Soft Construction of Floer-type Homologies

Andrei Agrachev

arXiv:2001.05440

A toy example, the Leray-Schauder degree.

Let B be an infinite-dimensional separable Banach space and $S \subset B$ the unite sphere in B. Let $\mathcal{E}=\{E \subset B: \operatorname{dim} E<\infty\}$ be the ordered by the inclusion directed set of finite-dimensional subspaces of B. We set:

$$
G_{i}(S)=H_{i(\operatorname{dim} E-1)}(S \cap E)
$$

and call $G_{i}(S)$ the Leray-Schauder homology of S.

Now let $\varphi: S \rightarrow B$ be a compact map such that $x+\varphi(x) \neq 0, \forall x \in$ S. $\forall \varepsilon>0, \exists \varepsilon$-close to φ finite-dimensional map $\varphi_{\varepsilon}: S \rightarrow E_{\varepsilon}$. We define a map:

$$
\boldsymbol{\Phi}_{E}^{\varepsilon}: S \cap E \rightarrow S \cap E, \quad \boldsymbol{\Phi}_{E}^{\varepsilon}(x)=\frac{x+\varphi_{\varepsilon}(x)}{\left|x+\varphi_{\varepsilon}(x)\right|},
$$

for any $E \supset E_{\varepsilon}$. The degree of this map $d=\operatorname{deg}\left(\Phi_{E}^{\varepsilon}\right)$ does not depend on E and is the same for all sufficiently good approximations φ_{ε}. This is the Leray-Schauder degree.

The degree is defined by the homomorphism:

$$
\Phi_{E *}^{\varepsilon}: H_{\mathrm{dim} E-1}(S \cap E) \rightarrow H_{\mathrm{dim} E-1}(S \cap E), \quad \Phi_{E *}^{\varepsilon}(c)=c d,
$$

for any $c \in H_{\operatorname{dim} E-1}(S \cap E)=\mathbb{Z}$. We may interpret it as a homomorphism $\Phi_{*}: G_{1}(S) \rightarrow G_{1}(S)$, where $\Phi=\frac{I+\varphi}{|I+\varphi|}$.

Floer Homology

We consider a compact smooth manifold M endowed with a symplectic structure σ. Let \tilde{M} be the universal covering of M and $\tilde{\sigma}$ the pullback of σ to \tilde{M}; we assume that $\tilde{\sigma}$ is an exact form: $\tilde{\sigma}=d s$.

We denote by Ω the space of contractible closed curves in M of class H^{1}. In other words, Ω consists of contractible maps $\gamma: S^{1} \rightarrow M$, where γ is differentiable almost everywhere with the derivative of class L^{2}. The lifts of $\gamma \in \Omega$ to \tilde{M} are closed curves and we use the same symbol γ for any lift of this curve to \tilde{M}.

Let $h_{t}: M \rightarrow \mathbb{R}$ be a measurable bounded w.r.t. $t \in S^{1}$ family of smooth functions on M. The functional $\varphi_{h}: \Omega \rightarrow \mathbb{R}$ is defined by the formula:

$$
\varphi_{h}(\gamma)=\int_{S^{1}} s(\dot{\gamma}(t))-h_{t}(\gamma(t)) d t
$$

Given $c \in \mathbb{R}$, we denote by Ω_{h}^{c} the Lebesgue set of φ_{h} :

$$
\Omega_{h}^{c}=\left\{\gamma \in \Omega: \varphi_{h}(\gamma) \leq c\right\}
$$

We assume that M is equipped with a Riemannian structure $\langle\cdot, \cdot\rangle$ adapted to the symplectic structure, i. e. $\sigma(\xi, \eta)=\langle J \xi, \eta\rangle, \xi, \eta \in$ $T M$, where $J: T M \rightarrow T M$ is a quasi-complex structure, $J^{2}=-I$. Then:

$$
\nabla_{\gamma} \varphi_{h}=-J \dot{\gamma}-\nabla_{\gamma} h
$$

Second variation of φ_{0} at a "constant curve" q :

$$
b_{q}(\xi, \eta)=\int_{S^{1}} \sigma(\xi(\theta), \dot{\eta}(\theta)) d \theta, \quad \xi, \eta \in H^{1}\left(S^{1} ; T_{q} M\right)
$$

