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Abstract

Deep learning of the Artificial Neural Networks (ANN) can be treated as
a particular class of interpolation problems. The goal is to find a neural
network whose input-output map approximates well the desired map on a
finite or an infinite training set. Our idea consists of taking as an approxi-
mant the input-output map, which arises from a nonlinear continuous-time
control system. In the limit such control system can be seen as a network
with a continuum of layers, each one labelled by the time variable. The
values of the controls at each instant of time are the parameters of the layer.

Keywords: Ensemble Controllability, Optimal Control, Artificial Neural
Network, Deep Learning

1. Introduction and problem setting

The name deep learning stands for a set of the methods and the tools
which study the problems of classification such as image recognition, speech
recognition etc. These methods involve multilayered artificial neural net-
works (ANN) and one of the key moments is the training of the networks
on a set of classified objects. For a simple mathematical model of the mul-
tilayered ANN and of the process of its training we refer to [9].

The functioning of the ANN results from a composition of the actions
of separate neurons. Each neuron realizes an activation function σ : R → R

with parameters. There are plenty of choices for the activation function, that
is normally nonlinear monotone sigmoid-like function. The vector functions
can be assembled from the scalar activation functions:

σ̄ : Rm → R
m : σ̄(x1, . . . , xm) = (σ(x1), . . . , σ(xm)). (1)
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One can assemble neurons in a multi-layer network in such a way that the
outputs of the neurons from a previous layer serve as the inputs for the
successive level.

One can introduce parameters into the activation functions via a sub-
stitution of their variables. For example a linear change of the argument in
(1) results in σ̄(Kx+B), where x ∈ R

m, K ∈ R
m×m, B ∈ R

m.
The output of an ANN realizes the composition of the functions, each

one of which corresponds to a layer:

F (x) = (2)

= σ̄
(

K [M ]σ̄
(

K [M−1]
(

. . . σ̄(K [1]x+B[1]) . . .
)

+B[M−1]
)

+B[M ]
)

.

To set the classification problem we consider a finite set of objects, which
are represented by the vectors xi ∈ R

d, i ∈ I. Let X = {xi|i ∈ I}. There is
a R

s-valued classifying function c : Rd 7→ R
s, defined on X, which attributes

to each object xi its ”class” c(xi) ∈ R
s.

The objective of the training of an ANN amounts to the adjustment
of the values of the parameters K [1], . . . ,K [M ], B[1], . . . , B[M ] in order to
achieve the best approximation of the classifying function c(x) by the out-
put map (2). More specifically one seeks to minimize the value of the loss
function, which measures the discrepancy between the input-output map of
the system and the classification function. For example the least square loss
function has form

C
(

K [M ], . . . ,K [1], B[M ], . . . , B[1]
)

=

N
∑

i=1

∥

∥c(xi)− F (xi)
∥

∥

2

2
→ min

K [j],B[j]
. (3)

Minimization of (3) results in a problem of nonlinear programming,
which even for a ”medium” number of layers can turn rather complex for
classical approaches.

In this contribution we base on a continuous-time dynamic or residual
network model for deep learning, with a continuum of layers, labelled by the
time variable. The parameters involved at each layer are the values of the
controls at the respective instant of time. The analogue of the composition
(2) is the end-point of the trajectory or the output of the continuous-time
control system in their dependence on control.

As in the model, we referred to above, in the control-theoretic setting
one seeks for the values of the parameters (the controls), which provide the
best approximation of the classifying function by the output of the control
system. Precise formulations and the description of the model can be found
in section 3.
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The setting allows for the application of analytic methods of dynamic
optimization such as dynamic programming, Bellman’s optimality principle
and Pontryagin’s maximum principle together with the corresponding nu-
merical algorithms. This approach to the deep learning has been initiated in
the last years by a number of scholars; see for example [7, 10, 11] and refer-
ences therein. The readers must be warned that we consider a very restricted
issue of possible application of the methods of ensemble controllability and
ensemble optimal control to the problems of deep learning. Therefore we
only cite the references related to this concrete topic, leaving aside not only
a huge amount of literature on deep learning, but also on application of the
methods of deep learning to the problems of optimal control.

In the contribution we concentrate on finding the classes of control sys-
tems, which are able to guarantee approximation of the classifying functions
at each rate. It amounts to studying the problems of ensemble controllability
of the control systems and the action of the flows, generated by the control
systems, on the manifold of mappings. We formulate the sufficient criteria
(Theorem 5.1, Corollary 5.2) of ensemble controllability and provide exam-
ples of the nonlinear control systems which demonstrate approximate con-
trollability property in the group of diffeomorphisms of Rn (Theorem 6.3),
of a torus Tn (Theorem 6.6 ) and of the 2-dimensional sphere S (Theorems
6.7 and 6.10).

2. Neural networks modelled by control systems

It is an easy task to reformulate optimization problem (2)-(3) as an
optimal control problem for a discrete-time controlled dynamic system. If
one sets the variables z1, z2, . . . , zM , which satisfy the relations

z1 = x, zj+1 = σ̄
(

K [j+1]zj +B[j+1]
)

, j = 1, . . . ,M − 1, (4)

then the map, defined by (2), coincides with the ”end-point map”

F (x,K [1], . . . K [M ], B[1], . . . , B[M ]) = zM . (5)

Alternatively one can introduce the intermediate variables yj and define
the dynamics

z1 = x, yj+1 = K [j+1]zj +B[j+1], zj+1 = σ̄ (yj+1) , j = 1, . . . ,M − 1, (6)

getting again formula (5) for the map (2).
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Denote zij (respectively yij, z
i
j) the points of the trajectories of equation

(4) (respectively (6)), which start with the initial data zi1 = xi ∈ X, i ∈ I.
Then the problem of the best least square approximation (3) takes the form

Ĉ
(

K [2], . . . ,K [M ], B[2], . . . , B[M ]
)

=
∑

i∈I

∥

∥c(xi)− ziM
∥

∥

2

2
→ min . (7)

Problems (4),(7), respectively (6),(7) are Mayer problems of optimal
control for the control systems with discrete time with free end-point. There
are quite few numerical algorithms developed for this class of problems, but
we do not treat them in this contribution, making emphasis instead on the
continuous-time control systems. 1

The way to the representation of the input-output map (6)-(5) as an
output of a continuous-time control system is rather straightforward. Let
us consider a system, which for the sake of the computational simplicity we
choose control-linear:

ż = f0(z)u0(t) +

r
∑

i=1

f i(z)ui(t), z ∈ R
m. (8)

For the purpose of our illustration we choose smooth vector field f0(z) to
be nonlinear, and the vector fields f1(z), . . . , f r(z), to form a basis of the
space of the affine vector fields in R

m.
Require the diffeomorphism ef

0(z) to coincide with σ̄(z), so that the map
σ̄(z) is generated by control system (8), driven by the constant control u(t) =
(1, 0, . . . , 0) on a unit time interval. Each affine diffeomorphism Kx + B,
with detK > 0, can be represented as a composition of the diffeomorphisms
ea(z), where a(z), are affine vector fields in R

m. Hence such diffeomorphisms
are generated by the control system (8), driven by the piecewise-constant
controls.

