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VOLTERRA SERIES AND PERMUTATION GROUPS 

A. A. Agrachev and R. V. Gamkrelidze UDC 512.542.7+517.972.1 

Algebraic structures, connected with the asymptotic expansions of perturbations of smooth dynamical systems, 
are investigated; first of all, the so-called shuffle multiplication for permutations and for iterated integrals. 

1. INTRODUCTION.  VARIATIONS OF A DYNAMICAL SYSTEM 

1. We consider a system of differential equations 

x=/'t (x), x~M, 

on a manifold M of class C ~ with a fixed initial condition x(O) = x o and then we perturb this system by adding to the right- 

hand side a vector field egt(x), where e is a small parameter. We obtain the system 

=?, (x) + e g ,  (x), x (0) =Xo. (1.1) 

Let xe(t), 0 < t < 1, be the solution of the system (1.1). We pose the classical question: how to find the tangent to the curve 

e --, xe(1) for e = 0. The answer can be found in any manual on ordinary differential equations: one has to solve the linear 

system of equations in variations 

: Oft] 
~= Ox I~,,)  - '+gt(x~ ~(0)=:0. 

Then ~(1) is the desired tangent vector in the case when ~(1) # 0. However, we are concerned with those more interesting 

cases when ~(1) = 0. In this case one has to consider higher terms in the Taylor expansion of the curve e --, xc(1) (higher 

variations of the system (1)). However, as it is known, the higher terms of the Taylor expansion do not have an invariant 

meaning: they are correctly defined only in fixed local coordinates. Under nonlinear changes of coordinates, the various 

terms of the series are intermixed and may appear and disappear depending on the choice of the coordinates. Indeed, it is 

obvious that there exist always local coordinates in which a segment of the given smooth curve for e >_ 0 can be represented 

by a segment of a straight line. 

A given n-th term of the Taylor expansion is a correctly defined tangent vector only in the case when all the terms 

with smaller index are equal to zero. 

Thus, we must draw the following conclusion: the n-th variation of the system (1.1) is what is left from the n-th term 

of the Taylor expansion of the curve e --, xe(1) in the case when all the preceding terms are equal to Zero. Naturally, if the 

initial point x o and the fields ft, gt are given, then the computation of the f'trst nonzero term of the Taylor expansion is not a 

problem. However, with the variation of the initial data, the index of the first nonzero term changes. At the same time it is 

important in the theory to have the higher variations as some universal forms, into which one can substitute the initial data 

without knowing beforehand how many terms of the expansion are equal to zero. 
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In other words, the n-th variation is that new object that contains the n-th term of the expansion in comparison with 

the previous terms. One of the problems of this paper is to separate this new object so that the higher variations be finally 

describable in terms of concrete mathematical structures. The subsequent investigation is determined by the character of these 

structures. 
2. In order to move forwards we need some notations and formulas from chronological calculus. They are described 

briefly in this subsection. For details see [I], [2]. Chronological calculus is a variant of operational calculus, enabling us, at 

least for formal calculations, to work with nonlinear dynamical systems like with linear ones. 

Let Coo(M) be the algebra of all real infinitely differentiable functions on M. We identify an arbitrary point x E M 

with the homomorphism ~ --, ~p(x), r E Coo(M), of the algebra Coo(M) into R; we identify a diffeomorphism p: M --, M 

with the automorphism of the algebra Coo(M), obtained if to an arbitrary function on M one associates the superposition of 

this function and p: 

q~( .),-- tp (p ( . ) )  Vtp~C| (M). 

The value of the diffeomorphism p at the point x is denoted by x o p, i. e. the composition of the automorphism of the 

algebra Coo(M) and the homomorphism of this algebra into R (which again is a homomorphism of Coo(M) into R. 

The smooth vector fields on M are identified with the derivations of the algebra C'~(M), i. e. R-linear mappings f: 

C~176 ~ C~176 satisfying the Leibnitz rule: f(~ol~O2) = (f~ol)~O 2 + ~ol(f~o2). The Lie bracket [f, g] = f o g  - g o f defines 

a Lie algebra structure on the space Vect(M) of all smooth vector fields. In local coordinates x = (x I . . . . .  xn), in which the 

vector fields have the form 

~ '-2 0 x 2 i  " f L , g__ gt O.rl ' 

i = l  i - - I  

the Lie brackets are computed in the following manner: 

tn  Bl 

~= f J=' ~TZj'xj J~  Oxj gJ l  ~Tx~" 

The tangent vectors ~ E TxM are R-linear mappings ~: Coo(M) ---, R, satisfying the condition: ~(~h~'2) = (~~176 

+ ,#1(x)(~o2). The value of the field f at the point x is denoted by x o f, i.e., the composition of the operator f and the 

functional x, which is the tangent vector at the point x. 
Each diffeomorphism p (considered as an automorphism of the algebra Coo(M)) defines the adjoint automorphism Ad 

p of the Lie algebra Vect(M), acting according to the rule (Ad p)f = p o f o p -  1 We note that Ad p -  l is nothing else but the 

differential of p; in more traditional notations: p, = Ad p-1 .  
Finally, for each f E Vect(M) by ad f: Vect(M) ---, Vect(M) one denotes, as usually, the operation of left Lie 

multiplication: (ad f)g = [f, g]. 
In the described system of notations, a diffeomorphism, denoted by the same symbol p, may be considered both a 

smooth transformation of the manifold and a linear operator on C=(M).  This, however, cannot lead to ambiguity since in 

each formula the meaning of the symbol is uniquely recovered from the fact whether the point of the manifold is placed to 

the right or to the left of p. 
The algebra Coo(M) is considered with the standard topology of the convergence of all the derivatives on compacta. 

This topology is defined by the system of seminorms I1 II N.K. N _ 0. K M. and the convergence II II -" 0 (n - ,  
means that all the derivatives up to order N of the function ~o tend to zero, uniformly on K. The seminorms II. II N.K. unlike 

the topology induced by them, are not uniquely defined and can be selected in various manners. However, we shall assume 

that the selection has been realized and the seminorms are f'Lxed once and for all. 

For a vector field f E Vect(M) we define the seminorms 

II f lI N,~c= sup { Il fcP lI N,K I II q~ II N+' ,~C = I }" 

We will have to deal constantly with one-parameter families of linear operators and functionals on Coo(M) or on 

Vect(M). 

2410 



The concepts of continuity, summability, differentiability, absolute continuity, etc, are defined "pointwise": we say 

that a family At: C~ ---, C~ of linear operators (or At: C~ --,. R of linear functionals) has one of the enumerated 

properties if the families t --- A6o have this property for each ~o E C=(M) (for details see [1], [2]). The same goes for 

families of operators and functionals on Vect(M). 

Families ft E Vect(M), locally integrable with respect to t E R, are called nonstationary vector fields on M, while 

families of diffeomorphisms Pt E Diff(M), absolutely continuous with respect to t, are called (nonstationary) flows on M. 

A nonstationary vector field ft, t E R, defines the ordinary differential equation (dx/dt)(t) = x(t) ~ x E M. 

A field ft is said to be complete if all the solutions of this equation are def'med for all t E R. Each complete field ft 

generates a flow Pt, t E R, which is the unique absolutely continuous solution of the operator equation 

d 
d--t Pt ~ -  P t ~  P0----- id, (1.2) 

where id is the identity operator (the identity diffeomorphism of M). We call this flow the right chronological exponent of ft 

and we denote it Pt = exp  I 0tfrdz. One has an asymptotic representation of the chronological exponent in the form of a 

so-called Volterra series: 
t co 

i-Is,  . . . . .  
0 n ~ I  An( t )  

where An(t) = {(r 1 . . . . .  rn)[0 ~ r n ~ ... _< r I --< t} (for t = I we shall use the abbreviated notation An(I) = An). 

The remainder in the asymptotic expansion (1.3) is estimated in the following manner: 

II( i s s  )1t exp f ~ d x - - i d - -  x . . .  f ~l . . . . .  f ~ ,dxt .  . .d%t ~ 
0 1~1 At ( t )  N,R" 

t 

. .<qe  o Ilf~lIN+,-, .K'd~ IIq~II,+N,K', 

where K' is some (compact) neighborhood of the compactum K, while c l, c 2 depend neither on fr nor on ~ E C=(M). 
t -'l 

If P t = e x p  f , d x ,  
0 

then pt I satisfies the equation 

f_.i_ p-i-, ~ _ f topTt, p~-t ~ id. 

Moreover, the flow pt  1, t E R, is the unique solution, absolutely continuous with respect to t, of the equation (d/dt)Q t = 

-ftoQt with initial condition Q0 = id. We call this flow the left chronological exponent of ( - f t )  and we denote it pt -1 = 

t 

exp - -  f x d ' r .  
0 

We have the asymptotic expansion 

t eo 

"-I x I I e x p - - f x d x ~ . i d +  ( - -1 )  # . . .  f , , ~  . . . .  f t n d t l . . . c l t  n 
0 n=l  An( t )  

with an estimate of the remainder similar to (1.4). 

