Low-Dimensional Control of the 2D Navier–Stokes and Euler Equations

A. A. Agrachev, SISSA, Trieste & MIAN, Moscow

(joint work with S. Rodrigues and A. V. Sarychev)

We consider the Navier–Stokes and Euler equations on the 2-dimensional Riemannian surface M homeomorphic to the sphere, torus or disc. In the last case we assume that ∂M is a piecewise smooth curve and impose Lions boundary condition. The equations written in terms of the vorticity w and the stream functions ψ read:

$$\frac{\partial w}{\partial t} + \{\psi, w\} - \nu \Delta w = f(t, x), \quad \Delta \psi = w, \quad (1)$$

$$0 \le t \le T, \ x \in M, \quad \psi\Big|_{\partial M} = w\Big|_{\partial M} = 0,$$

where $\{\cdot, \cdot\}$ is the Poisson bracket, Δ the Laplace–Beltrami operator, ν a nonnegative real number, and the right-hand side f is the vorticity of the external force. We assume that the right-hand side has the form:

$$f(t,x) = f_0(x) + \sum_{i=1}^k v_i(t) f_i(x),$$

where f_0, f_1, \ldots, f_k are fixed smooth functions and $v_1(\cdot), \ldots, v_k(\cdot)$ are control functions at our

disposal. We assume that $v_i(\cdot)$ belong to the space of admissible controls $V \subset L_{\infty}[0,T]$ and that V is an everywhere dense vector subspace of $L_1[0,T]$.

Given $\varphi_0 \in H_2(M)$, we say that $\varphi_T \in H_2(M)$ is reachable from φ_0 if there exist admissible control functions $v_1(\cdot), \ldots, v_k(\cdot)$ such that the solution of system (1) with the initial condition $w(0, \cdot) = \varphi_0$ satisfies the equation $w(T, \cdot) = \varphi_T$. Let $\mathcal{R}(\varphi_0) \subset H_2(M)$ be the set of all reachable functions. We say that the system is L_2 approximately controllable if $\mathcal{R}_T(\varphi_0)$ is everywhere dense in $L_2(M)$ for any $\varphi_0 \in H_2(M)$. The system is controllable in finite dimensional projections if the L_2 -orthogonal projection of $\mathcal{R}_T(\varphi_0)$ on any finite dimensional subspace of $H_2(M)$ is surjective.

The input-state map $S_{\varphi_0} : V^k \to H_2(M)$ sends a control vector-function (v_1, \ldots, v_k) to $w(T, \cdot)$. In particular, $\mathcal{R}(\varphi) = S_{\varphi_0}(V^k)$. Given a finite dimensional subspace E of $H_2(M)$ we denote by $P_E : L_2(M) \to E$ the orthogonal projector. The system is controllable in finite dimensional projections iff the mapping $P_E \circ S_{\varphi_0}$ is surjective for any E and φ_0 .

Solid controllability in finite dimensional projections is a robust version of the usual one. We say that the mapping $P_E \circ S_{\varphi_0}$ is robustly surjective if for any ball B in E there exists a finite dimensional ball \mathcal{B} in V^k such that $\Phi(\mathcal{B}) \supset B$ for any sufficiently close to $P_E \circ S_{\varphi_0}|_{\mathcal{B}}$ in C^0 -topology continuous mapping $\Phi : \mathcal{B} \to E$. The system is solidly controllable in finite dimensional projections if $P_E \circ S_{\varphi_0}$ is robustly surjective for any E and φ_0 .

Assume that f_1, \ldots, f_l are steady states of the Euler equation:

$$\{\Delta^{-1}f_i, f_i\} = 0, \quad i = 1, \dots, l, \ l \le k.$$

We denote $D_{f_i} = \{\Delta^{-1}, f_i\} + \{\Delta^{-1}f_i, \cdot\}$, the operator obtained by the linearization of the Euler equation at the steady state f_i .

