On Regularity Properties of Extremal Controls

A. A. Agrachev”

Abstract

We prove some regularity properties of the optimal controls for the
smooth bracket generating systems with scalar control parameters, and
show that the Cantor sets cannot be the sets of switching points.

Thanks to papers by H.Sussmann we know some regularity properties
of optimal controls for general real-analytic systems, see [2],[3]. The same
author demonstrated in [2] that optimal controls for general C'*°-systems
do not possess any regularity properties. In this note, we show that the
situation is not so hopeless for the bracket generating systems and establish
a curious property of the sets of switching points, which is new for real-
analitic systems too.

Consider a control system

i = f(z) +ug(a), =€ M, Ju] < 1,

where M is a C'°°-manifold, f,g are C*°-vector fields on M.
Let Lie{f, g} be a Lie sub-algebra of the vector fields generated by f,g,
and L°(f,g) be an ideal in Lie{f, g} generated by g. Suppose that

{v(z) :v e L%f,9)} = TuM, Yz € M. (1)

Let u(t),t € R, be a measurable bounded function. A point ¢y € R is called
a density point for w if there exists the derivative

d /t u(T)dr

dt Ji,

for t = ty.
Denote by D, the set of all density points for u .
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Measurable functions

u(’) o, Al = [=1,1]

satisfying the condition

Sl

t
/ w(r)dr = u(t), Vt € Dy
«
are called admissible controls on [«, ]. Solutions of the corresponding dif-
ferential equations & = f(z) 4+ u(t)g(x) are called admissible trajectories.
An attainable set Ag_(zp) is, by the definition, the set of all z(8) such
that z(-) is an admissible trajectory and z(«a) = zg.

An admissible control u(-) is called an extremal control if there exists a
nonzero solution p(t) € T;(t)M of the (nonstationary) Hamiltonian system
on T*M generated by the Hamiltonian

hu@)(p) = (p; f(z) + u(t)g(z)), p € T; M,

such that
u(t)(p(t), g(z(t))) = [(p(t), g(z(¢)))| Vt € [e, B].

It follows from the Pontryagin maximum principle [1] that any admissible
control which leads to the boundary of the attainable set is an extremal
control. In other words, if 2(t) = f(x(t)) +u(t)g(z(t)), 2(B) € 0Ag—_a(z()),
then u(-) is an extremal control.

Further considerations are based on the following simple lemma.

Lemma 1 Let u(-) be an admissible control and p(t) be a trajectory of the
Hamiltonian system generated by hy (p)-
Suppose that t, — t is a convergent sequence in the domain of u(-) such

that there exists a ) .
k
lim A/ u(r)dr = a.

Then there exists

i PRGN _ ih, ) o8, v € (),

where {-,-} are Poisson brackets.



Proof. Indeed,

$p(0) ~ 6p(®) = [ {hugey 8} p(r))dr =
t t
[ .50 810 + [ )01, gH () =

[ 10.00.8}pm)dr + [ ur)ar{(p,0), 8} p(0) + O - 1),

and the desired result follows from the continuity of p(-).

Proposition 1 Let u be an extremal control on [a, (5], then there exists an
open dense subset O C [« B] such that ulp is a C™°-function.

Sketch of proof. The control u(t) is locally constant on the open set

{t: {p(®), 9(x(t))) # 0},

hence we have to investigate only the interior of the set {¢ : (p(t), g(z(¢))) =

0}.

So, we can suppose, without loss of generality, that

(p(t), g(z(t))) = 0 Vit € [o, A].

Differentiating the last identity with respect to ¢ in virtue of the Hamiltonian
system we obtain

0= (p(t), [f +u(t)g, gl(z(¥))) = (p(t), [f, g](x(t)))-

Differentiating one more time we obtain

= (p(2), [/, [f; 9l (@))) + (p(2), [9, [f> 9] (2 (2)))u ().

