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We consider a control system:

q̇ = fu(q), q ∈M, u ∈ U ⊂ N,

where M,N are smooth manifolds and the map

(u, q) 7→ fu(q) is smooth on U ×M .

Classical controls are measurable bounded func-

tions t 7→ u(t) ∈ U, t ≥ 0.

We assume that time-varying vector field

t 7→ fu(t) is complete ∀u(·) and therefore gen-

erates a flow

Qt : M →M, Qt ∈ Diff0M,

where

∂Qt(q)

∂t
= fu(t) (Qt(q)) , Q0 = Id.
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Time-varying feedback controls are smooth w. r. t.

q ∈M and measurable bounded w. r. t. t map-

pings (t, q) 7→ u(t, q) ∈ U .

We set u : t 7→ u(t, ·); then the time-varying

field fu is complete and generates a flow. These

are admissible flows of our control system on

the group of diffeomorphisms. We denote by

Qu
t the flow associated to the control u.

Attainable sets:

At(q) =
{
Q
u(·)
t (q) : u(·) is a classical control

}
⊂M,

At = {Qu
t : u is a control} ⊂ Diff0M.
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Special classes of control systems:

• Homogeneous w. r. t. control: U is a cone

in Rk and

fαu = αfu, ∀α > 0, u ∈ U ;

• Homogeneous symmetric: U = −U and

fαu = αfu, ∀α ∈ R, u ∈ U ;

• Affine w. r. t. control: U = Rk and

fαu+(1−α)v = αfu + (1− α)fv,

∀α ∈ R, u, v ∈ U .
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Control system is bracket generating if

span
{
[fu1, [· · · , ful] · · · ](q) : ui ∈ U, l ∈ N

}
= TqM,

∀q ∈M , where [f, g] is the Lie bracket of vector

fields f and g.

Theorem 1 (Rashevskii-Chow-Krener) If

the system is homogeneous w. r. t. control

and bracket generating, then At(q) ⊂ intAt(q),
∀q ∈ M, t > 0. If, additionally, the system is

symmetric, then At(q) = M, ∀q ∈M, t > 0.

Theorem 2 (Nagano) If the map q 7→ fu(q)

is real analytic ∀u ∈ U and

dim span
{
[fu1, [· · · , ful] · · · ](q) : ui ∈ U, l ∈ N

}
= m,

then Aq(t) is contained in a m-dimensional im-

mersed submanifold of M .
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Theorem 3 If the system is homogeneous w. r. t.

control and bracket generating, then At ⊂ intAt,

∀t > 0. If, additionally, the system is symmet-

ric, then At = Diff0M , ∀t > 0.

Classical optimal control problem:

given a smooth function (q, u) 7→ ϕ(q, u) and

points q0, q1 ∈M , find a control u(·) that min-

imizes the integral functional:

J(u(·)) =

1∫
0

ϕ

(
Q
u(·)
t (q0), u(t)

)
dt

under constraint Qu(·)1 (q0) = q1.
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Let µ be a probability measure on M (it indi-

cates “weights” of the states). Optimal con-

trol problem on the group of diffeomorphisms:

given Q1 ∈ Diff0M , find a control u that mini-

mizes the functional:

1∫
0

∫
M

ϕ
(
Qu
t (q), u(t, Q

u
t (q))

)
dµdt

under constraint Qu
1 = Q1.

The problem is reduced to the family of fixed

endpoints problems and we need generalized

solutions to attain the minimum.

Now we relax the constraint and state optimal

control version of the Monge transportation

problem: given a probability measure ν, try to

minimize the above functional under constraint

Qu
1∗(µ) = ν.

6



Let

c(q0, q1) = min{J(u(·)) : Qu(·)1 (q0) = q1},

optimal cost of the classical fixed endpoints

problem. We have to find a map Φ : M → M

that minimizes the functional∫
M

c(q,Φ(q)) dµ

under constraint Φ∗(µ) = ν.

