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RIGID CARNOT ALGEBRAS: A CLASSIFICATION

A. AGRACHEV and A. MARIGO

ABSTRACT. A Carnot algebra is a graded nilpotent Lie algebra L =
L1®---® L, generated by Li. The bidimension of the Carnot algebra
L is the pair (dim Lq1,dim L). A Carnot algebra is said to be rigid
if it is isomorphic to any of its small perturbations in the space of
Carnot algebras of the prescribed bidimension. In this paper, we give
a complete classification of rigid Carnot algebras. In addition to free
nilpotent Lie algebras, there are 4 infinite series and 25 exceptional
rigid algebras of 12 exceptional bidimensions.

1. INTRODUCTION

One main motivation to study Carnot algebras is their role as local nilpo-
tent approximations of regular vector distributions.

Let M be a (C°°-) smooth n-dimensional manifold and let F C Vec M
be a set of smooth vector fields on M. Given ¢ € M and an integer [ > 0,
we set

Afl:span{[fl,[...,[fi_l,fi]...]](q):fj €F, 1<j<i, igl} C T, M.

Of course, AfJ C AP for I < m. The set F is said to be bracket generating
(or completely nonholonomic) at ¢ if there exists r such that Ay =T,M.
The minimum among these r is said to be the degree of nonholonomy of F
at q. The set F is called bracket generating if it is bracket generating at
every point.

Definition 1. We say that F C Vec M is regular at gy € M if dim AfI
is constant in a neighborhood of gy for all 4 > 0.

Let F be regular at gy and dim A;o =d. Take f1,..., fqg € F such that
vectors f1(qo), - - -, fa(qo) form a basis of A} . Then fi(q),..., fa(q) form a
basis of Aclz for any ¢ from a neighborhood of ¢y. Hence for any f € F there

d
exist smooth functions aq,...,aq such that f(q) = > a;(q)fi(¢q) for any ¢

i=1
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from the same neighborhood. It follows that
Al = span{[fil,[...,fil]...}(q) 1<i; < d} LAY =12,

The regularity implies that one can choose vector fields from the collection
(il fil @)1 <0 <}

so that the values of the selected fields at g form a basis of Aﬁl / Aifl for all
q sufficiently close to go. With these bases in hands we easily obtain the
following well-known fact.

Lemma 1. Assume that F C VecM is regular at qo, vi,v; € Vec M,
vi(q) € AL, vi(q) € AJ for all q, and vi(go) = 0. Then [v;,v;](qo) € ALFT~1.

It immediately follows from this lemma that the Lie brackets of the vector

fields with values in Aﬁp i =1,2,..., induce the structure of a graded Lie

algebra on the space Y Al /Al-!. We denote this graded Lie algebra by
i>0

Lieg, F. Obviously, Lieg, F is generated by A}IO. In particular, Lieg, F is a
Carnot algebra.

Moreover, any Carnot algebra L can be realized as Liey, F for some F.
Indeed, let M be a Lie group with Lie algebra L and g¢ be the unit element
of this group. Then L; is a regular bracket generating set of left-invariant
vector fields on M and L = Lieg, L;.

We now turn to the generic case. Let Ly be the free Lie algebra with d

generators (all algebras in this paper are over R); in other words, £, is the
oo

Lie algebra of commutator polynomials of d variables. We have £, = € L,
i=1
where £} is the space homogeneous commutator polynomials of degree i.

Then
() def 7N pi ) DN
Ly = @Ld/ @ Ly
j=1 j=r+1

is the free nilpotent Lie algebra of “length” r. We set
la(i) = dim Ly, 6 =" tq(i) = dim £,
i=1

The classical recursion expression of £4() is
ila(i) = d' = jla(j).
Jli

Any Carnot algebra of bidimension (d,n) is a factor-algebra of ,C((in) with
respect to some graded ideal of codimension n. These algebras can be
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realized as follows. Any surjective linear mapping A : Egn) — R™ induces a
filtration of R™ by the subspaces

k
Ef =Y ALy k=1,...,n
=1

We set Ay : L5 — EX/E%™', the composition of Al with the canonical

factorization, and A = é Ap, the induced mapping of the graded linear
spaces. k=t

Let A(d,n) C Hom(/j((i”),R”) be the set of all surjective linear mappings
A ﬁ&") — R” such that ker A is an ideal of Lgln). If A € 2(d,n), then
/3((1”) /ker A is a Carnot algebra and any Carnot algebra can be realized
in this way. Of course, different ideals may provide isomorphic Carnot
algebras.

Definition 2. A Carnot algebra L of bidimension (d,n) is said to be
rigid if the set of A € 2(d,n) such that L = E((i")/ker/i is an open subset
of 2A(d,n).

Here the symbol 2 denotes the isomorphism relation for Carnot algebras.

Therefore, a Carnot algebra is rigid if it does not admit deformations: any
admissible small perturbation of A gives an isomorphic Carnot algebra. As a
first step towards the classification of rigid cases, we describe a more general
class of “generic” A which characterizes Carnot algebras Liey, {f1,..., fa}
for generic germs of d-tuples of vector fields.

Proposition 1. Let 2y(d,n) be the set of all surjective linear mappings
A: L((in) — R™ such that

B g(i)
ker A; = 0’. Eli) <™
0 Ay = n.
Then Ao(d,n) C A(d,n) and Ao(d,n) is an open everywhere dense subset
of Hom(ﬁfjn), R™).

Proof. Let r = min{i : Eg) > n}. Then A € Ap(d,n) if and only if A,
@ £
i=1

is an injective mapping and A

~ is a surjective mapping. Surely, these
& <

properties hold for an open dense subset of Hom(ﬁ&n),R"). Moreover, if
A € o(d,n), then

ker A = (ker A,) ® A ( b LQ) .

1=r+1
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In other words, ker A is the direct sum of a linear subspace of LY and

A (G%r X CQ) Obviously, any such subspace is an ideal of Cfin). O

Corollary 1. Any rigid Carnot algebra of bidimension (d,n) is isomor-
phic to £((1T)/E, where r = min{i : 65;) > n} and E is an (El([) —n)-
dimensional subspace of L7;.

We set m = K((;) —n. Then rigid Carnot algebras of bidimension (d,n)
are characterized by m-dimensional subspaces of L];. Let Gry(L]) be the
Grassmannian of m-dimensional subspaces of L};. Of course, not every
E € Gry(L]) gives arigid Carnot algebra. Moreover, not every bidimension
admits a rigid Carnot algebra.

Definition 3. A bidimension (d,n) is called rigid if there exists a rigid
Carnot algebra of bidimension (d,n).

Two Carnot algebras Efir)/EZ—, E;, € Gry(L]), i = 1,2, are isomorphic
if and only if there exists an automorphism of [,fir) which transforms F;

into Fy. The automorphisms of the free nilpotent Lie algebra [,Elr) are in
a one-to-one correspondence with linear transformations of R? = ﬁ(li. More
precisely, the rule

def
e ]’

VO, [.a). ]S Ve[, Va) .. ], @1,...,2 € L),

provides a canonical extension of V € GL(R?) to the automorphism V1) @
@V of E((;). In particular, we obtain a canonical action V — V() of
GL(R?) on L7; Carnot Lie algebras E(([) /E;, i = 1,2, are isomorphic if and
only if there exists V € GL(R?) such that V(" E; = Es.

Let ®(V) : Grn (L) — Grp(Lh), V € GL(R?), be the induced action of
GL(R?) on the Grassmannian so that ®(V)(E) = VWE, E € Gry(L]).
The Carnot algebra E((ir) /E is rigid if and only if F belongs to a full-
dimensional orbit of the action ®. In particular, the bidimension (d,n)
is rigid if and only if there exists a full-dimensional orbit of ®. Moreover,
such orbits are actually in a one-to-one correspondence with the isomor-
phism classes of rigid Carnot algebras. The action ® is algebraic. This
implies the following assertion.

