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Abstract
We study controllability issues for 2D and 3D Navier-Stokes (NS) sys-

tems with periodic boundary conditions. The systems are controlled by
a degenerate (applied to few low modes) forcing. Methods of di�erential
geometric/Lie algebraic control theory are used to establish global control-
lability of �nite-dimensional Galerkin approximations of 2D and 3D NS
and Euler systems, global controllability in �nite-dimensional projection
of 2D NS system and L2-approximate controllability for 2D NS system.
Beyond these main goals we obtain results on boundedness and contin-
uous dependence of trajectories of 2D NS system on degenerate forcing,
when the space of forcings is endowed with so called relaxation metric.
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1 Introduction

In the present paper we deal with 2- and 3- dimensional Navier-Stokes equations
(2D and 3D NS systems) with periodic boundary conditions controlled by a
nonrandom degenerate forcing

∂u/∂t + (u · ∇)u +∇p = ν∆u + F (t, x), (1)
∇ · u = 0. (2)

The word "degenerate" means that F (t, x) is a "low-order" trigonometric poly-
nomial with respect to x, i.e. sum of a "small number" of harmonics: F (t, x) =∑

k∈K1 vk(t)eik·x, K1 is �nite. The word "controlled" means that the compo-
nents vk(t), k ∈ K1, t ∈ [0, T ] of the forcing are controls at our disposal; these
are measurable essentially bounded functions. In fact along our presentation
the controls are piecewise-continuous.
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Our goal is obtaining controllability results for the 2D and 3D systems (1)-
(2) and for their �nite-dimensional Galerkin approximations. More precisely
we study global controllability for Galerkin approximations of 2D and 3D NS
systems with periodic boundary conditions. Besides for the 2D NS system we
study so called, controllability in �nite-dimensional observed projection and L2-
approximate controllability. Exact de�nitions and detailed problems setting are
provided in the Section 3.

There has been an extensive study of controllability of the Navier-Stokes
and Euler equations in particular by means of boundary control. There are var-
ious results on exact local controllability of 2D and 3D Navier-Stokes equations
obtained by A.Fursikov, O.Imanuilov, global exact controllability for 2D Euler
equation obtained by J.-M. Coron, global exact controllability for 2D Navier-
Stokes equation by A.Fursikov and J.-M. Coron. We refer the readers to the
book [9] and to the surveys [10] and [7] for further references.

Our problem setting di�ers from the above results by the class of degenerate
distributed controls which is involved.

The structure of the paper is the following. The problem setting in the
Section 3 is preceded by the Section 2 which contains a necessary minimum of
standard preliminary material on 2D and 3D NS systems.

Section 4 contains new (as far as we can judge) results on boundedness and
continuity of solutions of 2D NS systems with respect to degenerate forcing.
The di�erence with the classical results is in that we endow the space of forcings
with rather weak topology determined by so called relaxation metric. This is
an initial but important step towards a study of the NS and other classes of
evolution PDE subject to relaxed (controlled) forcing. We will provide more
comment on this subject elsewhere.

In the Section 5 we collect results and methods from geometric control theory
which concern controllability of �nite-dimensional nonlinear control systems;
most of these results are known. In Sections 6,7 we proceed with application of
these methods to �nite-dimensional Galerkin approximations of the 2D and 3D
NS systems. Global controllability results for the Galerkin approximations are
formulated and proven in the section 8. These controllability results are also
valid, when ν = 0, i.e. hold for Galerkin approximations of 2D and 3D Euler
systems which describe movement of incompressible ideal (inviscid) �uid.

The rest of the paper is devoted to controllability of 2D NS (with ν > 0)
system. We derive a su�cient condition (Theorem 9) for global controllabil-
ity in �nite-dimensional observed projection and su�cient condition for global
approximate controllability (Theorem 10) for the 2D NS system. Section 11
contains descriptions of so-called "saturating sets" of controlled modes which
su�ce to guarantee the global approximate controllability. Sections 12 and 13
contain the proofs of the Theorems 9, 10.

Inside the sections the material is organized in relatively small subsections,
each containing few results, de�nitions, notions etc. These latter are numbered
by the numbers of corresponding subsection: e.g. Proposition 4.6 means Propo-
sition from the Subsection 4.6 etc.

The authors are grateful to S.B. Kuksin for inspiring conversations on the
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subject and to A.V.Fursikov for useful comments and suggestions of improve-
ments of the text.

2 Preliminaries on Navier-Stokes Systems

2.1 3D Navier-Stokes System: spectral method, Galerkin
approximations

Consider 3D Navier-Stokes equation with a nonrandom forcing

∂u/∂t + (u · ∇)u +∇p = ν∆u + v(t, x), (3)

under incompressibility condition (2).
We assume the boundary conditions to be periodic, i.e. the domain of de�-

nition of the R3-valued function u to be 3-dimensional torus T3.
To reduce the equation (3) to an in�nite-dimensional system of ODE we

use "spectral algorithm" (see [11]). It invokes the Fourier expansion of solution
u(t, x) in a series with respect to the basis of eigenfunctions eik·x of the Laplacian
operator on T3:

u(x, t) =
∑

k

q
k
(t)eik·x, k ∈ Z3.

Here q
k
is vector-valued function. For u to satisfy the incompressibility

condition the coe�cients q
k
(t) must be orthogonal to respective k : q

k
· k = 0.

Similarly we introduce the expansions for the pressure and the forcing:

p(x, t) =
∑

k

p
k
(t)eik·x, v(x, t) =

∑
k

vk(t)eik·x, k ∈ Z3.

We assume that the forcing has zero average (v0 ≡ 0). Then changing the
reference frame to the one uniformly moving with the center of mass we may
assume

∫
u dx = 0 and hence q

0
= 0. It is known that the pressure term can

be separated from equations for q
k
and these latter can be written in the "ODE

form":

q̇
k

= −i
∑

m+n=k

(q
m
· n)Πkq

n
− ν|k|2q

k
+ vk, k,m, n ∈ Z3, (4)

where Πk stays for the orthogonal projection of R3 onto the plane k⊥ orthogonal
to k. Formally we also should take the projection Πkvk(t) of the forcing; instead
the k-directed component of vk is taken into account by the pressure term.

Since u(x, t) is real-valued we have to assume: q̄
k

= q−k
.

Consider any subset G ⊂ Z3 and introduce Galerkin G-approximation of
the system (4) by projecting this equation onto the linear space spanned by
the harmonics eik·x with k ∈ G. It corresponds to keeping in the system (4)
only the equations for the variables q

k
with k ∈ G and changing the condition

k, m, n ∈ Z3 to k,m, n ∈ G.
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The result is a system of ODE or a control system

q̇
k

= −i
∑

m+n=k

(q
m
· n)Πkq

n
− ν|k|2q

k
+ vk, k,m, n ∈ G. (5)

In the absence of forcing and for zero viscosity ν there is a conservation law
for the Galerkin approximation (5).

Lemma 2.1 The value
∑

k〈qk
(t), q̄

k
(t)〉 is constant along each solution of the

equation (5) provided that ν = 0, vk(t) ≡ 0. �

2.2 2D Navier-Stokes system: vorticity, spectral method,
Galerkin approximations

We consider the NS system (1)-(2) in 2D case. The boundary conditions are
assumed to be periodic, i.e. u is de�ned on the 2-dimensional torus T2.

Let us introduce the vorticity

w = ∇⊥ · u = ∂u2/∂x1 − ∂u1/∂x2

of u. Applying the operator ∇⊥ to the equation (1) we derive the following
equation for w:

∂w/∂t + (u · ∇)w = ν∆w + v(t, x), (6)

where v(t, x) = ∇⊥ · F (t, x).
Notice that: i) ∇⊥ · ∇p = 0, ii) ∇⊥ ·∆u = ∆(∇⊥ · u);

iii) ∇⊥ · (u · ∇)u = (u · ∇)(∇⊥ · u) + (∇⊥ · u)(∇ · u) = (u · ∇)w,

for all u satisfying (2).
It is known that u satisfying (2) can be recovered in unique way (up to an

additive constant) from w.
From now on in the 2D case we will deal with the equation (6). Consider

the basis of eigenfunctions {eik·x} of the Laplacian on T2 and take the Fourier
expansion w(t, x) =

∑
k qk(t)eik·x and v(t, x) =

∑
k vk(t)eik·x. As far as w and

v are real-valued, we have w̄n = w−n, v̄n = v−n. We assume q0 = 0, v0 = 0.
Evidently ∂w/∂t =

∑
k q̇k(t)eik·x. To compute (u · ∇)w write the equalities

∇⊥ · u = w, ∇ · u = 0 as

−∂2u1 + ∂1u2 = w, ∂1u1 + ∂2u2 = 0.

From these latter we conclude (after di�erentiation and summation)

∆u2 = ∂1w =
∑

k

qk(t)(ik1)eik·x, ∆u1 = −∂2w = −
∑

k

qk(t)(ik2)eik·x.

Then

u1 =
∑

k

qk(t)(ik2/|k|2)eik·x, u2 = −
∑

k

qk(t)(ik1/|k|2)eik·x,
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and we obtain
(u · ∇)w =

∑
m+n=k

(m ∧ n)|m|−2qmqn,

where for m = (m1,m2), n = (n1, n2) the external product m∧n = m1n2−m2n1.
The 2D NS system results in in�nite-dimensional system of ODE for qk:

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + vk, k,m, n ∈ Z2. (7)

For any subset G ⊂ Z2 we introduce Galerkin G-approximation of the system
(6) or of the system (7) by projecting them onto the linear space spanned by
the harmonics {eik·x| k ∈ G}. The result is a �nite-dimensional control system

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + vk, k,m, n ∈ G, (8)

in RN where N is the cardinality of G.
Again for zero viscosity and under lack of forcing one has a conservation law.

Lemma 2.2 If ν = 0 and all vk(t) ≡ 0, then every solution of the system (8)
has constant norm:

(∑
k∈G |qk(t)|2

)1/2 ≡ const. �

From the previous Lemma one can easily conclude that the "uncontrolled"
Galerkin approximation with nonzero viscosity ν > 0 and with all vk vanishing
is dissipative: its solutions tend to the origin exponentially fast.

3 Navier-Stokes equation controlled by degener-

ate forcing. Problem setting

A natural and standard (see [5, 6]) way to view the NS systems is to represent
them as evolution equations in Hilbert spaces.

To introduce these spaces we consider Sobolev spaces H`(Ts) with the scalar
product de�ned as

〈u, u′〉` =
∑
α≤`

∫
Ts

(∂αu/∂xα)(∂αu′/∂xα)dx;

the norm ‖ · ‖` is de�ned by virtue of this scalar product.
Denote by H` the closures of {u ∈ C∞(Ts),∇ · u = 0} in the norms ‖ · ‖` in

the respective spaces H`(Ts), ` ≥ 0. The norms in H` will be denoted again
by ‖ · ‖`. We will study the dynamics of the NS systems in the spaces H0,H1

and H2. It will be convenient for us to rede�ne the norm of H1 by putting
‖u‖21 = 〈−∆u, u〉, and the norm of H2 by putting ‖u‖22 = 〈−∆u,−∆u〉.

We are interested in the case where the NS system is forced by a term v(·)
which is degenerate. This means that v(t, x) =

∑
k∈K1 vkeik·x, where K1 is a
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�nite set. The functions vk(·) with k ∈ K1 are controls at our disposal; they can
be chosen freely from the space of measurable essentially bounded functions.

We introduce a �nite set of observed modes indexed by k ∈ Kobs ⊂ Zj , j =
2, 3. The observed modes are reunited in so-called observed projection.

We assume Kobs ⊇ K1. As we will see, nontrivial controllability issues arise
only if K1 is a proper subset of Kobs. We identify the space of observed modes
with RN and denote by Πobs the operator of projection of solutions onto the
space RN of the observed modes.

We will represent the controlled 2D NS equation in the following split (con-
trolled -observed -nonobserved components) form:

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + vk, k ∈ K1, (9)

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk, k ∈ Kobs \ K1, (10)

Q̇ = B(q, Q) + ν∆Q. (11)

In the latter equation ν∆Q and B(q, Q) stay for the projections of the dis-
sipative term and of the nonlinear term of the NS system onto the space of
unobserved modes.

Galerkin approximation of the 2D NS system consists of the equations (9)-
(10) under an additional condition for the summation indices:

m,n ∈ Kobs. (12)

In the same way the controlled 3D NS equation can be written in the form:

q̇
k

= −i
∑

m+n=k

(q
m
· n)Πkq

n
− ν|k|2q

k
+ vk, k ∈ K1, (13)

q̇
k

= −i
∑

m+n=k

(q
m
· n)Πkq

n
− ν|k|2q

k
, k ∈ Kobs \ K1, (14)

Q̇ = B(q, Q) + ν∆Q, (15)

where with abuse of notation we denote again by B and ν∆Q the projections
of the nonlinear and the dissipative terms. Galerkin approximation of the 3D
NS system consists of the equations (13)-(14) completed by (12).