Therefore the composition (2) or, the same the output map (5) of the
discrete-time system (6) can be represented as the endpoint map of the
continuous-time system (8), driven by a piecewise-constant control.

1It is worth mentioning that the theoretical study of the discreet-time optimal control
problems manifests additional complexities in comparison with the continuous-time case,
unless additional regularity assumptions, such as convexity are imposed.
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3. Ensemble Optimal Control Model for the training of control-

theoretic ANN

3.1. Ensemble Optimal Control Model

We consider a training set X = {x1, . . . , xN} ⊂ M, consisting of N
points of a connected Riemannian manifold M. In what follows M will be
a submanifold of Rd.

We set an optimal control model for the training process of an ANN,
which involves a control system in R

d, which

ẋ =
r
∑

i=1

f i(y)ui(t), y ∈ M. (9)

We introduce the terminology of the ensembles of points. A finite ensem-
ble of points of a smooth manifold M is an N -ple γ = (x1, . . . , xN ) ∈ MN ,
whose components xj ∈ M are pairwise distinct: i 6= j ⇒ xi 6= xj. Thus if
∆N ⊂ MN stands for the set of N -ples (x1, . . . , xN ) ∈ MN with (at least)
two coinciding components, then the space EN (M) of the ensembles of N
points of M is the complement of ∆N : EN (M) = MN \ ∆N = M(N).
Note that whenever dimM > 1, M(N) is an open connected subset and a
submanifold of MN .

Introduce a classifying map c : X → C, where C is a connected Rieman-
nian manifold.

Our goal is to approximate the map c by an action of the flow Pt,
generated by the control system (9) which is driven by a control u(t) =
(u1(t), . . . , ur(t)). The flow Pt acts on an ensemble (x1, . . . , xN ) as

Pt(x
1, . . . , xN ) = (z1(t), . . . , zk(t))

where zk(t) are the points of the trajectories of the Cauchy problems

żk =
r
∑

i=1

f i(zk)ui(t), k = 1, . . . , N, (10)

zk(0) = xk, k = 1, . . . , N. (11)

We introduce an output map

p : M → C,

which is a submersion in the cases, we consider.
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We fix T > 0 and seek to minimize

1

2

N
∑

k=1

∥

∥

∥p(zk(T ))− c(xk)
∥

∥

∥

2
(12)

under constraints (10)-(11).
The infimum of (12) is either positive or null. The distinction is related

to the presence or the lack of controllability of system (9) in the space of finite
ensembles of points. The problems of controllability have been addressed in
[4], where we arranged examples of the systems, which are controllable in the
space of finite ensembles of points. We proved that for arbitrary N generic
r-ples of vector fields f1(z), . . . , f r(z) ∈ Vect

(

Rd
)

manifest this property.
Note that even for ensemble controllable systems, the greater is N , more

complex are the controls u1(t), . . . , ur(t), which are needed to achieve con-
trollability.

For this reason we opt for a tradeoff between the rate or quality of the
approximation (minimization of (12)) and the complexity of the needed
control, introducing the loss functional J

J =
1

2

N
∑

k=1

∥

∥

∥p(zk(T ))− c(xk)
∥

∥

∥

2
+
β

2

∫ T

0

(

r
∑

i=1

|ui(t)|2
)

dt→ min . (13)

Problem (10)-(11)-(13) is Bolza optimal control problem with free end-
point. In what regards study of the optimal control problem we limit our-
selves to the formulation (in the following subsection) of the first-order op-
timality condition for the problem. In the rest of the contribution we con-
centrate on the problems of ensemble controllability.

3.2. Equations of Pontryagin Maximum Principle for Ensemble Optimal
Control Problem (10)-(11)-(13)

We start introducing the pre-Hamiltonian for (10),(13)

H =

r
∑

i=1

(

N
∑

k=1

ψkfi(zk)

)

ui −
β

2

(

r
∑

i=1

u2i

)

, (14)

where ψk ∈ Rd∗, k = 1, . . . , N .
The adjoint equations of the corresponding pre-Hamiltonian system are

ψ̇k = −∂H
∂zk

= −ψk

r
∑

i=1

∂fi

∂z
(zk)ui(t), k = 1, . . . , N. (15)
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The end-point conditions for the adjoint variables are

ψk(T ) = −(p(zk(T ))− c(xk))∗
∂p

∂z
(zk(T )), k = 1, . . . , N. (16)

Let z = (z1, . . . , zN ), ψ = (ψ1, . . . , ψN ), u = (u1, . . . , ur). Introducing the
functions

Fi(x, ψ) =
N
∑

k=1

ψkfi(zk), i = 1, . . . , r

we bring the pre-Hamiltonian (14) to the form

H(z, ψ, u) =

r
∑

i=1

Fi(z, ψ)ui −
β

2

(

r
∑

i=1

u2i

)

. (17)

According to the Pontryagin’s Maximum Principle if ũ(t), z̃(t) are the opti-
mal control and the corresponding optimal trajectory of the problem, then
there must exist β ≥ 0 and an adjoint covector ψ̃(t), which satisfy the equa-
tions (15) and (16) and such that

H(z̃(t), ψ̃(t), ũ(t)) = max
u

H(z̃(t), ψ̃(t), u).

By the maximality condition we get ∂H
∂ui

|(ũ(t),z̃(t)) = 0, i = 1, . . . r, which in
the normal (β > 0) case implies:

ui = β−1Fi(z, ψ), i = 1, . . . , r. (18)

Substituting expressions (18) into pre-Hamiltonian (17) we obtain the
maximized (with respect to u) Hamiltonian

M(z, ψ) =
β−1

2

r
∑

i=1

(Fi(z, ψ))
2 .

4. Finite ensemble controllability via Lie algebraic methods

We approach ensemble controllability from the viewpoint of geometric
control theory, in the spirit of what has been done in our previous publication
[4]. See also preprint [11] where the Lie algebraic methods are applied to a
different class of systems in the context of deep learning.

