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THE MORSE INDEX AND THE MASLOV INDEX
FOR EXTREMALS OF CONTROLLED SYSTEMS
UDC 517.97

A. A. AGRACHEV AND R. V. GAMKRELIDZE

1. Let M be a C®°-manifold. We consider a controlled system
(1) i< fumyu), meM, ueR, teR,  m(0)=mo,

where fi(m,u) is a family of smooth vector fields on M that depends smoothly on u and
piecewise smoothly on ¢. Moreover, we assume that f;(m,0) is a complete nonstationary
field on M and pi: M — M, t € R, is the fiow on M determined by this field, i.e.,

9 pum) = flpe(m).0), polm) =m.

Let t > 0 and suppose that for all controls u() € L7,[0, 1] sufficiently close to zero
the mapping Fy:u(-) — m(t) is defined, where m(r) = fr(m{r),u(r)), T € [0,¢], and
m(0) = mo. It is&asyto show that F, is an infinitely differentiable mapping of some
neighborhood of zero in L7.[0,t] into M. The family of mappings Fr, 7 € (0, +00),
determines the behavior of the controlled system (1). Let Gy = py 16 F; in studying
a controlled system near the zero control it is more convenient to work not with Fy
but with the equivalent mapping G¢; in particular, G¢(0) = mo. Assume that zero
is a critical point of the mapping G; in this case it is common to call the trajectory
p-(mq), T € [0,1], corresponding to the zero control an eztremal of the system (1). Let
G,: L7,[0,t0] — TmoM be the differential of Gy at zero, let ker G} be the kernel of this
differential, let im G, be its range, and let coker G = T M/im G} be its cokernel.
Denote by G/ the Hessian of G at zero (recall that the Hessian is a quadratic mapping
from the kernel of the differential to the cokernel). If dim coker G} = 1, then G} is, in
essence, a scalar quadratic form; otherwise, the projections of G onto one-dimensional
directions are quadratic forms. Of importance in control theory are the Morse indices of
such quadratic forms; for example, the index of extremality of a control can be estimated
in terms of them (see [5]). We give explicit expressions for the Morse indices of these
forms, connecting them with certain symplectic invariants. It should be emphasized that
the formulas obtained are equally suitable both in the regular case and in the singular
case. In the case when the controlled system reduces to a standard regular problem in the
calculus of variations our approach leads to the well-known identity of Morse and Maslov
indices of an extremal (see [1]), and the general case can be regarded as a generalization
of this identity. See [2] and [3] for other approaches to the computation of the Morse
index in the regular situation.

2. Suppose, as usual, that the symbol p,- denotes the differential of the diffeomor-
phism p,. For every v € R’ and 7 € R let

2

hf(v) = p:‘l 825_2_ o fT(p‘r(mD)7 E'U)a (Z,v)(m) = p:‘l gg o fT(pT(m>’ 57});
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V"~ The mapping (#,y) > FLX Y1)

then Ty, M 3 h,(v), a tangent vector depending quadratically on v, and Z,v is a vector
field on M depending linearly on v. We have that

() / (Zeo(r))mo)dr ¥u() € LT[0, 1],

Suppose that the covector ¢ € T M satisfies the conditions ¢(Z,v)(mg) = 0, Vr €
(0,t),v € R" (i.e,, ¥ L imG}). Then

0G0 = [ (hotote + v [ 2] na)) o

where fJ(ZTv)(mo) dr =0 (i.e., v(-) € Ker G}), and the square brackets [-,-] denote the
commutator of vector fields on M.

Fix once and for all a time ¢t > 0 and let IT = im G’ and n = dim II; fix also a covector
¥ # 0 with ¢ L II. Let &5 be the space of all smooth vector fields on M whose values at
mo lie in II; it is clear that Z;v € &g, 7€ (0,t), v e R%vhere X, Y € &, determines
a skew-symmetric bilinear form on €. Denote by E the quotient space of & by the
kernel of this form, and denote by o(-,) the skew inner product induced on E by this
form. Then

VG (0()) = /0 t <¢h7(v(7)) +o < /O " ou(6) dﬁ,zfv(fr)>> ar, /O o) dr € Tho, |

where E 3 z,v, the image of the field Z,v upon taking of the quotient, and Il is the
corresponding image of the space of fields vanishing at mq. There is an obvious exact
sequence 0 — Il — E 5 IT — 0, where 7 is induced by the mapping associating with a
vector field its value at the point mq. It turns out that IIy is a Lagrangian plane in the
symplectic space E; in particular, dim Iy = dim II = n.