3.1 Controllability of Galerkin approximations

De�nition 3.1 A Galerkin Kobs-approximation of 2D or 3D Navier-Stokes sys-
tems is globally controllable if for any two points q̃, q̂ in RN there exists T > 0
and a control which steers in time T this Galerkin approximation from q̃ to q̂.
It is time-T globally controllable if T can be chosen the same for all q̃, q̂. �
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3.2 Controllability in observed projection

De�nition 3.2 The (2D or 3D) Navier-Stokes system is globally controllable
in observed projection if for any q̂ ∈ RN and any ϕ̃ ∈ H1 there exists T > 0 and
a control which steers in time T the controlled Navier-Stokes system from ϕ̃ to
some ϕ̂ with Πobs(ϕ̂) = q̂. The system is time-T globally controllable if one can
choose T the same for all q̂, ϕ̃. �

Remark 3.2 In other words the system is globally controllable in observed pro-
jection if its attainable set (from each point) is projected by Πobs onto the whole
space of observed variables. �

On the contrast with the previous de�nition the evolution of �nite-dimen-
sional projection of trajectories is a�ected by the in�nite-dimensional dynamics
(11) or (15) correspondingly.

3.3 L2-approximate controllability

De�nition 3.3 The 2D Navier-Stokes system is time T globally L2-approxi-
mately controllable, if for any two points ϕ̃, ϕ̂ ∈ H1 and any ε > 0 there exists
T > 0 and a control which steers in time T the controlled NS system from ϕ̃ to
the ε-neighborhood of ϕ̂ in the norm ‖ · ‖0 (or, the same, in the norm L2). �

3.4 Problem setting

In the present paper the following questions are addressed.
Question 1. Under what conditions the �nite-dimensional Galerkin ap-

proximations (9)-(10)-(12) and (13)-(14)-(12) of the 2D and 3D NS systems are
globally controllable? �

Question 2. Under what conditions the systems (9)-(10)-(11) and (13)-
(14)-(15) are globally controllable in observed projections? �

Question 3. Under what conditions the 2D and 3D NS systems are globally
L2-approximately controllable? �

Below we manage to answer the Question 1 for 2D and 3D controlled NS
systems and the Questions 2,3 for 2D controlled NS system.

4 Relaxation of forcing for 2D NS systems: con-

tinuity and boundedness results

In this Section we establish some results on continuity and boundedness of
solutions of degenerately forced 2D NS system with respect to the forcing. We
assume the space of forcings to be endowed with a weak topology determined by
so-called relaxation metric. These results, will be used below in Section 12 for
proving controllability in observed projection; besides they provide some insight
on application of relaxed controls for NS and other classes of PDE systems. We
will comment more on this subject elsewhere.
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4.1 Relaxation metric

De�nition 4.1 (see e.g. [12]) The relaxation pseudometric in the space
L1
(
[0, T ], Rd

)
of Lebesgue integrable functions u(t) is de�ned by the seminorm

‖u(·)‖rx = max
t∈[0,T ]

{∥∥∥∥∫ t

0

u(τ)dτ

∥∥∥∥
Rd

}
.

The relaxation metric is obtained by identi�cation of functions whose di�erence
vanishes for almost all τ ∈ [0, T ]. �

4.2 Forcing/trajectory and forcing/observation maps

De�nition 4.2 Let us �x initial condition for trajectories of the controlled 2D
or 3D NS system.

The correspondence between the forcing (control) - v(·), which can be treated
as Rd-valued function, and the corresponding trajectory (solution) of the NS
system is established by forcing/trajectory map (F/T -map).

The correspondence between the forcing (control) v(·) and the observed pro-
jection q(t) (an RN -valued function) of the corresponding trajectory is estab-
lished by forcing/observation map (F/O-map).

If NS system is considered on interval [0, T ], then the map F/OT : v(·) 7→
q(T ) will be called end-point map. �

Remark 4.2 i) In the terminology of control theory the �rst two maps would
be called input/trajectory and input/output maps correspondingly.

ii) Evidently time-T global controllability of the NS system in observed pro-
jection is the same as surjectiveness of the end-point map F/OT . �

All the results we formulate and prove in this section concern 2D NS systems
controlled by degenerate forcing. The time interval [0, T ] is supposed to be �nite.

4.3 Boundedness properties of forcing/trajectory map

Consider a set Forc of degenerate forcings v(t, x) =
∑

k∈K1 vk(t)eik·x, which we
identify with v(t) = (vk(t)) ∈ L∞([0, T ]; Rd); the index k varies in K1, d = ]K1.
The forced 2D NS system is treated as an evolution equation in H1.

Proposition 4.3 Assume the set Forc of degenerate forcings to be bounded
in the relaxation metric. Fix the time interval [0, T ] and the initial condition
w(0) = w0 ∈ H1 for the 2D NS system. Then the forcing/trajectory map,
restricted to Forc, is bounded: ∃b such that for the corresponding trajectories
wt of the 2D NS equation (6) there holds vrai supt∈[0,T ] ‖wt‖1 ≤ b. �

The previous result can not be reduced to classical results on boundedness
of solutions of 2D NS systems because the set of forcings can be bounded in the
relaxation metric while being unbounded in L∞ or L2 metric.

8



Example 4.3. Consider a family of fast oscillating functions with large mag-
nitudes: v(t;ω) = ω1/2 cos ωt, ω > 0. Obviously ‖v(t;ω)‖L∞[0,T ] = ω1/2 and
‖v(t;ω)‖L2[0,T ] = ω1/2

√
T/2+o(ω1/2), as ω → +∞, i.e. the family is unbounded

in both L∞ and L2-norms. Still this family is bounded in the relaxation metric
and even tends to 0 as ω → +∞, as far as the primitives V (t;ω) = ω−1/2 sinωt
tend uniformly to 0. �

We will need another property which concerns equiboundedness of the varia-
tions (with respect to the time variable t) of the solutions wt with respect to the
time variable t. It is more convenient to deal with (stronger) equiboundedness
of
∫ T

0
‖ẇt‖20dt.

If a set of degenerate forcings is bounded, say, in L1-metric, then one can
derive equiboundedness of the variations of the solutions wt from classical results
on NS systems (e.g. see [5]). If the set Forc of degenerate forcings is just
bounded in the relaxation metric, and the variations of the primitives Vt are
not equibounded, it is hard to expect the corresponding solutions wt to have
bounded variations. In fact it is not true. Nevertheless subtracting from the
solution wt the corresponding primitive Vt of the forcing (we identify Vt with
the sum

∑
k∈K1 Vk(t)eik·x) we end up with functions yt, whose variations are

equibounded. This is the contents of the following Lemma, in which J stays
for primitivization: J : v(·) 7→ V· =

∫ ·
0
v(τ)dτ .

Lemma 4.3 Assume Forc to be bounded in the relaxation metric. Fix the
time interval [0, T ] and the initial condition w(0) = w0 ∈ H1 for the 2D NS
system. Then the image of the map (F/T − J ), restricted to Forc, consists of
functions with equibounded variations with respect to t: ∃b′ such that for each
v(·) ∈ Forc, for its primitive Vt = J v, and for the corresponding trajectory wt

of the 2D NS system there holds:
∫ T

0
‖ ∂

∂t (wt − Vt)‖0dt ≤ b′. Moreover ∃b such
that

∫ T

0
‖ ∂

∂t (wt − Vt)‖20dt ≤ b. �

4.4 Continuity of the forcing/trajectory map

Here we establish some continuity properties of the forcing/observation and
the forcing/trajectory maps for the space of degenerate forcing endowed with
relaxation metric. Recall that we identify the observed projections with N -
dimensional vectors.

Theorem 4.4 Let the set Forc of (degenerate) forcings be bounded subset of
L∞([0, t]; Rd). Endow this set with the relaxation metric and endow the space
of trajectories of the 2D NS equation with L∞((0, T );H1)-metric. Then the
restriction of the forcing/trajectory map onto Forc is continuous. �

Corollary 4.4 Under the conditions of the previous Theorem the forcing/ob-
servation map is continuous with respect to the relaxation metric in the space of
forcings and the C0-metric in the space of RN -valued observed projections. �

For �nite-dimensional systems the continuity of forcing/trajectory map in
the metrics, mentioned in the previous Corollary, is known; see e.g. [12].
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4.5 Proof of the boundedness results

Proof of the Proposition 4.3. By our assumptions the set of the primitives V (·) =∫ ·
0
v(τ)dτ is bounded in the metric of C0([0, T ], Rd). Denote

∑
k∈K1 Vk(t)eik·x

by Vt(x). The forced 2D NS system can be written as

∂wt/∂t− ν∆wt = (ut · ∇)wt + ∂Vt/∂t, (16)

where
∇⊥ · ut = wt, ∇ · ut = 0. (17)

For some constant c > 0 there holds:

‖ut‖1 ≤ c‖wt‖0, ‖ut‖2 ≤ c‖wt‖1.

As far as Vt(x) are trigonometric polynomials in x, then for some B > 0 and
for all v(·) ∈ Forc (and for respective Vt(x)):

sup
t∈[0,T ]

‖V (t, ·)‖2 ≤ B. (18)

Let yt = wt − Vt. From the two previous estimates we conclude for some
c′ > 0:

‖ut‖1 ≤ c′(‖yt‖0 + 1), ‖ut‖2 ≤ c′(‖yt‖1 + 1). (19)

The equation (16) can be rewritten as:

∂yt/∂t− ν∆(yt + Vt) = (ut · ∇)(yt + Vt). (20)

We are going to estimate ‖yt‖0 and ‖yt‖1.
Multiplying both sides of the equation (20) by yt in H0 we obtain:

〈yt, ∂yt/∂t〉+ ν〈−∆yt, yt〉 = ν〈∆Vt, yt〉+ 〈(ut · ∇)yt, yt〉+ 〈(ut · ∇)Vt, yt〉. (21)

The �rst and the second summands in the left-hand side of (21) equal
1
2

∂
∂t‖yt‖20/2 and ν‖yt‖21 correspondingly.
The summand ν〈∆Vt, yt〉 in (21) admits an upper estimate:

ν|〈∆Vt, yt〉| ≤
ν

2
‖∆Vt‖20 +

ν

2
‖yt‖20 ≤

ν

2
‖Vt‖22 +

ν

2
‖yt‖20 ≤

ν

2
B2 +

ν

2
‖yt‖20.

We used (18) to arrive to the concluding inequality.
The summand 〈(ut ·∇)yt, yt〉 in (21) is known to vanish, while the summand

〈(ut · ∇)Vt, yt〉 admits an upper estimate (see [6, Section 6]):

|〈(ut · ∇)Vt, yt〉| ≤ c‖ut‖1‖∇Vt‖1‖yt‖0.

By (18) ‖∇Vt‖1 ≤ B. Involving (19) we conclude:

|〈(ut · ∇)Vt, yt〉| ≤ c′B(‖yt‖0 + 1)‖yt‖0 ≤ c2(‖yt‖20 + 1),

where c2 is a properly chosen constant.
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Substituting these estimates into (21) we arrive to the inequality

(∂/∂t)‖yt‖20 + ν‖yt‖21 ≤ a‖yt‖20 + b,

and after integration on an interval [0, τ ] ⊆ [0, T ] conclude with the inequality:

‖yτ‖20 − ‖y0‖20 + ν

∫ τ

0

‖yt‖21dt ≤ a

∫ τ

0

‖yt‖20dt + bτ. (22)

From (22) we derive

‖yτ‖20 ≤ ‖y0‖20 + a

∫ τ

0

‖yt‖20dt + bT.

By application of the Gronwall inequality we conclude:

‖yt‖20 ≤
(
‖y0‖20 + bT

)
eat, (23)

which proves the equiboundedness of ‖yt‖0. To conclude the boundedness of
‖wt‖0 = ‖yt +Vt‖0 it su�ces to observe that by (18) ‖Vt‖0 are equibounded for
all forcings from Forc and all t ∈ [0, T ].

Coming back to (22) we conclude:

ν

∫ τ

0

‖yt‖21dt ≤ a

∫ τ

0

‖yt‖20dt + bT + ‖y0‖20. (24)

Hence for some A > 0: ∫ τ

0

‖yt‖21dt ≤ A, (25)

as long as v ∈ Forc and τ ∈ [0, T ].
To arrive to an upper estimate for ‖yt‖1 let us multiply both sides of the

equation (20) by (−∆yt) in H0 obtaining

〈−∆yt, ẏt〉+ν‖∆yt‖20 = −ν〈∆Vt,∆yt〉−〈(ut ·∇)Vt,∆yt〉−〈(ut ·∇)yt,∆yt〉. (26)

In the left-hand side of (26) 〈−∆yt, ẏt〉 can be substituted by 1
2

∂
∂t‖yt‖21.

At the right-hand side of (26) the summand ν〈∆Vt,∆yt〉 admits an estimate:

|ν〈∆Vt,∆yt〉| ≤
ν

2
‖∆yt‖20 +

ν

2
‖∆Vt‖20 ≤

ν

2
‖∆yt‖20 +

νB2

2
. (27)

The summand 〈(ut · ∇)Vt,∆yt〉 at the right-hand side of (26) admits an
estimate (see [6, Section 6]) for some choice of constants c̄, c′′:

|〈(ut · ∇)Vt,∆yt〉| ≤ c̄‖ut‖1‖∇Vt‖1‖∆yt‖0 ≤
c̄2

ν
‖ut‖21‖∇Vt‖21 +

+(ν/4)‖∆yt‖20 ≤
c̄2B2

ν
(‖yt‖0 + 1)2 + (ν/4)‖∆yt‖20 ≤ c′′ + (ν/4)‖∆yt‖20.

