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Abstract. Methods are presented for locally studying smooth nonlinear control systems on the 
manifold M. The technique of chronological calculus is intensively exploited. The concept of 
chronological connection is introduced and is used when obtaining the invariant expressions in the 
form of Lie bracket polynomials for high-order variations of a nonlinear control system. The theorem 
on adduction of a family of smooth vector fields to the canonical form proved in Section 4 is then 
applied to the construction of a nilpotent polynomial approximation for a control system. Finally, the 
relation between the attainable sets of an original system and an approximating one is established; it 
implies some conclusions on the local controllability of these systems. 
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1. In this p a p e r  we s tudy a smoo th  cont ro l  sys tem of the fo rm 

q = f ( q ) + g ( q ) u ,  q c M ,  u E R ,  q(O)=qo (1.1) 

where  M is a C=-man i fo ld  and f (q ) ,  g(q) are comple t e  s m o o t h  vec to r  fields. 
For  t > 0 ,  we define a m a p p i n g  F,:  Lo~[0, t]-->M, which maps  cont ro l  u ( . e  

L~o[0, t/ to the poin t  q(t) e M, where  q( r )  = f(q(-r))+ g( q( r) ) u( 7), ~'~ [0, t], 

q(0) = q0. 
It  is easy  to show, that  F, is an infinitely d i f ferent iable  mapp ing .  T h e  family of 

m app ings  F , ,  ~-c (0, +o0) comple t e ly  charac te r izes  the cont ro l  system. 

T h e  main  goal  of  this p a p e r  is the descr ip t ion  of some  formal i sm which is 
' i nev i t ab le '  when  method ica l ly  s tudying these families of  mappings .  Rough ly  
speaking ,  the ma t t e r  consists of e l iminat ing f rom the Tay lo r  expans ions  of F, all 

t e rms  which are unessent ial  for  the needs  of contro l  theory.  A lmos t  all definit ions 
and results m a y  be t ransfer red  wi thout  difficulties to the case of an a rb i t ra ry  

s m o o t h  nonl inear  sys tem ~ = f ( x ,  u), u e R ' .  Cor re spond ing  extensions  can be 
easily con jec tu red ,  but  the fo rmula t ions  b e c o m e  more  c u m b e r s o m e .  We intend to 
p e r f o r m  this in fur ther  publ icat ions.  

W h e n  s tudying the cont ro l  sys tems and /o r  mapp ings  F,,  the using of ope ra to r  
nota t ions  of  ch rono log ica l  calculus  (see [1, 2]) is helpful.  At  first we will t ransfer  
these notat ions.  

A c c o r d i n g  to this calculus,  we identify poin t  q ~ M with a mul t ip l ica t ive  
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functional ~p--+ ~p(q), V~p c C~(M), defined on the algebra C~(M). Diffeomor- 
phism P: M--+ M may be identified with a corresponding automorphism q~(.)--+ 

~p(P(-)) of the algebra C~(M);  the value of P cDi f f  M at a point q c M is 
denoted as q o P,  i.e., as a composition of an automorphism and multiplicative 
functional (which is a multiplicative functional again). The vector  fields on M are 

arbitrary derivations of the algebra C~(M), i.e., R-linear mappings X: C~(M)--+ 
C~(M), which satisfy Leibnitz rule: X(q~qJ)= (X~p)~b+ q~(X~b). If • is a vector  
function, ~:  M - +  R k, • = (qh . . . . .  ~#k), q~i ~ C~(M), i = 1 . . . .  , k, then we guess 
that X acts component-wise. 

The  Lie bracket  IX,  Y] = Xo y -  Yo X defines a Lie algebra structure on the 
set of vector  fields. In what follows, this Lie algebra is denoted Der  M. If, when 
using local coordinates x = (xl . . . .  , x,), the vector  fields X and Y are presented 
in the form 

, - - ,  y =  
i = 1  OXi i = 1  

then the Lie bracket 

tx, Yl r= (or, x_OX, r) 
= 0 - 7  - 0 - 7  , = ,  \ o x  o x  

The value of vector  field X at a point q e M (being a tangent vector  to the 
manifold M at q) is denoted q o X. TqM is, as usual, the tangent space to M at q. 
We consider it as a space of R-linear functionals ~ on C~(M) satisfying, in 
addition, an equality 

~(¢p~) = (~¢p) qs(q) + ~p(q)(~b). 

If P ~ D i f f  M, we use A d P  to denote the inner automorphism of 
Der  M: Ad PX = Po Xo p- l ,  and ad Y (where Y~ Der M) the inner derivation 

of Der M; (ad Y)X = [ Y, X] .  
Let N be a C%manifold and ~ be a diffeomorphism of M onto N;  then ~ ,  is a 

notation for the differential of alp, ~ , :  Der  M---~Der M, and qb,q- TqM--+ 
T~q)N, (q E M) is the corresponding linear mapping of tangent spaces, though 
~ , q  may be defined not only for diffeomorphisms but also for any smooth 
mapping d~: M---~ N. If P ~ Diff M, then we have P ,  = Ad P- I .  

The  notations introduced above give exact information as to whether 
diffeomorphism P placed in some formula should be regarded as an operator  or 
as a smooth mapping. It is determined in accordance with the left or right 
position of point q with respect to P. 

We regard C~(M) as being provided with Whitney topology, i.e., the topology 
of uniform convergence of all the derivatives on compact  sets. The  Whitney 
topology can b e s e t  by means of seminorms Ilolls,K, when s>~O, K C M .  This 
seminorm defines the topology of uniform convergence of all the derivatives up 
to the sth order on the compactum K. The seminorms [[oils,K, in contrast to the 
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topology they set, are not defined uniquely and may be chosen in many ways. In 
what follows, we assume that the choice is made and the seminorms are settled. 

For matrix-valued functions on M we set 

II zl l~,~ Y. maxll i " = a j k ~ ,  
j = l  i 

specifically if ~ is a vector-function on M;  ~:  M--~ R r, then 

II~'lls,,~ = max  II~"lls,'~" 
l ~ i ~ r  

For the vector fields on M, we define the seminorms 

VX ~ Der MII XIIs,K = sup{ll X G , K  I lIG+I,~ = 1}. (1.2) 

When the Whitney topology of C°~(M) is set, we may define in various spaces of 
operators and functionals on C®(M), the topology of pointwise convergence. 
Further, we will often deal with one-parameter families of operators on Ca(M) 
and the introduced topology of C~(M) gives the possibility of giving sense to the 
notions of continuity, measurability, differentiability, absolute continuity, etc., 
with respect to parameter. Indeed, if At is a family of linear operators 
At : C~(M)--~ C~(M) or linear functionals At: C~(M) ~ R we say that At pos- 
sesses property (*) with respect to t if Vq~ E C°~(M) function Atop possesses the 
same property with respect to t (see [1, 2] for the details). The locally integrable 
(on t) families Xt e Der M are called nonstationary vector fields on M and 
absolutely continuous (on t) families Pt ~ Diff M - flows on M. 

Nonstationary vector fields X,, t ~ R provide an ordinary differential equation 

d q _  
d t -  q( t)o Xt on M. 

X, is complete if every solution of this equation exists for all t e R. A complete 
field X, defines the flow Pt, t e R - the unique solution of the operator equation 

dP, 
- -  = p ,  o X , ,  Po = Id, (1.3) 
dt  

where Id is identical operator (identical diffeomorphism of M);  we call this flow 
(see [1, 2]) the right chronological exponential in X, and denote ex'p Sg X~ dr.  

In [1], the representation of the flow Pt = e-~pSg X~ d~" in the form of the 
so-called Volterra series is given 

Io  Io' I? Io" exp X,  d~-~Id + dr1 d r 2 . . ,  d ri(X,, ° • • o X~.,) 
i = 1  

Io'Io = Id + X. ,  d~'l + (X.~ o X. ,)  d~'l d1"2 +" • • 

(1.4) 
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In the real analytic case (to simplify the notation we will also suppose here that 
M = R") ,  this series converges,  when ~ I1£{1~ d~ is sufficiently small. Here  

{1~11. = maxll2~lb = m a x  sup  I J ~ ( z ) l  
i l < - i ~ n  z ~ V ~  

and ..Y~ is an analytic extension of the real analytic vector  field X,  to the complex 
neighborhood V,  of R " C  C"  : 

V~ = {(zl . . . . .  z.)  e C"  I IIm z, I ~< o', i = 1, n} 

In the C °~ case, the Volterra series is an asymptotic one for ex~jd X.d-r:  
Vq~ e C~(M) 

lit -Io' t ~'I0 Io )) bl exp X,  d r -  I d +  ~'. dr1 . . .  ~" ' d ' r l ( X r ,  . . . . .  X ~ . I )  q9 ~< 
i = 1  s , K  

(f )~ ~< Ct eC~gllx-II,. K'd" Ilx.II~+,.-..K, d~" II ~11,+~.-', 
\ d O  

where K'  is some neighborhood of compactum K (see [1] for details). 
Let  us consider a family of operators Ad Pt produced by the flow P, = 

exp ~d X~ d~-. By the definition V Y c  Der M A d  P~Y= P~ o yo p71" The differen- 

tiation of this expression with respect to t gives us (by virtue of (1.3)) 

d dPto y o  p~-l+ E o  y o  dp~-x 
Ad P,Y = ~ dt 

= PtoXto y o p ?  1 -  p o Y o X ,  oP71 

= P,° [Xt ,  Y]°PT~ = Ad ptoad XtY,  

whence d / d t A d  Pt = A d  ptoad X t, i.e., A d P ,  satisfies the differential equation 
similar to (1.3). So it is reasonable to set Ad P, = exp SJ ad X,  dl-, and then we 

obtain a representation 

( I o )  I0 Ad exp X~ d r  ~- exp ad X~ d r  

Io Io 
1" I 

~ I d +  ~ d~-i • • • d~-i(ad X., o . . . .  ad X.,). (1.5) 
i ~ l  

In the C ~ case, the series at the right-hand side of (1.5) is asymptotic for 
t Ad(exp Sd XT d~-) : VZ ~ Der  M 

[I (~L ) ( "~'I0' I0~ )ll Ad X~d~- Z -  Z +  d~q . . ,  d~',(adX.,o . . . .  adX~, )Z  
i = 1  s , K  

3 e s + m , K '  s + m , K '  T . 
) 
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When X, is stationary (i.e., doesn't depend on t) Xt = X, we use the traditional 
notation: e-~ ~ X~ dr  = e 'x. 

For complete nonstationary vector fields X, and X~ + Yt, we will derive now 
t the 'generalized variation of constants formula' presenting the flow exp i'd (X~ + 

Y,) d r  as a composition of flows 

fo' fo' 
exp (X,+  Y,) d r  = C, oexp X, dT, (1.6) 

i.e., as a perturbation of flow expI~{ X, dr  by a flow C~. We will call them a 
nonperturbed flow and a perturbation one, correspondingly. In turn, we will look 
for (7, of a kind C~ = ex--~ ~ Z, dr. Substituting the expression for C~ in (1.6) and 
differentiating the identity with respect to t, we get 

exp (X.:+ Y.~)dro(Xt+ Y,)= C, oZtoexp X ~ d r +  C, oexp X.:droX, 

or by virtue of (1.6) 

Io Io' C,o~xp X. dro Y, = C,o Zto~xp X. dr. 

The left action of the operator C~ -1 and the right action of (exp ~ X. dr) -1 on 
the both sides of the last equality, give us 

( I o ) '  z - -  ~xp 'X~dr oV, o ex~ X,d,  

=Ad(~XPlo'X,d,)-'Y,=~xxp~adX, drY,. 

Hence 

Io Io ~p - - ,  
Ct = exp ad Xo dOY, dr 

and we get the 'variation of constants formula' 

Io I0'  Io Io exp (X~ + Y~) d r  = exp exp ad Xo dOY~. d~-o exp X, dr. (1.7) 

The 'variation of constants formula' is helpful when operating with complicated 
perturbations of nonstationary nonlinear systems of differential equations. For 
example, let us consider the family of flows 

O,(e) = e "z,, o exp (X, + e Y,) d r, 

smoothly depending on parameter • c R. Here, Z0 is a stationary, and X~, Y~ a 
nonstationary vector field, •Y~ is a perturbation of the right-hand side of the 
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ditterential equation 2 = Xt(x), and e "zo is a perturbation of the initial condition. 
Calculate at first O[Oe ~ t exp So (X, + eY,.)dr. By virtue of (1.7), we get 

exp (X, + EYT) d r  
) 

i ~ ) ~Io --~ I, Ad(~xp = exp Xo dO eY, d~-o X, d r  
) 

= ( I d + e l i A d ( ~ x p l i X o d O ) Y , d ~ ' ) + O ( ' 2 ' .  

Hence, 

' i, ~0 ) I0' ~xp (X,+eY.~)d'r= Ad dO Y, d~-o exp X, d~-. 
E = 0  ) 

Similarly, for an arbitrary e, 

o__,[' 
- - e x p  (X, + eY,)dT 
de 

= I' Ad(~xp I" (Xo + ,Yo) dO) Y. d,o~xp I' (X. + ,g,) d~. 

So differentiating Qt(e) with respect to E, we get 

0 
- -  Q , ( E )  

Oe 

I' = Z,,o e'Z,,o e--~p (X.+eY~)d'c+ 

! 1" I )  l 
+ Io e'z ' '  Ad(e-~p Io (Xo+eYo) dO)Y, droe-~xp (X.~+eY.~)d'r 

I' I = ZooO,(e)+ e'Z,, o e--~p (Xo+EYo)dO o 

"r -- 1 IO t 
o y o exp (Xo + eYo) dO 

( Io' ) = Zo+ AdQT(E)Y. d r  °Qt(E). 

If Z~(E) = Zo + i'd Ad QT(E) Y, dr,  then we get 

oQ, -Zt(e)oQz(E) .  
0e 

(1.8) 
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In turn 

az,(~) 
ae 

fo = ~ Ad O,(e) Y~- d r  

fo' , = (O, (e )  o y .  o o ? l ( e ) )  d z  

fo'[ 
= Z , ( e ) ,  A d  Q,(e) Y,] d r  

fo' [ ~ (  ° - -  )] 
= e), Or Z~(e d'r. 

197 

(1.8) 

In what follows up to the end, two admissions are adopted: 
(1) All the vector fields (nonstationary or usual ones) are supposed to be 

complete. The sufficient conditions of completeness are well known, so we need 
not dwell on it. 

