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We consider the Navier–Stokes and Euler equa-

tions on the 2-dimensional Riemannian surface

M homeomorphic to the sphere, torus or disc.

In the last case we assume that ∂M is a piece-

wise smooth curve and impose Lions bound-

ary condition. The equations written in terms

of the vorticity w and the stream functions ψ

read:

∂w

∂t
+ {ψ, w} − ν∆w = f(t, x), ∆ψ = w, (1)

0 ≤ t ≤ T, x ∈ M, ψ
∣∣∣
∂M

= w
∣∣∣
∂M

= 0,

where {·, ·} is the Poisson bracket, ∆ the Lap-

lace–Beltrami operator, ν a nonnegative real

number, and the right-hand side f is the vor-

ticity of the external force. We assume that

the right-hand side has the form:

f(t, x) = f0(x) +
k∑

i=1

vi(t)fi(x),

where f0, f1, . . . , fk are fixed smooth functions

and v1(·), . . . , vk(·) are control functions at our



disposal. We assume that vi(·) belong to the

space of admissible controls V ⊂ L∞[0, T ] and

that V is an everywhere dense vector subspace

of L1[0, T ].

Given ϕ0 ∈ H2(M), we say that ϕT ∈ H2(M)

is reachable from ϕ0 if there exist admissible

control functions v1(·), . . . , vk(·) such that the

solution of system (1) with the initial condition

w(0, ·) = ϕ0 satisfies the equation w(T, ·) = ϕT .

Let R(ϕ0) ⊂ H2(M) be the set of all reach-

able functions. We say that the system is L2-

approximately controllable if RT (ϕ0) is every-

where dense in L2(M) for any ϕ0 ∈ H2(M).

The system is controllable in finite dimensional

projections if the L2-orthogonal projection of

RT (ϕ0) on any finite dimensional subspace of

H2(M) is surjective.

The input–state map Sϕ0 : V k → H2(M) sends

a control vector-function (v1, . . . , vk) to w(T, ·).



In particular, R(ϕ) = Sϕ0(V
k). Given a finite

dimensional subspace E of H2(M) we denote

by PE : L2(M) → E the orthogonal projector.

The system is controllable in finite dimensional

projections iff the mapping PE◦Sϕ0 is surjective

for any E and ϕ0.

Solid controllability in finite dimensional pro-

jections is a robust version of the usual one.

We say that the mapping PE ◦ Sϕ0 is robustly

surjective if for any ball B in E there exists

a finite dimensional ball B in V k such that

Φ(B) ⊃ B for any sufficiently close to PE◦Sϕ0|B
in C0-topology continuous mapping Φ : B → E.

The system is solidly controllable in finite di-

mensional projections if PE◦Sϕ0 is robustly sur-

jective for any E and ϕ0.

Assume that f1, . . . , fl are steady states of the

Euler equation:

{∆−1fi, fi} = 0, i = 1, . . . , l, l ≤ k.



We denote Dfi
= {∆−1·, fi} + {∆−1fi, ·}, the

operator obtained by the linearization of the
Euler equation at the steady state fi.

Theorem 1. Let F be the minimal common
invariant subspace of the operators Df1, . . . , Dfl

which contains f1, . . . , fk. If F is everywhere
dense in L2(M), then the system is L2-appro-
ximately controllable and solidly controllable in
finite dimensional projections.

In all applications below f1, . . . , fk are eigen-
functions of ∆ and l = k.

Examples.

1. Torus S1 × S1. Eigenfunctions of ∆:

sin(n1x1 + n2x2), cos(n1x1 + n2x2),

n1, n2 ∈ Z+. Take k = 4, {f1, . . . , f4} =

{sinx1, cosx1, sin(x1 + x2), cos(x1 + x2)}.



2. Square [0, π]× [0, π]. Eigenfunctions of ∆:

sin(n1x1) sin(n2x2), n1, n2 ∈ Z+.

Take k = 8,

{f1, . . . , f8} = {sin(n1x1) sin(n2x2) :

n1, n2 ≤ 3, (n1, n2) 6= (3,3)}.

3. Sphere S2. Eigenfunctions of ∆ are ho-

mogeneous harmonic polynomials of 3 vari-

ables. Take k = 5 and the set {f1, . . . , f5}
containing three linear, one quadratic and

one cubic polynomials.

Proposition. Given k > 0 assume that for

some Riemannian structure on M ∃ eigenfunc-

tions f1, . . . , fk of ∆ which satisfy conditions

of Theorem 1. Then the eigenfunctions of ∆

with such a property do exist for generic Rie-

mannian structure on M .



