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Abstrat

We prove some regularity properties of the optimal ontrols for the

smooth braket generating systems with salar ontrol parameters, and

show that the Cantor sets annot be the sets of swithing points.

Thanks to papers by H.Sussmann we know some regularity properties

of optimal ontrols for general real-analyti systems, see [2℄,[3℄. The same

author demonstrated in [2℄ that optimal ontrols for general C

1

-systems

do not possess any regularity properties. In this note, we show that the

situation is not so hopeless for the braket generating systems and establish

a urious property of the sets of swithing points, whih is new for real-

analiti systems too.

Consider a ontrol system

_x = f(x) + ug(x); x 2M; juj � 1;

where M is a C

1

-manifold, f; g are C

1

-vetor �elds on M .

Let Lieff; gg be a Lie sub-algebra of the vetor �elds generated by f; g;

and L

0

(f; g) be an ideal in Lieff; gg generated by g. Suppose that

fv(x) : v 2 L

0

(f; g)g = T

x

M; 8x 2M: (1)

Let u(t); t 2 R; be a measurable bounded funtion. A point t

0

2 R is alled

a density point for u if there exists the derivative

d

dt

Z

t

t

0

u(�)d�

for t = t

0

.

Denote by D

u

the set of all density points for u .

�
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Measurable funtions

u(�) : [�; �℄ ! [�1; 1℄

satisfying the ondition

d

dt

Z

t

�

u(�)d� = u(t); 8t 2 D

u

are alled admissible ontrols on [�; �℄. Solutions of the orresponding dif-

ferential equations _x = f(x) + u(t)g(x) are alled admissible trajetories.

An attainable set A

���

(x

0

) is, by the de�nition, the set of all x(�) suh

that x(�) is an admissible trajetory and x(�) = x

0

:

An admissible ontrol u(�) is alled an extremal ontrol if there exists a

nonzero solution p(t) 2 T

�

x(t)

M of the (nonstationary) Hamiltonian system

on T

�

M generated by the Hamiltonian

h

u(t)

(p) = hp; f(x) + u(t)g(x)i; p 2 T

�

x

M;

suh that

u(t)hp(t); g(x(t))i = jhp(t); g(x(t))ij 8t 2 [�; �℄:

It follows from the Pontryagin maximum priniple [1℄ that any admissible

ontrol whih leads to the boundary of the attainable set is an extremal

ontrol. In other words, if _x(t) = f(x(t))+u(t)g(x(t)); x(�) 2 �A

���

(x (�));

then u(�) is an extremal ontrol.

Further onsiderations are based on the following simple lemma.

Lemma 1 Let u(�) be an admissible ontrol and p(t) be a trajetory of the

Hamiltonian system generated by h

u(t)

(p).

Suppose that t

k

!

^

t is a onvergent sequene in the domain of u(�) suh

that there exists a

lim

k!1

1

t

k

�

^

t

Z

t

k

^

t

u(�)d� = �u:

Then there exists

lim

k!1

�(p(t

k

))� �(p(

^

t))

t

k

�

^

t

= fh

�u

; �g(p(

^

t)); 8� 2 C

1

(T

�

M);

where f�; �g are Poisson brakets.
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Proof. Indeed,

�(p(t)) � �(p(

^

t)) =

Z

t

^

t

fh

u(�)

; �g(p(�))d� =

Z

t

^

t

fhp; fi; �g(p(�))d� +

Z

t

^

t

u(�)fhp; gi; �g(p(�))d� =

Z

t

^

t

fhp; fi; �g(p(�))d� +

Z

t

^

t

u(�)d�fhp; gi; �g(p(t)) +O((t�

^

t)

2

);

and the desired result follows from the ontinuity of p(�):

Proposition 1 Let u be an extremal ontrol on [�; �℄, then there exists an

open dense subset O � [�; �℄ suh that uj

O

is a C

1

-funtion.

Sketh of proof. The ontrol u(t) is loally onstant on the open set

ft : hp(t); g(x(t))i 6= 0g;

hene we have to investigate only the interior of the set ft : hp(t); g(x(t))i =

0g.

So, we an suppose, without loss of generality, that

hp(t); g(x(t))i = 0 8t 2 [�; �℄:

Di�erentiating the last identity with respet to t in virtue of the Hamiltonian

system we obtain

0 = hp(t); [f + u(t)g; g℄(x(t))i = hp(t); [f; g℄(x(t))i:

Di�erentiating one more time we obtain

0 = hp(t); [f; [f; g℄℄(x(t))i + hp(t); [g; [f; g℄℄(x(t))iu(t):

Consider the open subset

ft : hp(t); [g; [f; g℄℄(x(t))i 6= 0g (2)

in [�; �℄. We have

u(t) = �

hp; [f; [f; g℄℄i

hp; [g; [f; g℄℄i
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while t belongs to (2). Substituting the last expression for t in the Hamilto-

nian we obtain that p(t) is a solution of the smooth (stationary) Hamiltonian

system generated by the Hamiltonian

h

1

(p) = hp; fi �

hp; [f; [f; g℄℄i

hp; [g; [f; g℄℄i

hp; gi

for t belonging to (2).

