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There are the notes of rather informal lectures given by the first co-author in UPMC, Paris,
in January 2017. Practical goal is to explain how to compute or estimate the Morse index of
the second variation. Symplectic geometry allows to effectively do it even for very degenerate
problems with complicated constraints. Main geometric and analytic tool is the appropriately
rearranged Maslov index.

In these lectures, we try to emphasize geometric structure and omit analytic routine. Proofs
are often substituted by informal explanations but a well-trained mathematician will easily re-
write them in a conventional way.

1 Lecture 1

1.1 First variations in finite dimensions

Our goal in these notes will be to develop a general machinery for optimization problems using
the language and results from symplectic geometry.

We start by discussing the Lagrange multiplier rule in the finite dimensional setting. Let
U be a finite dimensional manifold, ϕ : U → R a smooth function and Φ : U → M a smooth
submersion onto a finite dimensional manifold M . We would like to find critical points of
ϕ restricted to the level sets of Φ. It is well known that this can be done via the Lagrange
multiplier rule.

Theorem 1.1 (Lagrange multiplier rule). A point u ∈ U is a critical point of ϕ|Φ−1(q), q ∈M
if and only if there exists a covector λ ∈ T ∗qM , s.t.

duϕ = λDuΦ,
Φ(u) = q.

(1)

This fact has an important geometric implication. Suppose that we have locally a smooth
function q → u(q), s.t. each u satisfies the Lagrange multiplier rule. Then the covectors λ
corresponding to u(q) are just the values of the differential of the cost function c(q) = ϕ(u(q)).
Indeed, we can differentiate the constraint equation Φ(u(q)) = q to get

id = (DuΦ)
∂u

∂q
⇒ λ = (λDuΦ)

∂u

∂q
= (duϕ)

∂u

∂q
= dqc.

So if we choose a branch of u(q), the set of correspondent Lagrange multipliers is a graph of
a differential of a smooth function that is a Lagrangian submanifold of the symplectic manifold
T ∗M . Let us briefly recall the symplectic terminology.
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1.2 Basic symplectic geometry

In this subsection we give a some basic definitions from symplectic geometry. For further results
and proofs see [6, 8].

A symplectic space is a pair (W,σ) of an even-dimensional vector space W and a skew-
symmetric non-degenerate bilinear form σ. One can always choose a basis in W , s.t. σ is of
the form

σ(λ1, λ2) = λT1 Jλ2, λi ∈ W
where

J =

(
0 id
− id 0

)
.

Such a basis is called a Darboux basis.
A symplectic map is a linear map F : W → W that preserves the symplectic structure, i.e.

σ(Fλ1, Fλ2) = σ(λ1, λ2).

In a Darboux basis we can equivalently write

F TJF = J.

We define the skew-orthogonal complement of a subspace Γ in a symplectic space W as a
subspace

Γ∠ = {λ ∈ W : σ(λ, µ) = 0,∀µ ∈ Γ }.
One has the following special situations

– If Γ ⊂ Γ∠, then Γ is called isotropic;

– If Γ ⊃ Γ∠, then Γ is called coisotropic;

– If Γ = Γ∠, then Γ is called Lagrangian.

From the definition we can see, that Γ is isotropic if and only if the restriction σ|Γ vanishes.
Since σ is non-degenerate, we have

dim Γ + dim Γ∠ = dimW.

Therefore a subspace Γ is Lagrangian if and only if Γ is isotropic and has dimension (dimW )/2.
Any one-dimensional subspace is isotropic by the skew-symmetry of σ. For the same reasons
any codimension one subspace is coisotropic.

In a Darboux basis each vector λ ∈ W has coordinates (p1, ..., pn, q
1, ..., qn) = (p, q), where

n = (dimW )/2. Then the subspaces defined by equations p = 0 or q = 0 are Lagrangian.
To construct more examples we can consider a graph (p, Sp) of a linear map S between those
subspaces. Then it is easy to check that (p, Sp) gives a Lagrangian subspace if and only if S is
symmetric.

There exists a close relation between symplectic maps and Lagrangian subspaces. Given
(W,σ) we can construct a new symplectic space (W ×W, (−σ) ⊕ σ) of double dimension. It
can be used to give an alternative definition of a symplectic map.

Proposition 1.1. Let F : W → W be a linear map. F is symplectic if and only if the graph
of F in (W ×W, (−σ)⊕ σ) is Lagrangian.

We can extended all these definitions to the non-linear setting. A symplectic manifold is
a pair (W,σ), where W is a smooth manifold and σ is a closed non-degenerate differential
two-form. Similar to the linear case, one can show that locally all symplectic manifolds have
the same structure.
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Theorem 1.2 (Darboux). For any point x of a symplectic manifold (W,σ) one can find a
neighbourhood U and a local diffeomorphism ψ : U → R2n, s.t.

σ = ψ∗(dpi ∧ dqi),

where (p, q) are coordinates in R2n.

Note that a tangent space TxW has naturally a structure of a symplectic space. Therefore
we can say that a submanifold N ⊂M is isotropic/coisotropic/Lagrangian if the same property
is true for each subspace TxN ⊂ TxW for all x ∈ N . Similarly to the linear case a submanifold
N is isotropic if and only if σ|N = 0 and Lagrangian if additionally dimN = (dimW )/2.

A symplectomorphism of (W,σ) is a smooth map f : W → W , that preservers the symplectic
structure, i.e.

f ∗σ = σ.

Given a smooth function h : W → R, a Hamiltonian vector field ~h is defined by the identity
dh = σ(·,~h). The flow generated by the Hamiltonian system ẋ = ~h(x) preserves the symplectic
structure. In Darboux coordinates, Hamiltonian system has the form:

ṗ = −∂h
∂q
, q̇ =

∂h

∂p
.

The non-linear analogue of Proposition 1.1 holds as well

Proposition 1.2. A diffeomorphism f : W → W of a symplectic manifold (W,σ) is a symplec-
tomorphism if and only if the graph of f in (W ×W, (−σ)⊕ σ) is a Lagrangian submanifold.

The most basic and important examples of symplectic manifolds are the cotangent bundles
T ∗M . To define invariantly the symplectic form we use the projection map π : T ∗M →M . It’s
differential is a well defined map π∗ : T (T ∗M) → TM . We can define the Liouville one-form
s ∈ Λ1(T ∗M) at λ ∈ T ∗M as

sλ = λ ◦ π∗.

Then the canonical symplectic form on T ∗M is simply given by the differential σ = ds.
In local coordinates T ∗M is locally diffeomorphic to Rn×Rn with coordinates (p, q), where

q are coordinates on the base and p are coordinates on the fibre. In these coordinates the
Liouville form s is written as s = pidq

i. Thus (p, q) are actually Darboux coordinates. We can
use this fact to construct many Lagrangian manifolds. Namely

Proposition 1.3. Let S : M → R be a smooth function. Then the graph of the differential dqS
is a Lagrangian submanifold in T ∗M .

The proof is a straightforward computation in the Darboux coordinates and follows from
the commutativity of the second derivative of S.

We have seen in the previous subsection that the set of Lagrange multipliers is often a graph
of the differential of a smooth function. One can reformulate this by saying that that the set of
Lagrange multipliers is actually a Lagrangian submanifold. In the next sections we will see that
this is a rather general fact, but the resulting “Lagrangian set” can be quite complicated. So
we will linearise our problem and extract optimality information from the behaviour of what is
going to be “tangent spaces” to this “Lagrangian sets”. This way we obtain a geometric theory
of second variation that is applicable to a very large class of optimization problems.
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1.3 First variation for classical calculus of variations

Let us consider a geometric formulation of the classical problem of calculus of variations, which
is an infinite dimensional optimisation problem. We denote by U the set of Lipschitzian curves
γ : [τ, t]→M , where M is a finite dimensional manifold. Assume that this set is endowed with
a nice topology of a Hilbert manifold. We consider a family of functionals

J tτ : γ 7→
∫ t

τ

l(γ(s), γ̇(s))ds.