We start with basic definitions.
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Definition 4.1 (finite ensemble controllability). System (9) has the property
of finite ensemble controllability if for each N = 1, 2, . . ., for each T > 0
and for any two N -ples xα = (x1α, . . . , x

N
α ), xω = (x1ω, . . . , x

N
ω ) ∈ M(N)

there exists a control u(t) = (u1(t), . . . , ur(t)) which steers the corresponding
system (10) from xα to xω in time T .

Remark 4.1. If system (10) can steer the point xα to xω in time T > 0
by means of a control u(t), t ∈ [0, T ], then it can do the same in any time
T ′ > 0 by means of the control T

T ′u
(

T
T ′ t
)

, t ∈ [0, T ′].

For a smooth vector field X ∈ VectM consider its N -fold - the vector
field on M(N), defined as XN (x1, . . . , xN ) = (X(x1), . . . ,X(xN )). System
(10) can be given form γ̇ = XN (γ), γ ∈ M(N).

For X,Y ∈ Vect M, and N ≥ 1 we define the Lie bracket of the N -folds
XN , Y N on M(N) ”componentwise”: [XN , Y N ] = [X,Y ]N - the N -fold of
the Lie bracket [X,Y ] of X,Y on M. The same holds for the iterated Lie
brackets.

We denote Lie{f1, . . . , fr} the Lie algebra generated by the vector fields
f1, . . . , fr, and Lie{fN1 , . . . , fNr } the Lie algebra generated by their N -folds.

For the vector fields f1, . . . fr on M, their N -folds fN1 , . . . , f
N
r are called

bracket generating on M(N), if the evaluations of the iterated Lie brackets
of fN1 , . . . , f

N
r at each γ = (x1, . . . , xN ) ∈ M(N), span the tangent space

TγM(N) =
⊗N

j=1 Txj
M. Evidently for N > 1 the bracket generating prop-

erty for fN1 , . . . , f
N
r on M(N) is strictly stronger, than the same property

for f1, . . . , fr on M.
Rashevsky-Chow theorem ([2]) implies

Proposition 4.2. If dimM > 1 and ∀N ≥ 1 the N -folds fN1 , . . . , f
N
s are

bracket generating on M(N), then system (9) has the property of finite en-
semble controllability on M.

In [4] we proved that the latter property holds for each N and a generic
r-ple f1, . . . , fr of vector fields. In the present context it is more convenient
to check a stronger property, which implies the bracket generating property
for any N .

Let us introduce the standard notation for the seminorms in the space
of smooth vector fields on a manifold M: for a compact K ⊂ M and r ≥ 0

‖X‖r,K = sup
x∈K





∑

0≤|β|≤r

∣

∣

∣DβX(x)
∣

∣

∣



 , ‖X‖r = sup
x∈M





∑

0≤|β|≤r

∣

∣

∣DβX(x)
∣

∣

∣



 .
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In the formulations of controllability results we invoke the following as-
sumptions for the vector fields f1, . . . , fr ∈ Vect(M), which define control
system (9).

Assumption 1 (boundedness). The vector fields fj(x), j = 1, . . . , r, are
C∞-smooth and bounded on M together with their covariant derivatives of
each order.

Assumption 2 (Lie algebra approximating property). A system of smooth
vector fields f1, . . . , fr ∈ Vect(M) demonstrates the Lie algebra approxi-
mating property, if ∃m ≥ 1 such that for each Cm-smooth vector field
Y ∈ Vect(M) and each compact K ⊂ M there holds:

inf{‖Y −X‖0,K | X ∈ Lie{f1, . . . , fr}} = 0.

We show that this property suffices to guarantee finite ensemble control-
lability.

Theorem 4.3 (Lie algebra approximating property and finite ensemble con-
trollability). If dimM > 1 and the vector fields f1, . . . , fr meet Assumptions
1 and 2, then ∀N ≥ 1 system (10) is controllable in the space EN (M) of
ensembles of N points.

Proof. Fix N . Choose an ensemble γ = (x1, . . . , xN ) ∈ M(N). We prove
that the N -folds fN1 , . . . , f

N
r are bracket generating at γ.

Pickm for which the Lie algebra approximating property holds. Consider
the space Vectm(M) of Cm-smooth vector fields on M and define for each
γ ∈ M(N) the evaluation map Eγ : Vectm(M) 7→ TγM(N):

Eγ(Y ) = Y N (γ) =
(

Y (x1), . . . , Y (xN )
)

.

This linear map is obviously surjective and continuous with respect to
C0-metric in Vectm(M). By virtue of Assumption 2 the image
Eγ (Lie{f1, . . . , fr}) is a dense linear subspace of TγM(N) and hence must
coincide with it.

Remark 4.2. Below we provide formulations for specific cases in which
dimM = 1.

5. Lie Algebra Strong Approximating Property. Controllability

in the Diffeomorphism Groups and the Manifolds of Mappings

In the previous Section we dealt with finite ensembles of points. In this
section we show that if a stronger approximating property holds for the Lie

9



algebra Lie{f1, . . . , fr}, associated to control system (9), then approximate
controllability of system (9) holds in the group Diffc

0 of diffeomorphisms on
M and on the manifolds of smooth mappings of M.

In our proofs we make occasional use of few notations of chronological
calculus for the flows generated by the time-dependent vector fields ([1]).
In particular for a vector field Xt(x), which is smooth in x and locally

integrable in t we denote by
−→
exp

∫ t
t0
Xsds the flow Pt, generated by the

time-dependent differential equation ẋ = Xt(x), Pt0 = I. If Xt is time
independent: Xt(x) ≡ X(x), then the flow is denoted by Pt = e(t−t0)X . A
brief presentation of the chronological calculus can be found in [2].

The following definition has been used in [4]. Put for ℓ > 0 and a compact
K ⊂ M:

Lieℓ1,K{f1, . . . , fr} = {X(x) ∈ Lie{f1, . . . , fr} | ‖X‖1,K < ℓ} .

Assumption 3 (Lie algebra strong approximating property). A system of
smooth vector fields f1, . . . , fr ∈ Vect(M) possesses Lie algebra strong ap-
proximating property, if ∃m ≥ 1, such that for each Cm-smooth vector field
Y ∈ Vect(M) and each compact K ⊂ M ∃ℓ > 0 for which:

inf

{

sup
x∈K

|Y (x)−X(x)|
∣

∣

∣

∣

X ∈ Lieℓ1,K {f1, . . . , fr}
}

= 0. (19)

Denote by Diffc
0 the connected component of the identity of the group of

the compactly supported diffeomorphisms of M.