Hene p(t) and u(t) are C

1

on (2). So we an suppose, without lost of

generality, that

hp(t); [g; [f; g℄℄(x(t))i � hp(t); [f; [g; f ℄℄(x(t))i � 0:

We an ontinue the di�erentiation in t. Any time, when we meet an iterated

Lie braket whih is not orthogonal to p(t) we an express u(t) as a smooth

funtion of p. Hene p(t) satis�es a smooth Hamiltonian system, so p(t) and

u(t) are C

1

wih respet to t.

On the other hand, if p(t) is orthogonal to all iterated Lie brakets then

p(t) = 0. (Atually, it is enough to onsider a �nite number of brakets

beause of ompatness of the set fx(t) : t 2 [�; �℄g:) }

We say that an admissible ontrol u(�) is essentially disontinuous at

�

t 2 [�; �℄; if uj

D

u

[f

�

tg

is disontinuous at

�

t. Denote by S

u

the set of points

of essential disontinuity for u.

An admissible ontrol u(t) is alled a bang-bang ontrol if u(t) 2 f+1;�1g

for almost all t. If u(�) is a bang-bang ontrol then S

u

is a losed set.

A nowhere dense losed subset in R is alled a perfet subset if its inter-

setion with any interval is empty or unountable. Example: The Cantor

sets are perfet.

A funtion v(�) is alled di�erentiable at a point t

0

along a subset E if

there exists a limit

v(t)�v(t

0

)

t�t

0

as t! t

0

; t 2 E.

Proposition 2 Let u(�) be a bang-bang extremal ontrol. Then S

u

is not a

perfet set.

The proposition is a orollary of the above lemma 1 and the following

Lemma 2 Let u(�) be a bang-bang ontrol suh that S

u

is a perfet set.

Then there exists a perfet subset

^

S � S

u

suh that v(t) =

R

t

�

u(�)d� is

nowhere di�erentiable along

^

S.
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The onstrution of

^

S. First of all, [�; �℄nS = V

+

[ V

�

; where V

+

and

V

�

are open nonempty sets, and u(t) = 1 (�1) for t 2 V

+

(V

�

).

In the following onstrutions we denote by j�j a length of the interval

� and by O

�

� a losed �-neighborhood of �.

We onstrut, by the indution on n a family of losed sets S

n

i

1

:::i

n

; where

i

j

2 f0; 1g; n = 1; 2::::

Let � � V

+

be a onneted omponent of V

+

.

1) Put S

1

= S

u

\O

j�j

� = S

1

0

[ S

1

1

; where t

0

< t

1

; 8t

0

2 S

1

0

; t

1

2 S

1

1

:

2) Let �

0

� V

�

\onv(S

1

0

);�

1

� V

�

\onv(S

1

1

) be onneted omponents

of V

�

. Put

S

2

0

= S

1

0

\O

j�

0

j

2

�

0

= S

2

00

[S

2

01

; S

2

1

= S

1

1

\O

j�

1

j

2

�

1

= S

2

10

[S

2

11

; S

2

= S

2

0

[S

2

1

;

where t

00

< t

01

; t

10

< t

11

8t

ij

2 S

2

ij

:

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n+1) Let �

i

1

:::i

n

� V

(�)

n \ onv(S

n

i

1

:::i

n

) be a onneted omponent of

V

(�)

n ; S

n+1

i

1

:::i

n

= S

n

i

1

:::i

n

\O

j�

i

1

:::i

n

j

2

n

= S

n+1

i

1

:::i

n

0

[S

n+1

i

1

:::i

n

1

; S

n+1

= [

(i

1

:::i

n

)

S

n+1

i

1

:::i

n

;

where t

i

1

:::i

n

0

< t

i

1

:::i

n

1

8t

i

1

:::i

n

j

2 S

n+1

i

1

:::i

n

j

:

Put

^

S = \

1

k=1

S

k

:

Proof of Proposition 2. Let u(�) be a bang-bang extremal ontrol and

^

S

be a set from Lemma 2. Then hp(t); g(x(t)i = 0 8t 2

^

S: Take a subsequene

t

k

! t; t

k

2

^

S (3)

and apply Lemma 1 to � = hp; g(x)i: We obtain hp(t); [f; g℄(x(t))i = 0: Pik

various subsequenes of the form (3) and apply lemma 1 to � = hp; [f; g℄(x)i:

We obtain

hp; [f; [f; g℄℄(x(t))i + uhp; [g; [f; g℄℄(x(t))i = 0

for, at least two, di�erent values of u: Hene

hp; [f; [f; g℄℄(x(t))i = hp; [g; [f; g℄℄(x(t))i = 0:

Apply again lemma 1 to � = hp; [f; [f; g℄℄(x)i and � = hp; [g; [f; g℄℄(x)i; et.

We obtain that p(t) is orthogonal to L

0

(f; g) and hene p(t) = 0:

Remark 1 Proposition 2 is new even in the real-analiti situation, unlike

the proposition 1. Reall that the braket ondition (1) is equivalent to the

nonemptiness of interior of attainable sets in the real-analiti ase.
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