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TOPOLOGY OF QUADRATIC MAPS AND HESSIANS OF SMOOTH MAPS

A. A. Agrachev UDC 512.78+515.164.15

In this paper we study sets of real solutions of systems of quadratic equations
and inequalities. The results are used for the local study of more general systems
of smooth equations and inequalities.

1. Introduction

1. A large part of the present paper is devoted to the topological study of systems
of quadratic equations and inequalities. The results are also used for the local study of
systems of smooth equations and inequalities. By quadratic maps here we mean vector-functions
all of whose components are real quadratic forms. The number of variables can be finite or
infinite, the number of forms is always finite.

We are interested in the following questions: 1) Characterize essentially surjective
quadratic maps (i.e., those which are themselves surjective and any map which is sufficiently
close to them is also surjective). 2) For a given quadratic map p:E—R* and a convex closed
cone KRk one learns to calculate the homology groups of the set p”'(K) \ 0. The case K =0
is not excluded and in this case p~'(K) is the intersection of k real quadrics.
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Throughout the entire paper we adhere to the following conventions: wherever nothing
is said to the contrary, the homology (cohomology) groups are singular homology (cohomology)
groups of a topological space; the assertion that a typical element of a given topological
space has some property means that this property holds for all elements of an open dense sub-
set.

The results of the present paper are the natural development of my joint paper with R. V
Gamkrelidze [2] to whom I express gratitude for guidance and stimulating discussions.

2. Let B be a Banach space and @, :B—+R? be a smooth map. We denote by D, ®, the first,
and by Dj},@, the second differentials of the map ®, at the point §,68. Then Ds,0y:b—Dp @b
is a linear map of B into R< and l)bd) ah,bg->[)%¢)(bh b)) is a symmetric bilinear map of B x B
into R4,

Now let % be a Banach manifold modeled on the space B and 9,:#->R? be a smooth map,
B,6%#. Then the first differential

Dﬁ,q)l :Tf‘oﬂ - R4

is a linear map of the tangent space to # at the point B, into RY. If we choose local co-
ordinates in # then we can calculate also the second differential ~ a symmetric bilinear

map of B x B into R?. However here one does not get a well-defined bilinear map of 7%#X
Te,8 into R" since the quadratic part of a smooth map depends essentially on the choice of
local coordinates in # (for example, if imDy®;=R? then according to the implicit function
theorem in some local coordinates ¢, is a linear map). At the same time if we consider the
composition of the second differential (calculated in local coordinates) with the canonical
factorization

def
Rd g Rd/lm Dfoq).l = coker Dﬂa(Dl’

then we get a well-defined symmetric bilinear map
D30T, B X Tp, & —coker Dg, B,

We call the map l)idh the invariant second differential of the smooth map ¢, at the
point 8,.

Finally, let ®:%—>M be a smooth map of a Banach manifold into a d-dimensional mani-
fold. This means that not only in the domain of definition but also in the range of values
of ¢ the linear structure is missing and there is only a differential structure. In this
case the first differential Dy ®:7,B—>To@E,) M- is a linear map of the tangent spaces. Choos-
ing local coordinates in M we can calculate the invariant second differential; however only
the restriction of the second differential to ker Dy, @ X ker Dp,® is well-defined (i.e., inde-
pendently of the choice of local coordinates not only in # but also in M). We get a symme-
tric bilinear map

Dg,(D: ker Dg,® X ker Dg,®— coker D, @
which is called the Hessian of the map ¢ at the point BE%.

In what follows in those cases when it is clear from the context at which point we are
calculating the differential and the Hessian, we shall as a rule use the abbreviated nota-
tion: Dg,0==0/, D} 0=0"..

If coker Dy,0=0(i.e., B, is a regular point of the map ¢), then in some local coordi-
nates in neighborhoods of the points B, and ¢(B,) the map ¢ is a linear map of B onto R¢.
The next case in complexity is the case dimcoker Dy, @=1. In this case l)id! is a bilinear
map of ker Dg,® X ker Dg,® into the line, i.e., essentially a real bilinear form. More pre-
cisely, in order to get a bilinear form it is necessary to take the composition of 1)20
with a nonzero element of the one-dimensional space

(coker Dp, ®)* = (im D, 0)* CT gy M.

The pairing of an arbitrary vector X€7uM with a covector E67,*M we denote by £x, like
the multiplication of a row by a column. Throughout this section the critical point B, of
the map ¢ is considered to be fixed so that the composition of the Hessian with the covector
w€(im Dp,0)* can be written simply as wd".

We recall that the index of inertia (or simply index) of a symmetric bilinear form g

on a space B means the maximal dimension of a subspace on which the corresponding quadratic
form is negative:
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ind g=max{dim V| V<8, ¢ (v, v) <0, VvéV\0}.

If indq = 0, then the form q is called nonnegative, ¢=>0, and if ind (—q) = 0, then nonposi-
tive, g<0, and in both cases sign semidefinite; now if indq # 0 and ind(—q) # O then the
form q is said to be sign definite. The following proposition is a straightforward general-
jzation of the fact that the Hessian of a scalar function is sign semidefinite at a local
extreme point.

Proposition 1. Let us assume that @ (8,)60®(C,) for some neighborhood O, of the point
By in B. If dimcoker® =1 then ¢" is a sign semidefinite form.

This proposition occurs many times in the literature on extremal problems; its proof
is a simple exercise which we omit.

The following modification of the assertion formulated, which distinguishes a '"local
minimum" from a "local maximum,' is often useful.

Proposition 2. Lety:[0, + c0)>M be a smooth curve in M where ‘Y(O)=‘D(5o)'% 00"

V€T o@)M. Let us assume that ®(Fp)Ny((0, &)= for some neighborhood T, of the point B,
in & and some € > 0. If dimcoker$' = 1 then

(0y0) ©®” <0 Vog(im @)L

Proposition 2 is most often used in the form of the law of Lagrange multipliers for

conditional extreme points, i.e., when M=R4, O0=(@o, @1,...,Pd-1)7,
v(8) = (o(Bo) — 8,11 (Bo) . . . » @a—1 (fo)) T
(pois a minimizing function and g (B)=const,..., ps-i ()= const are constraints].

By the kernel of the symmetric bilinear form q on the space B is meant the subspace
ker g={b€B|q(b, B)=0). If kerq = 0, then the form q is said to be nondegenerate. The form
q is called sign-definite if |q(b, b)|>¢llbll? for some € > O and any b€B (here -1 is the norm
in the Banach space B). A nonnegative (nonpositive) sign-definite form is called positive
(negative) definite.

We return to the study of the critical point B, of the map ¢:%H-+M.

Proposition 3 (Generalized Morse Lemma). Let dimcoker¢' = 1, If the symmetric bilinear
form 9" is nondegenerate and its restriction to a subspace of finite codimension in ker ¢' is
a sign-definite form, then there exist local coordinates

S:0p,—~Ré-igker @, 5:0¢(p,)—> R4 '@coker O’
defined in neighborhoods of the points B, and ¢(B,) such that
se®eS-1(x, v) = (x, ®”(v, v)) VxER*!, véker D',

One can find a proof of the generalized Morse lemma, for example, in [7].

As the simplest consequence we get a partial converse of Proposition 1.

COROLLARY 1. Under the hypotheses of Proposition 3 the point &(B,) iies on the bound-
ary of the set ®(V) for some neighborhood V of the point B, in # if and only if the form
%" is sign-definite.

The generalized Morse lemma implies that the level set (p, N7 (®(By)) and the preimage
of zero under the quadratic map v~@” (v, v), v€ker @’ are homeomorphic.

COROLLARY 2. Under the hypotheses of Proposition 3 let w€(im ®)*\ 0. where ind o@”" =
i < +». Then if dimB = += then the set O~ (® (BN (s, \By) has the homotopy type of the sphere
S1-1 and

Z, j=i
H(071(® (B), 07(@ BN \By) = {0, j i

Now if dimB = N < += then the set O"'(@(f)N(Cs\P) has the homotopy type of the product of
spheres: §i-1 x gN-d-i,

Proof. We need to describe the homotopy type of a cone with vertex removed C={véker ¢’|
O (v, v):=0, v*0}. Let V be an i-dimensional subspace of ker ¢' such that the restriction
of 9" to V is a negative definite form. We set W={wéker ®'|®”(w, V)=}. By hypothesis the
restriction of 9" to W is a positive definite form and ker®’=V@®W. Let I be the unit sphere ?
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in ker #'; it is clear that C N I is a homotopy retract of C. At the same time, C N I is
homeomorphic to (ZNV)X(ZNW) . It remains to note that the restriction of the form ¢" to W
defines a Hilbert structure on W and the infinite-dimensional Hilbert sphere is contractible.

Comparison of Corollaries 1 and 2 leads to the following interesting fact.

COROLLARY 3. Under the hypotheses of Proposition 3 the following assertions are equiv-
alent:

1) O(Po)€0D(V) for any neighborhood v of the point B, in &;
2) B, is an isolated point of the level set O-1(D (Bo)).

For dimcoker ¢' > 1 the Hessian ¢" is a vector (not scalar) quadratic map. The struc-
ture of such maps is considerably more complicated than that of quadratic forms; Sec. 2 is
completely devoted to them. We return to general smooth maps in Sec. 3: despite the fact that
the Morse lemma does not generalize to the case dimcoker ¢' > 1 in general, we are able to
get a surrogate of it which is completely sufficient for many purposes.

2. Topology of Quadratic Maps

The structure of a real quadratic form in a finite number of variables is completely
determined by its index of inertia and the dimension of the kernel of this form. In the
infinite-dimensional case the index of inertia is also the most important invariant of a
scalar quadratic form; in paticular, it uniquely determines the homotopy type of the set of
points at which the form assumes negative values. Vector-valued quadratic maps however have
whole families of indices corresponding to projections of the maps in different one-dimen-
sional directions. The problem of reconstructing various properties of the original maps
from these indices is far from trivial, but as we hope to show here entirely within view.

1. Let H be a Hilbert space (possibly finite-dimensional). By the symbol £(H)we de-
note the set of all continuous symmetric bilinear real forms on H; correspondingly, #*(H) is
the space of continuous symmetric bilinear maps of H x H into R*. If p€#*(H) then the qua-
dratic map x—p(x, x), x6H will be denoted by the same symbol p so that #*(H) can be identi-
fied with the space of continuous quadratic forms on H, which is canonically isomorphic to
it (in concrete situations the meaning of the symbol p is uniquely determined from the con-
text). If H=R"+*' we use the abbreviated notation

?(RN-H) =?(N), ?*(R"*‘) =?h(N).

Let pes*(H) so that by convolving p with an arbitrary row w€R', we get a scalar quadratic
form wp. We set p*:w~—op, 0ER*™* so the correspondence p + p* defines a natural isomorphism
of the space of quadratic maps #*(H) and the space of linear systems of quadratic forms
Hom(R*, #(H)).