Theorem 1. Let \mathcal{F} be the minimal common invariant subspace of the operators D_{f_1}, \ldots, D_{f_l} which contains f_1, \ldots, f_k . If \mathcal{F} is everywhere dense in $L_2(M)$, then the system is L_2 -approximately controllable and solidly controllable in finite dimensional projections.

In all applications below f_1, \ldots, f_k are eigenfunctions of Δ and l = k.

Examples.

1. Torus $S^1 \times S^1$. Eigenfunctions of Δ :

 $sin(n_1x_1 + n_2x_2), \ cos(n_1x_1 + n_2x_2),$ $n_1, n_2 \in \mathbb{Z}_+. \ Take \ k = 4, \quad \{f_1, \dots, f_4\} =$ $\{sin x_1, cos x_1, sin(x_1 + x_2), cos(x_1 + x_2)\}.$

2. Square $[0, \pi] \times [0, \pi]$. Eigenfunctions of Δ : $sin(n_1x_1) sin(n_2x_2), n_1, n_2 \in \mathbb{Z}_+.$ Take k = 8, $\{f_1, \dots, f_8\} = \{sin(n_1x_1) sin(n_2x_2) :$ $n_1, n_2 \leq 3, (n_1, n_2) \neq (3, 3)\}.$

3. Sphere S^2 . Eigenfunctions of Δ are homogeneous harmonic polynomials of 3 variables. Take k = 5 and the set $\{f_1, \ldots, f_5\}$ containing three linear, one quadratic and one cubic polynomials.

Proposition. Given k > 0 assume that for some Riemannian structure on $M \exists$ eigenfunctions f_1, \ldots, f_k of Δ which satisfy conditions of Theorem 1. Then the eigenfunctions of Δ with such a property do exist for generic Riemannian structure on M.

Sketch of the proof:

The set of appropriate Riemannian structures is the intersection of a countable number of open subsets in the space of all Riemannian structures. It remains to prove that this is a everywhere dense subset.

Given Riemannian structures μ_0, μ_1 , connect them by a continuous family μ_t , $0 \le t \le 1$ that is analytic w.r.t. t on the interval (0,1). Then any eigenfunction f^0 of the Laplace– Beltrami operator Δ_{μ_0} is included in the continuous family f^t of the eigenfunctions of Δ_{μ_t} , $0 \le t \le 1$, and the family f^t is analytic on the interval (0,1). Let f_1^0, \ldots, f_k^0 be eigenfunctions of Δ_{μ_0} ; it is not hard to show that the set

 $\{t \in [0, 1] : (f_1^t, \dots, f_k^t) \text{ satisfies Th. 1}\}$ is either empty or the complement of a count-

able subset of [0, 1].

Any homeomorphic to the disc Riemannian surface is isometric to the disc endowed with a Riemannian structure of the form

$$e^{a(x_1,x_2)}(dx_1^2+dx_2^2).$$

This Riemannian disc is isometric to a simply connected domain in \mathbb{R}^2 iff $\Delta a = 0$.

The specification of the above proof: take $\mu_t = e^{a_t}(dx_1^2 + dx_2^2)$, $\Delta a_t = 0$. We obtain:

Proposition. Given $k \ge 0$, assume that for some bounded simply connected domain $M \subset \mathbb{R}^2$ there exist eigenfunctions f_1, \ldots, f_k of Δ which satisfy conditions of Theorem 1. Then the eigenfunctions of Δ with such a property do exist for generic domain.

Outline of the proof of Th. 1.