Corollary 2. Let (d,n) be a rigid bidimension. Then the set of E €
Gr/(L]) such that E((;')/E is rigid is a Zarisski open (in particular, open
dense) subset of Gry(L]) and there is only a finite number of mutually
nonisomorphic rigid Carnot algebras of the bidimension (d,n).

In the next theorem we list all rigid bidimensions. It is convenient to give
special names to some infinite series of bidimensions. For d = 2,3,4,...,
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the bidimensions (d, fy)), 1 = 1,2,3,..., are said to be free; the bidi-
mension (d,d + 1) is called the Darboux bidimension, and the bidimension
(d,(d —1)(d+2)/2) is called the dual Darboux bidimension.

Theorem 1. All free, Darbouz, and dual Darbouz bidimensions are rigid
as well as bidimensions (2k — 1,2k + 1), (2k — 1,2k?> — k — 2), k > 2. Each
of these bidimensions admits a unique up to an isomorphism rigid Carnot
algebra. Moreover, there are 12 exceptional rigid bidimensions:

(2,4)1, (2,6)2, (2,7)2, (4,6)2, (4,7)2, (4,8)2,
(5,8)2, (5,9)3, (5,11)3, (5,12)2, (6,8)2, (6,19),

where the subscript j in the expression (d,n); indicates the number of iso-
morphism classes of rigid Carnot algebras for the given bidimension (d,n).
All other bidimensions are not rigid.

In the rest of the paper we will prove this theorem: in Sec. 2, we will
give a necessary condition for a bidimension to be rigid. We obtain that
only free bidimensions are rigid if the degree of nonholonomy r is greater
than 4. The following sections are devoted to the analysis of bidimensions
corresponding to r = 2,3,4: Sec. 3 for r = 2, Sec. 4 for r = 3, and Sec. 5
for r = 4. We present a canonical basis and the multiplication table for
any isomorphism class of rigid Carnot algebras. Then these multiplication
tables are used in Sec. 6 to give the normal forms for all possible rigid Lie
algebras of vector fields.

2. RIGIDITY: A NECESSARY CONDITION
We have the following assertion.

Proposition 2. Let (d,n) be a rigid bidimension. Then
d? > (Lyg(r) — m)m. (1)

Proof. Tt was shown in the previous section that to rigid Carnot alge-
bras there correspond full-dimensional orbits of the action of GL(R?) on
Gr7(L5). Let us compare the dimensions. We have

dim GL(RY) = d?, £, =R%"  dim Gry(L]) = m(La(r) — m).

Taking into account that scalar multiples of the identity matrix from
GL(R?) act trivially on the Grassmannian, we obtain that a necessary con-
dition for the existence of a full-dimensional orbit is

d*> —1> (L4(r) —m)m
and the proposition is proved. O

First, we observe that condition (1) is trivially satisfied when m = 0.
Moreover, the condition is satisfied for some m if and only if it is satisfied
for m = £4(r) — m.
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For r = 1 we have £4(1) = d and hence, by the definition of /m, it must
be m = 0. These cases correspond to the free bidimension (d, d).

For r = 2, since £4(2) = d(d — 1)/2, condition (1) holds for all
m=0,1,...,04(2) —1if d < 4, for m=0,1,...,04(2) — 1, with m # 5,
if d =5, and for all m = 0,1,2,¢4(2) — 2,04(2) — 1 if d > 6. Note that
bidimensions corresponding to m = 0,1, £4(2) — 1 are free, dual Darboux,
and Darboux bidimensions, respectively.

For r = 3, £4(3) = (d® — d)/3 and condition (1) holds for
m=0,1,...,04(3) —1if d = 2 and for m=0,1,...,44(3) — 1 if d = 3.
The bidimensions corresponding to m = 0 are free.

Finally, for r = 4, £4(4) = (d* — d?)/4 and condition (1) holds for all
m=0,1,...04(4) = 1if d=2.

For r > 4, condition (1) is never satisfied for m > 0.

In synthesis, in addition to the free bidimensions, we have the following
cases to analyze:

r=2]d=3 m=1,2
d=4 m=1,234,5
d=5 m=1,23,4,6,7,8,9
d>6|m=1,204(2) —2,04(2) — 1
r=3|d=2 m=1
d=3 m=1,7
r=4|d=2 m=1,2

Let m = £4(r) — m, and let £ be the adjoint space to L}. The invo-
lution E +— E* sends m-dimensional subspaces of L}, into m-dimensional
subspaces of Eg*. Denote by ® the corresponding action of GL(R?) on
Gr,,(L7); it acts according to the rule ®(V)(E+) = (®(V)E)*.

In the following sections, we deal with the action ® on Gry, (£’ ) rather
than with the action ® on Gry(L£]); this makes shorter the way from the
classification of subspaces to the tables of products of the Lie algebras.
Moreover, we mainly work in a fixed Hall basis of £}, and do not make
difference between L, and E'Zl*.

3. THE CASES WHERE r = 2

The following proposition allows us to reduce the analysis of possible
rigid bidimensions for r = 2.

Proposition 3. If r = 2, then the bidimension (d,£;”" + m) is rigid if
and only if the dual bidimension (d, ¢, —m) is rigid. Moreover, the number
of isomorphism classes of rigid algebras for the bi-dimension (d, 62_1 +m)
and the dual bidimension (d,{; —m) is the same.
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Proof. Let ® be the action on Gr,,(£3) as in Sec. 1. Fix E € Gr,,(£3) and
consider the following mappings:

T : GL(RY) — Gr,,,(£3), Vi &(V)(E),

U :GLRY) = Gryy)-m(£3), V= &(V)(EY).
Let V € GL(R?). Introduce the notation V-1 = (VT)~1. We show that for
all Ve GL(RY), ¥(V~") = (¥(V))*, so that a one-to-one correspondence

between the image of ¥ and that of ¥ is established and the proposition is
proved.

d
Let V € GL(R?), V = (vil)f’l:p and ¢;(¢) = > vu(q)filg), i =1,....,d.

=1

Then

00.05] = V) fif5] = 3 det ([ . ”ﬂ) o fil.
1<k Uik
Hence
(V) =(e(V))", @(ViVa) = 2(V1)2(1%)
for all V,V;,Va € GL(RY). Tt follows that ®(V~T) = (®(V))~T and for all
wy € E and wy € EL, we have
@V wz, @(V)w:) = wy (2(V) T @(V)wy = (wa,w1) =0,
which proves that U(V-T) = (¥(V))*. O

Assume that we know a multiplication table for some m. Then we obtain
the dual multiplication table as follows.

Let f™, i = 1,...,£4(2), be Lie brackets of order 2 which are linearly
independent with respect to the Jacobi identity. Assume that the multipli-

m

cation table gives f™ = > A\;; f™ for i = m+1,...,04(2), ie., Af =0,
j=1

where A = [A | —I,2)—ml,

Am4+1)1 " Am+Dm

Aeg@)1 T A@m

and f = [f™,..., f™a®]. Then A+ = [I,,, | AT]f represents the orthogonal

space to the space generated by A and the dual multiplication table is given
£4(2)

by ALf, ie., f7 = — Z )\”f’” for j = 1,...,m. As an example, in

this paper we will give the dual multiplication table and the corresponding
normal form for m = 1. The other dual cases can be obtained similarly.
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The space 53 is identified with the wedge square /\2 R?. Hence any
E € Gr,,(£3) is identified with an m-dimensional vector space of antisym-
metric (d x d)-matrices. In order to fix the notation, we next describe this
identification (and the corresponding action of GL(R?)) in more detail.