Further, to any form g€#(H) corresponds a bounded self-adjoint operat:r Q:H > H defined
by the identity g¢(x, y)=(Qx, y); x, y¢H, where (-, +) is the scalar product in H. The corre-
spondence q + Q is obviously an isomorphism of the linear space #(H) onto the space of
bounded self-adjoint operators on H. Here kerq = kerQ, and indq is infinite if the continuous
spectrum of the operator Q has nonempty intersection with the negative half-line, and is equal
to the sum of the multiplicities of the negative eigenvalues of this operator otherwise. If
peP*(H), ©€R* then the self-adjoint operator corresponding to the form wp is denoted by wP.

Finishing with notation, we occupy ourselves seriously with the finite-dimensional case.
We call a quadratic map p of the space R"*! into R* essentially surjective if for any p suffi-
ciently close to p in &*(N) we have F{R"*!)=R*  The property of essential surjectivity is
useful for studying optimizational problems and is closely connected with the structure of
the level set p™'(0) of the quadratic map p:R¥+LR*

LEMMA 1. For a typical quadratic map p€P*(N) it follows from the condition p~'(0) = O
that p is essentially surjective.

Proof. Let us assume that p(x, x) = 0 for some x # 0, where x is a regular point of the
quadratic map p, i.e., the linear map y—p(x, y), yéR**'is surjective. Then according to the
implicit function theorem the image of a fixed neighborhood of the point x under any map P
sufficiently close to p contains a neighborhood of zero in R* Since quadratic maps are
homogeneous, it follows from this that p is essentially surjective. On the other hand, it
is easy to deduce from Sard's theorem that for a typical quadratic p€%*(N) all points of the
set (p~1(0) \0) =R"*! are regular.
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The assertion of Lemma 1 is true of course not only for quadratic, but also for many
classes of homogeneous mappings. The converse assertion is false in general even for qua-
dratic maps; essentially surjective maps may not have nontrivial zeros at all. The essen-
tially surjective map z » z?, where 26C=R?, is the simplest example; a more interesting ex-
ample is the map (zi, Z)(212), | 222 —|2,|?) from C:=R* to CAR=R?, whose restriction to the

sphere S3CC? realizes the famous Hopf bundle SS(S) However it turns out that for N » k

such examples do not exist.

Proposition 1. Let k2<<N-4l and the quadratic map p€é#*(N) be essentially surjective.
Then p~3(0) # O.

Before proving this proposition we give a very useful fact about the local structure of
the set of singular quadratic forms in #(N) , which is used constantly in what follows.

LEMMA 2. Let ¢,6#(N), V=kerg,s Then there exist a neighborhood (¢ of the point
9o in P(N) and an analytic map @:0,— % (V) such that

1) ®(q)=0. 2) indg==ind gy+ind ®(g).
3) corank g—=corank ®(q). 4) D, P(q)=q|V.

Proof. Let y be a closed contour in the complex plane which separates the origin from
the nonzero eigenvalues of the operator Q,. We set

n¢ o Qm

S(Q—“id) 1dz

for any operator Q which does not have elgenvalues on the contour y. It is clear that L is
ag operator which depends analytically on q and commutes symmetriecaily with/g q) moreover,
n'f— g Indeed m4iis the orthogonal projector of the space R"*! onto the invariant sub-
space of the operator Q corresponding to the eigenvalues which lie inside the contour y, in
particular |V =id. We set

@ (q) (v1y V) =g (TqD1, NgT3) VU1, VLV

For q near q, the map 7|/ is nondegenerate so the form ¢(q) is equivalent to the form ¢|imn,.
At the same time the form gq|im 7y in nonsingular and has index of inertia equal to ind qo

for q close to q,. Equations 2) and 3) now follow from the fact that imny, imzl are 1nvarlant
subspaces of the operator Q. Equations 1) and 4) are verified directly. =

Let 0<r< N 41 and set
N+1
D,(N)={¢e# (N} |corank g==r}, D(N)= U D (N).

COROLLARY. The set D,.(N) is a real-analytic submanifold of codimension r(r + 1)/2 in
#(N) for O<r< N+1.

This follows directly from Lemma 2 if one notes that dim?(R')—;:—(f—;—-‘)—-

The proof of Proposition 1 is based on the following assertion.

LEMMA 3. We set Va=17(]/1+8(k——1)——1); if n>»0 is such that nk-{max(r, v,) < N then for a

typical pe#*(N) the closed convex cone K,(p)=conv{w€éR**|indep<n} is acute [we recall that a
closed convex cone K is said to be acute if Kn(—K)=0).

Proof. Let S*'=(w€éR** [[o|=1} be the unit sphere in R**. It follows from Sard's theo-
rem that for a typical pEP*(N) the map p*|S¥1:S¥1»P(N) is transverse to the submanifolds
D,(N), 0<r<N+41. At the same time, if p*|S#! is transverse to the submanifolds Dr(N),
0&r<N+1 then according to the corollary to Lemma 2, corank op<v; vo#0. Let pEP*(N) be
such that p*|S$*! is transverse to D, (N), 0<r N 41 and here the cone K, is not acute. Then

one can find @y, ..., 06K, v,#0 such that zm1=0‘ We consider two cases separately:
=0
1) K.(p)=R*. 1In this case by moving the point w; slightly if necessary one can arrange
that all the forms wip, i = 0,...,k are nonsingular. But then each of the forms wjp
is positive definite on some subspace V; of codimension n in RY*! i=0,1,..., k. Since

k
n(k+1< N one has ﬂOV,+0. Consequently, foE some xERY*! one has o,p(x, x)>0, i=0,
l=

i =20, 1,...,k which contradicts the equation Em,r:o,
1=0
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2) K.(p)#R**. 1In this case one can assume that wy = 0. Each of the forms 0,p, 0<i<k
is nonnegative on some subspace of codimension n of RM*' and the form w,p is posi-
tive definite on a subspace of codimension n + vg in R¥*!, Since r}k+vk<N for some
xERNT we get pp(x, X)>0, op(x, X)»0, i=1,...,£—~1. The latter contradicts the

k=1 v

equation o, =0,
The contradictions obtained prove that if p*|{S*! is transverse to D, (N), 0<r<~N 41
then K (p) is an acute cone.

L, Let PEP*(N); by p:S¥—+R* we denote the restriction of the quadratic map p to the sphere
S ={x€RN“||x!-—_—_—1}, The point x6SY is critical for the map p if and only if wPx = Ax for
some @z£0, AGR; here the Hessian of the scalar function wp at the point x has the form:

(0P, (1 Y)=0p U, Y)— 1 (¥, 9)- .

LEMMA 4. For a typical pEP*(N) the collection of those points x6SY such that rank g, <
k — 2 can be represented as the union of a finite number of smooth submanifolds in sN of
dimension no more than 2k — N — 4.

Proof. It is easy to see that for any X€S" the map pr—pr pEP*(N) is a linear sur-
jective map of P*(NN) into the space of N x k matrices. As is known, the matrices of rank r
form a smooth submanifold of codimension (N — r)(k — r) in the space of N x k-matrices.
Ordinary application of Sard's theorem and calculation of the number of parameters gives the
result required.

Now everything is ready for the proof of Proposition 1. Since v,<k—1 and 26—%2—~3<0,
according to Lemmas 3 and 4, for g2 N-+1 a typical pEF*(N) satisfies the following condi-
tions:

a) the cone K,-,(p) is acute;
b) rank pr>k—1 VxeS™.

We show that if a quadratic map satisfies conditions a), b) and in addition p(RN+‘)==R”
then pH(O)+£0.

The acuteness of the cone K, (p)CR* means that for some vector I[ER* one has the in-
equalities: /<0, YoEK, ,(p)\0. Let us assume that p7'(0)=0; then p1(0)= and min{e>0lal €
im p}>0. Let SVyx be a point at which min{a >Olal€imﬁ} is achieved; then %X is a critical
point of the map p and by b), rank pr=~k-—1. According to Proposition 1.2 one can find an
w # 0 such that ©pr=0, 0/>0, 0(p);>0. Condition wp,=0 denotes that-oPx=Ax for some MR;
since p(x, x)= al, >0, then A:=aw/>»0. Further, o(p;)=/(0p):|ker pr, and at the same time
()= (Y, ) =0p (Y, ) —A(y, ¥)Vyl x. Since the subspace ker p, has codimension k — 1 at xl we get
that the form wp is nonnegative on a subspace of codimension k — 1 in RY*L j.e., indop <
k — 1. Consequently, 6K,-1(p) which contradicts the condition w2 2> 0. = '

2. Definition. A map pP6P*(N) is called degenerate if for some wERR*N\0 x€RN+I\Q one
has the equations wPx = 0, p(x, x) = 0; otherwise the map p is called nondegenerate.

It is easy to see that pe#h(N) is degenerate if and only if in R* there is a critical
value of the map p:SM—>Rk.  Consequently, if q is nondegenerate, then $71(0) is a smooth
manifold of dimension N — k or the empty set. For k = 1 the definition given is equivalent
to the ordinary definition of degeneracy of a quadratic form.

It is easy to see that the degenerate maps form a proper algebraic subset of £*(N}; in
particular, a typical p€#* (N} is nondegenerate.

Now we consider a more general situation: let K be a convex polyhedral cone in R* and
K={weR*"*|0l<0 V/e¢K} be the dual cone.

Definition. The map péP*(N) is said to be degenerate with respect to K, if for some
®€K°\0, x6RN+'\0 one has wPx=0, p{x, x)€K; otherwise the map p is said to be nondegenerate
with respect to K. Clearly degeneracy of p with respect to K is equivalent to simply de-
generacy of p if K = 0. The concept of degeneracy with respect to a cone also has an intui-
tive interpretation in terms of the map p: the map p€P*(N) is nondegenerate with respect to
K if and only if p:S"R' is transverse to K [a smooth map f: M->R* of a smooth manifold M
into R* is said to be transverse to a convex closed subset ScR* if for any x€M it follows
from the condition f(x)€S that im[,’ is not contained in any support hyperplane of S at the
point f(x)}.




It follows from Proposition Al of the Appendix to the present section that for a map
p€FP*(N) which is nondegenerate with respect to the cone K, the set

PHK) e {x6SY V0 p (%, X) <0 VOEKY

is a topological manifold with boundary. The basic problem of the present section is to
learn how to calculate the homology groups of these sets (especially the homology groups
with coefficients in Z,).

The solution of this problem uses some structures on the space of quadratic forms Z(N),
to whose description we proceed.

