
Quadratic Cohomology

A. A. Agrachev∗

Abstract

We study homological invariants of smooth families of real quadratic
forms as a step towards a “Lagrange multipliers rule in the large” that
intends to describe topology of smooth maps in terms of scalar La-
grange functions.

1 Introduction

Morse theory connects homology of Lebesgue sets and level sets of smooth
real functions with critical points of the functions. The theory is based on
a simple observation that a continuous deformation of the function does not
influence the homotopy type of the level and Lebesgue sets for a prescribed
value of the function as long as the value is not critical. Moreover, homology
of the Lebesgue set is easier to control than one of the level set.

The same observation holds for level sets of smooth vector-functions. A
natural generalization of a Lebesgue set is the space of solutions of a system of
inequalities. The study of systems of inequalities and equations is partially
reduced to the real functions case by the Lagrange multipliers rule. The
Lagrange function of a vector-function (φ1, . . . , φk) is a linear combination

p1φ
1 + · · · + pkφ

k,
k
∑

i=1

p2i = 1, where the coefficients p1, . . . , pk of the linear

combination are treated as extra variables, the Lagrange multipliers. The
vector 0 ∈ R

k is a critical value of (φ1, . . . , φk) if and only if 0 ∈ R is a
critical value of the Lagrange function.

The title of the famous Marston Morse’s book [8] is “The calculus of
variations in the large”. This paper is a step towards a Lagrange multipliers
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rule in the large. Our first observation, a starting point of the whole story,
is that linearity with respect to the Lagrange multipliers is not important.
More precisely, if two Lagrange functions

f0(p1, . . . , pk, x) =

k
∑

i=1

piφ
i
0(x), f1(p1, . . . , pk, x) =

k
∑

i=1

piφ
i
1(x)

are connected by a homotopy ft, t ∈ [0, 1], where ft are just smooth, not
necessary linear with respect to the Lagrange multipliers and 0 is not a
critical value of ft for all t ∈ [0, 1], then zero level sets of the vector functions
(φ1

0, . . . , φ
k
0) and (φ1

1, . . . , φ
k
1) have equal homologies.

A similar property is valid for systems of inequalities; in this case La-
grange multipliers are taken from the intersection of the sphere with a con-
vex cone. One inequality (like in Morse theory) corresponds to a point of the
sphere. Actually, any point of the sphere of Lagrange multipliers represents
a real function. We can think on usual homology of the space of solutions
to the inequality as a kind of generalized cohomology of the point (different
points may have different generalized cohomologies!). Similarly, the general-
ized cohomology of a convex subset of the sphere is the usual homology of the
space of solutions to the corresponding system of inequalities. It is easy to
extend the construction to more general subsets of the sphere like submani-
folds with boundaries and corners. For the generalized cohomology to have
good properties we impose some regularity conditions. In particular, not all
convex subsets of the sphere are available but only those corresponding to
regular systems of inequalities.

The generalized cohomology satisfies a natural modification of the Eilen-
berg–Steenrod axioms [5]. The most important “homotopy axiom” is based
on the above property of the homologies of level sets when regular homotopies
of the Lagrange functions are considered.

Such a cohomology theory is determined by the space of function
span{φ1, . . . , φk}; different spaces of functions give different generalized co-
homologies. Moreover, as soon as a space of functions and the axioms are
fixed we may try to find other cohomology theory that satisfies the same
axioms but may be easier to compute. Such a theory should anyway have an
intimate relation to the systems of inequalities and equations. The axioms
imply that the cohomology of a point equals usual homology of space of solu-
tions to the correspondent inequality; moreover, the cohomology of a convex
set vanishes if the correspondent system of inequalities has no solutions.
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This general setting is described in Sections 2–4 of the paper. The main
results are presented in Sections 5, 6, where we build a cohomology theory
that satisfies all the axioms in the case the space of functions is the space of
quadratic forms. To compute the cohomology we define a spectral sequence
Er (see Section 5) with clear explicit expressions for all the differentials. The
homotopy invariance is proved in Section 6; the proof is based on the results
of [3].

The page E2 and the differential d2 of the spectral sequence Er are equal
to the page F 2 and the differential d2 of the spectral sequence F r described
in [4]. The sequence F r converges to the homology of the space of solutions
to the system of quadratic inequalities. We do not know higher differentials
of the sequence F r and, for the moment, we do not see a reason for two
spectral sequences to be equal. Anyway, this question remains open.

A couple of words on the differentials dr of the spectral sequence Er.
Recall that we deal with families of quadratic forms, i.e. symmetric matrices.
Let λ1(p) ≥ · · · ≥ λn(p) be the eigenvalues of the matrix corresponding to the
value p of the parameter. A key role in the construction of the differentials is
played by the cycles defined by the equations λi(p) = λi+1(p) in the space of
parameters. All differentials dr are some Massey operations involving these
cycles, they are described in Section 5.

The following example shows a flavor of the developed theory and, in
particular, the geometric meaning of the differential d3. Let us consider the
3-dimensional space isu(2) of Hermitian 2× 2−matrices with zero trace. An
Hermitian 2 × 2−matrix can be treated as a symmetric real 4 × 4−matrix
commuting with the multiplication of the vectors in C2 = R4 by the imag-
inary unit i. Thus isu(2) ⊂ Sym(R4), where Sym(R4) is a 10-dimensional
space of real symmetric 4 × 4−matrices. Given a matrix S ∈ Sym(R4), let
λ1(S) ≥ λ2(S) ≥ λ3(S) ≥ λ4(S) be its eigenvalues. If S ∈ isu(2), then
λ1(S) = λ2(S) = −λ3(S) = −λ4(S), i. e. the eigenvalues are double (the
eigenspaces are complex lines). Recall that, in general, for an eigenvalue to
be double is a codimension 2 property in Sym(R4)

Now take S0 ∈ Sym(R4) and translate the subspace isu(2) by S0. We
obtain an affine subspace S0 + isu(2) ⊂ Sym(R4). Matrices from this affine
subspace are not forced to be Hermitian and the eigenvalues are not necessary
double. We set:

CS0

j = {H ∈ isu(2) : λj(S0 +H) = λj+1(S0 +H)}, j = 1, 2, 3.

For generic S0, C
S0

j are smooth real algebraic curves in the 3-dimensional
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space isu(2).

Proposition. CS0

j , j = 1, 2, 3, are not empty. Moreover, for generic S0, the

curve CS0

2 has odd linking numbers with CS0

1 and with CS0

3 .

This proposition is proved in Section 7.

Acknowledgment. I am grateful to Antonio Lerario for stimulating discus-
sions.

2 Regular Homotopy

Let M be a smooth compact manifold. Given φ0, φ1 . . . , φk ∈ C1(M), the
system of equations φ0(x) = · · · = φk(x) = 0 is regular if 0 is not a critical
value of the map

ϕ = (φ0, . . . , φk)T : M → R
k+1.

A homotopy ϕt = (φ0
t , . . . , φ

k
t )

T is an isotopy of the system of equations
φ0
t = · · · = φk

t = 0 if 0 is not a critical value of ϕt, ∀ t ∈ [0, 1].
According to the standard Thom lemma, for any isotopy ϕt there exists

a family of diffeomorphisms Φt : M → M, Φ0 = id, such that

ϕ−1
t (0) = Φt

(

ϕ−1
0 (0)

)

, ∀ t ∈ [0, 1].

This is why one uses the term “isotopy”. In particular, ϕ−1
1 (0) ∼= ϕ−1

0 ,
M \ ϕ−1

1
∼= M \ ϕ−1

0 .
Now consider the function ϕ∗ : Sk × M → R defined by the formula

ϕ∗(p, x) = 〈p, ϕ(x)〉, where p ∈ Sk = {p ∈ R
k+1 : |p| = 1}. It is easy to see

that 0 is a critical value of ϕ if and only if it is a critical value of ϕ∗.
Nothing prevents us from taking any function f ∈ C1(Sk ×M). We say

that f is regular if 0 is not a critical value of f . A homotopy ft, t ∈ [0, 1],
such that all ft are regular we call a regular homotopy. We have much more
regular homotopies than isotopies. Nevertheless regular homotopy preserves
an important information on the space of solutions to the system of equations.