Fix generators fi,..., fq for £} and let f™,... f™ be such that they
form a basis of E € Gr,,,(£3). Then we can write

[fis fu] = Zwlkf”h

Note that, since [fi, fx] = —[fx, fi] for all h = 1,...,m, W' = {wﬁc}lk
is an antisymmetric (d x d)-matrix. For a different choice of the set

{f™, h=1,...,m}, ie,

m
fTrh = thifﬂ—ia
i=1

we have
m
[f1, fi] = Ztﬁfkf”’ (2)
where
m
ot = Z zhw"
h=1
Consider the space generated by w”, h = 1,..., m, and write each element
of the space under consideration as w(z) = > z;w', * = (x1,...,Zm). Let

3

V € GL(R?). Then
e(V)[fis f51 = Zvu’vgk [fi; fu] = Z Zvuvjsz}%fﬂh = Z(thvT)ijfﬂh~
ho ik 3

Hence ®(V)w(z) = Vw(z)VT.
Next we analyze all possible rigid bidimension for » = 2 up to duality:

(d,d+ 1): for any d, corresponding to m = 1, Sec. 3.1;
(d,d+ 2): for d > 4, corresponding to m = 2, Sec. 3.2;
(d,d+ 3): for d =4 and d = 5 corresponding to m = 3, Sec. 3.3;
(d,d+4): for d =5, corresponding to m = 4, Sec. 3.4.

3.1. The case m = 1. In this case, we have a one-dimensional space of
antisymmetric (d x d)-matrices. A generic antisymmetric (d x d)-matrix w
can be written in the form w = VDV”, where V is nonsingular and D is a
block-diagonal matrix with blocks D, as described next.

e If wis a (d x d)-matrix with even d, then D;, i = 1,...,d/2, are all

(2 x 2)-matrices of the form [ % §].



RIGID CARNOT ALGEBRAS: A CLASSIFICATION 457

e If wis a (d x d)-matrix with odd d, then D;, i =1,...(d — 1)/2, are
all (2 x 2)-matrices of the form | ) §] and D; for i = (d—1)/2+1 is
the zero one-dimensional block.

Then we have the following assertion.

Proposition 4. The Darbouz bidimension (d,d + 1) is rigid with a
unique isomorphism class. The representing family F is completely de-
scribed by the following multiplication table for even d (for odd d):

[fi, fo] if =20 d d—1

=1,...,= (—— dd d). (3
0 otherwise, ! ’ 72( 2 Jor o ) 3

[f2i-1, fi] = {

By duality, also the dual Darbouz bidimension (d,(d — 1)(d + 1)/2) is rigid
with a unique isomorphism class. The multiplication table is as follows:

d/2
Z [f2i—1, fai if d is even,
[flafZ] = 2;31)/2 (4)
.,22 [fai1, fai) if d is odd.

The normal forms are given in Sec. 6 (see Egs. (32) and (33) for the
Darboux and dual Darboux bidimension, respectively).

3.2. The case m = 2. If m = 2, then each E € Gr,,(£?) is identified with
a two-dimensional subspace of the vector space /\2 R? of antisymmetric
(d x d)-matrices. We distinguish between d even and odd.

Assume first that d is even and that Pf(w) is the Pfaffian of the anti-
symmetric (d x d)-matrix w. Recall that Pf is a degree-d/2 homogeneous
polynomial such that (Pf(w))? = det(w).

Let w!,w? € /\2 R? form a basis of the subspace E under consideration, so
that any element of the subspace can be written as w(zy,x2) = zrw! + zow?.
Consider the polynomial p(z1,x2) = Pf(w(x1,22)). A change of the basis of
E induces a linear change of variables of the polynomial p(z1,z2) and the
transformation w + VTwV, V € GL(R?) preserves p(z1,z2) up to a scalar
multiplier since Pf(VTw(xy,22)V) = det V Pf(w(z1, x2)).

The following proposition holds.

Proposition 5. If d is even, then the codimension of any orbit of the
action ® in Gra(L32) is no less than d/2 — 3.

Proof. The space of degree-d/2 homogeneous polynomials of two variables
has dimension d/2 + 1 and the group GL(2) of linear changes of variables
in the plane is four-dimensional. The polynomials p(z1,z2) = Pf(w(z1,x2))
are invariant under the action ® up to linear changes of variables. We have
d/2+4+1—4=4d/2—3. It remains to show that any polynomial of degree
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d/2 is realized as Pf(w(x1,x2)). This is easy. Consider, for example,

J 0 - 0 ard 0 .. 0

o J --- 0 0 agd - 0
w=a|. . . |, =],

o0 --- J 0 o - a%J

where J denotes the antisymmetric (2 x 2)-matrix [ % §].
We have that

Pf(w(z:l, .Tg)) = (Oéo:El —+ 041332)(0401'1 —+ 0523']2) oo (Oloi]’]l —+ Oéd/QIZZQ);

hence any polynomial of degree d/2 in the variables 21 and z2 can be ob-
tained by a suitable choice of ag, a1, az, ..., g2 O

Corollary 3. Let d be even and (d,d + 2) be rigid. Then d < 8.

By Corollary 3, we should analyze only the cases, where d < 8, i.e., d =4
and d = 6. For these cases, we have the following assertion.

Proposition 6. For d =4 and d = 6, the bidimension (d,d+ 2) is rigid
with two isomorphism classes distinguished by the sign of the discriminant
of the polynomial Pf(w(z1,x2)).

Proof. Note that the roots of
Pf(w(z1,22)) =0 (5)

can be:

for d = 4: either real or complex conjugate;
for d = 6: either three real or one real and two complex conjugate.

Next we provide the multiplication table for a representing family F for
each of the above cases. This will show that the bidimensions (d, d + 2) are
rigid and the isomorphism class is uniquely reconstructed from the number
of real roots of Eq. (5).

d =4, real case. Consider a generic two-dimensional subspace of /\2 R,
Then Eq. (5) has simple roots and to form a basis of the subspace under the
consideration, we can choose two corank-2, antisymmetric (4 x 4)-matrices
w' and w? with transversal kernels. Let e1, e2, e3,e4 € R* be linearly inde-
pendent and such that eq, ey € ker w? with elTwleQ =1 and e3, eq € kerw!
with elw?es = 1. By writing Eq. (2) in these coordinates, we obtain the
following multiplication table:

[flva} :fﬂ—lv [f37f4]:f7r27 [flafj] = 0 otherwise. (6)
The normal form for F is given in Sec. 6 (see Eq. (34)).
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d = 4, complex case. Let (x1,1), (Z1,1) be a pair of conjugate complex
solutions of Eq. (5). Then w! = 210! + ©? and w? = 710! + &? are two
corank-2, antisymmetric (4 x 4)-matrices with complex coefficients such that

wh +w? =2Re(w!), w'—w?=2Im(w!).
Note that it suffices to find a normal form for Re(w!) and Im(w!). Indeed,

W™ w? ™ = (Re(wh) + ¢ Im(w!)) f™ + (Re(w') — 2 Im(wh)) £

14+~ 1—1
f7l'1+ 4 f7l'2>

= (Re(wl) +zIm(w1)) < 1

+Refw!) = stm@)) (S 4 )
= (Refe) + T (77 + 572 + P - )
HRe(e!) = et (07 4 77) = 7 - )
= 5 (Re(@H)(F + ) — (! (77 — )
= 5 (Re(w!) ~Tm(w")) /™ + 5 (Re(w!) + Tm(w)) .