We define the evaluation map Fs : U →M , that takes a curve and returns a point on it at
a time s ∈ [τ, t], i.e. Fs(γ) = γs. We look for the critical points of the restriction

J tτ |{F−1
τ (qτ ),F−1

t (qt)}.

So we apply the Lagrange multiplier rule to ϕ = J tτ with Φ = (Fτ , Ft) and find that there exists
a pair (−λτ , λt) ∈ T ∗q(τ)M × T ∗q(t)M , s.t.

dγJ
t
τ = λtDγFt − λτDγFτ . (2)

The evaluation map is obviously a submersion. This fact implies that ones we fix γ and
one of the covectors (−λτ , λt), the other one will be determined automatically. Indeed, suppose
for example that (−λτ , λt) and (−λτ , λ′t) both satisfy the Lagrange multiplier rule. Then in
addition to (2) we have

dγJ
t
τ = λ′tDγFt − λτDγFτ .

We subtract this equation from (2) and obtain

(λ′t − λt)DγFt = 0,

which gives a contradiction with the fact that Ft is a submersion.
As in the finite dimensional case under some regularity assumptions the Lagrange multipliers

form a Lagrangian submanifold in T ∗M×T ∗M endowed with a symplectic form (−σ)⊕σ. Since
each λτ determines a unique λt, we get that this Lagrangian submanifold can be identified with
a graph of some map Atτ : T ∗M → T ∗M . Such a graph is a Lagrangian submanifold if and only
if Atτ is symplectic. Moreover, the identity J tτ = Jsτ +J ts implies that Atτ is actually a symplectic
flow, i.e. Atτ = Ats ◦ Asτ , where s ∈ [τ, t], Aττ = Id.

Since we have a symplectic flow, it should come from a Hamiltonian system. Let us find
an expression for the corresponding Hamiltonian. We introduce some local coordinates (p, q)
on T ∗M . Then our extremal curve γ is given by a map s → q(s). We denote q̇ = v and write
down the equation (2) ∫ t

τ

(
∂l

∂q
dqs +

∂l

∂v
dvs

)
ds = ptdqt − pτdqτ .

We differentiate this expression w.r.t. time t:

∂l

∂q
dqt +

∂l

∂v
dvt = ṗtdqt + ptdvt

Then we obtain

q̇t = vt,

ṗt =
∂l

∂q
, (3)

pt =
∂l

∂v
.
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The first two equations can be seen to be a Hamiltonian system

q̇t =
∂H

∂p
,

ṗt = −∂H
∂q

, (4)

with a Hamiltonian
H(v, p, q) = 〈p, v〉 − l(q, v)

and the third equation gives a condition

∂H

∂v
= 0.

If the second derivative of the Hamiltonian H w.r.t. v is non-degenerate, then by the in-
verse function theorem we can locally resolve this condition to obtain a function v = v(p, q).
Substituting it in H(p, q, v), we get an autonomous Hamiltonian system with a Hamiltonian
H(p, q, v(p, q)).

1.4 Second variation

Now we are going back to the general setting with ϕ : U → R and constraints Φ : U → M .
Once we have found a critical point u ∈ U , we would like to study the index of the Hessian,
which is a quadratic form

Hessu ϕ|Φ−1(q) = kerDuΦ× kerDuΦ→ R.

We can write an explicit expression for the Hessian without resolving the constraints in the spirit
of the Lagrange multiplier rule. Consider a curve u(t) ∈ Φ−1(q), s.t. v = u̇(0) ∈ kerDu(0)Φ.
Then using the Lagrange multiplier rule, we obtain

d2

dt2

∣∣∣∣
t=0

ϕ =
d

dt

∣∣∣∣
t=0

dϕ

du
u̇ =

〈
d2ϕ

du2
u̇, u̇

〉
+
dϕ

du
ü =

〈
d2ϕ

du2
v, v

〉
+ p

dΦ

du
ü(0).

On the other hand we can twice differentiate the constraints Φ(u(t)) = q. We get similarly〈
d2Φ

du2
v, v

〉
+
dΦ

du
ü(0) = 0.

If we assume that U is Hilbert manifold, then the two expressions give a formula for the Hessian
in local coordinates that can be written as follows:

Hessu ϕ(v, v) =

〈(
d2ϕ

du2
− pd

2Φ

du2

)
v, v

〉
:= 〈Qv, v〉,

s.t. v satisfies
dΦ

du
v = 0.

We define

L =

{
(p, q, u) : Φ(u) = q ,

dϕ

du
− pdΦ

du
= 0

}
,

and
L = π(L),
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where π(u, λ) = λ. L is the set of all Lagrangian multipliers. We say that (Φ, ϕ) is a Morse
pair (or a Morse problem), if the equation (1) is regular, i.e. zero is a regular value for the map

(p, q, u) 7→ dϕ

du
− pdΦ

du
. (5)

If dimU <∞, then generically constraint optimization problems are Morse. Not all functions
ϕ|Φ−1(q) though are Morse, as one could think the name suggests. The Morse property of a
constrained optimization problem implies the following important facts

Proposition 1.4. Let (ϕ,Φ) be a Morse problem. Then L is a smooth manifold and π|L is a
Lagrangian immersion into T ∗M .

The main corollary of this proposition is that L has a well defined tangent Lagrangian
subspace at each point

L(u,λ)(ϕ,Φ) =

{
(δp, δq) : ∃δu ∈ TuU ;

dΦ

du
δu = δq , Qδu = δp

dΦ

du

}
(6)

and these subspaces will be the main objects of our study.
Before proving the last proposition, we prove a lemma

Lemma 1.1. The point (p, q, u) is regular for the map (5) if and only if imQ is closed and

kerQ ∩ ker
dΦ

du
= 0.

Proof. We compute the differential of the map (5):

Qδu− δpdΦ

du
.

The differential is surjective if and only if it’s image is closed and has a trivial orthogonal
complement or, equivalently, the existence of w ∈ TuU s.t. for any (δu, δp)

〈Qδu,w〉 − δpdΦ

du
w = 0, (7)

implies that w = 0. But since (δu, δp) are arbitrary and Q is symmetric, (7) is equivalent to
the existence of w ∈ TuU , s.t. we have simultaneously

Qw = 0,
dΦ

du
w = 0.

Then by assumption we have w = 0 and the result follows.

Proof of Proposition 1.4. The fact that L is a manifold is just a consequence of the implicit
function theorem. We prove now that πM is an immersion. Differential of this map takes the
tangent space to L and maps it to the space L(u,λ)(ϕ,Φ) (see (6)). It “forgets” δu. So a non-
trivial kernel of the differential must lie in the subspace δp = δq = 0. But from the definition
of Lu,λ(ϕ,Φ) we have that in this case Qδu = 0 and DuΦδu = 0, which contradicts to the fact
that the problem is Morse, as it can be seen from the previous lemma. Thus the differential is
injective.

To prove that this immersion is Lagrangian it is enough to prove that L(u,λ)(ϕ,Φ) is a
Lagrangian subspace. Since Q is symmetric, it is easy to see that this subspace is isotropic.
Take (δp1, δq1) and (δp2, δq2) in L(u,λ)(ϕ,Φ). Then we compute

σ ((δp1, δq1), (δp2, δq2)) = δp1δq2−δp2δq1 = δp1
dΦ

du
δu2−δp2

dΦ

du
δu1 = 〈Qδu1, δu2〉−〈Qδu2, δu1〉 = 0.
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Figure 1: Lagrangian manifolds in the simplest case of dimM = 1

Now it just remains to prove that the dimension of this space is equal to n. We are going
to do it only in the finite-dimensional setting but this is true in general [3]. Note that if we fix
(δp, δu) as in the definition of L(u,λ)(ϕ,Φ), then δq is determined automatically. So it is enough
to study the map

S : (δu, δp) 7→ Qδu− δpdΦ

du
.