Let Q: RN+, RN+ be a self-adjoint operator and M(Q)<C...<An,1(Q) be the eigenvalues
of this operator in increasing order. We recall that 1;(Q) depends continuously (but not
smoothly!) on Q. We introduce the notation

P (N) ={q6P(N) |ind g<<n}={qEP (N) | An+1(Q) =0}

for 0n<<N, P(N)=g for j < 0.
The sets £, (N), 0<n<N, define a filtration of the space @(N) by closed subsets. Here
Po(N) is the collection of all nonnegative quadratic forms on R¥+!', which is a closed cone

in #(N) . By idé®P(N) we denote the quadratic form x » (x, x) (this is the form which cor-
responds to the identity operator in R¥+#)., For n =0, 1,...,N the map

7= q+ (A (Q)— 1 (Q)1d, ¢EF (N),

defines a homeomorphism of the space & (N) onto itself which carries #,(N) onto #,(N). It

follows in particular from this that #,(N) is homeomorphic to a closed half-space in
(N+l)(N+2)

Further, we set
An(N) ={geP (N) 1A (Q) #2nia (Q)}, n=1,..., N.
It is easy to see that

A (N)=2,(N)\Pn_(N)+R:-id. (1)

It follows from Lemma 2 that the closed set #(N)\A,(N) is a pseudomanifold of codimension 2
in #(N). We denote by y,(N) the cohomology class from H'(An(N):Z:), dual to this pseudomani-
fold: the value of y,(N) on an arbitrary one-dimensional Z;-cycle in AL(N) is equal to the
linking coefficient of this cycle with @P(N)N\A.(N).

LEMMA 5. TFor any o, < o, the set
{qG?(N) “"l (Q) =}"n (Q) =y, 7vn+| (Q) =-Mv+| (Q) =a2}, (2)

which is homeomorphic to the Grassmanian Gn(R¥*!'), is a homotopy retract of the space ALH(N).

Proof. A homeomorphism of the space (2) onto G,(RN*+!) is given by associating to each
form q belonging to (2), the invariant space of the operator Q corresponding to the eigen-
value a;. Let qgé®P(N); we recall that the self-adjoint operator Q is determined uniquely by
its eigenvalues and the invariant subspaces corresponding to these eigenv-lues. We get a
homotopy retraction of A,(N) onto the space (2) if we associate with each form geAn(N) a
family of forms g, €[0,1] such that

a0y [f =00, =1,
HQI= Ao 1=k (@) ST e N,

and the invariant subspace corresponding to the eigenvalue Ai(Qt) coincides with the invariant
subspace of the operator Q corresponding to the eigenvalue A(Q), i=1,..., N+11€[0,1). W

Lemma 5 lets us give a different description of the cohomology classes yp(N) introduced
above, which is more convenient for calculations.

COROLLARY. Let Zn(N) be a vector bundle whose base is A,(N) and whose fiber over the
point g€An(N) is the n-dimensional invariant subspace L,(Q) of the operator Q corresponding
to the eigenvalues A;(Q),...,A5(Q). Then y,(N) coincides with the one-dimensional Stiefel-—
Whitney class of the bundle @, (N), i.e., y.(N)=w;(Zn(N)).

Indeed it is easy to see that the restriction of the bundle 2£,(N) over AR(N) to the
subspace (2) reduces to the tautological bundle of the Grassmanian G,(RM+!'). Consequently,
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w (Za(N))#0,while @i (Zn(N)) is the unique nonzero class in H'(An(N): Z;) =H'(Gn (RVHY); Z,).
Since according to Alexander —Pontryagin dudlity thé class y,(N) is also nonzero, one has
Yn(N) =19, (Zn(N)) R

Let @—¢qo, 86S!, be a continuous closed curve in Ap(N) and L,(Qe), 8ES', be the correspond-
ing family of n-dimensional subspaces of RY*'. Let 8,65'; any continuous transport of the
subspaces L,(Qe), 86S! along S! defines the monodromy transformation /a:L,(Qe)—>Ln(Qe,). It
follows from the corollary to Lemma 5 that the value of the class y,(N) on the curve qg
coincides with the sign of the determinant of the transformation Ig . Further, since the

sets P(N)\A((N), i=1,...,N. have codimension 2 in #(N), a typical curve g, 06S!, satisfies the
condition
A Qo) My (Qo) for i/, 1<i, j<n.

If the curve qg in Ap(N) satisfies this condition, then the calculation of the value of
the class y,(N) on this curve simplifies. Indeed let e;(8) be an eigenvector of the operator
Qg corresponding to the eigenvalue A;(Qg) while |e;(8)| = 1 and ej(8) depends continuously on
8 for 66S'\@, i = 1,...,n. Then

1(8,-+0)=+e,(8,—0)
and

ey =1l @0 e @+o. (3)

3. Let R*oDK be a convex polyhedral cone and @*(N)3p be a quadratic map which is non-
degenerate with respect to K. Throughout the present point the cone K and the map p are con-
sidered fixed. This frees us from the necessity of explicitly indicating the dependence on
K and p in the notation for the objects introduced below; the argument N in the notation

PE(N), Pu(N), An(N), yo(N), etc. is also omitted as a rule.
Let S*-1={w€éR**||w]=1} be the unit sphere in R* and Q=K°NS*'. We set

B={(0, x)EQX SV |wp (x, x) >0}
and we define maps

B:B—+Q, B,:B~+SY

as follous: B, (o, x)=w, B, (&, x)=% V(o x)éB (the indices % and r are from "left" and "right").
LEMMA 6. ﬂr(-B)_—_-SN\fJ"(K), the map 8, defines a homotopy equivalence of the spaces B and
SYNPHK)-
Proof. The equation B,(B)=S"\p'(K) follows from the definitions and the relation
K®°=K. Let xeSY\p(K) so Bz'(x) is the intersection of the set (Q, x) and an open half-

space in (R**, X). Let (wy, x) be the center of gravity of the set Bz!(x).~ it is easy to
see that wy depends continuously on xGf,(B). Further, it follows from convexity considerar

tions that (l—:ﬁ'-[-, x)eB and for any (o, x)6B the arc ('—‘;E%%%—!—, x), 0<fgl lies entirely in
X x o

W
[ox]

B. Now it is obvious that the map xo—r( .x), X€B, (B) is a homotopy inverse to Bp. ®

We set
0 ={06Q| hpy1 (0P)>0), =0, 1, .., N; Q=0 for j<O.

We recall that the symbol p*:SV¥—#(N)j denotes the map w = wp; therefore, Qu=QNp* ' (Fs).
It is easy to show that the subsets Q, are homeomorphic to finite simplicial complexes and
are deformation neighborhood retracts in the sphere sk-1 In particular, there is a natural
isomorphism of cohomology groups: ’
H‘ (Qm Qn—!)zH:'(Qn\Qn—l)9 iv Il==0, 1' e
where Hz denotes cchomology with compact supports.

We note that p*(Q,\Q,.1)CP,\P..1CA,; let ﬂn'EH‘(Qn\Qn_l; Z,) be the image of the class
V.6H (A Z2) under the homomorphism induced by the map p*; in other words,

S = (p‘ ‘ .\ Qn—l)‘Yn'
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The cohomology multiplication E,—>nVE, EEH:(Q,\Qm1; Z2) defines a homomorphism of the
group H1(Q,\Qu.15 Za) into the group A (Q,\Q,). The natural identification H*(Q, Q.1
Iy~ H;(Q.\Q_1; Zy) leads to the fact that the multiplication {w m,V§ EEH (Qn Quurs Zy) is also
well-defined and gives a homomorphism of the group AH*(Q,, Q._i; Z,) into H*YQ,, Q, 1; Zy).

By the symbol

Gn:Hl (Qm Qn—l; 22)_>' H™ (Qn+h Qn; Z2)v i=0' 1" ver .
we denote the connecting homomorphism in the exact sequence of the triple (RQu1 Qm Qay)-

We proceed finally to the calculation of the homology groups of the space p1(K). Ac-
cording to Alexander duality, instead of this one can calculate the cohomology groups of the
space S¥\ p'(K). By Lemma 6, the cohomology groups of the space S¥\ p~!(K) (with any coef-
ficients) coincide with the cohomology groups of the space B. We consider the map Bg: B » Q.
The map By in contrast with By is not by any means a homotopy equivalence, but with it, as
with any continuous map, there is associated a Leray spectral sequence which converges to
the cohomology groups of the space B.

Let 9 be an Abelian group and (E,(¥),d,), r>1 be the Leray cohomology spectral sequence
for the map By with coefficients in the group 9. Then (£,(%),d,) converges to H*(B; )~ H*
(SYNPHK) W) as r > .

THEOREM 1. 1) EJ/ (®)=H'(Qn—j, Qv—j—134) for i>0U, j > O for any Abelian group .

ii) If ¥«=2Z, then the differential dy: H'(Qn, Qn-1; Z3)>H"*?(Qns1, @n; Z2), where 0<n<N—2,
i=0, is defined by the formula d2(§) =08n (1t Ut) +7ns 1 U8,E, VEEH (Qn, Qu—1; Z2).

This theorem is the basic result of the present section. To prove it it is necessary
to develop some technique for handling families of quadratic forms as a preliminary.

4. Let V be a compact convex subset of R** and f:V—P(N) be a smooth map.

Definition. The map f is said to be nondegenerate at the point us€V, if there exists
an xéker f(vp) \0, such that (f ;ov)(x,x)sgo for any véV—uy; otherwise f is said to be nondegener-
ate at the point v,. The map f is said to be nondegenerate on V (or simply nondegenerate),
if it is nondegenerate at each point of the set V (cf. the definition of nondegeneracy of a
quadratic map with respect to a cone).

It is easy to see that the nondegenerate maps form an open subset of the space of all
smooth maps of V into #P(N).

Proposition 2. Let f;: V2 (N),¢€[0,1] be a smooth homotopy where all maps f;, £€[0, 1],
are nondegenerate. We set

B,={(v, x)6V X S"| f1(0) (x, x) >0}.
Then in R¥* X SY>V xSV there exists a flow Fp, te[O, 1], Fy=1d such that F,(B)cB,, t€[0, 1].

Proof. We shall seek Fi in the form f”--GXPJ:Z¢in where Z; is a nonstat1onary vector

field on R XS". We set Zy=X,+V,, where for any (v, X)ER*x SV the vector X;(v, x) is
tangent to SN and the vector Y (v, x) is tangent to R** Proposition 2 will be proved if we
construct a field Z; such that for any t, v, and x satisfying the conditions f,(v)(x, x) =0, v€V
one has

(fio¥ o (0 2)) (5, ) +2£, (@) (£, X, (@, 2) >0, ¥ (0, )&V —0).

Moreover, it suffices to construct such a field locally in a small neighborhood of fixed t,
v, and x, and afterwards glue the fields defined in small neighborhoods together with the
help of a partition of unity.

