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Smooth dynamical system:

q̇(t) = f(q(t)), q ∈M, t ∈ R,

( )f q

q

generates a flow

P t : M →M, P t : q(0) 7→ q(t), t ∈ R.
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Control system:

q̇ = fu(q), u ∈ U.

Control: t 7→ u(t), t ≥ 0.

Trajectory: t 7→ q(t), where q̇(t) = fu(t)(q(t)).

Special case: U = {1,2}: 1( )f q

q

2 ( )f q



Trajectories:
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Example. Unicycle:

q = (x, θ) :
x

 , M = R2 × S1.

P t1 : , P t2 :

Third directions is the “parallel parking”:
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We realize it using only P±t1 and P±t2 :
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The commutator of flows and vector fields:

1
tP

2

tP

1

tP

2

tP

q

1 2[ , ]( )f f q

P−t2 ◦ P−t1 ◦ P t2 ◦ P
t
1(q) = q + t2[f1, f2](q) +O(t3).

In the example, the field g = [f1, f2] generates the parallel park-
ing.
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Similar problem on a non flat surface:

N

q

M is the “spherical bundle” of all tangent vectors of the length
1 to the surface N .

The flow P t1 is as before, P t2 is the geodesic flow:

P t2 : (x(0), ẋ(0)) 7→ (x(t), ẋ(t)),

where ẍ(t) ⊥ N .



Then g = [f1, f2] generates the “parallel parking”.

The difference between the flat and non flat cases:

“translation” f2 and “parallel parking” g obviously commute in

the flat case.

In general, [g, f2] = κf1, where κ is the curvature!

In higher dimensions, the field [g, f2] may be linearly independent

on f1, f2, [f1, f2] = g.



General case:

LieqfU = span{[fu1, [· · · , fuk] . . .](q) : ui ∈ U, k = 1,2, . . .}.

Theorem (Rashevskij–Chow). If Lieqf = TqM, ∀q ∈ M , then
∀q0, q1 ∈ M ∃t 7→ (u(t), q(t)) such that q̇(t) = fu(t)(q(t)),
q(0) = q0, q(t1) = q1.

0q

1q

7



Optimal control

Example. M = R2 × S1, q̇ = uf1(q) + f2(q).

Admissible trajectories t 7→ q(t) = (x(t), θ(t)), where ẋ =
(

cos θ
sin θ

)
and θ̇ = u is the curvature of the curve x(·).

I) Markov–Dubins problem: |u| ≤ c, minimise the length of x(·)
(= time t1).
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“Geodesics” are special concatenations of circle and linear seg-
ments:

0q 1q

0q 1q

0q

1q

Optimal piece has no more than 3 switchings.



II) Euler elastic problem: u ∈ R, minimise
t1∫
0
u2(t) dt.

“Geodesics” or elasticas: the curves whose curvature is a linear

function of coordinates, u(t) = 〈a, x(t)〉+ α.
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Both problems are translation and rotation invariant, where S1 =
SO(2) is the group of rotations.

Example (rolling without slipping or twisting).
Here M = R2 × SO(3), q = (x,X), where x ∈ R2, X ∈ SO(3).
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u =
(
u1
u2

)
, ẋ = u, q̇ = u1F1(q) + u2F2(q).

Minimize
t1∫
0
|u(t)| dt, the length of x(·).

Minimal length:

δ(q0, q1) = inf
{∫ t1

0
|u(t)| dt : q(0) = q0, q(t1) = q1

}
is a metric on M :

δ(q0, q1) = δ(q1, q0), δ(q0, q2) ≤ δ(q0, q1) + δ(q1, q2).

“Rolling geodesics” are again elasticas.
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General sub-Riemannian problem:

q̇ =
k∑
i=1

uiFi(q), q ∈M, u = (u1, . . . , uk)T ∈ Rk,

defines a “Carnot–Caratheodory metric” on M :

δ(q0, q1) = inf
{∫ t1

0
|u(t)| dt : q(0) = q0, q(t1) = q1

}
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3-dim examples:

I) Dido problem. q = (x, y), x ∈ R2, y ∈ R,{
ẋ = u

2ẏ = x ∧ u

(0)x (1)x

y Area

( )x t

(0)x

(1)x

( )x t_

+
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II) Interpolation problem.

