Asymptotic Homologies in
 Sub-Riemannian Geometry:
 Two Cases Study

Andrei Agrachev

SISSA, Trieste

I. Local story: a no-Goh singular curve.

We consider a system:

$$
\dot{q}=f_{0}(q)+\sum_{i=1}^{k} u_{i} f_{i}(q), \quad q \in M, u_{i} \in \mathbb{R}
$$

with the initial condition $q(0)=q_{0}$. The endpoint map:

$$
F_{t}: L^{2}\left([0, t] ; \mathbb{R}^{k}\right) \rightarrow M, \quad F_{t}(u)=q(t)
$$

where $u=\left(u_{1}(\cdot), \ldots, u_{k}(\cdot)\right) \in \mathbb{R}^{k}$,

$$
\dot{q}(\tau)=f_{0}(q(\tau))+\sum_{i=1}^{k} u_{i}(\tau) f_{i}(q(\tau)), \quad 0 \leq \tau \leq t
$$

We are interested in the level sets of the endpoint map and, in particular, in the local structure of these level sets.

Digression: Let \mathcal{U} be a finite-dimensional manifold, $\varphi: \mathcal{U} \rightarrow M$ a smooth map.

If $\tilde{u} \in \mathcal{U}$ is a regular point of $\varphi, D_{\tilde{u}} \varphi\left(T_{\tilde{u}} \mathcal{U}\right)=T_{\tilde{q}} M$, where $\tilde{q}=\varphi(\tilde{u})$, then $\varphi^{-1}(\tilde{q}) \cap O_{\tilde{u}}$ is a ball,

$$
\varphi^{-1}(\tilde{q}) \cap O_{\tilde{u}} \backslash\{\tilde{u}\} \cong \mathbb{S}^{m}
$$

where $m=\operatorname{dim} U-\operatorname{dim} M-1$
If \tilde{u} is a critical point of φ, i. e, $\lambda D_{\tilde{u}} \phi=0$ for some $\lambda \in T_{\tilde{q}}^{*}, \lambda \neq 0$, then we have to study the Hessian:

$$
\begin{equation*}
\lambda D_{\tilde{u}}^{2} \varphi: \operatorname{ker} D_{\tilde{u}} \varphi \times \operatorname{ker} D_{\tilde{u}} \varphi \rightarrow \mathbb{R} \tag{*}
\end{equation*}
$$

Let σ be the signature of the quadratic form (*). If λ is unique and $(*)$ is nondegenerate, then

$$
\varphi^{-1}(\tilde{q}) \cap O_{\tilde{u}} \backslash\{\tilde{u}\} \cong \mathbb{S}^{\frac{1}{2}(m+\sigma)} \times \mathbb{S}^{\frac{1}{2}(m-\sigma)} .
$$

$F_{t}: L^{2}\left([0, t] ; \mathbb{R}^{k}\right) \rightarrow M$ is defined on the infinite dimensional space.

If \tilde{u} is a regular point, then $F_{t}^{-1}(\tilde{q}(t)) \cap O_{\tilde{u}}$ is a Hilbert ball and $F_{t}^{-1}(\tilde{q}(t)) \cap O_{\tilde{u}} \backslash\{\tilde{u}\}$ is contractible.

Let \tilde{u} be a critical point, $\lambda_{t} D_{\tilde{u}} F_{t}=0$. We set:

$$
\begin{gathered}
P^{t}: M \rightarrow M, \quad P^{t}: q(0) \mapsto q(t), \\
\text { where } \dot{q}(\tau)=f_{0}(q(\tau))+\sum_{i=1}^{k} \widetilde{u}_{i}(\tau) f_{i}(q(\tau)), \\
g_{i}^{\tau}=\left(P_{*}^{\tau}\right)^{-1} f_{i}, \quad \lambda_{0}=P^{t^{*}} \lambda_{t}, \quad \lambda_{0} \in T_{q_{0}}^{*} M .
\end{gathered}
$$