Counsider the open subset

{t: (p(t), g, 1S, 9ll(=(2))) # 0} o)
n [0176], We have
u(t) = — 2 AL 191D
<p’ [97 [fag >



while ¢ belongs to (2). Substituting the last expression for ¢ in the Hamilto-
nian we obtain that p(t) is a solution of the smooth (stationary) Hamiltonian
system generated by the Hamiltonian

p,[f,[f: 9l)

1 — _
h'(p) = (p, f) .1, F> (p,9)

for t belonging to (2).
Hence p(t) and u(t) are C* on (2). So we can suppose, without lost of
generality, that

{p(t), g, [f, 9ll(=(2))) = (), [f, 9, [I(2(2))) = 0.

We can continue the differentiation in ¢. Any time, when we meet an iterated
Lie bracket which is not orthogonal to p(t) we can express u(t) as a smooth
function of p. Hence p(t) satisfies a smooth Hamiltonian system, so p(t) and
u(t) are C*° wih respect to ¢.

On the other hand, if p(t¢) is orthogonal to all iterated Lie brackets then
p(t) = 0. (Actually, it is enough to consider a finite number of brackets
because of compactness of the set {z(t) : ¢ € [a, f]}.) ¢

We say that an admissible control u(-) is essentially discontinuous at
t € [, B], if u|p,uz is discontinuous at ¢. Denote by S, the set of points
of essential discontinuity for u.

An admissible control u(¢) is called a bang-bang control if u(t) € {+1, -1}
for almost all ¢. If u(-) is a bang-bang control then S, is a closed set.

A nowhere dense closed subset in R is called a perfect subset if its inter-
section with any interval is empty or uncountable. Example: The Cantor
sets are perfect.

A function v(-) is called differentiable at a point ¢y along a subset E if
there exists a limit %fo(to) ast — ty,t € E.

Proposition 2 Let u(-) be a bang-bang extremal control. Then S, is not a
perfect set.

The proposition is a corollary of the above lemma 1 and the following

Lemma 2 Let u(-) be a bang-bang control such that S, is a perfect set.
Then there exists a perfect subset S C S, such that v(t) = [*u(r)dT is

«
nowhere differentiable along S.



The construction of S. First of all, [, B\S = V; UV_, where V; and
V_ are open nonempty sets, and u(t) =1 (—1) for t € V (V_).

In the following constructions we denote by |A| a length of the interval
A and by O:A a closed e-neighborhood of A.

We construct, by the induction on n a family of closed sets S} ; , where
i; € {0,1},n =1,2....

Let A C V4 be a connected component of V..

1) Put S' = 8, N Oz A = S§ U ST, where t < t1, Vi € S§, 11 € S].

2) Let Ag C V_Nconv(SY), Ay C V_Neonv(St) be connected components
of V_. Put

S 50ﬁ0| \AO - 500US(]17 Sl Sl mO|A1\A1 — 510U5117 SQ S[)USl,

where tgo < to1,%10 < t11 Vii5 € 512]

n+1) Let Ay 4, C Viy» Nconv(S] ;) be a connected component of

21...0n

n—+1 n n+1 n+1 n+1 _ n+1
‘/( ) Sz1 zn_Szl in ﬁO\A” i | Sz ZTLOUSzl an,S U(ll Zn)SZ1 n)?
+1
where ti1...in0 < ti1...zn1 Vtzl...zn] c Sznl dng

Put S = N, S*.
Proof of Proposition 2. Let u(-) be a bang-bang extremal control and S
be a set from Lemma 2. Then (p(t), g(x(t)) = 0 V¢ € S. Take a subsequence

te >t ty €8 (3)

and apply Lemma 1 to ¢ = (p, g(x)). We obtain (p(t), [f,g](z(t))) = 0. Pick
various subsequences of the form (3) and apply lemma 1 to ¢ = (p, [f, g](z)).
We obtain

(o, [f, [f, gll(z(2))) + uw(p, g, [f, gll(z(t)) = 0

for, at least two, different values of u. Hence

(o, [f, [f, gll(z(2))) = (p, g, [f, gll(z(¢))) = 0.

Apply again lemma 1 to ¢ = (p,[f,[f,g]](x)) and ¢ = (p,[g, [f,g]](z)), etc.
We obtain that p(t) is orthogonal to L°(f,g) and hence p(t) = 0.

Remark 1 Proposition 2 is new even in the real-analitic situation, unlike
the proposition 1. Recall that the bracket condition (1) is equivalent to the
nonemptiness of interior of attainable sets in the real-analitic case.
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