(2) We operate only with the diffeomorphisms which can be included in some 
flow P,, t e R on M, Po = Id. In other words, the notation Diff M denotes below 
not the whole group of the ditteomorphisms of M, but its linear-connected 
component, which contains Id. 

One more technical detail: for the family of vectors 1,0- c [0, t]) of some vector 
space, let us define 

vraispan{  l~ I z c [0,  t]} = ["] Span{l. I ~" e [0,  t ] ©  I}; 
i c [ 0 , t ]  

m e s  1 = 0  

Span ~ = O. 

2. Returning to the control system (1.1) and the family of mappings Ft, t ~ R, we 
may now put 

----~ fo' 
Fr(u( ' ))  = qo o exp ( f  + guO')) d~'. 

From now on, we shall study the mapping Ft locally near the fixed admissible 
control 5(.). Note that this problem differs from the one of the ascertaining of 
small time local controlability; it seems that the first problem is more complicated 
than the second one. 

It is convenient to study, in place of F,, the equivalent mapping 

6,: u(.)--,F,(u(-))o ~p (f+gS(r))d~- . 
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Denote 

Employing (1.7), we get 

- - ' f /  
Gt(u(')) = qooexp h,u(~-) d~'. 

A.A.  AGRACHEV ET AL. 

~ dO g). ( f  + gft(O)) d o g  = exp Io a d ( f +  ga(O)) 

So instead of control system (1.1), we may consider the control system 

dl = h~(q)u, q(O) = qo, (2.1) 

with the right side equal to zero, when u = 0. 
The study of the local properties of attainable sets and the conditions of the 

local extremality of the given control u(-) for some functional (i.e., the main 
problems of control theory), are reduced, generally speaking, to descriptions of 
the images of G, restricted (maybe) on some special subsets of the space of 
admissible controls L~[0, t] - the ones being contained in some small neighbor- 
hood of zero in L~o[0, t]. 

For any smooth mapping, its differential and Hessian are the simplest local 
invariants. If G: A ~ M is an arbitrary smooth mapping of Banach manifold to 
M(G(ao) = q0), then a differential G' is a linear mapping of the tangent space 
T,,,,A to the tangent space TqoM. Choosing some local coordinates a:  A---~ fi~, 
i~: M--~R" ,  a(ao) = 0, /x(q0) = 0, we get the smooth mapping /zo G o a - l :  ,~--~ 
R".  (Here fi~ is a Banach space, modeling manifold A locally.) In these local 
coordinates, the differential of G comes to the differential of p~o G o a 1 at zero 
of fi~, which linearly maps fi, to R".  

As for the Hessian, let us note at first that the second derivative of mapping 
/xo G oa  -1 at zero is some quadratic (or corresponding symmetric bilinear) 
mapping of fi~ to R n. It is obvious that this bilinear mapping essentially depends 
on the choice of coordinate systems. For example, if a0 is a regular point for G, 
i.e., the differential G'(ao): Ta,,A ~ T , , M  is surjective, then the implicit function 
theorem implies the possibility of choosing such local coordinates that the 
mapping ~ o Go a -1 becomes linear, hence the Hessian equals zero. However, if 
we restrict the bilinear mapping defined above to the kernel of the differential 
/.t'o G'o a '-1 and, in addition, factorize its values modulo the image of the same 
differential, then it turns out to be a correctly defined (and invariant!) bilinear 
symmetric mapping 

G": Ker G' x Ker G'---~ coker G'. 

We will call G" the Hessian of G at a point a0. 
Let us return to the control system (2.1) and the mappings Gt. Let • be some 

coordinate mapping of the neighborhood Vq,, ~ qo to R n, • (qo)= 0. Using the 
Volterra-series expansion of the right chronological exponential, we get 
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~Io' fo' q~(G,(u(o))) = qooexp h~u(~-) droq~ = (qoo h,)u(r)  d~-o~ + 

I' ~" (io ~ )2 + qo ° drl d'r2(h~2u(~'e)°h~,u(rl))°dP+O /u(r)l d r  . 
I ) 

Evidently, the differential G',: L~[O, t] ~ TqoM of the mapping G, at zero is 

Io' G',u(o) = (qoo h , )u(r)  dr,  

and its image im G'~ coincides with the varispan{qoo h,[ ~'e [0, t]}. We denote it 
El. 

Consider now the quadratic term 

I' Io "l qo ° dTl d~'2 hr2u(r2) ° h~'l u(~'O 

of Volterra series, and restrict this quadratic form to ker G't, i.e., the set of u(.) 
satisfying the equality 

Io ' d r  = O. (2.2) (qo o hOuO-) 

The integration by parts gives us 

I ' i "  
qo o d•, dT2 hT2 u('r2) ° hTl U('rl) 

I'(I (I" = q o o  , hr2u(r2) dr2))od , hrzulr2)dr2)  (2.3) 

I' Io' = qo o hr2u(~'2) dr2 ° hr2 u(r2) dT2 - 

Io' Io" - qo o h,rl U(T1 ) o h'r2 u('r2) d'r2 d~' l .  

The first term on the right-hand side of (2.3) vanishes by virtue of (2.2); hence 

I ' d ' r l  Io 
- r  I 

- qo ° dr2h.~2 u(,r2 ) o h., u(rO 

f' (Io" I ) =½ , qo o h . 2 u ( h ) d r 2 o h ~ , u ( r O - h , , u ( ~ ' O o  ~ h.2u(r2) d~'2 dr,  

'I' [Io" ] =5 , qo ° h.2u(r2) dr2, h . , u ( rO  dr1. 

The expression 
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is (for given u(.)) a vector from the tangent space TqoM and, hence, is defined 
invariantly. After factorization, the image of this quadratic mapping modulo 
im G',, we conclude that the Hessian of G, at zero is 

G'~u(.) = qo o hou(O) dO, h,u(l-) d r +  E~, (2.4) 

u(.) e Ker G',, i.e., satisfies (2.2). Corresponding symmetric bilinear map- when 
ping 

G'~(u(.), v(.))= qoO lo '[I  ° hou(O) dO, h~v('r)] d'r + E~ (2.5) 

will be denoted by the same symbol G", (the sharpening will be done if necessary). 
We denote 

E~ = vraispan{q0o h,, r e  [0, t]} = Im G't, 

E~ = E~ + vraispan{qoo [h~-l, h ' r2 ]  , 1"1, 1"2 E [ 0 ,  t]} = Span Im G':, 

El _ E, T oM. 

h~ - qo o h~ ~ E , ,  we may consider h 1 as a constant vector field on By setting 1 __ 1 

the vector space E~, evidently [hi, ,  h~2] = 0V~-I, 72. The control system ~ = h~u, 
x(0) = 0 being defined on E~ is actually a linearization of system (2.1). In fact, the 
mapping G~: Loo[0, t]-~ E~, where G~(u(.)) = 0o~xp~d h~u(~') dr  coincides with 
G',. 

When El  -- TqoM, then (in accordance with the implicit function theorem) the 
mapping Gt coincides in some proper coordinates with G~. So, if the case, the 
control system (2.1) is completely characterized (locally) by its linearization, 
otherwise (EJ ~ TqoM) we need to take into consideration the high-order ap- 
proximations. 

Let ~ = {X ~ Der M{ qo o X c E~} be the set of all fields on M, whose values at 
q0 lie in E~, and 

~ ( ~ )  = {X c Der MI qo°[X, ~ ]  ~ E~} 

be a normalizer of the subspace ~ included in the Lie algebra Der M. 
The foregoing formula (2.5) gives the direct expression for the bilinear 

mapping G'~ in terms of the vector fields h~ ~ ~ ,  ~" ~ [0, t]. By definition, the 
vector fields jg hou(O)dO, h~v(~-) belong to ~ for almost every 1-~ [0, t]. Then, 
for any nonstationary perturbationsZ~, Z 2 ~ ~ ( ~ )  ~ ~ ~ Der M, there is car- 
ried out an equality 

qO° Io' [Io~(ho + Z1)u( O) dO, (h, + Z2)v(~')l d'r 

i'[i ] = qoo , , hou(O) dO, h,v(.r) d~-(mod E~). 
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Hence,  G'~ depends, in fact, only on an image of h~ under canonical factorization 
~ - - *  ~1/9~(~) .  Suppose that 

dim E~ = k~ and (x, y), X = ( X l , . . . , X k , ) ,  y = ( Y l  . . . . .  yk2) 

are local coordinates on M such that (x, y)(qo) = 0, and 

(x, y) .  I qoEl ={(¢, n ) l ~ n  k,, n ~  n k~, n = 0}. 

In this case 

° I A + b(x, y) ~ b(O, O) = o}. ~ = a(x, y) Ox 

Here 

a(x, y) = (al(x, Yl),. • • , ak,(X, y), 

are row vectors, and 

b(x, y) = (bl(X, y) . . . . .  bk2(X, y)) 

ob } 
a(O, O) = O, b(O, O) = O, ~x (0, O) = 0 . Oy 

b(0, 0) W+ 0, 

--Ox = " ' "  O L (  ' Oy-- = " " ' O y k 2  

are column vectors. Let us prove that 

The inclusion 

~ + b l  0 A + b 2  e E ,  Oo al Ox -~y, a20x 

provided that 

bl(0, 0) = b:(0, 0) = 0, a:(0, 0) = 0 ab--22 (0, 0) = 0 
' ~x 

can be verified directly. On the other hand, if 

~ +  b(x, ) o Z = a ( x , Y )  ox y ~yy and a ( 0 , 0 ) ~ t 0  or 

then the value at zero of the Lie bracket [Z, X],  where 

X = (a(0, 0)x + b(0, 0)y) ~ y e  ~'~ 

does not lie in E~; its coordinate "01 is equal to 

(a(0, 0), aW(0, 0))+ (b(0, 0), bT(0, 0)) ~ 0. 

If Obi/axj(O,O)~t0, then the value at zero of the Lie bracket [Z, Y], where 
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Y=O/Oxj~ ~ ,  does not lie in E~ (coordinate r/i of this vector is equal 
ObdOxj(O, O) ~= 0). 

So the factorization ~ ~ / 9 ~ ( ~ )  takes the form 

3 3 
(a(x, y)~x+b(x,  y)~yy)---* (a(0, 0)~x + ~x b (0, 0)x ~y). 

Suppose now that 

o + b~(x, y) a h~ = at(x, y) O-x ~yy" 

Then 

(~x~ (0, O)x)tc(X, y), IqoE 2 • 

The result of action of the linear mapping (x, y ) . l  o n  the field 
qo 

O +Ùb~ 0)x ~y, a~/0, 0 /~  ~ Co, 

is a vector field on E, 2 denoted h~, r ~ [0, t]. Moreover, 

[h~,, [h2~, h2~]] = 0Vr~, r2, T3 E [0, t], 

i.e., the Lie algebra generated by the vector fields h 2 is nilpotent of length 2. It 
can be easily seen that the dimension of this Lie algebra does not exceed 
k l ( n - k O +  n. In the simplest case M =  R 2, kl = 1 we get the Heisenberg 
algebra generated by alax, alay, x olay. The mapping G,z: Lo~[O, t]--* E~ defined 
a s  

Io' G2t(u(.)) = O o e-~p h~u('r) dr, 

takes, when using the coordinates (x, y), the following form 

Io' ix, y),lqoa2,(u('))= aT(O,O)u(r)dr+ 

I0 Io  + (0, 0)a~(0, O)u(O) d0u(r) dr. 
o x  

The differential and the Hessian of G 2 at zero correspondingly coincide with 
G', and G",. So the control system 

=h2(x)u, x(0)=0,  r e [ 0 ,  t] 

is a second-order approximation to the system (2.1)* (and, hence, system (1.1) for 

* The  employment  of local coordinates for the definition of this system is essential. The  mat ter  is that 
the image of the field h~ under  the factorization ~ I ~ ~ ~/9~(~ J), which is an invariant  object,  actually 
characterizing the second-order  approximation,  does not  t ransform (under coordinate transformation) 
as a vector  field on E ,  2 . See also Remark  1 at the end of Section 4. 
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the controls close to zero one, when E 2 = TqoM. In reality, the mapping G, may 

be transformed to G 2 by means of smooth coordinate transformations in L~o[0, t] 

and M, only if some hard and fast additional restrictions are imposed ([4]). 
Nevertheless, a number of properties being important for the control theory, in 
particular the structure of attainable sets, are similar in many cases, even when 
the proper  coordinate transformation does not exist. We put off the discussion of 
this problem to the end of the paper in order  to concern ourself now with 
constructing high-order approximations, when E 2 ~ TqoM. 

It was mentioned above that the Hessian of the mapping G, being an 'invariant 
part '  of the second derivation of G,, is defined on a kernel of the first derivative 
while its values lie in the factor space of E 2 modulo the image of the first 

derivative. The  elementary analysis of formula (2.3) shows that just the equality 
of the first derivative to zero makes it possible to express the second derivative in 
terms of Lie brackets of the vector  fields h~, r e  [0, t]. At the same time, the 
factorization of values of the second derivative makes it possible to pass from h~ 
to h~, i.e., from the Lie algebra Der  M to a special finite-dimensional nilpotent 
Lie algebra of the length 2. When dealing with high-order derivatives, each of 
the two items mentioned above (the constructing of proper  Lie bracket expres- 
sions and the transition from Der  M to some special nilpotent Lie algebra) is 
based on its own general construction which falls outside the limits of control 
theory. Let  us pass to the description of these constructions. 

3. Chronological Connection 

Let 7-,0 be an usual, while X,, Y,, t ~ R are nonstationary vector  fields. Let  us 
denote 

O,(e) = e "z''° exp (XT + ~Y,) d~-, (3.1) 
) 

as a family of flows on M which depends smoothly on E e R. Let t c R be fixed. 
One of the results of our further calculations will give us an invariant 'bracket '  
formula for the tangent vector  to the curve ~--~ qoo O,(e) in M at point qoo 0,(0) 
in the case when arbitrary singularities take place. 

We calculated above (see (1.8)-(1.9)) that 

0 
O~ O,(e) Z,(e)° O,(~), (3.2) 

where 

~ t Z,(e) -- Ad Q~(E)Y~d~'+Zo, 

and 
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Io[ ] o z , (~)=  z~(~), o O~ O~ Z,(e)  d r  = (Z(e)*  Z(e)), .  (3.3) 

Here '*' denotes the 'chronological product '  (see [2]), putting in accordance with 

an arbitrary pair of absolutely continuous on t nonstationary vector  fields At, Bt 
the field 

(A* B), = A , ,  B, dT. 

