφ(t, r) = −∂rIǫφ(t, r) =

∫

∂Ωr

(1 − uǫ(t, x))φ(y)dσ(y),

where uǫ(t, x) = et∆
1Ωǫ(x). We recall that, for any a ∈ R, Ωa = {x ∈ M | δ(x) > a}.

Notice that, by the dominated convergence theorem, we have

Iǫφ(t, 0)
ǫ→0−−→ IΩφ(t, 0), uniformly on [0, T ],

and, in addition, Lemma A.2 holds unchanged also for Iǫ and Λǫ.

Lemma A.3. Let M be compact a sub-Riemannian manifold, equipped with a smooth
measure ω, and let Ω ⊂ M be an open subset whose boundary is smooth and has no
characteristic points. Let ψ ∈ C∞([0,∞)), ǫ ∈ (0, r0) and define

ψ(−1)(r) =

∫ r

0
ψ(s)ds, ∀r ≥ 0.

Then, for any φ ∈ C∞
c (Ωr0

−r0
), the following identities hold:

(i) lim
t→0

∫ ∞

0

∂j

∂tj
Λǫφ(t, r)ψ(r)dr =





∫

Ωǫ
0

φ(ψ ◦ δ)dω if j = 0,

−
∫

Ωǫ

∆j(φ(ψ ◦ δ))dω if j ≥ 1;

(ii) lim
t→0

∫ ∞

0

∂j

∂tj
Iǫφ(t, r)ψ(r)dr =





∫

Ωǫ
0

φ
(
ψ(−1) ◦ δ

)
dω if j = 0,

−
∫

Ωǫ

∆j
(
φ
(
ψ(−1) ◦ δ

))
dω if j ≥ 1;

(iii)
∂j

∂tj
Λǫφ(0, 0) =





∫

∂Ω
φdσ if j = 0,

0 if j ≥ 1;
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(iv)
∂j

∂tj
Iǫφ(0, 0) =





∫

Ωǫ
0

φdω if j = 0,

− ∫Ωǫ
∆jφdω if j ≥ 1;

where, we recall, Ωǫ = {x ∈ M | δ(x) > ǫ} and Ωǫ
0 = Ω \ Ωǫ.

Remark A.4. The only difference with respect to [RR21, Lem. A.4] is item (iii), which
now holds only as t → 0 and not for all positive times.

Proof of Lemma A.3. We claim that, for any j ≥ 1,

lim
t→0

∫

Ω
φ(x)∆juǫ(t, x)dω(x) =

∫

Ωǫ

∆jφ(x)dω(x). (95)

Let us prove it by induction: for j = 1, applying the divergence theorem, we have

∫

Ω
φ∆uǫdω = −

∫

∂Ω
φg (∇uǫ,∇δ) dσ +

∫

∂Ω
uǫg (∇φ,∇δ) dσ +

∫

Ω
uǫ∆φdω. (96)

Let us discuss the first term in (96): by divergence theorem applied with respect to the
set Ωc, we have

∫

∂Ω
φg (∇uǫ,∇δ) dσ =

∫

Ωc
φ∆uǫdω +

∫

∂Ω
uǫg (∇φ,∇δ) dσ −

∫

Ωc
uǫ∆φdω, (97)

then, using [JSC86, Thm. 3] and noticing that dSR(x, y) ≥ ǫ, for any x ∈ Ωǫ and y ∈ Ωc,
we conclude that in the limit as t → 0, (97) converges to 0. This proves (95), for j = 1.
For j > 1, proceeding by induction, we conclude. Finally, using the co-area formula
(42), we complete the proof of the statement as in the usual argument of [Sav98, Lem.
5.6].

Remark A.5. In the non-compact case, under the assumption of Theorem 7.3, the above
lemma holds. In particular, on the one hand, the divergence theorem holds since φ has
compact support. On the other hand, notice that the time derivative estimates (85) are
enough to ensure that (97) converges to 0 as t → 0, regardless of the compactness of
the set of integration. The same is true for j > 1, where higher-order time derivatives
appear.

The next step is to apply the iterated Duhamel’s principle (91) to Iǫ, which now
satisfies its assumptions, then, pass to the limit as ǫ → 0. The computations are long
but straightforward: we report here the result at order t5/2.

Lemma A.6. Under the same assumptions of Lemma A.3, let φ ∈ C∞
c (Ωr0

−r0
). Then,

39



as t → 0, we have:

IΩφ(t, 0) = 2G1−u[φ](t) − 1√
π

∫ t

0
G1−u[N0φ](τ)(t − τ)−1/2dτ (98)

+
1

2π

∫ t

0

∫ τ

0
G1−u[N2

0φ](τ̂) ((τ − τ̂)(t − τ))−1/2 dτ̂dτ

− 1

4π3/2

∫ t

0

∫ τ

0

∫ τ̂

0
G1−u[N3

0φ](s) ((τ̂ − s)(τ − τ̂)(t − τ))−1/2 dsdτ̂dτ

+
1

4
√
π

∫ t

0

∫

∂Ω
(1 − u(τ, ·)) (4∆ −N2

0 )φdσ(t − τ)1/2dτ

− 1

4
√
π

∫ t

0
G1−u[(6N0∆ −N3

0 − 2∆N0)φ](τ)(t − τ)1/2dτ +O(t5/2),

where u(t, ·) = et∆
1Ω and Gu[φ] is the functional defined in (60). We recall that N0

is the operator defined in (93), associated with ν0 the outward-pointing normal to Ω,
namely