If xtker ft(v), then we set Yy = O the inequality [i(v)(x, X:)>0 being obviously solvable.
Now if x€kerfi(v). then it is necessary to satisfy the relations

(fe¥ e (2 0))(x, ) >0, V(v x)€V —.

One can do this by virtue of the nondegeneracy of the map f;. It is necessary to extend the
field Y smoothly to a small neighborhood of the point (t, v, x). This is simple: one can
assume that the vector Yt(v, x) lies in the relative interior of the set V — v, so the field
Y = Y¢(v, x) satisfies all the conditions.
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COROLLARY. Under the hypotheses of Proposition 2 the spaces B, and By are homotopy
equivalent. Indeed let Gy, t€[0, 11] be a flow on RF*XS¥ such that G;(B;)=Bi-;, Go=id. The maps
G,oFy: Be—+Bo and Fi° G,:B;—B: are obviously homotopic to the identities.

LEMMA 7. Let us assume that the smooth map f:V P (N) is nondegenerate at the point

v,€V. and O,,(€) is a closed neighborhood of radius € of the point v, in V. Then for any
sufficiently small € > 0 and any sufficiently small nonnegative form ¢&6# (N) the map

v f(2)+q, €D, (o)
is nondegenerate on Q,, (¢).

Proof. One can assume that v, = 0. Moreover, applying Lemma 2, one can reduce every-
thing to the case f(v,) = 0. 1In this case the nondegeneracy of f at the point v, = 0 means
that for any x€&SY one can find a v,6V such that (f(')vx)(x, x)>0. Since SN is compact, one
can assume that this inequality holds uniformly in x, i.e., (fév,)(x, x)>»6>0 VxeSN for some
8§ > 0; moreover, one can assume that gv,60,(e) VxeS" for all sufficiently small e > O.

Let g6#P (N), ¢>0, v€0,(e), and x6SY be such that f(v)(x, x) + q(x, x) = 0. Then 0 =
F©) (x, x)=—q(x, x) —(f,0)(x,X)+0(c). Consequently, . (eve—1) (X, X) > g (%, X)4-e8+0 () >0 if
e is sufficiently small. =

Let f: V—>%(N) be a smooth map and V D W be a closed convex set. We set
B (W) ={(v, x) EWXS¥|f(v) (x, x) >0}.

COROLLARY. 1If the smooth map f:V -2 (N) is nondegenerate at the point T€V then for
any sufficiently small convex closed neighborhoods O:,,CO?,, of the point v, in V the inclu-
sion B/(OL.)FB/(OZ.) is a homotopy equivalence.

Indeed, let Q,, (el)cO,',,COf,,CO,o(Sz). According to Lemma 7 the maps f|O., (g), & <e<e,
are nondegenerate. After a simple change of variables this family of maps becomes a homo-

topy consisting of nondegenerate maps with a fixed domain of definition. It remains to use
Proposition 2. '

Proposition 3. If the smooth map f:V % (N) is nondegenerate at the point 9,V then
for any sufficiently small convex closed neighborhood Oy, of the point v, in V the set Bf(OVO)
has the homotopy type of the sphére gN-ind f(vg),

Proof. Let €, > 0 and ¢€P(N), ¢>>0 be such that for any 0<e<e, 0<t<1the maps
o~ f (0)+7¢ are nondegenerate on Oy, (8) and ind f (v)=ind(f (V) +¢9)- If e is sufficiently
small, then ker(f (v)+¢)=0 vp€0,,(c), and the map v~ f(0)+¢ is homotopic in the class of maps
which are nondegenerate on O,,(e) to the constant map v~ f(7))+¢, 260, (¢). On the other
hand the homotopy f--vg, t€]0, 1], also consists of maps which are nondegenerate on O, (¢} .
According to the corollary to Proposition 2 the space B;(O,,(¢)) is homotcpy equivalent to the
space {x6SV| £ (vp) (x, X)4-¢(x, x) >0}. Since the form f(v,) + q is nondegenerate and has the

same index of inertia as the form f£(v,), the latter space has the homotopy type of the sphere
S N—Tndf(ve),

Remark. The definition of nondegeneracy of the map f:V—+%(N) has a local character,
so the definition of nondegeneracy and also all assertions of the present point obviously
generalize to a larger class of compacta V than the convex compacta considered above: it suf-
fices that each point 96/ CR** have a closed neighborhood Uy, in R#* such that for some
diffeomorphism @:U,,—U,, the set ©®(U/,,N V) is a convex compactum.

Assertion i) of Theorem 1 follows almost directly from the results of this point. In-
deed, the map P*|Q:Q—#(N) is nondegenerate. Applying the corollary to Lemma 7 and Propo-
sition 3 to this map (and an arbitrary point @o€Q ) according to the definition of the Leray
spectral sequence we get:

Et/(M)=C'@u-js Ov—j-; W), >0, j>0,
where C'(Qy—j, Qn—_j-1; ¥) is the complex of i-dimensijonal Cech cochains of the pair (Qn—j Qn-j-1)
with values in 2.  Consequently,
E3! (M) =H @n-p Qu-j-t; B), 130, j>0
5. We concern ourselves with the differential d, of the spectral sequence £E.(Z). We

shall use the description of the Leray spectral sequence with the help of bicomplexes given
in the Appendix to this section. In the present point all cohomology, homology, cochains,
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and chains are considered only over the field Z2 so in the interest of simplifying the for-
mulas we shall omit the argument Z, .

Let (*={O, €I} be a covering of the space Q by open sets. For any finite subset a =
{dg -+ GM}CI we set O, = ’F‘Oap Ba=0a%XS"NB; the symbol C?(Bs) denotes the group of n-
=0 :

dimensional singular cochains of the space By. With a covering O there is connected a bi-
complex E"/ (), i, ;>0 , where the group E!/(0) consists of all those sequences & a={o, ...,
ajcl, for which t€C/(Ba). The group C!(0) of i-dimensional Cech cochains of the covering @
is the collection of all sequences &q, a={a, ..., %}/ such that &€{0, 1}. Consequently,

the group £’/ (0Yis a module over C'(C) for any ij=>0. The "horizontal" boundary opera-

tor is denoted by the sumbol §: E'(Q)-—E'+1/(0) and the "vertical" one by the symbol
d:EY(O)—>E"*1(0); cf. the appendix to the present section for their definition.

In what follows it is assumed that the elements O, of the covering C are convex sets
in SkK-! (we recall that QcS*1), Moreover, the following arguments are only true for suf-
ficiently fine coverings; specific conditions on how fine the covering U must be will arise
in the course of the calculations.

N
We set A== n’A,,=={qe§’(N)lM (Q+#M(Q) for i+ j} so P(N)N\A can be represented as a union

of a finite number of smooth submanifolds of codimension not less than two in F(N). We re-
call also that D= {qé®(N)|ker g0} is the union of N + 1 proper smooth submanifolds in P(N).
An arbitrary smooth map of a smooth manifold into #(N) is said to be transverse to the set
P (N)NA (respectively, to the set D), if it is transverse to each of these submanifolds.
The relative interior ri(Q) of the set © is obviously a smooth manifold. From the nonde-
generacy of the map p*|{Q:Q—>%(N) it does not generally follow that the map P*|ri(Q) is trans-
verse to the set: #(N)\A and D. However one can always choose an arbitrarily small positive
quadratic form q, such that the map (p*|Q+qo) : 0>p* (@) + 4o, 0€riQ is transverse to the set
P(N)NA and D, and the filtration of (p*|Q+go)~'(#.), 0<<n<CN has the same homotopy type as
the filtration Q,=p*|Q"(P,), 0<n<<N of the set Q. Replacing p*|Q by p*|Q+4gs, if neces-
sary, we can (and shall) assume that p*|ri(Q) is transverse to #(N)\A and D. In this case
the set p*~1{(Z(N)NA)Nri(2) [the setp*-1(D)ri{R)] can be represented as the union of a finite
number of submanifolds of codimension not less than two (one) in ri(®).

For each a={z ..., %n}C/ such that O,# @ we set #Zp=minindop and we choose a point
0e€0q, satisfying the condition indwep="a- ©E0%
Let
T +{l—7e
02 (1) = e ¢ o<l

]T(oa\ai +(—1)o,)

be an arc of a great circle in gk-1 joining wy and ®Wg\a., i = 0, 1,...,m. The transversality
of the map p*|yn) to the sets D and #\A permits us by slightly changing the point wy, if nec-
cessary to arrange that w,6P\ D, 0! (1)6A for all a,&; 0<T<L

Thus, A”“a ((;)P) <0 voE0aq, 7\.,,“4.1 ((Dap) >0,
Ay, (03 () Py, (030 () P) for j17 o TE[0 1]-
Sufficiently fine coverings also satisfy the condition
Mg (@P) 5 Any 41 (0P)  Y0EQs.

In what follows all the conditions listed on the covering (0 and the point w, are as-
sumed to hold. We denote by R,(w) [respectively, S,(w)] the intersection of the sphere SN
with the invariant subspace of the operator wP corresponding to the eigenvalues A;(0P),.-.»
An{wP) (respectively,d.,;(0P),..., Axvs1(@P)). In addition, let

Rn (Oa) = {((l)y x) ‘ ®EO, -’CERn ((D)},
Sn (OG)={((’)1 x)lcoEOa, XES,, ((9)}» Ra"::Rna (@a)s Sa:sﬂa ((!)a).
LEMMA 8. For sufficiently fine coverings O the inclusions (wg, Sa)cBaﬂS,,a (O)c B,, where
accl, Og# @, are homotopy equivalence.

Proof. Since 0p|Rs, (0)<0 Vw€O, one has Ra (Oz)NBy=. At the same time, S, (0) is
the intersection of SN with the orthogonal complement to R, (®w), and the obvious homotopy
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retraction of the space (O, xSN)\R1a(O¢) onto S, (0d) carries By into B, ﬂSna(Oa) Further,
the map o~ wp|span S, (®), ®60a can be considered as a map of O, into P (N —na) which {n addi-
tion is nondegenerate (this follows instantly from the nondegeneracy of the map p*|Q).. It
remains to use the corollary to Lemma 7 and to recall that A, 4;(0.P)>0. W

The space S; is a sphere of dimension N — ny and accordlng to Lemma 8, By has the homo-
topy type of a sphere. Now we choose in each group CN7"e(B,), ac/, Og.+ ¢ an element which
represents the fundamental cohomology class of the homotopy sphere Bg.

An eigenvector of unit length of the operator wyP corresponding to the eigenvalue Mgy
(wyP) is defined up to sign. For each o we fix once and for all one of the two possible
vectors and we denote it by ey, wgPes=Mh, 41(0aP)€q; by Iy we denote the hemisphere in Rng+, (wgy)
containing Ry and the vector ey and by ia the hemisphere containing Ry and the vector (—ea).