We notice that the '* ' -product  is nonassociative, although the following relation, 
more weak than associativity, takes place: 

A * ( B *  C ) -  B * ( A *  C) = (A*  B -  B *  A)* C. 

Thus, we get 

0 
- -  O = Z ( e ) o  O ( e ) ,  (3 .4)  
Oe 

0 
a~ z(E) z (e) ,  z(E), (3.5) 

The given equations have clear geometric interpretations, but before its descrip- 
tion, some small digression is necessary. 

Invariant connections on Lie groups. Let  G be a Lie group; for any x c G let 
p(x): G---~ G denote right translation on G, p(x)y = yx Vx ~ G. Then p(G) is 
imbedded in Diff G - a group of diffeomorphisms of G on itself, p(G) is a 
subgroup of Diff G which acts freely and transitively on G. Thus, any Lie group 
may be realized as a Lie subgroup of a group of diffeomorphisms of a smooth 
manifold. This subgroup acts freely and transitively on this manifold. 

Let  M be an arbitrary smooth manifold and Diff M ~  G a Lie group of 

diffeomorphisms of M (onto itself), ~ is a Lie algebra of G. Then  (g is a Lie 
subalgebra of Der  M (a Lie algebra of smooth vector  fields on M). If G is 
connected,  then 

G= XTdrlX,  c ~; ~', s~ R . 

Smooth vector  field on G is a name for the smooth mapping p---~ p o Xp, where 
Xpe(~6Vp~G, or, equivalently p-~ypop,  where Ype(SJVpcG; obviously 
Yp=AdpXp.  The vector  field poXp on G is left-invariant (invariant with 
respect to the transformation of the kind p ~ Po ° P, where Po ~ G is fixed) iff Xp 
does not depend on p, and right-invariant (invariant with respect to the trans- 
formation of the kind p--~ p o Po) iff Yp = Ad pXp does not depend on p. 

Let  (X, Y)--~VxY be an arbitrary bilinear mapping of the Lie algebra (~6 into 
itself. Then the correspondence 
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(p° Xp, p° Ye)--> p°(VxpYp +OYP x~) 
ap 

defines a left-invariant linear connection on the Lie group G (a covariant 
derivative of the vector  field p o yp in the direction of p oXp). The cor- 

respondence 

defines a right-invariant linear connection on G. All the left (right)-invariant 
connections on G may be described in this manner, because each of them is 
completely defined when its values for arbitrary left (right)-invariant vector  fields 

are given. Let  us put 

Rv(X, Y) = [Vx,  Vy] - Vtx.y ], 

Tv(X, Y ) = V x Y - V y X - [ X ,  Y] ,VX,  Ye(~6. 

The curvature tensor of the corresponding left(right)-invariant connection has 
the form 

(po Xp, pO yp)--> po Rv(Xp, yp) ((Xpo p, yeo p)--> Rv(Xp, yp)o p); 

and the torsion tensor has the form 

(po Xp, p o Yp) --> p o Tv(Xp, Yp) ((Xp o p, ypo p) -.> - Tv(Xp, yp) o p). 

Let P~ be an arbitrary absolutely continuous curve in G, then the fields 

X~=P2'o P~ and Ys=-~sP, OP21 (Xs, YsefB) 

are called the left or right angular velocities of the curve Ps. The term 'angular 
velocity'  originates from the analogy with the rotation of a rigid body, i.e., with 
the case when M = R 3, G = SO(3) (see [5]). 

The  parallel translation along the curve 

P~ = Poo~xp X, de  = e'~xp y ,  d~-o p o 
) 

by virtue of the left(right)-invariant connection defined by V, transforms an 
arbitrary vector  p0 o Z(Z°po), being tangent to G at P0, into the vector  

I ) Ps °e~xp Vx, d~-o Z exp V y .  d1"Zo P~ ) - -  

The curve P~ is a geodesic for the left(right)-invariant connection if it is 
smooth and 
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In what follows, nothing hinders us to employ the concepts, which were used 
above when dealing with the Lie subgroup G c Diff M, for the study of the whole 
group Diff M or, moreover ,  the group of flows on M (i.e., absolutely continuous 
curves on Diff M with the pointwise multiplication). The Lie algebra of the group 
Diff M is certainly Der  M. Indeed, if P, (~ >~ 0) is a smooth curve in Ditt M 
(Po = Id), then the direct computation shows that Ve p-d1 o OPdO~ is a derivation 
of the algebra C°°(M), i.e., element of Der  M. Hence,  p~l  o OP,/O~[,=o c Der  MI 
and so the tangent space to Diff M at 'point '  Id is contained in Der  M. On the 
other hand, any complete vector  field X is a tangent vector  at 'point'  Id to the 
curve e "x in Diff M. If a vector  field X is not complete,  then we can consider a 
truncated field X-(complete)  vector  field which vanishes outside some com- 
pactum K' and coincides with X on some (chosen in advance) compactum K. 
Thus, if the dynamics we are interested in evolves on some compact  subset of 
M x  R, then there is no need to take into consideration a completeness of the 
vector  field we deal with. So we may regard Der  M as a Lie algebra of Ditt M. 

Let  us now consider Flow M - a Lie group of flows on M consisting of curves 
P, in Diff M which are absolutely continuous with respect to t; the pointwise (on 
t) composition is a group operation: (P .  O. ) ,  = P,° O,. 

We will show that the Lie algebra of the Lie group Flow M is an algebra of all 
absolutely continuous curves in Der  M with the pointwise (on t) commutator  as 
an operation [ X . ,  Y.],  = IX,,  Y~]. In fact, if P~(E) is a smooth (on ~) curve in the 
Lie group Flow M, such that P~(0)--Id,  then ' tangent vector '  OP,/O~l,=o is an 
absolutely continuous (on t) curve in Der  M. Vice-versa,  if Xt is an arbitrary 
curve in Der  M absolutely continuous with respect to t, then there exists a vector  
field X0 and locally integrable curve Yt in Der  M such that X, = Xo+~d Y7 d~-. If 
Y. is a complete nonstationary vector  field, then consider in Flow M the curve 
Pt(e) = e "x''° exp ~d Y~ d~,. Differentiating this flow with respect to X, we get 

t io OPt = X o +  Y.~dr= X, ,  
OE I ~=o 

i.e., X, is a ' tangent vector '  to Flow M at 'point '  P,(0) = Id. 
Let  us return to the family (3.1) of flows on M and the equations (3.2)-(3.5). It 

follows from them that the curve E---~ O(~), lying in the group of flows, is 
geodesic for some right-invariant linear connection defined on this group. The 
connection cannot be re-established uniquely if we use only the equations for 
geodesics, since these equations contain only a covariant derivative of the 
angular velocity along itself. However ,  if in addition, we require the equality of 
the torsion tensor to zero, then the connection is re-established quite uniquely. 

DEFINITION.  The chronological connection is a right-invariant linear con- 
nection on the group of flows defined by bilinear mapping ( A . ,  B.)--->V~AB, 
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where A,, B,( te  R) are arbitrary absolutely continuous curves in Der M and 
V~B = A* B + ½[Ao, Bo]. It takes place RVC(A., B°) = ~ ad[Bo, Ao], 
Tw(A . ,  B.)  = O. 

P R O P O S I T I O N  3.1. Let A,( t~ R) be an absolutely continuous curve in Der M, 
.4,=(d/dt)A,;  Q°( te  R) be a flow on M. Then there exists one and only one 
geodesic E ~  Q.(E) of the connection VC-meeting the conditions Q,(0)= QO, 
o/oe Qt(O) = At o QO, t ~ R. This geodesic is defined by the formula 

fO 
t o 

O,(e) = e "a''o e-xxp cA, d~ "o 0 °. 

It follows from the reasoning adduced above, that this formula really defines a 
geodesic of the connection V c. The uniqueness, unlike the case of the finite- 
dimensional Lie group, is not trivial here but can be proved by means of one 
important 'composition property'  of angular velocity, which we will now describe. 

Let us denote fI,(E, A) the right angular velocity of the geodesic 

i 
t 

O,(e) = e'Aoo~xxp eA. dr, 
) 

0 
ei?-- O,(e) = l~,(e, A)o O,(e); 

~0 t we have II,(E, A) = Ao +  Ad O,(e).'~.d,. Direct calculation using formula (1.7) 
gives an identity 

~t(E1 ~- 1~2; A.)  = l],(el ; l](e2 ; A.)).  

Indeed, 

~-~,(E1 -[- E2,  A.)  

Io = Ao + Ad O,(el + e2)fi,, d r  

Io' ( I ,  ) ---Ao+ Ade(~'+~2)A°°Ad ~ ( e , + E 2 ) ~ o d 0  .~ .dT 

I Io I, ° = Ao+ A d e " A " A d e ' 2 A " o A d e ~ p  Adexp~ E2.4ed~:.,i.od0 o 
) 

Io o Ad ~ e2 Ao d 0A. d ~- 

I ( Io t o = A o +  A d e  ~,a''o Ad e%A.oAd e~p A d e x p  E2.&e d~el/~o d 0 o 
) 

) I; o Ad e-~2a,, o Ad e~A.o Ad ~xp e2.,i.o d 0.,i., d ~" 

(3.6) 
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= Ao+ I i  A d (  e ' 'A°°~xp I0" e' ( Ad e'2A°° ex--~p Io°E2A'd~)fi'°dO) ° 

oAd e~2a,,oexp e2A0d0 .A, dr.  

(We used here the following evident identities: 

I' Ad P o Ad O = Ad PO, Ad P o Ad P -  ~ = Id, P o ~ X,  d ~" o p -  1 
) 

= exp Ad PX, d~'. 
) 

On the other hand 

Io( Io Ao dO dr,  ~-~t(E2, A.)  = Ao +  Ad e':Aooexp ez 

and 

~,(~1, I~.(E2, A.))  = Ao +  Ad Q,(E1)oAd e '2aooe-~ e2fi.o dO .A. dr,  

where 

O,(e,) = e"a"°e-~xP e,l~o(e2, A.)dO 
) 

I ( I ° ) =e~,a, ,oexp el Ad e 2a,,oexp e2Aeds c .g, od0,  
I ) 

whence the identity (3.6) follows. 
Moreover,  this important property turns out to be true when scalar E is 

replaced by a scalar function of t. More accurately, let u: R ---) R be an absolutely 
continuous function. Let us denote 

Io' O,(u) = e "~°)A°° ~xxp fi(T)A, dT, 

Io l l ,(u, A . ) =  u(O)Ao+ Ad O, (u)A,  d~-: 

then 

l) ,(u + v, A . )  = lq,(u; l)(v, A.)) ,  Vu, v, A. 

The last identity is also a direct consequence of a variations formula. It expresses 
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the fact that the correspondence u--*t~(u) defines a (nonlinear) action of the 

additive group of absolutely continuous functions on the space of (absolutely 
continuous on t) nonstationary vector  fields. 

Let  us return to the proof of the uniqueness of the solution of the Caushi 
problem 

f0 Z,(e) = [Z,(E), 0/a~-Z~(e)] dr ,  Zt(0) = A,. (3.7) 

In this case, the solution coincides with I~,(~, A.) .  By virtue of (3.6), it is 
sufficient to prove that ~'~ ~ , ( - e ,  Z.(E)) =- A . ,  when Z~(E) satisfies (3.7). Since, 

for e = 0, this equality is carried out trivially, then it remains to prove that 

0 
o-- ~ , ( - ~ ,  z . ( E ) )  ~ o,  

or as far as f~o(-e, Z . ( e ) ) =  Ao, then it is sufficient to prove the following 
identity 

0 0 
- - -  O , ( - E ,  z . ( 0 )  - o .  Oe Ot 

Denote 

tot(e) = ~tlqt(-e, Z.(e)) = Ad O , ( - e ) ~ ( e )  = e -"  adA°° 

t 

°exp Io - e a d  ~ d r Z ( e ) ;  

fo' ~,(e) = e-~ ~a A,, o e-~p - e a d  Y~ d~-Zt(e), O)o(e) = Ao. 

The differentiation of the chronological exponentials gives us 

Oto,Be = ad Yt(e) ° Ad Q,(-e)2t(e) + Ad Qt(-e) ~ Z,(e),  

where 

Yt(e) = - A o -  Ad O~(-e) ,Y~(e) + - -  Z~(e) dz OT 

~ t = - Ao - (to~ + e[tb~, toT]) d~'. 
) 

Substituting the expression for Y,(E) into (3.8), we get 

(3.8) 
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[I' ) ] OoJ,(e) [Ao, ~o,] - (oJ, + e[~b,, o~,] dr,  oJ, + [o3,, ~o,] 3E 

[ I ] = o5, - Ao - (co, + e[oS,, ~o,]) dr,  co, . 
) 

On the other hand, differentiating cot with respect to t, we get 

0~o(E) 
- o~, + e [ ~ , ,  ~o,]. 

3t 

With regard for the equality ~bo(e) = Ao, it implies &od0e & 0, so the uniqueness 
of the geodesic is proved. 

Let us now return to Equations (3.4) and (3.5). Let 

oo 

i = l  

be a Taylor expansion in powers of • for the family of vector  fields Zt(e); 
~ e D e r  M, i =  1,2 . . . . .  For a given t e  R, let k be the smallest integer, such 
that qo o ~f ¢ 0, and let us put q,(e)= qo o Or(e). Equation (3.4), being rewritten 
for the curve • ~ qt(e) in M, gives us an equality 

0 
Oe q,(e) qo° Z,(e) o Ode) qo° O,(e) o Ad O~l(e)Z,(e) 

= q,(e)o Ad QT'(e)Z,(e). 

Hence 

Io q,(e) = q,(o) + q,(o.) Ad O;l(o')Z,(o ) do', 

which implies the relation 

q,(e) = q,(0) + ~  q,(0) o Ad O; - ' ( 0 )~  + O(ek÷l). (3.9) 

Thus, the tangent vector to the curve e --~ q,(e) at e = 0 can be expressed in terms 
of 'non-perturbed'  flow 0,(0) and the field ~ .  In turn, Equation (3.5) gives us the 
recurrent formulae for successive calculations of the field ~:~, i = 1, 2 . . . .  in terms 
of 0 ,(0)  and Yr. In particular, we have 

I/ ~ = Z o +  Ad O,(0) Y,; 

~ =  fo' [ I / A d  Oo(O)YodO, Ad O,(0)Y,]  d ' r+  [ Z o ,  I / A d  O,(0) Y,- d'r]. 