We denote by $\imath: H^{1}\left(S^{1} ; T_{q} M\right) \rightarrow H^{1}\left(S^{1} ; T_{q} M\right)$ the involution defined by the formula $(\imath \xi)(\theta)=\xi(-\theta)$. Then

$$
b_{q}(\imath \xi, \imath \eta)=-b_{q}(\xi, \eta), \quad \xi, \eta \in H^{1}\left(S^{1} ; T_{q} M\right)
$$

We fix generators X_{1}, \ldots, X_{l} of the $C^{\infty}(M)$-module $\mathrm{Vec} M$ of all smooth vector fields on M and define a linear map $X_{q}: \mathbb{C}^{l} \rightarrow T_{q} M$ by the formula

$$
X_{q} u=\sum_{j=1}^{l} v^{j} X_{j}(q)+w^{j} J X_{j}(q)
$$

where $u=\left(u^{1}, \ldots, u^{l}\right), u_{j}=v_{j}+i w_{j} \in \mathbb{C}, j=1, \ldots, l$ and

$$
\langle\xi, \xi\rangle=\min \left\{|u|^{2}: u \in \mathbb{C}^{l}, \xi=X_{q} u\right\} .
$$

Let W be the space of all curves in M of class H^{1} parameterized by the segment $[0,1]$. We fix a parametrisation of S^{1} by $[0,1]$; then $\Omega \subset W$.

We define the map $\phi: M \times L^{2}\left([0,1] ; \mathbb{C}^{l}\right) \rightarrow W$ as follows. Given $q \in M$ and $u(\cdot) \in L^{2}\left([0,1] ; \mathbb{C}^{l}\right)$ the curve $\gamma(\cdot)=\phi(q, u(\cdot))$ is the solution of the ordinary differential equation

$$
\dot{\gamma}(t)=X_{\gamma(t)} u(t), \quad 0 \leq t \leq 1,
$$

with the initial condition $\gamma(0)=q$. We also set $\phi_{t}(q, u)=$ $(q, \phi(q, u)(t))$ and thus define the map $\phi_{t}: M \times L^{2}\left([0,1] ; \mathbb{R}^{l}\right) \rightarrow M \times M$. It is easy to see that ϕ_{t} is a smooth map and ϕ_{t} is a submersion for $0<t \leq 1$.

Let E be a finite-dimensional subspace of $L^{2}([0,1] ; \mathbb{C})$ and $E_{0}=\left\{v \in E: \int_{0}^{1} v(t) d t=0\right\}$. We set:

$$
\mathcal{X}_{q}(E)=\left\{\theta: \mapsto \xi_{0}+\int_{0}^{\theta} X_{q} u(t) d t: \xi_{0} \in T_{q} M, u(\cdot) \in E_{0}^{l}\right\} .
$$

We say that E is well-balanced if $\imath E=E$ and $\left.\operatorname{ker} b_{q}\right|_{\mathcal{X}_{q}(E)}=\operatorname{ker} b_{q}$. Lemma 1. Any finite-dimensional subspace of $L^{2}([0,1] ; \mathbb{C})$ is contained in a well-balanced subspace.