Theorem 5.1 (C0-approximate controllability in the group of diffeomor-
phisms). Let P̂ ∈ Diffc

0(M). Let C∞-smooth vector fields fj(x), j = 1, . . . , r,
meet Assumptions 1 and 3. Then for each K ⊂ M and each ε > 0 there
exists a control u(t) = (u1(t), . . . , ur(t)), t ∈ [0, T ], such that for the corre-
sponding flow

Pt =
−→
exp

∫ t

0





r
∑

j=1

fj(x)uj(τ)



 dτ, x ∈ M (20)

generated by system (9), the diffeomorphism PT ε-approximates P̂ in C0 on

K:
∥

∥

∥P̂ − PT

∥

∥

∥

0,K
< ε.

Proof. Join the identity I with P̂ by a curve t 7→ P̂t(x), t ∈ [0, T ] in
Diffc

0(M). Without loss of generality we may assume that (t, x) 7→ P̂t(x)

10



is C1-smooth. The curve t 7→ P̂t(x) can be represented as a flow P̂t =
−→
exp

∫ t
0 Yτdτ , generated by a non autonomous vector field Yt, which is continuous

in t; one can take Yt(x) = (Pt)
−1
∗

dPt

dt (x).

Denote byKt, t ∈ [0, T ] the images of a compact setK under the flow P̂t.
As far as for each t ∈ [0, T ] condition (19) holds for the vector fields Yt and
control system (9), then one can apply Theorem 4.3 of [4] to the vector field
Yt, the diffeotopy Kt, t ∈ [0, T ] and system (9). According to this Theorem
for each ε > 0 there exists a control u(t) = (u1(t), . . . , ur(t)), t ∈ [0, T ] such
that for the flow (20)

sup
x∈K

∥

∥

∥P̂ (x)− PT (x)
∥

∥

∥

0,K
< ε.

The approximation result, we have just proved, can be extended from
diffeomorphisms of M to a broader class of continuous maps ϕ : M → C.

One of possible constructions can be realized on the manifold M × C.
Consider the projection p : M × C → C and a diffeomorphic immersion
ı : M → M× C. We opt for ı(x) = (x, ν), ∀x ∈ M, where ν is a selected
point of C. Let the metric d on M×C be defined by d = dM + dC .

Let ϕ : M → C be a continuous mapping which is approximately C1-
smoothly homotopic to the constant mapping ϕ0(x) = ν. This means that
in any C0-neighborhood of ϕ there are C1-smooth functions ϕ̂, which are
contractible to the constant function by C1-smooth homotopies ϕ̂t(x), t ∈
[0, 1]:

ϕ̂0(x) ≡ ν, ϕ̂1(x) = ϕ̂(x).

Without loss of generality we can limit ourselves to the case in which
ϕ = ϕ̂ is C1-smooth and C1-smoothly homotopic to the constant function.
Consider the graphs of the mappings ϕt(x) : Γt = {(x, ϕt(x)), x ∈ M} ⊂
M× C. For each t the sets Γt are diffeomorphic to Γ0 and to M. The flow
P̂t, generated on the manifold M × C by the vector field ∂ϕt(x)

∂t
∂
∂c , defines

the diffeotopy of the graphs:

Γt = P̂t(Γ0), t ∈ [0, 1]; P1(x, ν) = (x, ϕ(x)), ∀x ∈ M.

Let control system (9), defined now on M× C, possess the Lie algebra
strong approximating property. By the previous theorem for each compact
K ⊂ M and each ε > 0 there exists a control u(·) = (u1(·), . . . , ur(·)), such
that for the flow

Pt =
−→
exp

∫ t

0





r
∑

j=1

fj(x)uj(τ)



 dτ, x ∈ M× C (21)
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there holds ‖P1 − P̂1‖0,K×{ν} < ε. Then

∀x ∈ K : ε > dM(p ◦ P1(x, ν), p ◦ P̂1(x, ν)) = dM(p ◦ P1(x, ν), ϕ(x))

and we conclude with the corollary.

Corollary 5.2. Let control system (9), defined on M×C, meet Assumptions
1 and 3. Then the system is C0-approximately controllable on the manifold
of mappings: for each continuous mapping ϕ : M → C, which is approxi-
mately smoothly homotopic to a constant, each ε > 0 and each compact
K ⊂ M there exists u(t) = (u1(t), . . . , ur(t)), t ∈ [0, T ], such that for the
corresponding flow (21) on M×C there holds ‖ϕ(x) − p ◦ PT ◦ ı(x)‖0,K < ε.

6. Ensemble controllable systems on Euclidean spaces R
d, tori Td

and the 2-dimensional sphere S

In this Section we consider several manifolds, such as Euclidean spaces
R
d, d-dimensional tori Td and 2-dimensional sphere S. We provide examples

of control systems on the manifolds, which possess controllability proper-
ties for finite ensembles and properties of approximate controllability in the
group of diffeomorphisms of the manifolds.

For the sake of brevity along the Section we will call system ensemble
controllable if the conclusions of Theorems 4.3 and 5.1 hold for it.

The key point of the proofs is the verification of the Lie algebra strong
approximating condition. Such a verification regards two moments. First we
have to establish kind of ”Lie rank condition” - the approximability of the
vector fields by the vector fields from Lie{f1, . . . , fr}. The second issue is the
regularity of these approximations, including boundedness of the derivatives
of the approximants.

6.1. Ensemble controllable system in R
d

Consider control-linear system in R
d:

ż =
d
∑

i=1

fi(z)ui +
d
∑

i=1

gi(z)vi, z ∈ R
d, (22)

where

fi(z) = e−γ(z) ∂

∂zi
, gi =

∂

∂zi
, i = 1, . . . , d, (23)

and

γ(z) =
〈z, z〉
2

=
z21 + · · ·+ z2n

2
.

12



Putting z = (z1, . . . , zd), u = (u1, . . . , ud), v = (v1, . . . , vd) we represent
equations (22)-(23) in a vectorial form

ż = e−γ(z)u+ v, z, u, v ∈ R
d. (24)

We call it GH-system as far as Gaussian density function e−γ(z) and Hermite
polynomials play important role in its study.

We consider the action of system (24) onto an ensemble of points

(x1, . . . , xN ) ∈
(

R
d
)N

. To establish the property of ensemble controllability
we verify the Lie algebra strong approximation condition for GH system.

Proposition 6.1. Vector fields (23) meet Assumptions 1 and 3.

Proof. Direct computation of the iterated Lie brackets of vector fields (23)
gives

ad
mj1
g1 · · · admjd

gd fj(z) =
∂mje−γ(z)

∂z
mj1

1 . . . ∂z
mjd

d

∂

∂zj
, mj = mj1 + · · ·+mjd.