Let p = p1 +1p2 and ¢ = p3 + 1ps € kerw' with p; Re(w!)ps =1 and
po Im(w!)py = 1. Then we can write in the coordinates py, pa, p3, pa:

0 0 1 1 0 0 -1 1
W lo 01 -1 W lo 0 11
Re(w) =11 3 ¢ o Im) 1 -1 0 0
1 1 0 0 1 -1 0 0

Finally, writing the equation w = wlfm +w2f”2 in the new coordinates, we
obtain the following multiplication table:

[f1, fo] = [f3, fa] = 0,
(1. f3] = —[fo, fa] = f™, (7)
[f1, fa] = [fo, f] = ™.
The normal form for F is given in Sec. 6 (see Eq. (35)).

d = 6, real case. Consider a generic two-dimensional subspace of /\2 R4,
Then Eq. (5) has simple roots (x1,1), (z2,1), and (z3,1). Let A1, Ao, A3 # 0
be such that Aj(z1,1) + Aa(z2,1) = A3(w3,1). Then w! = \a;@0b + \@?
for i = 1,2,3 are antisymmetric (6 x 6)-matrices such that w3 = w! + w?.
Moreover, by generic assumptions, we also have that the kernels of the
above matrices are transversal. Then let p; € R®, i = 1,...,6, be linearly
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independent, with p;,ps € kerw?, p3, ps € kerw?, and ps,pg € kerw? such
that pyw'ps = 1 and psw?ps = 1. In these coordinates we can write

J 0 0 0 0 O J 0 0
wl=10 0 0], w?=1]0 J 0|, &*=|0 J 0
0 0 —J 0 0 J 0 0 O
Finally, Eq. (2) gives the following multiplication table for F:
[f5, fel = =[f1, fo] + [f3, fal,  [fi, fj] = O otherwise. (8)

The normal form is given in Sec. 6 (see Eq. (37)).

d = 6, complex case. Let (x1,1), (x2,1), and (x3,1) be the three solutions
of Eq. (5), where x3 € R and 2o = 7; (we denote by Z the conjugate of
x). There exist A1, 2, 3 € C, where Ay = A\ and A3 € R, such that
wh = w0l + @2, i =1,2,3, are antisymmetric with

wh+w? =2Re(w!), w'—w?=2Imw'), w?=w'+w?=2Re(w).
Let p1,p2 € ker(w®), where p; Im(w')p2 = 1 and ps,...,ps are orthogonal

to the two-dimensional space generated by {Im(w!)p;, i = 1,2}. In these
coordinates we write:

D S O A £

where Re(w!)zs and Im(w!)ey are antisymmetric (4 x 4)-matrices with
Re(wh)2e 4= 2Im(wl)gs of corank 2. Therefore, it remains to consider the
complex case for d = 4 and, with the same arguments, we can write

00 0 00 0
00 0 00 0
W oo o o1 1
Re(@)=149 09 o 01 -1/
00 -1 -1 0 0
00 -1 10 0
01 0 0 00
10 0 0 00
W |l oo 0o o0 -11
mwH=1 949 o o 1 1
00 1 -1 00
00 -1 -1 0 0

and
= 3 (Re(w!) — TIm(wh)) /™ + 5(Re(w!) + Im(w!)) .
Finally, we obtain the following multiplication table:
i fol = F™ = ™ [fs fsl = =Lfas fo] = [,
[f3, f6] = [fa, fs] = ™. [fi, fi] = 0 otherwise.
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The normal form for F is given in Sec. 6 (see Eq. (38)). O

To complete the analysis for m = 2, it remains to study the cases where
d is odd.

Proposition 7. Let d = 2k+ 1. Then the bidimension (d,d+2) is rigid
with only one normal form.

This result can be deduced from the classical Kronecker’s classification
of singular matrix pencils (see [8] and [7]) and we omit the proof.

3.3. The case m = 3. In this case, we deal with the three-dimensional
space of antisymmetric (d x d)-matrices.

Proposition 8. The bidimension (4,7) is rigid with two isomorphism
classes distinguished by the signature of the quadratic form

Pf(z1w! + zow? + z30%).
Proof. The equation Pf(zjw! +zow? +230w%) = 0 can be rewritten as follows:
(71, T, 23] Alz1, 72, 23]7 =0, (10)

where A is a symmetric (3 x 3)-matrix. Depending on the signature of A, we
either have real roots (corresponding to an indefinite matrix A) or complex
roots (corresponding to sign-definite A). Next, we provide the multiplication
table for a representing family F for each of these cases. This will show that
the bidimensions (d,d + 3) are rigid and the isomorphism class is uniquely
reconstructed from the number of real roots of Eq. (10).

d =4, real case. Consider a generic three-dimensional subspace of /\2 R,
Then the matrix A of Eq. (10) is nondegenerate. If A is not sign-definite,
then we can assume that

0 2 0
A=|4 00
0 0 1
Hence the real solutions of Eq. (10) are
(@11, T21,231] = [1,0,0],
[‘T12, x22, 35'32] = [ 5 17 0];
[%13, T3, w33] = [a,b,¢], where ab+ c? = 0.

Then w! = &', w? = &2, and w? = a@' + bd? + c3, where ab+c¢? = 0, have

corank 2. Moreover, under generic assumptions, we have that the kernels
of w!, w? and w3 are transversal. In the coordinates pi,ps € ker(w?),
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p3,p4 € ker(w!), with piwips = 1 and p3w?ps = 1, we write:

01 0 0 0 0 0 0

1| -1 000 2 |1 00 0 0

=l oo0oo0o0|”“T]oo0o 01

00 0 O 0 0 -1 0

and
w? = adt + bo? + ci®

0 a + cwig CW13 CW14

| —a—cwi2 0 CWa3 CWay
o —cwi3 —cwa3 0 b+ cwsy

—CW14 —CWa4 —b— CW34 0

where w;; are the components of &3. Since w? has corank 2, the following
condition holds for all a, b, and ¢ such that ab+ ¢ = 0:

0= (a + Cw12>(b + CU)34) — cz(w13w24 — w23w14). (11)

By Eq. (11), it follows that w3 = w34 = 0 and

Wi3Wa4 — WozWig = —1. (12)
In particular, setting a = 1, b = —1, and ¢ = 1, we obtain that w? has the
form
J (@3)
3 _ 12
w" = [ ) 1T _J )

(@12
where by (@%);; we denote the (i, j)th (2 x 2)-block of the block matrix de-
composition of 3. Now let P; = (&°)75 . Then, by Eq. (12), det(P;) = —1
and, setting

|0
P[O IJ’
we obtain
T 15 | —J 0 T 2,5 | 0 0
7o (13)
T, 3 — 2
(P)'w’P {12 J}
Finally,
0 -1 0 0 0 0 0 0
1 0 0 O - 0 0 0 0 o
“=19 o000t o0 o1|f
0 0 0 0 0 0 -1 0
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0 -1 1 0
1 00 1|,

1l 00 -1 |f
0 -1 1 0

which gives the following multiplication table:
[fr, fo] = =f™ = ™,
[fs; fa] = f™ = [,
[f1, f3] = [f2, fa] = 72,
[f1, fa] = [fo, f3] = 0.
The normal form is given in Sec. 6 (see Eq. (40)).

d =4, complex case. A positive-definite matrix A can be represented in
the following form:

1 0 0
A=1]10 1 0
0 0 1
Consider the complex solutions [x11,Z21,231] = [1,4,0], [212, 222, X32] =