Proposition 1. Assume that ft is a regular homotopy and f0 = ϕ∗
0, f1 = ϕ∗

1.
Then M \ ϕ−1

0 (0) is homotopy equivalent to M \ ϕ−1
1 (0).

Proof. We set
Bt =

{

(p, x) ∈ Sk ×M : ft(p, x) > 0
}

.
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Note that the projections (p, x) 7→ x restricted to B0 and B1 are fiber bundles
over M \ϕ−1

0 (0) and M \ϕ−1
1 (0) whose fibers are hemispheres. In particular,

B0 is homotopy equivalent to M \ ϕ−1
0 (0) and B1 is homotopy equivalent to

M \ ϕ−1
1 (0).

We need the following Lemma.

Lemma 1. There exists a smooth family of diffeomorphisms Ft : S
k ×M →

Sk ×M such that F0 = id, Ft(B0) ⊂ Bt, ∀ t ∈ [0, 1].

Proof. We set z = (p, x) ∈ Sk×M and look for a nonautonomous vector field
Zt(z) such that the flow Ft generated by the differential equation ż = Zt(z)
has the desired property. It is sufficient to find a field Zt such that the
equality ft(z) = 0 implies 〈dzft, Zt(z)〉 > 0. Moreover, it is sufficient to find
such a field locally and then glue local pieces together by a partition of unity.
It remains to mention that we can easily do it locally since 0 is not a critical
value of ft.

Lemma 1 implies thatB0 and B1 are homotopy equivalent. Indeed, we can
make a time substitution t 7→ 1 − t and find a flow Gt : S

k ×M → Sk ×M
such that Gt(B1) ⊂ B1−t, G0 = id. The maps G1 ◦ F1 : B0 → B0 and
F1 ◦G1 : B1 → B1 are obviously homotopic to the identity.

Now I would like to extend the just described construction to systems of
inequalities. As we’ll see very soon, inequalities are very useful and helpful
even if we are mainly interested in the equations. Let K ⊂ Rk+1 be a closed
convex cone. A system of inequalities is a relation ϕ(x) ∈ K, x ∈ M , were,
as before, ϕ = (φ0, . . . , φk)T . We say that the system of inequalities is regular
(in the strong sense) if imDxϕ+K = R

k+1, ∀ x ∈ ϕ−1(K).
We take the dual cone K◦ = {p ∈ Rk+1 : 〈p, y〉 ≤ 0, ∀ y ∈ K} and con-

sider the “manifold with a convex boundary” (K◦ ∩ Sk) ×M . We say that
a subset V of a smooth manifold is a manifold with a convex boundary if V
is covered by coordinate neigborhoods whose intersections with V are diffeo-
morphic to closed convex subsets of the Euclidean space. Smooth functions
on the manifold with a convex boundary are restrictions of smooth functions
on the ambient manifold. The tangent cone TvV is the closure of the set of
velocities at v of smooth curves starting from v and contained in V .

Let f : V → R be a C1 function. We say that v ∈ V is a critical point of
f if 〈dvf, ξ〉 ≤ 0, ∀ ξ ∈ TvV .
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Lemma 2. If the system of inequalities ϕ(x) ∈ K is regular (in the strong
sense), then 0 is not a critical point of ϕ∗

∣

∣

(K◦∩Sk)×M
.

The proof is a straightforward check based on the duality K◦◦ = K; we
leave it to the reader. The inverse statement is not true mainly due to the
fact that TyK is, in general, bigger than K.

Definitions of regular functions on a manifold with a convex boundary
and of regular homotopy for such functions are verbatim repetitions of the
definitions for a manifold without boundary. An obvious modification of the
proof of Proposition 1 gives:

Proposition 2. Assume that ft : (K
◦∩Sk)×M → R, t ∈ [0, 1], is a regular

homotopy and f0 = ϕ∗
0

∣

∣

(K◦∩Sk)×M
, f1 = ϕ∗

1

∣

∣

(K◦∩Sk)×M
. Then M \ ϕ−1

0 (K) is

homotopy equivalent to M \ ϕ−1
1 (K).

Remark. Actually, the (obviously modified) proof of Proposition 1 gives
more; namely, under conditions of Proposition 2 the inclusion

(t, Bt) →֒
⋃

τ∈[0,1]

(τ, Bτ )

of the subspaces of [0, 1]× V ×M is a homotopy equivalence, ∀ t ∈ [0, 1].

So the homotopy type of the complement to the space of solutions to the
system of inequalities is preserved by regular homotopies. It happens that
homology of the space of solutions is preserved as well.

Proposition 3. Assume that ft : (K
◦∩Sk)×M → R, t ∈ [0, 1], is a regular

homotopy and f0 = ϕ∗
0

∣

∣

(K◦∩Sk)×M
, f1 = ϕ∗

1

∣

∣

(K◦∩Sk)×M
. Then the homology

groups of ϕ−1
0 (K) and ϕ−1

1 (K) with coefficients in a field are isomorphic.

Proof. We start from the case K 6= −K, i. e. K is not a subspace and the
system of inequalities is not just a system of equations. In this case, K◦∩Sk

is contractible and we have the following series of homotopy equivalences of
the pairs:

(

M,M \ ϕ−1
0 (K)

)

∼
(

(K◦ ∩ Sk)×M,B0

)

∼
(

(K◦ ∩ Sk)×M,B1

)

∼
(

M,M \ ϕ−1
1 (K)

)

,

where Bt =
{

(p, x) ∈ (K◦ ∩ Sk)×M : ft(p, x) > 0
}

(see the proof of Propo-
sition 1). Hence H∗(M,M \ ϕ−1

0 (K)) ∼= H∗(M,M \ ϕ−1
1 (K)). Alexander–

Pontryagin duality completes the proof for this case.
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The case of a system of equations is easily reduced to the case just studied
if we add the tautological inequality 1 ≥ 0 to the system. Let us explain this
in more detail. If K is a subspace, then we may assume without lack of
generality that K = 0. Now extend the function ft to Rk+1 ×M as a degree
one homogeneous function with respect to the variable p (keeping the symbol
ft for the extension) and consider the functions

f̄t : (p, ν, x) 7→ ft(p, x) + ν, |p|2 + ν2 = 1, ν ≤ 0.

It is easy to see that f̄t are regular. To be absolutely rigorous, we have to
smooth out ft at the points (0, x) but, in fact, nothing depends on the way
we do it because f̄t is far from 0 at these points.

3 Localization

Let V be a manifold with a convex boundary and f : V × M → R a C1-
function. In this section, we assume that M is a real-analytic manifold and
f(v, ·) is a subanalytic function, ∀ v ∈ V . It is convenient to think about
f as a family of subanalytic functions f(v, ·) on M which depends on the
parameter v ∈ V , and we introduce the notation fv

.
= f(v, ·). “Localization”

in this section is the localization with respect to the parameter v; the variable
x ∈ M remains global.

We say that the family fv is regular at v0 ∈ V if the set {v0} × f−1
v0

(0)
does not contain critical points of f .

Proposition 4. Assume that the family fv, v ∈ V , is regular at v0 ∈ V .
Then v0 has a compact neighborhood Ov0 and centered at v0 local coordinates
Φ such that U0

.
= Φ(Ov0) is convex and the function (f ◦ Φ + t)

∣

∣

εU0×M
is

regular for any sufficiently small nonnegative constants t, ε one of which is
strictly positive.