Then clearly dimL(u,λ)(ϕ,Φ) = dim kerS. But we have seen in the proof of the previous lemma,
that this map is actually surjective. Then dim imS = dimU and we have

dim kerS = dim(U × Rn)− dimU = n.

In a Morse problem, the Lagrange submanifold L often contains all necessary information
about the Morse index index and the nullity of the Hessian. We can already give a geometric
characterization of the nullity, while for the geometric characterization of the index we will
need more facts from linear symplectic geometry.

Proposition 1.5. Hessu ϕ has a non-trivial kernel if and only if λ is a critical point of the
map πM |L, where πM : T ∗M → M is the standard projection. The dimension of the kernel of
the Hessian is equal to the dimension of the kernel of the differential of πM |L.

Schematically this situation is depicted in the Figure 1 on the right.

Proof. Note that λ is a critical point of πM |L if and only if the tangent space L(u,λ)(ϕ,Φ)
contains a vertical direction (δp, 0). If this is the case, by definition there exists δu ∈ kerDuΦ,
s.t.

Qδu = δp
dΦ

du
. (8)

Then clearly for any v ∈ kerDuΦ, we have 〈Qδu, v〉 = 0.
On the contrary if DuΦδu = 0 and δu belongs to the kernel of the Hessian, then for any

v ∈ kerDuΦ we have 〈Qδu, v〉 = 0 and Qδu must be a linear combinations of the rows of DuΦ,
i.e. there exists δp ∈ Tλ(T ∗qM), s.t. (8) holds.

If the problem is Morse, then the subspace L(u,λ)(ϕ,Φ) defined in (6) is Lagrangian. How-
ever, our goal is to handle degenerate cases and a starting point is the following surprising fact
that is valid without any regularity assumption on (ϕ,Φ); in particular, u may be a critical
point of Φ.
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Proposition 1.6. If U is finite dimensional, then the defined in (6) space L(u,λ)(ϕ,Φ) is a
Lagrangian subspace of Tλ(T

∗M).

We leave the proof of this interesting linear algebra exercise to the reader. Next example
shows that finite dimensionality of U is essential.

Let M = R and U be a Hilbert space. Then a = Φ′u is an element of the dual space
U∗, T ∗M = R2, and Lagrangian subspaces are just one-dimensional subspaces of R2. We set
L = L(u,λ)(ϕ,Φ). By the definition we have

L = {(δp, δq) : ∃ v ∈ U , Qv = (δp)a, δq = 〈a, v〉}

Assume that Q : U → U∗ is injective and not surjective. If a /∈ imQ, then L = {(0, 0)} with a
unique lift v = 0.

Injectivity and symmetricity of Q imply that imQ is everywhere dense in U , hence imQ is
not closed in the just described example. Now we drop the injectivity assumption but assume
that imQ = imQ. Let us show that L is 1-dimensional in this case. Indeed, the self-adjointness
of Q implies that kerQ⊕ imQ = U . Then we have two possible situations

1. a ∈ imQ. Then there is a unique preimage of a in imQ, that we denote by v = Q−1a.
We get

L = span{(1, 〈a,Q−1a〉)},

where Q−1 is a pseudo-inverse.

2. a /∈ imQ, then we must have δp = 0 and v ∈ kerQ. There exists v ∈ kerQ such that
〈a, v〉 6= 0, and we obtain

L = span{(0, 〈a, v〉)}.

If dimU <∞, then imQ is automatically closed and L is Lagrangian as we have seen.

1.5 Lagrangian Grassmanian and Maslov index

We are going to give a geometric interpretation of the Morse index of the Hessian in terms of
some curves of Lagrangian subspaces. To do this, we need some results about the geometry of
the set of all Lagrangian subspaces of a given symplectic space (W,σ). This set has a structure
of a smooth manifold and is called the Lagrangian Grassmanian L(W ). We give just the basic
facts about L(W ). For more information see [6].

To construct a chart of this manifold we fix a Lagrangian subspace Λ2 ∈ L(W ) and consider
the set of all Lagrangian subspaces transversal to Λ2, which we denote by Λt

2 (the symbol t
means ”transversal”). By applying a Gram-Schmidt like procedure that involves σ, we can
find some Darboux coordinates (p, q) on W , s.t. Λ2 = {(0, q)} (see [3] for details). Then
Λ0 = {(p, 0)} belongs to Λt

2 and any other Λ1 ∈ Λt
2 can be defined as a graph of a linear map

from Λ0 to Λ2. As we have seen in the Section 1.2 the matrix of this map is symmetric and
we obtain the identification of Λt

2 with the space of symmetric n × n-matrices that gives the
desired local coordinates on L(W ).

Since symplectic maps preserve the symplectic form, they also map Lagrangian subspaces
to Lagrangian subspaces. This action is transitive, i.e. there are no invariants of the symplectic
group acting on L(W ). If we consider the action of the symplectic group on pairs of Lagrangian
spaces, then the only invariant is the dimension of their intersection [6]. But triples (Λ0,Λ1,Λ2)
do have a non-trivial invariant, that is called the Maslov index of the triple or the Kashiwara
index.

To define it suppose that Λ0,Λ1,Λ2 ∈ L(W ), s.t. Λ0 t Λ1 and Λ0 t Λ2. Since the symplectic
group acts transitively on the space of pairs of transversal Lagrangian planes, we can assume
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 0 ,0p 

 2 0,q 

1

Figure 2: Defining a Lagrangian plane Λ1 as a graph of a quadratic form from Λ0 to Λ2

without any loss of generality that Λ0 = {(p, 0)} and Λ2 = {(0, q)}. Then we can identify Λ1

with a graph {(p, Sp)}, where S is a symmetric matrix. The invariant µ of this triple is then
defined as

µ(Λ0,Λ1,Λ2) = sgnS.

This invariant can be also defined intrinsically as the signature of a quadratic form q̃ :
Λ1 × Λ1 → R, that is defined as follows. Since Λ0 t Λ2, any λ ∈ Λ1 can be decomposed as
λ = λ0 +λ2, where λi ∈ Λi. Then we set q̃(λ) = σ(λ0, λ2). One can check that those definitions
agree.

This invariant has a couple of useful algebraic properties. The simplest ones is the antisym-
metry:

µ(Λ2,Λ1,Λ0) = −µ(Λ0,Λ1,Λ2);

µ(Λ0,Λ2,Λ1) = − sgn(S−1) = −µ(Λ0,Λ1,Λ2)

We are going to state and prove another important property called the chain rule, after we look
more carefully at the geometry of L(W ). Let us fix some ∆ ∈ L(W ). The Maslov train M∆

is the setM∆ = L(W ) r ∆t of Lagrangian planes that have a non-trivial intersection with ∆.
It is an algebraic hyper-surface with singularities and its intersection with a coordinate chart
containing ∆ can be identified with the set of degenerate symmetric matrices.

The set of nonsmooth points of the hyper-surfaceM∆ consist of Lagrangian subspaces that
have an intersection with ∆ of dimension two or more. It easy to check that this singular
part has codimension two in M∆. It follows that the intersection number mod 2 of M∆ with
any continuous curve whose endpoints do not belong to M∆ is well defined and is homotopy
invariant. For example when dimW = 4, we have that the intersection of M∆ with a coordi-
nate chart is identified with 2 × 2 symmetric matrices with zero determinant. This is a cone
whose points except the origin correspond to Lagrangian planes that have a one-dimensional
intersection with ∆. The origin represents the dimension two intersection with ∆, which is
equal to ∆ itself in this case. Clearly a general position curve in L(W ) does not intersect the
origin (see Figure 3) as well as a general position homotopy of curves, and so the intersection
number mod 2 is well defined.