Further, the family of operators Ad Pt: Vect(M) --- Vect(M), t E R, satisfies the equation (d/dt)Ad Pt = Ad Ptoadfr 

Indeed, 

ff---F (Ad p,)  g = a (ptogop.i.,) = p , o ( / t o g _  g o l f ) o p t ,  = Ad p, [ f , ,  el- 

d 9 " t = 9 " t o a d f t  with initial condition 9' 0 Moreover, the family Ad Pt is the unique solution of the operator equation ~ = 

Id and, therefore, the following notation is natural: 

0 
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t I 

If we set qCe)--~- xooex-'-p Iett,dt, then x~(1)-~-q(e)~e-~pSftat. 
0 I 0 

Since the diffeomorphism exp f tdt  does not depend on e, we have the right not to turn our attention to it and 

instead of the curve xe(1) to investigate the curve q(e), corresponding to the system 

Sc=exoht, x ( 0 ) = x 0 ,  (1.8) 

homogeneous with respect to ~. We have 

( ' ) q(e)~xo* i , d+e  I htdt+e'llkt,ottt ,dtldt,+ . . . .  (1.9) 
0 A ~ 

1 

first variation of the system (1.8) is the tangent vector xo~ I ktdt. Consequently, the 
11  

The coefficient of t 2 in the expansion (1.9) is the composition of x o with a second-order differential operator, i.e., it 

is in no way a tangent vector. However, according to the general rule, this coefficient must coincide with some tangent 

vector at the point x o in the case when Xo. j olhtdt = 0. It is easy to find the explicit expression of this tangent vector in 

terms of h t. Indeed, 

~a.Sht.oftt,dt,dts~-~a!(h,.~176 

I Ih,,, h,.lat,at = htat o h,at + [h,,, h,.lat,at,.  + 
AI 

The commutator [ht2, hq] of vector fields is again a vector field. Consequently, the desired tangent vector has the form 

Ix~176 ~ [ht., ht,] dt,dt2. (1.10) 

We note that the expression (1.10), i.e., the second variation of the system (1.8), is a correctly defined tangent vector, 

independent of the fact whether the first variation is equal to zero. 

Itisnaturalt~176 a, o carries an important 

1 -'S 
information, if not about the curve q(e) in M, then, at least, about the curve e~Q(e ) - - - exp  ehtdt in the group Diff(M) 

0 

of diffeomorphisms. Precisely the presence of a group structure in Diff(M) leads to additional invariants, different from the 

tangent vector to the curve. 

We consider the logical chain: 

f 

--o, 

1 I 1 

e ~ e x p  ehtdt is a one-parameter subgroup in Dlff3,/.r el, tat_--_ e o �9 , e6R, and there are no variations whatso- 
0 

ever, except the first one (if the first variation is equal to zero, then so are all the remaining ones). 
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The ~rst imp~icati~n cann~t be reversed. The c~nditi~n [ i ~ d ~ h t ] = ~  ~`< t```< ~ is very rigid; fr~m it there 
0 

t -'S follows that all the curves e ~ e x p  ett~dT, tE[O, 1], are one-parameter subgroups. It can be reversed only partially: 
0 

1 

exp eh td t=e  , eo.R,:*- h~d~, ht dt=O. 
0 

! 

Thus, the second variation is the first obstacle for the curve e ~ e x p  ~htdt to be a one-parameter subgroup. 

4. The method of the representation and the interpretation of the second variation can be extended also m higher 

variations. Namely, the third term of the Volterra series can be represented in the form of some commutator expression of 

the initial nonstationary field h t plus a polynomial in the first two terms. Naturally, this commutator expression, calculated at 

the point x o, represents the third variation. In addition, the corresponding vector field is an obstacle to the fact that the curve 
_..~. 1 I I ~ 

e'--,e_xp f tlttdt lie in the subgroup generated by the one-parameter groups ~,I~t a e , e or0 ] . 
0 

In the same way also an arbitrary n-th term of the Volterra series can be represented in the form of the sum of a 

vector field, namely a commutator expression of degree n in h t, and a polynomial in the first n - 1 terms of the series. This 

vector field is an obstacle to the fact that the curve 
! 

lie in the group generated by the one-parameter subgroups corresponding to the previous n - 1 fields. 

The simplest method to f'md the required commutator expressions is the following: making use of the variation 

formula, represent Q(t) in the form of a chronological exponential with respect to e (i.e., taking the parameter e as the new 

"time") of some "nonstationary" (i.e., depending on e) vector field. 

Indeed, 

19 'r  

0--/ o (8 )=  CO (~)oQ (0  = Q (e)oco (0 '  

where 

Let 

I t 
. S- I 
o) ( e ) :  exp ead  h~dzhtdt 

0 0 

(see (1.7)), 

i I 

:c~)--- ~d Q-' c~): r 1 ~ S, _ ,  ~h,~,~, .  

n ~ l  n m l  

be the expansions of ?~t) and w(e) into series of powers of e. We have 

r S "  " I adht" ' '" adht'ht'dtl " "" dtn' 
An 

~ = ~ -  '>~-' S..- S ~ ~ , ,  . . .  ~ ~ , ~ - , ~ , o ~ ' ,  �9 �9 �9 ~ ' .  
An 

Since 
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8 8 

0 0 

according to (1.3), the n-th term of the expansion of Q(t) into a series of powers of e is equal to (1/n)w n plus some polyno- 
mial o._f ~ I  . . . . .  ~n -1 ,  and_also (1/n)DnPlUS (in general, a different) polynomial of ~, . . . . .  Dn-1- Thus, both the vector field 
(1/n)~% and the field (1/n)o~ n represent the n-th variation of the system (1.8). 

For n = 1, 2 the vector fields ~ and Dn coincide; however, for n >__ 3 this is not so and we have two different 

representations of the n-th variation. There is nothing strange in this; in fact the admissible representation are very numerous: 

if to a representation of the n-th variation we add an arbitrary commutator polynomial of any representations of the first n - 

1 variations, then we obtain again a commutator expression, representing the n-th variation. For example, 

-m (-- l <'- "('- 

In other words, one obtains an entire Lie algebra of variations and one has only to separate that general feature which 

exists at various commutator representations of the same variation. A remote hint that here a meaningful theory is possible is 
given by the comparison of ?OnWith ~n" One representation of the n-th variation is obtained from another by the inversion of 

the variables in the integrand and multiplication by ( -  1) n-1 . One of the main goals of this paper is the description of all the 

symmetries that transform representations of the n-th variation again into (in general, different) representations of the n-th 

variation. 
5. We have already mentioned above that the presence of infinitesimal invariants of the curve Q(e), different from the 

tangent vector to this curve, are due to the fact that Q(e) is a curve on a group (the group of diffeomorphisms). In this 

subsection we introduce the concepts, fundamental for this paper, of the variational group and the Lie algebra of variations of 

an arbitrary curve on the group of diffeomorphisms and we give the exact definitions of the higher variations of such a curve. 

Let R(e), e E R, be 'a  smooth curve on the group of diffeomorphisms, R(n) E Diff (M), e E R, R(0) = Id. We 

recall that a diffeomorphism for us is an automorphism of the algebra C~*(M) (see Subsection 2). Then (dn/den)R(0) is a 

differential operator of order _< n on M, acting according to the rule 

dr t  

In the sequel we shall use the abbreviated notation R(n) = (dn/den)R(0). 

Let n o > 0 be the smallest n such that R(n) # 0. 

It is easy to see that in this case R(n0) is a vector field (operator, satisfying Leibnitz' rule for the differentiation of a 

product). The vector field (1/no)R (n0) is said to be tangent to the curve R(e) at e = 0 and is denoted by 

T R  (0) = n-~/~ ("*)" 

Then R(t) = id + en~ + o(tn~ The number n o is called the order of tangency of the field TR(0) of the curve 

R(e), 

no---- ord (TR (0)). 

We set further 

and 

(n) dn "0" 1 
P =a-~-P( )h7' n > O .  

The collection of all curves in the group Diff(M) is itself a group if the product of curves is defined poin~wise: 

def 

(R'*R") (e) = R' (e) *R" (8). 

By ~ we denote the subgroup of the group of curves on Diff(M), generated by the curves g "~R (r ~z6 R, n =  1, 2 . . . .  
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PROPOSITION 1. The following two sets coincide: 

1) {TS ( 0 ) I S ( . )  ~ } ;  
2) Lie{p(n), n > 0}, i.e., the Lie subalgebra in Vect(M), generated by the fields p(n). 

Proof.  First we prove that 

{TS(O) I S ( .)s {p (n), n>O}. (1.11) 

We set 

Then 
8 

s(o- eTp IlgS(,)a, vs(o 
0 

and 
.t..- 

In R (tze)--- tzp (~8). 

The inclusion (1.11) is obtained from the following two statements, the first of which is a consequence of the 

Volterra expansion (1.3), while the second one is a consequence of the variation formula (1.6) and of the expansion (1.5). 

i) ~--In S ( e ) - - e n T S  (0)-----O (en+l), where n = ord TS(0) for any smooth curve S(e). 
n 

g 

ii) ~ (S~ (e)oS~ ~ (e)) =~n $1 --~ I "- *-- (e)--  exp - -  ad In $1 (x) dx In $2 (e). 
0 

We proceed to the proof of the inclusion 

Lie {p(n), n > 0 } c{ TS  (O) lS 

First of all we show that the set, situated in the right-hand side of this inclusion, is a Lie subalgebra in Vect(M). The 

latter is a consequence of the fact that ~ is a certain group of curves. Indeed, 

T (St*S2) (0) = TSl (0) + rSz  (0), TS -~ (0) = - - T S  (0), 
T S ( tz " O) = ct ~176176 T S _(0), 

where by TS(tx-0) we denote the tangent field to the curve e --, S(txe); finally, if ord TSI(0) = ord TS2(0) = n, then 

r (SloS oST'oS71) (o)= [rsl (o), r s2(o)l, 
ord T (StoS~Si-loS~ 1) (0) ~- 2n. 

It remains to prove that p(n) E {TS(0) IS(') E ~ } ,  knowing already that {TS(0) [S(.) E ~ } is a Lie subalgebra in Vect(M). 