N0φ = 2g(∇φ, ν0) + φdivω(ν0), ∀φ ∈ C∞(M). (99)

The expression (58) is a direct consequence of A.6. Moreover, we can apply it, when
the base set is chosen to be Ωc. Then, evaluating the difference between IΩφ(t, 0) and
IΩcφ(t, 0) we obtain the asymptotic equality (66), which is proved in the next lemma.
We use the shorthands I, Ic for IΩ and IΩc respectively.

Lemma A.7. Under the same assumptions of Lemma A.3, let φ ∈ C∞
c (Ωr0

−r0
). Then,

as t → 0, we have:

(Iφ− Icφ) (t, 0) = 2G1−2u[φ](t) +
1

2

∫

∂Ω
Nφdσt

+
1

2π

∫ t

0

∫ τ

0
G1−2u[N2φ](τ̂) ((τ − τ̂)(t− τ))−1/2 dτ̂dτ

+
1

4
√
π

∫ t

0

∫

∂Ω
(1 − 2u(τ, ·)) (4∆ −N2)φdσ(t − τ)1/2dτ +O(t2),

where N is the operator given by

Nφ = 2g(∇φ,∇δ) + φ∆δ, ∀φ ∈ C∞(M),

with δ : M → R the signed distance function from ∂Ω.

Proof. Firstly, we apply Lemma A.6 to Iφ: we obtain exactly the expression (98),
with the operator N0 given by −N , since the outward-pointing normal to Ω is −∇δ.
Secondly, for the outside contribution, recall that we have the following equality of
smooth functions:

1 − uc(t, x) = 1 − et∆
1Ωc(x) = et∆

1Ω(x) = u(t, x), ∀ t > 0, x ∈ M.

Therefore, when we apply Lemma A.6 to Icφ, we replace 1 − uc(t, ·) = 1 − et∆
1Ωc with

the function u(t, ·) = et∆
1Ω(·). Moreover, the operator N0 defined in (99) is equal to

N , since the outward-pointing normal to Ωc is ∇δ. Therefore, writing the difference of
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the two contributions, and noticing that Ω and its complement share the boundary, we
have:

(Iφ− Icφ) (t, 0) = 2G1−2u[φ](t) +
1√
π

∫ t

0
G1[Nφ](τ)(t − τ)−1/2dτ

+
1

2π

∫ t

0

∫ τ

0
G1−2u[N2φ](τ̂ ) ((τ − τ̂)(t − τ))−1/2 dτ̂dτ

+
1

4π3/2

∫ t

0

∫ τ

0

∫ τ̂

0
G1[N3φ](s) ((τ̂ − s)(τ − τ̂)(t− τ))−1/2 dsdτ̂dτ

(100)

+
1

4
√
π

∫ t

0

∫

∂Ω
(1 − 2u(τ, ·)) (4∆ −N2)φdσ(t − τ)1/2dτ

+
1

4
√
π

∫ t

0
G1[(6N∆ −N3 − 2∆N)φ](τ)(t − τ)1/2dτ +O(t5/2). (101)

To conclude, it is enough to notice that the functional G1 can be explicitly computed:

G1[φ](t) =
1√
π

∫

∂Ω
φdσt1/2, ∀φ ∈ C∞

c (Ωr0
−r0

).

Thus, the terms in (100) and (101) are remainder of order O(t2).

Applying Lemma A.6 to the sum of IΩφ(t, 0) and IΩcφ(t, 0) instead, we obtain (76).
We state here the result and we omit the proof, it being similar to the one of Lemma
A.7.

Lemma A.8. Under the same assumptions of Lemma A.3, let φ ∈ C∞
c (Ωr0

−r0
). Then,

as t → 0, we have:

(Iφ+ Icφ) (t, 0) =
2√
π

∫

∂Ω
φdσt1/2 +

1√
π

∫ t

0
G1−2u[Nφ](τ)(t − τ)−1/2dτ

+
1

6
√
π

∫

∂Ω
(4∆ +N2)φdσt3/2

+
1

4π3/2

∫ t

0

∫ τ

0

∫ τ̂

0
G1−2u[N3φ](s) ((τ̂ − s)(τ − τ̂)(t − τ))−1/2 dsdτ̂dτ

+
1

4
√
π

∫ t

0
G1−2u[(6N∆ −N3 − 2∆N)φ](τ)(t − τ)1/2dτ +O(t5/2),

where N is the operator given by

Nφ = 2g(∇φ,∇δ) + φ∆δ, ∀φ ∈ C∞(M).
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