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We consider the Navier—Stokes and Euler equa-
tions on the 2-dimensional Riemannian surface
M homeomorphic to the sphere, torus or disc.
In the last case we assume that OM is a piece-
wise smooth curve and impose Lions bound-
ary condition. The equations written in terms
of the vorticity w and the stream functions
read:

%+{¢,w}—yAw=f(t,x), AY =w, (1)

0<t<T, €M, w\aM =0,

— w‘@M
where {-,-} is the Poisson bracket, A the Lap-
lace—Beltrami operator, v a nonnegative real
number, and the right-hand side f is the vor-
ticity of the external force. We assume that
the right-hand side has the form:

k
F(t,2) = fole) + 3 vi) filx),

1=1
where fo, f1,-.., fr are fixed smooth functions
and v1(+),...,vr(-) are control functions at our



disposal. We assume that v;(-) belong to the
space of admissible controls V C Lx[0,T] and
that V is an everywhere dense vector subspace
of Ll[O,T].

Given g € Hy(M), we say that o € Ho(M)
is reachable from g if there exist admissible
control functions v1(-),...,vi(-) such that the
solution of system (1) with the initial condition
w(0, -) = g satisfies the equation w(T, ) = .
Let R(pg) C Ho(M) be the set of all reach-
able functions. We say that the system is Lo-
approximately controllable if Ry (pg) is every-
where dense in Lo(M) for any g € Ho(M).
The system is controllable in finite dimensional
projections if the Lo-orthogonal projection of
R1(pg) on any finite dimensional subspace of
H>(M) is surjective.

The input—state map Sy, : V¥ — Ho(M) sends
a control vector-function (vq,...,v) to w(T,-).



In particular, R(p) = Sy (VF). Given a finite
dimensional subspace E of Ho(M) we denote
by Pg : Lo(M) — E the orthogonal projector.
The system is controllable in finite dimensional
projections iff the mapping PgoSy, is surjective
for any E and ¢g.

Solid controllability in finite dimensional pro-
jections is a robust version of the usual one.
We say that the mapping Pg o Sy, is robustly
surjective if for any ball B in E there exists
a finite dimensional ball B in V¥ such that
$(B) D B for any sufficiently close to ProSy,|B
in CY-topology continuous mapping ® : B — E.
The system is solidly controllable in finite di-
mensional projections if PpoSy, is robustly sur-
jective for any E and .

Assume that f1,..., f; are steady states of the
Euler equation:

(A7 g gy =0, i=1,...,l, <k



We denote Dy = {A~L fi} +{A71f;, -}, the
operator obtained by the linearization of the
Euler equation at the steady state f;.

Theorem 1. Let F be the minimal common
invariant subspace of the operators Dfl, e sz
which contains fq,..., fir. If F is everywhere
dense in L>(M), then the system is Ly-appro-
Ximately controllable and solidly controllable in
finite dimensional projections.

In all applications below f1,..., fr are eigen-
functions of A and [ = k.

Examples.

1. Torus St x S1. Eigenfunctions of A:

Siﬂ(nlwl -+ n2x2), COS(TL1£U1 + n2332)7
ni,np € Zy. Take k=4, {f1,...,f4} =

{sinxq1, cosxq, sin(xy + x2), cos(xq1 + x2)}.



2. Square [0, 7] x [0,7]. Eigenfunctions of A:

Sin(nlxl)Sin(RQCCQ), ni,no € Z_I_.
Take k£ = G,

{f1,-.., fe} = {sin(ny1x1) sin(noxy) :

ni,n2 <3, (n1,n2) #(3,3)}.

3. Sphere S2. Eigenfunctions of A are ho-
mogeneous harmonic polynomials of 3 vari-
ables. Take k =5 and the set {f1,..., f5}
containing three linear, one quadratic and
one cubic polynomials.

Proposition. Given k£ > 0 assume that for
some Riemannian structure on M 4 eigenfunc-
tions f1,...,fr of A which satisfy conditions
of Theorem 1. Then the eigenfunctions of A
with such a property do exist for generic Rie-
mannian structure on M.



Sketch of the proof:

The set of appropriate Riemannian structures
is the intersection of a countable number of
open subsets in the space of all Riemannian
structures. It remains to prove that this is a
everywhere dense subset.

Given Riemannian structures ug,p1, connect
them by a continuous family sy, 0 < t < 1
that is analytic w.r.t. ¢ on the interval (0,1).
Then any eigenfunction f9 of the Laplace—
Beltrami operator A, is included in the con-
tinuous family f* of the eigenfunctions of A,
0 <t <1, and the family f! is analytic on the
interval (0,1). Let f?,..., fP be eigenfunctions
of A,y it is not hard to show that the set

{t€[0,1]: (f%,..., fl) satisfies Th.1}

IS either empty or the complement of a count-
able subset of [0, 1].



Any homeomorphic to the disc Riemannian sur-
face is isometric to the disc endowed with a
Riemannian structure of the form

e(71,22) (d:c% + da:%)

This Riemannian disc is isometric to a simply
connected domain in R? iff Aa = 0.

The specification of the above proof: take
ue = e%(dz$ + dxs), Aay = 0. We obtain:

Proposition. Given k£ > 0, assume that for
some bounded simply connected domain M C
R2 there exist eigenfunctions fq,...,fr of A
which satisfy conditions of Theorem 1. Then
the eigenfunctions of A with such a property
do exist for generic domain.



Outline of the proof of Th. 1.

The control system: 2% 4+ {A~ 1w, w} —vAw =

= fo+ Z vi(t) fi,  w(0,-) = ¢o.
i=1
We use fast oscillating control functions v;(t).
Our method is based on the continuity of the
input—state map Sy, : V¥ — Ho(M) w.r.t.
controls endowed with the ‘relaxation norm’

t
[l € max | [ v(r)drl.

te|0,T
0.1]")

We show that controllability of the extended
system (% W (AT Iw, wl —vAw =

= fo+ Z (Uz(t)fz + Z Uzy(t)Df fz)

1=1
implies controllablllty of the original system and

then iterate the procedure: substitute {f; : 1 <
i<k} by {f, Dy fi:1<i<k,1<j<lI}et.c



Induction step.

To simplify notations, we make calculations for
the casel =1, k= 2.

1. Take Llpsch|t2|an functions vl(t) v-(t) and
substitute vy, vo by dtl + v and 402 —|—v Let

q = w — v1f1 — vofo; then:
0 - - . -
8—3 + {27 (q+01f1 + Daf2),q + D1f1 + Dofo}—

vA(q+ 91f1 + V2f2) = fo+ vifi + vafo.
Write it slightly differently: at—|—{A lg, ¢} —v g

+01(Dpyqg—vAf1) +92(Dy,qg —vAf>)

52
= fo +vif1 +vafo — 102Dy fo — _Df2f2

If 51(T) = 55(T) = 0, then

dvq dvo
qr = cpo(—-l- 1,—-|- v2).



2. Substitute v;(t) by sgn(sin(t/e))v;(t), e — O;
this Kills linear terms 9(2Dq — vAf;) without
affecting quadratic terms. We arrive to the
system:

oq _
EJF{A lg,q} —vAg =

>
PR v
Jo+vif1 +vofo — 012Dy fo — §2Df2f2-

Solid controllability of this system implies solid
controllability of the original one.

3. Substitute #; and 7, by 2 and e, and set
v1o = —v1v2. We obtain:

0q _
EJF{A lg,q} —vAg =

fo+ vif1 +vafa +vi2Dy, f2 + O(e2).

Go to the limit as € — 0. Solid controllability
of the limit system implies solid controllability
of the original one.



