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Abstra
t

We prove some regularity properties of the optimal 
ontrols for the

smooth bra
ket generating systems with s
alar 
ontrol parameters, and

show that the Cantor sets 
annot be the sets of swit
hing points.

Thanks to papers by H.Sussmann we know some regularity properties

of optimal 
ontrols for general real-analyti
 systems, see [2℄,[3℄. The same

author demonstrated in [2℄ that optimal 
ontrols for general C

1

-systems

do not possess any regularity properties. In this note, we show that the

situation is not so hopeless for the bra
ket generating systems and establish

a 
urious property of the sets of swit
hing points, whi
h is new for real-

analiti
 systems too.

Consider a 
ontrol system

_x = f(x) + ug(x); x 2M; juj � 1;

where M is a C

1

-manifold, f; g are C

1

-ve
tor �elds on M .

Let Lieff; gg be a Lie sub-algebra of the ve
tor �elds generated by f; g;

and L

0

(f; g) be an ideal in Lieff; gg generated by g. Suppose that

fv(x) : v 2 L

0

(f; g)g = T

x

M; 8x 2M: (1)

Let u(t); t 2 R; be a measurable bounded fun
tion. A point t

0

2 R is 
alled

a density point for u if there exists the derivative

d

dt

Z

t

t

0

u(�)d�

for t = t

0

.

Denote by D

u

the set of all density points for u .

�
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Measurable fun
tions

u(�) : [�; �℄ ! [�1; 1℄

satisfying the 
ondition

d

dt

Z

t

�

u(�)d� = u(t); 8t 2 D

u

are 
alled admissible 
ontrols on [�; �℄. Solutions of the 
orresponding dif-

ferential equations _x = f(x) + u(t)g(x) are 
alled admissible traje
tories.

An attainable set A

���

(x

0

) is, by the de�nition, the set of all x(�) su
h

that x(�) is an admissible traje
tory and x(�) = x

0

:

An admissible 
ontrol u(�) is 
alled an extremal 
ontrol if there exists a

nonzero solution p(t) 2 T

�

x(t)

M of the (nonstationary) Hamiltonian system

on T

�

M generated by the Hamiltonian

h

u(t)

(p) = hp; f(x) + u(t)g(x)i; p 2 T

�

x

M;

su
h that

u(t)hp(t); g(x(t))i = jhp(t); g(x(t))ij 8t 2 [�; �℄:

It follows from the Pontryagin maximum prin
iple [1℄ that any admissible


ontrol whi
h leads to the boundary of the attainable set is an extremal


ontrol. In other words, if _x(t) = f(x(t))+u(t)g(x(t)); x(�) 2 �A

���

(x (�));

then u(�) is an extremal 
ontrol.

Further 
onsiderations are based on the following simple lemma.

Lemma 1 Let u(�) be an admissible 
ontrol and p(t) be a traje
tory of the

Hamiltonian system generated by h

u(t)

(p).

Suppose that t

k

!

^

t is a 
onvergent sequen
e in the domain of u(�) su
h

that there exists a

lim

k!1

1

t

k

�

^

t

Z

t

k

^

t

u(�)d� = �u:

Then there exists

lim

k!1

�(p(t

k

))� �(p(

^

t))

t

k

�

^

t

= fh

�u

; �g(p(

^

t)); 8� 2 C

1

(T

�

M);

where f�; �g are Poisson bra
kets.
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Proof. Indeed,

�(p(t)) � �(p(

^

t)) =

Z

t

^

t

fh

u(�)

; �g(p(�))d� =

Z

t

^

t

fhp; fi; �g(p(�))d� +

Z

t

^

t

u(�)fhp; gi; �g(p(�))d� =

Z

t

^

t

fhp; fi; �g(p(�))d� +

Z

t

^

t

u(�)d�fhp; gi; �g(p(t)) +O((t�

^

t)

2

);

and the desired result follows from the 
ontinuity of p(�):

Proposition 1 Let u be an extremal 
ontrol on [�; �℄, then there exists an

open dense subset O � [�; �℄ su
h that uj

O

is a C

1

-fun
tion.

Sket
h of proof. The 
ontrol u(t) is lo
ally 
onstant on the open set

ft : hp(t); g(x(t))i 6= 0g;

hen
e we have to investigate only the interior of the set ft : hp(t); g(x(t))i =

0g.

So, we 
an suppose, without loss of generality, that

hp(t); g(x(t))i = 0 8t 2 [�; �℄:

Di�erentiating the last identity with respe
t to t in virtue of the Hamiltonian

system we obtain

0 = hp(t); [f + u(t)g; g℄(x(t))i = hp(t); [f; g℄(x(t))i:

Di�erentiating one more time we obtain

0 = hp(t); [f; [f; g℄℄(x(t))i + hp(t); [g; [f; g℄℄(x(t))iu(t):

Consider the open subset

ft : hp(t); [g; [f; g℄℄(x(t))i 6= 0g (2)

in [�; �℄. We have

u(t) = �

hp; [f; [f; g℄℄i

hp; [g; [f; g℄℄i
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while t belongs to (2). Substituting the last expression for t in the Hamilto-

nian we obtain that p(t) is a solution of the smooth (stationary) Hamiltonian

system generated by the Hamiltonian

h

1

(p) = hp; fi �

hp; [f; [f; g℄℄i

hp; [g; [f; g℄℄i

hp; gi

for t belonging to (2).