M = R2 × S1, q̇ = u1f1 + u2f2.

Where to “cut” geodesics?

Maxwell points: at least two geodesics of equal length connect

the same points.

0q 1q
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Conjugate points: the envelope of the family of geodesics start-

ing from q0.

0q

The wave front Wq0(r) is the set of endpoints of the length r

geodesics starting from q0.

The sphere Sq0(r) is a part of the wave front.
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Dido problem.

Geodesics:

They are characterized by the initial velocity and curvature;
greater the curvature, more tough is the spiral.
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The wave front:

⇒

17



The sphere:

First Maxwell and conjugate points coincide and belong to the

vertical line due to the rotational symmetry.
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Breaking the symmetry.

Look under the microscope:
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Symmetric ⇒ Generic
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First conjugate and cut loci:
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Curvature, basic idea:

A

B
negative curvature

A

B
positive curvature

Bigger the curvature – bigger the difference between velocities

in the intersection point.
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Do it infinitesimaly:

q

0q 

q

( ) ( )qt t 
bt(q)

.
= 1

2|γ̇q(t)− γ̇(t)|2.

In particular, bt(γ(s)) = 1
2

∣∣∣(t−s)t γ̇(t)− γ̇(t)
∣∣∣2 = s2

2t2
|γ̇(t)|2.

Riemannian case:

D2
q0

(v) =
1

t2
|v|2 +

1

3
〈R(v, γ̇)γ̇, v〉+O(t).
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General subriemannian case (ample geodesic):

D2
q0

(v) =
1

t2
Q(v) +

1

3
Rγ(v) +O(t), v ∈∆q0.

Q(v) ≥ |v|2 and Rγ is the curvature along γ. We have:

Q(v) = |v|2, ∀v ∈∆q0 ⇔ δq0 = Tq0M.

Quadratic form Q measures “nonholonomy orders” and precedes

the curvature.
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Let Φτ : M →M be a horizontal flow s. t. Φτ(q0) = γ(τ), τ ∈ R.

We set ∆t = Φ−t∗ ∆γ(t) ⊂ Tq0M .

Geodesic flag ∆q0 = ∆(1) ⊂ ∆(2) ⊂ · · · ⊂ ∆(i) ⊂ is defined as

follows:

∆(i) =
di−1

dti−1
∆t

∣∣∣
t=0

.

The flag depends only on γ and not on the choice of Φτ .

Geodesic γ is ample if ∆(m) = Tq0M for some m > 0.
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Let dim ∆q0 = d, dimM = n, and γ is equiregular. We set:

d1 = d, di = dim ∆(i) − dim ∆(i−1).

Young diagram:

1d d
2d md

1n

2n

dn specQγ = {n2
1, . . . , n

2
d}.

If n = 3, d = 2, then: specQ = {1,4}, specRγ = {0, rγ}.
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Starting from q0 geodesics are characterized by their initial “mo-

menta” p ∈ T ∗q0
M Given p ∈ T ∗q0

M , let γp be the correspondent

geodesic, |γ̇|2 = 〈p, γ̇〉. We set: r(p) = 5
4rγp.

Theorem. r : T ∗q0
M → R is a quadratic form, r

∣∣∣
∆⊥q0

> 0. Such a

form can be canonically written as follows:

r(p) = 〈p, f0〉2 + α1〈p, f1〉2 + α2〈p, f2〉2,

where f1, f2 is an orthonormal frame of ∆q0 and α1 ≥ α2.

Principal invariants: κ = 1
2(α1 + α2), χ = 1

6(α1 − α2).
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ν = 1/|〈p, f0〉| 28



lengthconj(γp) = 2πν + πκν3 +O(ν4)

A subriemannian structure is locally isometric to the Dido prob-

lem on the surfac with Gaussian curvature κ iff χ = 0.

It is is isometric to its own metric tangent space iff χ = κ = 0,

iff r is a rank 1 quadratic form.
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