In order to get a compact  notation of the expressions for ~(Vi), we will put 
into consideration a special sequence of polynomials over a nonassociative 
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variable. Let  us consider a free nonassociative algebra ?l(h) with only one 
generator  h. Quotient  algebra 9d(h) modulo an ideal, generated by the elements 
of the form 

x ( y z ) -  y ( x z ) -  ( x y -  yx)z, (3.10) 

will be called a free chronological algebra with generator  h and will be denoted 
A. Algebra A inherits the natural graduation of 91(h), deg h = 1. (For details of 
the matter  concerning chronological algebras, particularly the construction of a 
basis in a free chronological algebra, see [2].) 

Remember  that a derivation of an algebra 91 is an R-linear mapping to: Pl ~ ?1, 
satisfying the Leibnitz rule; Val ,  a2 to(ala2)= (toal)az + al(toa2). Denote  Der  Pl 
as the set of derivations of algebra 9~. 

Apparently,  a derivation to in a free nonassociative algebra ~l(h), with a single 
generator  h, may be correctly defined by putting down its action on a generator. 
It can be easily shown that any derivation to c Der  ?l(h) gives rise to some 
derivation of the chronological algebra A. We will denote this derivation as tb. In 
order  to prove this fact, we need only satisfy ourselves that the ideal generated by 
the elements of the kind (3.10) is invariant with respect to to. Direct computation 
by Leibnitz rule shows that the result of applying to to an element of the kind 
(3.10) is a sum of elements of the same kind. This fact proves the invariance. 

Let  us define the derivation 6 by formula; 6h = hA. The polynomials we are 
interested in are of the kind 

6k(h) = 8k-~h. (3.1 1) 

In particular, 

~,(,x) = h ,  ,~2(h) = h 2, ~3(,X) = h2,X + h h  2, 

64(A) ---- 2h2A 2 + (h2h + hh2)h + h(h2h + hh 2) 

= h(3h2h + hA 2) + (3A2A - hh2)h. 

The correspondence F: h ~ Z(e)  defines the unique homomorphism of the free 
chronological algebra A in the algebra of derivations of C°~(M) with '*' as the 
algebra multiplication. We shall prove that 

'~ = t$k(Z.(O)) = t~k( ZO + Io" Ad Oo(O) Yo dO ), (3.12) 

where  ~k is a polynomial with respect to '*'-multiplication. Indeed, on the one 
hand 0/OE and 8 are both the derivations (satisfying the Leibnitz rule), and on the 
other hand O/OeZ= Z * Z  and 6A = hA, i.e., 0/0E and 6 act similarly on the 
corresponding generators Z(~) and h. Hence (oR/oEk)z(e) = Ft~k(h) and 

~E kt~k [, ~k(Z.(O))tSk(Zo+~'Ad 
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In order to find the tangent vector  e---~ qt(e) (see (3.9)), it is necessary to act 
with the differential of the diffeomorphism Qt(0) on the tangent vector  qo o ~k. It 

is not difficult to get the recurrent  relation for the fields Ad Qt-l(0)~i directly. 

Let us denote 

R,(e) = Ad otl(o)zt(e); 

Using Equation (3.5), we get 

0 0 Z , =  Z~, Z ,  
Oe Ot ~ ' 

O-~-( O--+ ad X,)R, 
Oe \Ot 

= Yt, Ro(0) = Zo.  

One can see that the equation for R, differs from the equation for Z, in the 

detail that, in this case the opera tor  (O/Ot+ ad Xt) is employed in place of O/Ot. 
The coefficients of the expansion of Rt into the powers of E satisfy the equations 

( ~ + a d  Xt)p2=[p~, Yt], p2o=0, 

Hence  

p~ = A d  o ~ - l z o +  Ad 
J 

etc. 

\ 
- Xo dO) Y.~ dr, 

t ~-  ' d 0 ) [ p ~ ,  o, :I a (expl Y.]d~,  etc. 

Let  us introduce a more detailed consideration the formula for ~ ,  one 
representing the field ~ as a polynomial with respect to the chronological  

product  '*' .  
By virtue of (3.9), it is particularly important  to calculate the value qo o ~ 

provided that qo o ~ = 0 for i < k. Evidently this value will not vary if we add the 
arbitrary Lie brackets of ~i,(i < k) to the vector  field ~t k . At  the same time 

(A * B), - (B * A), = [A, ,  B,] - [Ao,/30] VA, ,  B, ,  

and if Bo = 0, then A * B - B * A = [A, B]. 
Therefore ,  the sequence of chronological polynomials we described above is 

not the only possibility. Actually, if we define the commuta to r  in chronological 
algebra A as follows: Vx, y ~ A[x, y] = xy - yx, then by virtue of what is stated 
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above ,  any sequence  of polynomials  crl(A) . . . . .  ( rn(A) . . .  such that  (ri(A) comes  
out  f rom ($i(A) by adding some bracke t  polynomial  on ~1 . . . . .  ($i-l, is adequate .  

T h e  sequences  of polynomials  different  f rom (3.12) are ment ioned  in [2, 3] 
(see, also [6]). Le t  us consider  one more  example  (obtained by A. I. Tre t i jak)  of 

such a sequence ,  consist ing of chronologica l  monomials. 

E X A M P L E  3.1. Cons ider  a sequence  of monomials  

7/'1 : '/~, "/'/'k : " /1"k-I)[ ,  k = 2, 3 , . . . ;  "/l 'k(,~) : . . .  ( ( / ~ ) [ ) / ~ )  • • • )k) .  

T h e n  the following equal i ty  holds 

~¢rk = kCrk+, +[A, ¢rk] (3.13) 

In fact,  for  k = 1 this equal i ty  is obviously  fulfilled. Let  it be fulfilled for k = l - l ,  
i.e. ~,r~_j = ( l -  1)~-t +[A,  *rH]. T h e n  

~7'1" I = ~ ( q r / _ l X  ) = ( ~ q ' / ' / _ l ) ~  -]- " / ' / ' / _ l ( ~ k )  = ( l -  1)Tr, A +[A,  "n ' /_ l ] /~  -{- 7 T / - - I ( X ~  ) 

= ( l -  1)Trt+, +[A,  zr,_,]X + 7rt-l(AA). 

Transforming  the term [A, 7rl_t])t by means  of the identi ty 

x(yz)  - y(xz)  = (xy - yx)z = Ix, y]z ,  (3.14) 

we get  

B~-t = (1 - 1) 7"rl+l + A('n'/_IA ) = (! - 1)'rrt+l + ('rrt_lA)A + [A, "n'/-1]A 

= hrt+l + [A, ~'l], 

so the step of induct ion is comple ted .  

The  equali ty (3.13) implies 

6k(A) = (k - 1)! 7rk(A) + irk(A), (3.1 5) 

where  /Zk(A) is some bracket  polynomial  on t~l . . . .  , tSk-i (or 7rl . . . . .  7rk-l). 
Indeed,  if k = 1 then 61 = zr, = A, and if the equal i ty  (3.15) holds for  k = l -  1, 
then 

• ,(A) = 6(tS,_,(A)) = (l - 1)!Tre(A) + (l - 2)![A, 7r,_,(A)] + ~/z,_,(A). 

Obviously,  ( l -  2)![A, 7r~_l] + t~/xt-i is a b racke t  polynomial  on 7r~ . . . . .  zr~_~. 
T h e  lemma stated below permits  us to survey all admissible sequences.  Let  us 

again consider  a free chronologica l  a lgebra  A with graduat ion  defined by posing 
deg A = 1. The  opera t ion  of commuta t i on  defined as (x, y) ~ xy - yx, where  x, 
y e A ,  brings into A a s t ructure  of graded  Lie algebras;  the Jacobi  identi ty 
ensures f rom the relat ion;  x(yz)  - y(xz)  = (xy - yx)z.  We deno te  this Lie a lgebra  
[A]; as usual (ad x)y  = xy - yx, Vx, y ~ [A]. 

L E M M A  3.2. Let ~ be a Lie subalgebra in [A], generated by the elements ~i(A), 
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i = 1, 2 , . . . ,  and ~k be a set of all homogeneous elements of degree k in ~ .  The 

~ 2  = span{A2}, ~ k + l  = 8~'k -[- (ad/~)'~k, k >/2. 

Proof. Evidently, ~ is a minimal Lie subalgebra of [A], containing h and 
invariant relative to the derivation 8. This fact instantly implies the inclusion 
~k+l _D 8~k + (ad A)~g. 

In order to get inverse inclusion, let us consider the vector space [A] (~) R8 and 
provide a graduated Lie algebra structure on it assuming 

d e g S = l  and - [x ,  8 ]= [8 ,  x ]=Sx ,  Vxc[A].  

The Jacobi identity arises from the Leibnitz rule. 

[[8, x]y] + [[x, y]8] + [[y, 8]x] = [Sx, y ] -  8[x, y] + [x, 8y] = 0. 

Obviously, the Lie subalgebra of [A] + RS, one generated by A and 8, coin- 
cides with LP+ RS, and its homogeneous component of the kth degree coincides 
with ~k. It follows from the standard properties of Lie algebras (see [7, §l.IV.8]) 
that any element of ( ~ +  RS)k+l may be presented as 

(ad h)xk + (ad 8)yk = ad hxk + 8yk 

for some xk, Yk 6 ~k,  SO the inclusion ~k+l _D 6LPk + (ad h)~k is proved. 
Let us now turn to the control system (2.1). 

PROPOSITION 3.3 Suppose that for a given t ~ R and u(.) ~ L~[o, t] the equali- 
ties qoo ,5i($d h~u('r) dr), = 0, i = 1 , . . . ,  k - 1 hold. Then 

k T/'k h,ru(T) dr  O lu(l")[ d'r) k+l (3.16) 
----- t +  

and 

G,(u(.)) = qo + qo° k ~k h~uO') d~- t+ O lu(r)l d r  , (3.17) 

(~k, rrk are the polynomials with respect to chronological multiplication '*'). 

Formulae (3.16) and (3.17) arise from (3.9), (3.12) and (3.15) (here Sd [u(r)[ d~- 
plays the part of small parameter E) with regard for Q~(0)= Id, because the 
right-hand side of (2.1) vanishes when u = 0. 

Thus, we have ascertained that the kth derivative of the mapping (3, in the 
case when the previous derivatives are null, can be expressed by means of 
brackets of the vector fields h~, ~-~ [0, t]; moreover, an explicit formula was 
presented above. 

4. Flags in Tangent Space and Nilpotent Lie Algebras 

The results of this section are, to some extent, inspired by the papers of Hermes 
and Sussmann (see [8, 9], especially by Sussmann's proof of one hypothesis of 
Hermes. 
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Let  O = E O c E I C E 2 C  . .  . C E  I =  TqoM be an arbitrary flag in Tq,iM; 0 <  

dim E~ ~< • • • ~< dim E ~ = n. In other respects,  the dimensions of E i are arbitrary, 

some of them may coincide, and the case n < l is not excluded. Let  us put 
ki = d i m ( E ~ / E  ~ ~), i =  1 , . . . , a n d  let R "  --- R k ' O R k ~ O  • • " 0 +  R k' be a stan- 

dard representat ion of R"  as a direct sum ( R  k, is a span of the first kl vectors 
from standard basis, R k~ - the span of the next k2 vectors,  etc.). Let  M D  0q,, be a 

coordinate neighborhood of q0, and smooth vector-funct ions x~= 

( X i l  , . . . , X i k i ) T :  O q o " - )  Rk'; i -  1 . . . . .  be such that the mapping x = 
( x ~ , . . . ,  Xl)r: Oq,,--~ R ~ defines the local coordinates on M which meets  the 
conditions 

x ( q o ) = 0 ,  X, tqoE '=  g k 1 0  . . . G  Rk, C_R ". 

Any differential opera tor  localized on 0q,, takes in these coordinates a form 

q ~ ( x ) o ~  I, where ~o~(x)~ C~(R"),  

a is a multi-index: 

Of ~-  ( 0 t  I . . . . .  0£1)' O~i ~ (Oli . . . . . .  Oliki)  ~ 

ki I 

[ai[= ~_, otij, i =  1 . . . . .  i; 141 = Z I~,1. 
j = l  i = 1  

The space D ( R  ~) of all differential operators  on R"  may be considered as an 

associative algebra with the composit ion of operators  as a product.  Differential 
operators  with polynomial coefficients (all of ~0~(x) are polynomials) form a 

subalgebra of D ( R  ~) with 1, x o, O/Ox O, i - -  1 . . . . .  l, j = 1 . . . . .  ki as generators.  
Let  us introduce a Z-graduat ion  in this subalgebra by setting the weight ' u '  of the 

generators  

Respectively,  

( ol.l = , 
x Z 

i = 1  

where a , / 3  are multi-indices. A differential operator  with polynomial coefficients 
is called homogeneous  of the weight r, if all the monomials  contained in it have 
weight r. It can be easily seen that u ( D I D 2 ) =  u(DO + u(D2) for any homo- 
geneous differential operators  D1, D2. As long as the vector  fields are differen- 
tial operators,  then all the facts mentioned above are valid for them. Certainly, 
u([Xl ,  X2]) -- u(X1) + u(X2) for any two homogeneous  fields X1, Xz on Rn. Let 
us also note that the weight of the differential opera tor  of Nth order is not less 
than ( - N I ) ;  in particular,  the weight of nonzero vector  fields is not less than ( - l ) .  
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Let us introduce a special notation for the linear span of the set of homo- 
geneous vector fields with negative weights by putting 

V-(k~  . . . .  k,)=span{x'~O--~-I~,(x'~)<i; 1 ~< j~< k,}. 
' ~ X i j  

It can be easily seen that V-(k1  . . . . .  k,) is a nilpotent Lie subalgebra (of length 
l) of the Lie algebra Der(R").  Nilpotency is due to the fact that the (negative) 
weights of the fields are added when we make them commute. 

Let 

01,,I 
D = ~ q ~ o , ( x ) -  

. a x  °' 

be an arbitrary differential operator optionally with polynomial coefficients. The 
Taylor expansions of %(x) in powers of xq after grouping of the monomials with 
identical weights gives us the following representation 

+oo 

D -  ~ D ('), (4 .1 )  
r = -- N I  

where D (') is a homogeneous differential operator of the weight r, which we shall 
call a 'weight r'-derivative of D. Representation (4.1) makes it possible to define 
a descending filtration in the algebra D ( R " )  by putting 

~ r ( k  I . . . . .  k l ) = { D e  ~(R") ID( i )=O,  when i <  r}. 