Let H : T ∗M → R be the Hamiltonian of the

classical problem,

H(ψ) = max
u∈U

(〈ψ, fu(q)〉 − ϕ(q, u)),

where q ∈M, ψ ∈ T ∗qM .
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We assume that H is a well-defined C2-function,

the associated to H Hamiltonian vector field on

T ∗M is complete and generates a Hamiltonian

flow

Ht : T
∗M → T ∗M, t ∈ R.

Theorem 4 Assume that measures µ, ν have

compact supports and the cost function c is

Lipschitz in a neighborhood of supp(µ)×supp(ν).
If µ is absolutely continuous, then there exists

a unique up to µ-measure zero optimal map

Φ. Moreover, there exists a Lipschitz function

p on M such that

Φ(q) = π ◦ H1(dqp),

for µ-almost all q ∈ M , where π : T ∗M → M is

the standard projection.
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Assume that M is compact and µ is a volume

form. We have:

TIdDiffM = VecM, T ∗IdDiffM = Λ1M,

where VecM is the space of smooth vector

fields and Λ1M is the space of differential

1-forms; they are paired as follows:

(ω,X) 7→
∫
M

〈ω,X〉 dµ, ω ∈ Λ1M, X ∈ VecM.

Left translations on the group define isomor-

phisms:

TQDiffM ∼= VecM, T ∗QDiffM ∼= Λ1M,

∀Q ∈ DiffM.
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Hamiltonian of the optimal control problem on

Diff0M :

H(ω,Q) =
∫
M

H
(
ωQ(q)

)
dµ.

Given ψ ∈ T ∗qM , we define a vertical derivative:

Hv(ψ) = dψ(H
∣∣∣
T ∗qM

) ∈ TqM.

Hamiltonian system for H has a form:

∂Q(q)

∂t
= Hv(ωQ(q)),

∂ω

∂t
= −iHv(ω)dω−dH(ω).

Second equation is an intrinsic expression of

the Burgers equation with Hamiltonian H. Here

H(ω) : q 7→ H(ωq), (iXdω)(·) = dω(X, ·).

For the Monge transportation problem, the Hamil-

tonian system is supplemented by the “transver-

sality condition” ω = dp, and the Burgers equa-

tion is reduced to the Hamilton–Jacobi one:
∂p
∂t = −H(dp).
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Affine w. r. t. control systems with a positive

quadratic w. r. t. control functional can be lo-

cally presented as follows:

fu(q) = f0(q) +
k∑
i=1

uifi(q),

ϕ(q, u) =
1

2
|u|2 − V (q).

Then H(ψ) = 1
2

k∑
i=1

〈ψ, fi(q)〉2+〈ψ, f0(q)〉+V (q),

ψ ∈ T ∗qM .

Theorem 5 If, for any q ∈M ,

span{fi(q), [fj, fi](q) : 0 ≤ j < i ≤ k} = TqM,

then the cost

(q0, q1) 7→ c(q0, q1)

is a Lipschitz function on M ×M .
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The group of volume preserving diffeomorphisms:

DiffµM = {Q ∈ DiffM : Q∗µ = µ}.

We have:

TId(DiffµM) = {X ∈ VecM : divµX = 0},

T ∗Id(DiffµM) = Λ1M/{exact forms}.

Now consider the problem with a “state con-

straint” Q ∈ DiffµM . We assume that

divµf0 = 0 and linear part of the system
k∑
i=1

uifi

is bracket generating.
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Let Hµ be the Hamiltonian of the problem on

DiffµM ; it is invariant w. r. t. left translations

and has a form:

Hµ(ω,Q) =
∫
M

H(ω)−H(dpω) dµ,

where ∆H(pω) = divHv(ω). Here

∆H : p 7→ divHv(dp)

is a second order hypo-elliptic differential oper-

ator, the “Laplacian” associated to the Hamil-

tonian H. Hamiltonian system has a form:

∂Q(q)

∂t
= Xω(Q(q)),

∂ω

∂t
= −iXωdω,

where Xω = Hv(ω − dpω). Second equation is

the “Euler equation” associated to the Hamil-

tonian H.
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