Then:

$$
\begin{gathered}
D_{\tilde{u}} F_{t}(v)=P_{*}^{t} \int_{0}^{t} \sum_{i=0}^{k} v_{i}(\tau) g_{i}^{\tau}\left(q_{0}\right) d \tau \\
\lambda_{t} D_{\tilde{u}}^{2} F_{t}(v, v)=\int_{0}^{t} \int_{0}^{\tau} \sum_{i, j=0}^{k} v_{i}(\theta) v_{i}(\tau)\left\langle\lambda_{0},\left[g_{i}^{\theta}, g_{j}^{\tau}\right]\left(q_{0}\right)\right\rangle d \theta d \tau
\end{gathered}
$$

Theorem 1 (Goh condition). If $\exists \tau, i, j$ such that

$$
\left\langle\lambda_{0},\left[g_{i}^{\tau}, g_{j}^{\tau}\right]\left(q_{0}\right)\right\rangle \neq 0
$$

then both positive and negative inertia indices of $\lambda_{t} D_{\widetilde{u}}^{2} F_{t}$ are infinite.
Theorem 2. Under conditions of Theorem 1, the pointed neighborhood $F_{t}^{-1}(\tilde{q}(t)) \cap O_{\tilde{u}} \backslash\{\tilde{u}\}$ is contractible.

What about finite dimensional sections?

Let $E_{n} \subset L^{2}\left([0, t] ; \mathbb{R}^{k}\right)$ be the space of vector trigonometric polynomials of degree not greater than n (with rescaled frequencies $\frac{2 \pi m}{t}, 0 \leq m \leq n$).

Assume that the system and control \tilde{u} are real-analytic and let $\tilde{u}(0)=0$.
Theorem 3. If the matrices $\left\{\left\langle\lambda_{0},\left[g_{i}^{\tau}, g_{j}^{\tau}\right]\right\rangle\right\}_{i, j=1}^{k}, \tau \geq 0$, and $\left.\left\{\left\langle\lambda_{0},\left[\left[f_{0}, f_{i}\right], f_{j}\right]\right]\right\rangle\right\}_{i, j=1}^{k}$ are nondegenerate, then there exists a piecewise constant integral-valued function $t \mapsto \sigma(t), t \geq 0$, such that for any continuity point t of $\sigma(\cdot), \exists N>0$ such that $\forall n \geq N$ the form $\left.Q_{t}^{n} \doteq \lambda_{0} D_{\widetilde{\widetilde{u}}}^{2} F_{t}\right|_{E_{n}}$ is nondegenerate and $\operatorname{sgn}\left(Q_{t}^{n}\right)=\sigma(t)$.

Corollary 1. Under conditions of Theorem 3,

$$
F_{t}^{-1}\left(\tilde{q}_{t}\right) \cap\left(\tilde{u}+E_{n}\right) \cap O_{\tilde{u}} \backslash\{\tilde{u}\} \cong \mathbb{S}^{\frac{1}{2}(m+\sigma(t))} \times \mathbb{S}^{\frac{1}{2}(m-\sigma(t))},
$$

where $m=\operatorname{dim} E_{n}-\operatorname{dim} M-1$.
Proposition 1. $\sigma(t)$ is a gauge invariant, i.e. it depends only on the affine distribution $f_{0}(q)+\operatorname{span}\left\{f_{1}(q), \ldots, f_{k}(q)\right\}, q \in M$, trajectory $\tilde{q}(\cdot)$ and λ_{0}.

Example. Let $\Delta=\operatorname{span}\left\{f_{1}, \ldots, f_{k}\right\}$ be a contact distribution, f_{0} a contact vector field and the matrix $\left[\left[f_{0}, f_{i}\right], f_{j}\right]$ is nondegenerate; then $\tilde{u}=0$ satisfies conditions of Theorem 3 .

Special case: M is a 3-dimensional unimodular Lie group, f_{0}, Δ are left-invariant. Then f_{0} is a Reeb field for a sub-Riemannian structure on Δ. Let χ, κ be basic invariants of this structure, $\left\langle\lambda_{0}, f_{0}\right\rangle>0$.

We have:

$$
\sigma(t)= \begin{cases}\frac{\kappa}{|\kappa|}\left(2+4\left[\frac{t \sqrt{\kappa^{2}-\chi^{2}}}{2 \pi}\right]\right), & \text { if }|\kappa|>\chi \\ 0, & \text { if }|\kappa|<\chi\end{cases}
$$

Here [.] is the integral part of a real number.