We have evidently 

~r ' (k l  . . . . .  kl) c ~r2(k I . . . . .  kl), when r2 < rl, 

and 

@r'(kl . . . . .  kt) ° @r2(kl . . . . .  kt)C@r'÷'2(k, . . . . .  kl), Vr,, r2. 

We shall say that a nonzero operator D ~ D ( R ' )  has a weight equal to r, if 
D c Dr(kl  . . . . .  k ~ ) \ D ~ * l ( k l , . . . ,  kl). 

Let us set also 

Derr(kl . . . . .  kl) = Der R "  N Dr(k1 . . . .  , kt); 

clearly D e f t ( k 1 , . . . ,  kl) = Der R" when r <  -1, and 

[Derq(kl . . . . .  kl), Der'2(kl . . . . .  kt)]CDerq÷'2(kl . . . . .  kl) Vr,, r2. 

There exists a trivial isomorphism between the graded algebra 

(Dr(k1 . . . . .  k, ) /D'+l(k ,  . . . . .  k,)) 

and the algebra of all differential operators with polynomial coefficients, being 
graded by means of the weight 'u'.  Restricting ourself to the vector fields, we get 
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an isomorphism between the graded Lie algebra 

+oc 

@ (Der ' (kl  . . . . .  kt)/Der'+l(kl . . . . .  kl) 

and the Lie algebra of polynomial vector  fields on R" with appropriate gradua- 
tion. Considering only the terms with r < 0, we shall get the isomorphism 

- 1  

@ (Derr(k~ . . . . .  kt)/Derr+l(kl . . . . .  kt))--~ V-(k~ . . . . .  kt), 
,=-i 

which is especially important for our purposes. Let  us formulate an obvious 

proposition. 

P R O P O S I T I O N  4.1. For any X e Der'( kl . . . . .  kl) the following inclusions hold: 

0 o X E ~ ) R  k,, i [ - l ~ r < O ;  
i = l  

OoX = O,  i f r ~ O .  

This will be more suitable to give the next definition not in coordinate form but 
directly on manifold M. 

Le t  Der  M = ~ be an arbitrary set of vector  fields. Let us define a flag in the 
tangent space TqoM, setting for k i> 0 

Ek k = ~qo(3D ---- {qooad X 1 . . . . .  ad X " X i [ X  i ~ ~,  i ~ j ~  i, i ~ k}. 

E k is the linear span of values at q0 of all bracket polynomials (of degree ~ k) on 
elements of ~.  We will suppose that Et -- TqoM and say that ~ induces this flag. 

E X A M P L E  4.1. Let 

I i 

M =  R" = @ R k', /~i = ~ Rkj; 
i~l ]=1 

Der-~(k~ . . . . .  k~) is a subspace of the Der  R"  we defined above. It follows from 
Proposition 4.1, that 

i 

~ ( D e r - l ( k l , . . . ,  k~)) = /~ '  = (~ Rkj, i =  1,2 . . . .  (4.2) 
. i=1  

In addition, if I(x) is an identical mapping of R"  onto itself, then 

OoX 1 . . . . .  x i I ( x ) c f f j ,  i = 1 , 2  . . . . .  

The  set Der - l (k~ , .  , k~) is a maximal subset of Der  R" possessing property 
(4.2), i.e., inducing the flag J~Icj~2C"" "~/~1- If ~ =  Der-~(kl . . . .  ; kt), then for 
some i <~ l, ~L~'~(~f)D/~. We will demonstrate below that there exists an infinite 
number of maximal subsets of R"  which induce the given flag; the cor- 
respondence between them will also be ascertained. 
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If a family ~f is contained in Der-~(kl  . . . .  , k~) and induces the given flag, then 
there exists a natural nilpotent approximation of it; just this is valid 

P R O P O S I T I O N  4.2. Let  

~ D e r - l ( k l  . . . .  , kt) 

and  

i 
~f~(g~) = ff~' = (~  Rk, ,  i =  1 . . . . .  I. 

]=1 

Let  us select f rom Taylor  expansion (at  OR.) o f  every vector field X • ~ ali the terms 

with weight v = - 1; we will denote 2 the sum of  these terms for the given X e ~g. I f  

we put  ~ = {21 x • ~} then 

(1) the fami ly  ~ of  vector fields generates nilpotent Lie subalgebra of  the Lie 

algebra of  all vector fields; 
(2) 3 7 ~ ( ~ ) = / ~ ' ,  i = 1 , 2  . . . . .  l; 
(3) if X 1, X 2 . . . . .  X i • ~ ,  then Oo ad X 1 . . . . .  ad X i - l  f (  i • R k, and  
(3) Oo(ad X I . . . .  , ad X i - l  x i) = Oo(ad X 1 . . . . .  ad 2 i -~  2 i) (rood/~,- i ) ;  

(4) 0 o 2 '  . . . .  , 2 ' - 1 2 ~ I ( x ) •  R k, and  O o X ' , . . . ,  2 i I ( x )  = O o X  I . . . . .  X ' I ( x )  
( m o d E  i-l)  

(5) X '  . . . . .  2 ' I ( x )  = 0 for i >  I. 

Proof. The proper ty  (1) is obvious as long as the implication ( 4 ) ~  ( 3 ) ~  (2). 
The  first part  of (4) follows easily f rom the fact that .~1 . . . . .  2 i is a homo- 
geneous differential operator  of the weight - i .  If we present every X i • ~f as a 
sum X / = 2 i + 2 i, where 

.~i • DerO(k~ . . . .  , kl)C_D°(kt . . . . .  kl), 

then evidently X 1 . . . . .  X i - 21  . . . . .  2 ~ is a sum of composit ions of i vector  
fields (each being a differential operator  of the first order), where in every such 
composition, all the ' factors '  lie in D ~(k~ . . . . .  k~) and at least one of them lies in 

D°(k t  . . . . .  kl). It implies that 

X l . . . . .  X i - 2 1  . . . . .  2 i • D - ( i - 1 ) ( k l  . . . . .  k~), 

s o  

Oo(X'  . . . . .  x ' -  21  . . . . .  2 ' ) t ( x )  • pj-1. 

Property (5) arises f rom the fact that when k > l, the differential operator  
21  . . . . .  2 k is homogeneous  of weight - k  < - l ,  so the result of its action on any 

xlj (having weight i ~< l < k) is zero. 
Thus,  when the family ~ of vector  fields inducing the given flag is contained in 

D e r - l ( k l , . . . ,  k~), we have shown how to construct  an approximation.  It was also 
shown that when we calculate the value of a Lie bracket  at zero or a composit ion 
(both containing i vector  fields) of the fields f rom ~f and their approximations,  
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the results will be identical (mod/~i-~) (modulo the span of values at zero of 
brackets containing less than i fields). 

Is it true that any family ~ of vector fields inducing the given flag must be 
contained in Der- l(kl  . . . .  , kl)? It is evidently true when l = 2. Indeed if .~ol(:T) = 
/ ~ l =  R k ,  ~20(~)  = / ~ e =  Rk,(~)Rk2, then Der R" =Der -2(k l ,  k2) and the only 
vector fields which have the weight - 2  are the constant one of a kind O/Ox2j, 
where Xei (1 = 1 . . . . .  k2) coordinatize R k2. Obviously vector fields from ~F cannot 
contain a term of this kind provided that Oo X ~ R k~. 

However, the situation is quite different for 11> 3; here the principal distinction 
between the high-order approximations and the second-order ones becomes 
apparent. 

E X A M P L E  4.2. Let 

R 3 = {x = (Xl, x2, x3) I x1, x2, x3 E R}, 

/~1 = {X IX 2 ___~ X3 = 0}, ~ 2  = {X IX3 = 0}, ~3  = R 3, 

t h e n  R 3 = R ( ~  R (~) R a n d  

Der- ' (1,  1, 1)= a(x) +b(x) O----+c(X)ox2 Ib(O)= c(O)=ox ~ 

At the same time, for any ~ c R, the set 

~ ,  = {a(x) OOXl _~_ b(x) O-~-+c(x)o-~3[b(O)=c(O)=O,-~-(O)=t~x2 OXl /xa(0)} 

satisfies the condition ~ g ( ~ ) = / ~ i ( i = 1 , 2 , 3 )  and is not contained in 
Der-~(l, 1, 1) when t ~ # 0 .  (Remark that Der-l(1, 1, 1 )=~o) .  Indeed, it is 
obvious that ~o1(~,) =/~.1, and if 

0 +  ± c  
X i = a,(x) O + bi(x) c,(x) ~ ,  ( i =  1, 2), 

OX1 OX 2 OX 3 

then the x3-component of 0 o [X1, X2] is equal to 

Oc2 
( 0 )  - a2(O) a cl ( 0 )  = O,  (x'(o)c2)(o) - (x2(o)c,)(o) = a,(O) ax, ox, 

so 2e2(~,,)c_/~2. On the other hand, the direct computation shows us that the 
brackets of three vector fields 

X1 0 c) 2 2  0 X3 0 - - ~ - - q - x l - -  ~-- X l - -  = x 2 - -  
Ox 1 Ox 3' Ox 2' Ox 3 

being contained in ~ induce flag /~i (i = l,  2, 3). 
So the family ~ inducing the given flag is not necessarily contained in a 

corresponding subspace Der-l(kx . . . .  , k~) c Der R".  It is found that, in this case, 
the method of approximation we described in Proposition 4.2 (the truncation of 
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all terms of nonnegative weight in Taylor  expansions of all X ~ ~f) does not imply 
the desirable results. For example, properties (3) and (4) of Proposition 4.2 do not 
hold. Moreover ,  even property (2) may be broken, i.e., the approximating fields 
may induce a flag which is different from the original one. This effects are 
demonstrated by the following examples. 

E X A M P L E  4.3. Consider the family ~ c  Der  R 3 

{ X  1 19 O X2  O X3  OOx 3 -I- 0@33} ~-- ~- - -  --t- p . x  1 - -  = x I - -  = x 2 - -  x 3 . 
t~X l 0 X  3 '  0 X  2 '  

Apparently, ~ f c  ~f, and ~f induces the following decomposition of R 3 into the 
direct sum: R 3= R @ R @ R  (so the weight of a variable coincides with its 
number). If, in each field, we truncate the terms with nonnegative weight, we will 
get 'approximating' fields 3~ 1= X ~, ..Y2= X 2, ~ 3 =  x20/Ox3. At  the same time, 
the x3-component of the value at zero of the Lie brackets [ X I [ X  ~, X3]] = /x  O/Ox3 
and [~.1[~1, ~-3]] = 0 differs, i.e., are not equal (mod/~2). 

E X A M P L E  4.4. Let  us consider the family ~f = {X 1 . . . . .  X 5} c Der Rs: 

0 0 0 0 
XI  J - - - q . - X l - - q . - x 3  - X 2 =  Xl - 

OXl Ox 3 Ox 5' Ox 2' 

X3 x 2 0 x 3 0 X4  - x 3 19 

20x3 20x5'  60x4'  

X 5 _  x 4 0 x 3 0 ~- 0 

240xs 60x5 XS ox~. 

The direct computation shows us that this family induces in R 5 the flag 
/~1 ~ . . . c /~5  = Rs; 

/~ '={xlxi+~ . . . . .  x5=0},  i = l  . . . . .  4; 

/~5 = Rs; or equivalently, the decomposition R 5 = R @ R @ R @ R @ R (the 
weight of a variable coincides with its number). When the terms with nonnegative 
weights are truncated, we get the following 'approximating' fields 

2 1  = x l  ' 2 2  = X 2  ' 2 3  = X 3  ' 2 4  = X 4  ' 2 5  _ x 4 19 x 3 19 

24 Ox5 60x5" 

The computation shows that the bracket monomial (ad ~ 1 ) 3 ~ 5  o f  the fourth 
degree is equal to (xl - 1) O/Oxs, so its value at zero does not lie in/~4. Therefore ,  
the 'approximating' family ~f induces the decomposition R 5 = R (~) R @ R (~) R 2 
which differs from the original. 

These examples demonstrate that if ~ is not contained in Der- l (k l  . . . . .  k~), 
then the method of approximation that we offered above, is not adequate. On the 
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other hand, a family ff~ inducing the given flag must not be contained in a 
corresponding subset Der - l (k l  . . . . .  kl). 

Nevertheless, it proves that Der-l(k~ . . . .  , kt) is yet in some way universal 
among all the maximal families inducing the given flag: any other such family 
may be mapped onto Der-~(kl . . . . .  kz) by means of some change of coordinates. 
The coordinate-free formulation of this result is given by the following theorem. 

T H E O R E M  1. For any  subset ~ of  D e r M  meeting the conditions ~ q , , ( ~ ) =  
Ei(  i > 0), E t = Tq,,M, there exists a coordinate mapping • such that 

i 

q o o *  = O, ~ , [qoE'  = E~ = (~) Rk, ,  (4.3) 
j=a 

q b , ~ =  A d  d ~ - I ~ C  D e r - l ( k l  . . . .  , kl). (4.4) 

This theorem is the most important result of the section; it is analogous, in a 
sense, to the theorems of linear algebra concerning the simultaneous trian- 
gulation of the family of matrices. 

The following, very helpful fact seems to confirm the analogy with triangular 
matrices. 

C O R O L L A R Y .  Suppose that the conditions of  Theorem 1 are satisfied; then for 
each i = 1 . . . . .  l, and  for arbitrary X 1 . . . . .  X i, the fol lowing inclusion holds: 

i 
q o  o X 1 . . . . .  x i ~  c @ Rkj  = ~ i .  

j = l  

Proof of  Theorem 1. We will outline the main steps of the proof. Let  us first 
consider an arbitrary coordinate mapping ~o satisfying (4.3) and the correspond- 
ing family ~ 0 , ~ c  Der  R".  Evidently, LPg(~o ,~)=/~ i ,  i =  1 . . . .  , i. This fact 
implies that it is sufficient to prove the theorem for the case, when M - - R " ,  
q0 = 0, E i =/~i .  