Proof. We may assume that v0 = 0 is the origin of a Euclidean space and
Φ = id. Given a ∈ C1(M), y ∈ R, we set Ca(y) = {x ∈ a−1(y) : dxa = 0} If
0 ∈ R is not a critical value of f0, i. e. Cf0 = ∅, then the statement is obvious;
otherwise, for any x ∈ Cf0 there exists νx ∈ U0 such that

〈

∂f

∂v
(0, x), νx

〉

≥ α >
0, where α is a positive constant. Then, by the continuity, there exists δ > 0
such that for any τ ∈ [−δ, δ], v ∈ δU0, x ∈ Cfv(τ), there exists x̂ ∈ Cf0(0)
such that

〈

∂f

∂v
(v, x), νx̂

〉

≥ δ > 0 (1)
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Now let v ∈ εU0, t ∈ [0, δ], and x ∈ Cfv(−t); then dxfv = 0 and |dxf0| ≤
cε for some constant c. We have:

f(0, x) = f(v, x)−

〈

∂f

∂v
(v, x), v

〉

+ o(ε),

where o(ε)
ε

→ 0 as ε → 0 uniformly for all v ∈ εU0, x ∈ Cf0(−t), t ∈ [0, δ].
Then

〈

∂f

∂v
(v, x),−v

〉

= t + f0(x)− o(ε)

and, according to (1),
〈

∂f

∂v
(v, x), ενx̂ − v

〉

≥ t + f0(x) + εδ − o(ε).

The Lojasevic inequality [6] gives:

|f0(x)| ≤ c′|dxf0|
1+ρ ≤ c′c1+ρε1+ρ,

where c′, ρ are positive constants. Hence
〈

∂f

∂v
(v, x), ενx̂ − v

〉

> 0 if ε is suffi-
ciently small.

Corollary 1. Let V be a compact convex set, 0 ∈ V . Assume that the family
fv, v ∈ V, is regular at 0. Then for any sufficiently small ε > 0 the homotopy

(t, v, x) 7→ f(tv, x) + (1− t)ε, t ∈ [0, 1], v ∈ εV, x ∈ M.

between f
∣

∣

εV×M
and the constant family (v, x) 7→ f(0, x) + ε is regular.

4 A Cohomology Theory

Let M be a real-analytic manifold and A ⊂ C1(M) a set of subanalytic
functions. Let W ⊂ V be a pair of manifolds with convex boundaries and
f : V ×M → R a regular function such that fv ∈ A, ∀ v ∈ V, and f

∣

∣

W×M
is

also regular.
We set Bf = {(v, x) : v ∈ V, f(v, x) > 0} and define

H ·
A(fV , fW )

.
= H · (V ×M, (W ×M) ∪ Bf) , H ·

A(f)
.
= H ·

A(fV .f∅).

The pairs of regular functions (fV , fW ) form a category FA with mor-
phisms ϕ∗ : (f 0

V0
, f 0

W0
) 7→ (f 1

V1
, f 1

W1
), where ϕ : V1 → V0 is a C1-map such
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that ϕ(W1) ⊂ W0 and f 1
v = f 0

ϕ(v), ∀ v ∈ V1. Then H ·
A is a functor from this

category to the category of commutative groups.
This is a kind of cohomology functor which satisfies natural modifica-

tions of the Steenrod–Eilenberg axioms except for the dimension axiom. The
exactness and excision are obvious and we do not repeat them. Homotopy
axiom deals with f : [0, 1]× V ×M → R such that f{t}×V ∈ FA, ∀ t ∈ [0, 1],
and claims that the inclusions {t} × V →֒ [0, 1] × V, t ∈ [0, 1], induce the
isomorphisms of cohomology groups:

H ·
A

(

f[0,1]×V , f[0,1]×W

)

∼= H ·
A

(

f{t}×V , f{t}×W )
)

.

This simple but not totally obvious fact was explained in Section 2.
The dimension axiom is substituted by the following one: if V = {v} is a

point then
H ·

A

(

f{v}
)

= H · (M, {x ∈ M : fv(x) > 0}) .

The “points” for us are regular elements of A and different points may have
different cohomology.

Standard singular cohomology is a special case. Indeed, let the set A
consist of one point, A = {a}, and a(x) < 0, ∀ x ∈ M . We have:

H ·
{a}(V,W ) = H ·(V,W )×H ·(M).

Now assume that A+ t ⊂ A for any nonnegative constant t. Given a map
v 7→ fv from V to A we denote by (f + t)[0,c]×V the map (t, v) 7→ fv + t, t ∈
[0, c], v ∈ V . It was proved in Section 3 that for any v ∈ V there exists a
neigborhood Uv ⊂ V and ε > 0 such that the inclusions

Uv × {0} →֒ Uv × [0, ε], {v} × {ε} →֒ Uv × [0, ε]

induce the isomorphisms of the cohomology groups

H ·
A (fUv

) ∼= H ·
A

(

(f + t)[0,ε]×Uv

)

∼= H ·
A

(

f{v} + ε
)

.

In other words, cohomology of a “small neighborhood” is equal to the coho-
mology of a “point”.

Now assume that the cohomology are taken with coefficients in a field
and that dimM = n. Then the cohomology of a “point”

H i
A

(

f{v}
)

= H i (M, {x ∈ M : fv(x) > 0}) = Hn−i ({x ∈ M : fv(x) ≤ 0}) ,
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0 ≤ i ≤ n, is simply usual homology of the space of solutions to the inequality
fv(x) ≤ 0.

The localization at a point plus the algebraic homology machinery (based
on the axioms) gives a good chance to recover the usual homology of the
space of solutions of a system of inequalities from the ones of the individual
inequalities of the form a(x) ≤ 0, where a ∈ A. The success is somehow
guaranteed if H ·

A is a unique cohomology theory for A that satisfies the
described axioms. On the other hand, any other cohomology theory that
satisfies the same axioms gives additional important invariants of systems of
inequalities or equations for functions from A.

Let me explain it better for regular systems of equations

φ0(x) = · · · = φk(x) = 0, φi ∈ A, i = 0, 1, . . . , k.

An isotopy ϕt = (φ0
t , . . . , φ

k
t )

T , t ∈ [0, 1], of such systems is called A-rigid if
φi
t ∈ A for all t ∈ [0, 1]. In this case, ϕ∗

t ∈ FA, where, recall,

ϕ∗
t : S

k ×M → R, ϕ∗
t (p, x) = 〈p, ϕt(x)〉.

Let ĤA be a cohomology functor that satisfies our axioms; then, according
to the homotopy axiom, ĤA(ϕ

∗
0) = ĤA(ϕ

∗
1). In other words, ĤA is an invari-

ant of the A-rigid isotopy. Moreover, it is an invariant of regular homotopies
in FA that are much more general than A-rigid isotopies.

Let ϕ = (φ0, . . . , φk)T , (ν, p) ∈ R × Rk+1, x ∈ M ; we set ϕ̄∗(ν, p, x) =
ν + 〈p, ϕ(x)〉 and denote by Sk+1

− the low semi-sphere in R × Rk+1, Sk+1
− =

{(ν, p) : ν ≤ 0, ν2 + |p|2 = 1}.

Proposition 5. If ϕ−1(0) = ∅, then ĤA

(

ϕ̄∗
Sk+1

−

)

= 0.

Proof. Let c ∈ R, Bk+1
c = {(c, p) : p ∈ Rk+1, |p| ≤ 1}. Note that

ϕ̄∗
∣

∣

Bk+1
c ×M

is a regular function for any c > 0 (this is true for any smooth map

ϕ : M → Rk+1). Moreover, ϕ̄∗
Bk+1

c
is regularly homotopic in FA to the con-

stant function c; indeed, the homothety of the ball Bk+1
c to its center along the

radii provides us with the desired regular homotopy. Hence ĤA

(

ϕ̄∗
Bk+1

c

)

= 0.

The function ϕ̄∗
∣

∣

Bk+1

0
×M

is regular if and only if ϕ−1(0) = ∅. If it is regular,

then it is regularly homotopic to ϕ̄∗
∣

∣

Bk+1
c ×M

, where c > 0, and HA

(

ϕ̄∗
Bk+1

0

)

=

0. It remains to note that the homotopy between ϕ̄∗
Bk+1

0

and ϕ̄∗
Sk+1

−

induced
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by the homotopy (t; ν, p) 7→ ((1 − t)ν, p), t ∈ [0, 1], (ν, p) ∈ Sk+1
− , is also

regular.

LetM = RPN = {(x,−x) : x ∈ Sk} andQ(N) the space of real quadratic
forms on RN+1 treated as functions on RPN . The main goal of this paper
is to construct a cohomology theory ĤQ(N). This is not just an abstract
construction: we give an effective way to compute the cohomology.