Sketch of the proof:

The set of appropriate Riemannian structures

is the intersection of a countable number of

open subsets in the space of all Riemannian

structures. It remains to prove that this is a

everywhere dense subset.

Given Riemannian structures µ0, µ1, connect

them by a continuous family µt, 0 ≤ t ≤ 1

that is analytic w. r. t. t on the interval (0,1).

Then any eigenfunction f0 of the Laplace–

Beltrami operator ∆µ0 is included in the con-

tinuous family f t of the eigenfunctions of ∆µt,

0 ≤ t ≤ 1, and the family f t is analytic on the

interval (0,1). Let f0
1 , . . . , f0

k be eigenfunctions

of ∆µ0; it is not hard to show that the set

{t ∈ [0,1] : (f t
1, . . . , f t

k) satisfies Th.1}
is either empty or the complement of a count-

able subset of [0,1].



Any homeomorphic to the disc Riemannian sur-

face is isometric to the disc endowed with a

Riemannian structure of the form

ea(x1,x2)(dx2
1 + dx2

2).

This Riemannian disc is isometric to a simply

connected domain in R2 iff ∆a = 0.

The specification of the above proof: take

µt = eat(dx2
1 + dx2

2), ∆at = 0. We obtain:

Proposition. Given k ≥ 0, assume that for

some bounded simply connected domain M ⊂
R2 there exist eigenfunctions f1, . . . , fk of ∆

which satisfy conditions of Theorem 1. Then

the eigenfunctions of ∆ with such a property

do exist for generic domain.



Outline of the proof of Th. 1.

The control system: ∂w
∂t +{∆−1w, w}−ν∆w =

= f0 +
k∑

i=1

vi(t)fi, w(0, ·) = ϕ0.

We use fast oscillating control functions vi(t).
Our method is based on the continuity of the
input–state map Sϕ0 : V k → H2(M) w. r. t.
controls endowed with the ‘relaxation norm’

‖v(·)‖rx def
= max

t∈[0,T ]
|

t∫

0

v(τ) dτ |.

We show that controllability of the extended
system ∂w

∂t + {∆−1w, w} − ν∆w =

= f0 +
k∑

i=1


vi(t)fi +

l∑

j=1

vij(t)Dfj
fi




implies controllability of the original system and
then iterate the procedure: substitute {fi : 1 ≤
i ≤ k} by {fi, Dfj

fi : 1 ≤ i ≤ k, 1 ≤ j ≤ l} e. t. c.



Induction step.

To simplify notations, we make calculations for

the case l = 1, k = 2.

1. Take Lipschitzian functions v̂1(t), v̂2(t) and

substitute v1, v2 by dv̂1
dt + v1 and dv̂2

dt + v2. Let

q = w − v̂1f1 − v̂2f2; then:

∂q

∂t
+ {∆−1(q + v̂1f1 + v̂2f2), q + v̂1f1 + v̂2f2}−

ν∆(q + v̂1f1 + v̂2f2) = f0 + v1f1 + v2f2.

Write it slightly differently:∂q
∂t +{∆−1q, q}−ν∆q

+v̂1(Df1q − ν∆f1) + v̂2(Df2q − ν∆f2)

= f0 + v1f1 + v2f2 − v̂1v̂2Df1f2 −
v̂2
2

2
Df2f2.

If v̂1(T ) = v̂2(T ) = 0, then

qT = Sϕ0(
dv̂1

dt
+ v1,

dv̂2

dt
+ v2).



2. Substitute v̂i(t) by sgn(sin(t/ε))v̂i(t), ε → 0;

this kills linear terms v̂(2Dfi
q − ν∆fi) without

affecting quadratic terms. We arrive to the

system:

∂q

∂t
+ {∆−1q, q} − ν∆q =

f0 + v1f1 + v2f2 − v̂1v̂2Df1f2 −
v̂2
2

2
Df2f2.

Solid controllability of this system implies solid

controllability of the original one.

3. Substitute v̂1 and v̂2 by v̂1
ε and εv̂2, and set

v12 = −v̂1v̂2. We obtain:

∂q

∂t
+ {∆−1q, q} − ν∆q =

f0 + v1f1 + v2f2 + v12Df1f2 + O(ε2).

Go to the limit as ε → 0. Solid controllability

of the limit system implies solid controllability

of the original one.