It will be convenient  to prove the strengthened statement of Theorem 1 with 
one of its conditions being weakened. We will suppose that the equality ~ g ( ~ )  = 
/~ is satisfied only for 1 ~< i ~< l - 1 .  Our further proof will be carried out by 
induction with respect to l - the length of decomposition of R".  When l -- 2 and 
R "  = R k, + R k2, then the vector  fields from ~ ought to satisfy the condition 
5~1(~) = R k,, may contain only the following kinds of monomials with negative 

weight: O/Ox~s, Xls O/Ox2j (s = 1 . . . . .  kl , j = 1 , . . . ,  k2). So for l =  2, the streng- 
thened variant of Theorem 1 is true. 

Let the strengthened variant of Theorem 1 be true for all l~< m and R" be 
decomposed in a direct sum 

m--I  
R "  = G Rk~ + Rkm + Rk '+ ' .  

i = l  

Denote V as the direct sum of the last two subspaces and consider the ' reduced'  
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decomposi t ion R"  =(~)~_-]1R k, + V. Evidently, the set ~f also meets the con- 

ditions of s trengthened Theorem 1 for the reduced decomposit ion,  because 

~)(~f)  = / ~ '  (i = 1 . . . . .  m - 1). 
The  reduced decomposit ion provides a new ' reduced weight '  rv of the vari- 

ables, differential operators  and vector  fields on R": 

rv(1) : O, rv(xq)  = - r v (  O-O--~ = i, 1 <~ i <<- m ,  j = 1 . . . .  k , ,  
\Oxq /  

r v ( x , , + l , i ) = - r v (  O ~ : m .  
\OXm+l,j] 

By the induction assumption, there exists some polynomial diffeomorphism 

such that 

Ad dO-l~f c Der - l (k l  . . . . .  kin-l, km+ km+l), 

i.e., all the monomials  in the Taylor  expansions of the fields Y c Ad • 1 ~f have 
the reduced weight ru >i - 1 .  R e m a r k  that for any monomial  x ~ 

and 

v x ~ />rv x" if l~< i~<m,  

\ 
O X 2 + 1 j ] - - I ;  1 j ~ k m + l .  + ox= o 

Thus, by virtue of the induction assumption, we may suppose that the Taylor  

expansions of the fields x 6 ~ contain only the terms x '~ O/Oxij, i = 1 . . . . .  m + 1 ; 
j = 1 . . . . .  kl, of the weight u I> - 1  and (possibly) the terms x '~ O/Ox,,+Li with the 

weight u = - 2 .  
Thus,  according to the induction assumption, any field X ~ 3f may be presented 

in the following form; 

km+l 0 
j~l - - + 2 ,  x = 2 + = G(x) OXj,m+l 

where J( is a sum of all the monomials  x "~ O/Oxq (i = 1 . . . . .  m;  j = 1 . . . . .  ki) with 
the weight v = - 1 .  The  next summand joins all the terms with the weight u = - 2  
(here Oi(x) are homogeneous  (with respect  to weight) polynomials of the weight 
u = m - 1 ) ;  X joins all the monomials  of the weight /> 0 and the monomials  
x"O/Ox,.+~,j (j = 1 . . . . .  k,,+~) of the weight u = - 1 .  We will name J(  the regular 
part,  Y,j Q j ( x )  O/OXm+Li the irregular part,  and their sum 2 + ~ j  Q j ( x )  O/Ox,,+~,i the 
principal part  of a vector  field X e ~f. For the sake of simplicity (in fact, without 
loss of generality), we will assume in what follows that k,,+l = 1 and denote y as 
the single variable of the weight u = m + 1. Let  x = (Xl . . . .  , x,,). In this case, a 

field X ~ ~f takes the form 
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X = X ( x ,  y) = X(x) + Q(X)~y  + X ( x ,  y), (4.5) 

where Q(x)  is a homogeneous polynomial of the weight ~, = m - 1. Denote ~ -  as 
the set of principal parts of all fields X from ~. It can be easily seen that ~ -  
generates some nilpotent graduated Lie algebra ~=(~)7'=1 ( ~ - ) "  being a Lie 
subalgebra of the algebra of polynomial vector fields. 

The R-linear span of all the fields of a kind Q(x)  O/oy, where v(Q(x) )  <~ m - 1 
is an Abelian ideal in the Lie algebra V - ( k 1  . . . . .  kt) of the polynomial vector 
fields with negative weights. Direct computation shows that the Lie bracket of i 
vector fields X of (4.5), has the same kind: 

a + ~")(x, y), x"~ = X") + O")(x) Oy 

where ~u) + Q")(x) O/Oy ~. ( ~ - ) i  c ~ ,  ~ (o  is a homogeneous field of the weight - i  
and QU) is the homogeneous polynomial of the weight m - i ;  ~u) consists of 
monomials x '~ O/Ox 0 having weights > - i and the monomials x '~ O/Oy of the weight 
/ > -  i. Evidently, the values at zero of the vector field X ") and its principal part 
~(i) + QU)(x ) O/Oy are equal (modulo /~-~). Further, we will ignore the term 
in (4.5), dealing with the family ~ -  and the Lie algebra ~=(~)~'=1 (~-)~. 
Obviously, ~ ( ~ - )  =/~i ,  i = 1 , . . . ,  m. 

Let P[x] be the ring of polynomials (on x = (Xl . . . . .  xm). Let us construct a 
P[x]-module ~l~ generated by the vector fields from ~. Evidently, ~ is a Lie 
algebra; any vector field X 6 ~ may be presented in the form ~j P ~ ) Z ~  ), where 
P~.~,) is a homogeneous (of the weight si) polynomial and z~r? is a field from 
(Y')~.  We call X E ~ homogeneous with the regular weight i iff, in correspond- 
ing expression, ~i P~?Z~'? for all j: s i - rj = i. For any X ~ ~ ,  we will call the sum 
of monomials of X, containing 0/0y, the irregular part of X, while the regular 
part of X is the sum of the rest monomials. 

LEMMA 4.3. Let  Z 1 . . . . .  Z s be some vector fields [rom ~I~, and  the regular weights 

of  monomials  they contain are >- - il . . . . .  >! - it correspondingly ( il +" • • + is -= i). 
Then  O o ( a d Z ~ . . . a d Z ~ - ~ Z ~ ) c ~ i ,  if i > 0 ,  and O o ( a d Z l . . . a d Z ~ - l Z ~ ) = O  

ifi<~o. 

LEMMA 4.4. For any i, j, 1 <~ i <~ m,  1 <~ j <~ ki ; the module ~ contains some field 
Zil,  having O/Ox 0 as its regular part. 

Let us define for any Z e ~ the projections ~r x and 1r y of this vector field on its 
regular and irregular parts 

vz=2+O~: ~-~z=2, =~z=o ~. 
ay Oy 

The following important lemma takes place. 
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LEMMA 4.5. Ker zr~C_Ker rr y, i.e., there is no vector field Z e ~ with zero regular 

and nonzero irregular parts. 
Proof. Suppose by contradiction that such a field Z c  ~ exists; then it may be 

presented as a sum of homogeneous (with respect to the regular weight) vector  
fields. Evidently, the regular part of every summand must be zero. Thus, we may 
assume without loss of generality the existence of a homogeneous (of regular 
weight i) vector  field Z with zero regular and nonzero irregular parts, i.e., 

Z = Q(x)  O/Oy, v (Q)  = m - i. 
Let us choose in Q an arbitrary monomial xi,i . . . . . .  xia, ( il + ' "  + is = m - i ) .  

By virtue of Lemma 4.4, for any r = 1 . . . . .  s there exists some homogeneous 
vector  field Z of regular weight - i ,  whose regular part is a/axia.  I t  can be easily 

shown that 

0to  - ] o 
Oo(ad Z '  . . . . .  a d Z , ( O ( X ) ~ y ) ) = ( O O a x i ,  i . . . . . .  Ox~o/ay" 

On the one hand, the summarized regular weight of the vector fields entering this 

Lie bracket is equal to -i~ . . . . .  is - i = - ( m  - i ) -  i = - m, on the other hand, 
the value at zero of this bracket  does not lie in E "  as long as 

a~O Oo :~0 
O X i i j ,  , • • • , O X i s i s  

and so we have obtained a contradiction to Lemma 4.3. 
Thus K e r r r X C K e r r r  y and, therefore, there exists a P[x]-l inear mapping 

A: rrX(~lJ~)~ rrY(~) such that trY(Z) = A(Trx(Z)). 
By virtue of Lemma 4.4, 7r~(~R) coincides with the algebra of all polynomial 

vector  fields (on @7=1R k') and A maps the field from rrX(~) into the set of fields 
{Q(x) a/ay}. Let  us consider a P[x]-linear mapping 11 which maps r rx(~)  (i.e., 

the set of all polynomial vector  fields) into P[x]. For any X c ~l~, 

x = ~: + Q(x) ~y, O(YO = O(x). 

By virtue of the above statement, 11 is a 1-form with polynomial coefficients on 
/~m. 

LEMMA 4.6. The 1-form O is closed: dO = O. 
Proof. If the vector  fields 

. .  a ~ ( j = l , 2 ) ,  Zi  = ZJ + Oi(x)  ay 

then by definition 

d ~ ( 2 ' ,  2, ~) : 2 ' ( ~ ( Z 2 ) ) -  2 2 ( 0 ( Z ' ) ) -  ~ ( [ 2 ' ,  2,2]). 
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Let  us calculate I~([Z ~, Z2]). As far as the Lie bracket is equal to 

[Z1, Z 2 ] - [ Z , + Q I L  Z,2+O2 c3 ] L o3y' ~ =[21'Z2]+((21O2)-(22Ql))oy'  

so 

i.e., 

t~([2', 22]) = 2 '  O 2 - 2 2  0 1  = 21 (~ (22 ) ) -  22(f~(2')), 
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L E M M A  4.7. There exists a homogeneous (of weight m) polynomial + such that 

all the vector fields X c ~ (where ~ satisfies the conditions of Theorem 1 and 

induction assumption, i.e. so all X '  s are of the kind (4.5)) have a form 

X(x, y) = ~(x)  + ( ~ + )  ~y + .¢(x, y). 

Concluding the proof of the theorem, let us define a polynomial diffeomor- 
phism alp: R"--+ R"  by the formula 

o:  (x, y) ~ (x, y - +(x)), ~ - ' :  (x, y) ~ (x, y + +(x)) 

and prove that this diffeomorphism is the one sought. 
It can be easily seen that for X = X + (X+)  0/Oy + )((x,  y): 

~ ,3~  = Ad ~ - ' 2  = 3[ - (,~+) ~y, 

• , ( 2 + )  0 = ( 2 + )  ~y, 

On the other  hand A d ~  -1 = e  adz, where the vector  field Z = - + ( x ) O / O y  has 
weight v = - l .  Let  us consider an R-linear span of all monomials x '~ O/Ox o 

i = 1 . . . . .  m of the weight v/> 0 together with the nomials x ~' a/Oy of the weight 
v ~ > - l .  It is easy to ascertain that this span is a Lie subalgebra of 
Der - l (k l  . . . . .  k,.+0. Since Z and 2 lie in this subalgebra, then e ~d z x  also lies in 
it, so e ~ z 2  ~ Der - l (k l  . . . . .  k,.+0. Thus, VX c 

• . X  = 2 + ~ . 2  = 2 + e ~ a  z 2  e Der - l (k l  . . . .  , k=+0 

and the induction step, as well as the proof of theorem 1, is concluded. 

d ~ ( 2 ' ,  2 2) = 0. 

By virtue of the Poincarg lemma, the closed 1-form is strict, ~ = d+.  As far as 
has polynomial coefficients, so + ~ P[x].  If X = ~" + Q(x) a/Oy, and 2 is homo- 
geneous, then as it was stated above v (Q(x)) - v(..Y) = m, and since ..Y+ = O(x), 
so v(+) = v ( Q ) -  v(..Y) = m. Thus, + is a homogeneous polynomial of weight m. 
So we have proved. 
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Le t  us descr ibe  a r ecu r rence  a lgor i thm for  cons t ruc t ing ,  for  a g iven set 
~ c  Der  M,  mee t ing  the condi t ions  of T h e o r e m  1, a coord ina te  m a p p i n g  (b 
satisfying (4.3)-(4.4).  

Let  (bo be an arb i t ra ry  coord ina te  m a p p i n g  of 0qo 9 qo into R "  satisfying (4.3). 

We  will cons t ruc t  recurs ive ly  the po lynomia l  d i f f eomorph i sm 

P: R n ---> R " ( 0  o p = 0, P ,  [0/5 i = / ~ i ,  i = 1 . . . . .  l) 

such that  the compos i t ion  (b = (bo ° P satisfies (4.4). 
Obvious ly ,  the r ep resen ta t ion  of R n as (~)~=1 R kj induces  the represen ta t ion  of 

any field X c D e r ( R  ~) as a sum: X = ~ = 1  Xj ;  the values  of Xi lie in R ki. Let  us 

deno te  X(i)= ~ = 1  Xj ;  ev ident ly  X(1 ) ~-X1, X ( l  ) = X ,  a n d  by condi t ion for  any 
X ~ ~ ,  X(1) = X1 ~ D e r - l ( k l  . . . .  , k~). T h e  cons t ruc t ion  of po lynomia l  m a p p i n g  P 

is car r ied  out  induct ively ,  namely ,  assuming that  V X c  ~ Xti l) 

D e r - l ( k l  . . . .  , kl) and X¢~) ~ Der -~(k l  . . . . .  kl), r > 1, we cons t ruc t  a d i f feomor-  
phism P~, such that  V X  E W, 

(Ad P~lX)( i -1)~  Der - l (k~  . . . .  , kt), (Ad PT, 1 X)(i) ~ Der-~+l (k t  . . . . .  k~). 

Indeed ,  by the condi t ion of the theo rem,  there  exists a col lect ion of vec to r  

fields 

Y'U3(a = 1 , . . . ,  i -  1 , /3 = 1 . . . . .  k,,) 

possessing the fol lowing proper t ies :  (1) each  Y"a is a ' b r a c k e t  po lynomia l '  of 
deg ree  ot or  an R- l i nea r  combina t i on  of b racke t s  (of o rder  <~ a )  involv ing  fields 
f rom ~ ;  (2) the values  0o Y"o(/3 = 1 . . . .  , k,,) fo rm a basis in RkC'(a = 1 . . . . .  i -  
1). By  definition, 

k~ (9 
Y ~  = Y~f_,) + ~., Q~' t3(x) - - .  

j= 1 (g x~j 

Let  us cons ider  for  eve ry  QTa(x), its M c L a u r i n  expans ion  and select  the 
monomia l s  with the weight  i - r -  a ;  their  sum is deno ted  0)'t3(x). Le t  us deno te  
Y~-I)  as an image  of the field Y~_~) under  the s tandard  p ro jec t ion  

D e r  R "  ---) D e r - " + l ( k l , . . . ,  kl)) 

and put  

Evident ly ,  vec to r s  0o Y~t3-1)(/3 = 1 , . . . ,  k,,) fo rm a basis in Rk-(ct  = 1 , . . . ,  i -  1) 
as well as 0 o Y~-1). 