We would like to define the integer-valued intersection number of curves in L(W ) withM∆,
and for this we need a coorientation of the smooth part of M∆. Let Λt ∈ L(W ) s.t. Λ0 = Λ
and consider any λt ∈ Λt s.t. λ0 = λ. Then we define

Λ̇(λ) = σ(λ, λ̇).
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Figure 3: A curve in a local chart of the Lagrangian Grassmanian L(R4) and the Maslov train

Thus we see that to any tangent vector Λ̇ we can associate a quadratic form Λ̇. Is easy to see
that Λ̇(λ) is indeed a well-defined quadratic form, i.e. that σ(λ, λ̇) depends only on Λ̇ and λ.
Moreover, Λ̇ 7→ Λ̇(λ), Λ̇ ∈ TΛL(W ) is an isomorphism of TΛL(W ) on the space of quadratic
forms on Λ.

From the previous discussion we know that dim(Λt∩∆) = 1 if Λt is a smooth point ofM∆.
Let λ ∈ Λt ∩∆, λ 6= 0; the intersection is transversal at the point Λt if and only if Λ̇(λ) 6= 0.
We say that the sign of the intersection is positive, if Λ̇(λ) > 0 and negative otherwise. The
intersection number of a continuous curve t 7→ Λt with M∆ is called the Maslov index of the
curve with respect to M∆. Note that Maslov index of a closed curve (i.e. a curve without
endpoint) does not depend on the choice of ∆. Indeed, the train M∆ can be transformed
to any other train by a continuous one-parametric family of symplectic transformations and
Maslov index is a homotopy invariant.

The Maslov index of a curve and the Maslov index of a triple are closely related. Let
γ : [0, 1]→ L(W ), s.t. the whole curve does not leave the chart ∆t. Then we have

2γ ◦MΛ = µ(Λ, γ(1),∆)− µ(Λ, γ(0),∆) (9)

what easily follows from definitions.
Now we can state the last property.

Lemma 1.2 (The chain rule). Let Λi ∈ L(W ), i = 0, 1, 2, 3. Then

µ(Λ0,Λ1,Λ2) + µ(Λ1,Λ2,Λ3) + µ(Λ2,Λ3,Λ0) + µ(Λ3,Λ0,Λ1) = 0.

Proof. Connect Λ0,Λ2 with two curves: one that is completely in Λt
3 and another one that is

completely in Λt
1 . Schematically this situation is depicted in Figure 4. This gives a closed curve

γ in L(W ) and we can compute it’s intersection with MΛ1 and MΛ3 . The chain rule follows
from the identities γ ◦MΛ1 = γ ◦MΛ3 and (9).

The formula (9) allows us to compute the Maslov index of a continuous curve, without
putting it in general position and really computing the intersection. We just need to split the

10
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Figure 4: An illustration to the proof. Λt
3 correspond to the region with vertical lines and Λt

1

to the region with the horizontal ones

whole curve into small pieces, s.t. that each of them lies in a single coordinate chart, and then
compute the index of the corresponding triples. This motivates the following definition. A
curve γ(t) ∈ L(W ) is called simple, if there exists ∆ ∈ L(W ), s.t. γ(t) ∈ ∆t.

2 Lecture 2

2.1 Morse Index

Now we return to the study of the second variation for a finite-dimensional Morse problem. We
have seen that L is an immersed Lagrangian submanifold. This allows us to define the Maslov
cocycle in the following way. We fix a curve γ : [t0, t1] → L and consider the corresponding
curve Lt : t 7→ Tγ(t)L. Along γ(t) we have vertical subspaces Π = Tγ(t)(T

∗
q(t)M) which lie in

different symplectic spaces. Vector bundles over the segment [t0, t1] are trivial, so by using a
homotopy argument, we can assume that the symplectic space and the vertical subspace Π are
fixed. We define the Maslov cocycle as

µ(γ(t)) = Lt ◦MΠ.

Then we have the following theorem.

Theorem 2.1. Let γ(t) be a curve connecting qt0 with qt1. Then

−2µ(γ) = δ (sgn Hessu ϕ|Φ−1(q)) := sgn Hessut1 ϕ|Φ−1(qt1 ) − sgn Hessut0 ϕ|Φ−1(qt0 )

Sketch of the proof. We denote Q(v) = 〈Qv, v〉. Then

Hessu ϕ|Φ−1(q) = Q|ker Φ′u , Φ(u) = q

and the difference of the signatures will be the difference of the correspondent signatures of
Q|ker Φ′u . Now we do not restrict Q to the kernel of Φ′u and use the fact that it depends on the
choice of coordinates. Indeed, the vertical subspace is fixed, but we have a freedom in choosing
the horizontal space.

Exercise: Given a Lagrangian subspace Λ ⊂ Tλ(T
∗M) that is transversal to the fiber T ∗qM ,

there exist local coordinates in which Λ = {(0, x) : x ∈ Rn}. Operator Q is non-degenerate iff
the horizontal subspace {(0, x) : x ∈ Rn} is transversal to L(u,λ)(ϕ,Φ).
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To proof the theorem, we may divide the curve into small pieces and check the identity
separately for each piece. In other words, we can assume that the curve is contained in the
given coordinate chart and, according to the exercise, that Qt is not degenerate for all t ∈ [t0, t1].

Then we can apply the following linear algebra lemma.

Lemma 2.1. Let E be a possibly infinite-dimensional Hilbert space, Q a quadratic form on E
that is positive definite of a finite codimension subspace and V a closed subspace of E. Then if
we denote by V ⊥Q the orthogonal complement of V in E w.r.t. Q, the following formula is valid

ind−Q = ind−Q|V + ind−QV ⊥Q
+ dim(V ∩ V ⊥Q )− dim(V ∩ kerQ).

Moreover if Q|V is non degenerate, then dim(V ∩ V ⊥Q ) = dim(V ∩ kerQ) = 0.

Thus by construction we get

sgnQti
= sgnQti

|ker Φ′u + sgnQti
|(ker Φ′u)⊥Qti

.

Since Qt is nondegenerate and continuously depends on t, we have sgnQt1 = sgnQt0 . Then
first summand is just the Hessian and one can show that

sgnQti
|(ker Φ′u)⊥Qti

= sgnSti = µ
(
V er, Lt, Hor

)
,

where V er = {(ξ, 0) : ξ ∈ Rn}, Hor = {(0, x) : x ∈ Rn}.
The statement of the theorem now follows from (9).

What about the infinite-dimensional Morse problem? The signature of the Hessian is not
defined in this case but difference of the signatures can be substituted by the difference of
the Morse indices if Hessu ϕ|Φ−1(q) are positive definite on a finite codimension subspace and
Hessuti ϕ|Φ−1(qti )

, i = 0, 1, are nondegenerate.

2.2 General case

Consider now a general, not necessary a Morse constrained optimization problem (ϕ,Φ) and a
couple (u, λ) that satisfies the Lagrange multiplier rule duφ = λDuΦ. In local coordinates:

λ = (p, q); ϕ′u = pΦ′u, Φ(u) = q.

We would like to consider the subspace L(u,λ)(ϕ,Φ) defined in 1.4, but in general it is just an
isotropic subspace. Nevertheless if V ∈ U is finite dimensional, then the space L corresponding
to (ϕ,Φ)|V is Lagrangian and we denote it by L(u,λ)(ϕ,Φ)|V .

The set of all finite-dimensional subspaces has a partial ordering given by inclusion. More-
over it is a directed set, therefore we can take a generalized limit over the sequence of nested
subspaces. The existence of this limit is guaranteed by the following

Theorem 2.2 ([2]). The limit

L(u,λ)(ϕ,Φ) = lim
V↗U

L(u,λ)(ϕ,Φ)|V

exists if and only if ind−Q|Φ′u <∞.