Let ofa and Al (©):RYF' 5 RY 0gr<l-be a family of orthogonal operators depending
continuously on 1, satisfying the following conditions: A}!(0)=id, the operator Ay (%) carries
eigenvectors of the operator wyP into eigenvectors of the operator o !(t)P, 0<v<1. These
conditions define A}!(Y) uniquely, since the symmetric operators m:i (t) P do not have multiple
eigenvalues. We set Aj'=AZ{(l); it is easy to see that

iS¢=S¢\=I, A l@g = +eu\al for na\a ==Ng;

Aa‘SaC'Sa\al\eu for n-a.\al <na

The hemisphere £, is an ny-dimensional cycle in (S¥, S"\B,(Ba)), and we denote the (N -
ny)-dimensional cocycle dual to it in B,(Ba) by I;: the value of the cocycle s on a singu-
lar simplex in Q(Ba)ls equal to the intersection index of this simplex with £,. Finally,
we set oa==ﬁ(2a) The index.of intersection of Iy with the sphere Sy is obviously equal
to one. Consequently, the restriction of o, to the sphere (ma, Sa) represents the funda-
mental cohomology class on this sphere. According to Lemma 8, the cocycle oy represents the
fundamental cohomology class in HV™"=(B,). The cocycle &,::ﬁ:(ﬁj) is obviously cohomologous
to the cocycle o.

We introduce some more auxiliary cochains in By. By Z; we denote one bf the hemispheres
in R 42(ws) with boundary R, 4i(@s). Let $}* be the cochain dual to 3} in B,(Bs) and oF =

Br(z¥™"). Since 9%F =Ru 4+1(0a)=2a+ Sa one has
0+ = Oq + &a (4 )

Further, for g,a we set Sgi= U (Aa @( “‘)“Za\“l) . Again =37 is the dual cochain to 3
0<'r
in B,(B.) and o' =§; (2:‘+). Then
a, X
Oay Ag ea=ea\ai

( YR - a
Oo! =0a\a, | Bat1{0,, As'eq= — o, (5)
0, Naxa, < Mg

We recall that A, (0P)#An,41(0P) for w€O,. . We call a={a,...,qa,} regular if the in-
m
equality A, (0P)% Ang+1 (@P) holds for any mEUOOa,. The following assertion is obvious.
o

LEMMA 9. If a={ap...»%m} is regular, then the inclusion

Rna (OG)CQOR"&: (O“l)

is a homotopy equivalence. =

It is shown in the appendix to the present section how to calculate the differential
d, in the spectral sequence of a bicomplex. In our situation E{"" "(0)=C3%(Qp @1), where
the group of Cech cochains Cp(Q, Qu.1) consists of sequences &6€{0, 1}, a={a, ..., &,}c/ such

that €, = 0 for ny ? n. Correspondingly, E;" N (O)=HG(Qm Q1) and do: H Qs Q) —>H"'+2

(ano Qn)
Let the cocycle g4 in CgH(Qm Q1) define the cohomology class eEHo(Q,., Q,1), then the d-
cocycle e,0,, a={ty, ...» G}/ in E™VY7"(0) represents the class ey from E/V"(0)=CH(Qm Qi)
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[we recall that E(C)) is the d-cohomology of the bicomplex £1(0). Here §(e.0.) is the d-
coboundary in g™+l ”""(0) 8(e.0.) =dE. Then 68E. is a d-cocycle and the class

of the corresponding d-cocycle 8E. in Ert*¥ " () =CH? (Qu1 ) is a cocycle in this group
of Cech cochains. Let 8E EH'"”(Q,M, Q) be the cohomology class of the Cech cocycle of C'"“

Q1o Q,) corresponding to the d-cocycle $E, Then by definition
dse, —=§5E.
Thus, our next problem is to define a sequence B, a={x, eor Omy} explicitly such that

dE,=8(s,0). We recall that
m-+1

5(8,0’,)‘,:--2 Sa\aloa\cl IBa.-
=0
Let
o
& R A:Ied=—e“\“t
¢ o, Aa’ea+~e,\,l.
m+1 m+41
We set E,_=2 Eaxa, (0:‘+vz10;‘"). It follows from (4) and (5) that(da.)az_—-z gana,Oang,; | Ba=0(e.0.)
=0 =0
[we of course learned that e. 1is a cocycle in Co(Qn Qu) and hence 2 €ana, =0mod 2
1=0

for nyg = nl.
Let a=={0ty, «.+s Gm42} be regular in ng =n + 1. It follows from Lemma 9 that the cocycle

m42
(OE.,)a = 2 Ba\{a;.q} (U:]\ai—*-v:&axot\a‘)lB“
i[].:;o
is cohomologous to the cocycle
m+2

2 8"‘\(“( l}va\alo‘“\“l ! Ba.

1,]=0

14

The quantlty Ean{z, a})"u\a, is different from zero only for Nawe, =M, but in this case the co-
cycle Ga\a, is obviously cohomologous to the cocycle o4 in pgm+2(B,). Conditionally, by dae €
’"'”(Qm,,, Q,) we denote the d-cohomology class of the cocycle §e, and by dae.€HE™ (Quir Qi) the

corresponding Cech cohomology class. Then dye=dge, and for regular a={a, 01 Omy2} we have
established the equation

m+2

(dse.)a= 2 oea\(a.l, u;)":’\a;
i3
Any point ®€Q,1\Q, has a neighborhood U, such that A, (@P)#F ki (oP) for wel/,,. Upon
suitable refinement of the covering ¢ it turns out that for Q. intersz:iding with a suffi-
ciently small neighborhood of the point wy, it follows from the condition ng = n + 1 that «
is regular. Hence we can restrict ourselves to calculating (d,e.)y for regular collections
a despite the fact that any fixed covering € generally has irregular collections.

(6)

Let a/={a},...,a/}cl, j=0,1,...,r be a chain of collections of indices such that of =
o’ and any two neighboring collections differ by a unique element:

atyatt=c'Ufaft}={al}Ua™, i=0,1,...,r

We define a continuous closed curve ©(1), 0<*<2r in @ by the formulas

’U l+‘(2j+1——1), 27t <L2j+1,

o (t)=
“’a?uam (t—2j—1), 2j+1<1<2j+2,

j=0,1,...,r — 1. Analogous formulas define a continuous family A(1):R¥*'sR"*, 0<v<2r

of orthogonal transformations: A(0) = id,
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A aj+l . aé+’
A 'U"“(QJTI—T)(A' /+,) A@R2))2j+1<t<2j+2
T) = af

i @=2i=0 (A% A @41, 2j 4 1<e<2j 42

Let us assume that n,/=njjn=n, j=0,1,...,r—1 so the family of transformations AC1)
effects continuous transport of the subspaces spanR,(w) along the curve (%), 0<v<2r and one
has

A (Qf)ea. ———(—— 1)“ea.,
where

j+1
p= 2( ,U I "L| ‘V“O
[:3

a/Uaj+’
According to (3) (cf. the end of point 2), it follows from this that

)nmd&

r—1

af g+ ) (7)
vo 4-v0 )E n,+ .., o)) mod2.
12=0( a.IUaj"" u.}Ual'” ( n+ n+1 ())
One can deduce from (6) and (7) that the cohomology class in H™?(Qu1, Q) corresponding
to the cocycle d,c coincides with the cohomology class corresponding to the cocycle &,(m,ve)+
7\ r6e. This deduction is a routine exercise in combinatorial topology which we omit. =

6. In this point we shall illustrate the action of Theorem !, considering quadratic

det
mappings 2:RV*'+R3 in more detail. Let ®ER%*; then mp:ip*(m) is a real quadratic form on
RM*! and wP is a symmetric (N + 1) x (N + 1)-matrix.

To any nonzero row o=(0, 0 0)ER*\0 corresponds a point g =(0,:0s:0;)={0w|aéR} of the
real projective plane RP2. The equation det wP = 0 defines, in RP?, an algebraic curve

C,={06RP?{det 0P =0}
of degree N + 1. The curve Cp is called the curve of degeneration of the quadratic map p.

LEMMA 10. TFor a typical quadratic map p€#%(N) the curve Cp is nonsingular. If Gy is a
nonsingular curve, then the map p is nondegenerate.

Proof. The curve C, arises from the intersection of subspaces of p*(R%*) with the hyper-
surface D(N) ={q€# (N) |ker g0} in #(N). The curve C, is nonsingular if and only if p* (R¥*\0)
intersects D(N) only at nonsingular points of this hypersurface, where it intersects trans-
versely. At the same time the set of singular points of the hypersurface D(N) is the union

N1
U D,(N) of smooth manifolds D, (N) each of which has codimension not less than three in #(N)
r=2

(cf. Lemma 2 and its corollary). All these submanifolds are cones in £(N) (i.e., withstand
multiplication by and «€R\0), so that for a typical p€#P®(N) a three-dimensional subspace of
P*(R%*) intersects the set of singular points of the hypersurface D(N) only at the origin.
Moreover, a typical p* is transverse to the manifold D, of nonsingular points of this hyper-
surface. The nondegeneracy of such a p is obvious.

We let (fp==00652|detmp==0} which is a two-sheeted covering of the curve of degeneracy
Cp. The connected components of the set s? \Cp coincide with the connected components of the
sets

int{0€S?|ind wp=n}=Int (Q, (P)\Qp1 (P)), 7=0,1,..., N+ 1.

Theorem 1 establishes a connection of the filtration Qn(p) of the sphere S? with the
homology groups of the manifold p~'(0) — the intersection of three real quadrics and SN. Hence
the disposition of the ovals of the curve of degeneracy turns out to be closely connected
with the homology of p~1(0).

We start with the calculation of the Euler characteristic of p~1(0). The next corollary
follows from Theorem 1.

COROLLARY 1. For any 2<N+1 and nondegenerate pE#*(N) one has
N
X (@ O)=1+(—1)"—2 X (= 17% (2. ¢)-
n=0
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This equation follows directly from the description of the term E;(Z;) and the additivity
of the Euler characteristic.

Let us assume that k = 3, N is odd, and the curve Cp is nonsingular. Straightforward
transformations lead to the following identity:

% (771 (0)) =4y, ((06RP? | det (0p) <O)).
For even N the manifold p~1(0) is odd-dimensional so that X(ﬁ”(O»::O,

Below, until the end of the present point it is assumed everywhere that PEFPP(N) while
the curve Cp is nonsingular. All homology and cohomology are considered only with coeffi-
cients from Z, so that the argument Z; is omitted as a rule. In representing the term E;(Zy)
as a table, in the (i, j) place instead of the Z;-space Ej/(Zy)=H!'(Qn—;(P) Qv—j—1(P); Z2) we
shall put the dimension of this space (i.e., the corresponding Betti number). We note that-
E3d = 0 for i>3 so that the table consists essentially of three columns.