[1,—14,0], and [z13, Z23,733] = [a,b, c], where a? 4+ b? + ¢ = 0. With this
choice, w! = &' +10?, w? = @' —1@?%, and W? = a®! + b@? + 3, where
a® + b% 4 ¢ = 0, have corank 2. Moreover, following the same arguments

as for the complex case with m = 2 and d = 4, we can write

0 0 1 17
- 0 01 -1
1\ _ ~1 _
Re(w') =" = 1 -1 0 E
| -1 1 0 0 |
[0 0 -1 1]
- 0 0 1 1
1\ _ ~2
Im(w") =&° = 1 1 0 0
| -1 —1 0 0 |
In the same coordinates we write
W = ad" + bd? + ?
0 cwis a—b+cwis a-+b+ cwig
_ —Ccwia 0 a+b+cwasz —a+b+ cwoy
—a+b—cwiz —a—b— cwsys 0 CwWsy ’
—a—b—cwiy a+b—cwoy —Cw3y 0

where w;; are the components of @3. Since w? has corank 2, the following
condition holds for all a, b, ¢ such that a? + b% + ¢ = 0:

2(a® + b%) + be(waz + wisg + wag — w13)
+ ac(w23 + w4 — wag + 'w13) + 62\/ det(&;3) =0. (15)



464 A. AGRACHEV and A. MARIGO

By Eq. (15), it follows that wi3 = wag, wesz = —wi4, and /det(ws) = 1,
hence wiawss — wi; — w?, = 1. Let now P = —(@%)1}(@%)12, where by
(@%);; we denote the (i, j)th (2 x 2)-block of the block matrix decomposition

of @3, and
P:{ \/1},?12 \/7~U12P1:|
0 Vuwizle |
J 0
0o J |’

while @; and @s remain unchanged. In particular, by setting a =0, b =1,
¢ =1, we have

Then we obtain
(P)T&3p = {

(P)TwsP =4(P)T P + (P)T &3P

and
0 0 1 1 0 0 -1 1
o=l o o 00 |0”
—1 1 0 0 -1 -1 0 0
0 1 0 0
—1
o0 0|0
00 -1 0
The corresponding multiplication table is
[f1, fa] = [f3, fu] = £,
[f1, fs] = =[fas fal = f7 = [, (16)
[f1, fa] = [fo, f3] = [T + ™.
The normal form is given in Sec. 6 (see Eq. (41)). O

Now let d = 5. Recall that an antisymmetric matrix can be considered
as a skew form of degree 2, we consider the wedge products v’ = w* Aw? for
i < j which are 4-forms in R%. We then have that v/, i < j,4,j = 1,2, 3, are
6 vectors in R5. Let a;; € R, i< j,i=1,2,3, be such that ) a;;v7 = 0.
3

zpw", we have
=1

Taking @' =
h—

Vi = E ThiTkjVhks Ohk = E Thi Ty Q-
Ik Ik

That is the symmetric matrix A of coefficients a;,

app H9E AR
12 @23

_ a
A= 2 Q22 2 )
Q13 Q23
2 2
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is mapped to x~T Az~!, where

T11 T21 T31
T=| Ti2 T22 T32
T13 T23 T33
The matrix A is defined up to a nonzero scalar multiplier, hence the trans-
formation A — —A is also allowed. We have the following assertion.

Proposition 9. The bidimension (5,8) is rigid with two isomorphism
classes distinguished by the signature of the symmetric matriz A.

Proof. First, observe that w A w € kerw if corank(w) =1 and w Aw = 0 if
corank(w) > 1. Then

VIV (VTlwAw) = VTw(wAw) =0.

Now, since

(21w +2ow? F 23w A (1w F20w? +1303) = E Tz W Aw! = g TiT;0Vi5,
i i

we have that, under the action of V' € GL(R®), each vector v;; is mapped
into Vflvij. Hence the coefficients «;; of A remain unchanged under the
action of GL(R®). This fact shows that the signature of the symmetric
matrix A is an invariant for the bidimension (5, 8).

Under generic assumptions the matrix A is nondegenerate and the pos-
sibly arising signatures of A are +++ and ++—. Next we provide the
multiplication table for a representing family F for each of the two cases.
Thus we will show that (5,8) is a rigid bidimension with two isomorphism
classes.

We can assume that A has the form either

1 0 O
A=1]0 1 0
0 0 -1
or
1 00
A=1]10 1 0|,
0 0 1
depending on the signature of A. Recalling the geometric meaning of the
coefficients of A, we have v11 + V92 = v33 Or v11 + vV2g = —v33, in the first

and second case, respectively. First, we choose a coordinate systems for the
case m = 2 and d = 5. Then we can write

J 0

0 0
00 -1 0

€
-

I
olo~ oo
&

v}

I
oclooc o~
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In these coordinates v1; = [0,0,0,1,0] and ves = [0,1,0,0,0]. Therefore,
v33 = £[0,1,0,1,0] for the first and second case. Since w3v33 = 0, we have
that w? has the form

0 w129 w13 —WwW1i2 w15
—wi2 0 Wa3 0 was
w?=| —wiz —wos 0 wez W35 |,
w12 0 —W23 0 —Was
—wis —W25 —W35 W25 0

where wiowss + wiswes — wiswes = £1. Computing now v;; for ¢ < j, we
have

vi2 = [0,0,0,0,—1], w3z = £[0, —wi2, —was5, —wW3s — W12, Wa3),

V12 = t[was, —was — was, 0, —wag, Wia).

Taking P = [v11, Va2, V12, V13, Vag], We obtain:
0 0 0 0|0 0 0 0 -1 0
0 0 0 01 0 0 O 0 0
PTu'P=|{0 0 0 1|0, PTw?P=]0 0 0 0|-1
0 0 -1 010 1 00 0 0
0 -1 0 0|0 0 0 1 0 0
and, either
[ 0 0 1 0 0
0 0 -1 0 0
PTWP=| -1 1 0 0| 0
0 0 0 0] -1
| 0 0 0 1 0
if the first case holds, or
0 0 1 00
0 0 -1 00
PlwPp=| -1 1 0 0|0 ],
0 0 0 01
0 0 0 71‘0
if the second case holds. Finally, by
0 0 0 0]0 0 0 0 -1 0
0 0 0 01 0 0 O 0 0
w=1|0 0 0O 1|0 ff™*+]0 0 O 0| -1 1| f™
0 0 -1 010 1 00 0 0
0 -1 0 0‘0 0 0 1 0‘ 0
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0 0 1 0 0
00 -1 0 0
=11 0 o ofym
0 0 0 0|=F1
00 0 1| 0
we have the following multiplication table:
[f2, f5] = [fs, fa] = £,
[f17f4]:[f3af5]:_fﬂ2a (17)
[fl)f?)] = _[f27f3] = q:[f47f5] = fﬂ37
[f1, fo] = [f1, f5] = [f2, fa] = 0.
The normal forms are given in Sec. 6 (see Eq. (42)). O

3.4. The case m = 4. Recall that for m = 4, the only case to analyze is the
case of d = 5. A simple calculation shows that the submanifold of rank-2
antisymmetric (5 x 5)-matrices has codimension 3 in the projectivized space
A’ R® of all antisymmetric (5 x 5)-matrices. Let & = [z1, 22, 23, 74] and

w(x) = r1w! + Tow? + 130> + 0t

be a generic 4-dimensional vector subspace (or a three-dimensional pro-
jective subspace) of /\2 R®. Then w(z) intersects the submanifold of rank-2
matrices in a finite number of points. We show that the bidimension (5, 9) is
rigid with isomorphism classes distinguished by the number of these points
which we are going to locate effectively.
First of all, we may assume without loss of generality that
4
w = Z(xiwz)lg
i=1

does not vanish in rank-2 points. Provided that w # 0, we can assume the
following block matrix decomposition (the Schur theorem):

w@ = |

w292 (l‘)

where wy1(z) = wJ is nonsingular antisymmetric (2 x 2)-matrix and

. 0 ds da
w2 (33) = E —d5 0 d3
—dy —ds O

is antisymmetric (3 x 3)-matrix, where d; = d;(w(x)) is the Pfaffian of the
ith principal minor of order 4 of w(z). Then we have that w(x) has rank 2
if and only if d3, d4, and dy are zero, i.e., if x is the root of 3 homogeneous
polynomials of degree 2, with the additional condition that w # 0. Of
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course, d; and dy also vanish at such a root (otherwise w(z) would have
rank 4).