If the limit exists we call it the L-derivative and denote it by the gothic symbol L to distin-
guish it from the isotropic subspace that we would have got otherwise. The L-derivative con-
structed over some finite-dimensional subspace of the source space we will call a L-prederivative.
From here we also omit for brevity (u, λ) in the notations. The following property allows to
find efficient ways to compute L(ϕ,Φ).
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Theorem 2.3. Suppose that U is a topological vector space, s.t. ϕ,Φ are continuous on U and
U0 ⊂ U is a dense subspace. Then

L(u,λ)(ϕ,Φ)|U0 = L(u,λ)(ϕ,Φ)|U

One can use this theorem in two different directions. Given a topology on U0 one can look
for a weaker topology on U0, s.t. ϕ and Φ are continuous in that topology. Then we extend U0

to U by completion. This trick was previously used in [2].
Another way is to take a smaller subspace. For example, if U is separable, then we can take

a dense countable subset e1, e2, ... and compute the limit as

lim
n→∞

L(ϕ,Φ)|span{e1,...,en} = L(ϕ,Φ).

This allows to see how the L-derivative changes as we add variations. Under some additional
assumptions we can also compute the change in the Maslov index after adding additional
subspaces (see the Appendix).

2.3 Monotonicity

To discuss the Morse theorem in the general setting we need a very useful notion of monotonicity.
Assume that the curve γt is contained in a chart ∆t, then one can associate a one parametric
family of quadratic forms St, where γt = {(p, Stp) : p ∈ Rn}, ∆ = {(0, q) : q ∈ Rn}. We
say that γt is increasing if St is increasing, i.e. St − Sτ is positive definite, when t > τ . It is
important that the property of a smooth curve to be increasing does not depend on the choice
of a coordinate chart. Indeed, the quadratic form p 7→ 〈Ṡtp, p〉 is equivalent by a linear change
of variables to the form γ̇

t
defined in Section 1.5, and the definition of γ̇

t
is intrinsic. It does

not use local coordinates.
Moreover, if γt, t0 ≤ t ≤ t1 is simple and increasing, then Maslov index γ ◦MΛ depends

only on γt0 , γt1 ,Λ and can be explicitly expressed via the Maslov index of this triple. More
precisely, assume that γt0 , γt1 ,Λ are mutually transversal and let q̃ be a quadratic form on λ
defined by the formula: q̃(λ) = σ(λ1, λ0), λ ∈ Λ, where λ0 ∈ γt0 , λ1 ∈ γt1 , λ = λ0 + λ1 Actually
if we define

IndΛ(γt0 , γt1) = ind− q̃,

then one can show [1] that
γ ◦MΛ = IndΛ(γt0 , γt1).

A corollary of this fact is the following triangle inequality:

Proposition 2.1. Let Π,Λi, i = 0, 1, 2 be Lagrangian subspaces in L(Σ). Then

IndΠ(Λ0,Λ2) ≤ IndΠ(Λ0,Λ1) + IndΠ(Λ1,Λ2)

Proof. We consecutively connect Λ0 with Λ1, Λ2 with Λ3, and Λ3 with Λ0 by simple monotone
curves that gives us a closed curve γ. Then we have

γ ◦MΠ = IndΠ(Λ0,Λ1) + IndΠ(Λ1,Λ2) + IndΠ(Λ2,Λ0).

From the definition of Ind, one has

IndΠ(Λ2,Λ0) = n− IndΠ(Λ0,Λ2).

So it is enough to show that γ ◦MΠ ≥ n. This again follows from the fact that the intersection
index of a closed curve does not depend on the choice of Π. Recall that the group of symplectic
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Figure 5: Monotone increasing blue curve and monotone decreasing black curve with the same
end-points

transformations acts transitively on the set of pairs of transversal Lagrangian planes. Hence we
can find ∆ ∈ L(Σ) s.t. such that Λ0 and Λ1 belong to the coordinate chart ∆t and, moreover,
Λ0 is represented by a negative definite symmetric matrix in this chart while Λ1 is represented
by a positive definite symmetric matrix. Then

γ ◦MΠ = γ ◦M∆ = Ind∆(Λ0,Λ1) + Ind∆(Λ1,Λ2) + Ind∆(Λ2,Λ0) ≥ n

since by definition Ind∆(Λ0,Λ1) = n and Ind∆(Λi,Λj) ≥ 0.

So if we take a curve γ(t) ∈ L(Σ) and it’s subdivision at moments of time 0 = t0 < t1 <
... < tN = 1, we can consider the sum

N−1∑
i=0

IndΠ(γ(ti), γ(ti+1))

which grows as the partition gets finer and finer. For monotone increasing curves this sum will
stabilize and will be equal to a finite number. This motivates the next definition. A (maybe
discontinuous) curve γ : [0, 1]→ L(Σ) is called monotone increasing if

sup
D

∑
ti∈D

IndΠ(γ(ti), γ(ti+1)) <∞,

where the supremum is taken over all possible finite partitions D of the interval [0, 1].
Monotone curves have properties similar to monotone functions. For example, they have

only jump discontinuous and are almost everywhere differentiable.
It is instructive to see how monotonicity works on curves in L(R2). The Lagrangian Grass-

manian L(R2) topologically is just an oriented circle and a curve is monotone increasing if it
runs in the counter-clockwise direction. A coordinate chart is the circle with a removed point.
On the left picture of Figure 5 the blue curve is monotone and it’s index Maslov is equal to
zero. On the right the black curve is not monotone increasing. Indeed if we take any two points
the Maslov index of a triple (Λti ,Π,Λti+1

) will be equal to one (the red curve).
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2.4 L-derivative for optimal control problems with a free control

In this subsection we consider an optimal control problem with fixed end-points1.

q̇ = f(q, u(t)), q ∈M, u ∈ Rk, (10)

q(0) = q0, q(t1) = q1,

J t10 =

∫ t1

0

l(q(s), u(s))ds

We may assume, that time moment t1 is fixed. Otherwise, we can make a time scaling
s = ατ , where α > 0 is a constant that will be used as an additional control function. If we
denote by û(τ) = u(ατ) and τ1 = t1/α, then we get an equivalent optimal control problem

q̇ = αf(q, û(τ)), (α, û(τ)) ∈ R× L2
k[0, τ1],

q(0) = q0, q(τ1) = q1,

Ĵτ10 = α

∫ τ1

0

l(q(τ), û(τ))dτ

with fixed time τ1. We see that by variating α we variate the final time t1, so we can assume
from the beginning that t1 is fixed.

A curve q(t) that satisfies (10) for some locally bounded measurable function u(t) is called
an admissible trajectory. As in the case of the classical calculus of variations we can define the
evaluation map Ft that takes an admissible curve and maps it to the corresponding point at a
moment of time t. We easily recover the Lagrange multiplier rule (1)

νdγJ
t
0 = λtDγFt − λ0DγF0. (11)

where ν can be normalized in such a way that it takes value 1 or 0. If ν = 1, we call the
corresponding extremal normal, otherwise it is called abnormal. In the case of calculus of
variations one has only normal extremals because (Ft, F0) is a submersion.

We can derive the Hamiltonian system also in this case. Locally we assume that λt = (pt, qt).
Then

ν

∫ t

0

(
∂l

∂q
dqs +

∂l

∂u
dus

)
ds = ptdqt − p0dq0.

We differentiate this expression w.r.t. time t:

ν
∂l

∂q
dqt + ν

∂l

∂u
dut = ṗtdqt + ptdf,

where df = ∂f
∂q
dqt + ∂f

∂u
dut. Now we collect terms and obtain:

∂

∂u
(〈pt, f(qt, u)〉 − νl(qt, u)) = 0,

ṗt =
∂

∂qt
(νl(qt, u)− 〈pt, f(qt, u)〉) ,

q̇ = f(q, u).

Thus if we set
H(p, q, u) = 〈p, f(q, u)〉 − νl(q, u)

1We do not study free endpoint problems here: see recent paper [7] and references therein for 2nd order
optimality conditions in the free endpoint case.

15



we see that the equations above are equivalent to a Hamiltonian system, where the Hamiltonian
satisfies

∂H

∂u
= 0.