COROLLARY 2. Let N>4. Then
PO = @=H' (@ () \ % (P)) #O.

Proof. The condition p1(0)=¢ is equivalent to the condition HY(SV\ p1(0)#0, i.e.,
E_-?'NQE;'N—'@E%N_Q%O. We consider the following cases:

a) QP)+. Since dimkerop<l YoES? and ind(—wp) =N +1—indwp if kerwp = 0 the con-
dition Q,(p) # ¢ can hold only if the curve Cp contains a nest of [(N + 1)/2] ovals imbedded
in one another and, if N + 1 is odd, another component which is not contractible in RP?. It
follows from Bezout's theorem that in this case Cp is exhausted by the components indicated.
All domainsi Q.(p), 0=<n<CN turn out to be nonempty and contractible:

. def
{the numbers indicate the value of indmp-;min{indmp, ind(—wp)} in the corresponding domains].
The table for E, has the form

012
N j100
N-1}]0 0 0
N-2]10 0 0

The set @, (1)\Q(p) is an annulus.

b) (p)=0C, U(P)#* . 1In this case Cp contains a nest of [(N + 1)/2 — 1] ovals im-
bedded in one another. The relations H'(Qi Q)=0, H2(Q; @)50 could only hold in the pre-
sence of a nest of [(N + 1)/2] + 1 ovals, which contradicts Bezout's the¢rem. There remains
a unique possibility: HY(Q, Q)#0. In order to realize it a nest of [(N + 1)/2] ovals is
necessary. The only admissible situation is:

. 3...

0
0
1

The table for E, is the following:

P Y B 1]

1
0
1
0

zZ xZ X

-1
-2

The differential dy:H%(Qp, Q) H2(Q Q) must necessarily be nonzero and Q,(p)\Q(p) is again an
annulus. '
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c) R(p)=Qi(p)=C, Q(p)*<J. The relation H2(Q,(p))+#0 is only possible for Qu(p)=S*
but in this case N = 3.

Remark. We have proved somewhat more than is asserted in Corollary 2: if p7'(0)=& and
Nz4 then Q,(p) \ Q(p) is an annulus and the curve Cp contains a nest of [(N + 1)/2] im-
bedded ovals. We note that all such curves are rigidly isotopic to one another (cf. [15]).
For N = 3 the manifold p~!(0) is zero-dimensional and its emptiness is equivalent to the
equality of the Euler characteristic to zero. To the case of two ovals in one another one
here adds the situation Cp = ¢, i.e., indop=2 V0€S?, It is interesting that the empty curve
of degeneration corresponds to the map mentioned in point 1

P:(z1, 2= (2, 20 1 222—| 21 9), (21, 22)ES3CC2=RY,
which realizes the Hopf bundle.
Analogously to Corollary 2, by listing the various cases one proves
COROLLARY 3. Let Nz=6. Then
rank Hy(p71(0) = l<==H" (Q(p)\ Qi (7)) = H 1 (21 (P) \ R (7)) =O.

We cite several more simple facts which follow directly from the consideration of the
term E, of our spectral sequence, without the participation of the differential d,. Let

N>4, b, —rank H,(p7'(0)). Then

1) if the curve Cp consists of 2 > 0 ovals situated outside one another, then

1» L] i=07 N"“3
b,=[2(2l—1) , i=(N—3)/2
3 , Otherwise

2) if Cp does not contain a nest of r > 1 ovals imbedded in one another, then bj = 0 for
0< i< [(N+1)/2)-r;

3) if 2 is the number of connected components of the curve Cp then

N-3 N-3
D b<4l for [>0and ) b,=4 for' [=0.
i=0 im0

For the precise calculation of the Betti numbers it is necessary to use the differential
d,. Let, for example, Cp be the curve we have already encountered containing a nest of
[(N + 1)/2] ovals imbedded in one another, and the values of indop, ©GRP?be distributed as
follows:

The table for E, has the form

Here the differential dy:H(Qy)-—H2(Q, Q). can be different from zero. We renumber the ovals
of the curve Cp, denoting the innermost oval by cé, the one containing it by cﬁ, etc. Let

¢ ={06S?| 0ECY(p), indop=2} be one of the two connected components of the preimage of the oval
cp under the canonical map S2_,»RP2 For any o6c we have dim kerop=1, indop=2, and we denote
by V' (w) the invariant subspace of the operator wP corresponding to the negative eigenvalues.
We fix the point mOEZ', and let py:ker w,P—ker wP and p:V-(0)—+V~ (0,)- be the monodromy transfor-
mations obtained upon transporting the subspaces kerwp and V'(w), respectively, along the
curve 1. Using the description of the differential d, given in Theorem 1, by direct calcula-
- tion we get:
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dy=0<det p, >0 & detp~>0,
here rank HO(p™!(0))+ rank d,=3.

Along with the homology of the manifold $~1(0) Theorem 1 lets us estimate the homology
groups of the manifolds p~!(a), where R*3a is a nonzero vector, i.e., get information about
the sets of solutions not only of homogeneous systems of quadratic equations (or inequalities)
but also inhomogenecus ones. A particularly simple situation arises in the case which is
important for applications when Q (p)# ., i.e., when the linear system of quadratic forms
op, o€R3, contains a positive definite form. As already noted in the proof of Corollary 2,
the curve Cp in this case contains a nest of [(N + 1)/2] ovals imbedded in one another, and

the values of indop, ®6RP? are distributed as follows:

RIS

Let @6R3\0 be a regular value of the quadratic map p: RV R3, We consider the qua-
dratic map Pa€P*(N--1) defined by the formula Pa((Xg %) (X X)) =p(x, x)—xlg. It is easy to see
that p; is nondegenerate and pa' (0) is diffeomorphic to the manifold p'(@)cRV*'. The vector
@ defines the line A={wERP?|wa=0} in RP?; the curve of degeneration of the map p, has the
form: Cp,=C,UA. The values of indwp, can be calculated according to the following rule:

indop, ©0a<0,
Indops=1\ijndop+1, ©0a>0

We note that the curve Cp,=C,U A is generally singular which however in no way hinders
the use of Theorem 1. If A intersects (is not tangent to) the inner oval CP of the curve C
then (Ps)# @ and pl(@)=@. Now if A does not intersect CP then either Qu(p.) =R0(p) or
Q,(p) is one of the connected components of the set Qi{p.). Considering the remark made after
the proof of Corollary 2, we get

COROLLARY 4. The image of the quadratic map p is a proper convex cone in R®if and
only if Qo(p)+%3.

7. Here we give infinite-dimensional versions of the results obtained in the present
section. Throughout this entire point, H is an infinite-dimensional separable Hilbert space
(but not the skew field of quaternions), S is the unit sphere in H.

Let pEP*(H); we set |ip I|=Sup|p(x, x)|. The norm p -+ lpl defines in @P#(H) a Banach space

structure. As soon as the space 9’”(H) is endowed with a topology, the concept of essential
surjectivity of the quadratic map x » p(x, x), whose definition is a word for word repetition
of the corresponding finite-dimensional definition, acquires meaning. Just as before, to de-
note the quadratic map x -+ p(x, x) one uses the same symbol p as for the bilinear map.

LEMMA 11. Let p€9*(H). 1If the quadratic map p is essentially surjective, then the
restriction of p to a finite-dimensional subspace of H is also essentially surjective.

Proof. Let p=(p, ...,pg)r, pi1(%, X)=(P;x, x). According to the spectral theorem, Pj =

1
S).dE';. for a suitable decomposition of the identity FEj; E! =0, E'=id. Now let —I=6,<0,
bl

< o LOvpr=1 be a partition of the segment [-%, ¢] which is sufficiently fine that the
quadratic maps

N )4y 94 T
x— (A.‘, S d(Eix, x) ..o 0 § d(Eix, x)) , X€H,
]=0 9; ]

eI'H

are essentially surjective V)v;elgi, 8l i=1,...0 ks j=0,....N. Ve set Vi= S dEH and we di-
l

vide the set of pairs of indices (i, /), 1<i<k, 0<j<N into two subsets If, I, such that

@ eI, if dim V;< oo and (i, €l otherwise. In each of the subspaces VJ for (i, ))6lo we

choose a nonzero vector xJ such that (x4, xi)=0 for [(% Jj)#F(in j2) and we set
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V= 3 Vj-+span {4 (6, /)6 ).
(161,

It is easy to see that the quadratic map p|{V is essentially surjective.

As a corollary to Lemma 11 and Proposition 1 we get

Proposition l,. Let pé#*(H). If the quadratic map p is essentially surjective, then
p~1(0) = 0.

Let R*>K be a convex polyhedral cone and p€#*(H). The definition of nondegeneracy of
a quadratic map p with respect to K repeats the corresponding finite-dimensional definition

from point 2 word for word. To the end of the present point the cone K and map p which is
nondegenerate with respect to K are assumed fixed. We set

Q={weK°NS*-1|ind vp < + oo}.
It is easy to see that Q is a convex subset of the sphere sk=1 ; however it is not generally
either open or closed. The subsets
Q={0€Q|indopgn} n=0, 1,...; Q=0 for j<0
form an increasing filtration of the set Q by closed subsets.

In contrast with the finite-dimensional case the subsets Q, are not generally neighbor-
hood retracts so that the_Cech cohomologymay not coincide with the singular cohomogly. To
denote the i-dimensional Cech cohomology group we shall use the symbol H; (recalling the
Czech language).

We set #,(H)={qe#(H)|indg<<n} and let Z.(H) be the vector bundle whose base is &, (H)\
P.1(H) and whose fiber over the point g€FP.(H)\Z.-1(H) is the n-dimensional invariant sub-
space L,(Q) of the operator Q corresponding to the negative part of the spectrum of this
cperator.

4

We recall that p*m:imp VoES*, Restricting the map p* to Q,\Q.nwe get an induced
bundle (* | Q\Q,1)*Z,(H) over Q,-Q,,. We denote by m, the one-dimensional Stiefel ~Whitney
class of this bundle, so

Ty =W ((p* ' Qn\Qn—l)*'?n (H))’ nnGHl (Q,,\Qn_l; Zz)-
As in point 3, &gi?’«%.&%_h ZQ—>1?““Glﬁh Q,, Z,) is the connecting homomorphism in the exact
sequence of the triple (Qu1, @ Q)

- . def _ ' -
We set F, (5 '(K); Z)—H _, (57 (K), Ly for any integer i = 1 (here Hy are the reduced sin-
gular homology groups) and

—_ . -1 e
7,67« zy={on L0

THEOREM 2. There exists a cohomology spectral sequence (£,,d,), r>»2 converging to
H,(p(K); Z,). such that

i) Ey/=H'Q; Q. Zn) Vi, j€L; ,

ii) the differential dp:H'(Q, Qui; Zo)—> H"*2(Qp1, Qi Zy) is defined by the formula

Ay (€)= 0, (T B) + 7ty Bk VEEH! (@ Qs Za).

