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Smooth dynamical system:

q(t) = f(q(t)), qe M, teR,

f(a)

generates a flow

P':M — M, Pt:q(0)w—qt), teR.



Control system:

Control: t— u(t), t > 0.

Trajectory: t— q(t), where q(t) = fu(t)(q(t)).

f,(a)

Special case: U = {1, 2}: V(q)
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Example. Unicycle:

Third directions is the “parallel parking:

_>




We realize it using only Pi! and Py



The commutator of flows and vector fields:

q il

[f,, le(q)//
| Pzt

Pyt o Pyt o Pho Pi(q) = q + t2[f1, £2](q) + O(£3).

In the example, the field g = [f1, fo] generates the parallel park-
ing.
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Similar problem on a non flat surface:

M is the “spherical bundle” of all tangent vectors of the length
1 to the surface N.

The flow P! is as before, P} is the geodesic flow:

P5 : (2(0),2(0)) — (x(t), (1)),
where x(t) L N.



Then g = [f1, fo] generates the “parallel parking".
The difference between the flat and non flat cases:

“translation” fo and “parallel parking” g obviously commute in
the flat case.

In general, [g, f2] = kf1, where k is the curvature!

In higher dimensions, the field [g, f»] may be linearly independent

on f1, fo,[f1, f2l = g.



General case:

Lieqfuy = span{[fuy,[- -+, fu,]--1(q@) tu; €U, k=1,2,...}.
Theorem (Rashevskij—Chow). If Lieqf = TyM, Yq € M, then
Va1 € M 3t — (u(t),q(t)) such that q(t) = fu(a(®)),
q(0) = qo, q(t1) = q1.

O
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Optimal control
Example. M =R? x S, ¢ =uf1(q) + f2(q).

Admissible trajectories t — q(t) = (z(t),0(t)), where = = (g?nsg>
and § = v is the curvature of the curve z(.).

I) Markov—Dubins problem: |u| < ¢, minimise the length of xz(-)
(= time t1).



“Geodesics” are special concatenations of circle and linear seg-
ments:

o 1
Jo G,
O

Y%

Optimal piece has no more than 3 switchings.



t1
II) Euler elastic problem: uw € R, minimise [ u2(t) dt.
0

“Geodesics’ or elasticas: the curves whose curvature is a linear
function of coordinates, u(t) = (a,z(t)) + «.




Both problems are translation and rotation invariant, where Sl —
SO(2) is the group of rotations.

Example (rolling without slipping or twisting).
Here M = R2 x SO(3), ¢ = (z,X), where z € R2, X € SO(3).
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u=(u3), &=u ¢=u1Fi(q)+u2Fa(q).

t1
Minimize [ |u(t)|dt, the length of z(.).
0

Minimal length:

(a0 a1) = inf { [ u(®)]dt : 4(0) = a0, a(t1) = a1 |

is a metric on M:

6(g0,91) = 6(q1,90), 6(q0,92) < 3(q0,q1) +9(q1,92).

“Rolling geodesics” are again elasticas.
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General sub-Riemannian problem:

k
q: ZuZFz(Q)a qu, u:(u].?"')uk,)TeRka
=1

defines a “Carnot—Caratheodory metric’ on M:

(a0 1) = inf { [ u()]dt : 4(0) = ao, a(t1) = a1
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3-dim examples:

I) Dido problem. ¢ = (z,y), = € R?, y € R,

r=u
2y=x AN u
y Area
m
x(0) x(2)

X(t)
x(1)
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II) Interpolation problem.

M=R?x 8, (=uifi+usfo

Where to ‘‘cut” geodesics?

Maxwell points: at least two geodesics of equal length connect
the same points.

X
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Conjugate points: the envelope of the family of geodesics start-
ing from qq.

%o

The wave front Wy,(r) is the set of endpoints of the length r
geodesics starting from qq.

The sphere S¢,(r) is a part of the wave front.
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Dido problem.

Geodesics:

They are characterized by the initial velocity and curvature;
greater the curvature, more tough is the spiral.
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The wave front:
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The sphere:

First Maxwell and conjugate points coincide and belong to the
vertical line due to the rotational symmetry.
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Breaking the symmetry.

Look under the microscope:
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Symmetric = Generic
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First conjugate and cut loci:

conjugate

2
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Curvature, basic idea:

negative curvature

positive curvature

Bigger the curvature — bigger the difference between velocities
in the intersection point.
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Do it infinitesimaly:

q
\
a7 y(t)=7,(t)

0

be(q) = 3|7q(t) — (D)2

In particular, bi(v(s)) = 3 [4525() - 4| = SAWI

Riemannian case:

D2,(@) = Sl + S(R(,4)5,v) + 0.
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General subriemannian case (ample geodesic):

1 1
Dgo(v) = 5Q) + ZBy(0) +0(1), v € Age.

Q(v) > |v|? and R, is the curvature along v. We have:

Q(v) = |U|27 Vo€ Dgg & 0gg = TyoM.

Quadratic form Q measures “nonholonomy orders” and precedes
the curvature.
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Let &7 : M — M be a horizontal flow s.t. ®7(qg) = ~(7), T € R.
We set Al = &TA () C TyoM.

Geodesic flag Agy = AL c AP c ... c AW c is defined as
follows:

dz—l ,

The flag depends only on v and not on the choice of 7.

A —

Geodesic « is ample if A7) = TyyM for some m > 0.
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Let dm Ay = d, dmM = n, and ~ is equiregular. We set:
di =d, d; = dim A® —dim AG-1),

Young diagram:

d=d, d, .. d,
nl
n2

s spec @y = {n%,...,n3}.

If n =3, d =2, then: spec@Q = {1,4}, specRy={0,ry}.
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Starting from gg geodesics are characterized by their initial “mo-
menta” p € Ty M Given p € T, M, let v, be the correspondent
geodesic, |42 = (p,¥). We set: r(p) = 27,

Theorem. r : T; M — R is a quadratic form, T‘AJ_ > 0. Such a

0]
a0
form can be canonically written as follows:

r(p) = (p, fo)? + a1(p, f1)° + aa(p, f2)2,

where f1, fo is an orthonormal frame of Agy and a1 > as.

Principal invariants: s = %(al + as), x = %(al —an).
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conjugate

Tyl

v =1/|p, fo)l
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lengthon;(vp) = 27v + > + O(?)

A subriemannian structure is locally isometric to the Dido prob-
lem on the surfac with Gaussian curvature « iff x = 0.

It is is isometric to its own metric tangent space iff x = x = O,
iff » is @ rank 1 quadratic form.
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