We can rewrite these equations in the coordinate free form:

λ̇t = ~H(λt, u),
∂H

∂u
= 0. (12)

Now fix q0 ∈M ; then F−1
0 (q0) is just the space of control functions u(·). Let Et : u(·) 7→ q(t)

be the endpoint map, Et = Ft
∣∣
F−1
0 (q0)

. It is easy to see that the relation (11) is equivalent to

the relation
νduJ

t
0 = λtDuEt.

Let ũ(·) satisfy this relation, i.e. there exist λt, 0 ≤ t ≤ t1, such that (12) is satisfied with
u = ũ(t). We are going to compute the L-derivative L(ũ,λt)(νJ

t
0, Et). Let Pt : M → M be the

flow generated by the differential equation q̇ = f(q, ũ(t)), P0 = Id. We set Gt = P−1
t ◦ Et.

The map Gt is obtained from Et by a “change of variables” in M . Intrinsic nature of the
L-derivative now implies that

L(ũ,λt)(νJ
t
0, Gt) = P ∗t

(
L(ũ,λ0)(νJ

t
0, Et)

)
and we may focus on the computation of the L-derivatives L(ũ,λ0)(νJ

t
0, Gt) ⊂ Tλ0(T

∗M), 0 ≤
t ≤ t1 which is more convenient, since all the L-derivatives lie in the same symplectic space
Tλ0(T

∗M) and this way we don’t need a connection or a homotopy argument to compute the
Maslov index.

To find Gt we apply a time-dependent change of variables

y = P−1
t (q).

It is easy to see that we get an equivalent control system

ẏ = (P−1
t )∗ (f(u, ·)− f(ũ(t), ·)) (y) = g(t, u, y),

where in the center we have the pull-back of vector fields. Then the definitions give us

y0 = q0, g(ũ(t), y) = 0.

Similarly in the functional we define ψ(t, u, y) = l(Pt(y), u).
To write down an explicit expression for L(ũ,λ0)(νJ

t
0, Gt) we must characterize first all the

critical points and Lagrange multipliers in these new coordinates. We apply the Lagrange
multiplier rule exactly as above and find, that if (y(t), u(t)) is a critical point, then there exists
a curve of covectors µt ∈ T ∗y(t)M , that satisfies a Hamiltonian system

µ̇t = ~h(t, u, µt), (13)

where the Hamiltonian
h(t, u, µt) = 〈µt, g(t, u, y)〉 − νψ(t, u, y)

satisfies also
∂h(t, u, µt)

∂u
= 0. (14)

Note that for the referenced critical point (y0, ũ(t)), the corresponding curve of covectors is
simply µt = λ0 and h(t, ũ(t), λ0) = 0.
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Recall that the L-derivative is obtained by linearising the relation for the Lagrange multiplier
rule. But the Lagrange multiplier rule is equivalent to this weak version of the Pontryagin
maximum principle, so it is enough to linearise (13) and (14) at µt = λ0 and u(t) = ũ(t). Since
~h(t, ũ, λ0) = 0, linearisation of (13) gives

η̇t =
∂~h(t, u, λ0)

∂u

∣∣∣∣∣
u=ũ

vτ ⇐⇒ ηt = η0 +

∫ t

0

Xτvτdτ, Xτ :=
∂~h(t, u, λ0)

∂u

∣∣∣∣∣
u=ũ

.

Similarly we can linearise the equation (14) and use the definition of a Hamiltonian vector field
to derive:

∂2h(t, u, λ0)

∂u2

∣∣∣∣
u=ũ

(v(t), ·)+

〈
dµτ

∂~h(t, u, λ0)

∂u

∣∣∣∣∣
u=ũ

·, ηt

〉
= 0 ⇐⇒ bt(v(t), ·)+σ (ηt, Xt·) = 0,

where bt is the second derivative of h(t, u, λ0) w.r.t. u at u = ũ. Combining this two expressions
we find that a L-prederivative is defined as

L(νJ t0, Et)|V = (P t
0)∗

{
ηt = η0 +

∫ t

0

Xτvτdτ : η0 ∈ Tλ0(T ∗q0M), vτ ∈ V :∫ t

0

σ (ητ , Xτwτ ) + bτ (vτ , wτ )dτ = 0,∀wτ ∈ V
}

From this description and the definition of the L-derivative as a limit of L-prederivatives we
can deduce an interesting property that can be successfully used to construct approximations for
the former. This property says that if we know a L-derivative at a moment of time s1 ∈ (0, t1)
that we denote by L1, then the L-derivative at a moment of time s1 < s2 ≤ t1 can be computed
using the vectors from L1 and variations with support in [s1, s2]. A precise statement is the
following

Lemma 2.2. Take 0 < s1 < s2 and suppose that ind−Q|kerDũEt is finite along an extremal curve
defined on [0, s2]. Let L1 and L2 be the two L-derivatives for the times s1 and s2 correspondingly.
We denote by V2 some finite dimensional subspace of L2

k[s1, s2] and we consider the following
equation∫ s2

s1

[
σ

(
λ+

∫ τ

s1

Xθv2(θ)dθ,Xτw(τ)

)
+ bτ (v2(τ), w(τ))

]
dτ = 0, ∀w(τ) ∈ V2, (15)

where v2(τ) ∈ V2, and λ ∈ L1. Then L2 is a generalized limit of the Lagrangian subspaces
L2

1[V2] defined as

L2
1[V2] =

{
λ+

∫ s2

s1

Xτv(τ)dτ : λ ∈ L1 , v(τ) ∈ V2 satisfies (15) for any w(τ) ∈ V2

}
.

This lemma implies that the curve of L-derivatives has some sort of a flow property, i.e.
the L-derivative at the current instant of time can be recovered from the L-derivatives at
previous moments. This observation is the key moment in our algorithm for computation of
the L-derivative with arbitrary good precision.

The algorithm can be summarized in the following steps:

1. Take a partition 0 = s0 < s1 < ... < sN = t of the interval [0, t]. The finer the partition
is, the better will be approximation of the L-derivative at the time t;

2. Compute inductively L(u,λ)(νJ
t
0, Gt)|Vi , Vi = Rkχ[s0,s1] ⊕ ... ⊕ Rkχ[si,si+1] starting from

L(u,λ)(νJ
t
0, Gt)|V0 = Π.
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When max |si+1 − si| → 0, we get in the limit the real L-derivative, since piecewise constant
functions are dense in L2. This way we reduce the problem to solving iteratively systems of
k linear equations. In the Theorem 2.6 of the Appendix an explicit solution to this system is
given.

This algorithm does not only allow to approximate the L-derivative, but also to compute
the index of the Hessian restricted to the subspace of piece-wise constant variations.

Theorem 2.4. Let D = {0 = s0 < s1 < ... < sN = t1} be a partition of the interval [0, t1]
and let VD be the space of piece-wise constant functions with jumps at moments of time si. We
denote by Vi ⊂ VD the subspace of functions that are zero for t > si, V

0
i = Vi ∩ ker dũGt1 and

Λi = L(νJ t10 , Gt1)|Vi Then the following formula is true

ind−Q|V 0
D

=
N∑
i=0

IndΠ(Λi,Λi+1) + dim

(
N⋂
i=0

Λi

)
− n, (16)

where Λ0 = ΛN+1 = Π.

Moreover one can prove the following result, that is the basis of the whole theory

Theorem 2.5. Suppose that (q̃, ũ) is an extremal of the problem (10), s.t. the index of the
corresponding Hessian is finite and Lt = L(ũ,λ0)(νJ

t
0, Gt), Lt ∈ L(Tλ0(T

∗M)), t ∈ [0, t1] is the
associate to it family of L-derivatives; then t 7→ Lt is a monotone curve and

ind−Hessũ J
t1
0 |E−1(q0) ≥ sup

D

∑
si∈D

IndΠ(Lsi ,Lsi+1
) + IndΠ(Lt1 ,L0) + dim

(
t1⋂
t=0

Lt

)
− n,

where the supremum is taken over all possible finite partitions D of the interval [0, t1].