In what follows all cochains and cohomologies are with coefficients in Z2.
We omit the symbol Z2 to simplify notations.

5 A spectral Sequence

Now we focus on the space Q(N) with fixed N and omit the argument N in
order to simplify notations. We denote by the same symbol a quadratic form
on RN+1 and the function on RPN induced by this form. A quadratic form
q induces a regular function on RPN if and only if ker q = 0. More precisely,
critical points of q : RPN → R at q−1(0) are exactly x̄ = (x,−x) ∈ RPN

such that x ∈ ker q ∩ SN .
Some notations. Let λ1(q) ≥ · · · ≥ λN+1(q) be the eigenvalues of the

symmetric operator associated to the quadratic form q ∈ Q. We set

Λj,m = {q ∈ Q : λj−1(q) 6= λj(q) = λj+m−1(q) 6= λj+m(q)},

Λ0
j,m = {q ∈ Λj,m : λj(q) = 0},

j = 1, . . . , N, m = 2, . . . , N − j + 2. It is well-known that Λj,m is a smooth

submanifold of codimension m(m+1)
2

− 1 in Q while Λ0
j,m is a codimension 1

submanifold of Λj,m (see [3, Prop. 1] for a short proof).
We say that the pair (fV , fW ) ∈ FQ is in general position if the bound-

aries ∂V, ∂W are smooth and the map v 7→ fv, v ∈ V , as well as the
restrictions of this map to W, ∂V, ∂W are transversal to Λj,m and Λ0

j,m, for
j = 1, . . . , N, m = 2, . . . , N − j + 2.

It is sufficient to construct Ĥ(fV , fW ) and check the axioms for the pairs
in general position. Indeed, if the the boundaries ∂V, ∂W are smooth, then
standard transversality arguments allow to approximate any pair by a pair
in the general position. Moreover, any two sufficiently close approximations
are regularly homotopic and have equal cohomology Ĥ according to the ho-
motopy axiom. The cohomology of the given pair is equal, by definition, to
the cohomology of a sufficiently close approximation in general position.
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Similar arguments work in the case of nonsmooth boundaries. Given a
manifold V with a convex boundary we can always find a smooth vector field
transversal to the boundary ∂V . Trajectories of this field passing through ∂V
provide us with a tubular neighborhood of the boundary. Smooth sections
of the tubular neighborhood give us smooth approximations of ∂V inside V
and we obtain Ṽ ⊂ V , where ∂Ṽ is a smooth approximation of ∂V . The
approximation is good if the time to move from ∂Ṽ to ∂V along trajectories
of our transversal vector field is a C0-small semi-concave function with a
uniformly bounded differential (recall that the differential is defined almost
everywhere).

It is easy to see that (fṼ , fW̃ ) ∈ FQ for any sufficiently good approx-
imation W̃ ⊂ W, W̃ ⊂ Ṽ ⊂ V . Moreover, natural diffeomorphisms of
different tubular neighborhoods induce diffeomorphisms homotopic to the
identity of good approximations (Ṽ , W̃ ) and natural isomorphisms of coho-
mologies Ĥ(fṼ , fW̃ ). The cohomology Ĥ(fV , fW ) is equal, by definition, to

Ĥ(fṼ , fW̃ ), where (Ṽ , W̃ ) is a sufficiently good approximation of (V,W ) by
the pair of manifolds with smooth boundaries.

Let f : V → Q, f ∈ FQ, be in general position1 and

V j
f = {v ∈ V : λj(f(v)) > 0}, j = 1, . . . , N + 1,

a decreasing filtration of V by open subsets. We equip V with a Riemannian
metric and take ε > 0 so small that V j

f and f−1(Λj,m) are homotopy retracts
of their radius (dimV )ε neighborhood, j = 1, . . . , N+1, m = 2, . . . , N−j+2.

Now consider a smooth singular simplex ς : ∆i → V , where ∆i is the
standard i-dimensional simplex. We say that ς is adapted to f if the diameter
of ς(∆i) is smaller than ε and the restriction of f ◦ ς to any face D of ∆i

satisfies the following properties:
(i) f ◦ ς|D ⋔ Λj,m;
(ii) if dimD = 4 and f ◦ ς(D) ∩ Λj,2 6= ∅ then f ◦ ς(D) ∩ Λj+1,2 =

f ◦ ς(D) ∩ Λj−1,2 = ∅, j = 1, . . . , N .
Manifold V admits a triangulation by adapted simplices. The more deli-

cate property (ii) can be achieved because Λ̄j,2∩Λ̄j+1,2 = Λ̄j,3 has codimension
5 in Q.

We denote by Cf,i(V ) the space of i-dimensional singular chains in V
generated by the adapted singular simplices with coefficients in Z2. Let U
be an open subset of V ; then Cf,i(U) is a subspace of Cf,i(V ) generated by

1for simplicity, we keep the symbol f for the map v 7→ fv
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singular simplices with values in U and C i
f(V, U) is the space of linear forms

on Cf,i(V ) that vanish on Cf,i(U). We obtain a cochain complex

. . . → C i−1
f (V, U)

δ
−→ C i

f(V, U)
δ

−→ C i+1
f (V, U) → . . . , (2)

where δ is usual coboundary of singular cochains. The cohomology of the
complex (2) coincides with standard cohomology of the pair (V, U) with
coefficients in Z2: ker δ/imδ = H ·(V, U).

We define cocycles ljf ∈ C2
f (V ), j = 1, . . . , N as follows: given a singular

simplex ς ∈ Cf,2(V ), ljf(ς) is the intersection number modulo 2 of f ◦ ς and

Λj,2. We have: ljf ` lj+1
f = 0, j = 1, . . . , N − 1. Here ` is the cup product

of singular cochains. The maps ℓj : ς → ς ` ljf define homomorphisms

ℓj : C
i
f(V, U) → C i+2

f (V, U). We have δ ◦ ℓj = ℓj ◦ δ, ℓj ◦ ℓj+1 = 0.

Given τ > 0 let V j
f (τ) be the radius τ neighborhood of V j

f . We set:

C i
j(f) = C i

f

(

V, V j
f (iε)

)

, Cn(f) =
⊕

i+j=n

C i
j+1(f);

then ℓj
(

C i
j+1(f)

)

⊂ C i+2
j (f). Finally, we define the differential d : Cn(f) →

Cn+1(f) by the formula d
∣

∣

Ci
j−1

(f) = δ + ℓj .

The cohomology ĤQ(f) is, by definition, the cohomology of the complex

. . . → Cn−1(f)
d

−→ Cn(f)
d

−→ Cn+1(f) → . . . (3)

Remark. A pedantic reader would say that the cochain groups Cn(f)
depend on the small parameter ε. It is not hard to see that the cohomologies
of complex (3) for different ε are naturally isomorphic.

Consider a filtration of the complex
⊕

n≥0

Cn(f) =
⊕

n≥0

⊕

i≥0

C i
n−i+1(f) by sub-

complexes
⊕

n≥0

⊕

i≥α

C i
n−i+1(f), α = 0, 1, . . . , dimV and the spectral sequence

Er
i,j of this filtration converging to ĤQ(f). We have:

E1
i,j = C i

j+1(f), d1 : C
i
j+1(f) → C i+1

j+1(f), d1 = δ.

Hence
E2

ij = H i(V, V j+1
f ), d2 : H

i(V, V j+1
f ) → H i+2(V, V j

f ). (4)

13



Moreover, the differential (4) is induced by ℓj and has a very simple explicit
expression. Namely, let l̄jf ∈ H2

(

V, V \ f−1(Λ̄j,2)
)

be the cohomology class

of the cocycle ljf . Then d2 is the composition of the map

ℓ̄j : H
i(V, V j+1

f ) → H i+2
(

V, V j+1
f ∪ (V \ f−1(Λ̄j,2))

)

defined by the formula ℓ̄j(x) = x ` l̄jf , x ∈ H i(V, V j+1
f ), and the homo-

morphism H i+2
(

V, V j+1
f ∪ (V \ f−1(Λ̄j,2))

)

→ H i+2(V, V j
f ) induced by the

inclusion V j
f ⊂ V j+1

f ∪
(

V \ f−1(Λ̄j,2)
)

.
We see that E2

i,j and d2 coincide with the second page F 2
i,j and the dif-

ferential d2 : F 2
i,j → F 2

i+2,j−1 of the spectral sequence converging to HQ(f)
studied in [4] (see Theorems 25 and 28 of the cited paper). Hence E3

i,j = F 3
i,j .

