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THE INDEX OF EXTREMALITY
AND QUASIEXTREMAL CONTROLS

UDC 517.97
A. A. AGRACHEV AND R. V. GAMKRELIDZE

1. We begin with an informal description of index of extremality; for precise defini-
tions see §2.

Consider the extremal problem for a functional ¢g: Z — R under constraints ¢;(z) =0
for i = 1,...,m (with Z to be specified later). Let zg € Z and | < 0; we assume that
the index of extremality at zo is greater than [ if the point zp can be made extremal
on adding (—!) new constraints in a “stable manner” (stability here meaning that if the
new constraints are changed slightly, zo remains extremal). Second, suppose that zo € Z
is an extremal point, and 0 < k < m; we assume that the index of extremality at 2o is
greater than k if k of the constraints can be omitted in a “stable manner” while retaining
extremality of zo.

We shall actually use a more geometric approach, in which the functional is not consid-
ered separately from the constraints: instead of treating a functional g and constraints
©1,...,pm we shall consider the vector-valued function ® = (o, ©1,---,Pm) T, and ex-
tremal values will be the boundary points of the image im @. The concept of extremality
index is then modified appropriately. Further, we shall not treat quite arbitrary map-
pings ®, but restrict ourselves to control systems. The quasiextremality index of a given
control is the largest extremality index at the corresponding “point” that can be achieved
by an arbitrarily small change of the system.

2. Let M be an n-manifold, and U an r-manifold, both of class >, embedded as
closed submanifolds in R%. Consider the controlled system

(1) &= fy(z,u), z€MueclUtel01], z(0) = zo;

here f3(z,u) is infinitely differentiable with respect to (z,u) and measurable in t, with

1
/ £, Yadt < 400 forall K € MxU,a20,
0

where | - || o denotes the maximum of all derivatives to order o over the compact set K.
The admissible controls are arbitrary bounded measurable mappings u: 0,1 -UC R¢;
clearly the collection Loo([0, 1];U) of admissible controls is a smooth Banach submanifold
of L% [0,1]. The collection of seminorms Sl lkadt, K €@ M xU, a >0, turns the
linear space of controlled systems of the form (1) into a Fréchet space that will be denoted
by CS(M,zo;U).

Fix an admissible control %(t), t € [0, 1}, and assume that the corresponding trajectory
#(t), which satisfies Z(t) = f+(Z(¢), 4(t)) and Z(0) = zo, is defined over the entire interval
[0,1]. Then for all controls u(:) in some neighborhood U of the “point” %(-) in the space
Loo([0, 1); U) there is defined a mapping F:u(:) — z(1) € M, where i(t) = fi(z(t), u(t))
for t € [0,1], and z(0) = zo. It is not hard to show that F:U — M is infinitely
differentiable. Before proceeding further let us describe several pertinent local invariants
of smooth mappings.
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Let A be a Banach manifold of class C*°, and a € A. Denote by C2°(4, M) the space
of germs, at a, of smooth mappings from A to M, with the topology of convergence of
all derivatives at a. In the subsequent definitions, the phrase “for almost every germ”
means “for any germ in some open dense subset of the space of germs”.

DEFINITION 1. A germ ¥ € C°(A, M) is said to be extremal if there exist a neigh-
borhood O of a in A and a representative H: O — M of ¥ such that H(a) € 0H(0) (ie.,
the point H(a) is on the boundary of H(0)).

DEFINITION 2. Again, take ¥ € C°(4, M).

(i) Let ¥ be extremal. We say that ¥ has extremality indezk > 0 if k is the least integer
such that, for almost every germ ® € ij‘ia)(M, R %), the germ ® o ¥ € C(4,R"F)
is not extremal. '

(ii) Suppose ¥ is not extremal. We say that ¥ has extremality index | < 0 if |
is the smallest integer such that, for almost every germ ¥ € C=(A,R7Y), the germ
(X,0) € C2(4, M x R™Y) is not extremal. If a least | does not exist, the index of
extremality is —oo.

Thus each germ ¥ € C°(A, M) has an index of extremality, lying within some interval
[—co,n]. A germ is eztremal if its extremality index is positive.

Let us now return to the controlled system (1).

DEFINITION 3. The indez of local extremality of a control 4(-), relative to the system
(1), is defined to be the extremality index of the germ of F' at the “point” (). If the
local extremality index is positive, the control 4(-) is said to be locally extremal relative
to system (1).

DEFINITION 4. The indez of quasieztremality of a control 4(:), relative to system
(1), is defined to be the largest k € [—oo0,n] with the following property: in the space
CS(M,xo; U), arbitrarily close to f;(x,u) there exists a controlled system g:(z,u) relative
to which the control %(-) has local extremality index k. If the quasiextremality index is
positive, the control 4(-) is said to be gquasieztremal relative to the system (D).

Thus the quasiextremality index of a control relative to a given system fi(z,u) is the
limit superior of the local extremality indices of %(-) relative to systems g € CS(M, z0; U)
as ¢ tends to f (it is easy to see that the corresponding limit inferior is always —co). In
particular, a given control has its quasiextremality index depending upper semicontinu-
ously on the system.

3. Tt turns out that the index of quasiextremality of a control 4() can be computed
on the basis of only the differential and the Hessian of F at the “point” 4(-). To describe
these we shall need some further notation. For any y; in a neighborhood Oy C M of
the point (1) in M, the solution of the equation (1) = f;(y(7),%(7)), ¥(1) = v1, is
defined for all 7 € [0, 1]; moreover, for each ¢ € [0,1] the mapping p::y(t) — y(1) is a
diffeomorphism of a neighborhood O; of Z(t) onto Oy. In the usual manner denote the
differential of p; by pe., and the codifferential by p; (p: takes vector field on Oy to vector
fields on O, while p} takes differential forms on O; to differential forms on O;). The
tangent and cotangent spaces of M at z are TuM and T, M and T, M is the tangent
space of U at u. Now define

(e) filz) = 0f:/0u)(a,@(t)),  J(2) = (87 o/ OusOuz) (e, G(1)).

