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Simplest planimetric objects: couples of points

(segments) and triples of points (triangles).

We consider segments and triangles with or-

dered vertices and allow to continuously change

them according to certain simple rules.

(3d) The segments with ordered vertices are

“free vectors”. The space of free vectors of a

fixed length is the group of rigid motions.

(4d) The space of free vectors of an arbitrary

length is the group of similitudes.
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(5d) Triangles with ordered vertices are “free

frames”. The space of free frames of a fixed

area is the group of area preserving affine trans-

formations.

(6d) The space of all free frames is the group

of all affine transformations.
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Dynamics

(3d) Bicycle: the origin of the vector is moving

in the direction of the vector.

(4d) Osculating circle: The endpoint of the

vector is a point of the curve, while the origin

of the vector is the curvature center of this

curve.

4



(5d) Three ants: Any vertex moves parallel to

the opposite side of the triangle.

(6d) Osculating ellipse: The endpoint of the

first vector of the frame is a point on the curve,

while the origin of the frame is the center of

the osculating ellipse. The second vector is

parallel to the tangent line to the curve at the

point and the endpoint of the second vector

belongs to the ellipse.
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Our rules impose linear nonholonomic constraints

on the velocities of the vertices. In any of four

cases the configuration is described by a free

frame:

In the 3d and 4d cases the frame is orthogonal,

while in the 5d and 6d cases the frame is arbi-

trary. In the osculating circle and ellipse cases,

point x is the center of the circle or ellipse and

x+ e1 is the point of the curve.

In the 5d case, the distribution of admissible

velocities has rank 3 and is spanned by three

vector fields where any of three fields moves

only one vertex.
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In all other cases, the distribution of admissible

velocities has rank 2 and contains a vector field

that “rotates” the vector x+ e1 around x:

ė1 = −e2, ė2 = e1, ẋ = 0

The second field is as follows:

ė1 = 0, ė2 = 0, ẋ = −e1 (3d)

ė1 = e1, ė2 = e2, ẋ = −e1 (4d)

ė1 = e1, ė2 = 2e2, ẋ = −e1 (6d)
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We can present the configurations in the ma-
trix form

Q =

(
e1 e2 x
0 0 1

)
,

as elements of the group GL(3); then Q̇ = QA,
where

A =

0 −1 0
1 0 0
0 0 0


for the first vector field, and

A =

0 0 −1
0 0 0
0 0 0

 , (3d)

A =

1 0 −1
0 1 0
0 0 0

 , (4d)

A =

1 0 −1
0 2 0
0 0 0

 (6d)

for the second vector field.
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Geodesics.

In the 3d case, we are minimizing the length

of the path of the point y = x+ re1 where r is

a nonzero constant.

Let R2 = C, e1 = eiθ. Admissible paths:

θ̇ = u, ẋ = −veiθ.

The length of the path of the point y is equal

to
1∫
0

(r2u2(t) + v2(t))
1
2 dt. The geodesics are

related to the dynamics of the mathematical

pendulum φ̈ = c sinφ:
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The shape of the curve x(t) for the oscillating

pendulum:

The shape of the curve x(t) for the rotating

pendulum:
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The 4d case. We set e1 = ez. Admissible

paths:

ż = v + ui, ẋ = −vez.

The distribution is projected one-to-one to the

plane {z}, and a natural length of the admissi-

ble path is the length of the plane curve z(·).

The geodesics are characterized by the condi-

tions:

|ż| = const, z̈ = 〈a, ez〉,

where a is a constant vector. This is the equa-

tion for the motion of a charged particle in the

magnetic field 〈a, ez〉. The level lines of the

field are as follows:
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Singular curves are critical points of the map

γ(·) 7→ (γ(0), γ(1)) defined on the space of ad-

missible curves.

Constant curves γ(t) ≡ γ(0) are singular.

There are no other singular curves in the 3d

case.

In the 4d case, the movement of z along the

zero level of the magnetic field is a singular

curve; this corresponds to the movement of

the center of the osculating circle x along the

line connecting x with the touching point of

the circle and the curve.
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(5d)

ẋi = ui(xi−1 − xi+1), i ∈ Z/3Z.

All singular curves satisfy the condition
∑
i ui =

0. The barycenter of the triangle b = 1
3
∑
i xi

is moving along a straight line; moreover, the

barycenter of exactly one singular curve in the

space of triangles with a given initial condition

is moving along any straight line through b(0).

For the straight lines that connect the barycen-

ter with a vertex (i.e. for the medians), the

vertex does not move while the opposite side

is moving parallel to itself.
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We separate the movements of the barycen-

ter and around the barycenter in order to de-

scribe other singular curves and set yi = xi− b,∑
i yi = 0.

The appropriately parameterized matrix curve

Y = (y1, y2) is a solution of the Fuchsian sys-

tem of the form:

3Ẏ =

Y

(
1

τ − 1

(
−1 0
−1 1

)
+

1

τ

(
0 1
1 0

)
+

1

1 + τ

(
1 −1
0 −1

))
.
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(6d) The movement of the center of the oscu-

lating ellipse along the straght line connecting

the center with the touching point of the el-

lipse and the curve is a singular curve of corang

2; in other words, the image of the differential

of the map γ(·) 7→ (γ(0), γ(1)) in this point of

the space of admissible curves has codimension

2.

A one-parametric family of singular curves goes

out in any other direction of the plane of initial

admissible velocities. All of them are described

by the systems:

ė1 = e2 + ve1, ė2 = −e1 + 2ve2, ẋ = −ve1;

v̇ = 2v(w − v)− 1, ẇ = w(w − v) + 1. (∗)

Note that system (*) has no equilibria.
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