We set:

$$
B_{r}=\left\{u \in L^{2}\left([0,1] ; \mathbb{C}^{l}\right):\|u\|<r\right\}, \quad U_{r}(E)=\phi\left(M \times\left(B_{r} \cap E^{l}\right)\right)
$$

Let $J_{i}(E ; c, r)$ be homology homomorphisms

$$
H_{i}\left(\Omega_{h}^{c} \cap U_{r}(E), \Omega_{h}^{-c} \cap U_{r}(E)\right) \rightarrow H_{i}\left(\Omega_{h}^{c} \cap U_{\infty}(E), \Omega_{h}^{-c} \cap U_{\infty}(E)\right)
$$

induced by the inclusion $U_{r}(E) \subset U_{\infty}(E)$. Finally, \mathcal{E} is the directed set of well-balanced subspaces partially ordered by the inclusion.
Theorem 1. There exist

$$
\lim _{c \rightarrow \infty} \lim _{r \rightarrow \infty} \mathcal{E}-\lim \operatorname{rank}\left(\jmath_{i+d_{E}}(E ; c, r)\right)=\operatorname{rank}\left(H_{i}(M)\right),
$$

where $d_{E}=\frac{1}{2}(\operatorname{dim} E-1) \operatorname{dim} M$.

Let $\beta_{j}(M)$ be the Betti number of M of the dimension j and C_{h} be the set of all 1-periodic trajectories of the Hamiltonian system. If all 1-periodic trajectories are non-degenerate, then C_{h} is a finite set.
Theorem 2 (Morse inequalities). Assume that all 1-periodic trajectories are non-degenerate. Then, for any $k \in \mathbb{Z}$, the following inequality holds:

$$
\sum_{j \leq k}(-1)^{k-j} \beta_{j}(M) \leq \sum_{\left\{\gamma \in C_{h}: i_{h}(\gamma) \leq k\right\}}(-1)^{k-i_{h}(\gamma)},
$$

where

$$
i_{h}(\gamma)=\frac{1}{2}\left\lfloor\operatorname{sgn}\left(d_{\gamma}^{2} \varphi_{0}\right)-\operatorname{sgn}\left(d_{\gamma}^{2} \varphi_{h}\right)\right\rfloor .
$$

Step Two Carnot Lie algebras and groups:

$$
\mathfrak{g}=V \oplus W, \quad[V, V]=W,[\mathfrak{g}, W]=0, \quad \mathfrak{G}=e^{\mathfrak{g}} .
$$

To any $\omega \in W^{*}$ we associate an operator $A_{\omega} \in \operatorname{so}(V)$ by the formula:

$$
\left\langle A_{\omega} \xi, \eta\right\rangle=\langle\omega,[\xi, \eta]\rangle, \quad \xi, \eta \in V .
$$

It is easy to see that $\omega \mapsto A_{\omega}, \omega \in W^{*}$ is an injective linear map. Moreover, any injective linear map from W^{*} to so(V) defines a structure of step two Carnot Lie algebra on the space $V \oplus W$ by the same formula. Hence step two Carnot Lie algebras are in the one-to-one correspondence with linear systems of anti-symmetric operators.

An H^{1}-curve $\gamma:[0,1] \rightarrow \mathfrak{G}$ is called horizontal if $\dot{\gamma}() \in V_{\gamma(t)}$ for a.e. $t \in[0,1]$.

The following multiplication in $V \times W$ gives a simple realization of \mathfrak{G} with the origin in $V \times W$ as the unit element:

$$
\left(v_{1}, w_{1}\right) \cdot\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}+\frac{1}{2}\left[v_{1}, v_{2}\right]\right) .
$$

Starting from the origin horizontal curves are determined by their projection to the first level and have a form:

$$
\gamma(t)=\left(\xi(t), \frac{1}{2} \int_{0}^{t}[\xi(t), \dot{\xi}(t)] d t\right), \quad 0 \leq t \leq 1,
$$

where $\xi(\cdot) \in H^{1}([0,1] ; U), \xi(0)=0$.