Now we are going to give simple explicit expressions for all differentials
dr : E

r
i,j → Er

i+r,j−r+1, r ≥ 3.
Let ξ ∈ C i

j+1(f) = E1
i,j be a δ-cocycle such that its cohomology class

ξ̄ ∈ H i(V, V j+1
f ) = E2

i,j is a d2-cocycle. Then ξ ` ljf = δη, where η ∈ C i+1
j (f).

Moreover, d3(ξ̄) is the cohomology class of η ` lj−1
f in H i+3(V, V j−1

f ) modulo

d2-coboundaries while ljf ` lj−1
f = 0. Hence d3(ξ̄) is the Massey product

〈ξ̄, l̄jf , l̄
j−1
f 〉 combined with an appropriate inclusion homomorphism (see [7,

Ch. 8] for the definition and basic properties of Massey products).
Now assume that ξ survives in Er

i,j, i. e. classes of ξ are cocycles for
d3, . . . , dr−1. The induction procedure implies that dr(ξ) is the r-fold Massey
product 〈ξ̄, l̄jf , . . . , l̄

j−r+2
f 〉 combined with appropriate inclusion homomor-

phisms.
Indeed, since the class of ξ is dr−1-cocycle then, according to the induction

assumption, 〈ξ̄, l̄jf , . . . , l̄
j−r+3
f 〉 ∋ δζ , where ζ ∈ C i+r−2

j−r+3(f), and dr(ξ̄) is the

class of ζ ` lj−r+2
f .

If dim V ≤ k, then E2
i,j = 0 for i > k. In particular, if dimV = 3 then the

last possibly nontrivial differential is d3. This differential has a clear geomet-
ric meaning that we are going to describe. Assume that H1(V ;Z2) = 0 and
∂V is connected or empty (the three-dimensional sphere and ball are avail-
able). Then H2(V ;Z2) = 0 and the linking number mod 2 of a 1-dimensional
cycle in V with a 1-dimensional cycle in (V, ∂V ) are well-defined. We have:

d3 : H
0(V, V j+1

f ) −→ H3(V, V j−1
f ). (∗)

Moreover, ranks of H0(V, V j+1
f ) and H3(V, V j−1

f ) are either one or zero.

14



If both ranks are equal to one, then d3 sends the generator of H
0(V, V j+1

f )

to the generator of H3(V, V j−1
f ) multiplied by the linking number of 1-

dimensional cycles f−1(Λj,2) and f−1(Λj−1,2), according to the direct im-
plementation of the above construction.

Let W ⊂ V be such that the pair (fV , fW ) ∈ FQ is in general position
and W̃ ⊃ W be an appropriate tubular neighborhood of W such that the
pairs (W,W j

f ) are homotopy retracts of (W̃ , W̃ j
f ) and Ĥ ·(fW̃ ) is naturally

isomorphic to Ĥ ·(fW̃ ). We define:

C i
j(fV , fW )

.
= C i

j(fV ) ∩ C i
f(V, W̃ ), Cn(fV , fW ) =

⊕

i+j=n

C i
j+1(fV , fW ).

The cohomology ĤQ(fV , fW ) is, by definition, the cohomology of the complex

. . . → Cn−1(fV , fW )
d

−→ Cn(fV , fW )
d

−→ Cn+1(fV , fW ) → . . . .

The excision axiom holds automatically while the obvious exact sequence

0 → Cn(fV , fW ) → Cn(fV ) → Cn(fW̃ ) → 0

implies the long exact sequence

· · · → Ĥn
Q(fV ) → Ĥn

Q(fW ) → Ĥn+1
Q (fV , fW ) → Ĥn+1

Q (fV ) → · · · .

If V = {v} is a point, then ĤQ(f{v}) = HQ(f{v}) since the spectral sequence
Er

i,j degenerates in the page E2
i,j in this case.

The homotopy property is automatic for homotopies in the class of func-
tions in the general position. This property is not at all trivial for homotopies
that include functions not in general position. Moreover, this property is ac-
tually the central point of the whole story; we prove it in the next section.

Remark. To be precise, we have to remind that our cochain spaces
depend on a small parameter ε. Of course, we simply take ε smaller each
time it is necessary to guarantee that the final result does not depend on ε.

6 Surgery

Let V be a manifold with a convex boundary and f : V × RPN → R a
C1-function such that fv ∈ Q, ∀v ∈ V . The function f is regular if and only
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if for any (v, x̄) ∈ V × RPN such that x ∈ ker fv there exists ξ ∈ TvV such
that 〈∂f

∂v
(v, x̄), ξ〉 > 0.

We say that f is strongly regular if for any v ∈ V such that ker fv 6= 0
there exists ξ ∈ TvV such that 〈∂f

∂v
(v, x̄), ξ〉 > 0 for any x ∈ ker fv ∩ SN .

In other words, for the regularity to be strong we ask for ξ in the inequality
to be one and the same for all x ∈ ker fv ∩ SN . Here is a typical example of
a regular but not strongly regular map:

V = {q ∈ Q : tr q = 0, |q| ≤ 1}, f(q, x̄) = q(x). (5)

Here and below we use the following notations: tr q is the trace of the sym-
metric operator on R

N+1 associated to q, 〈q1, q2〉 is the trace of the product
of the operators associated to q1 and q2, |q| =

√

〈q, q〉. Strong regularity is
violated at q = 0.

Lemma 3. If f ∈ FQ is in general position, then f is strongly regular.

Proof. Let q ∈ Q and ker q 6= 0; then q ∈ Λ0
j,m for some j,m. It is easy to

see that TqΛ
0
j,m is the kernel of the linear map q′ 7→ q′

∣

∣

ker q
, q′ ∈ Q. Hence

the transversality of the mapv′ 7→ fv′ , v′ ∈ V, to Λ0
j,m at v ∈ V is equivalent

to the surjectivity of the map ξ 7→
〈

∂f

∂v
(v, ·), ξ

〉
∣

∣

ker fv
, ξ ∈ TvV , and implies

the existence of ξ ∈ TvV such that the quadratic form
〈

∂f

∂v
(v, ·), ξ

〉

is positive
definite on ker fv.

Remark. We actually proved more than stated: for f to be strongly
regular it is sufficient that the map v 7→ fv, v ∈ M is transversal to subman-
ifolds Λ0

j,m; transversality to Λj,m is not necessary.

We say that a regular homotopy ft, t ∈ [0, 1], is strongly regular if all ft
are strongly regular. Example: take f as in (5), α ∈ [0, 1) and the homotopy
ft = f + t−α; then ft is strongly regular for all t except of t = α. We’ll show
later that this example is in a sense a universal model of a generic regular
but not strongly regular homotopy.

Lemma 4. Assume that ft ∈ FQ, ft : V ×RPN → R, t ∈ [0, 1], is a strongly
regular homotopy. Then there exists a smooth family of diffeomorphisms2

Ft : V → V , such that F0 = id, Ft(V
j
f0
) ⊂ V j

ft
, ∀t ∈ [0, 1], j = 1, . . . , N + 1.

2If ∂V 6= ∅, then Ft(V ) may be a proper subset of V .
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Proof. The proof is similar to the proof of Lemma 1. It is sufficient to find
a smooth vector field Xt on V such that the equality λj(ftv) = 0 implies:

〈

∂ft
∂v

(v, x̄), Xt(v)

〉

> 0, ∀ x ∈ ker ftv ∩ SN . (6)

Indeed, fix t and v and consider a trajectory v(τ) of the flow generated by the
field Xτ such that v(t) = v. Inequality (6) implies that for any smaller than
t and sufficiently close to t number τ the quadratic form fτ v(τ) is negative
definite on the linear hull of the eigenvectors of the form ftv corresponding to
the eigenvalues λj(ftv), . . . λN+1(ftv). Hence λj(fτ v(τ)) < 0, according to the
minimax principle for the eigenvalues of a symmetric operator. We obtain
that any trajectory started in V j

f0
stays in V j

ft
for all t ∈ [0, 1].