Le t  us define a col lec t ion of differential  1- forms to t (j = 1 . . . .  , k~) on the space  
0 ~  1 R k`, put t ing  

(to~, ~"~7_~))) = ~,t3 ; j = 1 . . . . .  k,,  a = 1 . . . . .  i -  1,/3 = 1 . . . . .  k~. 

T h e  fol lowing facts  p rove  to be true: (1) the differential  1- forms to j ( j=  
1 . . . .  , k~) are cor rec t ly  defined,  i.e., they do not  depend  on the choice  of basis 
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fields y,,t3; (2) 1-forms oJj are c losed and,  therefore ,  exac t  

oJj = dFj(x~t3)(a = 1 . . . . .  i - 1;/3 = 1 . . . . .  k,,); 

(3) the desi red m a p p i n g  Fir is def ined accord ing  to the fo rmulae  

x ' =  Pi,(x), x' (x~, ,x[) r,  x =(x ,  . . . .  xt) T, ' xk . . . .  X k  = , 

¢ 
when  k :/: i; x u = x u + Fi( ] = 1 . . . . .  k~). 
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E X A M P L E  4.5. In the a b o v e - m e n t i o n e d  E x a m p l e  4.2, we cons idered  a family 
~ ,  c D e r  R3: 

~" = { X =  a(x) o~l + b(x) O---~-+ c(x) I b (o)  = c(O) = o;  

a c 
(0) =/~a(O),  /~ is f ixed/ .  

Oxl J 

Eviden t ly  Vt~ =/= O, V X  ~ ~ , ,  

° + b O  X<2) = a - -  - - ~  D e r - l ( 1 ,  1, 1), 
Oxl Ox2 

X~3) = X c Der-Z(1,  1, 1) and X¢3) ¢ D e r - l ( 1 ,  l, 1), 

if Oc/Ox~(O) # O. Let  us cons ider  the fields 

0 0 0 
y = _ _  + ~.lbX1 - -  y t  = 

OX 1 aX3 • Xl  ~X  2 

bo th  be long ing  to ~ ,  ; [Y,  Y ' ]  = O/axz. Evident ly ,  the values  of  the fields 

a 0 0 
Y = - - +  t ~ x ~ - -  and Z = [ Y ,  Y ' ] = - -  

Ox ~ Ox3 Ox2 

at zero form basis in E z = {(xl, x2, 0) 1 x~, x2 ~ R}. By definition, 

Y(2) = Y(2) 0 x  1, Y(3) Y , 

O = 0 = ~ x , ;  Z(2) = Z~3)= Z 0 
Ox2 

W e  define a l - f o r m  ~o put t ing  

CO, = b L X l ,  ¢o,  = 0 

and ge t  

o 
\ z~ / 
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The diffeomorphism 

(~'. (XI , X2, X3)~  (XI , X2, X3-- ~ ~ )  

transforms the family ~ ,  to the one 

9̀ ~_.0_ + 9̀ 
g ~ =  a - - +  b (c- -  I ~ x l a ) - -  

`gX1 `gX 2 `gX 3" 

Obviously, 

(c - /zxla)(O) = 0 and 

i.e., ~,l c Der- l (1 ,  1, 1). 
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0 Oc 
(c - t~x~a)(O) = Tx~ (0) - a(O) = O, 

XV 0 + x3 
Oxt 2 ] Ox5 

( R e m a r k ,  X t' contains the term of weight -3 ) ;  
(2) an operator  ~ 2 , ,  where 

'I'2: (x ,  . . . . .  x s ) ~  x,  . . . . .  x4,  x s - - f f }  

E X A M P L E  4.6. Consider the family of vector  fields ~ '=  {X 1 . . . . .  X s} we dealt 
with in Example 4.4: 

0 0 0 0 
XI  = - - +  XI ox3 + - -  X 2 =  X 1 - - ,  Oxl - -  x3 `gxs' `9x2 

x4_X l 9̀ 
2 `9x3 2 `gxs' 6 `9x4' 

0 X S  _ x ~  `9 x 3 ,9 J- x s - -  

24`9xs 6 `gxs `9x5" 

As already shown, ~ induces the decomposition of R 5 into 

R ~ ) R ( ~ R ( ~ ) R ( ~ R  and ~ 9  t Der- l (1 ,  1, 1, 1, 1) 

(because the fields X ~, X 3, X 5 contain the terms of weight -2 ) .  Omitting 
interstitial calculations, let us mention the sequence of the diffeomorphisms, 
mapping P£ into Der-~(1, 1, 1, 1, 1) as a final result: 

(1) an operator,  ~ t , ,  where 

(I)l :  (XI . . . .  , X5) "--') XI, X2, X3 - - ~ - ,  X4, X5 

leaves the vector  fields X 2 . . . . .  X 5 fixed and transforms X t to 
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leaves the vec tor  fields X 2, X 3, X 4 fixed and transforms X I, X 5 to 

x l , ,  19 0 xS , ,  I x !  ~ 19 = - -  + x3 - -  + x5 ; 
19Xl Oxs' \24 / Ox5 

(3) an opera tor  q%., where 

(I)3 ." (X 1 . . . . .  X s ) " ~  (X 1 . . . .  , X4, X 5 -  XlX3), 

leaves the fields X 2, X 4 fixed and transforms X r', X 3, X 5° to 

) 0 xl , , ,  - 0 X3,,, x 2 0 X 5 ~ _  ( X 4 + x 5 _ l . _ x 1 x  3 _ 
19X1' 2 0 X  3' \24 19x5" 

Thus, the composit ion ~ 3 ,  o ~ 2 , o ~ ,  transforms the vector  fields from t h e  
initial family to some canonical form 

0 X 3  x 2 t9 X 1  _ 0 X 2  = x1 _ _  _ 
Ox~' 19x2' 2 19x3' 

x 4 _  X 3 0 X S =  l X4 _ x i x 3  + x5 . 
60x4'  \24  

The  nilpotent approximations of these fields are 

2 1  --  19 2 2 =  X1 ~ 2 3 -  X2 t9 

Ox~' Oxz' 20x3'  

) 0  x 19 

6 19x4' ' ,24 Ox5 

correspondingly. 

Theo rem 1 can be essentially strengthened. Actually, the set ~ ,  meeting the 
0 conditions of the theorem, uniquely defines a filtration ~q,, c ~ o  ~ c • •. c ~ ,~  = 

Der  M of the Lie algebra Der  M, where ~ c ~ , 1  and mapping ~ ,  transforms 
this filtration to the filtration 

Der°(kl  . . . .  , kl) c D e r - l ( k l , . . . ,  kl) c • • • c D e r - ! ( k l , . . . ,  kl) = Der  R n. 

D E F I N I T I O N .  Let  Der  M D :~ be such that q0 o ~ ~: 0. Then  we define for every 
k/> 0, the set 

g ~ , , k = { Y e D e r M l q o o ( a d X 1  ad Xi)  y ~  i+~ . . . . .  ~qo (~ ) ,  VXJ e ~f, 
l<~j<~i , i~O}.  

Evidently,  ~-o k , k t> 0 are C~°(M)-submodules of Der  M, ~ c  ~ o  1 " The  image 
--1 0 of arbitrary X e ~ under factorization ~ o  ~ ~ ~qo/~qo is denoted X~,, and the 

whole set ~q,, = {Xqo I X ~ ~C} c ~o~/~oo will be called a nilpotentization of the 
set ~ at qo. 
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The meaning of the last definition is that the value 

(q0 o (ad X 1, ad X i - I X  i) + i-1 i i-1 . . . .  _%,,, (~ ) )c  Z e q o ( ~ ) / ~ e q ,  , (~) 

depend only on 

XJqo,j : 1 . . . .  i, V X i  ~ ~ , V i >  O. 

T H E O R E M  1 '. For any set ~ c Der M possessing the property 

i ..LP qo( g£) = E i, Y i > O, 

there exists such a coordinate mapping 

i 
dP:Oq,/-"> R n,  q o o d P = 0 ,  dP, lqoEi = ff_,i=@ Rk¢, l <~i<~l, 

j= l  

that 

~ . ( ~ , k ) _  D e r - k ( k l , . . . ,  kl), k = 0, 1 . . . . .  

Theorem l '  implies the concordance of the filtration 

0 
~°qo c ~q t )  1 C ° ° ° c ~ q o  I = D e r  M 

with the Lie algebra structure of Der  M; also 

and mapping ~ ,  induces the isomorphism of the graded nilpotent Lie algebra 

I 
--i --i+1 (~[q,,l~qo ) '~ V - ( k t  . . . . .  k,). 

i=I  

Let us denote 

1 
Vqo(~) = ~ ( ~ q o / ~ - i + 1 ' 1  

i= l  

Vqo(~: ) will be called a local Lie algebra associated with the set ~o. Then,  

~qo / ~:qo c Vq, ,(~) and ~qo ~ -1  0 

(qo o ad X 1 . . . . .  ad x i - l x i )  + E ~-1 

= (qooad Xloo . . . .  ad y~i-x~ri "1 + E i - I  ""  q,, " ' q o "  E E i / E  i - l ,  

V X J e ~ , ~ , j = l  . . . . .  i; i - - 1  . . . . .  1. 

Let  us return to the control system (2.1). We denote (see (2.1)) 

~ :={h~l~-c[0 ,  t ] } c D e r M  and i _  i E - ~, , (~0.  

The  image of the field h. under factorization ~-ol---> ~ o 1 [  o ~qo c V~-o(~) is 
denoted as h.qo. In Section 3, special chronological monomials ~ri, i = 1,2 . . . . .  
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were introduced. Let us consider a homogeneous mapping of degree i, which 
maps L~[0, t] into Ei/E i-1 and looks like 

i qo ° ~ri h.u(~') d~" + E i-1. 

i • With regard to the equality (3.17), it is quite natural to call Aq,,(h ) an ith 
variation of the control system (2.1) at u(') = 0. Evidently, A~o(h.) = 0 for i > I. It 
can be easily seen, that i _ i Aqo(h- ) -  Aqo(h-qo), i.e., all the variations of the control 
system (2.1) depend only on the image of the nonstationary field h. in the local 
Lie algebra V~o(~). The curve h~o, ~'e[0,  t], situated in local Lie algebra 
Vq,,(~¢), may be called a nilpotenization of system (2.1) at point qo. 

If • is a coordinate mapping which exists according to the formulations of 
Theorems 1 and 1', then by virtue of isomorphism ~ , :  V~,,(~e)--> V-(k1 . . . . .  kl), 
the curve h~o, ~'~ [0, t] corresponds to the c u r v e / ~  = ~ .  h~o, lying in the space 
Der- l (k l  . . . . .  kl), the one, consisting of all homogeneous polynomial vector  
fields on R n of the weight ( :1) .  Mapping 0," L®[0, t]--> R"  defined as 

(~,(u(')) = Oo~xp Io'/~.u(~') d~', 

is the polynomial of degree ~ l with respect to u(-) (the C = mapping of one 
Banach space to another is called the polynomial of degree ~< l iff it coincides 
with its own Taylor expansion of /th order). In addition, all the variations of the 
system (2.1) and the following one 

2 = I~(z)u, z(0) = 0 (4.6). 

at u(-) = 0 coincide, i.e., 

i ~,lqoA~o(h.)=Ag(/~.), i =  1 . . . .  , .  

Thus, the control system (4.6) is an lth order approximation of the system (2.1) 
at point qo (and also is a kth-order approximation for any k > l, by virtue of the 
equality A~o(h.) = Aok(/~.) = 0 for k '> l). 

In order to get an approximation of ith order (i < l), it is necessary to project 
(the values of) the field ~ .  h,~o, defined on R"  = O ~ = l R k j ,  to the subspace 
E ' = -  (~)~=1 RkJ. The resulting vector  field /z~, defined on R ~, is tangent to the 
subspace /~ ~ R n, therefore /~i is an invariant subspace of the control system 
~= I~(z)u, z ( 0 ) = 0 ,  ~'e[0,  t], which is the ith order approximation for the 
system (2.1) at point q0. 

Remark 1. The curve /~, in contrast to h,~o, depends upon a choice of 
coordinate mapping ~.  The diti~rence between h,,,, and h~ is of the same sort as 
the one between the k-jet  of a smooth function at a point and its Taylor 
polynomial of kth degree at the same point. 

Remark 2. The requirement of the equality ~q,,(:~) = TqoM is essential for the 
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construction of higher-order approximation, but by virtue of the Nagano-  
Sussmann theorem, we can assume it to be fulfilled for all the analytic systems 
and, moreover,  for all systems for which the local 'behaviour '  is determined by 
their Taylor expansions. 

5. Attainable Sets 

As long as the variations of any order of system (4.6) coincide with the 
corresponding ones of system (2.1), then the attainable sets of nilpotent system 
(4.6) pretend to be a 'good'  local approximation for the attainable sets of system 
(2.1) (or (1.1)). In this section, we shall give a strict sense to this thesis. 

Everywhere below, qb is the coordinate mapping which appeared in theorem 1. 
Let us consider in R"  =(~)I=~ R k' the coordinates x = ( x ~  . . . . .  xt), where 

x~ = (xi,, . . . .  x ~ )  coordinatize Rk , ( i  = 1 . . . . .  l). The properties of nilpotent ap- 
proximations (see property (5) of Proposition 4.2) imply that for k > l 

L ~ u ( ~ )  °" 

and, hence, the 

~ t ( u ( o ) )  = 

is a polynomial 

~ , ( . ( - ) )  = 

" ' ° i~ .~ ,u (rOxi=O,  i = 1  . . . .  , i ,  

mapping 

exp J0 /~Tu(~') dzl(x)  

of the /th degree with respect to u(.); concretely 

 (I0' Io ) d'r, . . . . .  dzil~,u('ri)  . . . . .  i~ , ,u(r , )  xi.  
i = 1  

(5.1) 

In (5.1), the components of vector function xi have weight i and the differential 
operator, acting on it, has weight - i ;  so the result is a vector  function of weight 
0, i.e., an element of R k,. 