To arrive to the concluding inequality uniform boundedness of ‖yt‖0 is used.
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The summand 〈(ut ·∇)yt,∆yt〉 at the right-hand side of (26) admits an upper
estimate:

|〈(ut · ∇)yt,∆yt〉| ≤ a‖ut‖2‖∇yt‖0‖∆yt‖0 ≤ a′(‖yt‖21 + 1)‖∆yt‖0 ≤

≤ 2a′

ν
(‖yt‖21 + 1)2 + (ν/8)‖∆yt‖20 ≤ a′′(‖yt‖41 + 1) + (ν/8)‖∆yt‖20,

for some choice of constants a, a′, a′′.
Substituting these estimates into (26) and integrating the resulting inequality

on an interval [0, τ ] ⊆ [0, T ] we obtain for some C > 0:

‖yτ‖21 − ‖y0‖21 + ν

∫ τ

0

‖∆yt‖20dt ≤ C + C

∫ τ

0

‖yt‖41dt +
7
8
ν

∫ τ

0

‖∆yt‖20dt. (28)

Hence for some C ′ > 0:

‖yτ‖21 ≤ C ′ + C

∫ τ

0

‖yt‖41dt, or, ‖yτ‖21 ≤ C ′ + C

∫ τ

0

γt‖yt‖21dt,

where γt = ‖yt‖21. By the Gronwall inequality:

‖yτ‖21 ≤ C ′eC
∫ τ
0 γtdt.

By (25)
∫ τ

0
γtdt =

∫ τ

0
‖yt‖21dt ≤ A uniformly. Then

‖yτ‖21 ≤ C ′eCA. �

Proof of the Lemma 4.3. To prove the equiboundedness of the variations of
yt = wt − Vt let us return to the equation (20) and multiply it by (∂/∂t)yt = ẏt

in H0. We obtain:

‖ẏt‖20 + ν〈−∆yt, ẏt〉 = ν〈∆Vt, ẏt〉+ 〈(ut · ∇)yt, ẏt〉+ 〈(ut · ∇)Vt, ẏt〉. (29)

The summand ν〈−∆yt, ẏt〉 at the left-hand side of (29) equals ν ∂
∂t (‖yt‖1)2.

At the right-hand side of (29) the summand ν〈∆Vt, ẏt〉 admits an upper
estimate

|ν〈∆Vt, ẏt〉| ≤
(
ν2‖∆Vt‖20/2 + ‖ẏt‖20/2

)
≤ ν2B2

2
+ ‖ẏt‖20/2.

To estimate the other two summands at the right-hand side of (29) we invoke
once more the results of [6, Section 6] together with (19). We obtain:

|〈(ut · ∇)yt, ẏt〉| ≤ b‖ut‖2‖∇yt‖0‖ẏt‖0 ≤
≤ c′2b2(‖yt‖1 + 1)2‖∇yt‖20 + ‖ẏt‖0/4 ≤ b′′ + ‖ẏt‖20/4.

(In the concluding inequality equiboundedness of ‖yt‖1 is used.) Also:

|〈(ut · ∇)Vt, ẏt〉| ≤ β‖ut‖1‖∇Vt‖1‖ẏt‖0 ≤ β′B(‖yt‖0 + 1)‖ẏt‖0 ≤ β′′ + ‖ẏt‖20/8,
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for a proper choice of β, β′, β′′; here we use equiboundedness of ‖yt‖0.
Substituting these estimates into (29) and integrating the resulting inequality

on [0, T ] we conclude for some C > 0:∫ T

0

‖ẏt‖20dt + ν‖yT ‖21 − ν‖y0‖21 ≤
∫ T

0

(
C + (7/8)‖ẏt‖20

)
dt,

from which we derive

(1/8)
∫ T

0

‖ẏt‖20dt ≤ ν‖y0‖21 + CT. � (30)

The following statement is an obvious corollary of the proofs of the Propo-
sition 4.3 and Lemma 4.3 (see (23) and (30)). It will be used in Section 12.

Corollary 4.5 Let the assumptions of the Proposition 4.3 hold. Then the so-
lutions of the equation (20) are equibounded:

∃b : sup
t∈[0,T ]

‖yt‖0 ≤ b. (31)

Besides if the assumptions of the Lemma 4.3 hold then these solutions have
equibounded variations with respect to t, moreover:

∃b′, c′ :
∫ T

0

‖ẏt‖20dt ≤ b′‖y0‖21 + c′T. � (32)

4.6 Proof of the continuity results via Lyapunov-Schmidt
type reduction

To prove the Theorem 4.4 and the Corollary 4.4 we will use a method which
reduces the whole study to a �nite-dimensional situation. Following [15] we call
this method Lyapunov-Schmidt type reduction.

We will consider the forced 2D NS system as an evolution equation in the
Hilbert space H1. Take the orthogonal splitting of H1 into the sum of �nite
dimensional subspace LN corresponding to �rst N harmonic modes and of
the in�nite-dimensional orthogonal complement L⊥N containing higher modes.
These spaces will be coordinatized by qN and QN correspondingly. We as-
sume that the observed projection and certainly also the forced component are
contained in LN .

Let us represent the 2D NS equation in the following concise form:

q̇N = f(qN , QN ,∇QN ) + v(t), (33)
Q̇N = ν∆QN + B(qN , QN ). (34)

The initial condition is �xed.
In the equation (33) f stays for the projection of the right-hand side of the

unforced NS system onto LN and all but the �rst κ1 components of the forcing

13



v(t) vanish identically. In the equation (34) linear operator ∆ and the nonlinear
operator B are projections onto L⊥N of the Laplacian and of the nonlinear term
of the NS equation correspondingly.

The idea of the Lyapunov-Schmidt type reduction is in proving that for
su�ciently large N the equation (34) can be uniquely solved with respect to
QN and that the "implicit function" qN (·) 7→ QN (·) is "Lipschitzian" in the
sense of the Proposition which follows below.

From classical results on boundedness of solutions of 2D NS systems we know
that if v(·) are chosen from some ball in L∞([0, T ]; Rκ1) then the solutions of
the 2D NS system are bounded by some ball Ω ⊂ L∞((0, T );H1). Denote by
ΩN

q ,ΩN
Q the orthogonal projections of this ball onto the spaces L∞((0, T );LN )

and L∞((0, T );L⊥N ) correspondingly.

Proposition 4.6 For su�ciently large N the equation (34) de�nes the unique
"implicit function" qN (·) 7→ QN

. de�ned on ΩN
q

⋂
C0((0, T ); RN ). Its range is

ΩN
Q

⋂
L∞ ((0, T );H1). This "implicit function" is Lipschitzian in the following

sense:

∀qN
2 (·), qN

1 (·) : ‖QN
t (qN

2 (·))−QN
t (qN

1 (·))‖H1 ≤ (35)
≤ `

∥∥(qN
2 (·)− qN

1 (·)
) ∣∣

[0,t]

∥∥
C0 = ` sup

τ∈[0,t]

|qN
2 (τ)− qN

1 (τ)|. �

Assuming the claim of the Proposition 4.6 to hold we will now complete the
proofs of the Theorem 4.4 and the Corollary 4.4. To simplify the notation we
write q, Q in place of qN , QN .

Let us substitute into the equation (33) the implicit function Q. (q(·)), de-
�ned by the previous Proposition. Transforming the resulting equation into
integral form we obtain the integral-functional equation

q(t) = q0 +
∫ t

0

f (q(τ), Qτ (q(·)) ,∇Qτ (q(·))) dτ +
∫ t

0

v(τ)dτ. (36)

Denote
∫ t

0
v(τ)dτ by V (τ).

Consider two solutions q′′(·), q′(·) of the equation (36) which correspond to
V ′′

t , V ′
t . Denote δq(·) = q′′(·)− q′(·), δV (·) = V ′′(·)− V ′(·) and let

ζ(t) = sup
τ∈[0,t]

‖δq(τ)‖.

The equation for δq(·) is:

δq(t) = δV (t) +∫ t

0

(f (q′′(τ), Qτ (q′′(·)) ,∇Qτ (q′′(·)))− (37)

−f (q′(τ), Qτ (q′(·)) ,∇Qτ (q′(·)))) dτ.

The vector-function f is polynomial, or more precisely, linear+quadratic
with respect to the components of q(τ), Q (q(τ)) ,∇Q (q(τ)). As far as q(·) ∈
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Ωq, Q· ∈ ΩQ, these components are bounded in H1-norm. By (35) Q(q(·)) is
Lipschitzian and we can estimate the di�erence under the integral in (37) as:

‖f (q′′(τ), Qτ (q′′(·)) ,∇Qτ (q′′(·)))− (38)
−f (q′(τ), Qτ (q′(·)) ,∇Qτ (q′(·))) ‖ ≤ L′′ζ(t).

Hence from (37) we arrive to the inequality

ζ(t) ≤ L′′
∫ t

0

ζ(τ)dτ + δV (t).

Applying the Gronwall inequality we conclude

ζ(t) ≤ L′′
∫ t

0

eL′′(t−τ)δV (τ)dτ + δV (t). (39)

Obviously this implies continuity of the map V (·) 7→ q(·) in C0-metrics and
hence the continuity of the map v(·) 7→ q(·) in the relaxation metric for v(·).
Thus we complete the proof of the Corollary 4.4.

As long as ‖Qτ (q′′(·)) − Qτ (q′(·)) ‖ can be estimated via ζ(t) according to
(35), while ζ(t) in its turn can be estimated via δV (τ) according to (39), we
arrive to the conclusion of the Theorem 4.4. �

4.7 Proof of the Proposition 4.6

The proof of the solvability of the equation (34) and of the Lipschitzian prop-
erty of the corresponding implicit function is based on a variant of �xed point
theorem for contractions.

Theorem 4.7 (�xed point theorem: parametric version) Let X, Σ be
metric spaces and X be complete. Let T : X × Σ → X be a map which is
uniform contraction with respect to the �rst argument:

∃β < 1 : ρX

(
T (x2, σ), T (x1, σ)

)
≤ βρX(x2, x1), ∀σ ∈ Σ,

and uniformly Lipschitzian with respect to the second argument:

∃L ≥ 0 : ρX

(
T (x, σ2), T (x, σ1)

)
≤ LρΣ(σ2, σ1), ∀x ∈ X.

Then for each σ ∈ Σ the map T possess a unique �xed point xσ : T (xσ, σ) = xσ,
and the map σ 7→ xσ is Lipschitzian. �

One can �nd the 'parametric version' of standard �xed point theorem, for
example, in [12] where T is assumed to be continuous with respect to the pa-
rameter σ and then the dependence σ 7→ xσ is proven to be continuous as well.
The proof of the existence and uniqueness of �xed point is standard. To prove
the Lipschitzian property evaluate ρX(xσ2 , xσ1) as follows:

ρX(xσ2 , xσ1) = ρX

(
T (xσ2 , σ2), T (xσ1 , σ1)

)
≤

≤ ρX

(
T (xσ2 , σ2), T (xσ1 , σ2)

)
+ ρX

(
T (xσ1 , σ2), T (xσ1 , σ1)

)
≤

≤ βρX(xσ2 , xσ1) + LρΣ(σ2, σ1).
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Rearranging terms we obtain

(1− β)ρX(xσ2 , xσ1) ≤ LρΣ(σ2, σ1),

which implies the Lipschitzian property.
To reduce our argument to the above formulated theorem let us introduce a

map µ : (Q., q(·)) 7→ Q′
., where Q′

. is the solution of the linear PDE

Q̇′
t = ν(∆Q′)t + B(q + Q)t, (40)

and q(·) is treated as a functional parameter. We assume the initial (for t = 0)
condition for Q′

t and Qt to be the same and �xed.
Evidently Q. is (for a given q(·)) the unique solution of the equation (34) if

and only if it is the unique "�xed point" of the map µ.
The following Proposition claims that for su�ciently large N µ is a uniform

contraction with respect to the pair (Q·, q(·)). It is even more than is needed
for the assumptions of the Theorem 4.7 to hold.

Proposition 4.7 For su�ciently large N the map Q· 7→ µ (Q·, q(·)) maps ΩN
Q

into itself and is a contraction with respect to the pair (Q·, q(·)) ∈ ΩN
Q × ΩN

q :

∃β < 1 : sup
t∈[0,T ]

‖µ
(
Q2

. , q(·)
)
|t − µ

(
Q1

. , q(·)
)
|t‖1 ≤

≤ β sup
τ∈[0,t]

(
‖q2(τ)− q1(τ)‖+ ‖Q2

τ −Q1
τ‖1
)
. �

4.8 Proof of the Proposition 4.7

We start with two technical results which provide some estimates for solutions
of linear PDE.

Consider the equation:
η̇t = ν(∆η)t + ft. (41)

Let the initial data η0 and ft belong to L⊥N . Then ηt remains in L⊥N for all t ≥ 0.
Besides the following fact holds

Lemma 4.8 Let λN be the minimal eigenvalue of the restriction of −∆ onto
the subspace L⊥N . Then

(‖(−∆η)t‖0)2 ≥ λN (‖ηt‖1)2 . (42)

In addition limN→+∞ λN = +∞. �

Assuming that t 7→ ‖ft‖0 is of class L∞ on [0, T ] let us estimate ‖ηt‖1.

Proposition 4.8 The solution of the equation (41) admits an estimate

‖ηt‖21 ≤ ‖η0‖21e−νλN t + t(f∞t )2/(ν2λN ), (43)

where f∞t = supτ∈[0,t] ‖fτ‖0. �
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Proof of the Proposition 4.8. Multiplying both parts of the equation (41) by
−∆ηt and rearranging the terms we obtain

(1/2)d (‖ηt‖1)2 /dt + ν (‖(∆η)t‖0)2 = 〈ft, (−∆η)t〉.