We set:

$$
\varphi(\xi)=\frac{1}{4 \pi} \int_{0}^{1}|\dot{\xi}(t)|^{2} d t
$$

We focus on the horizontal curves corresponding to closed cures ξ; they connect the origin with the second level. Given $w \in W \backslash 0$, let Ω_{w} be the space of horizontal curves connecting $(0,0)$ with $(0, w)$; then
$\Omega_{w}=\left\{\xi \in H^{1}([0,1] ; V): \xi(0)=\xi(1)=0, \frac{1}{2} \int_{0}^{1}[\xi(t), \dot{\xi}(t)] d t=w\right\}$.
For any $s>0$, we set: $\Omega_{w}^{s}=\left\{\xi \in \Omega_{w}: \varphi(\xi) \leq s\right\}$. Note that central reflection $\xi \mapsto-\xi$ preserves Ω_{w}^{s}.

Let $E \subset H^{1}([0,1] ; V)$ be a finite-dimensional subspace and $\bar{E}=$ $(E \backslash 0) /(\xi \sim(-\xi))$ its projectivization. We set $E_{w}^{s}=\Omega_{w}^{s} \cap E$ and denote by \bar{E}_{w}^{s} the image of E_{w}^{s} under the factorization $\xi \sim(-\xi)$.

We consider the homology $H .\left(\bar{E}_{w}^{s} ; \mathbb{Z}_{2}\right)$ and its image in $H .\left(\bar{E} ; \mathbb{Z}_{2}\right)$ by the homomorphism induced by the imbedding $\bar{E}_{w}^{s} \subset \bar{E}$. We have:

$$
\operatorname{rank}\left(H_{i}\left(\bar{E}_{w}^{s} ; \mathbb{Z}_{2}\right)\right)=\beta_{i}\left(\bar{E}_{w}^{s}\right)+\varrho_{i}\left(\bar{E}_{w}^{s}\right),
$$

where $\beta_{i}\left(\bar{E}_{w}^{s}\right)$ is rank of the kernel of the homomorphism from $H_{i}\left(\bar{E}_{w}^{s} ; \mathbb{Z}_{2}\right)$ to $H_{i}\left(\bar{E} ; \mathbb{Z}_{2}\right)$ induced by the imbedding $\bar{E}_{w}^{s} \subset \bar{E}$ and $\varrho_{i}\left(\bar{E}_{w}^{s}\right) \in\{0,1\}$ is the rank of the image of this homomorphism.

For given w, E, s, we introduce two positive atomic measures on the half-line \mathbb{R}_{+}, the "Betti distributions":

$$
\mathfrak{b}\left(\bar{E}_{w}^{s}\right) \doteq \sum_{i \in \mathbb{Z}_{+}} \frac{1}{s} \beta_{i}\left(\bar{E}_{q}^{s}\right) \delta_{\frac{i}{s}}, \quad \mathfrak{r}\left(\bar{E}_{w}^{s}\right) \doteq \sum_{i \in \mathbb{Z}_{+}} \frac{1}{s} \varrho_{i}\left(\bar{E}_{q}^{s}\right) \delta_{\frac{i}{s}} .
$$

Assume that $\operatorname{dim} W=2$ and let \mathcal{E} be the directed set of all finite-dimensional subspaces of the Hilbert space $\left.H^{1}([0,1]) ; V\right)$. It appears that there exist limits of these families of measures

$$
\lim _{s \rightarrow \infty} \mathcal{E}-\lim \mathfrak{b}\left(\bar{E}_{w}^{s}\right), \quad \lim _{s \rightarrow \infty} \mathcal{E}-\lim \mathfrak{r}\left(\bar{E}_{w}^{s}\right)
$$

in the weak topology. Moreover, the limiting measures are absolutely continuous with explicitly computed densities.

Let $\alpha: \Delta \rightarrow \mathbb{R}$ be an absolutely continuous function defined on an interval Δ. We denote by $|d \alpha|$ a positive measure on Δ such that $|d \alpha|(S)=\int_{S}\left|\frac{d \alpha}{d t}\right| d t, S \subset \Delta$.

The operators $A_{\omega}, \omega \in W^{*}$, have purely imaginary eigenvalues. Let $0 \leq \alpha_{1}(\omega) \leq \cdots \leq \alpha_{m}(\omega)$ are such that $\pm i \alpha_{j} m j=1, \ldots, m$, are all eigenvalues of A_{ω} counted according the multiplicities.