Proof. Since the map p:S—R* is transverse to the cone K, p'(K) is a submanifold with
boundary in the Hilbert sphere S. Let V ¢ W be arbitrary finite-dimensional subspaces Hand
Wi H, (T (K)NV; Z»—+ff*(b‘%i()ﬂ“7;zﬂ be the homomorphism induced by the inclusion V c W. We
denote by 9" the collection of all finite-dimensional subspaces of H, partially ordered by
inclusion. The groups H,(p""(K)NV;Zs), VE?’ and homomorphisms VW, VW2 form a direct % -
system 4", According to Theorem A2 of the appendix to the present section, the inclusions
KNV cp(K) induce an isomorphism

lim "~ H, (P H(K))-

Let #>?% be the collection of all finite-dimensional subspaces of H such that the
quadratic map p|V, V€ ?¢ is nondegenerate with respect to K. Since the map p is bounded,
it follows from Proposition A2 (cf. the appendix to the present section) that for any V€%
one can find a Vo>V, Vy6¢,. Thus, the directed set Vo is cofinal in 9.
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. def
Let VE&¥, Q. (V)={we€KN S*1jind(wp|V)<n}. Considering the Alexander duality, Theorem 1
guarantees the existence of a cohomology spectral sequence (E,(V). d,(V)), r>2,with the fol-
lowing properties:

1) E¥ (Vy=H!(Q_;(V), Q; (V) Zy) Vi, jEL.
2) The differential dy(V):H! (Qy (V) Qo (V) L) H#2 Qi (V) % (V); Zo) 1, i>0 is defined by
the formula ;
dy (VY (E) =8, (V) UE) + sppy (VIUB,E, YEEH (QuV)s Qui (Vs Z2),.
where §,: H/ (Q(V), Quoy (V) > HIF Qi1 (V), Q4(V)) is the connecting homomorphism in the
exact sequence of the triple, m (V)EH(Q,(V)\Qui(V).
3) The spectral sequence (E.(V), d.(V)) converges to ﬁ*(i)“(K)ﬂV; yA\S
Moreover, for VcWE?, there are defined the homomorphisms e (r):E,(V)—~E, (W) of the
spectral sequence E,.(V) into the sequence E.(W) such that ¥ (r) converges to the homomorphism
viH (P (KN V5 Z)— A, (07 (K)NW; Z,), induced by the inclusion V ¢ W. Here the sequences
(Ex(V), d,(V)) and homomorphisms éy(r) form a direct ¥ -system (€, 4d,).

We should explain where the homomorphisms ¢ (r) are taken from. Let

B={(®, x)| 0€K°NS¥, x€S, wp(x, x)>0cS1 XS
and
B(V)=BnN(S*1X V) YV,

It follows from the nondegeneracy of the quadratic map p|V with respect to K that the
closure B(V) of the set B in $#1 X (SNV)is a topological submanifold with boundary in Sk¥1X
(SNV), in particular, the inclusion B(V)-B(V) is a homotopy equivalence.

If VcW, then BV)=BW)N(S*'NV).. The inclusion WS X(SNV) S+ (SNW) defines
the cohomology transfer

(&)':HI B W) H T BW)).
We recall that the spectral sequence (E.(V), d.(V)) is (up to reindexing) the Leray sequence
of the map
(0, x)~0, (0, x)EB(V).

The homomorphisms e¥ (r):E, V)£, (W) are induced by the homomorphism (W)

It is clear that Q,(W)cQ,(V) for VcW va>»0. The homomorphism ef (2):H(Qu(V), Qo1 (V)
L)~ H'(Q, (W), Q.1 (W); Z) is induced by the inclusion (Q,(W), Qi (W)2D(Q:(V), Q.1 (V). Since the
cohomology functor commutes with direct limits, the spectral sequence |im (€,,d,) converges to
-— -~ b
H  (p{(K); Zy).

Further, Ey/(V) = HY Qi (V), Q;(V); Z;) and obviously N Q,(V)=Q,. Consequently,

Ve

(ll—r’n Qz)lh:-"Hi (Q\_], Q..]; 22)
Assertion i) of Theorem 2 is established.

LEMMA 12. Let nz=0, U be a topological subspace of #,(H)\P,-1(H) and F={F, geU} be
an n-dimensional vector bundle with base U and fibers F,cH, qéU such that g|F,<0 VgeU . Then
the bundle ¥ is isomorphic to the bundle Z.(H)|U-

Proof. Let L,(Q)*<H be the orthogonal complement to the subspace L,(Q) in H; then
qlL.(Q)+=0. Consequently, FIL.(Q)t=0 Vg€U, and the orthogonal projectors of the Hilbert
space H onto L.(Q), q€U, effect the isomorphism required,

It follows from the lemma proved that for any V&é%?’, the restrictions of the classes
1,(V) and 7, to the set Q,\Q.-1(V) coincide. Now assertion ii) of Theorem 2 follows directly
from the definition of direct limit.

COROLLARY 1. Let us assume that p is nondegenerate with respect to the cone Q° dual to
Q. Then the inclusion p'(K) cp(Q°) induces a homomorphism of homology groups

H (p (KY: Z)= H (p71(Q°); Zo), 0.
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COROLLARY 2. Let m=minindeop. If m>k&—1 then p/(K)# @ and H,(p(K): Z)=0 for
meﬂ .
i<m—Ek.

3. Application to Germs of Smooth Vector-Functions

Let O be a neighborhood of the origin of the separable Hilbert space H, f:0—+R*be a
smooth map, f(0)=0, fo:H—>R* be the differential, and fj:ker fyXker fi—coker f, be the Hessxan
of the map f at zero. It is shown in this point how the properties of the quadratic map f,
are related to the corresponding local properties of the smooth map f. As one should expect
the condition that the Hessian f: be nondegenerate plays a decisive role here.

We begin with the finite-dimensional case.

Proposition 4. Let dimH < +» and the quadratic map f, be nondegenerate. Then

1) If Ogint f(O,) for any neighborhood of the origin OOCO then the quadratic map f} is
surjective.

2) If the quadratic map fg is essentially surjective and @xnank_f92<;dhnkerfa then
O¢int £ (O,) for any neighborhood of the origin Q,C

Proof. Let X€O0 and set x = u + v, where u] ker fi, veker f, and f(x)=g (& v)+g2(z. 0),
where g, (4, ) €im f,, g2(4, ©).LIm fi. The smooth maps g,, g, defined in this way have the fol-
lowing properties:

gi(x 'v)= w0 0ut0 (upP+|op),

while the linear map a&(O 0)(kerfal-+ln1fols invertible:

g2t ©) =755 0, 0) (0, 0)4-0 (up -+l ] +10P)

while the quadratic map 3g3(0 0) turns into fy under the identification of (im f+ with
cokerf;

1) Let us assume that f| is not surjective. Since the quadratic map f° is nondegen-
erate, fi(v,v)#0 for v # 0. Consequently, the image of the quadratic map fy, is a closed

cone in coker f;. So one can find a nonzero vector liim f, and an € > 0 such that low

0) (v, 'U)'-O‘ll elvfP, Voeker fg, a>0. It is easy to show that in this case f(x)#al for all
x sufficiently close to zero and o > 0. In fact, the condition f(x)=al is equivalent to
the equations

g1, v)=0, g:(u, v)=al
For (u, v) sufficiently close to zero, it follows from the equatlon gl(u, v) = 0 that
jul<e|v}?, where ¢, is a constant. In this case i
02g
g2( 9)— 52 (0, 0) (o, 'v)l<cgl oP
and
lg2 (s D) —al|>e|vfP—ca] 0P

Thus, for small (u, v), the equations g,(u, v) = 0 and g,(u, v) = at (where a > 0) are in-
compatible.

2) It follows from Proposition 1 that fi(¥» 99 =0 for some vseker f,\0. Since £y is
nondegenerate, v, is a regular point of the quadratic map f|/. Let

=+ 0.0) 3 0.0

1.9y

Then fu+ 5 dutl(vo 1) =0, while (u,, v,) is a regular point of the map (4, v V) foltt+ 5 5
vl

(2. ).

Assertion 2) now follows from the implicit function theorem and the obvious equation

f (Putevy=¢? (fou+ FiEl @ o)+oE. =
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Let K be a convex polyhedral cone in R* satisfying the condltl?n span K Nim fo In
this case the canonical map y~y-+im f, of the space R* onto coker f;, is one-to-one on K

- Proposition 5. Let dimH < +~ and the quadratic map f, be nondegenerate with respect to
the cone f = K~Hmfo in coker fj. Then there exists a neighborhood OQycO of the origin and
a family of homeomorphisms ®@,:0,~O,, depending continuously on #€[0, 1], such that @,=id, @ O)=
0 for 0<t<1 and @, (f5 (K)NOY=7~(K)NO,.

Proof. Let x€H. as in the proof of Proposition 4 let x = u + v, where upgker fo ul
ker f. Let S be a sphere of unit radius in H and 9:S—+R* be the map defined by the for-

mula <p(u,v)_-fou+2 du= (v,v) u|24|0|2=

In the appendix to the present section the precise definition of transversality of a
smooth map to a convex set is given. We show that the map @ is transverse to the cone K.
Indeed, otherwise for some (uo+7p)€S, w€K°\0, a€R, one would have

of pimalty ) S| (0 ) =0 (0 0) V+o)EH,

? (4 +1)EK, 0P (Uy+v)=0
(the last equation follows from the relation span{y}cT,K V"yEK)- Consequently,

. 1 0 ( 1 )
O=0@ (s +v) =0 f gy +5 o ‘&,fTL(Uo' Vg)=a ((ﬂo, o) 45 (B0 T) s
and o = 0. But then wiim fg i.e., wg(coker fo*, and mf;=0) 5o l =0, which contradicts the
nondegeneracy of the quadratic map £}, with respect to the cone K.
The Taylor decomposition of the map f at zero leads to the equation
f(eu+ev) =e?(q(utv) +eR.(u, v)),

where Rc(u, v) depends smoothly on €, u, v. If € > 0 is sufficiently small, then for any
te[0, 1] the map (i, v)—>@(u+v) +teR,(u, v), u+vES is transverse to the cone K. According to
Lemma Al there exists a family of homeomorphisms F,,, :S—S, depending continuously on (t, e)€
[0,1] X (0, e0], satisfying the conditions: Fo,=id,

Fre@ (K)=21 (f1K)NAS),

where A,(u-+v)e=eu-+eo, u--o6H, ul ker f;, véker f

We recall that im fyNspan K=0. Consequently, ¢~} (span K)={(2+v)ES |u=p, (v, v)} , where
Po is a quadratic map from ker fo into (ker fo)* which can obviously be calculated in terms
of fy and fy. From this, the existence of a family of diffeomorphisms G,;:5-+8, G,=1d de-
pending smoothly on #€[0, 1] such that ’

¢! (span K) =G, (ker f,NS)=GC(f;'(coker f)NS) and -
oK) =G (f"(K)NS)
follows. Consequently, .
T THE)YN AeS == ApoF 100G, (f 7 ([Ons).