By Young inequality

|〈ft, (∆η)t〉| ≤ ν (‖(∆η)t‖0)2 /2 + (‖ft‖0)2 /2ν,

and hence we obtain

d (‖ηt‖1)2 /dt = −ν (‖(∆η)t‖0)2 + (‖ft‖0)2 /ν. (44)

Substituting (42) in (44) we conclude

d‖ηt‖21/dt + νλN‖ηt‖21 ≤ ‖ft‖20/ν. (45)

We derive (43) from (45) by application of the Gronwall inequality .
Observe that taking η0 = 0 in (43) we end up with the estimate:

‖ηt‖1 ≤ t1/2(f∞t )/(ν
√

λN ). � (46)

Returning to the proof of the Proposition 4.7 recall that the map µ is de�ned
via the linear PDE (40).

The equation (40) is a particular case of the equation (41) with ηt = Q′
t and

ft = B(q + Q)t, where B is the projection of the nonlinear term of the 2D NS
system onto L⊥N . The estimate (43) holds and we conclude:

‖Q′
t‖21 ≤ ‖Q′

0‖21e−νλN t + t sup
τ∈[0,t]

‖B(q(τ) + Qτ )‖20/(ν
√

λN )2. (47)

For large N, λN is large. As far as ‖B(u)‖0 is bounded on Ω we are able to
conclude from the latter inequality, that for large N and (q(·), Q.) ∈ Ωq × ΩQ

the corresponding Q′
. ∈ ΩQ.

To prove that µ is uniform contraction with respect to the pair (q(·), Q.) let
us now denote by ηt the di�erence ηt = µ(Q2

. , q
2(·))|t−µ(Q1

. , q
1(·))|t. Obviously

ηt belongs to L⊥N and satis�es the equation (41) where ft is now de�ned as:

ft = B(q2 + Q2)t −B(q1 + Q1)t; (48)

besides η0 = 0. Again B is the projection of the nonlinear term of the 2D NS
system onto L⊥N . Once again the estimate (46) is valid and we only have to
estimate f∞t .

As long as the nonlinearity term of the Navier-Stokes system equals B(u) =
(u · ∇)u, one can represent the di�erence B(u2)−B(u1) as:

B(u2)−B(u1) =
(
(u2 − u1) · ∇

)
u2 +

(
u1 · ∇

)
(u2 − u1).

Assuming ui = qi + Qi, i = 1, 2, we may estimate from above the function ft

de�ned by (48) as:

‖ft‖0 ≤ c1‖u2
t − u1

t‖1 ≤ c2

(
‖q2(t)− q1(t)‖+ ‖Q2

t −Q1
t‖1
)
,
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with c1 , which can be chosen the same for all u2, u1 ∈ Ω.
Therefore

f∞t ≤ c3 sup
τ∈[0,t]

(
‖q2(τ)− q1(τ)‖+ ‖Q2

τ −Q1
τ‖1
)
, (49)

and recalling the de�nition of ηt we obtain from (46) and (49)

‖µ(Q2
. , q

2(·))|t − µ(Q1
. , q

1(·))|t‖1 ≤ (50)
≤ cν−1(λN )−1/2t1/2 sup

τ∈[0,t]

(
‖q2(τ)− q1(τ)‖+ ‖Q2

τ −Q1
τ‖1
)
.

Again if N , and therefore λN , are su�ciently large, then (50) implies that
µ : (q(·), Q(·)) 7→ Q′

t is a contraction. �

Corollary 4.8 For the implicit function qN (·) 7→ QN
. introduced in the Propo-

sition 4.6 there holds (provided that N is large enough):

sup
τ∈[0,t]

‖Qτ‖21 ≤ ‖Q0‖21 + cν−2λ−1
N t sup

τ∈[0,t]

‖(q(τ)‖2, (51)

where c does not depend on N. �

Proof. Indeed Q· is a �xed point of the map µ de�ned by the linear PDE
(40). Therefore an analogous to (47) estimate holds for Q·:

‖Qt‖21 ≤ ‖Q0‖21e−νλN t + t sup
τ∈[0,t]

‖B(q(τ) + Qτ )‖20/
(
ν
√

λN

)2

. (52)

There holds

sup
τ∈[0,t]

‖B(q(τ) + Qτ )‖0 ≤ c4 sup
τ∈[0,t]

(‖q(τ)‖+ ‖Qτ‖1) .

Then from (52) we obtain (51) for large N . �

5 Geometric nonlinear control: controllability via

extension of control systems

In this section we brie�y survey some controllability results and the methods of
geometric nonlinear control theory by which they can be obtained.

We will consider real-analytic nonlinear control systems ẋ = f(x, u), or, in
other words, collections F of real-analytic vector �elds f(·, u) in RN parame-
terized by u ∈ U ⊂ Rr. Our admissible controls u(t) are measurable essentially
bounded functions of time.
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5.1 Attainable sets and global controllability

De�nition 5.1 A point x̃ is attainable from x̂ in time T for the system ẋ =
f(x, u) if for some admissible control ũ(·) the corresponding trajectory, which
starts at x̂ at t = 0, attains x̃ at t = T . A point x̃ is attainable from x̂ if it
is attainable from x̂ in some time T ≥ 0. The set of points attainable from x̂
in time T is called time-T attainable set from x̂ and is denoted by AT

F (x̂). The
set of points attainable from x̂ is called attainable set from x̂ and is denoted by
AF (x̂). We say that the system is globally controllable (globally controllable in
time T ) from x̂ if its attainable set AF (x̂) (attainable set AT

F (x̂) in time T )
from x̂ coincides with the whole state space. �

5.2 Extension of control systems

We de�ne (loosely following terminology of [14, Ch. 3]) the extension or, alter-
natively completion or, saturation of a control system.

De�nition 5.2 The family F ′ of real analytic vector �elds is an extension of
F if F ′ ⊃ F and the closures of the attainable sets AF (x̃) and AF ′(x̃) coincide.
The family F ′ of real analytic vector �elds is a �xed-time extension of F if
F ′ ⊃ F and ∀T > 0 the closures of the time-T attainable sets AT

F (x̃) and
AT
F ′(x̃) coincide. �

The inclusions AF (x̃) ⊂ AF ′(x̃), AT
F (x̃) ⊂ AT

F ′(x̃) are obvious as is the
following Lemma.

Lemma 5.2 If an extension F ′ of a system F is globally controllable, then the
attainable set AF (x̃) of F is dense in the state space. �

Our idea is to proceed with a series of extensions of a control system in order
to arrive to a system for which the controllability can be veri�ed.

It looks like this method can at its best ensure only "approximate controlla-
bility" meaning that the attainable set of the original system is dense in the state
space RN . To overcome this problem we formulate at the end of this Section the
condition under which the approximate controllability implies controllability.

5.3 Extension by convexi�cation

There are di�erent ways of extension of a control system; we refer to [2] and to
the references therein for more details. Here we will use two methods: the �rst
one is classical and underlies the theory of relaxed controls (see [12, 13, 17]).

Let

coF = {
m∑

i=1

βifi, fi ∈ F , βi ∈ Cω(RN ), βi ≥ 0,
m∑

i=1

βi ≡ 1, i = 1, . . . ,m},

where Cω(RN ) is algebra of real-analytic functions in RN .
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Proposition 5.3 For the systems coF and F the closures of their time-T at-
tainable sets coincide. �

Proof of this result and of its modi�cations can be found in [2, Chapter 8],
[14, Chapter 3],[12, Chapters II,III ].

5.4 Extension by reduction

Another method arises from our previous work [3] where it is called reduction
of a control-a�ne system. Though reduction sounds like something opposite to
extension this is only a seeming contradiction, as far as it is the state space not
the system which is being reduced.

Consider control-a�ne nonlinear system:

q̇ = f(q) + G(q)v(t), q ∈ RN , v ∈ Rr, (53)

where G(q) =
(
g1(q), . . . , gr(q)

)
, and f(q), g1(q), . . . , gr(q) are complete real-

analytic vector �elds in RN ; v(t) = (v1(t), . . . , vr(t)) is a control.
We will use the notation

−→
exp

∫ t

0
Xτdτ introduced in [1] and called right

chronological exponent. It denotes the �ow generated by the time-variant vector
�eld Xτ or, the same, by the time-variant ODE ẋ(τ) = Xτ (x(τ)). If the vector
�eld is time-invariant Xτ ≡ X, then the corresponding �ow is denoted by etX .
If P is a di�eomorphism, then P−1

∗ X stays for the pullback of a vector �eld X
by (the di�erential of) the di�eomorphism P−1.

Proposition 5.4 (see [3]) Assume that the vector �elds g1(q), . . . , gr(q), are
mutually commuting:

[
gi, gj

]
= 0, ∀i, j. Then the �ow of the system (53) can

be represented as a composition of �ows:

−→
exp

∫ t

0

(f + Gv(τ)) dτ =
−→
exp

∫ t

0

(e−GV (τ))∗fdτ ◦ eGV (t), (54)

where V (t) =
∫ t

0
v(s)ds. �

The equation for the �rst factor of the composition in the right-hand side is

ẋ =
((

e−GV (τ)
)
∗
f
)

(x), (55)

and is called reduced control system for (53).
When studying the forced Navier-Stokes equation we deal with constant

controlled vector �elds g1, . . . , gr, for which the commutativity assumption holds
automatically. Besides in this particular case the formula (54) takes a simpler
form and can be easily proven.

Indeed, assuming G(q) ≡ G to be a constant matrix, we proceed with a
time-variant substitution of variable q = y + GV (t) = y + G

∫ t

0
v(s)ds in the

equation (53). Then we arrive to an equation for y:

ẏ = f (y + GV (t)) . (56)
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It is an elementary exercise to verify that the latter equation coincides with
(55), if G is constant.

The result which will be instrumental in our reasoning is contained in [3,
Propositions 1,1'] and is based on the formulae (54) and (56) and on the results
on continuous dependence of �ows on the right-hand side of ODE. It says that
one can reduce the study of controllability of the system (53) to the study of
controllability of the reduced control system (55) on the quotient space RN/G,
where G is the linear span of the (constant) values of the vector �elds g1, . . . , gr.

De�ne
Fr = {f(·+ V )| V ∈ Rr}. (57)

Theorem 5.4 (cf. [3, Propositions 1,1']) If the controlled vector �elds in (53)
are constant then ∀T > 0 the closure of the attainable set AT

F (x̃) coincides with
the closure of AT

Fr (x̃)+ span{GV |V ∈ Rr} where the reduced control system Fr

is de�ned by (57) or, the same, by (55). �

Evidently the fact of system being control-a�ne is important for the validity
of the formula (54) and therefore of the previous Theorem.

Remark 5.4 The reduction procedure can be interpreted as a particular type
of Lie extension (see [14, Ch.3]). The advantage of this particular type of ex-
tension is in explicit formula (54). This will be helpful in our treatment of the
(nontruncated) 2D NS system. �

5.5 Bracket generating+approximate controllability⇒ glo-
bal controllability

We still need to eliminate the gap between the eventual approximate control-
lability and controllability of a control a�ne system (53). To accomplish it we
invoke "full Lie rank" or, "bracket generating" property.

De�nition 5.5 The system (53) possesses full Lie rank or, equivalently, is
bracket generating if for every point x0 ∈ RN the iterated Lie brackets (eval-
uated at x0) of the vector �elds f, g1, . . . , gr span the whole RN . �

This condition is related to accessibility property, which means nonvoidness
of the interior of attainable set from every point.

Theorem 5.5 (see [14, 2] and references therein). If the control system (53)
is real-analytic then it is accessible if and only if it is bracket generating.

If the control system (53) is C∞-smooth and is bracket generating then it is
accessible. �

It is known that for a bracket generating system approximate controllability
implies controllability (see [14, Ch.3, �1.1]).

Proposition 5.5 If a system is bracket generating and its attainable set is
dense in RN , then this attainable set coincides with RN . �
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6 Extension for Galerkin approximations of the

controlled 2D Navier-Stokes equations

We shall use the extension techniques surveyed in the previous section for es-
tablishing global controllability.

6.1 Reduction of the 2D NS system

Let us start with the reduction of the control-a�ne system (9)-(10).
The controlled vector �elds are constant gk = ∂/∂qk, k ∈ K1, and hence we

may apply the formula (57) and the Theorem 5.4. The "drift" (or uncontrolled)
vector �eld f is quadratic+linear:

f =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk.

There are two summands - (m∧n)|m|−2qmqn and (n∧m)|n|−2qmqn - under
the summation sign, which contain the product qmqn. They annihilate if |m| =
|n|. Grouping these terms in one we rewrite the expression for the drift term
as:

f =
∑

m+n=k,|m|>|n|

(m ∧ n)
(
|m|−2 − |n|−2

)
qmqn − ν|k|2qk.

According to (57) the right-hand side of the reduced system is:

q̇k = −ν|k|2 (qk − χ(k)vk) + (58)

+
∑

m+n=k,|m|>|n|

(m ∧ n)
(
|m|−2 − |n|−2

)
(qm − χ(m)vm) (qn − χ(n)vn) ,

where χ(·) is the characteristic function of K1 : χ ≡ 1 on K1 and vanishes
outside K1.

Besides according to the Theorem 5.4 we can move freely along the directions
ek, k ∈ K1.

Let us enumerate the elements m ∈ K1 in some order and form the vector
v = (vm1 , . . . , vmκ1 ) , κ1 = ]K1.

The right-hand side of the reduced system (58) is a second-degree polynomial
map with respect to (the components of) V with coe�cients depending on q.
Let us represent this polynomial map as V(v) = V(0) + V(1)v + V(2)(v), where
V(0),V(1),V(2) stay for the free, the linear and the quadratic terms respectively.
Evidently V(0) is the projection of the right-hand side of the unforced Navier-
Stokes equation onto the quotient space.