The existence of a desired vector field is guaranteed by the strong regu-
larity assumption.

Lemma 3 immediately implies the following:

Corollary 2. Strongly regular homotopies preserve the page E2
i,j of the spec-

tral sequence Er
i,j described in Section 5.

A routine transversality technique gives the following:

Proposition 6. Let f̃t ∈ FQ, f̃t : V × Q → R, t ∈ [0, 1] be a regular ho-
motopy and f̃0, f̃1 are in the general position. Then there exists an arbitrarly
C0-close to f̃t regular homotopy ft such that f0 = f̃0, f1 = f̃1; the function
ft ∈ FQ is not in general position only for a finite number of values of the
parameter t ∈ (0, 1), and for any ft that is not in the general position there
exists exactly one point vt where the map v 7→ ftv, v ∈ V , is not transversal
to a submanifold Λj,m or Λ0

j,m Moreover, if vt ∈ int V, ftvt ∈ Λ0
j,m and the

map v 7→ ftv, v ∈ V , is not transversal to Λ0
j,m at vt, then the following

conditions are satisfied:

• The image of the linear map ∂ft
∂v

(vt, ·)
∣

∣

ker ftvt
from TvtV into the space of

quadratic forms on ker ftvt is a subspace of codimension 1 in the space
of quadratic forms and the orthogonal complement to this subspace is
generated by ∂

∂τ

∣

∣

τ=t
(fτ vt |ker ftvt ).

• ∂
∂τ

∣

∣

τ=t
(fτ vt |ker ftvt ) is a nondegenerate quadratic form.
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• The Hessian of the map v 7→ ftv|ker ftvt , v ∈ V at vt is a nondegenerate

quadratic form on the kernel of the map ∂ft
∂v

(vt, ·)
∣

∣

ker ftvt
.

If vt ∈ ∂V and the map v 7→ fv, v ∈ ∂V , is not transversal to Λ0
j,m, then

the same conditions are satisfied for fτ ∂V in place of fτ , and the linear map
∂ft
∂v

(vt, ·)
∣

∣

ker ftvt
from span TvtV into the space of quadratic forms on ker ftvt

is surjective.

We are now ready to state a local version of the homotopy invariance
property.

Proposition 7. In the setting of Proposition 6, let t ∈ (0, 1) be such that
the map v 7→ ftv, v ∈ V , is not in general position. Then there exist a
neighborhood Ovt of vt in V and a neighborhood ot of t in (0, 1) such that the
inclusions {τ}×Ovt →֒ ot×Ovt , τ ∈ ot, induce isomorphisms ĤQ(Fot×Ovt

) ∼=

ĤQ(fτOt
), where F(τ,v)

.
= fτ v.

The general “global” homotopy invariance property easily follows from
Proposition 7. Indeed, a singularity at (t, vt) does not influence relative
cohomologies for the pairs ([0, 1]× V, ot × Ovt), (V,Ovt) and the inclusion

({τ} × V, {τ} × Ovt) →֒ (ot × V, ot × Ovt)

induces an isomorphism ĤQ(Fot×V , Fot×Ovt
) ∼= ĤQ(fτ V , fτOt

). The exact
sequences of the pairs (Fot×V , Fot×Ovt

), (fτ V , fτOt
) and the five lemma imply

that the inclusion {τ} × V →֒ ot × V induces an isomorphism ĤQ(Fot×V ) ∼=
ĤQ(fτ ).

Proof. First assume that the map v 7→ ftv, v ∈ V, is transversal to all sub-
manifolds Λ0

j,m. Then ft is strongly regular (see the Remark after Lemma 3).
Hence τ 7→ fτOvt

, τ ∈ ot, is a strongly regular homotopy for appropriate
neighborhoods Ovt , ot. Moreover, for any τ0 ∈ ot the maps (τ, v) 7→ fτ v and
(τ, v) 7→ fτ0v on ot ×Ovt are strongly regular homotopic. Hence Fot×Ovt

and
fτ0Ovt

have equal pages E2
i,j.

On the other hand, Fot×Ovt
is regularly homotopic to a constant family

(τ, v) 7→ ftvt + ε according to the general localization result of Section 3.
Moreover, this regular homotopy is strongly regular in the case under con-
sideration and preserves the page E2

i,j . The page E2
i,j of the constant family

has only one nonzero column and the same is true for the families Fot×Ovt

and fτ0Ovt
. In particular, E2

i,j = E∞
i,j are equal fot these families.
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It remains to study the case when ftvt ∈ Λ0
j,m and the map v 7→ ftv, v ∈

V, is not transversal to Λ0
j,m at vt. Of course it is sufficient to prove the

isomorphism ĤQ(Fot×Ovt
) ∼= ĤQ(fτOvτ

) for one particular τ greater than t
and one τ smaller than t.

We denote by Qt the space of quadratic forms on ker fvt , Qt = Q(m−1).
Given q ∈ Q, let Eq ⊂ RN+1 be the linear hull of the eigenvectors of q
corresponding to the eigenvalues λj(q), . . . , λj+m−1(q) and πq : Eq → ker fvt
be the restriction to Eq of the orthogonal projector of R

N+1 on ker fvt . Note
that Efvt

= ker fvt and πfvt
= id. We work in a small neighborhood of fvt in

Q and may assume that Eq is transversal to the orthogonal complement of
ker fvt and πq is invertible.

Consider a map Φ : q 7→ q ◦ π−1
q from a neighborhood of fvt to Qt. It is

a rational map and its differential at the point fvt sends a form q to q
∣

∣

ker fvt
.

Hence Φ is a submersion of a neighborhood of fvt on a neighborhood of the
origin in Qt. Moreover, λi(Φ(q)) = λj+i−1(q), i = 1, . . . , m.

We take a sufficiently small neighborhood Ovt of vt in V , a parameter
τ ∈ [0, 1] close to t, and define gτ : Ovt → R by the formula: gτ v = Φ(fτ v).
Then gτ ∈ FQt

and the following equalities are valid3:

V i
gτ

= V i+j−1
fτ

∩ Ovt , g−1
τ (Λi,k) = f−1

τ (Λi+j−1,k) ∩ Ovt ,

i = 1, . . . , m−1, k = 2, . . . , n−i+1. Moreover, Ovt ⊂ V j−1
f , Ovt∩V j+m

f = ∅.
It follows that the statement of Proposition 7 for fτ ∈ FQ is equivalent

to the same statement for gτ ∈ FQτ
.

We have: gτ vt = 0. The family G : (τ, v) 7→ gτ v, (τ, v) ∈ ot × Ovt is
in general position and is strongly regular homotopic to a constant family
(τ, v) 7→ c, c > 0, if ot and Ovt are sufficiently small. Hence Ĥqt(Got×Ovt

) = 0.
In what follows, we tacitly substitute ot and Ovt by smaller neighborhoods

each time it is necessary without changing notations. First we study the case
vt ∈ int V and then explain how the case vt ∈ ∂V is reduced to the previous
one.

To go ahead we need convenient coordinates in Ovt . We put coordinates
on Ovt as the product of two balls, Ovt = U × B = {(u, q) : u ∈ U, q ∈ B},

where U ⊂ ker ∂gt(vt)
∂v

, B ⊂ im ∂gt(vt)
∂v

, in such a way that vt = (0, 0) in our
coordinates and

∂gt(vt)

∂v
: (u, q) 7→ q, u ∈ ker

∂gt(vt)

∂v
, q ∈ im

∂gt(vt)

∂v
.

3for simplicity, we keep symbol gτ for the map v 7→ gτ v as in Section 5.
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We also set q0 = ∂gτ (vt)
∂τ

∣

∣

τ=t
. Then B is a ball in the hyperplane q⊥0 ⊂ Qt.

Recall that q0 is a nondegenerate quadratic form. Moreover, we assume
that the Hessian of the map v 7→ gtv at vt is normalized. This means that
ker ∂gt(vt)

∂v
= spanU is splitted in two subspaces, spanU = Ri+ ⊕ Ri−, and

∂2gt(0, 0)

∂u2
(u) = 2(|u+|

2 − |u−|
2)q0, u = (u+, u−) ∈ U, u± ∈ R

i±.