DEFINITION.  For any e > 0 an image of Gt((~t) restricted to the E-neighbour- 
hood ~//, of zero in L~[0, t] will be called a time t e-attainable set of system (2.1) 
(system (4.6)) from q0 (from 0) and will be denoted 9.It(E) (~I~(E)). 

DEFINITION.  A point q ~ ~ ( e )  (x e ~lt(e)) is regularly attainable for the system 
(2.1) (for the system (4.6)) if G71(q)f'l ~ (correspondingly, GTt(x)fq ~ , )  con- 
tains the regular point of G, (of (~t). 

DEFINITION.  System (2.1) (system (4.6)) is regularly locally controllable at 
point q o ~ M  (at point 0 o R " ) ,  if for any E > 0 ,  point qo (0~ R")  is regularly 
attainable for system (2.1) (for system (4.6)) by means of some control u( . )e  ~ , .  

Let us define the dilatation of R" as follows: 
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It follows from (5.1) that (~,(eu(-))  = A ,O, (u( . ) ) ,  this, in turn, implies V~, El, E2 

~l t (+ ) = A+~I , (1 ) ,  A+l~r(~ '2)  ~--- ~)'lt(+l E2). 

Let 7r+ be a projection of R"  on Rk, ( i= 1 . . . . .  l). If we take the Volterra 
expansion of chronological exponentials ~xp j~I h+u('r)dr and exp jd/~+u(z) d r  and 
compare the terms of the same degrees, then statement (4) of Proposition 4.2, 
when applied to the families Y( and ~ of the vector fields, implies 

i Io 
-r i 

R k' ~ 0  ° dzl . . . . .  dri(l~,,u(ri) . . . . .  I~,,u(rl))xi 
I 

= qo ° d1"l . . . . .  dri(h,,u(ri) . . . . .  hr, u(rl))~ (mod/~i-l) ,  
) 

and therefore 

Ilpr,(Oi'(G,(Eu(')) - 0,(,u(-))ll = 0(~  '+') (pr,: R°-- ,R ",, i =  1 . . . . .  l). 
(5.2) 

Let us formulate and prove the following proposition. 

PROPOSITION 5.1. Suppose that the point ~ = (~1 . . . . .  .~t) c ~1,(1) is normally 
attainable for system (4.6). Then, for all sufficiently small ~ > O, the point q(E) = 
qb-l(A,~) belongs to ~I,(e) and is normally attainable for system (2.1). 

C O R O L L A R Y .  I f  OR" is normally attainable for system (4.6), then qo = ~-1(0) is 
normally attainable for system (2.1). 

Remark.  If the conditions of Proposition 5.1 are satisfied, then A,~Z ~ ~I,(E), so 
(if .~ is normally attainable) ~ determines (for sufficiently small E > 0) a cor- 
respondence between the points A,~ ~ ~1,(~) and ¢,-1(A,$)~ ~,(~). 

Proof of Proposition 5.1. If u(.) is a regular inverse image of ~ for the mapping 
G,, then (~,(~u(-))= A;~. Let us prove that Ad?~ 9/,(E) if ~ > 0  is sufficiently 
small. To this end, we define the family of mappings 

Q7 = A,-,(qVG,(~u( '))))  

on a ball Ilu(.)ll, -<1. With regard to identity A,- ,G,(eu(-))= G,(u(.)), the 
equality (5.2) implies 

II o 7  - O, llc, = o ( , ) .  

Consider an equation CJ,(u(.))-.f  = 0; remember that u(.) is a regular point 
for (~, and G, ( t I ( . ) ) -£  = 0. By virtue of the implicit function theorem, for any 
8~ > 0 there exists 8 > 0 such that for any smooth mapping Q: L~---~ R" satisfying 
I i o -  c ,  llc, < 8 there exists u(-): I l u ( . ) -  a ( . ) l l<  81 satisfying the equality 
O(u(.)) - ~f = 0. Let us take 8, ,% and ~o so small that, when 

II o -  0,11~, ~ 8, I lu(.) - a(-)ll < 8 , ,  
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then the differential O'] ~(.) is surjective, and for any • ~< •o II O~ - (~,llc' < 6. So, 
taking O~(• ~< •0) as Q, we get the existence of u~(.) (•u~(.)) being a regular point 
of O~ (of 0~) such that O~(u~(.))= ~ and, therefore, A~,f=~(Gt(eu~(.)), i.e., 
qb-l(A~.~) C ~21t(•) for e ~< e0. 

For further development, we need to suppose that the vector fields f and g, 
determining system ( l . l )  (and correspondingly system (2.1)), are real analytic. 

Remark that since fi(.) must not be analytic, then the vector fields h,  = 
Ad exp J'(~ ( f +  gu(0))dOg are not, in general, analytic. In what follows, the analy- 
ticity of f and g is supposed without special stipulations. 

When proving the following statement, we will deal with the families of 
mappings G, and Ft (see Section 2). Remark that the 'point' u(-) is regular for 
the mapping G, iff fi(.)+ u(') is regular for Ft. 

PROPOSITION 5.2. There exists • > 0 such that the set of regular points of the 
mapping G, (and~or (3t) is open and dense in the •-neighborhood of zero in L~[0, t]. 

Proof. An openness of the set of regular points is obvious. To prove its density, 
let us suppose for a time that fi(.) is real analytic, then 

i h,  = e~p , ad(f0 + gu(O)) dog 

is an analytic (with respect to ~-) family of real analytic vector fields. 
By the condition ~ , , [  ~ ]  = Tq.M, obviously it is fulfilled for all q's from some 

sufficiently small neighborhoodr0q0 c M of the point q0. 
Suppose by contradiction, that the set of regular points of Gt is not dense in 

any neighborhood of zero in L~[0, t], i.e., for any neighborhood W c L110, t] 
(0 ~ W), there exists an open ball U c W, which consists of critical points of Gt. 
Without loss of generality, we may assume that 

(1) G t ( U ) c  Gt(W)cOq,,; 

(2) rkG't is constant and equal to r < n = dim M identically on U. 

According to the rank theorem, the image Gt(U) is an r-dimensional sub- 
manifold N, c M: for any u(.) e U 

I' qo ° exp h,u(r) dr e Nt c Oqo. 
) 

The family G,  possesses some property of 'monotonicity' with respect to r. If 
~'2 > r l ,  W1 c L~[0, r~], and W°~c L110, r2] is the set, consisting of functions 
u(-)e W~, being prolonged by zero to the interval (r~, ~'a], then, obviously, 
G,,(W~) = G,2(W°). This implies that if W c  L,[0, t], then G, , (W)c  G,2(W) 
and for any u(.)e W, rkG',lu(.)<~ rkG'~l u(.). By virtue of that stated above 
and because G,  depends continuously (in C ~ metrics) on ~-, then for • > 0 being 
sufficiently small and 0 e [ t -  •, t], mapping Go have constant rank (equal to r) on 



LOCAL INVARIANTS OF SMOOTH CONTROL SYSTEMS 235 

U. So their images are r-dimensional submanifolds NoCNt. Evidently, No. C No~, 
when Or ~< 02 ; in particular No ~_ Nt-, for 0 ~ [t - E, t]. 

Since for any 0~  I t - ~ ,  t] and u(.)~ U, the inclusion Go(u('))c N, is valid, 
then 

- -  O oo Go(u('))= Go(u(')) hou(O) 

is a tangent vector  to N~ at point Go(u(')) and, therefore, for any 0 ~ It - ~, t] the 
vector  field ha is tangent to r-dimensional manifold N,_,,  being open subset of 
N , .  

Consider a family of vector  fields ~ ,  = {hal 0 ~ I t -  ~, t]} and the Lie algebra 
L ie [~ , ]  generated by this family. Evidently, all fields from Lie[~ , ]  are tangent to 
/V~ at every point of N , _ , C ~ .  If ~ / V t _ , ,  then the linear space L¢~[~,] is 
r-dimensional (r < n), so there exists a covector  ~ ~ T * M  (~ ~ 0) annihilating 
L¢~-[~,]. Hence,  functions 

~i(O1 . . . .  , 0i) = ( ~ ;  qo(ad ha, . . . .  oad ho,_,ho,)), i= 1 . . . . .  1, 

vanish identically on cubes K~ = ( [ t -  e, t]) i and, therefore, due to real analyticiiy, 
vanish identically on the whole cubes K i = ([0, t]) ~, i = 1 . . . . .  I. This implies that 
~b annihilates the linear space ~ [ ~ ] ,  and we get a contradiction with the 
assumption Vq e Oqo, ~ [  ~'] = TqM. This contradiction proves the proposition 
in the case when ti(.) is analytic. We have proved that the regular points of Gt 
are dense in some sufficiently small neighborhood of zero (if ti(.) is analytic) and 
also that the regular points of Ft are dense in some sufficiently small neighbor- 
hood of analytic control ti(;). 

Let now ti(.) be an arbitrary one from/_~[0,  t], satisfying all the conditions of 
Proposition 5.2. Then it follows from the results of [1], that for any i =  1 , . . . ,  ! 
the mappings/x ... . . . .  ~,: L~[0, t]---~ TqoM, where 

/,r~ ..... ~,(u(-)) = qoo(ad h~.~(u('))o . . . .  ad h,,H(u(.))h.~,(u(.))), 

f h, = e~p ad(f+gu(O))dOg, r ~ e [ 0 ,  t l ,  s = 1 . . . .  , i  

are c o n t i n u o u s  o n  u(.) in metrics of L~[ 0, t]. Hence,  there exists sufficiently small 
neighborhood of zero in L~[O,t] (denoted W') such that any u( . )e  
( l i ( )  + W') fl L~[0, t] satisfies the condition: 

Span{~,~ ..... ,,(u(.))t r~ e [0 ,  t], s = 1 , . . . ,  i, i -- 1 . . . .  , l} = TqoM. 

As is well known, the real analytic functions are dense in ti( .)+ W' in metrics of 
L~[0, t]. By virtue of that proved above,  every real analytic u ( . )e  zi(.)+ W' 
possesses a small neighborhood in which the regular points of F, are dense in 
metrics of L~[0, t]. Hence,  almost all points from (ii( .)+ W')N/_~[0,  t] are 
regular ones of F~, and almost all points from W' N/_~[0, t] are regular ones of 
Gt. Proposition 5.2 is proved. 
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C O R O L L A R Y .  The set of regular attainable points is open and dense in Pit(e) (in 

f~lt(e)) for all sufficiently small e > O. 

Let us define a (nonsmooth) homeomorphism F: R" ---> R" by virtue of formula 

F(x) = y; y,~ = ] x 0 [~1-')/' x o , if x~ i ~ 0; Y,i = 0, if x 0 = 0. 

Evidently, F(A,x) = EF(x). Remark also that Fo G,(eu(.)) = FoA~ o G,(u(.))) = 

eF(t~,(u(.))), i.e. the composition FoG,  is homogeneous of degree 1. It 
implies, that F(~I,(E)) = eF(~l,(1)) and image of mappings Fo (~t is a cone (in 
general, nonconvex). 

DEFINITION. Let ~R(e) (E--->0) be a family of subsets of R",  where 
~O~(al)C_~R(~2), when al < ~2, ~IR(0) = 0. We will say that vector y e R"  is interior 
to ~9~(E), if there exists such a neighborhood Oy 9 y, that {ax I x e Oy, 0 ~< a <~ 
e} c ~R(a) for all e > 0, being sufficiently small. 

Our goal is a comparison of the sets of inter ior  vectors of the families Op(Plt(e)) 
and ~lt(e) at point 0 e R n. It is worthwhile, however, to note that when the local 
controlability is lacking, then the case of 'l '(~t(e)) and ~t(e) having no interior 
vectors, is rather typical (that is, the case when the tangent cones to these sets at 
zero of R"  are not solid). If this is the case, then the comparison of 'rectified' 
attainable sets F(¢I,(9~,(,0) and F(~t(a)) is more informative. Remark,  meanwhile, 
that if x is an interior vector of ~lt(~), then F(x) is an interior vector of F(~lt(e)). 
Besides, F(~It(E)) always has some interior vector, for example, the vectors F(x), 
where x is the regularly attainable point of ~,(e) having no zero coordinates. 

Propositions 5.1 and 5.2 imply the following result (below the words 'almost all' 
have the meaning 'all from an open dense subset of R"). 

T H E O R E M  2. Almost  all vectors being interior to the family of sets F(~lt(e)), 
e ~> 0, are interior to the family Fodp(~lt(e)). 

In order to get the inverse inclusion, we need to impose a limitation on the 'rate 
of oscillation' of admissible controls. Let us put 

c) -- {u(,) L [0, t]lll u(')llL  E, Vart0.Tlu(.) ~< cll u(')llL~}. 

It can be easily shown that q/(~, c) is a precompact subset of L~[0, t]. Let us 
denote Pit(c, c )=  Gt(~(e,  c)); ~lt(e, c) = Ot(°//(e, c)). 

T H E O R E M  3. For any c > 0 almost all vectors y, being interior to the family 
Fo dP(~.'l,(e, c)), e ~> 0, are interior to F(~,/I,(e, c)), e t> 0. 

Remark. Nonrigorously speaking, we may explain the need for imposing the 
limitations on the rate of oscillations of controls u(-) as follows. When substitut- 
ing into the Volterra series for expS~ h.~u(~')d~" the controls u(-) being fast- 
oscillating and small (of order e in L~-norm), it may occur that due to fast- 
oscillating, the value of the ith term of the series is O(e ~) and then may be 
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majorized by the terms with greater numbers. Thus, the admission of fast- 
oscillating controls may mix the variations of different orders. 

Thus, we have shown that the attainable sets of system (2.1) and its nil- 
potentization (4.6) 'have similar structures', where the strict sense of the last 
words is completely defined above. 

Remark. After the first version of this paper (A.A. Agrachev, R.V. Gam- 
krelidze, A.V. Sarychev. Local invariants of smooth control systems. VINITI, 
1986, No. 7020-V) was prepared, we got to know of the nice results of G. Stefani 
and R. M. Bianchini ([10-13]) containing ideas similar to the ones set forth in 
Sections 4 and 5 of this paper (see also [14]). However, we hope that the 
approach to nilpotent approximation presented here, is actual nowadayL It 
should also be noted that adjoining these subjects are some investigations of A. 
M. Vershik and V. Ja. Gershkovitch on nonholonomic variational problems (see 
survey [15], containing other references). 
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