As one knows

∂mje−γ(z)

∂z
mj1

1 . . . ∂z
mjd

d

= (−1)mjHmj1,...,mjd
(z)e−γ(z), z = (z1, . . . , zd), (25)

where Hmj1,...,mjd
(z1, . . . , zd) are multivariate Hermite polynomials. Thus

for each j = 1, . . . , d and each Hermite polynomial Hmj1,...,mjd
(z) the vector

field Hmj1,...,mjd
(z)e−γ(z) ∂

∂zj
belongs to the Lie algebra generated by vector

fields (23).
Hermite polynomials {Hm1,...,md

(z1, . . . , zd)| m1 ≥ 0, . . . ,md ≥ 0} form
a complete orthogonal system in L2(R

d) with respect to the weighted scalar
product

〈f, g〉 = 1

(2π)d/2

∫

Rd

f(z)g(z)e−γ(z)dx.

Any function from L2(R
d) can be expanded into a L2-convergent series

in Hermite polynomials. To verify the Lie algebra strong approximating
condition one has to prove that for each sufficiently smooth vector field
Y (X) =

∑d
j=1 Yj(z)

∂
∂zj

with compact support in R
d, there exists ℓ > 0 such

that for each j = 1, . . . , d and each ε > 0 one can find a linear combination
Xj of the functions (25) for which

‖Xj‖1,K ≤ ℓ, ‖Xj − Yj‖0,K ≤ ε.

13



Suppose Y (x) to be C [ d
2
]+2-smooth. Pick its component Yj(x) and con-

sider the orthogonal expansion of the function Yj(z)e
γ(z) in Hermite poly-

nomials:

Yj(z)e
γ(z) ∼

∑

m

cmHm(z), m = (m1, . . . ,md) ∈ N
d. (26)

For |m| = m1 + · · · +md let Sn(z) =
∑

m: |m|≤n cmHm be a partial sum of
this expansion. Lie algebra strong approximating condition is implied by
the following Lemma.

Lemma 6.2. For Yj(z) being C
[d2 ]+2-smooth the functions Sn(z)e

−γ(z) con-
verge uniformly to Yj(z), as n → ∞, while ∂

∂zi

(

Sn(z)e
−γ(z)

)

converge uni-

formly to
∂Yj(z)
∂zi

and hence are bounded by a constant ℓ independent of n.

Proof of the lemma can be found in the Appendix.

By virtue of Theorems 4.3 and 5.1 and Proposition 6.1 there holds

Theorem 6.3 (ensemble controllability of GH system). i) For d > 1 system
(24) is ensemble controllable on M = R

d;
ii) For M = R system (24) is approximately controllable in the group of

diffeomorphisms Diffc
0(R);

iii) For M = R system (24) can transform a finite ensemble
(

x1α, · · · , xNα
)

into another ensemble
(

x1ω, · · · , xNω
)

if and only if they are equally ordered:

xiα < x
j
α ⇔ xiω < x

j
ω, ∀i, j.

6.2. Ensemble controllability on the tori Td

We start with d = 1. Consider the control-linear system on T
1:

ϕ̇ = u0 + u1 sinϕ+ u2 sin 2ϕ, (27)

generated by the vector fields

f0(ϕ) =
∂

∂ϕ
, f1(ϕ) = sinϕ

∂

∂ϕ
, f2(ϕ) = sin 2ϕ

∂

∂ϕ
. (28)

Here ϕ is the angle coordinate on T
1.

The action of system (27) on an ensemble of N points (ϕ1
α, . . . , ϕ

N
α ) on

T
1 is defined by the equations

ϕ̇j = u0(t) + u1(t) sinϕ
j + u2(t) sin 2ϕ

j , j = 1, . . . , N,

ϕj(0) = ϕj
α

14



Lemma 6.4. Vector fields (28) meet Assumptions 1 and 3.

Proof. Boundedness is obvious.
We prove that the Lie algebra Lie{f0, f1, f2}, generated by vector fields

(28), contains the vector fields sin kϕ ∂
∂ϕ , cos kϕ

∂
∂ϕ , k = 1, 2, . . ..

As far as
[

∂
∂ϕ , sin kϕ

∂
∂ϕ

]

= k cos kϕ ∂
∂ϕ , it suffices to prove that sin kϕ ∂

∂ϕ ,

k ≥ 1 are contained in Lie{f0, f1, f2}. This can be done by induction in k,
given that for k > 1
[

sinϕ
∂

∂ϕ
, sin kϕ

∂

∂ϕ

]

= (k − 1) sin((k + 1)ϕ) − (k + 1) sin((k − 1)ϕ).

Consider a vector field Y (ϕ) ∂
∂ϕ on T

1 together with its Fourier expansion

Y (ϕ)
∂

∂ϕ
∼ a0

2

∂

∂ϕ
+

∞
∑

k=1

(

ak cos kϕ
∂

∂ϕ
+ bk sin kϕ

∂

∂ϕ

)

.

By the aforesaid partial sums of the series belong to Lie{f0, f1, f2}. For
Y (ϕ) being C2-smooth the partial sums Sn(ϕ) of the Fourier series converge
uniformly to Y (ϕ), as n → ∞. The derivatives S′

n(ϕ) converge uniformly
to Y ′(ϕ) and hence are equibounded, wherefrom the Lie algebra strong
approximating condition follows.

To extend the construction to the d-dimensional torus Td = T
1×· · ·×T

1

we introduce the coordinates ϕ1, . . . , ϕd in T
d and define the vector fields

f0i =
∂

∂ϕi
, f1i = sinϕi

∂

∂ϕi
, f2i = sin 2ϕi

∂

∂ϕi
, i = 1, . . . , d; (29)

gi =





d
∑

j=1

sinϕj





∂

∂ϕi
, i = 1, . . . , d.

Consider the control-linear system

ϕ̇k = u0k + sinϕku1k + sin 2ϕku2k +





d
∑

j=1

sinϕj



 vk, k = 1, . . . d. (30)

Lemma 6.5. The Lie algebra LTd generated by vector fields (29) contains
all the monomial vector fields of the form

(

∏

i∈I

cos kiϕi

∏

i∈Ic

sin kiϕi

)

∂

∂ϕj
, j = 1, . . . , d (31)

where I ∪ Ic = {1, . . . , d}, I ∩ Ic = ∅.
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Proof. By the previous lemma the monomial vector fields cos kiϕi
∂

∂ϕi
,

sin kiϕi
∂

∂ϕi
, i = 1, . . . , d, belong to the Lie algebra. So do the vector fields

[f0j , gi] = cosϕj
∂

∂ϕi
, [f0j , [f

0
j , gi]] = − sinϕj

∂

∂ϕi

for i 6= j .
If sin kϕj

∂
∂ϕi

for k ≤ l belong to LTd , then

[

f1j , sin lϕj
∂

∂ϕi

]

=
l

2

(

sin((l + 1)ϕj)
∂

∂ϕi
− sin((l − 1)ϕj)

∂

∂ϕi

)

and by induction in l we conclude that all the monomial vector fields cos lϕj
∂

∂ϕi
,

sin lϕj
∂

∂ϕi
, i, j = 1, . . . , d, belong to LTd .