We have p(0) = TR(0). Further, 

k - - I  

where ~r[ is some commutator polynomial of P0 . . . . .  Pk- l ,  k = 1, 2 . . . . .  This follows easily from the variation formula and 

the expansion (1.5). Consequently, the tangent field to the curve e --, R(e/2) o R-l (e)  o R(e/2) is equal to - lap 1 (see i)). We 

continue this in the same spirit, making use of induction on the tangency order. Let S(.) E ~ be a curve such that l ~ S  (e)_-- 

SkOk -. Then 
k ~ n - -  I 

k ~ n  
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( ' )  
where 7r~ is a commutator polynomial of On_ 1 . . . . .  0k_ I. In particular, the tangent field to the curve s ~ S  2 - T s  oS -l (s)~S- 

1 ( , ) - -  
2-~-~ is equal to e n _ 1  (see i)). �9 

Def'm~tion. By the variational group of the curve e ~ R(e) in Diff(M) we mean the subgroup in Diff(M) that is 

generated by the diffeomorphisms R(~), t E R, i.e., by the "points" of the curve R(-). 

We note that the variational group of the curve R(-) coincides with {s(e)lS(.) ~ •} for any e E R. 

Def~ition. By the Lie algebra of variations of the curve t --, R(~) we mean the Lie subalgebra {TD(0) IS(.) E ~ } 

in Vect(M). 
Remark.  In the case when the curve R(.) is such that its variational group is a t-mite-dimensional Lie group, while 

R(.) itself is an analytic curve on this group, the Lie algebra of variations is simply the Lie algebra of the variational group. 

Meanwhile, the Lie algebra of variations is correctly defined also in the general infinite-dimensional situation, when 

the standard Lie theory does not work. 
We also mention that variational groups and Lie algebras of variations can be naturally defined and satisfactorily 

described, not only for curves in  Diff(M), but also for mappings of R k into Diff(M), k > 1. However, in this paper these 

objects are not used and we postpone their description to subsequent publications. 

Taking into account, not only the tangent fields to the curves from 4 ,  but also the orders of tangency, we obtain a 

natural nondecreasing filtration of the Lie algebra of variations by Lie subalgebras, generated by fields that have order of 

tangency at most n, n = I, 2 . . . . .  The analysis of the proof of Proposition 1 shows that we have the following 

PROPOSITION 2. For any n _> 1 we have the equality 

Lie{TS.(0) IS ( . )  ~ ,  ordTS (0) <~n}=Lie{p ~~ . . . . .  pcn-,,}. 

Now, finally, we are ready to give the precise definition of the higher variations of a curve R(- ). 

Definition. By the variation of order n > 0 of a curve e --, R(e) in Diff(M) we mean the image .of the vector field 

(l/n)p(n-1) under the canonical factorization 

{TS (0) IS.(. ) ~aPr-->-{ TS (0) IS (.) E~} /Lie{TS (0) I S( .  ) E~, 
ordTS (0) > n } .  

Let x E M and let n(x) be the smallest n such that (dn/dtn)x.R(0) # 0. Then 

i n(x) 

At the same time, x o p(k) = 0 for k < n - 1 and, consequently, 

0--.-- xoLie {p~O) . . . . .  p~C.r)-2} = 

xoLie {TS (0) l s ( . ) ~ ,  ord TS (0) < rt (x)}. 

These relations elucidate the def'mition of the higher variations. 

With this we conclude the consideration of an arbitrary curve in the group of diffeomorphisms and w e  return to the 

perturbations of dynamical systems and to the asymptotic expansions generated by them (see (1.1), (1.8), (1.9)). The 

variational group, the Lie algebra of variations, and the variations of the system (1.8) (and also of the system (1.1)) are 

defined as the corresponding objects for the curve 

l 

e ~ e x p  8Iz tdt in Diff (Aq) 
0 �9 
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2. TH E  SHUFFLE ALGEBRA. T H E  ABSTRACT VARIATIONAL GROUP AND T H E  ABSTRACT 

LIE ALGEBRA OF VARIATIONS 

1. During an unsystematic investigation of variational groups and of Lie algebras of variations, one has to consider 

products of several Volterra series of the form (1.3). In order to work with some objects one makes use of the so-called 

shuffle multiplication. 

Let Pn: (tl . . . . .  tn) --, Pn(t] . . . . .  tn), n = 0, 1, 2 . . . . .  be locally summable mappings from R n into the associative 

algebra of differential operators onto M. The formal power series in the variable s, 
co 

P0 "4- ~ P~ . . . . . .  
r l ~ l  ,.5 n 

is called a chronological series (defined by the sequence Pn)" 
The product of several chronological series contains already integrals over products of simplexes: 

s" " "  P~n(tt . . . . .  tn) d t l . . . d t n  o . . . .  sn "'" P~ (tl . . . . .  tn) d t l . . . d t ,  = 
An: \ n = O  An 

,2 SS' k t~,P~,(tP'" t.)dt,...dt.. 
n=O k J " F " ' q - k l = n  A k l x . .  ' •  l 

where 

l 
e=,p,~, (t, . . . . .  t . ) =  p ,  (6 . . . . .  t,,) . . . . . .  P~t ( tn_~,_,  . . . . .  tn). 

In order to represent such a series in the form of a chronological series, it is sufficient to take triangulations of the products 

of several simplexes, without adding new vertices, and then to map linearly each simplex of the triangulation onto the 

standard simplex by performing an appropriate substitution of the integration variables. 

Let r- n be the group of all permutations of the n-element set and let T C { 1 . . . . .  n}. We introduce the notation 

S , (T)={aE~; ,  l a ( i )<c r ( i - t - l~  VIE{1 . . . . .  n } \ T } .  

We shall use also the simplified notation 

Sn(kl . . . . .  k 3 = S ~ ( { & ,  kl + &  . . . . .  n--k ,} ) ,  

i 

wheren = E ki. 
i=l 

Finally, for any permutation a E E n and vector-valued function q(q . . . . .  tn) we set oq(t 1 . . . . .  tn) = q(too ) . . . . .  to(n)). 
It is easy to see that (v o a)q = v(aq), where v o o is the product (composition) of permutations. 

One can show that 

S " ' I  q(tl  . . . . .  t n ) d t l . . . d t n - ~ S . . .  S ~ ~q(t,  . . . . .  t , , ) d t , . . . d t ,  
A k l x . . . x A k l  A n f f E S n ( k ~ ,  . . . .  k l ) 

for any summable q. 

Def'mition. By the shuffle product of the vector-valued functions pk'(tl . . . . .  tk) and Pn_k"(tl . . . . .  tn_k) we mean the 

vector-valued function 

p'~,,,p'~_~ (t, ..... in) = ~ ~ (P',~'~_O (6 ..... tn). 
O~Sn( k) 

It is easy to show that the shuffle multiplication is an associative operation and, moreover, 
l &-, . . .  ,,, p~ , - -  ~E ~<,_, ~ p~ , ) 

a~Sn(k ,  . . . . .  k t) 
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I 

Vkl, ..., k I such that ~ k i = n. 
i=I 

2. Diverse variants of the shuffle multiplication have been encountered, starting from the fifties, for different reasons 

and at several authors (also at the authors of this paper [1]). Some references can be found in the recent paper [5]. Apparent- 

ly, the notation '%" is due to M. Flicss [6]. The most important properties of the shuffle multiplication are determined, 

naturally, by the linear combinations of permutations, occurring in its definition, and not by the vector-valued functions Pn" 

At the basis of everything is the "abstract shuffle multiplication," the definition of which is given now. 

oo 

Let ~ be the group algebra of the symmetric group r~ n over R, n = 1, 2 ..... ~ = R and ~= ~=0~n. By the 

abstract shuffle product of the permutations u E E k and v' E E k, we mean the following element from ~+~,  

/,, (i), i < k ,  
vmv'=:  Z o'o(~,| where (v~v') ( i ) = ~ . v , ( i _ k ) + l e  ' i ' > k .  

a(~sk+n'cn} 

Since the permutations form an additive basis of the space ~ ,  the shuffle multiplication is uniquely extended "by linearity" 

to any pair of elements from ~ and defines in $ =  ~0$n a structure of graded associative algebra. Moreover, the shuffle 

multiplication can be extended uniquely "by continuity" to an associative multiplication in the completion ~ of the graded 

space ~. As usually, by the completion of a graded space we mean the space of formal series of the form X an, anE~n, 
n ~ O  

while multiplication is performed according to Cauchy: 

an Ul bn = a a m b n _ k .  
n~0 \k=0 / 

The algebra 6 ,  just as other algebra of formal series, is considered with the standard topology of termwise convergence. The 

algebra ~ is indeed the completion of ~ in this topology, while the multiplication "according to Cauchy" :is the extension by 

continuity of the shuffle multiplication in 6.  
Everywhere in the sequel, u.nless otherwise mentioned, by an associative algebra we mean an associative algebra with 

identity over R. For each associative algebra ~t, by [ ~] we denote its associated Lie algebra with Lie multiplication [a, b] 

= a b -  ba, b E ~. 
3. We recall the nonstationary vector field h t in which we were interested in the first section. The mapping 

h , : v ~ s  n I " ' l  h'v'"' . . . . .  h,v, t , d t l . . ,  d tn ,  vET.n, n > 0 ,  
A n 

can be extended in a unique manner to a continuous homomorphism h of the algebra ~ with shuffle multiplication into the 

algebra of chronological series. 
For n = 1, 2 . . . .  we denote by 1 n the identity element in the group I~ n, 10 = 1 E R. We have 

h ,  In - - - - i d + ~ s  a . . .  f t n  . . . . .  h , , d t  I . . . d r  n 
a ~ l  Art 

2 the asymptotic expansion of the right chronological exponential. We introduce the notation exp (e )=  enl n, 
n m O  

elements ex--p(e) are invertible in ~ as any formal series with invertible constant terms. 
Def'~ition. The group T ,  generated by the elements exp(t), t ~ R, with the multiplication operation 

called an abstract variational group. 

eEl~ . The 

"~" is * 
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According to def'mition, 7P~-r . The curves with values in the group 7p (just as in any other group) form them- 

selves a group with pointwise multiplication. We denote by g~the subgroup in the group of the curves on ~ ' ,  generated by 

the curves 

e ~ e x p ( ~ k e ) ,  c~ER, k = l , 2  . . . . .  (see Subsection 1.5) 

w 

An arbitrary curve a(.)  E ~ 'has the form a(e) = 1 + ~ enan, e E R, where anEW, n---- 1, 2 . . . . .  
n=l 

Let n o be the smallest n such that a # 0. We denote ano = Ta(0); this is the abstract analogue of  the tangent field to 

a curve on the group of  diffeomorphisms. In accordance with the notations of  Sec. 1, we set 

co (e) ~ .~, ~n-)o,,---- ~ (exp (e)) m (exp (e)) -1. 