Then f’(z):Tﬂ‘(t)U — T, M is a linear mapping, and for each v € Ty»U the corre-
spondence z — f/(z)v defines a vector field f{v on M. Analogously, fl(@): Tay)U %
Ta)U — coker fi(z) is a symmetric bilinear mapping (we are using the standard no-

tation coker f!(z) = T, M/im f!(z); the values of the second derivatives 0% f /Ou1Ous
are well-defined only modulo image df/0u). Finally we note that the tangent space
Ti()Loo([0,1];U) of the Banach manifold Loo([0,1};U) at the “point” %(-) consists of
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the bounded measurable mappings ¢t — v(t), 0 < t < 1, for which v(t) € TyyU for all
te0,1].

PROPOSITION 1. Let F’:Ta(_)Loo([O, 1;U) — TzyM be the differential of a map-
ping F at the “point” 4(-), and let ker F' be its kernel, im F” its image, coker F =
Ti(1)M/im F’ its cokernel, and F'': ker F’ X ker F' — coker _ﬁ" the Hesstan of F' at the
“point” (). Then the following equalities are true:

1
Fot) = [ pfiae)eo
0
im F' = span{p. f1(#(t))v|v € TanU, where t is a Lebesgue point
of the mapping T — pe. f1(£(7))}

F'(w,(-),v2()) =/0 {(pt* (&) (w1 (8), va(t))

_%Imﬁmmmmﬂmﬂﬁmﬁﬁ+mﬁ,

for all v;(-) € ker F, 1 =1,2. The brackets [ , | denote the commutator of vector fields
on M. ,

The orthogonal complement of the image is Fis

(im F')- = {9 € TEy MI(piv) fe(E())v = 0
for every v € Ty(;)U and almost every ¢ € [0, 1}.

For any ¢ € (im F’)*, the mapping v(-) — ¥F” (v(-),v(:)) is a scalar quadratic form on
ker I, to be denoted by Y F". We recall that the Morse index of a quadratic form @ is
defined to be the maximal dimension, possibly +oo, of subspaces on which @ is negative
definite; the standard notation is ind Q. By convention, min & = +0c0.

THEOREM 1. The quasiextremality indez of a control u(-) relative to (1) is
dim coker F' — min{ind(¢F"")¢ € (im F')*, 4 # 0}.

4. The generalised Legendre conditions take their definitive form as an estimate of
the quasiextremality index (see [1]-[3]). For the remainder of this section we assume that
fi(z,u) and 4(t) are piecewise smooth and left-continuous in ¢; t-derivatives at points of
discontinuity are to be interpreted as limits from the left of the corresponding derivatives.

If we set f;(z) = fi(z,(t)), the correspondence x — f;(z) defines a vector field f: on
M. In the customary manner we define the operator ad f+, mapping the set of vector
fields on M into itself: namely, (ad f:)g = [ft,g] for any vector field g.

DEFINITION 5. Let t € (0,1], and let k > 0 be an integer. The bilinear mapping

LE:TayU x TayU — TayM

taking (v1,vs) to [flv1, (8/0t +ad F)% flug](2(t)) is called the Legendre form of order k
at t.
The following notation will also be convenient:

L7 (vg,v2) = f{/(E(0) (01, v2)-
Let ¢ € Tg(l)M and set ¥; = pr1; then the covector ¢ belongs to (im F )+ if and only

if 9. f1(&(t)) = 0 for all t € (0, 1]; furthermore, the products Yy LF for k= -1,0,1,... are
scalar bilinear forms on Ty U, t € (0,1]. Let k(1) be the least k > —1 such that Y, LE
does not vanish identically on any interval of the form [f,¢] with 0 <7 <.
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PROPOSITION 2. Assume that the family of covectors 1y = pi satisfies ¥ fi(2(t)) =
0 for t € (0,1]. For each t € (0,1] the following assertions are true:

(i) If ky(¢) > 2 dim span{p,. f; (Z(7))v|v € Ty U,0 <7 < t}, then ki(¢) = +00.

(ii) The bilinear form thft(w)(vl, vy) is symmetric if ky(¢) is odd, and skew-
symmetric if k(1) 1s even.

For odd k(1)) the quadratic form v — thft(w) (v,v) will be denoted by thft(w); I,
denotes the quadratic form v — |v|2 on Tz U.

THEOREM 2. Assume that the control 4i(-) has finite quasiextremality indez relative
to system (1). Then there exists ¥ € Tg‘(l)M\{O} such that for t € (0,1] and ¥ = p;y
the following relations hold: :

(a) e fi(2(8) = 0.

(b) If ki() is finite, then it is odd, and (—1)(kt(¢)+1)/2Lf‘(¢) > 0. Conversely, if
for some family ¢y = pi # 0, t € (0,1], relations a) and b) hold, and if, in additon,
ki() < oo and (—1)(k*(“’)+1)/2Lft(¢) > eI, with € > 0 for all t € (0,1], then the control
@(-) has finite quasieztremality indez relative to (1).

REMARK. The main concepts and results of this paper extend to the case where the
set U of control parameters is a “curvilinear polyhedron” rather than a smooth manifold.
We expect to give the precise definitions and proofs in a more extensive paper.
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