Now we apply a blow-up procedure with a small parameter ε > 0. We
set:

ϕε
s(u, q) =

1

ε2
gt+ε2s(εu, ε

2q), |s| ≤ 1, (u, q) ∈ U × B.

Note that the multiplication of a quadratic form by a positive number does
not change the signs and multiplicities of the eigenvalues. Hence the spectral
sequence Er

i,j for ϕε
s is equal to one for (gτ )(εU)×(ε2B) with τ = t + ε2s. We

have:
ϕε
s(u, q) = q + (|u+|

2 − |u−|
2 + s)q0 +O(ε).

Now fix parameter s 6= 0. If ε is small enough (how small, depends on s),
then the function ϕε

s is homotopic to ϕ0
s in the class of functions in the general

position.
What remains is to prove that ĤQt

(ϕ0
s) = 0. The following terminol-

ogy will be useful: given ϕ : V → Qt, ϕ ∈ FQt
, and a homotopy re-

traction hτ : V → V, τ ∈ [0, 1], we say that hτ is monotone for ϕ if
V J
ϕ◦hτ

⊂ V j
ϕ , j = 1, . . .m, τ ∈ [0, 1]. The homotopy τ 7→ ϕ ◦ hτ induced by a

monotone deformation retraction preserves the page E2
i,j, d2 of the spectral

sequence.
We study separately three cases.

1. The quadratic form q0 is sign-indefinite. In this case q⊥0 contains a pos-
itive definite form q̂. Moreover, if s is sufficiently small then q̂ + sq0 is
a positive definite form. In this case a deformation retraction hτ (u, q) =
(

(1− τ)
1

2u, τ q̂ + (1− τ)q
)

is monotone for ϕ0
s. Indeed,

ϕ0
s(hτ (u, q)) = τ(q̂ + sq0) + (1− τ)

(

q + (|u+|
2 − |u−|

2 + s)q0
)

. (7)

The signature of a quadratic form (i. e. the numbers of positive and negative
eigenvalues) does not change under a linear change of coordinates in Rm,
although the eigenvalues do change. Take coordinates such that the form
q̂ + sq0 is represented by a scalar matrix. In these coordinates, eigenvalues
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of the form (7) are linear functions of τ . We have: ϕ0
s(h1(u, q)) ≡ q̂ + sq0.

Hence E2
i,j = 0.

2. The quadratic form sq0 is positive definite. Then the deformation retrac-

tion hτ (u, q) =
(

(1− τ)
1

2u, (1− τ)q
)

is monotone for ϕ0
s and ϕ0

s(h1(u, q)) ≡

sq0. Hence E2
i,j = 0.

3. The quadratic form sq0 is negative definite. In this case, the page E2
i,j is

very far from being zero. We already mentioned that the transformation of
Qt induced by a linear change of coordinates in R

m does not change the signs
of eigenvalues and thus the groups E2

i,j of the spectral sequences associated to
elements of FQt

. It is important that the differentials d2 do not change as well.
The last statement needs a justification since the submanifolds Λj,2 ⊂ Qt

do depend on the choice of coordinates in Rm. The differential d2 of the
spectral sequence Er

i,j does not depend on the choice of coordinates because
it is equal to the differential d2 of the spectral sequence F

r
i,j constructed in [4]

(see Section 5), and F r
i,j is the Leray spectral sequence of a map that respects

changes of coordinates.
Now take coordinates in Rm such that the form q0 is represented by

a scalar matrix. Then B is a ball in the space of symmetric matrices
with zero trace. If q0 > 0, then the deformation retraction (u+, u−, q) 7→
(u+, (1 − τ)u−, q), τ ∈ [0, 1], is monotone for ϕ0

s. Similarly, if q0 < 0, then
the deformation retraction (u+, u−, q) 7→ ((1 − τ)u+, u−, q), τ ∈ [0, 1], is
monotone.

The next lemma completes the proof of Proposition 7 in the case vt ∈
int V ,

Lemma 5. Let 0 < s < 1,

U = {u ∈ R
k : |u|2 ≤ 2}, B = {q ∈ Q : tr q = 0, ‖q‖ ≤ 1},

and the map ϕ : U × B → Q, ϕ ∈ FQ, is defined by the formula: ϕ(u, q) =
q + |u|2 − s. Then the page E3

i,j of the spectral sequence Er
i,j associated to ϕ

is zero.

Proof. We have to prove that the cochain complex (E2, d2) is exact. It is not
at all obvious but it is actually proved in [3, Th. 2]. Indeed, let us show that
the complex (E2, d2) can be naturally identified with complex (1) from [3],
where n = N + 1.

We set: M j = {q ∈ B : ‖q‖ = 1, λN−j+1(q) 6= λN+1(q)}, like in [3]
(note that the eigenvalues have the reversed ordering in [3]). Recall that

21



E2
i,j = H i(V, V j+1

ϕ ), where V = U × B. A simple homotopy that moves
only eigenvalues of symmetric matrices keeping fixed the eigenvectors gives
a homotopy equivalence of pairs:

(

U × B, V j+1
ϕ

)

∼=
(

U × B, (U ×MN−j) ∪ (∂U × B)
)

.

Hence E2
i,j = H i−k(B,MN−j); moreover, natural isomorphism of E2

·,· and
H ·−k(B,MN−·) transforms d2 in the differential of the exact complex (1)
from [3].

Let vt ∈ ∂V ; we consider the maps gτ |∂V , take appropriate coordinates,
and apply the blow-up procedure as we did for gτ in the case of an interior
point vt. We arrive to the map ϕ0

s : (u, q) 7→ q+(|u+|
2−|u−|

2+s)q0 extended
to U ×B+ or U ×B−, where B± is the intersection of a ball in Qt with the
half-space {q ∈ Qt : ±〈q, sq0〉 ≥ 0}. We denote these extensions by ϕ±

s .
What remains is to prove that ĤQt

(ϕ±
s ) = 0.

If sq0 is not negative definite and |s| is sufficiently small, then simple
monotone deformation retractions transform ϕ±

s into a positive constant.
The same is true for ϕ+

s with a negative definite sq0. The only remaining
possibility is ϕ−

s with a negative definite sq0. In this case, a deformation re-

traction hτ (u, q) =
(

u, q − τ 〈q,q0〉
|q0|2

q0

)

, τ ∈ [0, 1], is monotone and transforms

ϕ−
s in the already studied ϕ0

s defined on U × B.

Remark. We have shown that local disturbance in the page E2 caused
by a violation of the strong regularity during a regular homotopy is totally
calmed in the page E3. However, this fact does not imply regular homotopy
invariance of E3 because the complexes E2, d2 do not satisfy the exact se-
quence “axiom” and invariance of their local cohomologies does not imply
invariance of the global ones.

7 An example

Let H be the quaternion algebra, H = R ⊕ R3, where R is the real line and
R3 is the space of purely imaginary quaternions, R3 = {x ∈ H : x̄ = −x}.
We take a ∈ R3 \ {0} and consider a quadratic map ϕ : H → R3 defined
by the formula ϕ(x) = x̄ax. Then |ϕ(x)| = |a||x|2. In particular, ϕ−1(x) =
0. The restriction of ϕ to S3 is just adjoint representation of the group

22



SU(2) = S3 and a realization of the Hopf bundle S3 → S2. Now consider a
family of quadratic forms ϕ∗

p ∈ Q(3), p ∈ B3 = {p ∈ R3 : |p| ≤ 1}, where

ϕ∗
p(x) = 〈p, ϕ(x)〉; then ϕ∗ ∈ FQ(3), ĤQ(3)(ϕ

∗) = 0.
We have H = C⊕ jC = C2. Quadratic forms ϕ∗

p are thus real quadratic
forms on C2. It is easy to see that they are Hermitian quadratic forms whose
Hermitian matrices have zero traces. In other words, span{ϕ∗

p : p ∈ B3} =
isu(2). Eigenspaces of the symmetric operators associated to ϕ∗

p are complex
lines in R4; hence the eigenvalues are double and we have

λ1(ϕ
∗
p) = λ2(ϕ

∗
p) = −λ3(ϕ

∗
p) = −λ4(ϕ

∗
p),

V 1
ϕ∗ = V 2

ϕ∗ = B3 \ {0}, V 3
ϕ∗ = V 4

ϕ∗ = ∅.