Just as Proposition 1, one proves the following 

P R O P O S I T I O N .  The following two subsets in ~ coincide: 

1) {ra(o) I 
2) Lie  { '~  t t ~  1} i.e., the Lie subalgebra in [ ~ ] ,  generated by the elements "[on~.| n =  1, 2 . . . .  �9 

Definit ion.  The Lie subalgebra 

V={Ta(O) l a ( . ) E ~ }  in 1~] 

is called the abstract Lie algebra of  variations. 

The abstract variational group and the abstract Lie algebra of  variations lie in the closed associative subalgebra of  ~ ,  

generated by the elements I n, n _> 0. 
Definit ion.  The associative subalgebra in ~ ,  generated by the elements 1 n, n _> 0, is called the shuffle algebra and 

is denoted by the symbol SSH?, while its closure in ~ by the symbol ~ .~ :~S is a graded subalgebra in | / / / =  ~ / / / , ,  
I I ~ - 0  

where /2/, = / / /N~o .  

4. When working with the shuffle algebra, the following concepts, related to the combinatorics of  permutations, are 

useful. 
Def 'mition. By the monotonicity type of an arbitrary permutation cr E I~ n we mean the word S(a) of  length n - 1, 

S(a) = s 1 ... Sn_ 1, in the alphabet of  two letters u , /~ ,  defined by the following rule: 

__. J~.  if ,~(i)--~.o(i 11, 
s . - -  ~.[5, if a(i).~a~i'.-1). 

For example,  S (i ,,) : :  c , . . . .  ~ -- ~"-: , while the monotonicity type of  the inversion i --, n - i + 1, i = 1 . . . . .  n, is the 
n - - I  

word ~._~_.~-.__.~ = I~ ~- ~ ; for n = 1 we obtain in both cases the empty word. 
t :  - 1 

The sum of  all permutations having the same monotonicity type a will be denoted by iaj. I f  a is a word of  length n 

- 1, then iaj E | . The notation iaj may seem to be strange at the first glance, but it will be elucidated a little later. 

P R O P O S I T I O N  3. Let a be a word of length n - 1 in the alphabet of  the letters ~, /~,  and let T a C { 1 . . . . .  n - 1 } 

be the subset consisting of  the indices of  the "places" in the word a where the letter/~ occurs, #T a = m. Then 

/ r t  

iaj----~ ( - - 1 )  m-k ~ I , , t u l , , _ t , m . . .  ml ,~ - ,~_ , tu l~- ,  k. (2.1) 
4=0 {i .. . . . .  t ~}cr a 

Proof .  According to definition, 

l ~ , m l t , _ l , t u . . ,  ml lk_lk_llllln_lk.~--- o .  ( 2 . 2 )  
aEsk(F .... . .  is}) 

Consequently, the element (2.1) is the sum of  all permutations, whose monotonicity type contains the letter o~ at all the 

places, except at i 1 . . . . .  i k, while at the places i 1 . . . . .  i k one can have either the letter a or/3.  Thus, in the sum (2.1), each 

2 4 2 0  



permutation, having monotonicity type a, occurs with coefficient 1, while a permutation, containing the letter 3 exactly at the 
n t  

places Jl . . . . .  Jl, where {Jl . . . . .  Jr} is contained strictly in T a, occurs with the coefficient ~ (--1)m-kCm_/k-t = 0=  0. 
k=l 

Indeed, {Jl . . . . .  j/} is contained exactly in Cm_tk-I subsets of T a of cardinality k. 
COROLLARY. SSH? is a free associative graded algebra, having exactly one generator of each degree.n > 0. The 

elements of the form iaj, where a is an arbitrary word in the alphabet c~, 3, form an additive basis of the algebra LE. 

Proof. From Proposition 1 there follows that i for any word a of length n - 1. Obviously, the elements iaj E ill n 

for distinct words a are linearly independent. Since one has in all 2 n-  1 words of length n - 1, it follows that dim LI_[ n >_ 

2 n-1. On the other hand, the algebra ~ is generated by the elements In, n _> 0; consequently, it has at.most one generator 

of each positive degree. It remains to note that the dimension of the components of degree n for a free associative algebra, 

having one generator of each positive dimension, is equal exactly to 2 n-1. 

T H E O R E M  1. The abstract Lie algebra of variations V is a free Lie algebra with generators ~0 n E SSH? n, n = I, 

, . . . .  

Proof. We have 

i ~- 
exp (e) = 1 q- o (z)mexp (x) dx. 

0 

Consequently, 
/1 

I"=-h 'k=lc~ n = l ,  2 . . . . .  (2.3) 

From the formulas (2.3) we derive by induction on n that the elements ~:n E ~ n ,  generate the algebra : .  Since ' -  is 
a free algebra, having one generator in each of the homogeneous components S n, it follows that [o n -> 1, are free generators 
of the associative algebra " From standard result of the theory of Lie algebras there follows that ~0 n, n _> 1, are free 
generators of the Lie subalgebra in ~S, generated by these elements. 

COROLLARY. The imbedding V C ~ induces an isomorphism of the universal enveloping algebra UV of the Lie 

algebra V onto the algebra L., i.e., --- ~ .  

Indeed, the universal enveloping algebra of a free Lie algebra is a free associative algebra with thesame collection of 

generators. 
Remark.  Certainly, the sequence [o n, n >_ 1, is not the unique system of homogeneous generators of the Lie algebra 

V. As another system o f homogeneous generators of the same Lie algebra we can take, for example, o n, n >__ 1, where 

e~-,~n___~(e)=(e-~p(e))-tm o~(e--~p (8)). In the next section we give an explicit description of all possible systems of 
n--I  

generators. 
5. Thus, ~: is the subalgebra in |  consisting of all those linear combinations ofpermutations such that the 

permutations with the same monotonicity type have the same coefficients. 

PROPOSITION 4. For any words a, b in the alphabet o~,/3 we have the equality 

( ia]) m ( ib ] ) = iaczm] q-ia[~b ]. 

Proof. Let iaj E LE n ,  ibj E :r' m" Then 

( i a j ) m ( i b j ) =  ~ a.( iaj |  
~Sn+m(n) 

Since each permutation a E Sn+rn(n) increases monotonically on the segment 1 . . . . .  n and, separately on the segment n + 1, 

.... n + m, it follows that vix E E n, v E Em the monotonicity type S(a ,  (ix | v)) of the permutation a ,(ix | v) is equal 

either to S(ix)aS(v) or to S(ix)3S(v). Consequently, 

(iaj)  m (Ibj) ~ kl ( ia~bj)  ~ k~ (ia~bj), 
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where k 1, k 2 are nonnegative integers. Further, if ~ E Sn+m(n) and ~o(1~ |  1~2| , then t~ = #~- I  o/.t 2 | el-1 o v2 

= ln+ m since Sn+m(n) N (~n | Jim) = ln+m" Consequently, the coefficients k~, k 2 are equal either to zero or to unity. In 
order to conclude the proof it remains to note that 

s (~.+.,4a |  s (~ | = s (),) =s  (v), 
s ( ( l  . . . . .  n - l ,  n + l ,  n, r ~ + 2  . . . . .  n + m ) o ( ~ * v ) ) = s  (~,)DS (v). 

By the symbol �9 we denote the associative algebra with generators c~,/3, i, j, not flee, but deemed by the relations 

]i=a-]-,[~, i~-~p=ai=~i=ja=]~=O.  
o o  

We defme in the algebra ~[ the grading by semiintegers ~[~--- ~2_0~[_~, assigning to the variables the following degrees: deg 
2 o o  

= deg/3 = 1, deg i = deg j = 1/2. From Proposition 4 there follows that ///~n~__0~, , i.e., the graded algebra SSH? can 

be identified in a natural manner with the subalgebra in ~ ,  consisting of the linear combinations of homogeneous elements 
of integer degree. We shall make use of this identification without any special reference up to the end of this section, i.e., we 
shall assume that / / / ~  (while / / / ~  ), and we shall omit the symbol sh? at the multiplication of the elements of a 

shuffle algebra, represented in the form of polynomial of the (noncommutative) variables t~, /3, i, j. 