Hen
e p(t) and u(t) are C

1

on (2). So we 
an suppose, without lost of

generality, that

hp(t); [g; [f; g℄℄(x(t))i � hp(t); [f; [g; f ℄℄(x(t))i � 0:

We 
an 
ontinue the di�erentiation in t. Any time, when we meet an iterated

Lie bra
ket whi
h is not orthogonal to p(t) we 
an express u(t) as a smooth

fun
tion of p. Hen
e p(t) satis�es a smooth Hamiltonian system, so p(t) and

u(t) are C

1

wih respe
t to t.

On the other hand, if p(t) is orthogonal to all iterated Lie bra
kets then

p(t) = 0. (A
tually, it is enough to 
onsider a �nite number of bra
kets

be
ause of 
ompa
tness of the set fx(t) : t 2 [�; �℄g:) }

We say that an admissible 
ontrol u(�) is essentially dis
ontinuous at

�

t 2 [�; �℄; if uj

D

u

[f

�

tg

is dis
ontinuous at

�

t. Denote by S

u

the set of points

of essential dis
ontinuity for u.

An admissible 
ontrol u(t) is 
alled a bang-bang 
ontrol if u(t) 2 f+1;�1g

for almost all t. If u(�) is a bang-bang 
ontrol then S

u

is a 
losed set.

A nowhere dense 
losed subset in R is 
alled a perfe
t subset if its inter-

se
tion with any interval is empty or un
ountable. Example: The Cantor

sets are perfe
t.

A fun
tion v(�) is 
alled di�erentiable at a point t

0

along a subset E if

there exists a limit

v(t)�v(t

0

)

t�t

0

as t! t

0

; t 2 E.

Proposition 2 Let u(�) be a bang-bang extremal 
ontrol. Then S

u

is not a

perfe
t set.

The proposition is a 
orollary of the above lemma 1 and the following

Lemma 2 Let u(�) be a bang-bang 
ontrol su
h that S

u

is a perfe
t set.

Then there exists a perfe
t subset

^

S � S

u

su
h that v(t) =

R

t

�

u(�)d� is

nowhere di�erentiable along

^

S.
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The 
onstru
tion of

^

S. First of all, [�; �℄nS = V

+

[ V

�

; where V

+

and

V

�

are open nonempty sets, and u(t) = 1 (�1) for t 2 V

+

(V

�

).

In the following 
onstru
tions we denote by j�j a length of the interval

� and by O

�

� a 
losed �-neighborhood of �.

We 
onstru
t, by the indu
tion on n a family of 
losed sets S

n

i

1

:::i

n

; where

i

j

2 f0; 1g; n = 1; 2::::

Let � � V

+

be a 
onne
ted 
omponent of V

+

.

1) Put S

1

= S

u

\O

j�j

� = S

1

0

[ S

1

1

; where t

0

< t

1

; 8t

0

2 S

1

0

; t

1

2 S

1

1

:

2) Let �

0

� V

�

\
onv(S

1

0

);�

1

� V

�

\
onv(S

1

1

) be 
onne
ted 
omponents

of V

�

. Put

S

2

0

= S

1

0

\O

j�

0

j

2

�

0

= S

2

00

[S

2

01

; S

2

1

= S

1

1

\O

j�

1

j

2

�

1

= S

2

10

[S

2

11

; S

2

= S

2

0

[S

2

1

;

where t

00

< t

01

; t

10

< t

11

8t

ij

2 S

2

ij

:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n+1) Let �

i

1

:::i

n

� V

(�)

n \ 
onv(S

n

i

1

:::i

n

) be a 
onne
ted 
omponent of

V

(�)

n ; S

n+1

i

1

:::i

n

= S

n

i

1

:::i

n

\O

j�

i

1

:::i

n

j

2

n

= S

n+1

i

1

:::i

n

0

[S

n+1

i

1

:::i

n

1

; S

n+1

= [

(i

1

:::i

n

)

S

n+1

i

1

:::i

n

;

where t

i

1

:::i

n

0

< t

i

1

:::i

n

1

8t

i

1

:::i

n

j

2 S

n+1

i

1

:::i

n

j

:

Put

^

S = \

1

k=1

S

k

:

Proof of Proposition 2. Let u(�) be a bang-bang extremal 
ontrol and

^

S

be a set from Lemma 2. Then hp(t); g(x(t)i = 0 8t 2

^

S: Take a subsequen
e

t

k

! t; t

k

2

^

S (3)

and apply Lemma 1 to � = hp; g(x)i: We obtain hp(t); [f; g℄(x(t))i = 0: Pi
k

various subsequen
es of the form (3) and apply lemma 1 to � = hp; [f; g℄(x)i:

We obtain

hp; [f; [f; g℄℄(x(t))i + uhp; [g; [f; g℄℄(x(t))i = 0

for, at least two, di�erent values of u: Hen
e

hp; [f; [f; g℄℄(x(t))i = hp; [g; [f; g℄℄(x(t))i = 0:

Apply again lemma 1 to � = hp; [f; [f; g℄℄(x)i and � = hp; [g; [f; g℄℄(x)i; et
.

We obtain that p(t) is orthogonal to L

0

(f; g) and hen
e p(t) = 0:

Remark 1 Proposition 2 is new even in the real-analiti
 situation, unlike

the proposition 1. Re
all that the bra
ket 
ondition (1) is equivalent to the

nonemptiness of interior of attainable sets in the real-analiti
 
ase.
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