2.5 L-derivative for problems with a constrained control

In our construction of the L-derivative we have heavily used the fact that all variations are
two-sided, but often in optimal control theory this is not the case. The control parameters
may take values in some closed set U . Then on the boundary ∂U we can only variate along
smooth directions of ∂U . To cover also these kind of situations we are going to use the change
of variables introduced in the previous section.

We consider the optimal control problem (10), but now we assume that u ∈ U ⊂ Rk, where
U is a union of a locally finite number of smooth submanifolds Ui without boundaries. In
particular, any semi-analytic set is availble. A typical situation is when the constraints are
given by a number of smooth inequalities

pi(u) ≤ 0,

that satisfy
pi(u) = 0 =⇒ dupi 6= 0.

For example, U can be a ball or a polytope. In the latter case Ui consists of the interior of
polytope and faces of different dimensions.

Recall that in the last subsection we used a time scaling to reduce a free time problem
to a fixed one. It is actually very useful to use general time reparameterizations as possible
variations, even in the fixed time case. Assume that t(τ) is an increasing absolutely continuous
function, s.t. t(0) = 0 and if t1 is fixed also τ(t1) = τ1. Actually instead of the last condition,
one can simply take the time variable as a new variable satisfying

ṫ = 1.
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Then we can consider an optimal control problem

q̇ = f(q, u(τ−1(t))),

∫ t1

0

l(q(s), u(τ−1(s)))ds→ min . (17)

which is essentially the optimal control problem (10) written in a slightly different way. Since
t(τ) is absolutely continuous, it is of the form

t(τ) =

∫ τ

0

α(s)ds.

We rewrite (17) in the new time τ to get

dq

dτ
= α(τ)f(q, u(τ)),

∫ t1

0

α(τ)l(q(τ), u(τ))dτ → min .

Variations with respect to α(t) are called time variations. Since α > 0, time variations
are always two-sided and thus one can include them to study the index of the Hessian via
L-derivatives. They have been already used to derive necessary and sufficient optimality con-
ditions in the bang-bang case, where no two-sided variations are available if we just vary u
(see [4, 5]).

Time variations do not give any new contribution to the Morse index of the Hessian if
the extremal control ũ(t) is C2. Indeed, assume for example that λt is an abnormal extremal
corresponding to ũ(t). Let us denote for simplicity β = 1/α, i.e.

τ−1(t) =

∫ t

0

β(s)ds

so that we don’t have to include differentials of inverse functions in the expressions.
We consider the end-point map Et(ũ(β(s))) of (17) and calculate the Hessian with respect

to β at a point β(s) ≡ 1. We obtain

λtd
2
βEt(γ1, γ2) = λtd

2
ũEt

(
dũ

dt

∫ t

0

γ1(s)ds,
dũ

dt

∫ t

0

γ2(s)ds

)
+λtdũEt

(
d2ũ

dt

∫ t

0

γ1(s)ds

∫ t

0

γ2(s)ds

)
.

but the the second term is zero since ũ is extremal and therefore λtdũEt = 0. This way we see
that all the time variations in the Hessian could have been realized by variations of u.

If ũ(t) has less regularity, then the time variations become non-trivial. For example, in the
bang-bang case ũ is piece-wise constant and the effect of the time variations concentrates at the
points of discontinuity of ũ. This allows to reduce an infinite dimensional optimization problem
to a finite one. This finite dimensional space of variations corresponds simply to variations of
the switching times.

If we include the time variations we will have enough two-sided variations to cover all the
known cases. It only remains to construct the L-derivative over the space of all available two-
sided variations. Note that after adding the time variations, this space is not empty. It can be a
very difficult computation, but using our algorithm, we can always construct an approximation
and obtain a bound on the Morse index.

To apply our algorithm we must define ”constant” variations. The set U is a union of
smooth submanifolds Ui ∈ Rk+1 without boundaries. Since each Ui is embedded in Rk+1 by
assumption, we can take the orthogonal projections πiu : Rk+1 → TuUi, whenever u ∈ Ui. Then
we can define a projection of a general variation vt ∈ L2

k+1[0, t] to the subspace of two-sided
variations as

πτvτ =
n∑
i=0

χUi(τ)πiũ(τ)vτ ,
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where χUi(τ) are the indicator functions. ”Constant” variations for the constrained problem
are just projections πτv of the constant sections v ∈ Rk+1. Equivalently one can consider
directly constant variations in Rk+1 and simply replace Xτ in the definition of the L-derivative
by Xτπτ . Then the algorithm from the previous subsection is applicable without any further
modifications.

An important remark is that the orthogonal projections depend on the metric that we choose
on Rk+1. This choice indeed would give us different L-prederivatives, since the ”constant”
variations would be different, but in the limit the L-derivative will be the same, because at the
end we just approximate the same space in two different ways.

Appendix: Increment of the index

Recall that in the Theorem 2.4, we have stated that by adding piece-wise constant variations,
we can track how the Maslov index of the corresponding Jacobi curve changes. But there is no
use in this theorem if we are not able to construct explicitly the corresponding L-prederivatives
from our algorithm. To do this we can use the following theorem.

Theorem 2.6. Suppose that we know L(νJ t0, Gt)|V , where V is some space of variations defined
on [0, t]. We identify L(νJ t0, Gt)|V with Rn and the space of control parameters with Rk, and
put an arbitrary Euclidean metric on both of them. Let E be the space of all v ∈ Rk for which

σ

(
η,

1

ε

∫ t+ε

t

Xτdτ · v
)

= 0, ∀η ∈ L(νJ t0, Gt)|V

and let L = L(νJ t0, Gt)|V ∩ L(νJ t0, Gt)|Ṽ , where Ṽ = V ⊕ Rkχ[t,t+ε]. We define the two bilinear
maps A : L(νJ t0, Gt)|V × E⊥ → R, Q : E⊥ × E⊥ → R:

A : (η, w) 7→ σ

(
η,

1

ε

∫ t+ε

t

Xτdτ · w
)
,

Q : (v, w) 7→ 1

ε

∫ t+ε

t

σ

(∫ τ

t

Xθdθ · v,Xτw

)
+ bτ (v, w)dτ,

and we use the same symbols for the corresponding matrices.
Then the new L-prederivative L(u,λ)(νJ

t
0, Gt)|Ṽ is a span of vectors from the subspace L and

vectors

ηi +
1

ε

∫ t+ε

t

Xτdτ · vi,

where vi is an arbitrary basis of E⊥ and ηi are defined as

ηi = −A+Qei

with A+ being Penrose-Moore pseudoinverse.

Although we use some additional structures in the formulation like a Euclidean metric, it
will only give a different basis for L(νJ t0, Gt)|Ṽ , but the L-derivative itself will be the same.

In general if we would like to compute the difference between indices of the Hessian Hessũ ϕ|Φ−1(q0)

restricted to two finite-dimensional subspaces U1 ⊂ U , the Maslov index will only give us a
lower bound:

ind−Q|U0 − ind−Q|U0
1
≥ IndΠ(L(ϕ,Φ)|U1 , L(ϕ,Φ)|U),

where as before U0
1 = U1 ∩ ker dũΦ and the same for U0. This formula was proved in [2].
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One can ask, when this inequality becomes an equality. It seems that there is no general
if and only if condition, but one can find some nice situations when the equality holds, like in
the piece-wise constant case. Another condition that is quite general is stated in the following
Theorem.

Theorem 2.7. Assume that index of the Hessian at a point (u, λ) is finite and that we can
find a splitting U1 ⊕ U2 of a possibly infinite-dimensional U , s.t.

1. U1 and U2 are orthogonal with respect to Q;

2. Q|U0
2
> 0, where U0

2 = U2 ∩ ker Φ′u;

3. dimL(u,λ)(ϕ,Φ)|U1 ∩ Π = 0.