Proposition 10. The bidimension (5,9) is rigid with three isomorphism
classes distinguished by the number of real solutions of the system d; = 0,
i=1,...,5.

Proof. As in the proof of Proposition 9, we have that under the action of
V € GL(R?), each vector v; is mapped into ¥;; = Vflvij. Then

dp = dp(VTw(@)V) =Y @i (0i)s = Y wia; (Z(Vl)kh(%‘)h>

= (VO wiw (wij)n) =Y (V" knds,

h h

where (v), (respectively, (V)gr) denotes the kth (respectively, (kh)th) com-
ponent of the vector v (respectively, of the matrix V'); thus, we obtain that
dy belongs to the linear space generated by dy, ..., ds. This shows that such
a linear space is invariant under the action of ®.

Now we assume that w', w?, and w? are in the normal form obtained for
m =3 and d = 5. Then w(z) is equal to

0 T4W12 T3 + Tawis —T2 + T4W14 T4W15
—T4W12 0 —T3 + Tawas T4W24 T1 + Tawas
—X3 — T4W13 T3 — T4W23 0 T1 + T4Wsg —T2 + T4ws3s s
T2 — T4Wi4 —X4W24 —T1 — T4W34 0 +x3 + TaWw4s
—T4wW1s —T1 — T4W25 T2 — T4W35  FT3 — T4Was 0
where w;; are the coefficients of w*. The computation of d; for i = 3, 4,5
yields
d3 = ds(w*)a] + (- +
3 = d3(w”)zy + (—wiaT1 + wosTo £ Wi2T3)T4 + T172,

dy = d4(w4)xi + (w131 — wia®s — (Wa5 + Wis)T3)Ts — T123,
ds = d5(w4):cﬁ + (w121 — waska — (W + Wi4)T3) T4 + T3T2.

Generically, there are 8 solutions of the system d; = 0, ¢ = 3,4, 5. Note that
3 out of 8 solutions correspond to solutions with x4 = 0. Since such kind of
solution violates the condition w # 0, it must be discarded. There remains
5 solutions. We can have:

(1) five real solutions;
(2) three real and two complex conjugate solutions;
(3) one real and two pairs of complex conjugate solutions.

Next we provide the multiplication table for a representing family F for
each of these cases. This will show that (5,9) is a rigid bidimension with
three isomorphism classes.
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Case (1). Assume that the five solutions x' = [z1;, 72, ¥3i, Tai],
i=1,...,5, are all real and, since w(z) is a generic subspace, 4 by 4 linearly
independent. Let Aq,..., A5 # 0 be such that

4
E /\il‘2 = /\5.735.
i=1

Let @° = w(\;x?). By the choice of \; we have that

4
> @ = s,
=1

Now assume that for all i = 1,...,4, & has rank 2 and denote by V; its
kernel, which is a three-dimensional space, and by v;; the one-dimensional
space V;NV; (recall that, generically, V; are transversal). With this notation
we have that

Vi = {v12, v13, v14}, Vo = {v12, Vo3, U2a},

Va = {v13,v23,v34}, Vi = {v14,v24, 034}
Now let P = [v12,v13, V14, V23, V24], Where v;; are suitably rescaled. Then
we obtain

[0 0 0 0 0 0 0 0 0 0
000 00 0 0100
PTo'p=10 00 00|, Pf&?*P={0 -1 00 0],
000 01 0 0000
|00 0 -1 0 |0 0000
[ 00 1 0 1 [0 b 0 10
00 00 0 b 0 0 ¢ 0
PT*Pp=| -1 0 0 0 a |, Pla*P= 0 0 0 0 O
00 00 0 -1 — 0 0 0
| -1 0 —a 0 0 . 0 0000
Since
o b 1 1 1
-b 0 1 ¢ O
PfosP=| -1 -1 0 0 a
-1 — 0 0 1
-1 0 —a -1 0
has also rank 2, it must be a = —b = ¢ = 1. Finally, we have
000 00 0 0000
4 000 00 0 0100
w=Y @fi=1000 00|f"+[0 -1 00 0|fm
=1 000 01 0 0000
000 —10 0 0000
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0 0 1 0 1 0 -1 0 1 0
0 0 00 0] 1 001 0]
+1 -1 0 0 0 1 | f™+ 0 0 00 0| /fm™
0 0 0 0 O -1 -1 0 0 O
-1 0 -1 0 O 0 0 0 00O
and the following multiplication table:
[f47f5]:~7r17
[fo, f3] = ™,
(1, f3] = [f1, fs] = [fs, fs] = ™, (18)
—[f1, fol = [f1, fa] = [foo fa] = F™,
[f2, fs] = [f3, fa] = 0.

The normal form is given in Sec. 6 (see Eq. (43)).

Case (2). Next, consider the generic case, where two solutions x! and 22
are complex conjugate and 2, z#, and 2° are real and Re(x!), Im(z!), 23,
z* and z°, 4 by 4 linearly independent as points of R*. Then we can choose
A1, ..., A5 # 0 such that

4
A1 Re(x!) + Ao Im(2') + Z Nzt = \sa®.

With this choice, &' = w(A; Re(x!)), @2 = w(Ay Im(2!)), and &° = w(\;x?)
for i = 3,4,5 are such that
4

El

Note that
w1 = Re (w(/\lxl)) , Wy =1Im (w()\ng)) )
Now w(A12t) has rank 2 and, if v1, vo, and v3 are three independent vectors
of the kernel, then the conjugate vectors vy, U2, and v3 are independent
vectors of the kernel of w(Agz?).
Note that for every ai,as, ay € C3,

)\1x (Z Otﬂ),) = w( )\2:17 (Z a,v,) =0.
On the other hand, there exist «;, i = 1,2, 3, such that
v=" ;=Y (Re(a;) Re(v;) — Tm(e;) Tm(v;))
+1 Z (Re(a) Im(v;) + Im(ev) Re(v;))
is a vector with real coefficients, i.e.,

> (Re(e) Im(v;) + Im(a;) Re(v;)) = 0.
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Therefore, there exists v € R® such that

whzhv = wez?)v =0
and, in particular, @'v = @%v = 0. Then we take vy, vz, and v; = v as the
basis for the kernel of w(Ajz?).
Let Vi be the space generated by {v1,Revs,Revs} and V3 and Vj be
the kernels of & and @, respectively. Then we denote vy; = Viny; for
j = 3,4, and 9;; are the vectors such that

w(hat)(vyj +2015) = 0.
Finally, if we set P = (v1 v13 v14 013 ¥14), we obtain
Re (w(Aiz")) v1; = Im (w(Xizh)) 015,
Re (w(/\lxl)) 015 = —Im (w(/\lxl)) v1j,
which implies
f}ﬂ Re (w(Aiz')) v1; = ’Ulj Im (w(Az!

) V15 =
m (w(ha')) vy = vl Re (w(Azh)

)@

)

<
<.