We set Oy={0} U A.S and we define homeomorphisms @,:0,—O,, ¢€[0, 1] by the rule @;|A,S=
O<e<e,

Az"Ft,e“G:"A._‘_» O, (0)-'—‘—0. Since A, (f”—l (K) n S) = f”_l (K) N A.S, one has
€

FHKINO, =0, (f1(K)NOy). W

COROLLARY. Under the hypotheses of Proposition 5, for any i > 0 there is an isomorphism
of homology groups

Hy(fHE), FHENO = H, (£ (R £71 (RINO) =H o (F7 KON S).
In the infinite-dimensional case one can assert the following

Proposition 6. Let dimH = +» and the quadratic map f; be nondegenerate and essentially
surjective. Then Qeintf(0O,) for any neighborhood of the origin Qy=O.
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Proof. It follows from Proposition le that f”(ve, vo) =0 for some u€kerf,’\0 and one can
repeat the proof of assertion 2 of Proposition 4 word for word.

Let the symbol ¥ denote the collection of all finite-dimensional subspaces of H, par-
tially ordered by inclusion, S be a sphere of unit radius in H.

Proposition 7. Let us assume that the quadratic map fy is nondegenerate with respect
to the cone K —K +im fo —coker fo.

Then for any i > 0 the homology group

Hy(f1(R), 1 (K)\O=H o (f1 KN S)
is isomorphic to the direct limit of the ¥-system formed by the groups H (f-Y(KYNV, H(K)N
V\0), V€ and homomorphims H,(f(K)NV, fH(K)NV\O)—H,(f* (K)AW, f-1(K)N W\0) induced
by the inclusions y=W for any y-—wepr.

Proof. Let ¥o be the subset of ¥ consisting of all Vy€¥ such that the quadratic map
fo” |Vo is nondegenerate with respect to K. It follows from Proposition A2 that ¥% is cofinal
in . The result required follows from Proposition 5 applied to the maps j”|ONVo, V,€¥ and
Theorem A2.

Remark. In studying a smooth directed system one has to consider maps defined on a
Banach but not Hilbert space. Let H > B be a Banach space which is everywhere dense in H
(the topology in B is generally stronger than that in H), g:B—+R* be a smooth map, g, the
differential and go the Hessian of the map g at zero. Let us assume that the linear map g,
and b111near map g, are continuous in the topology of the Hllbert space H. We denote by
ker gy the closure of the subspace kergoCB in H, and by go kergoX kergo—-bcokergo the extension
of the map g} to kerg°><kerg0 by continuity.

Propositions 6 and 7 remain valid if in their formulations we replace H by B, f by g,
and fy by g§;. The proof is an almost word for word repetition of that given above.

APPENDIX. SOME INFORMATION FROM TOPOLOGY

Most of the topological concepts and results used in the basic text are standard. In
the appendix we include only those which in our view need additional clarification.

I) Spectral Sequence of a Map and Bicomplexes. Let B and A be topological spaces which
are Euclidean neighborhood retracts,t and f:B > A be a continuous map. To any locally finite
covering (#={0,, €I} of the space A by open sets corresponds a covering f-1{C)={(f"1(0.), &I}
of the space B.

Let a=({a,...,eC/, Oafﬁoai, CS{(f'(Oa))be the group of n-dimensional singular co-

chains in f71(Oq) with values in Zp g,:CI(f(0a))~+C5' (f1(0a) be the coboundary operator in
the singular complex C;(f*(Oa)). [

We set
E*™(f; O)= H CH(f(Ou)),
#a—m+l
I do:E™" (13 O)>E™""(£: O).

a1
We define another coboundary operator §:E™™(f:O) =E™™(f;0) by setting

m+1
(5§)s—2§a\(a,} for any E= E B B=(By .-+ Bmu)-
#a=m+1
The "vertical" coboundary operator d and the "horizontal' operator § obviously commute and
turn the bigraded Z,-module E (f; 0)——-”? E™™(f; @) into a bicomplex. We denote by Hara(f; O)

the total cohomology of this bicomplex, and by (E,(f;O);d,), r>1 the spectral sequence gen-
erated by the filtration ?OE"""(f; ), k£=0,1, 2,... of the bicomplex E(f; ). 1In this
n

m>k

tThe facts listed below generalize to larger classes of spaces but for our purposes this is
completely sufficient.
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case, E,(f; 0):=_-jH;(f; 0), Ey(f; O)=HsHs(f; 0) and the sequence (E;, d;) converges to
Hays (f3 O).

The relation of one covering being inscribed in another defines a partial order on the
collection$ of all locally finite coverings of the space A, turning £ into a directed set,
and the families H;+°(f; 0), 0. and (E,(f; O). d,), O¢d into directed P -systems.

THEOREM A. The limit of the direct PD-system of graded modules H,'H,a(f,O) gep coin-
cides with H*(B; Z,), and the limit of the direct P -system of spectral sequences(E,(f;0),d,),
06D with the Leray cohomology spectral sequence of the map f£:B = A.

Cf., e.g., {12] for details and proofs. Analogous assertions are of course true for
the cohomology with integral coefficients; it is only necessary to arrange signs properly
in the construction of the bicomplexes.

We now recall the definition of the differential dy: H JHT +H}'HFY in the spectral
sequence of an arbitrary bicomplex (E™™ d, 8), n,m>»0 filtered by submodules nﬂgoE""", b=
0, 1, 2,.... m>e

Let £ be a d-cocycle in ENsM such that the correspondlng d-cohomology class TEHI™ =FEpm
is a §-cocycle; then £ represents a classl|EJeHs Hi=E{"™. Since £ is a 8-cocycle, 8f = dn
for some MEE""™. Ve have d,[f] =[fn]. One can find the details in [12].

I1) Maps Transverse to a Convex Set. Let T be a smooth Hilbert submanifold of the
Hilbert space H, S be a closed convex subset of R and f:T—R* be a smooth map. By TyS we
denote the cone spanned by the set S—y (y€S) and by f,”:T.'-+R* the differential of the map
f at the point x € T.

The map f is said to be transverse to the set S if for any Xx€I' it follows from the
condition f(x)€S that im f 4TS =R

Proposition Al. If f: T'—-R* is transverse to the set §, then £73(S) is a topological
submanifold with boundary of I and the set £ !(ri8) (complement of the boundary) is a smooth
submanifold of T.

Outline of the proof. The map f is obviously transverse to a neighborhood U of the set
S in the subspace spanS. Consequently, £ '(U) is a smooth submanifold of T and replacing
I' by £71(U) if necessary, one can assume from the beginning that S has nonempty interior in
R*. Further, the transversality condition guarantees the existence in a neighborhood of an
arbitrary point x€f~'(S) of a smooth vector field X such that, §f/X\(x)€int TyyS, and the existence
of smooth partitions of unity on Hilbert manifolds (cf. [5]) lets us construct such a field
globally. The integral curves of this field define a tubular neighborhood of the set £71(3S)
and let us represent a neighborhood Oy of an arbitrary point x€f~1(dS) as the direct product
of {"1(8S)NO, by an interval. .

If T is compact (and consequently finite-dimensional) the following generalization of the
the standard Thom lemma on isotopies with parameters holds.

LEMMA Al. Let T be a smooth compact manifold, AcR" be an arbitracry subset, and f,.:
I>R* be a family of maps, depending smoothly on f€[0, 1] and continuously on ({, a)€[0,1} x4,
transverse to the closed convex set Sc—R* Then there exists a family of homeomorphisms
Fio: =T depending continuously on (t,a)€[0,1] XA, satisfying the conditions:

Fo, a=1d; F1,a(f5'(S)=f7'(S) Va€A.
If S has smooth relative boundary 35 the assertion of Lemma Al follows from the stan-
dard Thom lemma on isotopies. To prove the general case it suffices to approximate S by .a
convex set with smooth relative boundary and to use the tubular neighborhoods of the sets
f5'.@S), f7',(0S) whose construction is described above in the discussion of Proposition Al.

III) Restrictions to Finite-Dimensional Subspaces. Let f: H—>R' be a smooth map of a
separable Hilbert space H into R*, transverse to the convex closed subset ScR*, and H>B be
a linear subspace which is everywhere dense in H; the symbol ¥ denotes the collection of all
finite-dimensional subspaces of B, partially ordered by inclusion.

THEOREM A2. The homology group H,(f~1(S)), i=0, is isomorphic to the direct limit of the
¥ -system formed by the groups H(f~'(S)NV), V&y* and homomorphisms H,(f~1(S)nV)—H.([7'(S)NW)
induced by the inclusions V ¢ W for any VcWer.

Outline of the proof. The Hilbert submanifold with boundary £ !(S) has finite codimen-
sion in H and has a tubular neighborhood U. Let ¢:U—f"'(S) be the retraction defined by
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the tubular neighborhood. The usual method of construction of a tubular neighborhood using
a partition of unity (cf. {5] and also II)) lets us arrange that for any compactum X c U
satisfying the conditions K ¢ B, spanK < +» one has: ¢(K)<B, spang(K)<+oo. At the same
time by a small perturbation not leaving the limits of U one can turn any singular chain in
f71(S) into a chain lying in a finite-dimensional subspace of B.

Let us assume in addition that S is a bounded convex polyhedron Then one has

Proposition A2. For any finite-dimensional subspace V ¢ B one can find a finite- dlmen-
sional subspace W, V ¢ W ¢ B such that f|{W is transverse to S.

Outline of the proof. First we find a finite-dimensional subspace W, > V such that
f|W, is transverse to S at all points of the subspace V. Let Aj..., AL be the affine hulls
of all closed faces (of all dimensions) of the polyhedron S. Using the standard theorem on
density of transverse maps (cf. [8]), we find near W, a finite-dimensional subspace W o> V
which has the following property: for any x€W, i<<1<C! such that f is transverse to A at
the point x, the map f|W is also transverse to Aj at the point x.

It is easy to show that in this case f|W is transverse to S. By slightly perturbing
again if necessary, W can be arranged so that this subspace lies in B.

Remark. The assertions of Theorem A2 and Proposition A2 obviously extend to the case
when the map f is defined not on all of H, but only on an open subset of H,
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