We are not able to apply immediately another reduction to the system (58),
as we would wish, because this system is not control-a�ne. Instead we will
proceed with an extension and then extract from the extended system a control-
a�ne subsystem which is similar to (9)-(11).

Let us �rst demonstrate, that certain constant vector �elds are contained in
the image of the control-quadratic term V(2).
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Proposition 6.1 Let K(2) be the set of k ∈ Z2 for which there exist m,n ∈ K
such that m ∧ n 6= 0

∧
‖m‖ 6= ‖n‖

∧
m + n = k. Then the image of V(2)

contains all the vectors {±ek| k ∈ K(2)} from the standard base. �

Proof. The projection of the vector-valued quadratic form V(2)(V ) onto ek

equals

V(2)
k (v) =

∑
m+n=k,|m|>|n|

(m ∧ n)
(
‖m‖−2 − ‖n‖−2

)
χ(m)χ(n)vmvn.

For this projection to be nonvanishing there must be some m,n ∈ K1 such
that m + n = k and |m| > |n|. Construct two vectors v+, v− by taking v±s = 0
for s 6= k

∧
s 6= m, and then taking vm = vn = 1 for v+ and vm = −vn = 1 for

v−.
A direct calculation shows that

V(2)(v+) = −V(2)(v−) = (m ∧ n)
(
|m|−2 − |n|−2

)
ek. �

6.2 Convexi�cation of the 2D NS system

Now we will proceed with an extension by convexi�cation.

Lemma 6.2 The convex hull of the image of V(1) +V(2) contains the (indepen-
dent of q) linear space E2 spanned by {ek| k ∈ K(2)}. �

Proof. From the previous Proposition for each k ∈ K(2) there exists v such
that V(2)(v) = ek, . Obviously V(2)(−v) = ek, while V(1)(v) = −V(1)(−v).
Hence

(1/2)
((
V(1) + V(2)

)
(v) +

(
V(1) + V(2)

)
(−v)

)
= ek.

We can apply the same argument to −ek and to all ±ek, k ∈ K(2), arriving to
the conclusion of the corollary. �

6.3 Extraction of a control-a�ne subsystem

We have established that the convex hull of the right-hand side (evaluated at q)
of the reduced system (58) contains the a�ne space V(0)(q) + E2. We consider
this a�ne space as the right-hand side (evaluated at q) of a new control-a�ne
system. The latter can be written as:

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + vk, k ∈ K2, (59)

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk, k ∈ Kobs \
(
K1
⋃
K2
)

. (60)

Recall that we can move freely in the directions ek, k ∈ K1.
If the image of the attainable set of this latter system under the canonical

projection RN → RN/G coincides with RN/G or, in other words, the (linear)
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sum of this attainable set with the linear subspace G coincides with RN , then
according to the Theorem 5.4 the attainable set of the original system will be
dense in RN and hence, by the Proposition 5.5, will coincide with RN .

Therefore we managed to reduce the study of controllability of the system
(9)-(11) to the study of a similar system with smaller state space.

Remark 6.3 Observe that all the results of this Section remain valid for ν = 0,
i.e. for controlled 2D Euler system describing motion of ideal �uid. �

7 Extension for Galerkin approximations of the

controlled 3D Navier-Stokes equations

In this section we repeat the "reduction+extension+extraction" procedure for
the control system (13)-(14)

q̇
k

= −i
∑

m+n=k

(q
m
· n)Πkq

n
− ν|k|2q

k
+ vk.

7.1 Reduction

As in the previous Section the controlled vector �elds are constant gm = ∂/∂q
m
,

m ∈ K1. The "drift" vector �eld f in (13)-(14) is quadratic+linear:

f = −i
∑

m+n=k

(q
m
· n)Πkq

n
− ν|k|2q

k
.

The result of the reduction is the system:

q̇
k

= −i
∑

m+n=k

(
(q

m
− χ(m)vm) · n

)
Πk

(
q

n
− χ(n)vn

)
− ν|k|2q

k
, (61)

where χ(·) is the characteristic function of K1.
Let us enumerate the elements m ∈ K1 in some order and form the vector

v = (vm1 , . . . vmκ1 ) , κ1 = ]K1.
The right-hand side of the reduced system (61) is a second degree polynomial

map with respect to (the components of) v and with coe�cients depending on
q. We represent this polynomial map as V(v) = V(0) + V(1)v + V(2) where
V(0),V(1),V(2) are the free, the linear and the quadratic terms respectively.

We proceed as in the previous section in order to arrive to an a�ne-control
system with constant controlled vector �elds. We start with the control-quadratic
term V(2)(v).

The k-th component of the vector-valued quadratic form V(2)(v) equals

V(2)
k (v) = −i

∑
m+n=k

(χ(m)vm · n) Πk (χ(n)vn) .
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Let us �x some m,n ∈ K1 such that m + n = k and pick the corresponding
summand (vm · n) Πk (vn) in the expression for V(2)

k (v). Recall that by de�nition
vm ∈ m⊥, vn ∈ n⊥. Let us consider the 4-dimensional linear space Lmn of all
v de�ned by the relations vk = 0, for k 6= m

∧
k 6= n.

First observation is that, similarly to the 2D case, if m and n are collinear,
then the (two) terms containing simultaneously vm and vn vanish. Indeed, these
terms include either the factor vm · n, or the factor vn ·m, and if m and n are
collinear, then vm · n = vm ·m = 0, vn ·m = vn · n = 0.

Assuming now m ∧ n 6= 0 let us study the restriction of the quadratic map
V(2)(v) onto the space Lmn. As far as vm ∈ m⊥∧ vn ∈ n⊥ are independent
we may consider instead the bilinear (m + n)⊥-valued form on m⊥ × n⊥ or the
corresponding linear operator V̄(2) which maps the tensor product m⊥⊗n⊥ into
(m + n)⊥.

Choose the base in the 2-dimensional space m⊥: e1m = m ∧ n, e2m = Πmn
and also the base in n⊥: e1n = m ∧ n, e2n = Πnm. Note that e1n ⊥ e2n and
e1m ⊥ e2m. Obviously eαm ⊗ eβn, α, β = 1, 2, form the basis of the tensor
product m⊥ ⊗ n⊥.

A direct computation shows that V̄(2)(e1m ⊗ e1n) = 0, while both vectors
V̄(2)(e1m⊗e2n) and V̄(2)(e2m⊗e1n) are collinear to the vector (m∧n) ∈ (m+n)⊥.
What rests is to compute

V̄(2)(e2m ⊗ e2n) = Πm+n ((Πmn · n) e2n + (Πnm ·m) e2m) .

First observe that ∀x, y ∈ R3 : Πxy = ‖x‖−2 (x ∧ (y ∧ x)). Applying this
formula to Πmn, Πnm we easily establish that

Πmn · n = ‖m ∧ n‖2/‖m‖2, Πnm ·m = ‖m ∧ n‖2/‖n‖2. (62)

After omission of the common factor ‖m ∧ n‖2 we are left with the vector
Πm+n

(
‖m‖−2e2n + ‖n‖−2e2m

)
. Our goal is to verify whether (when) this vector

belonging to the plane (m+n)⊥ is linearly independent from the vector (m∧n)
belonging to the same plane.

It happens if and only if the vectors (m+n), (m∧n),
(
‖m‖−2e2n + ‖n‖−2e2m

)
are linearly independent in R3. We invoke again (62) to compute their mixed
product equal to

‖m ∧ n‖2‖m‖−2‖n‖−2(m + n) · (n−m).

Obviously (m + n) · (n −m) = |n|2 − |m|2, i.e. the mixed product vanishes if
and only if |m| = |n|, therefore revealing once more similarity with the 2D case.

Remark 7.1 If m∧n 6= 0
∧
‖m‖ 6= ‖n‖ then we can proceed with an extension

by two constant vector �elds ek, e′k k = m + n. This possibility repeated for all
combinations of m,n results in the Proposition 7.1 below. If m ∧ n 6= 0 but
‖m‖ = ‖n‖, one still can proceed with an extension by one constant vector �eld
ek = m ∧ n. �

The following Proposition is similar to the Proposition 6.1.
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Proposition 7.1 Let K(2) be the set of k ∈ Z3 for which there exist m,n ∈ K1

such that ‖m‖ 6= ‖n‖
∧

m ∧ n 6= 0
∧

m + n = k. Then the image ImV(2) of
V(2) contains all the vectors {ek| k ∈ K(2)} from the standard base together with
their opposites. �

7.2 Convexi�cation and extraction of control-a�ne sub-
system

Reasoning as in the previous Section we conclude with

Lemma 7.2 The convex hull of the image of V(1) +V(2) contains the (indepen-
dent of q) linear space E2 spanned by {ek| k ∈ K(2)}. �

Therefore after convexi�cation we may extract from the convexi�ed system
a control a�ne "subsystem" of the following form:

q̇
k

= −i
∑

m+n=k

(q
m
· n)Πkq

n
− ν|k|2q

k
+ vk, k ∈ K2,

q̇
k

= −i
∑

m+n=k

(q
m
· n)Πkq

n
− ν|k|2q

k
, k ∈ Kobs \

(
K1
⋃
K2
)

.

Remark 7.2 Observe that all the conclusions of this Section remain valid for
ν = 0, i.e. for controlled 3D Euler system describing motion of ideal �uid. �

8 Controllability of the Galerkin approximations

of 2D and 3D Navier-Stokes and Euler systems

We will formulate global controllability criterion for �nite-dimensional Galerkin
approximations of the 2D and 3D Navier-Stokes systems controlled by degener-
ate forcing. The criterion is based on the evolution of the "sets of forcing modes"
resulting from the consequent reduction+extension+extraction procedures.

Let K1 ⊂ Zs, (s = 2, 3) be the set of controlled forcing modes. The assump-
tions we have imposed on the forcing imply that (here and in what follows)
K1 ⊂ Zs \ {0}, (s = 2, 3). De�ne the sequence of sets Kj ⊂ Zs, j = 2, . . ., by:

Kj = {m + n| m,n ∈ Kj−1
∧
‖m‖ 6= ‖n‖

∧
m ∧ n 6= 0}.� (63)

Theorem 8 Let K1 be the set of controlled forcing modes. De�ne iteratively
sequence of sets Kj , j = 2, . . . , by (63) and assume that for some M :

⋃M
j=1Kj

coincides with the set of observed modes Kobs. Then for any T > 0 the Galerkin
approximations (9)-(10)-(12) and (13)-(14)-(12) of the 2D and 3D NS systems
are time-T globally controllable. The result is valid under lack of viscosity (ν =
0), i.e. it holds for Galerkin approximations of 2D and 3D Euler systems. �

Proof. The proofs for the 2D and the 3D cases are similar; we consider the
2D case. We proceed by induction on M .
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For M = 1, when all the observed modes are controlled, global controllability
of the Galerkin approximation is almost trivial fact. Actually we are not just
able to attain arbitrary points but can design arbitrary Lipschitzian trajectories.

Indeed for M = 1, the Galerkin approximation is just the equation (9), which
in a concise form can be written as: q̇ = f(q) + v. Picking any Lipschitzian
function q̃(t) and taking the control ṽ(t) = ˙̃q(t)− f (q̃(t)) we conclude that q̃(t)
is the trajectory corresponding to this control.

Assume that the statement of the Theorem is proven for all M ≤ M̄ − 1.
Let

⋃M̄
j=1Kj = Kobs. Applying to the system (9)-(10)-(11) one step of re-

duction+convexi�cation+extraction procedure (see Section 6) we arrive to the
control system (59)-(60).

As far as
⋃M̄

j=2Kj = Kobs \
(
K1 \ K2

)
, then for the reduced system the

assumption of our Theorem holds with M = M̄ − 1. Hence by induction as-
sumption this system is globally controllable in its state space RN/G, where
G = span{ek| k ∈ K1 \ K2}. Then the original system is globally controllable
according to the Theorem 5.4 and to the Proposition 5.5. �

As far as we know these are new results regarding controllability of Galerkin
approximations of NS systems controlled by degenerate forcing. We would like
to mention paper [8] by W. E and J.C. Mattingly, where bracket generation
property for 2D NS system with few forced modes has been established. This
property guarantees the nonvoidness of interior of attainable set but in general
is not su�cient for controllability. We learned recently about the result of
M.Romito ([16]), who proved global controllability for Galerkin approximations
of 3D NS system controlled by degenerate stochastic forcing.

9 Global controllability in observed projection for

2D Navier-Stokes system

Theorem 9 [see De�nition 3.2] Let ν > 0 and K1 be the set of controlled
forcing modes. De�ne iteratively sequence of sets Kj , j = 2, . . . , by (63) and
assume that for some M :

⋃M
j=1Kj contains all the observed modes:

⋃M
j=1Kj ⊇

Kobs. Then for any T > 0 the 2D NS system (9)-(10)-(11) is time-T globally
controllable in observed projection. �

This Theorem is proven in Section 12.

10 2D Navier-Stokes system: approximate con-

trollability

Another controllability result regards L2-approximate controllability.

Theorem 10 [see De�nition 3.3] Consider the 2D Navier-Stokes equation (with
ν > 0) controlled by degenerate forcing. Let K1 be the set of controlled forc-
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ing modes. De�ne iteratively sequence of sets Kj , j = 2, . . . , by (63) and as-
sume that for each bounded (�nite) set K ⊂ Z2 there exists M(K) such that:⋃M(K)

j=1 Kj ⊇ K. Then for any T > 0 the system (9)-(10)-(11) is time-T globally
L2-approximately controllable. �

The Theorem 10 is proven in Section 13.

