Geometry and Control

Andrei Agrachev

Smooth dynamical system:

$$
\dot{q}(t)=f(q(t)), \quad q \in M, t \in \mathbb{R}
$$

generates a flow

$$
P^{t}: M \rightarrow M, \quad P^{t}: q(0) \mapsto q(t), \quad t \in \mathbb{R}
$$

Control system:

$$
\dot{q}=f_{u}(q), \quad u \in U .
$$

Control: $t \mapsto u(t), t \geq 0$.

Trajectory: $t \mapsto q(t)$, where $\dot{q}(t)=f_{u(t)}(q(t))$.
Special case: $U=\{1,2\}: \int_{q}^{f_{2}(q)} f_{1}(q)$

Trajectories:

Example. Unicycle:

$$
q=(x, \theta): \underset{x}{ }, M=\mathbb{R}^{2} \times S^{1} .
$$

Third directions is the "parallel parking":

We realize it using only $P_{1}^{ \pm t}$ and $P_{2}^{ \pm t}$:

The commutator of flows and vector fields:

In the example, the field $g=\left[f_{1}, f_{2}\right]$ generates the parallel parking.

Similar problem on a non flat surface:

M is the "spherical bundle" of all tangent vectors of the length 1 to the surface N.

The flow P_{1}^{t} is as before, P_{2}^{t} is the geodesic flow:

$$
P_{2}^{t}:(x(0), \dot{x}(0)) \mapsto(x(t), \dot{x}(t)),
$$

where $\ddot{x}(t) \perp N$.

Then $g=\left[f_{1}, f_{2}\right]$ generates the "parallel parking".
The difference between the flat and non flat cases:
"translation" f_{2} and "parallel parking" g obviously commute in the flat case.

In general, $\left[g, f_{2}\right]=\kappa f_{1}$, where κ is the curvature!
In higher dimensions, the field $\left[g, f_{2}\right.$] may be linearly independent on $f_{1}, f_{2},\left[f_{1}, f_{2}\right]=g$.

General case:

$$
\operatorname{Lie}_{q} f_{U}=\operatorname{span}\left\{\left[f_{u_{1}},\left[\cdots, f_{u_{k}}\right] \ldots\right](q): u_{i} \in U, k=1,2, \ldots\right\} .
$$

Theorem (Rashevskij-Chow). If $\operatorname{Lie}_{q} f=T_{q} M, \forall q \in M$, then $\forall q_{0}, q_{1} \in M \exists t \mapsto(u(t), q(t))$ such that $\dot{q}(t)=f_{u(t)}(q(t))$, $q(0)=q_{0}, q\left(t_{1}\right)=q_{1}$.

Optimal control

Example. $M=\mathbb{R}^{2} \times S^{1}, \dot{q}=u f_{1}(q)+f_{2}(q)$.
Admissible trajectories $t \mapsto q(t)=(x(t), \theta(t))$, where $\dot{x}=\binom{\cos \theta}{\sin \theta}$ and $\dot{\theta}=u$ is the curvature of the curve $x(\cdot)$.

I) Markov-Dubins problem: $|u| \leq c$, minimise the length of $x(\cdot)$ ($=$ time t_{1}).
"Geodesics" are special concatenations of circle and linear segments:

Optimal piece has no more than 3 switchings.
II) Euler elastic problem: $u \in \mathbb{R}$, minimise $\int_{0}^{t_{1}} u^{2}(t) d t$.
"Geodesics" or elasticas: the curves whose curvature is a linear function of coordinates, $u(t)=\langle a, x(t)\rangle+\alpha$.

Both problems are translation and rotation invariant, where $S^{1}=$ $S O(2)$ is the group of rotations.

Example (rolling without slipping or twisting). Here $M=\mathbb{R}^{2} \times \mathrm{SO}(3), q=(x, X)$, where $x \in \mathbb{R}^{2}, X \in \mathrm{SO}(3)$.

$$
u=\binom{u_{1}}{u_{2}}, \quad \dot{x}=u, \quad \dot{q}=u_{1} F_{1}(q)+u_{2} F_{2}(q) .
$$

Minimize $\int_{0}^{t_{1}}|u(t)| d t$, the length of $x(\cdot)$.
Minimal length:

$$
\delta\left(q_{0}, q_{1}\right)=\inf \left\{\int_{0}^{t_{1}}|u(t)| d t: q(0)=q_{0}, q\left(t_{1}\right)=q_{1}\right\}
$$

is a metric on M :

$$
\delta\left(q_{0}, q_{1}\right)=\delta\left(q_{1}, q_{0}\right), \quad \delta\left(q_{0}, q_{2}\right) \leq \delta\left(q_{0}, q_{1}\right)+\delta\left(q_{1}, q_{2}\right)
$$

"Rolling geodesics" are again elasticas.

General sub-Riemannian problem:

$$
\dot{q}=\sum_{i=1}^{k} u_{i} F_{i}(q), \quad q \in M, \quad u=\left(u_{1}, \ldots, u_{k}\right)^{T} \in \mathbb{R}^{k}
$$

defines a "Carnot-Caratheodory metric" on M :

$$
\delta\left(q_{0}, q_{1}\right)=\inf \left\{\int_{0}^{t_{1}}|u(t)| d t: q(0)=q_{0}, q\left(t_{1}\right)=q_{1}\right\}
$$

3-dim examples:

I) Dido problem. $q=(x, y), x \in \mathbb{R}^{2}, y \in \mathbb{R}$,

$$
\left\{\begin{array}{c}
\dot{x}=u \\
2 \dot{y}=x \wedge u
\end{array}\right.
$$

II) Interpolation problem.

$$
M=\mathbb{R}^{2} \times S^{1}, \quad \dot{q}=u_{1} f_{1}+u_{2} f_{2} .
$$

Where to "cut" geodesics?