Let $\bar{W}^{*}=(W \backslash 0) /(w \sim c w, \forall c \neq 0)$ be the projectivization of $W^{*}, \bar{W}^{*}=\mathbb{R}^{1}$.

Given $w \in W \backslash 0$, we take the line $w^{\perp} \in W^{*}$ and consider the affine line

$$
\ell_{w}=\bar{W}^{*} \backslash \bar{w}^{\perp} \subset \bar{W}^{*} .
$$

Moreover, we define functions

$$
\lambda_{j}^{w}: \ell_{w} \rightarrow \mathbb{R}_{+}, j=1, \ldots, m, \quad \phi^{w}: \ell_{w} \rightarrow \mathbb{R}_{+}
$$

by the formulas:

$$
\lambda_{j}^{w}(\bar{\omega})=\frac{\alpha_{j}(\omega)}{\langle\omega, w\rangle}, \quad \phi^{w}(\bar{\omega})=\sum_{j=1}^{m} \lambda_{j}^{w}(\omega) .
$$

Theorem 3. Assume that there exists $\omega \in W^{*}$ such that the matrix A_{ω} has simple spectrum. Then, for any $w \in W \backslash 0$, there exist the following limits in the weak topology of the space of positive measures on \mathbb{R}_{+}:

$$
\mathfrak{b}_{w}=\lim _{s \rightarrow \infty} \mathcal{E}-\lim \mathfrak{b}\left(\bar{E}_{w}^{s}\right), \quad \mathfrak{r}_{w}=\lim _{s \rightarrow \infty} \mathcal{E}-\lim \mathfrak{r}\left(\bar{E}_{w}^{s}\right)
$$

Moreover,

$$
\mathfrak{b}_{w}=\phi_{*}^{w}\left(\sum_{j=1}^{m}\left|d \lambda_{j}^{w}\right|\right), \quad \mathfrak{r}_{w}=\chi_{\left[0, \min \phi^{w}\right]} d t
$$

where $d t$ is the Euclidean measure.

General scheme.

The object to study is a Banach manifold Ω equipped with a growing family of closed subsets $\Omega^{s}, s \in \mathbb{R}$.

Auxiliary objects are a Banach space B and a submersion Φ : $U \rightarrow \Omega$, where $U \subset B$ is a finite codimension submanifold of B.

Moreover, U is equipped with an ordered by the inclusion directed and exhausting family \mathcal{V} of open bounded subsets and B is endowed by an ordered by the inclusion directed family \mathcal{E} of finite dimensional subspaces such that $\underset{E \in \mathcal{E}}{\bigcup_{E} E}=B$.

Given $E \in \mathcal{E}, V \in \mathcal{V}, s \in \mathbb{R}$, we denote by

$$
\begin{aligned}
& \jmath_{i}(E, V, s): H_{i}\left(\Omega^{s} \cap \Phi(E \cap V), \Omega^{-s} \cap \Phi(E \cap V)\right) \\
& \quad \rightarrow H_{i}\left(\Omega^{s} \cap \Phi(E \cap U), \Omega^{-s} \cap \Phi(E \cap U)\right)
\end{aligned}
$$

the homology homomorphism induced by the inclusion $V \subset U$.

Finally, we select normalizing quantities $r_{i}(E, s), \rho_{i}(E, s) \in \mathbb{R}_{+}$ and build atomic measures:

$$
\mathfrak{b}(E, V, s)=\sum_{i \in \mathbb{Z}_{+}} \rho_{i}(E, s) \operatorname{rank}\left(\jmath_{i}(E, V, s)\right) \delta_{r_{i}(E, s)}
$$

in such a way that their exist a limit:

$$
\mathfrak{b}=\lim _{s \rightarrow \infty} \mathcal{V}-\lim \mathcal{E}-\lim \mathfrak{b}(E, V, s) .
$$