1j

1 1] vlz Re ( (Alxl)) ’lA)lj,

(s
=l Im (w(hiz
of; Tm (w(Mzh)) 015 = vf; Re (w(Mzh)) by

0]
)) vij = 91; Re (w(Azh)) v

H\_/\_/\_/~,

—vf; Im (w(Aiz

Therefore,
[0 0 0 0 0]
0 0 a 0 b
PTRe (w(Mz"))P=|0 —a 0 -b 0 |,
0 0 b 0 —a
|0 b 0 a 0]
[0 0 0 0 0]
0 0 —b 0 a
P'Im(wMz'))P=|0 b 0 —a 0
0 0 a 0 b
| 0 —a 0 -b 0|
Similarly, we obtain a form for Re (w(A22?)) and Im (w(A22%)). Moreover,

by a suitable choice of the lengths of the columns of P, we obtain

0 00 0 0
0 01 0 1
P'&'P = PTRe (w(\2'))P=|0 -1 0 -1 0 |,
0 01 0 -1
0 -1 0 1 0
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0 0 0 00
0 0 -1 01
PT&?P =Pl Im (w(Xe2?))P=]|0 1 0 -1 0 |,
0 0 1 01
0 -1 0 -1 0
i 0 0 1 a1 as
00 0 0 O
PT@HpP=| -1 0 0 a3 a4 |,
—aq 0 —as 0 as
L —as 0 —a4 —as 0
[0 b 0 by by
~b; 0 0 by bs
PT(@YP = 0 00 0 O
~by by O 0 b
| by —bs 0 —bg O

Since @%, &*, and @® = Y &' have rank 2, we have a5 = ajay — asas,

bibg = babs — bzby, and d;(0°%) =0 for all i = 1,...,5, i.e.,
b —2)b 2 b
b= 2y o (=2 20+ asby
as as ag
Now we set for all i < j, 9;; = (PT@'P) A (PT&I P). In particular, we have
511 = 322 = [2,0,0,0,0] and 3% = 5% = 512 = [0,0,0,0,0].
By choosing Py = [013014023024034] (and suitably rescaling it), we obtain

o 4+ 0 -3 o0
-+ 0 4 0 o0
(PP) &Y (PP) = 0o -+ 0 -3 1],
10 L 0 41
| 0 0 -1 1 0|
0o f o I -1
2 2
oy -3 0 -+ 0 1
(PP)TO*(PP) = 0 3 0 —3 01,
-3 0 & 0 0
| 1 -1 0 0 0]
00 0 00
000 -1 0
(PP)T3(PP)=|0 0 0 0 0|,
010 00
000 00
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00100
00000
(PP)TG*(PP)=| -1 0 0 0 0
00000
00000

Finally, Eq. (2) gives the following multiplication table:

[f3af5] = _[f4af5] = fW1a

= [f1, f5] = [f2, 5] = ™2,

— [fo, fa] = ™,
[f13f3] :fﬂ'4’ (19)
[f1, fo] = =[f3, fa] = %(f”1 + ™),

o fi) = =Ufo. o] = (=47 + £72)

The normal form is given in Sec. 6 (see Eq. (44)).

Case (3). Finally, we consider the case of two distinct pairs of complex
conjugate solutions and only one real solution. We denote these solutions
by z!, 22 = 2! 23, 2* = 2, and x5 € R*. Moreover, generically, there exist

A1, ..., A5 # 0 such that
A Re(z!') + Ao Tm(2!) + A3 Re(2®) + Ay Im(2®) = A5,

and hence, by denoting y1 = A1 + tAa, Yo = Y1, Y3 = A3 + 1Ay, Y4 = ¥3, and
Ys = A5, we have

Re(j1a') + Re(yzz®) = ysa°.
Therefore,
5

)

i3 =0

+

&

where

&' = Re(w(pa")), @ = Re(w(yz2?)),
&2 o

Im(w(jz')), = Im(w(y32°)),

2 and @3 + w0* are two complex, rank-2, antisymmetric

Moreover, @ + 1@
matrices.

By the same arguments as for the previous case, there exist vy, vy € R?
such that @'v; = @&%v; = 0 and @3vs = @4ve = 0. Complete vy, vs to a basis

of R%. Then, in these coordinates, we can write

2
o [(won 8], i=3.4,
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where (0')22, (©0?)22, (@3)11, and (@?)11 are some antisymmetric (4 x 4)-
matrices with determinant 1. Indeed, since &' + @2 has rank 2, we can
write
0= (0" +10H) A (@Y +10%) = (@' AO' — &* AD?) + (@0 AD?),
which implies that
GPA? =0, A =P AD% (20)

A
Hence from the second of Egs. (20), y/det((@!)22) = /det((@2)22). The
same relation holds for (©3);; and (©%)1;.
Now recall that @® = &' + @3 is a real rank-2 antisymmetric matrix.
Then

ot

0=’ AP =" AT+ P NG + 201 AP,
and hence )
DAY= =g (@ AGT T AGT) (21)
Finally, denoting v;; = &' A @/ for all i < j, we have that vy = vaa,
V33 = U4q, V12 =0, v34 =0 (by Eqgs. (20)), and 2vi3 + v11 + vae = 0 (by
Eq. (21)). Then the suitably rescaled matrix P = [v1] v14 V23 Vo4 Vs3]
transforms @' as follows:
[0 0 00 0] [0 0 0 0 0]
0 0 -1 0 0 0 0 0 0 1
pPfotp=lo0o 1 o0 o], P'&?’pP=|l0 0 0 1 0],
0 0 00 -1 0 0 -1 0 0
1 00 0 1 0 | | 0 —1 0 0 0|
[0 001 0] [0 0 -1 0 0]
0 01 00 0 0 0 1 0
PTH3pP = 0 -1 00 0}, Plo*P=|1 0 0 0 0
-1 00 0 O 0 -1 0 0 0
| 0 00 0 0 0 0 0 0 0|

Finally, we have the following multiplication table:

_[f47.f5]:fﬂ17 [f23f5]:[f37f4]:fﬂ27 [flaf4]:fﬂ—37

=lf1, fs] = [fo, fal = ™, [fo, fs] = =f™ 4+ 7, (22)
[f1. fo] = [f1, fs] = [fs, f5] = 0.
The normal form is given in Sec. 6 (see Eq. (45)). O

4. THE CASES WHERE r = 3

We only have to consider the cases
(i) d=2andm=1,

(ii) d=3 and m =1,

(ili) d=3 and m = 7.
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First we observe that (i) corresponds to the Engel algebra: the growth
vector is (2,3,4). It is known that there is only one isomorphism class for
this case. For completeness, we give its normal form in Sec. 6 (see Eq. (46)).
For (ii) and (iii), the following propositions allow us to reduce the analysis
of (iii) to that of (ii).

Proposition 11. Any E € Gr,,(£3) can be identified with an m-
dimensional subspace of the space T'(3) of (3 x 3)-matrices v such that
trace(Cvy) = 0, where

0 0 1
C=]0 -1 0
1 0 0

Proof. Fix generators fi, fa, and f3 for £} and let f™ be generators of
E e Gr,, (ﬁg) Then we can write

fla fjvfk Z%]kfﬂh

Note that, since

Lf1, [f2, f3] = [f2, L1 f3]] = [, s fol]s

the relation viyy = 54 — 7% holds. Denoting

h h R
N ’Y}le ’7%12 ’Y:}slm
Y= 1 713 7213 V313 |
h h h
Y123 Y223 V323

we have that trace(Cy") = 0 for all h = 1,...,m. Moreover, if we choose a
different set of generators for F, i.e.,

m
fﬂ-h = Z xhifﬂ-i7
i=1

then
fla fjafh = Z
where
= th17h7
h=1
and

trace C'y Z Thi trace(07 )=

Then E can be described by an m—dlmensmnal subspace in T'(3) generated
by ¥*, h=1,...,m. [
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Proposition 12. If r = 3, then the bidimension (d, Z:fl + 1) is rigid if
and only if the dual bidimension (d, ¢}, — 1) is rigid.
Proof. Now in I'(3), we define the bilinear symmetric product
') xri3)—-~R

by (v,n) + trace(yn?). Then if E is generated by 7", h = 1,...,m, we
define E+ to be the set of v such that (y,7") =0forall h=1,...,m
Now we consider the mappings

T : GL(RY) — Gr,,,(£3), Vi ®(V)(E),
T : GLR?) — Gryyz)-m(L3), V= &(V)(EY).