Maxwell points: at least two geodesics of equal length connect the same points.

Conjugate points: the envelope of the family of geodesics starting from q_{0}.

The wave front $W_{q_{0}}(r)$ is the set of endpoints of the length r geodesics starting from q_{0}.

The sphere $S_{q_{0}}(r)$ is a part of the wave front.

Dido problem.

Geodesics:

They are characterized by the initial velocity and curvature; greater the curvature, more tough is the spiral.

The wave front:

The sphere:

First Maxwell and conjugate points coincide and belong to the vertical line due to the rotational symmetry.

Breaking the symmetry.

Look under the microscope:

Symmetric \Rightarrow Generic

First conjugate and cut loci:

Curvature, basic idea:

negative curvature

positive curvature

Bigger the curvature - bigger the difference between velocities in the intersection point.

Do it infinitesimaly:

$$
b_{t}(q) \doteq \frac{1}{2}\left|\dot{\gamma}_{q}(t)-\dot{\gamma}(t)\right|^{2}
$$

In particular, $b_{t}(\gamma(s))=\frac{1}{2}\left|\frac{(t-s)}{t} \dot{\gamma}(t)-\dot{\gamma}(t)\right|^{2}=\frac{s^{2}}{2 t^{2}}|\dot{\gamma}(t)|^{2}$.
Riemannian case:

$$
D_{q_{0}}^{2}(v)=\frac{1}{t^{2}}|v|^{2}+\frac{1}{3}\langle R(v, \dot{\gamma}) \dot{\gamma}, v\rangle+O(t)
$$

General subriemannian case (ample geodesic):

$$
D_{q_{0}}^{2}(v)=\frac{1}{t^{2}} Q(v)+\frac{1}{3} R_{\gamma}(v)+O(t), \quad v \in \Delta_{q_{0}} .
$$

$Q(v) \geq|v|^{2}$ and R_{γ} is the curvature along γ. We have:

$$
Q(v)=|v|^{2}, \quad \forall v \in \Delta_{q_{0}} \quad \Leftrightarrow \quad \delta_{q_{0}}=T_{q_{0}} M
$$

Quadratic form Q measures "nonholonomy orders" and precedes the curvature.

Let $\Phi^{\tau}: M \rightarrow M$ be a horizontal flow s.t. $\Phi^{\tau}\left(q_{0}\right)=\gamma(\tau), \tau \in \mathbb{R}$.
We set $\Delta^{t}=\Phi_{*}^{-t} \Delta_{\gamma(t)} \subset T_{q_{0}} M$.
Geodesic flag $\Delta_{q_{0}}=\Delta^{(1)} \subset \Delta^{(2)} \subset \cdots \subset \Delta^{(i)} \subset$ is defined as follows:

$$
\Delta^{(i)}=\left.\frac{d^{i-1}}{d t^{i-1}} \Delta^{t}\right|_{t=0}
$$

The flag depends only on γ and not on the choice of Φ^{τ}.
Geodesic γ is ample if $\Delta^{(m)}=T_{q_{0}} M$ for some $m>0$.

Let $\operatorname{dim} \Delta_{q_{0}}=d, \operatorname{dim} M=n$, and γ is equiregular. We set: $d_{1}=d, d_{i}=\operatorname{dim} \Delta^{(i)}-\operatorname{dim} \Delta^{(i-1)}$.

Young diagram:

$$
\operatorname{spec} Q_{\gamma}=\left\{n_{1}^{2}, \ldots, n_{d}^{2}\right\}
$$

If $n=3, d=2$, then: $\operatorname{spec} Q=\{1,4\}, \quad \operatorname{spec} R_{\gamma}=\left\{0, r_{\gamma}\right\}$.

Starting from q_{0} geodesics are characterized by their initial "momenta" $p \in T_{q_{0}}^{*} M$ Given $p \in T_{q_{0}}^{*} M$, let γ_{p} be the correspondent geodesic, $|\dot{\gamma}|^{2}=\langle p, \dot{\gamma}\rangle$. We set: $r(p)=\frac{5}{4} r_{\gamma_{p}}$.

Theorem. $r: T_{q_{0}}^{*} M \rightarrow \mathbb{R}$ is a quadratic form, $\left.r\right|_{\Delta_{q_{0}}^{\perp}}>0$. Such a form can be canonically written as follows:

$$
r(p)=\left\langle p, f_{0}\right\rangle^{2}+\alpha_{1}\left\langle p, f_{1}\right\rangle^{2}+\alpha_{2}\left\langle p, f_{2}\right\rangle^{2},
$$

where f_{1}, f_{2} is an orthonormal frame of $\Delta_{q_{0}}$ and $\alpha_{1} \geq \alpha_{2}$.
Principal invariants: $\kappa=\frac{1}{2}\left(\alpha_{1}+\alpha_{2}\right), \quad \chi=\frac{1}{6}\left(\alpha_{1}-\alpha_{2}\right)$.

$$
\nu=1 /|\langle p, f 0\rangle|
$$

$$
\text { length }_{\text {conj }}\left(\gamma_{p}\right)=2 \pi \nu+\pi \kappa \nu^{3}+O\left(\nu^{4}\right)
$$

A subriemannian structure is locally isometric to the Dido problem on the surfac with Gaussian curvature κ iff $\chi=0$.

It is is isometric to its own metric tangent space iff $\chi=\kappa=0$, iff r is a rank 1 quadratic form.