We define the degree of a monomial vector field (31) as the cardinality
of the set {i ∈ {1, . . . , d}|ki 6= 0} and proceed by induction in the degree.
Each monomial vector field of degree s + 1 is either M(ϕ) cos kαϕα

∂
∂ϕj

or

M(ϕ) sin kαϕα
∂

∂ϕj
, where M(ϕ) has degree s and does not depend on ϕα.

In the first case if M(ϕ) does not depend on ϕj , and hence

[

M(ϕ)
∂

∂ϕα
, sin kαϕα

∂

∂ϕj

]

= kαM(ϕ) cos kαϕα
∂

∂ϕj
.

If M(ϕ) depends on ϕj , then α 6= j and one can easily find a monomial
M1(ϕ) of degree s such that ∂

∂ϕj
M1(ϕ) =M(ϕ). Then

[

cos kαϕα
∂

∂ϕj
,M1(ϕ)

∂

∂ϕj

]

=M(ϕ) cos kαϕα
∂

∂ϕj
.

In this way we conclude the step of induction and the proof.

The Lie algebra strong approximating property for (30) follows from
the lemma by classical approximation results for multivariate trigonometric
polynomials.

In what regards the formulation of criteria of finite ensemble control-
lability there is some peculiarity in the case of T1. Note that for a given
orientation of T1 any ensemble of N points on T1 is ordered up to cyclic
permutation. Two ensembles are equally ordered if the sequences of their
indices are the same up to a cyclic permutation.
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Theorem 6.6. Control system (27) and (30) have the following ensemble
controllability properties:

i) for d > 1 system (30) is ensemble controllable on T
d;

ii) for M = T
1 system (27) is C0-approximately controllable in Diff0(T

1);
iii) two finite ensembles on T1 can be steered one into another by means

of control system (27) in time T > 0, if and only if they are equally ordered.

6.3. Ensemble controllability on the 2-dimensional sphere

We construct examples of control systems on the 2-dimensional sphere
S ⊂ R

3, which demonstrate the property of ensemble controllability. Both
examples are related to the study in [3] of the controllability of the Navier-
Stokes equation on S.

We consider a Riemannian structure on S, induced by the Euclidean
structure of R3 ⊃ S. If f : S → R is the restriction onto S of a smooth
function F : R3 → R, then the spherical gradient

∇Sf(x) = ∇F − 〈∇F, x〉Ex

is the projection of the gradient ∇F onto the tangent bundle TS to S. Here
Ex stands for the Euler vector field in R

3: Ex =
∑3

i=1 xi∂i.
In general if X is a smooth vector field in R

3, then the projection onto
TS of the restriction of X to S is

prSX(x) = X(x)− 〈X(x), x〉E(x), x ∈ S.

It is smooth vector field on S.
Consider standard symplectic structure σx(·, ·) on S ⊂ R

3 defined by the
area form. For x ∈ S, ξ, η ∈ TxS one has σx(ξ, η) = 〈x, ξ, η〉, where the latter
trilinear form is the mixed product in R

3.
We introduce the spherical divergence divSprSX(x) of prSX(x) with re-

spect to the area form σ. To this end we consider the interior product of the
vector field prSX(x) with the differential 2-form σ; it is the 1-form defined
by

η → σ(prSX(x), η) = 〈x× prSX(x), η〉 = 〈x×X(x), η〉, (32)

where × stands for the cross product in R
3. The exterior derivative of the 1-

form is the 2-form ψ(x)σ, whose coefficient ψ(x) coincides with the spherical
divergence divSprSX(x).

To compute the exterior derivative we apply Stokes theorem to the inte-
gral of the 1-form (32) along a closed curve on S and conclude that it equals
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to the flow of the curl of the vector field x×X(x) through the spherical area
circumvented by the curve. Hence

divSprSX(x) = 〈curl (E(x)×X(x)) , E(x)〉 = 〈(divX)E(x), E(x)〉 −
divE(x)〈X(x), E(x)〉 = divX − 3〈X(x), E(x)〉.

In particular divSprSX(x) = div X, if X is tangent to S.
Once we have defined spherical divergence divS and spherical gradient

∇S, then spherical Laplacian of a function f on S is defined as:

∆Sf = divS∇Sf.

Consider the homogeneous harmonic polynomials on R
3 \ 0 and take

their restrictions onto S; those are called spherical harmonics. We call them
linear, quadratic, cubic, of n-th degree etc., if they are restrictions of the
homogeneous polynomials of the corresponding degree. Spherical harmonics
are the eigenfunctions of the spherical Laplacian.

Restriction of any smooth function ϕ in R
3 onto S gives rise to the

Hamiltonian vector field −→ϕ on S, which is defined by the relation:

(−→ϕ (x), η) = σ(∇ϕ(x), η) = 〈x,∇ϕ(x), η〉 = (x×∇ϕ(x), η), η ∈ TxS;

hence −→ϕ (x) = x×∇ϕ(x), x ∈ S.
We provide an example of Hamiltonian control system which has the

property of approximate controllability in the group of the area preserving
diffeomorphisms on S.

Theorem 6.7. Given three independent linear harmonics (l1, x), (l2, x),
(l3, x), a quadratic harmonic q(x), a cubic harmonic c(x) and the corre-
sponding Hamiltonian vector fields

−→
l 1(x),

−→
l 2(x),

−→
l 3(x),−→q (x),−→c (x), (33)

the control system

ẋ =
3
∑

i=1

−→
l i(x)ui(t) +

−→q (x)v2(t) +−→c (x)v3(t) (34)

is controllable in the space of finite ensembles on S and approximately con-
trollable in the group SDiff0 (S) of the area preserving diffeomorphisms of
S.

Proof. The following statement has been proved in [3, Theorem 10.4].
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Proposition 6.8. The Lie algebra generated by the Hamiltonian vector

fields (33) contains all the symplectic vector fields
−→
h , which correspond to

harmonic homogeneous polynomials (spherical harmonics) h(x), and there-
fore is dense in the space of all the divergence-free vector fields.