II. Global story: a step two Carnot group.

A step two Lie algebra and group:

$$
\mathfrak{g}=V \oplus W,[V, V]=W,[\mathfrak{g}, W]=0, \quad \mathfrak{G}=e^{\mathfrak{g}}
$$

To any $\omega \in W^{*}$ we associate an operator $A_{\omega} \in \mathrm{so}(V)$ by the formula:

$$
\left\langle A_{\omega} \xi, \eta\right\rangle=\langle\omega,[\xi, \eta]\rangle, \quad \xi, \eta \in V
$$

It is easy to see that $\omega \mapsto A_{\omega}, \omega \in W^{*}$ is an injective linear map. Moreover, any injective linear map from W^{*} to so (V) defines a structure of step two Carnot Lie algebra on the space $V \oplus W$ by the same formula. Hence step two Carnot Lie algebras are in the one-to-one correspondence with linear systems of antisymmetric operators. Sometimes we need non-resonance generic assumptions on the linear system, which I won't specify.

An H^{1}-curve $\gamma:[0,1] \rightarrow \mathfrak{G}$ is called horizontal if $\dot{\gamma}(t) \in V_{\gamma(t)}$ for a.e. $t \in[0,1]$.

The following multiplication in $V \times W$ gives a simple realization of \mathfrak{G} with the origin in $V \times W$ as the unit element:

$$
\left(v_{1}, w_{1}\right) \cdot\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}+\frac{1}{2}\left[v_{1}, v_{2}\right]\right) .
$$

Starting from the origin horizontal curves are determined by their projection to the first level and have a form:

$$
\gamma(t)=\left(\xi(t), \frac{1}{2} \int_{0}^{t}[\xi(t), \dot{\xi}(t)] d t\right), \quad 0 \leq t \leq 1,
$$

where $\xi(\cdot) \in H^{1}([0,1] ; U), \xi(0)=0$.

We set:

$$
\varphi(\xi)=\frac{1}{4 \pi} \int_{0}^{1}|\dot{\xi}(t)|^{2} d t
$$

We focus on the horizontal curves corresponding to closed curves ξ; they connect the origin with the second level. Given $w \in W \backslash 0$, let Ω_{w} be the space of horizontal curves connecting (0,0) with ($0, w$); then
$\Omega_{w}=\left\{\xi \in H^{1}([0,1] ; V): \xi(0)=\xi(1)=0, \frac{1}{2} \int_{0}^{1}[\xi(t), \dot{\xi}(t)] d t=w\right\}$.
For any $s>0$, we set: $\Omega_{w}^{s}=\left\{\xi \in \Omega_{w}: \varphi(\xi) \leq s\right\}$. Note that central reflection $\xi \mapsto-\xi$ preserves Ω_{w}^{s}. We denote by $\bar{\Omega}_{w}^{s}$ the image of Ω_{w}^{s} under the factorization $\xi \sim(-\xi)$.

Proposition 2. There exists a finite-dimensional subspace $E \subset$ $H^{1}([0,1] ; V)$ such that $\bar{\Omega}_{w}^{s} \cap \bar{E}$ is a deformation retract of $\bar{\Omega}_{w}^{s}$, where \bar{E} is the projectivization of E.
Corollary 2. $\bar{\Omega}_{w}^{s}$ has homotopy type of a semi-algebraic set.
We introduce the notation $\bar{E}_{w}^{s}=\bar{\Omega}_{w}^{s} \cap \bar{E}$ and consider the homology $H .\left(\bar{E}_{w}^{s} ; \mathbb{Z}_{2}\right)$ and its image in $H .\left(\bar{E} ; \mathbb{Z}_{2}\right)$ by the homomorphism induced by the imbedding $\bar{E}_{w}^{s} \subset \bar{E}$. We have:

$$
\operatorname{rank}\left(H_{i}\left(\bar{E}_{w}^{s} ; \mathbb{Z}_{2}\right)\right)=\beta_{i}\left(\bar{E}_{w}^{s}\right)+\varrho_{i}\left(\bar{E}_{w}^{s}\right),
$$

where $\beta_{i}\left(\bar{E}_{w}^{s}\right)$ is rank of the kernel of the homomorphism from $H_{i}\left(\bar{E}_{w}^{s} ; \mathbb{Z}_{2}\right)$ to $H_{i}\left(\bar{E} ; \mathbb{Z}_{2}\right)$ induced by the imbedding $\bar{E}_{w}^{s} \subset \bar{E}$ and $\varrho_{i}\left(\bar{E}_{w}^{s}\right) \in\{0,1\}$ is the rank of the image of this homomorphism.