The control system: $\frac{\partial w}{\partial t} + \{\Delta^{-1}w, w\} - \nu \Delta w =$

$$= f_0 + \sum_{i=1}^k v_i(t) f_i, \quad w(0, \cdot) = \varphi_0.$$

We use fast oscillating control functions $v_i(t)$. Our method is based on the continuity of the input-state map S_{φ_0} : $V^k \to H_2(M)$ w.r.t. controls endowed with the 'relaxation norm'

$$\|v(\cdot)\|_{\mathsf{rx}} \stackrel{\mathsf{def}}{=} \max_{t \in [0,T]} |\int_{0}^{t} v(\tau) \, d\tau|.$$

We show that controllability of the extended system $\frac{\partial w}{\partial t} + \{\Delta^{-1}w, w\} - \nu \Delta w =$

$$= f_0 + \sum_{i=1}^k \left(v_i(t)f_i + \sum_{j=1}^l v_{ij}(t)D_{f_j}f_i \right)$$

implies controllability of the original system and then iterate the procedure: substitute $\{f_i : 1 \leq i \leq k\}$ by $\{f_i, D_{f_j}f_i : 1 \leq i \leq k, 1 \leq j \leq l\}$ e.t.c.

Induction step.

To simplify notations, we make calculations for the case l = 1, k = 2.

1. Take Lipschitzian functions $\hat{v}_{1}(t), \hat{v}_{2}(t)$ and substitute v_{1}, v_{2} by $\frac{d\hat{v}_{1}}{dt} + v_{1}$ and $\frac{d\hat{v}_{2}}{dt} + v_{2}$. Let $q = w - \hat{v}_{1}f_{1} - \hat{v}_{2}f_{2}$; then: $\frac{\partial q}{\partial t} + \{\Delta^{-1}(q + \hat{v}_{1}f_{1} + \hat{v}_{2}f_{2}), q + \hat{v}_{1}f_{1} + \hat{v}_{2}f_{2}\} - \nu\Delta(q + \hat{v}_{1}f_{1} + \hat{v}_{2}f_{2}) = f_{0} + v_{1}f_{1} + v_{2}f_{2}.$ Write it slightly differently: $\frac{\partial q}{\partial t} + \{\Delta^{-1}q, q\} - \nu\Delta q$ $+ \hat{v}_{1}(D_{f_{1}}q - \nu\Delta f_{1}) + \hat{v}_{2}(D_{f_{2}}q - \nu\Delta f_{2})$ $= f_{0} + v_{1}f_{1} + v_{2}f_{2} - \hat{v}_{1}\hat{v}_{2}D_{f_{1}}f_{2} - \frac{\hat{v}_{2}^{2}}{2}D_{f_{2}}f_{2}.$ If $\hat{v}_{1}(T) = \hat{v}_{2}(T) = 0$, then

$$q_T = S_{\varphi_0}\left(\frac{d\widehat{v}_1}{dt} + v_1, \frac{d\widehat{v}_2}{dt} + v_2\right).$$

2. Substitute $\hat{v}_i(t)$ by sgn(sin(t/ε)) $\hat{v}_i(t)$, $\varepsilon \to 0$; this kills linear terms $\hat{v}(2D_{f_i}q - \nu\Delta f_i)$ without affecting quadratic terms. We arrive to the system:

$$\frac{\partial q}{\partial t} + \{\Delta^{-1}q, q\} - \nu \Delta q =$$

$$f_0 + v_1 f_1 + v_2 f_2 - \hat{v}_1 \hat{v}_2 D_{f_1} f_2 - \frac{\hat{v}_2^2}{2} D_{f_2} f_2.$$

Solid controllability of this system implies solid controllability of the original one.

3. Substitute \hat{v}_1 and \hat{v}_2 by $\frac{\hat{v}_1}{\varepsilon}$ and $\varepsilon \hat{v}_2$, and set $v_{12} = -\hat{v}_1 \hat{v}_2$. We obtain:

$$\frac{\partial q}{\partial t} + \{\Delta^{-1}q, q\} - \nu \Delta q =$$

 $f_0 + v_1 f_1 + v_2 f_2 + v_{12} D_{f_1} f_2 + O(\varepsilon^2).$

Go to the limit as $\varepsilon \to 0$. Solid controllability of the limit system implies solid controllability of the original one.