We recall that 

exp (~)-- 8~1.= 1 -t- 8 ~ 8nit~nj = 1 -~- 8i (1 - -  ~(~)-~j, 
r~=0 n ~ 0  

c o  
�9 (-- 0) 

o (~)----- ~ e"-' ~,, = (--~ ex-'p (~)) tu (~xp (~))-', 
~ 1  

= (exp (8))-'m - ~  exp (8). 
r ~ l  

PROPOSITION 5. We have the identities 
c o  

1) (exp (e)) - I =  1 --8i(1 -~-e[~)-~j = 1 --8 "~ (--e)ni~nj; 
nmO 

2) ~ ( ~ ) = i ( 1  --e~z) -l (1 +61~)-zj; 

3) m(~)=i (1  +~[~)-I (1 __e~)-lj. 
Proof. 

1)(1 -bei (1 --  8tz)-lj) ( ! - -8i  (1 q- e~l)-l])= 1 q-ei ((1 --etz) -1 --(1 .-[- el3)-') j - - e l  (1 --  etz)-' (Be q- ~l) (1 -Jr e~l)-Ij = 1 

2} ; (e)-~- ( 0  (8i (1 - -  s~)- ' j ))~1 - -  ei (1 a r ~)- - I  j ) = i  ( l  - -  gO~)--2j X ( l  - -  ~ (~ + ~) - - '  j ) =  i (1 - -  80~) =2 ( l  --(80~.'3[ - 8~) 

(1 + ~D)-I) ] = i(1 --ecz)-l(1 -t-el~)-'j. 
Identity 3) is proved in a similar manner. 

COROLLARY. 
n - - - )  n 

~ . + l = ~  (__l)kien-k~kj; O~.+l=~.~(--1)ki~kc~"-~'j, n>O.  
k = 0  k = 0  

6. We recall that by a differentiation in an arbitrary algebra we mean any linear operator D in this algebra, satisfying 

the "Leibnitz differentiation rule": D(xy) = (Dx)y + x(Dy). We define two homogeneous differentiations u, v of degree 1 of 
the graded associative algebra ~ ,  by giving their values on the generators with the aid of the formulas 

u ( = ) = = 2 ,  u(~)=_~2, 
u(i),~ i~, u ( j )=  - ~ j ;  

(=)_- _ = 2  v (#) = ~2  

v ( i )  = i ~ ,  v ( j ) - -  - = j .  

(2.4) 
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Straightforward computation shows that the formulas (2.4) are consistent with the identities defining the algebra 9 .  
For example: u(ji) = u(j)i + ju(i) = -/3ji + jitx = -/~(o~ + /3) + (o~ + /~)t~ = o~ 2 - B 2 = u(c~ + ~), etc. Therefore, the 

formulas (2.4) define correctly differentiations of ~t. In addition, since the operators u, v are homogeneous and have integer 

degree, they map the subalgebra / / /c~t  into itself. 

PROPOSITION 6. We have the identities 

co (~) = e TM (i j ) ,  

Proof.  ~1 = ij, 

~o" (e) = e - ~  (ij). 

n 

k = 0  k = O  

n 

= X ( - -  1)# (rt + 1 --I~)icza§ _ ~  ( _  l)k(k + 1)i~zn=,~#-tj _~ 
k = 0  k = 0  

n + l  

= ( r t +  1) X ( - -  1)kio~n+'-k~kJ = ( n  + 1) r 

Thus, u ~  = n%+ 1 Vn > 1 , consequently, 

~ . §  = Z (  ~ e~"c~ = ~ (~)" 

A similar computation proves also the second identity. 

The following proposition shows that the differentiations u, v are closely related with the inner differentiations adx: 

a ~ x a - a x o f t h e a l g e b r a  ~t f o r x  E V C ~t. 

PROPOSITION 7. We have the identities 

ad'~ (a) = e~aa"v + it, ad to (a)----- e-eaavu + v. 

Proof. For e = 0 both identities reduce to the equality ad(ij) = u + v. This equality is verified by straightforward 

computation: since both the right- and the left-hand sides of the equality are differentiations of the algebra K~ it is sufficient to 

verify that they coincide on the generators. The rest follows from Proposition 4 and from the universal identity [D, adx] = 

ad(Dx), valid for any differentiation D and any element x of an arbitrary algebra. 

COROLLARY. The Lie algebra generated by u and v is free and the mapping 

ad : V--+Der ~, where a d : x ~ ad x Vx~ V ~ ,  

is an isomorphism of the Lie algebra V onto the ideal of codimension 1 in Lie(u, v) of the form R(u + v) + [Lie(u, v), 

Lie(u, v)]. 
Proof. From standard results on free Lie algebras (see [4]) there follows that the subalgebra in Lie(u, v), generated 

by the elements u + v, (adu)nv, n >_ 1, contains all the commutator monomials of u, v of degree at least two. The rest 

follows from Proposition 7 and Theorem 1. 
Starting from this place we digress from the operator origin of the elements u, v. Henceforth, the letters u, v will 

denote the generators (alphabet) of a free associative algebra (algebra of words). We have 

V ~  ( R ( u + v )  +[Lie  (u, v), Lie (u, v)]) ~ L i e  (u, o) ~ A s s  (u, v). (2.5) 

Consequently, 

I l i= UV~,  Ass ((adu)"  (u+v)  ; n ~ 0 )  ~ A s s  (u, v), 

since the elements (adu)n(u + v) are (free) generators of the Lie algebra R(u + v) + [Lie(u, v), Lie(u, v)]; UV denotes the 

universal enveloping algebra of the Lie algebra V. We denote u + v = w. We have a simple algebraic characterization of 

the elements of the subalgebra Ass((adu)nw, n >_ 0) in the algebra 

Ass (u, w) = A s s  (u, v ) .  
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PROPOSITION 8. We consider the representation 0 of the algebra Ass(u, w) by linear operators in Ass(u, w), 

defining it on the generators by the formulas 

O(u)xffi[u,x], O(w)xffiwx Vx Ass(u, w). 

Then the mapping x --~ 0(x)l is the projection of Ass(u, w) onto the subalgebra generated by (adu)nw, n > 0. 

Proof. First of all, since 0(u) = adu is a differentiation of the algebra Ass(u, w), it follows that the mapping x --, 

0(x)l maps Ass(u, w) into Ass((adu)nw, n _> 0). It remains to show that this mapping is the identity on Ass((adu)nw, n _> 1). 

This follows from the following statement. 

LEMMA. Let L x be the operator of left multiplication by x E Ass(u, w). In this case, if x is such that 0(x) = L x, 

then 0([u, x]) = Llu,x 1. 
Proof. 0 ([u, xl)y=otu)o(x)y--o(x)o(u)y = [u, xy]--x[u, y] =[u, x]y=Lt,,,  ,Y.I 
T H E O R E M  2. Let I : ~  ~ Ass (u, ~) be a continuous homomorphism (and monomorphism), uniquely defined by 

its values on the generators I~h) =(1/n!)(adu) nv + u. Then 

1) I (exp (~)) ~ e'~ee~. 
2) I]7" is an isomorphism of the abstract variational group 7" onto the subgroup in Ass(u, v), consisting of all 

k /t 

elements of the form .et'~e*,~...et*~e "k~, k > 0, ~ t t =  ~ si. 
t ~ 1  l ~ 1  

3) 1 ( V ) = R  (uq -~ )q - IL le (u ,  v), Lie(u ,  v)]. 

Proof. 

_ , -  a --~ --~ 
en ken---- (0"d8 exp (e)) m (exp (e)) -t. Consequently, 1) 

g 

exp (e)-~exp ~ o (e') de ' ,  I (exp(e)) 
0 

We have made use of the variation formula. 

8 "g"-- 8 

"-S S - - e x p  I (o(e'))de"--exp (ee'ad"v+u)de'=e*"e ev. 
0 0 

2) Statement 2) follows directly from 1) and the definition of the abstract variational group. 

3) Statement 3) has been already defined above and can be derived independently without difficulty from 1) and the 

definition of V. 

COROLLARY.  The exponential mapping x --, e x = ~ (1/n!)x n maps V onto ~i~ in a one-to-one manner. 
n = 0  

Proof.  It is known that the exponential mapping maps Lie(u, v) in a one--to--one manner onto the closed subgroup 

in Ass(u, v), generated by the one-parameter subgroups t ---, e tu and t --, e tv (see [4]). From Theorem 2 there follows that 

1 (~t,') is a normal subgroup in f', consisting of all elements whose homogeneous components of degree 1 have the form t~(u 

+ v ) , a E R .  m 

3. SHUFFLES AND SYMMETRIES 

1. In the previous section we have elucidated the structure of the shuffle algebra ~ ,  as well as the variational 

group ~ and the Lie algebra of variations V, contained in 7~ Now we recall that the graded algebra /_/_/c~i= ~ ~ , ,  
n ~ 0  

where ESn is the group algebra of the symmetric group E n (the group of permutations of an n-element set). The elements of 

~,, are linear combinations of permutations, while multiplication in the group algebra is def'med by the group multiplication, 

i.e., by the composition of permutations: if tr, v E E n, then also a .  ~, E E n. The classical multiplication " o " will be said to 

be symmetric in order to avoid confusion with the shuffle multiplication "m ". In addition, we extend the symmetric 

multiplication to all of 6 ,  by setting t t .  1, = 0 for v/z E r- m, v E r. n, m ~ n. It turns out that there exists a deep connection 

between the .two associative multiplications: the shuffle product "tu" and the symmetric one " o " 

T I l E  FUNDAMENTAL LEMMA. For any x E 7~ and any it, ~ E ~ we have the equality 

m (x.v). 
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Proof .  Let One has to prove that x = ~ xt~7 a 
k--O 

, where x~elll~c| > O, t~xm, ~X n. 