11 Saturating sets of forcing modes

De�nition 11 A set K1 of forcing modes is called saturating if for any bounded
(�nite) subset K of Zs, s = 2, 3, there exists M such that K ⊆

⋃M
j=1Kj, where

Kj are de�ned by (63). �

Lemma 11 The set K1 = Sq3 = {k = (k1, k2)| |k1| ≤ 3
∧
|k2| ≤ 3} ⊂ Z2

is saturating. Moreover the sets Kj, de�ned iteratively by (63) are growing
monotonously: Kj ⊂ Kj+1, j ≥ 1. �

Proof. To verify the monotonous growth it is enough to prove that K1 ⊆ K2.
This can be veri�ed by direct computation. We prove by induction that

Kj ⊇ Sqj+2 = {k = (k1, k2)| |k1| ≤ (j + 2)
∧
|k2| ≤ (j + 2)}, j ≥ 1. (64)

For j = 1 (64) is the assumption of the Proposition. Assume (64) to be
proven for j = M − 1, M ≥ 2. Consider the border of the square SqM+1:

SM+1 = {k = (k1, k2) ∈ SqM+1| |k1| = (M + 1)
∨
|k2| = (M + 1)},

which is contained in KM−1 by induction assumption. By the same assumption
the square Sq2 is contained in KM−1. A direct computation su�ces to verify
that the set

{m + n| m ∈ SM+1

∧
n ∈ Sq2

∧
|m| 6= |n|

∧
m ∧ n 6= 0}

contains the border SM+2 of SqM+2. Then the needed conclusion follows from
the monotonicity. �

Another example of a saturating set is provided by the following corollary.

Corollary 11 The set K1 = {k = (k1, k2)| |k1| + |k2| ≤ 2} ⊂ Z2 which can be
also described as K1 = {k ∈ Z2| ‖k‖ ≤ 2} is saturating. �

Proof. First we observe that K1 6⊆ K2; for example (2, 0) ∈ K1 \ K2. The
growth becomes monotonous from the third term of the sequence: one concludes
by a direct computation that K2 ⊆ K3. Besides K3 contains the set Sq3 from
the previous example. Thus we got another example of a saturating set. �

A "minimalist" example of a set in Z3 , which is not saturating according to
the De�nition 11, but still is su�cient for guaranteeing global controllability (see
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Remark 7.1) ofGalerkin approximations of 3D NS systems, has been provided by
M.Romito in [16]. He has proven that the set of controlled forcing modes K1 =
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} ⊂ Z3 is su�cient to guarantee global controllability
of any �nite-dimensional Galerkin approximation of 3D NS system.

The inclusion (64) proves that the growth of Kj is at least linear with respect
to j. One can show that in fact it is exponential.

12 Proof of controllability in observed projection

for 2D Navier-Stokes system

12.1 Solid controllability

Theorem 9 can be derived from the following result which claims that a �nite-
dimensional family of controls su�ces for providing the controllability in ob-
served projection. It will be convenient to endow the �nite-dimensional spaces
of controlled and observed modes and of control parameters with the l1-norm:

‖x‖l1 =
n∑

j=1

|xi|, ∀x ∈ Rn.

Theorem 12.1 Let K1 be the set of non-vanishing modes of the forcing. De�ne
the sequence of sets Kj , j = 2, . . . according to (63) and assume that for some
M :

⋃M
j=1Kj contains all the observed modes:

⋃M
j=1Kj ⊃ Kobs.

Then for each starting point ϕ̃ ∈ H1, for each R > 0 and for all su�ciently
small T > 0 there exists a family of controls v(·, b), b ∈ BR, parameterized
continuously in L1-metric by an open bounded subset BR of a �nite-dimensional
linear space, such that the projection onto the space of observed modes of the
attainable set from ϕ̃ contains the "ball"

CR = {x ∈ RN | ‖x‖l1 ≤ R}. �

The only additional restriction in the claim of the latter result is smallness
of time. To deal with large T we can apply zero control on the interval [0, T −θ]
with θ small and then apply the result of the Theorem 12.1.

We will yet strengthen the property we are going to establish.

De�nition 12.1 Let Φ0 : M1 7→ M2 be a continuous map between two (�nite-
dimensional) C0-manifolds, Ω ⊂ M1 be an open set with compact closure, and
S ⊆ M2 be any subset. We say that Φ0(Ω) covers S solidly, if S ⊆ Φ0(Ω)
and this inclusion is stable with respect to C0-small perturbations of Φ0, i.e.
for some C0-neighborhood of Φ0|clos Ω and for each map Φ, belonging to this
neighborhood, there holds: S ⊆ Φ(Ω). �

Recall that F/OT is the end-point map introduced in the De�nition 4.2. We
have explained in the Subsection 4.2 that surjectiveness of the end-point map
means controllability. The statement we are going to formulate is stronger than
the claims of the Theorem 12.1 and of the Theorem 9.
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Proposition 12.1 If the assumptions of the Theorem 12.1 hold then, in addi-
tion to its claim, the corresponding family of controls v(t, b), b ∈ BR can be cho-
sen in such way that the map b 7→ F/OT (v(·; b)) covers the cube Q(R) solidly,
i.e. the system is solidly controllable by means of this family. Besides one can
choose the controls v(t, b), b ∈ BR uniformly (with respect to t, b) bounded:

∀t, b : ‖v(t, b)‖l1 ≤ A(T,R).

The bound A(T,R) depends only on T,R and for su�ciently small T > 0 :
A(T,R) ≤ γRT−1, where γ > 0 is a �xed constant. �

By assumption the set Kobs of observed modes is contained in the union⋃M
j=1Kj . We will proceed by induction on M . To simplify our presentation we

will make an additional assumption that the sets Kj , j = 1, . . . M, which appear
in the formulation of the Theorem 12.1, "grow monotonously", i.e. Kj−1 ⊂
Kj , ∀j = 2, . . . ,M . This property is satis�ed for all starting sets K1 which are
"su�ciently symmetric" (see Section 11).

12.2 Proof of the Proposition 12.1: �rst induction step

The �rst induction step (M = 1) is the contents of the following Proposition.

Lemma 12.2 Let M = 1, i.e. the system is split in the subsystems (9) and
(11). Then the conclusion of the Proposition 12.1 holds for (9)-(11). �

Proof. Let us write the system (9)-(11) in a concise form as:

dq1/dt = f1(q1, Q) + v, dQ/dt = F (q1, Q). (65)

Without lack of generality we may assume the initial condition for the observed
projection to be q1(0) = 0Rκ1 .

Fix γ > 1. Take the interval [0, τ ]; the value of small τ > 0 will be speci�ed
later on. Recall that CR = {x ∈ RN | ‖x‖l1 ≤ R}. For each p ∈ γCR take
v(t; p, τ) = τ−1p - a constant control. Obviously γCR ⊃ CR and:∫ τ

0

v(t; p, τ)dt = p. (66)

For �xed τ, p 7→ v(t; p, τ) is continuous in L1-metric.
We claim that ∃τ0 > 0 such that for all positive τ ≤ τ0 the family of controls

v(t; p, τ), p ∈ γCR is the one we are seeking for in the Lemma, so we may take
b = p, BR = γCR.

Denote by Φ(p, τ) the restriction of the end-point map F/Oτ onto the family
{v(·; p, τ)}: Φ(p, τ) = F/Oτ (v(·; b, τ)). As far as v(·; p, τ) depends continuously
in L1-metric on p and the end-point map is continuous in L1-metric as well, we
conclude that p 7→ Φ(p; τ) is continuous.

Restricting the equations (65) to the interval [0, ε2] let us proceed with time
substitution t = τξ, ξ ∈ [0, 1]. The equations take form:

dq1/dξ = τf1(q1, Q) + v̄(t; p), dQ/dξ = τF (q1, Q), ξ ∈ [0, 1], (67)
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where v̄(t; p, τ) = τv(t; p, τ).
For τ = 0 the latter system becomes

dq1/dξ = v̄(t; p), dQ/dξ = 0, ξ ∈ [0, 1]. (68)

According to (66) the end-point map Φ(p, 0) of (68) is the identity map:
Φ(p, 0) = Id.

From classical results on continuity of solutions of 2D Navier-Stokes system
with respect to the data we conclude that the q1-component of the solution
of the system (67) deviates from the similar component of the solution (with
the same initial condition) of the system (68) by a quantity ≤ Cτ , where the
constant C can be chosen independent of p and ε for su�ciently small τ > 0.

Then ‖Φ(·; τ) − Id‖ ≤ Cτ and by degree theory argument there exists τ0

such that ∀τ ≤ τ0 the image of Φ(b; τ) covers CR solidly.
To complete the proof note that ‖v(t, b)‖l1 are uniformly bounded by γR. �

12.3 Generic induction step: solid controllability of the
reduced system

Let us proceed further with the induction. Assume that the statement of the
Proposition 12.1 has been proven for all M ≤ (N − 1); we are going to prove it
for M = N .

Coming back to the system (9)-(10)-(11) let us proceed with one step of
reduction. As a result the equations (9)-(10) change to the equations (59)-(60).
Recall that by our additional assumption the set K2 contains K1. Hence the
system (59)-(60)-(11) corresponds to the 2D NS system with an extended set
K2 of controlled forcing modes.

Obviously this "reduced" system satis�es the conditions of the Theorem 12.1,
moreover the observed modes are contained in the union

⋃M
j=2Kj of (M − 1)

sets. This means that (M − 1) steps of reduction+convexi�cation+extraction
steps su�ce for establishing controllability of the Galerkin approximation of this
"reduced" system.

Then by induction hypothesis the "reduced" system is solidly controllable in
observed projection: there exists a continuous in L1-metric family of controls
v(t; b) which satis�es the conclusion of the Proposition 12.1. This family of
controls is uniformly bounded; assume that

‖v(t; b)‖l1 ≤ A, ∀b ∈ B, ∀t ∈ [0, T ]. (69)

the values of v(t; b) belong to Rκ2 , where κ2 = #K2.
Let us enumerate the vectors k ∈ K2 , and take e+

ki = (0, . . . , 1i, . . . 0), i =
1, . . . , κ2, together with their opposites e−ki . Multiply each of vectors e−ki , e

+
ki by

A and denote the set of these 2κ2 vectors by EA
2 . The convex hull convEA

2 of
EA

2 contains the values of v(t; b).
Now we will approximate the family of functions v(t; b) which take their

values in convEA
2 by EA

2 -valued functions. Such a possibility is a central result
of relaxation theory.
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De�nition 12.3 De�ne δ-pseudometric ρδ in the space L∞ ([0, T ], Rκ) of mea-
surable functions in the following way:

ρδ

(
u1(·), u2(·)

)
= meas{t ∈ [0, T ] | u1(t) 6= u2(t)}.

Identifying those functions, which coincide beyond a set of zero measure, we
obtain δ-metric. �

Remark 12.3 The δ-metric is a restriction onto the set of ordinary (=nonre-
laxed) controls of strong metric of the space of relaxed controls (see [12]). �

We will apply R.V.Gamkrelidze Approximation Lemma (see [12, Ch.3],[13,
p.119]). According to it given a δ-continuous family of conv E2-valued functions
and ε > 0 one can construct a δ-continuous family of E2-valued functions which
ε-approximates the family {v(t; b)|b ∈ B} in the relaxation metric uniformly
with respect to b ∈ B. Moreover the functions of the family can be chosen
piecewise-constant and the number L of the intervals of constancy can be chosen
the same for all b ∈ B. Actually the Approximation Lemma in [12, Ch.3] regards
relaxed controls (Young measures). If one applies it to nonrelaxed controls, (or
just functions, or to the families of Dirac δ-measures) the result can be easily
strengthened to the following one.

Theorem 12.3 (Approximation Lemma; [12, Ch.3]). Let {v(t; b)|b ∈ B} be a
family of (conv EA

2 )-valued functions, which depends on b ∈ B continuously in
L1 metric. Then for each ε > 0 one can construct a δ-continuous (and hence L1-
continuous) equibounded family {z(t; b)| b ∈ B} of EA

2 -valued functions which
ε-approximates the family {v(t; b)|b ∈ B} in the relaxation metric uniformly
with respect to b ∈ B. Moreover the functions z(t; b) can be chosen piecewise-
constant and the number L of the intervals of constancy can be chosen the same
for all b ∈ B. �

We omit the proof, which is a slight variation of the proof in [12, Ch.3].
Coming back to the generic induction step we observe that: i) the reduced

system is solidly controllable by means of δ-continuous family {v(t; b)| b ∈ B};
ii) δ-continuous family {z(t; b)| b ∈ B} of EA

2 -valued functions approximates the
family {v(t; b)| b ∈ B} uniformly in the relaxation metric; iii) according to the
Theorem 4.2 the end-point map F/Ot is continuous in the relaxation metric.
Therefore we obtain the following intermediate result.

Proposition 12.3 There exist a number L and a δ-continuous family of piece-
wise-constant EA

2 -valued controls {z(t; b)| b ∈ B} (with at most L intervals of
constancy) such that the reduced system is solidly controllable by means of this
family. �

12.4 Generic induction step: solid controllability of the
original system

Let us come back to the original system (9)-(10)-(11) and compare it with the
reduced system we were treating in the previous subsection.
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In the reduced and the original system the equations for the coordinates qk,
indexed by k ∈ K1, coincide and are:

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + vk, k ∈ K1. (70)

We collect these coordinates into the vector denoted by q1. In the original
system the equations for the variables qk, k ∈

(
K2 \ K1

)
are:

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk, k ∈
(
K2 \ K1

)
. (71)

They di�er from the corresponding equations of the reduced system, which are:

q̇k =
∑

m+n=k

(m ∧ n)|m|−2qmqn − ν|k|2qk + vk, k ∈
(
K2 \ K1

)
. (72)

We collect qk, k ∈
(
K2 \ K1

)
into the vector denoted by q2.