Spherical harmonics form a complete system in L2(S). To prove the
Lie algebra strong approximating condition we consider the expansions of
functions on S in Laplace series with respect to spherical harmonics. We
apply a result by M.Ganesh, I.G.Graham & J.Sivaloganathan [8, Theorem
3.5] on the best approximation by Laplace series of smooth functions on the
spheres Sm together with their derivatives up to some order.

Lemma 6.9. Let C(S) be the space of continuous functions on the sphere
and Pn be the space of spherical polynomials of degree ≤ n. For each n ≥ 1
there exist continuous linear operator Tn : C(S) 7→ Pn and for every l ≥ 0 a
constant bl such that for all k = 0, . . . , l; f ∈ C l(S)

‖f − Tnf‖Ck ≤ bl

(

1

n

)l−k

‖f‖Cl .

(This result builds on the previous work by D.L.Ragozin and D.J.Newman
& H.S. Shapiro; see references in [8].)

Let Y (x) be a C2-smooth divergence free (Hamiltonian) vector field on
S and Υ the corresponding C3-smooth Hamiltonian. By lemma 6.9

‖Υ − TnΥ‖C2 ≤ b2

n
‖Υ‖C3

for some constant b2 > 0.
This implies that TnΥ and its first and second derivatives DTnΥ, D

2TnΥ
converge uniformly to Υ, DΥ,D2Υ correspondingly as n→ ∞. This means

that the Hamiltonian vector fields
−−→
TnΥ converge uniformly to Y , and their

derivatives D
−−→
TnΥ converge uniformly to DY as n → ∞. Hence the deriva-

tives D
−−→
TnΥ are equibounded, and the vector fields

−−→
TnΥ are equilipschitzian.

According to proposition 6.8 the vector fields
−−→
TnΥ belong to the Lie alge-

bra generated by the vector fields (33) and hence the Lie algebra strong
approximating condition holds for control system (34).

We now pass to finding an example of control system, which is approxi-
mately controllable in the group of smooth diffeomorphisms Diff0 (S) of S.

By Helmholtz-Hodge theorem each smooth vector field f on S can be
represented as a sum of a gradient vector field f∇ = ∇SF and an area-
preserving (and symplectic in the 2D case) vector field f⊢. One may think
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of constructing the desired example, by joining some gradient vector fields
to Hamiltonian vector fields (33).

Theorem 6.10. Let
−→
l 1(x),

−→
l 2(x),

−→
l 3(x),−→q (x),−→c (x), be the Hamiltonian

vector fields (33). Let l̃(x) = (l, x), q̃(x), be a linear and a quadratic spher-
ical harmonics, and l̃′(x) = ∇S(l, x), q̃

′(x) = ∇S q̃(x) be the corresponding
gradient vector fields.

The control system on the 2-dimensional sphere S

ẋ =

3
∑

i=1

−→
l i(x)ui(t) +

−→q (x)v2(t) +−→c (x)v3(t)+ l′(x)w1(t) + q̃′(x)w2(t) (35)

is controllable in the space of finite ensembles on S and approximately con-
trollable in the group Diff0 (S) of the diffeomorphisms of S.

Proof. Finite ensemble controllability follows immediately from the previous
theorem. Key technical result for proving controllability in Diff0 (S) is

Proposition 6.11. The Lie algebra L, generated by the vector fields

−→
l 1(x),

−→
l 2(x),

−→
l 3(x),−→q (x),−→c (x), l̃′(x), q̃′(x),

contains all the Hamiltonian vector fields
−→
h and all the gradient vector fields

∇Sh, corresponding to all the spherical harmonics h on S.

Lie algebra strong approximating property would follow from this fact by
virtue of approximation results for spherical harmonics and Laplace series,
which we used above in the proof of lemma 6.9.

Let Ldiv be the image of the linear space L under the action of the linear
operator divS.

Proposition 6.12. The linear space Ldiv contains all the spherical harmon-
ics on S.

Assuming the result to hold, we accomplish the proof of proposition 6.11.
Let h be any spherical harmonic, which without loss of generality we may
assume to be homogeneous. If h = divSf and f ∈ L then divS∇Sh = αh

and hence the vector field −→p = ∇Sh − αf is divergence-free and therefore
symplectic polynomial vector field on S. Without loss of generality one
may assume that p is a restriction onto S of a harmonic polynomial p̂. 2 All

2Any restriction of a polynomial in R
3 onto S can be represented as a restriction onto

S of a harmonic (nonhomogeneous) polynomial
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polynomial symplectic vector field, which correspond to spherical harmonics,
belong to L by proposition 6.8 and hence ∇Sh ∈ L.

Employing Maxwell’s theorem we can reduce proposition 6.12 to a weaker
statement.

Lemma 6.13. The linear space Ldiv contains all the spherical harmonics if
and only if, for each k, Ldiv contains a homogeneous spherical harmonic of
degree k.

Proof. For each l ∈ R
3 the symplectic vector field

−→
l , defines the rotation

e
−→
l ∈ SO(3) of R3 and of the sphere S. By direct computation the adjoint

action Ad
(

e
−→
l
)

of the rotation onto a gradient vector field ∇Sf(x) trans-

forms it into the gradient vector field ∇Sf(e
−→
l (x)). By Maxwell’s theorem

([5]) the group of rotations e
−→
l act transitively on the space of spherical

harmonics of a given degree.
By the assumptions of the theorem the Lie algebra L contains linearly

independent vector fields
−→
l 1(x),

−→
l 2(x),

−→
l 3(x). If a spherical harmonic h is

homogeneous of degree k and belongs to Ldiv, then by the aforesaid∇Sh ∈ L,
and acting onto ∇Sh by Ad

(

e
−→
l
)

, l ∈ R
3 we conclude by transitivity that

the gradients of all spherical harmonics of degree k are in L and then the
harmonics themselves are in Ldiv.

To prove the existence of spherical harmonics of each degree in Ldiv we
start with two technical lemmas, whose proofs can be found in the Appendix.

Lemma 6.14. For a harmonic polynomial F , which is homogeneous of de-
gree k in R

3, there holds

〈∇F (x), x〉 = kF (x), D2F (x)x = (k − 1)∇F (x),
[∇F (x), Ex] = (2− k)∇F (x).