X~moC~'"~)=(Xm~ ) '" (Xn~ 

First of  all, it is sufficient to prove this equality for the case # = l m ,  v = 1 n since 

and 

x~**,o(t,,,,v)--;~,~,~o(tm,-tn)oC~| 

(xmot~) m (Xn~ = (l=m ln)~176174176 = (lmm l,)oCx,,,| x~)o(t, | (x,.mx~)o(t,| 

Thus, the fundamental lemma is equivalent to the equalities 

X~.mo(lramln)= XmmXn Vm, rt > O, ~ x~T'. 
k--O 

(3.1) 

Let Jn E En be the inversion: Jn(k) = n - k + 1, k = 1 . . . . .  n, Jn = iBn-lJ �9 We mention that 

if we assume that J0 = 1. 
co 

An arbitrary e l emen t  x = ~ .Xn(~TP has the form 
rt=0 

, ( / t,a,'/ x' t ~  x - -  us , , : ,  (3.2) 

\ n = O  . I= I  I=0  . 

where for any j = 0, I . . . . .  k the sequence a~, i >_ 0, either coincides with 1 i, i >_ 0, or with Ji, i >__ 0; tj, j = 0, 1 . . . . .  k 

are arbitrary real numbers, k is an arbitrary nonnegative integer. 

Formula (3.1) has a purely combinatorial character. However,  we do not know its straightforward proof  and we have 

to make use of  a sufficiently artificial auxiliary construction. 

Let A be an associative algebra with n + m generators X 1 . . . . .  ;kn+ m, defined by the following relations: any (non- 

commutative) monomial of  X 1 . . . . .  ~kn+ m, having degree not less than two at least with respect to one xtariable, is equal to 

z e r o .  

For each k > 0 there is defined the right action of  the group X; k on the polynomials of  degree k of  X 1 . . . . .  ~ + m  by 

the rule 

O ~ . t , "  �9 �9 �9 " h t t ~  3 " I o 0 ) "  �9 �9 �9 " ~ , t o ( k )  Va~Zk. 

We have ( ~ o v ) ~ , ~ , . . . . . L l ~ = ~ ( c r L t , . . . .  "~t~). 
Let ~7 = {7/1, ~2 . . . . .  an . . . .  } be a sequence of  monomials of  the first degree of  the algebra A, having only a t-mite 

number of  nonzero elements. We set 

Ak(rl)= ,~ . "q~.-....rl~. 
l t < - - . < / k  

By the letter X we denote the standard sequence X = {X 1 . . . . .  ~kn+ m,  0, 0 . . . .  }; thus, X k = 0 for k > n + m. We 

have, in particular, An+m(X) = ~kl'. "~'n+m" 
It is easy to verify the following identity, valid for any sequence and any k, l >_ 0: 

A~ (11) At (11) ---- (l~mlt) Ah+t ('q)- (3.3) 

Indeed, 

,y, ,Y, 
l,<-..<t t~ o~s~t(~) Jt<"'<I~t 

l ~ + l < . . . < l ~ r  l 

(we have made use of  the fact that */it'''"T/ik§ = 0 if i h = ij2 for some Jl # J2)" 
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Let x be an element from 7" of the form (3.2). Then 

+~0 Wlo m ' .  t �9 n l l ' k k a t  +. 
t o + . . . + l k ~ n + m  

From the element x we construct a special sequence + = ;/(x), setting 

~ljC.+m)++ = t ikaJ+ra(l ) , j =O, 1 . . . . .  k,  1 ~  I . . . . .  n + m, 

+1+=O for l > ( k + l ) ( n + m ) .  

We have the identity 

A~(~)----xtAt(X ) Vl>O. (3.4) 

Indeed, 
At ( n ) =  TIs,"  � 9  +lst = 

J~ < " "  < l l  

I o 0 I k k (t o at~ o (x ))(t[,a2 a+, ( ;q) . . .  (t k a~kat,(x)) = 
l o+ .  . .-I-i k ~  l 

= ]~  '+~'" . . . .  t++"Ca~174174 ", , . (~+). . . .a , , (~+).  
Io+. . .  +i / t~l  

At the same time, according to (3.3), we have 

(aO~174 | ) h,o (Z,).....A,+(;~)----- 

= (a~174 GAP+) ((I l . tu . . ,  ml,~) A t (k)) = 

= ((~,.,,,...,,,~,+)o(a?o| | ) ~ ,o . )= (a?.,,,...,,,,~P+) A,(~). 
Consequently, 

a,(n)= 2~ t~o.....t,+~(aOo,,...,.a++)a,(~)=x,a,(~). 
t e + . . . + l  k ~ l  

Making use of the equalities (3.3), (3.4), it is already easy to prove equality (3.1). We apply the left-hand side of the identity 

to be proved to )'x'""~kn+m = An+m(X): 

(Xn+mZ(Im tul n)) An+ra (~')------(lraulln)(Xn§ 
= (lraml,,) a,,+ra ( n ) =  A.. (n~" A. ( 0 ) =  (xraa,. (~))(x.A.  (~)) = 

= (xra | x,.) Ara (X) A. C z) = (xraex.)(41,.ml.) a.+ra (Z)) = 

= (( Xm| ram | n)) An+ra (J~)---- (.,VmtllXn) An+m (~+). 

Consequently, xn§ x,,,mxn. []  
2. A surprising consequence of the fundamental lemma is the fact that the symmetric product of two elements of a 

shuffle algebra is again an element of the shuffle algebra. Moreover, this lemma enables us to describe completely the table 
of the symmetric multiplication of the elements of an additive basis of a shuffle algebra. 

PROPOSITION 9. For any n, m > 0 and positive integers i 1 . . . . .  in, Jl . . . . .  Jm we have the equality 

( l t , m . . .  ml in)O(| h Ul . . .  ml lm)-- 

~ X  lk , tU . , ,  m lkmmlk , ,m . . .m l%,m. . .m lk t , nm. . . t u lkn r  a, 
K 

where the summation is taken over all matrices 

{ k . . . .  kl~ 
K ~ -  ~ i , 
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satisfying the conditions 

n 

2 k~t'-m'jt, 

m 

2 ktj-~ i l, 

l = 1  . . . . .  m; 

I-----1 . . . . . .  n. 

Proof. From the fundamental lemma there follows that 

(ex~ (t,) , , , . . . , , ,  ex-~ (t~))o(b,LU... ,,,t Jm)= 

= ((exp (t3 t u . . .m  exp (t~))olj,)m...m((e t o m . . . I n  exp (t~))*l jm). 

Making equal the coefficients of tltt'...'tnin in the right- and left-hand sides, we obtain the desired equality. 

Thus, vn > 0 the space !L~ n is an algebra relative to the symmetric multiplication " o ", a subalgebra in the group 

algebra of  the symmetric group Z; n. The space ~ n with the symmetric multiplication will be denoted by /~n ,  while the space 

/-/-/+= ~t~=l/s "~ with the same multiplication will be denoted by the symbol /~+.  We note that WnoUlm----O for n ;~ m. 

The circlets over n and + are used in order to distinguish the symmetric multiplication from the shuffle multipli- 

cation. Everywhere below (just as above) the symbol ~:. without a circlet denotes the shuffle algebra, + - i.e. is its 
maximal ideal, while /_L/~_ = L/./+tu... mL/_/+ is the k-th power of the maximal ideal. 

k times 
k k 

COROLLARY. The subspace ~ +k is a two-sided ideal in/] /+,  i.e., /_/_/+oL/_/+cL/./+, /-/-/~-oL/./§ 

This follows directly from Proposition 9. 

We note that I n is the identity element in ll/n, while the subspace /-L/n f7/-/-/~- is an ideal of codimension 1 in/1/n" 

Def'mition. We denote by p: 11/--, R the homomorphism of the algebra/)J into R, defined in the following manner: if 

x E n, x = cl  n + y, where y E +2, then p(x) = c. 

We give the values of the homomorphism p on the elements iaj, forming the natural additive basis of ~ ;  here a is a 

word in the alphabet {cx,/3}. 
PROPOSITION 10. Let degBa be the number of letters ~ in the word a. Then p(a) = ( -  1)dega a. 

Proof. The required equality follows directly from the def'mition of p and the formula (2.1). 

Remark.  The functional p on the algebra of the "monotonicity types of permutations"/}-/n plays a role similar to the 

role of the parity for individual permutations. We recall that by the letter 3 we denote the places where the permutations of 

the given monotonicity type decrease (i.e., are in disarray!). On the other hand, p does not coincide at all with the parity: for 

example, for the inversion Jn = i3n-l j  , having parity ( - 1 )  n(n-1)/2, we obtain P(Jn) = ( - 1 ) n - l "  The point is that at the 

computation of p we do not take into account all the disarrays but only those that correspond to adjacent values of the 

argument. 
The infinitesimal variant of the fundamental lemma is the following 

PROPOSITION 11. For any n > 0, 0 E V n, x E ~ n  = 0 we have the equality 0 .  x = O(X)0. 

Proof. First of all, 0 .  I n = 0. Therefore, the assertion to be proved is equivalent to the relation ~o///~_ = 0 . We 

have e '~  VE(~R, where the exponential series is considered relative to the shuffle multiplication: 
o o  

e~O= I + ~ ~ m . . . m a g .  z..a n l  - ~  
n ~ l  n times 

From the fundamental lemma there follows that eee(xtmx2)=(e*Ooxt)m(eeeox2), Vxt, x2EW z. Differentiating this 

identity with respect to e at e = 0, we obtain 

Oo(xtmx2)--- (~oxl) m (eOox2) + (eOox2) tu (Oox2) = O. [] 

We recall that the associative algebra IE is the universal enveloping algebra of the Lie algebra V. In particular, the 

subspaces V n form an increasing filtration in LU +. 
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THEOREM 3. 1) V n - - - - { x ~ L I I I x o L L I ~ _ + t } = O ,  Vr~>0.  2) Let 01 . . . . .  O n E V be homogeneous elements. For an 

arbitrary nonempty subset T C {1 . . . . .  n}, T = {i 1 . . . . .  ik}, i 1 < ... < i k, we set O r = t r ~ , m . . . t u ~ l  k . Then 

('~t m �9 �9 �9 m~n)o(1 t , t u . . .  m 1~ k) ---- X ~ r , t u . . .  tUbr k, (3.5) 

where the summation is taken over  all partitions of  { 1 . . . . .  n} into k subsets Tj such that 0r]ELL/U, J = 1 . . . . .  k .  