Then
ind−Q|U0 − ind−Q|U0

1
= IndΠ (L(ϕ,Φ)|U1 ,L(ϕ,Φ)|U) .

We are going to apply twice the Lemma 2.1: first time to the subspace U0
1 in U0 and the

second time to U0
2 in (U0

1 )⊥. Assume for now, that dimU < ∞. First we clarify what are all
the subspaces presented in the formula. We have

(U0
1 )⊥ =

{
v = v1 + v2 ∈ U : f ′u(v1 + v2) = 0, 〈Qv1, U

0
1 〉 = 0

}
.

Here we have used our orthogonality assumptions. We claim that (U0
1 )⊥ is actually equal to

the subspace {
v1 + v2 ∈ U : f ′u(v1 + v2) = 0,∃ξ1 ∈ T ∗f(u)M, 〈Qv1 + ξ1f

′
u, U1〉 = 0

}
It is clear that the second space is a subspace of (U0

1 )⊥. We want to prove the converse
statement. Assume that v ∈ (U0

1 )⊥. First we put any Euclidean metric on Tf(u)M and use it
to define an isomorphism between T ∗f(u)M and Tf(u)M . Secondly we choose a subspace E ∈ U1

complementary to U0
1 and a basis ei of E, s.t. f ′u(ei) form an orthogonal subset. Then the

covector ξ1 that we need is simply given by

ξ1 = −
dimE∑
i=1

f ′u(ei)

|f ′u(ei)|2
〈Qv1, ei〉.

Thus the claim has been proved.
From the orthogonality assumption it follows that U0

2 ∈ (U0
1 )⊥. The orthogonal complement

of U0
2 in (U0

1 )⊥ is equal to (U0
1 + U0

2 )⊥, which is equal to

(U0
1 + U0

2 )⊥ =
{
v1 + v2 ∈ U : f ′u(v1 + v2) = 0, ∃ξ1 ∈ T ∗f(u)M, 〈Qv1 + ξ1f

′
u, U1〉 = 0, 〈Qv2, U

0
2 〉 = 0

}
.

Similar to above this is equivalent to

(U0
1 + U0

2 )⊥ =
{
v1 + v2 ∈ U : f ′u(v1 + v2) = 0,∃ξ1, ξ2 ∈ T ∗f(u)M, 〈Qv1 + ξ1f

′
u, U1〉 = 0,

〈Qv2 − ξ2f
′
u, U2〉 = 0} .

We can now compute the quadratic form Q restricted to (U0
1 + U0

2 )⊥. Again we use the
orthogonality assumption and the equivalent definition of (U0

1 + U0
2 )⊥ above. Assume that

v = v1 + v2 ∈ (U0
1 + U0

2 )⊥ and ξ = ξ1 + ξ2. Then

〈Q(v1 + v2), v1 + v2〉 = 〈Qv1, v1〉+ 〈Qv2, v2〉 = −ξ1f
′
uv1 + ξ2f

′
uv2 = −ξf ′uv1.
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Now we would like to write down the expression for the matrix S from the definition of the
Maslov index. First we write down the definition of the two L-derivatives:

L(ϕ,Φ)|U1 = {(η1, f
′
uv

1
1) : 〈Qv1

1 + η1f, U1〉 = 0};
L(ϕ,Φ)|U = {(η2, f

′
u(v

2
1 + v2)) : 〈Qv2

1 + η2f, U1〉 = 0, 〈Qv2 + η2f, U2〉 = 0}.
The quadratic form from the Maslov index is defined on (L(ϕ,Φ)|U1 +L(ϕ,Φ)|U)∩Π. We write
v1

1 + v2
1 = v1, ξ1 = η1 + η2, ξ2 = −η2 and suppose that f ′u(v1) + f ′u(v2) = 0. Then for the

quadratic form q̃ we have

q̃ = σ
(
(η1, f

′
uv

1
1), (η2, f

′
u(v

2
1 + v2))

)
= σ

(
(η1, f

′
uv

1
1), (0, f ′uv2)

)
= η1f

′
uv2 = −η1f

′
uv1 = −ξf ′uv1

In the second equality we have used that (η1, f
′
uv

1
1) and (η2, f

′
uv

2
1) belong to L(ϕ,Φ)|U1 by

definition.
We see that this gives the same expression as for Q|(U0

2 )⊥ . But moreover both quadratic
forms are actually defined on the same space. Indeed, we have

(L(ϕ,Φ)|U1 + L(ϕ,Φ)|U) ∩ Π = {(ξ1 + ξ2, 0) : ∃vi ∈ Vi, f ′u(v1 + v2) = 0, (ξ1, f
′
uv1) ∈ L(ϕ,Φ)|U1 ,

(−ξ2, f
′
uv2) ∈ L(ϕ,Φ)|U2} = (L(ϕ,Φ)|U1 + L(ϕ,Φ)|U2) ∩ Π

But if we add to (ξ1 + ξ2) ∈ (L(ϕ,Φ)|U1 + L(ϕ,Φ)|U) ∩ Π the corresponding vi and to vi ∈
Ui ∩ (U0

1 + U0
2 )⊥ the corresponding ξ1 + ξ2, we obtain the same space.

Now we compute the other terms from the formula in Lemma 2.1. We have

U0
1 ∩ (U0

1 )⊥ = {v1 ∈ U0
1 : Q(v1, U

0
1 ) = 0}.

Similarly to the discussion in the beginning of the proof, we can show that

U0
1 ∩ (U0

1 )⊥ = {v1 ∈ U0
1 : ∃ξ ∈ T ∗f(u)M,Q(v1 + ξf ′u, U1) = 0}.

We do now the same for kerQ|U0 ∩ U0
1 :

kerQ|U0 ∩ U0
1 = {v1 ∈ U0

1 : 〈Qv1, U
0〉 = 0} = {v1 ∈ U0

1 : 〈Qv1 + ξf ′u, U〉 = 0}
To understand the dimensions, we look carefully at the equation

〈Qv1 + ξf ′u, U1〉 = 0

If there are two solutions (ξ, v1) and (ξ, v′1) of this equation, then by linearity (0, v1 − v′1) is a
solution as well and thus all solutions are uniquely defined by different ξ modulo kerQ|U1 ∩U0

1 .
These ξ lie in L(ϕ,Φ)|U1 ∩ Π as can be seen from the definitions. Therefore

dim
(
U0

1 ∩ (U0
1 )⊥
)

= dim (L(ϕ,Φ)|U1 ∩ Π) + dim
(
kerQ|U1 ∩ U0

1

)
Now we do the same for

0 = Q(v1 + ξf ′u, V ) = Q(v1 + ξf ′u, U1) + ξf ′uU2

Again ξ are defined uniquely modulo kerQ|U1∩U0
1 , but now they lie in L(ϕ,Φ)|U ∩Π. Therefore

dim
(
kerQ|U0 ∩ U0

1

)
= dim (L(ϕ,Φ)|U ∩ Π) + dim

(
kerQ|U1 ∩ U0

1

)
.

Since Q is positive on U0
2 , we have (U0

2 )⊥ ∩U0
2 = {0} and so we can collect all the formulas

using the fact that (L(ϕ,Φ)|U ∩ Π) ⊂ (L(ϕ,Φ)|U1 ∩ Π):

ind−Q|U0 − ind−Q|U0
1

= IndΠ (L(ϕ,Φ)|U1 , L(ϕ,Φ)|U) +
1

2
dim (L(ϕ,Φ)|U1 ∩ Π)−

− 1

2
(dimL(ϕ,Φ)|U ∩ Π)

Under the assumption three the formula is valid also in the infinite dimensional case. We
know that the L-prederivatives will converge and that the quadratic form from the Maslov-
type index is continuous. The only possibly discontinuous term are the dimensions of various
intersections, but they are zero now for L-prederivatives close to the L-derivatives.
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