Let ς be a small quadratic form, then φ∗− ς is regularly homotopic to ϕ∗ and
ĤQ(3)(ϕ

∗− ς) = 0. Moreover, ϕ∗− ς is in general position for almost every ς.
Assume that ς is positive definite; then V 1

ϕ∗−ς , V 2
ϕ∗−ς are complements

to (small) contractible neighborhoods of 0, V 3
ϕ∗−ς = V 4

ϕ∗−ς = ∅. Indeed, the
number of positive eigenvalues of the operator associated to a quadratic form
does not depend on the choice of the Euclidean structure. If we choose a form
1
ε
ς as the Euclidean structure, then λi(ϕ

∗
p − ς) = λi(ϕ

∗
p)− ε.

The page E2 of the spectral sequence Er for ϕ∗ − ς has the form:

Z2 0 0 0
Z2 0 0 0
0 0 0 Z2

0 0 0 Z2

Hence the differentials d3 : E2
0,j+1 → E2

3,j−1, j = 2, 3, are not zero. We
are in the situation described in Section 5 (see the paragraph with formula
(∗) and the next paragraph). It follows that the linking number mod 2 of
(ϕ∗ − ς)−1(Λ2,2) with (ϕ∗ − ς)−1(Λ1,2) and with (ϕ∗ − ς)−1(Λ3,2) are nonzero.

The Proposition stated in the Introduction can be easily derived from this
fact. We start from the case of generic S0. First of all, C

S0+tI
i = CS0

i for any
scalar matrix tI. Hence we may assume that S0 is the matrix of a negative
definite quadratic form. It is sufficient to compute linking numbers of CS0

2

with CS0

1 and with CS0

3 in a very big ball 1
ε
B3. Multiplication by ε transforms

CS0

j into CεS0

j = (ϕ∗ − ς)−1(Λj,2), j = 1, 2, 3, where ς is the quadratic form
represented by the matrix −εS0.

We have proved the statement about linking numbers in the case of
generic S0. Now take any S0 and present it as the limit of a sequence of
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generic ones, S0 = lim
n→∞

Sn
0 . Any limiting point of the sequence of sets C

Sn
0

j

as n → ∞ belongs to CS0

j . The curves C
Sn
0

2 are uniformly bounded, hence

CS0

2 6= ∅. The curves C
Sn
0

1 and C
Sn
0

3 are linked with C
Sn
0

2 and cannot escape
to infinity; hence CS0

1 and CS0

3 are also nonempty.

8 Informal discussion

The anonymous referee asked me to say more about global features of the
Lagrange multipliers even if we do not have yet a general conventional theory.
Indeed, Arnold journal encourages informal discussions, and I’ll try to do it.

Let F : U → M be a smooth map from one smooth manifold to another
one. Given a critical point u ∈ U of this map, a Lagrange multiplier is a
nonzero covector λ ∈ T ∗

F (u)M , which annihilates the image of the differential
DxF : TuU → TF (u)M . In other words, Lagrange multipliers are solutions of
the equation λDuF = 0 where the pair (λ, u) is taken from the total space
of the vector bundle F ∗(T ∗M) with a removed zero section. The equation is
homogeneous on the fibers of the bundle.

The traditional nonhomogeneous “affine” version of this equation con-
cerns the case M = R × N, F = (ϕ,Φ), where φ : U → R is treated as a
“functional” and Φ : U → M defines constraints. The Lagrange multiplier is
now an element of T ∗

F (u)(R×N) = R⊕ T ∗
Φ(u)N . Let u be a regular point of

Φ; then u is critical for F if and only if it is a critical point of ϕ restricted to
the level set of Φ. The first (scalar) component of the Lagrange multiplier
does not vanish in this case and can be normalized. We set this scalar to
be equal to (−1) and obtain the equation: λDuΦ = duϕ, λ ∈ T ∗

Φ(u)M . The

pair (λ, u) belongs to Φ∗(T ∗M) and λ is also called the Lagrange multiplier.
Both homogeneous and “affine” versions can be treated similarly.

The map (λ, u) 7→ λDuF is transversal to the zero section of F ∗(T ∗M) for
generic F . If it is transversal then we say that F is a Morse map. Indeed, for
M = R this just a usual Morse function. For a Morse map F , solutions of the
equation λDuF = 0 form a smooth (dimM)-dimensional submanifold CF of
F ∗(T ∗M) (or a (dimM −1)-dimensional submanifold of the projectivization
of this vector bundle).

In other words, Lagrange multipliers resolve singularities of the set of crit-
ical points. Moreover, the map F c : (λ, u) 7→ λ, (λ, u) ∈ CF is a Lagrangian
immersion of CF into the manifold T ∗M endowed with the standard sym-
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plectic structure. Similarly for the affine version, and all that is almost a
tautology (see [2] for some details). I find it wonderful that Lagrange multi-
pliers form a Lagrange submanifold! Both objects are named after Lagrange
but they look very different at the first glance.

The idea is to recover interesting homological invariants of F in terms of
the Lagrange multipliers sitting in T ∗M . We would like to develop a theory,
which is efficient when M has a modest dimension while U can be huge. The
applications most interesting for us concern constrained variational problems
where U is an infinite dimensional Hilbert or Banach manifold.

The results of this paper can be easily interpreted as a desired theory
for homogeneous quadratic maps. Why do we think that a good theory
can be developed in the general setting as well? To any (λ, u) ∈ CF we
associate the Hessian λHessuF : kerDuF → R that is a quadratic form on
kerDuF . If M = R then critical points of F are isolated, the Hessians of
F at these points are nondegenerate quadratic forms and inertia indices of
these quadratic forms are crucial local invariants used by the Morse theory
to estimate homology of the Lebesgue sets and level sets of F . If dimM > 1
then critical points are not isolated and λHessuF may be degenerate for
some (λ, u) ∈ CF .

There is an important duality between the quadratic form λHessuF and
the image of the tangent space T(λ,u)CF under the Lagrangian immersion
F c : (λ, u) 7→ λ. Let Jλ = F c

∗ (T(λ,u)CF ) and π : T ∗M → M be the canonical
projection. It is easy to check that λHessuF is degenerate if and only if π∗|Jλ
is degenerate and dim ker λHessuF = dimker (π∗|Jλ). Moreover, for any con-
tinuous curve (λt, ut) ∈ CF , t ∈ [0, 1], such that λ0Hessu0

F and λ1Hessu1
F

are nondegenerate, the difference of inertia indices of these quadratic forms
is equal to the Arnold–Maslov index of the curve t 7→ Jλt

. In other words,
Arnold–Maslov cocycle of the Lagrangian immersion equals the co-boundary
of of the inertia index of the Hessian.

It is natural to expect that homological invariants of the Lagrangian im-
mersion properly glue together the Hessians corresponding to different points
of one and the same connected component of CF to give such a connected
component the role played by the isolated critical point in the usual Morse
theory.

The framework is indeed rather similar to one studied in this paper.
Let Lλ be the Lagrange Grassmannian of all Lagrangian subspaces of the
symplectic space Tλ(T

∗M). This Lagrange Grassmannian has a distiguished
element Πλ = Tλ(T

∗
π(λ)M) (the tangent space to the fiber) and is, actually,
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a natural compactification of the space of quadratic forms on Πλ (see, for
instance, [1] or [2]). The subspace Jλ is also an element of Lλ.

Given Λ ∈ Lλ, we have: ker π∗|Λ = Λ ∩ Πλ. The set of all Lagrangian
subspaces which have a nontrivial intersection with Πλ is called “the train
of Πλ”. So the Hessian changes its inertia index exactly when Jλ passes the
train. On the other hand, the train is the compactification of the space of
degenerate quadratic forms on Πλ (see [1]). It looks like we always speak
about one and the same story... .
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