Proof .  We start with statement 2). Equality (3.5) is a direct generalization of  Proposition 11. The same can be said 

about the proof.  For any t 1 . . . . .  tnR the element e t ' ~ , m . . ,  m e  G '~  lies in ~ .  Consequently, 

( e '  ,~ , l t I . . .  me 'n%)o( l i , t t t . . ,  tu 1~) = 

___( (e,,O m . . . , u e ' " % ) ~ l , , ) t u .  �9 �9 m ( ( e ' , O , m . . . m e ' , , % ) o l , ) .  

Making equal the coefficients of  t l ' . . . - t  n in the right- and left-hand sides of  the last equality, we obtain (3.5). 
/ n  'i " We proceed to the proof  of  statement 1). First of  all, f rom (3.5) there follows that I I./1 ~. = 0. It remains to 

show that x :  L/_/~-' _L 0. if x ~ V n. "7-- 

Let 0 I, 0 2 . . . .  be an additive basis of  V, consisting of homogeneous elements, linearly ordered in such a manner that 

the degrees of  the elements do not decrease monotonically. From the Poincar~--Birkhoff--Wit t  theorem there follows that the 

elements ~ : , m . . .  m~6,  iz ~ . . .  -~." i m,  m < k, form a basis of  the space V k wk > 0. The union with respect to all k yields 
an additive basis of  the space ~ .  For each x E ' by xit .... i~ we denote the coefficient o f ~ , m . . ,  m ~  m in the expansion of 

x with respect to this basis. 

Let x E Vk',V k - l ;  by the principal term of the expansion of x with respect to the given basis we mean the element 

.Vi .' ib~ i I11 . . . I L l ~ l . i l .  

where Jl . . . . .  Jk is lexicographically minimal among all sequences i 1 . . . . .  i k such that xit...i k # 0. 
I f  ~t; ~ l l / . : . . .  ~ [ . . . . .  k ,  then, according to formula (3.5), the principal term of the element x I , : , u i . . .  ill 1,,;: i i s  

equal to 

-XSi ' t : ' [ ,  ! "  �9 . .  " [ : : : [~ l  j . l l l .  . . l l . i~ l  ~t :7~- 0 ,  

where l 1 . . . . .  l m are the lengths of  the constancy intervals of  the nondecreasing integer-valued function i - - d i ,  i : I . . . . .  k 1 

C O R O L L A R Y .  The subspaces V n are two-sided ideals in I 1 1  " V "  ~ I l l _  = 111_ o V"  = V 

3. Now we leave for a short time the bounds of the shuffle algebra ~ in order to give some consequences of  Theorem 

3, related to the group algebras ~,: of  the symmetric groups X: n. 

Let 3,~ . . . . .  X n be independent generators (alphabet) of  a free associative algebra. Associating to each permutation a 

E n the monomial  )'a = ~'a(1) ' - . .  "~ka(n), while to the linear combination x = ~ CiO i of permutations the polynomial X x 
i 

= E Ci~kai , we identify the group algebra ~,~ with the subspace in Ass0,1 . . . . .  Xn), consisting of  elements that are 
i 

homogeneous of  degree unity with respect to each variable. We set 

Lien---- {x6~, I ~.x~Lie (~,t . . . . .  ~.n) }. 

It is easy to see that Lie n is a left ideal in the group algebra 6 ,  since a permutation of  the variables in the commu-  

tator polynomial in )'1 . . . . .  X n leaves the polynomial a commutator.  

T H E O R E M  4. For any n > 0 we have the following relations: 

1) V, = Liedq///~: 

2) if 0 E V n, p(0)  # 0, then ~,o~----Lie~. 

Proof .  Let 

.-t - Ass (Ll . . . . .  ~. , )-+Lie (~,l . . . . .  ~.n) 

be a linear mapping,  acting according to the rule 

! 
.'t (', ' .i," �9 �9 �9 " ) . i k )  = T ad ~ . i , . . . a d  ~,l~_ Xt~. 
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It is well known that lr is a projection of Ass(k 1 . . . . .  k n) onto Lie(), 1 . . . . .  k n) (see [41). Now we note that ~ '(~) = 
(l/n)k x . ~-0n'*'x E | (compare with Subsection 1.4). Consequently, ~o n generates the left ideal Lie n, i.e., ~,,o~o#= Lie,,. 
We mention that t)~n) = n and we set 7r n = (1/n)~-on. The element 7r n E V n is an idempotent by virtue of Proposition 9: 

lr n o 7r n = 1. Consequently, 

From Proposition 9 there follows that ~on,, -~ ~ v~fil/',,, while from the Corollary to Theorem 3 we obtain ~that x .  a" n E V n 

v x E  ~ n  
Thus, assertion 1) of the theorem is proved. 

Further, if O E V n, o(O) ~ 0, then lr n = [1/O(0)]lr n . tg. Consequently, ~,,~')--=- ~-.:.-r.,=~Lie,,. 
go 

Let Ass ( S ) =  ~ Ass,, (S) be a free associative algebra with some set S of generators, graded in the usual manner. 
n -  _0 

We define the right action O n of the algebra ~,, on the space Assn(S), by setting for all .x := ~ ctat~_| 
i 

f): I.Y): S I �9 . . . �9 S , , , ' - ) "  ~ ,  1 C i S o ( 1 ) "  �9 . �9 �9 S ( ~ ( n ~ ,  

1 

where s i E S, i = 1 . . . . .  n, are arbitrary variables, not necessarily distinct. 

COROLLARY.  Let O k E V k, 0(0 k) = 1, k = 1, 2 . . . . .  Then the mapping 

~ ,  0h (t)~): Ass C S) -+ Ass  (S) 

is a projection of Ass(S) onto Lie(S). �9 
4. The results of the last two subsections contain the solution of the initial problems of this paper, formulated in 

Subsection 1.4: describe all the commutator representations of the n-th variation and fred the symmetries that transform an 

arbitrary representation of the n-th variation again into some representation of the n-th variation. In this case, as elucidated, 

the solution of the second problem includes, basically, the solution of the first problem. 

Let h t be a nonstationary field. All the commutator representations of the n-th variation of the system (1.8) have the 

form 

h.O, ~ V ,  flp-I (1). 

By applying to h.O the symmetry x E ' -- ,  we obtain the expression h ( x .  0). Thus, the set of the symmetries from 

- -n ,  which map the representations of the n-th variation again into representations of the n-th variation is n f3 p- l (1) .  In 

addition, for all ,9 l, 0 2 E V n t3 p - l (1 )  we have 01 . 0 2 = O I. 

Thus, by the application of symmetries to an arbitrary commutator representation, we obtain easily another commuta- 

tor representation and there are no privileged commutator representations. 

4. E X T E N S I O N S  

1. So far we have investigated algebraic structures, connected with the asymptotic expansion of flows, generated by 

a fixed system of the form (1.8). In applications we encounter frequently the situation when on the right-hand sides of the 

considered systems there acts some group I" and it is necessary to compare and combine the asymptotic expansions of the 

systems obtained from the given one by the action of various elements of the group. In other words, it is necessary to extend 

the variational group in a special manner with the aid of the group P. 

We obtain a simple and important example of the action of the group on the right-hand side by starting directly from 

a nonstationary system (1.8), without any additional structures. This is the action of the group of affme transformations of the 

time axis: h t helt+c2, c 1, c 2 E R, c 1 ;~ 0. If  the right-hand side depends on parameters, discrete or continuous, as this 

happens in control theory, then there acts the transformation group of the space of the parameters. For example, for the 

investigation of the interaction of l systems with right-hand sides htl . . . . .  ht / one makes use of the symmetric group F = I; 1, 

whose elements rearrange the fields h~. 
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2. We proceed to the description of the extension of the shuffle algebra with the aid of the group r'. Let 

r - = { r =  (v�91 . . . . .  ~.) Iv,~r, i - - I  . . . . .  n} 

be the Cartesian product of n copies of the group I', 

def 
~ .~ '= (~ , ' ~ i  . . . . .  ~'~'~). 

If ~r E Em, then the correspondence 

defines the right action of E n onto I TM. 

Definition. By the symbol E r we denote the following semidirect product of E n by I'n: 

x, r  
~ = {(r, o) I r~r  ~, ~_':.~, 
(r', o")o(r, o-)= (r" ~'o, o-'o~). (4.1) 

The initial objects at the construction of the shuffle algebra have been the groups En; at the construction of the 

extended shuffle algebra the initial objects are the groups E r ,  while multiplication in these groups plays the same role as the 

usual symmetric multiplication. 
Assume that on some set U there is defined a left action of the group I'. The result of the application of the element 

-}, E P to u E U will be denoted simply by 3,u. Let ~: U n ---, -g) be a mapping of U n into some set ~g) (the selection of the 

letters is justified by the fact that, in our important applications, U is the set of control parameters, while ~g) is the algebra of 

differential operators on M). 