Now we build two positive atomic measures on the half-line \mathbb{R}_{+}, the "Betti distributions":

$$
\mathfrak{b}\left(\bar{E}_{w}^{s}\right) \doteq \frac{1}{s} \sum_{i \in \mathbb{Z}_{+}} \beta_{i}\left(\bar{E}_{w}^{s}\right) \delta_{\frac{i}{s}}, \quad \mathfrak{r}\left(\bar{E}_{w}^{s}\right) \doteq \frac{1}{s} \sum_{i \in \mathbb{Z}_{+}} \varrho_{i}\left(\bar{E}_{w}^{s}\right) \delta_{\frac{i}{s}}
$$

Assume that $\operatorname{dim} W=2$; it appears that there exist limits of these families of measures:

$$
\lim _{s \rightarrow \infty} \mathfrak{b}\left(\bar{E}_{w}^{s}\right), \quad \lim _{s \rightarrow \infty} \mathfrak{r}\left(\bar{E}_{w}^{s}\right)
$$

in the weak topology. Moreover, the limiting measures are absolutely continuous with explicitly computed densities!

Let $\alpha: \Delta \rightarrow \mathbb{R}$ be an absolutely continuous function defined on an interval Δ. We denote by $|d \alpha|$ a positive measure on Δ such that

$$
|d \alpha|(S)=\int_{S}\left|\frac{d \alpha}{d t}\right| d t, \quad S \subset \Delta
$$

The operators $A_{\omega}, \omega \in W^{*}$, have purely imaginary eigenvalues. Let $0 \leq \alpha_{1}(\omega) \leq \cdots \leq \alpha_{m}(\omega)$ are such that $\pm i \alpha_{j} m j=1, \ldots, m$, are all eigenvalues of A_{ω} counted according the multiplicities.

Let $\bar{W}^{*}=(W \backslash 0) /(w \sim c w, \forall c \neq 0)$ be the projectivization of $W^{*}, \bar{W}^{*}=\mathbb{R P}^{1}$.

Given $w \in W \backslash 0$, we take the line $w^{\perp} \in W^{*}$ and consider the affine line

$$
\ell_{w}=\bar{W}^{*} \backslash \bar{w}^{\perp} \subset \bar{W}^{*} .
$$

Moreover, we define functions

$$
\lambda_{j}^{w}: \ell_{w} \rightarrow \mathbb{R}_{+}, j=1, \ldots, m, \quad \phi^{w}: \ell_{w} \rightarrow \mathbb{R}_{+}
$$

by the formulas:

$$
\lambda_{j}^{w}(\bar{\omega})=\frac{\alpha_{j}(\omega)}{\langle\omega, w\rangle}, \quad \phi^{w}(\bar{\omega})=\sum_{j=1}^{m} \lambda_{j}^{w}(\omega) .
$$

Theorem 4. Assume that there exists $\omega \in W^{*}$ such that the matrix A_{ω} has simple spectrum (a non-resonance assumption). Then, for any $w \in W \backslash 0$, there exist the following limits in the weak topology of the space of positive measures on \mathbb{R}_{+}:

$$
\mathfrak{b}_{w}=\lim _{s \rightarrow \infty} \mathfrak{b}\left(\bar{E}_{w}^{s}\right), \quad \mathfrak{r}_{w}=\lim _{s \rightarrow \infty} \mathfrak{r}\left(\bar{E}_{w}^{s}\right)
$$

Moreover,

$$
\mathfrak{b}_{w}=\phi_{*}^{w}\left(\sum_{j=1}^{m}\left|d \lambda_{j}^{w}\right|\right), \quad \mathfrak{r}_{w}=\chi_{\left[0, \min \phi^{w}\right]} d t
$$

where $d t$ is the Euclidean measure.