Lemma 6.15. For f, g, which are the restrictions onto S of the harmonic
polynomials F,G, homogeneous of degrees k and l in R

3, there holds

divS[∇Sf,∇Sg] = div[∇Sf,∇Sg] =

(k − l)(k + l + 3) (〈∇F,∇G〉|S − klfg) . (36)

Corollary 6.16. Let g(x) = x3|S and f(x) = F (x1, x2)|S be the restriction
onto S of the harmonic polynomial F (x1, x2) homogeneous of degree k in the
variables x1, x2. Then

divS[∇Sf,∇Sg] = −(k − 1)(k + 4)kx3f(x1, x2) (37)
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and the right-hand side is a spherical harmonic polynomial homogeneous of
degree k + 1.

We prove the corollary. Formula (37) follows from (36). As far as x3
and F (x1, x2) are both harmonic, then

∆(x3F (x1, x2))(x) = 2〈∇x3,∇F (x1, x2)〉 = 0

and hence x3F (x1, x2) is harmonic in R
3 and the restriction x3F (x1, x2)|S

is a spherical harmonic of degree k + 1.
Now we complete the proof of Lemma 6.13. As far as the linear harmonic

vector field l̃′ = ∇S l̃, and the quadratic harmonic vector field q̃′ = ∇Sq̃

belong to L and the group of rotations e
−→
l act transitively on the space

of spherical harmonics of given degree, we can obtain by the action the
gradients of all the spherical harmonics of degrees 1 and 2 and, in particular,
∇Sx3 and ∇Sf(x1, x2).

Then [∇Sx3,∇Sf(x1, x2)] ∈ L and by Corollary 6.16

divS[∇Sx3,∇Sf(x1, x2)] = −12x3f(x1, x2)

with the right-hand side being a spherical harmonic of degree 3, which be-
longs to Ldiv. Then by Maxwell theorem we conclude that the gradients of
all the spherical harmonics of degree 3 belong to L. The proof can be com-
pleted by induction in the degree of harmonics with Corollary 6.16 applied
at each induction step.

7. Appendix: proofs of technical lemmas

7.1. Proof of Lemma 6.2

As far as the function Yj(x)e
γ(x) is C[ d2 ]+2-smooth, the partial sums of

series (26) converge uniformly to it according to [6, Propositions 7.1.2, 7.1.5,
Corollary 7.1.3]. 3

3The convergence is determined by the interplay of two entities: the Christoffel con-
stant Λn (or the related Lebesgue constant) and the approximation error rate En of
the function Yj(x)e

γ(x) by means of the n-truncations of the Hermite series. For the
uniform convergence it suffices ([6, Proposition 7.1.2]) that Λn ∼ n−d as n → ∞ and

|En| ≤ n−
d

2
−β, β > 0. For the first fact see [6, Proposition 7.1.5]; for the second fact,

valid for C[ d
2
]+2-smooth functions, see [6, Corollary 7.1.3].
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Thus for each ε > 0 one can find sufficiently large n for which the partial
sums Sn(x) =

∑

m: |m|≤n cm1,...,md
Hm1,...,md

(x) satisfy

‖Sn(x)− Yj(x)e
γ(x)‖0,K < ε,

and hence
‖Sn(x)e−γ(x) − Yj(x)‖0,K < ε.

To get a bound for the (first) partial derivative, say in x1, of the functions
Sn(x)e

−γ(x) we note that

∂

∂x1

(

Hm1,...,md
(x)e−γ(x)

)

= −Hm1+1,...,md
(x)e−γ(x),

and therefore

∂

∂x1

(

Sn(x)e
−γ(x)

)

= −
∑

m: |m|≤n

cm1,...,md
Hm1+1,...,md

(x)e−γ(x).

We prove that the latter series
∑

m cm1,...,md
Hm1+1,...,md

(x) is the Fourier-

Hermite series for the function
∂Yj(x)
∂x1

eγ(x) ∈ C[d2 ]+1 and hence converges

uniformly to
∂Yj(x)
∂x1

as n→ ∞.
Multivariate Hermite polynomials are factorable into the products of

univariate Hermite polynomials:

Hmj1,...,mjd
(x1, . . . , xd) = Hmj1(x1) · · ·Hmjd

(xd)

and therefore we may proceed as in the univariate case. It suffices to prove
that given Yj(x)e

γ(x) ∼∑m cmHm(x), x ∈ R it follows

Y ′
j (x)e

γ(x) ∼ −
∑

m

cmHm+1(x), x ∈ R. (38)

From the formulae for the Fourier-Hermite coefficients it follows that

cm =

∫

R
Yj(x)Hm(x)dx

∫

R
(Hm(x))2e−γ(x)dx

.

Since H ′
m+1(x) = (m+ 1)Hm(x) we get

cm =

∫

R
Yj(x)H

′
m+1(x)dx

(m+ 1)
∫

R
(Hm(x))2e−γ(x)dx

.
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From the identities
∫

R
(Hm(x))2e−γ(x)dx =

√
2πm!, m = 0, 1, 2 . . . we con-

clude that the denominator coincides with
∫

R
(Hm+1(x))

2e−γ(x)dx. Integrat-
ing the numerator by parts we bring it to the form
−
∫

R
Y ′
j (x)Hm+1(x)dx and thus conclude (38).

By the above cited approximation results from [6] the partial derivatives
∂
∂xi

(

Sn(x)e
−γ(x)

)

converge uniformly to
∂Yj(x)
∂xi

as n → ∞ and hence are
upper equibounded for all n.

7.2. Proof of Lemma 6.14

First equality is the well known Euler identity for homogeneous func-
tions.

Differentiating the identity

∀t ∈ R, x, y ∈ R
3 : ∇F (x+ ty) · (x+ ty) = kF (x+ ty)

in t at t = 0 we conclude

D2F (x)y · x+∇F (x) · y = k∇F (x) · y

and hence ∀y : D2F (x)x·y = (k−1)∇F (x)·y wherefrom the second equality
follows.

The third equality follows from the previous two directly.

7.3. Proof of Lemma 6.15

By direct computation with the use of Euler identity:

[∇Sf,∇Sg] = [pr∇F,pr∇G] = [∇F − 〈∇F, x〉E(x),∇G − 〈∇G,x〉E(x)] =

[∇F (x)− (kF (x))E(x),∇G(x) − (lG(x))E(x)].

By simple manipulation with application of the identities of Lemma 6.14
we get

[∇Sf,∇Sg] = [∇F,∇G]− (2− k)(lG(x))∇F (x) + (2− l)(kF (x))∇G(x) +
(k − l)〈∇F (x),∇G(x)〉E(x) + kl(l − k)(F (x)G(x))E(x).

Recall that for F,G, which are harmonic in R
3, their gradients ∇F,∇G

are divergence-free, and so is [∇F,∇G].
Calculating the divergence of the right-hand side and using the identities

of Lemma 6.14 we get the result we seek.
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