For (% ~r) E En r we set 

('r, or) {} (u, . . . . .  u,,)---- ~(-tt uocl~ . . . . .  ~,,U.oc,.,)). 

The multiplication (4.1) is defined in such a manner that the correspondence R, --, (Y, a)~ is a left action of the group 

E r,  i.e., 

('r', or,) ((r, a) ~}) = ('r', o')o(r, a) ~. 

We denote by ~ff the group algebra over R of the group E r ,  ~ r  = R, and |  ~=0~sr. 

We define the shuffle product of arbitrary (7, a) E r~n and (3/, a') E [~m r by the formula 

(r, a)m (':', a ' )=  ((r, r'), ama')~r+,~, 

where (T, 7 ' )=(~1 . . . . .  %, "tl . . . . .  "t'm)Er n+m- 
The shuffle product is extended by linearity for any pair of elements of ~ r  and defines in ~ r  a structure of an 

associative graded algebra. 
Let U C R N, let .g) be a Frgchet space, assume that the mappings u --, -/u, u E U, are continuous v3' E P, the 

mapping ~: U n --,-~) is also continuous, and u(-): [0, 1] --, U is a measurable bounded vector-valued function. It is easy to 

verify the identity 

(4.2) 

= l " "  I {('r, 1~),,, ('r', 1~_~)) �9 {u (t,) . . . . .  ~ (t.)) at ,  . . .  dt~ 

for any 

k - - o ,  1 . . . . .  rt, "r=('f ,  . . . . .  ~ ) ~  rk, "C'=(TI . . . . .  "f~,_0~r"-< 

Let u --} h(u) be some continuous mapping of U into Vect(M). We set Hk(ul . . . . .  Uk) = h(ul) . . . . .  h(Uk). We obtain 

an important special case of the identity (4.2) by taking for 4, the mapping 

(u~ . . . . .  u ~ ) ~ / - / k  (uo{,) . . . . .  uor  ~-k (u~,,~) . . . . .  u~'C~-~)), 
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where tr E Ek, tr' En_k. 
In this case (4.2) reduces to the equality 

Thus, the mapping 

I "'~" I (':' ") ~ (u (t,) . . . . .  ~z(t.)) at , . . ,  ctt;  

= I " "  I ((x, ~} m (r', o'}):-:n(u(t,) . . . . .  U(tn))at~.. .  dtu. 
A n 

(~, o),-.- �9 ('r, o)m~(u(tO,  . . . .  u(tn))att . . .  dt., 

(~', ~)~Xf,  k = 1, 2 . . . .  

(4.3) 

defines a homomorphism of the algebra ~ r  into the algebra of differential operators on M. 

3. The subgroup in Diff(M), generated by the diffeomorphisms 

I 

oxp I J~(v,(t))at, ~R, ,~er, 
0 

is called the Y-extension of the variational group of the system 

x-----x.h (u (t)). (4.4) 

Correspondingly, by the F-extension of the Lie algebra of variations of the system (4.4) we mean the Lie subalgebra 
in Vect(M), generated by the Lie algebras of variations of the systems 

x=x.h(yu(t)  ), y~r. 

We define the abstract analogues of these entities by following the same scheme as in See. 2. First of all let ~ r  be 
oo 

~sr----- ,~o~sr in the standard topology of the convergence of the homogeneous compo- the completion of the graded algebra 
nents. 

If 3" E F, then we denote 

('t)n=((.'f . . . . .  ~)' I.) '  ('f)nE v'r, ('f)o= 1ER; 
71 ~a3 

~o  

exp(e, " f ) = X  an(,f)., exp(e, "f)E~r; 
n ~ 0  

to(e, ~)~- ~ en-lco, ( ' 0 = ~ ( e x p  (e, ,f))m(exp (e, .f))-i. 
n ~ l  

Definition. The subgroup Y: r in the multiplicative semigroup of the algebra o l r ,  generated by the elements exp(e, 
3'), e E R, 3" E r ,  is called the F-extension of the abstract variational group. 

The Lie subalgebra V r in [6 r ] , generated by the elements ~n(3"), n = 1, 2 . . . . .  3" E r ,  is called the r-extension 
of the abstract Lie algebra of variations. 

The r-extension of the abstract Lie algebra of variations is contained in the (associative) subalgebra of the algebra 
r , generated by the elements (3")n, 3" E P, n = 0, 1 . . . . .  while the P-extension of the abstract variational group lies in the 

closure of this subalgebra in ~i r . 
Definition. The (associative) subalgebra in Or , generated by the elements (3")n, 3" E F, n = 0, 1 . . . . .  is called the 

r-extension of the shuffle algebra and is denoted by the symbol M I', while its closure in ~ r  is denoted by the symbol [[.[I'. 

Clearly, l l j r  is a graded subalgebra in ~r ,  l l j r  ~_ ~ /-/J~, where l l j r  ~ Lu r f - l e r .  
n m O  

2431 



Let e E 17 be the identity element of  the group 17. Identifying (r E ~Sn with the element ((..e_ . . . . .  e), o)~Sff , we 
n t i m e s  

obtain a natural imbedding of the algebra ~ into ~ r  , under which ~ is imbedded in ~i r .  From the definition of  lit r and 

from the fact that ~ is a free algebra with generators 1 n, n = 1, 2 . . . .  (see the corollary to Proposition 3) there follows that 

- r is a free associative algebra with generators ('Y)n, 3' E 17, n = 1, 2 . . . . .  A simple generalization of  Theorem 1 is 

Theorem 1 is 

T H E O R E M  1 r .  The P-extension V r of  the abstract Lie algebra of variations is a free Lie algebra with generators 
. ,(-- 

(t~ (V) 6///,, r. �9 

4. The extensions of  the variational group and of the shuffle algebra, described briefly in the previous subsection, 

would be of little worth if the fundamental lemma, connecting the symmetric multiplication " o " with the shuffle multiplica- 
i i  l t ' ~  i i  tion sn. , would not extend to them. 

As in See. 3, we extend the symmetric multiplication (initially defined separately on each of  the homogeneous 

components ~ r  ) to all of  ~ r  , setting a o b = 0 for a E ~  r , bE~  r ,  rt =/= m. 

The  F u n d a m e n t a l  L e m m a  for  r -Extens ions .  For any x E 7/'r and any b '  E eir we have the equality 

x .  (atub) = (xoa) tu (x .b ) .  

The proof  follows the same scheme as the proof  the fundamental lemma in Sec. 3 if we generalize in an appropriate 

manner the construction of the algebra A, used there. Namely,  let A r be the associative algebra with generators (7, Xi), 

yo r ,  i - -  1 . . . . .  n-q-m, 

defined by the following relations: an arbitrary monomial (3'1, Xi~)... '(3'k, Xik), in which ij = ij, for some j ;~ j ' ,  is equal to 

z e r o .  

Instead of  the right action of  the group r. k on polynomials of  degree k from the algebra A, used in Sec. 3, one has to 

consider the right action of  the group ~ r  on polynomials of  degree k from the algebra A r ,  defined in the following manner: 

('t, ~):(~;, x , , ) . . . . . ( ~ ,  ~,)'-~('t~'%c,r x,o~,)).....(~.-~'oc,~, z,o(,)), 
v-~ = ( , ~  . . . . .  %,)EF*, (~EZ~. 

The remaining arguments differ very little from the proof  of  the fundamental lemma in Sec. 3 and we omit them. 

Just as in the case of  the usual shuffle algebra, the fundamental lemma enables us to describe completely the "table 

of  the symmetric  multiplication" in the F-extension of the shuffle algebra. 
# 

P R O P O S I T I O N  12. For any n, m > 0, elements "Y1 . . . . .  "Yn, "rl ' ,  . . . .  3'm E 17, and also positive numbers i i . . . . .  

in, Jl . . . . .  Jm we have the equality 
((~,,h, t u . . .  tu (,r n),~)o((-~'0j, t u . . .  tu ('r = 

= ~ (~, ;.-~,)~,, . , . . .  tu (~i-  ~ ) K ~ ,  tu (%. ~,)~,, t u . . .  tu ( ~ .  ~),,. L u . . .  
A" 

�9 . .  tu ('~;~" ~t) , ,m Lu..  - "  (~'m"~o),~,,,, 

where the summation is taken over all matrices 

,ku . . .  kl,~ , 
i )  

satisfying the conditions 

k , = j t ,  l = l  . . . . .  m; k t l = i l ,  l----I . . . . .  n. 
tffit j= j  

This statement is proved in exactly the same way as Proposition 7 in See. 3. 

From it there follows that for each n > 0 the space �9 n r is an algebra relative to the symmetric  multiplication " o ", 

a subalgebra in the group algebra of  the group ~r .  We denote this "symmetric" algebra ~ n r by/J_/n r in order to distinguish 

it f rom the shuffle algebra. 
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Let /Z/~_ = n~/-/./~v ; from Proposition 12 there follows that /_/_/r tu/./-/~) M U./~ 

element x E lJJn P has the form 

i 

is a two-sided ideal in 11/hr. Any 

The mapping p r : x ~ 2 c i  (~fi), is an antihomomorphism of/]in r into the group algebra of the group F. 
l 

The following statement, an infinitesimal variant of the fundamental lemma, is proved in the same way as Proposition 

I1. 
PROPOSITION 13. For any n>0,~t?V r M Lur, xE/-/-/r we have the equality 

Oox == 0o(0 r (x))~. 

Concluding this section and at the same time also the paper, we note that the investigation of the P-extensions of a 

shuffle algebra and of an abstract Lie algebra of variations is only outlined here. More detailed information about these 
objects and their applications will be presented in subsequent publications. 
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