Finally the equation for the component Qt which recollects the higher modes
eik·x, k 6∈ K2, does not contain controls and is the same in both systems. It
su�ces for our goals to write this equation in a concise form as:

Q̇ = h(q, Q). (73)

Roughly speaking our task is to design a family of "small-dimensional" con-
trols for the equations (70)-(71)-(73), which "produce approximately the same
e�ect" as the family of EA

2 -valued controls z(t, b) constructed in the previous
Subsection for the "reduced" system (70)-(72)-(73).

Let us recall that the the values of the piecewise-constant controls z(t; b) are
the vectors ±Aek, k ∈ K2. The intervals of constancy vary continuously with
b ∈ B.

If on some interval of constancy the value of z(t; b) is ±Aek with k ∈ K1,
then we may just take take the control in (70) coinciding with z(·; b) on this
interval.

The problem arises when on some interval of constancy z(t; b) takes value
±Aek̄ with k̄ ∈

(
K2 \ K1

)
. Since there are no controls accessible in the equation

(71) for qk̄ we will "a�ect" its evolution via the variables qk, k ∈ K1 which enter
this equation.

First we prove that one is able to design any (Lipschitzian with respect to
time) "evolution" of q1 by choosing proper control in (70).

Lemma 12.4 Let q̃1(t) ∈ W1,∞([t, t̄], Rκ1) be a Lipschitzian function; q̃1(t) =
q̃1
0. Choose a point u0 =

(
q1
0 , q2

0 , . . . , qM
0 , Q0

)
, such that q1

0 = q̃1
0. Consider the

controlled system (70)-(71)-(73).
There exists a control ṽ(t) ∈ L∞([t, t̄], Rκ1) for this system, such that q̃1(t)

coincides with the q1-component of the corresponding trajectory, which starts at
u0 at the moment t. The control ṽ(t) depends on q̃1(t) and on

(
q2
0 , . . . , qM

0 , Q0

)
.

It varies continuously in L1([t, t̄], Rκ1), whenever
(
q2
0 , . . . , qM

0 , Q0

)
varies con-

tinuously in H1 and q̃1(t) varies continuously in W1,1([t, t̄], Rκ1). �
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Proof. Substituting q1(t) = q̃1(t) into the equations (71)-(73) we obtain a
closed system which can be uniquely solved (for given initial conditions). Let its
solution be

(
q̃2(t), . . . , q̃M (t), Q̃(t)

)
; denote q̃(t) =

(
q̃1(t), . . . , q̃M (t)

)
. Denote

by f1(q, Q) + v the right-hand side of the equation (70). The control

ṽ(t) = ˙̃q1(t)− f1
(
q̃(t), Q̃(t)

)
(74)

satis�es the statement of the Lemma.
To prove the continuity observe �rst that ˙̃

q1(t) in (74) varies continuously in
L1([t, t̄], Rκ1) as q̃1(t) varies continuously in W1,1([t, t̄], Rκ1).

By classical results
(
q̃(·)), Q̃(·)

)
varies continuously in L∞((0, T );H1)-metric

with continuous variation of its initial point in H1 (see [5]).
Invoking the Proposition 4.6 we can prove (the way we proved the Theo-

rem 4.4) that
(
q̃(·), Q̃(·)

)
varies continuously in L∞((0, T );H1)-metric as q̃1(t)

varies continuously in C0([t, t̄], Rκ1) (and even more so if the latter varies con-
tinuously in W1,1([t, t̄], Rκ1)). From this we can conclude in a similar way as we

did in (39) that f1
(
q̃(t), Q̃(t)

)
varies continuously, say, in L∞([t, t̄], Rκ1)-metric

with the variation of q̃1(t). �

Remark 12.4 The component q1 in the formulation of the previous Lemma
may include only part of the coordinates qk (k ∈ K1)). In fact in further appli-
cation of this Lemma q1 will be 2-dimensional: q1 = (qm, qn), m, n ∈ K1. In this
case we may choose corresponding control v(t) with only 2 nonzero components
vm, vn to satisfy the equality (74). �

We will now use this freedom of designing any evolution for q1(t) in order to
a�ect in a suitable way the evolution of qk, k ∈ (K2\K1). We want to "imitate"
the action of the controls z(t; b) we constructed in the Proposition 12.3 for the
"reduced" system (70)-(72)-(73).

Once again if on some interval of constancy the value of z(t; b) = ±Aek, k ∈
K1, then we just take v(t; b) = z(t; b) on this interval, called the interval of the
1st kind.

Assume now that z(t; b) = Aek̄, k̄ ∈
(
K2 \ K1

)
on some interval of constancy

[t, t̄], called the interval of the 2nd kind. Consider the trajectory ȳt of the reduced
system (70)-(72)-(73) driven by this control on [t, t̄].

On the other side pick m,n, such that m+n = k̄, (m∧n) 6= 0 and |m| 6= |n|.
This means that the right-hand side of the equation for qk̄ contains the term
(m ∧ n)(|m|−2 − |n|−2)qmqn.

For each ω > 0 consider a family of functions φ(t; t, t̄, ω) ∈ W1,∞([t, t̄], Rκ1)
such that for some γ > 0 not depending on ω: a) the distance in δ-metric be-
tween φ(t; t, t̄, ω) and sin(ωt) is ≤ γω−1; b) ‖φ(t; t, t̄, ω)‖C0 ≤ 1; c) all φ(t; t, t̄, ω)
vanish at the end-points t, t̄; d) for �xed ω the function φ(t; t, t̄, ω) varies con-
tinuously in W1,1([t, t̄], Rκ1) with the variation of t, t̄.
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The family {sinωt} would suit, but it fails to satisfy the condition c). We
provide in the next subsection an example of a family of functions φ(t; t, t̄, ω),
which satis�es a)-d).

Now we construct a continuous trajectory yω
t , t ∈ [0, T ], which starts at

the same initial point ȳ0 as ȳt. It will be de�ned piecewise on each interval of
constancy [t, t̄] of the control z(t; b) according to the following procedure.

Procedure 12.4 1) If the interval of constancy [t, t̄] of the control z(t; b) is of
the �rst kind, i.e. z(t; b) = ek with k ∈ K1 then we de�ne yω

t on this interval as
the trajectory of the system (70)-(71)-(73) driven by z(t; b);

2) If the interval of constancy [t, t̄] of the control z(t; b) is of the second kind,
i.e. z(t; b) = Aek with k ∈ K2 \ K1, then:

i) we take the trajectory of the system (70)-(71)-(73) driven by zero control
v ≡ 0 on [t, t̄].

ii) denoting by q̃1(t) the q1-component of this trajectory we choose constants
Am, An such that

|Am| = |An|
∧

AmAn(m ∧ n)(|m|−2 − |n|−2) = 2A. (75)

and add the functions Amφ(t; t, t̄, ω), Anφ(t; t, t̄, ω) to the respective components
qm, qn of q̃1(t), leaving other components of q̃1(t) unaltered;

iii) denoting the result by q̃1(t;ω) (observe that q̃1(t;ω) takes at the end-
points of the interval the same values as q̃1(t).) We substitute q̃1(t;ω) into the
equations (71)-(73), complement its solution by q̃1(t;ω) and denote the result
by yω

t its solution.
iv) calculate by application of the Lemma 12.4 the control v(t; b) which pro-

vides necessary evolution for qm(t), qn(t) on [t, t̄]. �

We will prove that yω
t and ȳt match asymptotically as ω → ∞. We will

compare all the components of these trajectories but qm (m ∈ K1). Let P2 be
the projection onto the orthogonal complement to the modes {eim·x| m ∈ K1}.

Proposition 12.4 For any ε > 0 there exists δ > 0 and ω0 such that, if ω ≥ ω0

and at the initial moment ‖yω
t − ȳt‖0 ≤ δ, then ‖P2 (yω

t − ȳt) ‖0 ≤ ε on [0, T ]. �

Assuming the claim of this proposition (which is proven in the next Subsec-
tion) to hold true let us complete our generic induction step.

As we know the reduced (extended) system (70)-(72)-(73) is solidly control-
lable in observed projection by means of the family z(t; b). Basing on the ap-
proximation property established by the Proposition 12.4 and using the degree
theory argument we conclude that the original system (70)-(71)-(73) is solidly
controllable in observed projection by means of the family v(t, b) we have de�ned
above, provided that ε > 0 is chosen su�ciently small.

According to the Remark 12.4 one is able to choose the control ṽ(t) with just
two nonvanishing components vm and vn on each interval [t, t̄]. These controls
are equibounded.
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As far as the number of the intervals of constancy of z(t; b) is bounded by L
for all b, we can choose the same ε > 0 and the same ω for all these intervals and
proceed with the previous construction for all of them. As a result we obtain a
family of controls, parameterized by b ∈ B.

These controls depend continuously (in L1-metric) on b ∈ B. Indeed the
lengths of the intervals of constancy depend continuously on b and hence the
functions φ(t; t, t̄, ω) vary continuously in W1,1([t, t̄], Rκ1). Since z(t; b) depend
continuously in L1-metric on b, then by Theorem 4.4 or by classical continuity
results the intermediate values

(
q̃1(t), q̃2(t), . . . , q̃M (t), Q̃(t)

)
vary continuously

with the variation of b. Then by Lemma 12.4 the controls we construct on the
intervals of the second kind depend continuously in L1-metric on b ∈ B. �

12.5 Proof of the Proposition 12.4

We start with an example of a family of functions φ(t; t, t̄, ω) whose properties
have been described in the previous subsection.

Example 12.5 Take a C1 function α(t) de�ned on [0, 2π], vanishing at 0 and
2π and positive elsewhere. Assume α′(0) 6= 0, α′(2π) 6= 0 and α(t) < t on
(0, 2π]. Continue this function onto R 2π-periodically.

For each pair T > 0, ω > 0 introduce a continuous function φ(t; 0, T, ω)
on [0, T ], which coincides with sinωt on [0, T − ω−1α(ωT )], vanishes at T ,
and is linear on [T − ω−1α(ωT ), T ]. The (constant) derivative of its linear
piece equals −ω sin (ωT − α(ωT )) /α(ωT ). The conditions we imposed on α(T )
guarantee that for �xed ω these (constant) derivatives are uniformly (with
respect to T > 0) bounded. The function φ(t; 0, T, ω) varies continuously
in W1,1([t, t̄], Rκ1) with the variation of T . De�ne on [−T, 0] the function
φ(t;−T, 0, ω) by: φ(t;−T, 0, ω) = φ(−t; 0, T, ω).

Take φ(t; t, t̄, ω) ≡ 0, if none of the points 2sπ/ω, s ∈ Z belong to [t, t̄]
(meaning in particular that t̄ − t < 2π/ω). Otherwise choose any point t0 =
2sπ/ω, s ∈ Z in [t, t̄], take the (de�ned on [t− t0, t̄− t0]) concatenation φ(t) of
two functions φ(t; t− t0, 0, ω) and φ(t; 0, t̄− t0, ω).

De�ne φ(t; t, t̄, ω) = φ(t− t0) for all t ∈ [t, t̄]. �

Lemma 12.5 The functions φ(t; t, t̄, ω), where ω ∈ R+, tend to zero in the re-
laxation metric, as ω → +∞. Besides if for a family {rβ(t)|β ∈ B} of absolutely-
continuous functions their W1,2-norms are equibounded:

∃C, ρ :
∫ t̄

t

(ṙβ(τ))2dτ ≤ C, |rβ(0)| ≤ ρ, ∀β ∈ B,

then the relaxation seminorms (see the De�nition 4.1) ‖rβ(t)φ(t; t, t̄, ω)‖rc are
O(ω−1), as ω → +∞, uniformly with respect to β. �

If we take sinωt instead of φ(t; t, t̄, ω) then the proof is direct:∫ t

s

sin(ωτ)rβ(τ)dτ = ω−1

∫ t

s

rβ(τ)d(1− cos(ωτ))
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= ω−1

∫ t

s

(cos(ωτ)− cos(ωt))ṙβ(τ)dτ.

Since |(cos(ωτ) − cos(ωt))| ≤ 2, then by application of Cauchy-Schwarz in-
equality ∣∣∣∣∫ t

s

sin(ωτ)rβ(τ)dτ

∣∣∣∣ ≤ 2ω−1(t− s)1/2

(∫ t

s

(ṙβ(τ))2dτ

)1/2

. (76)

On the other side for any [s, t] ⊆ [t, t̄]:∫ t

s

(φ(τ ; t, t̄, ω)dτ − sin(ωτ)) dt ≤ 2 min((t− s), γω−1),

where γ is the constant appearing in the de�nition of the functions φ(t; t, t̄, ω).
This proves the conclusion of the Lemma.

Besides min((t− s), γω−1) ≤ (t− s)1/2γ1/2ω−1/2 and hence∣∣∣∣∫ t

s

φ(τ ; t, t̄, ω)rβ(τ)dτ

∣∣∣∣ ≤ (77)

≤ 2ω−1/2(t− s)1/2 min

(
ω−1/2

(∫ t

s

(ṙβ(τ))2dτ

)1/2

+ γ1/2

)
. �

Proof of the Proposition 12.4.
1. Denote ei`·x by e`, φ(t; t, t̄, ω) by φ(t;ω); denote V ω

t = Amφ(t;ω)em +
Amφ(t;ω)en.