We agree to take all piecewise continuous functions to be left-continuous; with each
7 € (0,] we associate an integer k, > 0 and a quadratic form Y- on R” as follows
(the expression %)y below denotes the derivative of z;v of order k > 0 with respect
to 7): if the form vhy is not identically equal to zero on any interval 7 < § < T,
then let k&, = 0 and v, = v¥h,; otherwise, let k£, be the maximal number k such that
a(zél)vl,zéj)w) =0fori+j <2(k—1) and vy, v, € R" on some interval 7 < § < 7,
and let 5 (v) = o(2*)v, 2(-=Dy) oy € R™ (if the maximal k exists, then it does not
exceed n; if it does not exist, then we set k, = n + 1 and v = 0). The Morse index of
an arbitrary quadratic form Q is denoted by ind Q.

PROPOSITION 1 (cf. [5]). Ifind¥GY < +o0, then:

a) a(zﬁk"l)vl,zgk’_l)vg) =0Vu,ve € R", 7€ (0,¢];

b) v, >0, 7€ (0,].

Conversely, if a) holds and ~,(v) > ¢|v|? for any v € R” and 7 € (0,t] and some
€ >0, then indYGY < +c0.

" In what follows we assume the sufficient condition in Proposition 1 for ind G/ to be

finite (see, however, Remark 2 at the end of the paper). Let ['; = span{zg)v, 0<1<
kr, v € R"}, an rk,.-dimensional isotropic subspace of E.

3. The form +,, like every quadratic form on R", is determined by some selfadjoint
mapping from R” to R™, and the inverse mapping determines a quadratic form ~!

on R™. Further, for every z € E the mapping v — a(zﬁkr)v,x) is a linear form on
R" ie., a(zﬁkT)', z) € R™. We consider on E the nonstationary quadratic Hamiltonian
%v;l(a(zﬁk’)-,a:)), z€ B, 7€(0,t];ifvr,..., v, is a basis in R such that ~y,(v;,v;) = 0
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for ¢ # 7, then this Hamiltonian has the form

T 2

a(zﬁk’)vi, )

= 2y, (vi, vi)

The corresponding Hamiltonian system is linear and, consequently, determines a one-
parameter family of linear symplectic transformations of E.

Let L(E) be the manifold of all Langrangian planes in E: the Lagrange Grassmannian;
since symplectic transformations carry Lagrangian planes into Lagrangian planes, we get
a one-parameter family of diffeomorphisms of L(E). The infinitesimal generator of this
family is a nonstationary vector field on L(E) which we denote by 3~; ' (o( AR A)), A e
L(E). This is not simply a conditional notation; in general, for every A € L(E) there is
a natural identification of the tangent space Tx L(E) with a space of quadratic forms on
A: a tangent vector (9A/9s)(s) € Tx(s)L(E) is identified with the quadratic form

z(s) — o (%(s), z(s)) ,
where z(s) € A(s). Tt is not hard to show that under this identification the vector field
on L(E) corresponding to a quadratic Hamiltonian ¢(z) (z € E) on E is identifled with
the family of forms q|s, A € L(E).

The differential equation A, = 3+, l(o(zﬁk’)-, A)) on L(E) is called the Jacobi equa-
tion. The solutions of this equation are defined to be not only the continuous but also the
piecewise continuous curves on L(E), with the derivative with respect to 7 at a point of
discontinuity taken to be the limit of the corresponding derivatives from the left, Thus,
to uniquely determine a solution it is necessary to specify the jumps at the points of
discontinuity in addition to the initial value.

DEFINITION 1. A Jacobs curve is defined to be a piecewise smooth curve on L(E)
satisfying the Jacobi equation and the conditions Ag = Ilp and Ario= (ATA}-FT{%(\F%VT €
[0,2). '

Tt is easy to see that 'y C A, V7 € (0,1], and A, is continuous at any point of continuity
of T'y, 7€ (0,¢].

Suppose that A; (1 = 0,1,2) are three Lagrangian planes in E. It is not hard to show
that the mapping Ag = A1 + Az — o(A1, A2), where A; € A;, © = 0,1,2, unambiguously
determines a quadratic form on the space (A; + A2) N Ao/ ﬂ?:o A;. Denote this form
by the letter g, and let inda, (A1, A2) = indg + % dimker q. The index thus defined can
without difficulty be expressed in terms of the Maslov index of the triple of Lagrangian
planes [4], but for our purposes it is more convenient than the Maslov index. Essential
for what follows are its nonnegativeness and the triangle inequality:

0 < indy, ('Al,Ag) < indjy, (Al,Ag) + indy, (Az, Ag) VA; € L(E), 1=0,1,2,3.