Let Vω
t ,Yω

t , Ȳt be divergence-free solutions of the corresponding equations:

∇⊥ · Vω
t = V ω

t , ∇⊥ · Yω
t = yω

t , ∇⊥ · Ȳt = ȳt,

with periodic boundary conditions.
Let V` be the divergence-free solution of the equation

∇⊥ · V` = e`,

with periodic boundary conditions. Obviously

Vω
t = Amφ(t;ω)Vm + Anφ(t;ω)Vn. (78)

2. On an interval of the �rst kind the equations for yω
t ȳt coincide and have

form

∂ty
ω
t − ν∆yω

t = (Yω
t · ∇) yω

t + Aek, (79)
∂tȳt − ν∆ȳt =

(
Ȳt · ∇

)
ȳt + Aek, k ∈ K1. (80)

On an interval of the second kind the equations for yω
t and ȳt are correspond-

ingly:

∂ty
ω
t − ν∆yω

t = ((Yω
t + Vω

t ) · ∇) (yω
t + V ω

t ) , (81)
∂tȳt − ν∆ȳt =

(
Ȳt · ∇

)
ȳt + Aem+n, m, n ∈ K1, (82)
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where V ω
t is de�ned by (78).

3. Introducing the notation ηω
t = yω

t − ȳt, we obtain the equations for ηω
t

on the intervals of �rst and second kind by subtracting (80) from (79) and (82)
from (81).

On an interval of the �rst kind the equation is:

∂tη
ω
t − ν∆ηω

t = (Yω
t · ∇) ηω

t + (Hω
t · ∇) ȳt, (83)

where Hω
t = Yω

t − Ȳt.
On an interval of the second kind we obtain

∂tη
ω
t − ν∆ηω

t = ((Yω
t + Vω

t ) · ∇) yω
t −

(
Ȳt · ∇

)
ȳt + ((Vω

t · ∇) V ω
t −Aem+n) .

Subtracting and adding ((Yω
t + Vω

t ) · ∇) ȳt to the right-hand side of the latter
equation we transform it into

∂tη
ω
t − ν∆ηω

t = ((Yω
t + Vω

t ) · ∇) ηω
t + (Hω

t · ∇) ȳt +
+(Vω

t · ∇) ȳt + ((Vω
t · ∇)V ω

t −Aem+n) , (84)

4. Evaluation of the evolution of ‖ηω
t ‖0 according to the equation (83) is a

standard computation.
Multiplying both parts of this equation by ηω

t we observe at once that as
long as ∇ · Yω

t = 0, then by standard argument: 〈(Yω
t · ∇) ηω

t , ηω
t 〉 = 0. Also

〈−∆ηω
t , ηω

t 〉 > 0.
After integration we obtain

‖ηω
τ ‖20 ≤ ‖ηω

0 ‖20 +
∫ τ

0

〈(Hω
t · ∇) ȳt, η

ω
t 〉. (85)

5. Let us repeat this argument for an interval of the second kind.
We multiply both parts of the latter equation by ηω

t , observing that:

〈((Yω
t + Vω

t ) · ∇) ηω
t , ηω

t 〉 = 0.

Again 〈−∆ηω
t , ηω

t 〉 > 0. After integration one obtains

‖ηω
τ ‖20 ≤ ‖ηω

0 ‖20 +
∫ τ

0

〈(Hω
t · ∇) ȳt, η

ω
t 〉+

+
∫ τ

0

〈(Vω
t · ∇) ȳt, η

ω
t 〉+

∫ τ

0

〈(Vω
t · ∇)V ω

t −Aem+n, ηω
t 〉. (86)

Observe that (85) can be obtained from (86) by taking vanishing V ω
t and

Vω
t .
Therefore we can unify our treatment of the intervals of the �rst and the

second kind by de�ning function V ω
t (and respective Vω

t ) piecewise on the whole
interval [0, T ]. It is already de�ned on the intervals of the second kind, and we
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take it zero on the intervals of the �rst kind. The formula (86) will refer from
now on to the interval [0, T ].

6. Let us evaluate the right-hand side of (86).
The summand 〈(Hω

t · ∇) ȳt, η
ω
t 〉 can be estimated by means of standard in-

equality (see [6, Section 6]) as:

|〈(Hω
t · ∇) ȳt, η

ω
t 〉| ≤ C‖Hω

t ‖1‖∇ȳt‖1‖ηω
t ‖0 ≤ C ′‖ȳt‖2(‖ηω

t ‖0)2. (87)

What for the factor ‖ȳt‖2 at the right-hand side of (87) then it is known (see [5,
Chapter 1, Section 6]), that if the initial data of the system (70)-(72)-(73), or
all the same, of the equation (80), belongs to H1, then the solution ȳt belongs
to H2 for t > 0 and for some C ′′ > 0:

‖ȳt‖2 ≤ C ′′t−1/2. (88)

Hence the second summand
∫ τ

0
〈(Hω

t · ∇) ȳt, η
ω
t 〉dt can be estimated from

above by

C1

∫ τ

0

t−1/2(‖ηω
t ‖0)2dt.

The third summand at the right-hand side of (86) can be represented as∫ τ

0

〈(Vω
t · ∇) ȳt, η

ω
t 〉dt = φ(t;ω) (Am〈(Vm · ∇) ȳt, η

ω
t 〉+ An〈(Vn · ∇) ȳt, η

ω
t 〉) .

The last summand in the right-hand side of (86) can be represented as∫ τ

0

(
(m ∧ n)

(
|m|−2 − |n|−2

)
AmAn(φ(t;ω))2 −A

)
〈em+n, ηω

t 〉dt.

As long as by construction (m∧n)
(
|m|−2 − |n|−2

)
AmAn = 2A, then it can

be transformed into
∫ τ

0
(2(φ(t;ω))2−1)A〈em+n, ηω

t 〉dt. Observe that 2(φ(t;ω))2−
1 coincides with − cos(2ωt) on [0, T ] beyond a subset (union of two subintervals)
of measure ≤ 4π/ω.

We will invoke the Lemma 12.5 to estimate this term in which φ(t;ω) un-
der integral is multiplied by (Am〈(Vm · ∇) ȳt, η

ω
t 〉+ An〈(Vn · ∇) ȳt, η

ω
t 〉). Let us

estimate ∫ τ

0

|∂t〈(Vm · ∇) ȳt, η
ω
t 〉|2dt ≤

≤ 2
∫ τ

0

|〈(Vm · ∇) ∂tȳt, η
ω
t 〉|2dt + 2

∫ τ

0

|〈(Vm · ∇) ȳt, ∂tη
ω
t 〉|2dt.

From standard estimates (see [5, Chapter 1, Section 6]) for ∂tȳt and from the
estimate (31) of Corollary 4.5 applied to ηω

t we conclude that for some constants
c1 the �rst integral in the right-hand side can be estimated from above by c1τ .
Applying Cauchy-Schwarz inequality to the second integral we estimate it from
above by

2
(∫ τ

0

‖ (Vm · ∇) ȳt‖20dt

)1/2(∫ τ

0

‖∂tη
ω
t ‖20dt

)1/2

.
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The �rst factor can be estimated from above by c2τ
1/2 and

∫ τ

0
‖∂tη

ω
t ‖20 can be

estimated from above by a constant c3 by virtue of the Corollary 4.5. The
constants c1, c2, c3 do not depend on ω.

Hence by virtue of the Lemma 12.5
∫ τ

0
|〈(Vω

t · ∇) ȳt, η
ω
t 〉|dt = O(ω−1) as

ω →∞ and by virtue of the formula (77)∣∣∣∣∫ τ

0

〈(Vω
t · ∇) ȳt, η

ω
t 〉dt

∣∣∣∣ ≤ c4τω−1/2|Am|; (89)

recall that |Am| = |An|.
According to the Corollary 4.5

∫ τ

0
|∂t〈em+n, ηω

t 〉|2dt is bounded by a constant
(not depending on ω). Then reasoning as in the proof of the Lemma 12.5 we
obtain for the last summand in the right-hand side of (86) an upper estimate

c5Aτ1/2ω−1/2, (90)

where c5 depends neither on A, nor on τ , nor on ω.
In particular 〈(Vω

t · ∇)V ω
t −Aem+n, ηω

t 〉 tends to 0 in the relaxation metric
as ω →∞.

7. Hence from the inequality (86) we arrive to

‖ητ‖20 ≤ ‖η0‖20 + c

∫ τ

0

t−1/2‖ηω
t ‖20dt +

c4τω−1/2|Am|+ c5Aτ1/2ω−1/2.

Recall that we know a priori that τ 7→ ‖ηω
τ ‖20 is essentially bounded and hence

the (improper) integral containing τ−1/2 converges.
By assumption ‖η0‖20 ≤ δ2 and ∀ε > 0 one can chose ω0 in such a way that

for ω > ω0 the sum of the last two summands in the right-hand of the latter
inequality is ≤ ε for all τ .

Thus we obtain for ω > ω0:

‖ητ‖20 − c

∫ τ

0

t−1/2‖ηω
t ‖20dt ≤ (δ2 + ε).

Multiplying both parts of this inequality by τ−1/2e−2cτ1/2
we can represent the

result as

∂τ

(
e−2cτ1/2

∫ τ

0

t−1/2‖ηω
t ‖20dt

)
≤ (δ2 + ε)τ−1/2e−2cτ1/2

.

Integrating the latter inequality on the interval [0, t] we conclude

e−2ct1/2
∫ t

0

τ−1/2‖ηω
τ ‖20dτ ≤ (δ2 + ε)c−1

(
1− e−2ct1/2

)
,

and therefore

‖ηt‖20 ≤ (δ2 + ε) + c

∫ t

0

τ−1/2‖ηω
τ ‖20dτ ≤

≤ (δ2 + ε) + c(δ2 + ε)c−1
(
e2ct1/2

− 1
)

= (δ2 + ε)e2ct1/2
.

This implies the statement of the Proposition 12.4. �
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13 Proof of the Theorem 10

Let us �x ϕ̃, ϕ̂ ∈ H1 and ε > 0 and assume that we want to steer the 2D
controlled NS system from ϕ̃ to the ε-neighborhood of ϕ̂ in the metric of H0.

Consider Fourier series for ϕ̃, ϕ̂. Denote by ΠN the projection of ϕ ∈ H1

onto the space of modes |k| ≤ N ; ΠN (ϕ̃) → ϕ̃, ΠN (ϕ̂) → ϕ̂ in H0 as N →∞.
Choose N in such a way that the norms ‖ · ‖0 of ΠN (ϕ̃)− ϕ̃, ΠN (ϕ̂)− ϕ̂ are

≤ ε/3. We assume that all the controlled modes satisfy |k| ≤ N .
The set K1 of controlled modes is saturating, i.e. for K1 de�ned by (63)

there exists M such that

M⋃
j=1

Kj ⊇ {k| |k| ≤ N}. (91)

According to the Theorem 9, there exists a degenerate controlled forcing v,
which steers the 2D NS system from ϕ̃ to some point ϕ̄ ∈ Π−1

N ((ΠN (ϕ̂))).
If we coordinatize the space of modes {|k| ≤ N} by q and its orthogonal

complement by Q, then we may say that we control the �nite-dimensional com-
ponent q(·) exactly. We are going to prove that our control can be cleverly
chosen in a way that it guides the NS system to the ε-neighborhood of ϕ̂.

Recall that in the proof of the Theorem 9 (Section 12) we start with a "full-
dimensional" set of controlled modes and then construct successively diminished
sets of controlled modes indexed by Kj , j = M,M − 1, . . . , 1. At the end we
arrive to a set of controlled modes indexed by K1. In other words we start with
a large set of extended controlled modes and simulate its actuation by means
of small-dimensional controls. Since the component q is controlled exactly it
su�ces to follow the evolution of the in�nite-dimensional component Q·.

Assume that we are at the �rst induction step under the conditions of the
Lemma 12.2, i.e. that all the coordinates of q are controlled. Then we pick
the control from the family, constructed in Lemma 12.2; this control steers the
component q from ΠN (ϕ̃) to the point ΠN (ϕ̂). The control is de�ned on an
interval of length τ > 0, which can be chosen arbitrarily small. From (67) and
(68) we can conclude for some constant C > 0:

‖Qt‖0 ≤ ‖Q0‖0 + Cτ, t ∈ [0, τ ].

Recall that ‖Q0‖0 ≤ ε/3. We choose τ ≤ ε/6C, so that ‖Qτ‖0 ≤ ε/2.
Let us check what happens with the component Q· at each induction step

of the proof of the Theorem 9. At the �rst stage of this step (Subsection 12.3)
we proceeded with "deconvexi�cation", applying the Approximation Lemma
(Theorem 12.3). At this stage the trajectories are approximated up to arbitrary
small (uniformly on [0, τ ]) error δ > 0. We can choose δ ≤ ε/(12M).

At the second stage of each induction step we apply Procedure 12.4. Ac-
cording to the Proposition 12.4 the component Q· (which belongs to the image
of the projection Π2 at each induction step) su�ers arbitrarily small alteration.
We can make it (uniformly on [0, τ ]) smaller than ε/(12M).
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Therefore at each induction step the component Q· su�ers alteration by
value ≤ ε/(6M); total alteration is ≤ ε/6. Hence after the induction procedure
‖Qτ‖0 ≤ ε/2 + ε/6 = 2ε/3. Therefore

‖Qτ − (ΠN (ϕ̂)− ϕ̂) ‖0 ≤ ε

and as far as q(τ) = ΠN (ϕ̂) we conclude that (q(τ), Qτ ) belongs to the ε-
neighborhood of the point ϕ̂. �
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