DEFINITION 2. A piecewise smooth curve A,, 7 € [to, t1}, in L(E) is said to be simple
if 3A € L(E) such that A, N A =0 and inda(Ar, Ar40) =0 V7 € [to, 1]

It can be shown that a sufficiently small piece of an arbitrary piecewise smooth curve
is simple.

THEOREM 1. Let Ay, 0 < 7 < t, be a Jacobi curve and let 14y =0 =17 <71 <
... <1 =t be an arbitrary partition of the interval [0,t]. Then

i
> indm, (Ar, Ar,,,) € 0dYGY + 1
=0

But if all the pieces A ||, -, .| of the Jacobt curve are simple, 0 < 1 < I, then the inequality
becomes an equality.




There is a simple homotopy interpretation of Theorem 1. Recall that the tangent space
TAL(E) is identified with the space of quadratic forms on A; in particular, it is partially
ordered. We say that a curve on L(E) is nondecreasing if its velocity at an arbitrary point
is a nonnegative quadratic form, and we observe that a Jacobi curve is nondecreasing.
Further, it is known that the fundamental group 71 (L(E)) is isomorphic to the group Z
of integers, and there is a canonical isomorphism of these groups characterized by the fact
that the nondecreasing closed curves in L(E) receive positive “indices” in Z. An integer
corresponding to a given closed curve under this isomorphism is called the Maslov index
of the curve.

THEOREM 2. Let A,, 7 € [0,t], be a Jacobi curve, and ty,...,tn all its points
of discontinuity. Suppose that simple continuous nondecreasing curves join A, with
Atyo, v =1,... N, and Ay with Ag (this can always be done). Denote the resulting
continuous closed curve by A. Then ind¢GY = indA. — n, where indA. ¢s the Maslov
index of A..

REMARK 1. ind¢GY is a nondecreasing integer-valued function of ¢, and the case
of a regular variational problem this function has jumps at points conjugate to zero. In
the general case the usual concept of a conjugate point does not make much sense, but
nevertheless it is easy to deduce an explicit expression for the jumps of ind G} from
Theorem 1.

REMARK 2. Assume that the quadratic form ~, is nonnegative but degenerate. If
dim ker ~g is constant near the given point 7, then, replacing R” by ker ~. in the definition
of the number k, and the form ~, (and parametrizing ker ~ for # close to 7 with the help
of this space), we get a number &, > k, and a form 4,. If ind G} < +oo, then 4, > 0.
The procedure can be repeated, and we do this until we either get a strictly positive or
a zero form. If a strictly positive form (and uniformly, wit] zespect fo 1) is. sbtained as a
result for all 7 € (0,¢], then Theorem 1 remains tria/wi obvicu&/modification of the
Jacobi equation. Otherwise, the modified Jacobi equation has singularities. If we assume
in addition that z, depends on 7 in a piecewise analytic manner, then the singularities
are concentrated on the union of finitely many isolated points and closed subintervals of
[0,t]. Let & > 0; excising from [0,t] the §-neighborhood of the set of singularities, we
get an equation without singularities. Let 7(6) be the index computed according to the
recipe in Theorem 1 in terms of the solution of this “reduced” Jacobi equation. Then
1(6)- indyGY as 6 | 0.

All-Union Institute of Scientific and Technical Information
Moscow

Received 1/MAR/85

BIBLIOGRAPHY

1. V. I. Arnol'd, Mathematical methods in classical mechanics, “Nauka”, Moscow, 1974; English
transl., Springer-Verlag, 1978.

2. M. R. Hestenes, Calculus of Variations and Control Theory (Proc. Sympos., Madison, Wisc.,
1975), Academic Press, 1976, pp. 289-304.

3. A. V. Sarychev, Mat. Sb. 113(155) (1980), 464-486; English transl. in Math. USSR Sb. 41 (1982).

4. Gérard Lion and Michele Vargne, The Weil representation, Maslov index and theta series,
Birkhauser, 1980.

5. A. A. Agrachev and R. V. Gamkrelidze, Dokl. Akad. Nauk SSSR 284 (1985), 777-781; English
transl. in Soviet Math. Dokl. 32 (1985).

Translated by H. H. MCFADEN

395