We show that for all V € GL(R?), U(V-T) = (¥(V))*, so that a one-to-one
correspondence between the image of ¥ and that of U is established and
the proposition is proved.

The induced action of ®(V) on v € I'(3) is calculated as follows:

( )[fla f]vfk [szlfla [ngrfrazvksfs‘|‘|

Z 'Uilvjruks[flv [frv fs]]

l,s,r=1
3 3
= Zvil < Z 'Ujrvks[fla [frvfs]])
= s,r=1
= szl <Z VjrVks — Ujsvkr)[fb [f'm fs]]) 5
r<s

from which we obtain
(V) =cv-TCTyhyT, h=1,...,m.
Note that
trace(V T CTyVT) = trace(VIV=TCT) = trace(CT).

Therefore,
O(V):T'(3) — T'(3)
for all V € GL(R?). Moreover,

(®(V)y,®(V-1)n) = trace((CV-TCTAV T (CVCTyv—1)T)
= trace((CV-LCTAVTY (V- TyTcvTcT))
—trace((CVTCT)(CV TeTyynT)
= trace(yn?) =

for all y € E and n € E+. O
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Next, we analyze the case of m =1.
Let (V) : CTT(3) — CTT(3), where (V) = CT o ®(VT) 0 C, i.e.,
d(V)(CTy) =CTev=rCcTyv =v—icTyv.

The dimensions of the orbit of ® and that of ® coincide. We have the
following assertion.

Lemma 2. The codimension of any orbit ofi in ['(3) is greater that or
equal to 2.

Proof. The characteristic polynomial of Cy is an invariant of the action of
®. Indeed,

p(\) = det(VICTAV — AI3) = det(CTy — \I3).

Since trace(CT+) = 0, we have that p()) is defined by 2 coefficients and the
codimension of any orbit of ® is no less than 2. O

Proposition 12 and Lemma 2 immediately imply the following assertion.

Proposition 13. The bidimensions (3,7) and (3,13) are not rigid.

5. THE CASES WHERE r = 4

For r = 4 we only should consider the cases where d = 2 and m = 1, 2.
For d = 2 and r = 4, we have f5(4) = 3 brackets of degree 4 which are
linearly independent with respect to the Jacobi identity: [f1,[f1, [f1, f2]]],

[f2, [f1, [f1, f2ll], and [f2, [f2, [f1, fol]].
Now let E C Gr,,,(£3) and f™, h = 1,...,m, be generators of E. Then F
can be identified with an m-dimensional space of (2 x 2)-symmetric matrices.
Indeed, for all I, s = 1,2, we can write

[fla [fsa [fl; f2]]] = ZQZ}Lszrh.

h=1

Let Q" be the matrix with coefficients ¢'. Since
Ailfus s s folll + Aalfe, [ 1, folll = [f2, [f1, [fas folll,

m -

we have that Q" are symmetric of order 2. Moreover, if f™ = > ap; f™,
i=1

then

m

o [fo (s Il = @l f™,

i=1

-~ m
where Q' = Y z1,;Q".
h=1



478 A. AGRACHEV and A. MARIGO

Next, we compute the induced action of ®(V), V € R2, on the space
Sm(2) of symmetric matrices of order 2 corresponding to E. From

(I)(V)[fly [f57 [fm f]]]] = [Z Ulrfr; [Z Usmfma dEt(V)[fla f2]]‘|

m

Z'Ulrfra [Z vsmfm, [.fl» f2]]‘|

= det(V) Zvlrvsm[f'r‘a [fm [f1, f2]]]

= det(V)

we obtain ®(V)Q" = det(V)VQ"VT. Therefore, the degree-2 homogeneous
polynomial

det (Z thh> (23)
h

in the m variables x1, ..., x,, is invariant under the action ® up to a positive
scalar multiplier.
For m = 1 we have the following assertion.

Proposition 14. The bidimension (2,6) is rigid with two isomorphism
classes distinguished by the sign of determinant (23).

Proof. For m = 1, Eq. (23) reduces to det(Q)), whose sign is invariant under
the action ®. A generic symmetric form ) can be either sign-definite or
indefinite (corresponding, respectively, to det(Q) > 0 or det(Q) < 0). For
each of these cases, we will give the multiplication table thus showing that
(2,6) is rigid with two isomorphism classes.

m =1, Q is positive-definite. Assume that @) is positive definite and of

the form
2 1
o=[1.]

Then we have the following multiplication table:
[f23 [flv [fla fQ]]] = [07 1]@[17 O]TJMU = f7r17
[fr, [fr, [, £2l] = [1,00Q[L, 0] f7 = 2™, (24)
[fo, [f2: Lf1s foll] = [0,1]Q[0, )T f™ = 2™

The normal form is given in Sec. 6 (see Eq. (47)).

m =1, Q is indefinite. Assume that @ is indefinite and has the form

Q:Hé].
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Then we have the following multiplication table:

[fr. [fo. [fr, f2)l]) = [1,00Q[0,1] 7 f ™ = f™,

L1 U s £20]] = [1,0]Q[L, 0] f™ =0, (25)
[fo, [f2, [f1. fell] = [0,1]Q[0, 1] f™ = 0.
The normal form is given in Sec. 6 (see Eq. (25)). O

For m = 2, we have the following assertion.

Proposition 15. The bidimension (2,7) is rigid with two isomorphism
classes distinguished by the sign of the discriminant of polynomial (23).

Proof. (23) is a homogeneous polynomial of degree 2 in two variables whose
coefficients are invariant under the action of ®. Then the equation

det(z1Q' + 2,Q%*) =0 (26)

has two solutions that can be either real or complex conjugate. For each of
these cases, we will give the multiplication table thus showing that (2,7) is
rigid with two isomorphism classes. O

Remark. The sign of polynomial (23) could serve as an extra invariant in
the complex case, but a simple analysis shows that this sign is unavoidably
negative.

m = 2, real case. Assume that Eq. (26) has real solutions. Under generic
assumptions, we can assume that they are distinct and that there exist Q*
and Q? in the linear space Sy(2) of symmetric (2 x 2)-matrices of order two
corresponding to F, of corank 1 with transversal kernel. By setting p; and
po to be eigenvectors corresponding to the zero eigenvalue of Q? and Q!
respectively, we have that P = [p1, po], the matrix of columns p; and ps, is
such that

QIZPT(QI)P:[(l) 8} QQZPT(QQ)Pz[g H

Finally, we obtain the following multiplication table:
1 U U ol = [L,01(Quf™ + Qo f™) (1,07 = f™,
L2, [fo. L1, foll] = [0, 1(Quf™ + Q2f™)[0,1)" = f™, (27)
Lo [ L, foll] = [0, 1](Quf™ + Q2 f™)[1,0]T = 0.

The normal form is given in Sec. 6 (see Eq. (49)).

m = 2, complex case. If there exists a pair of complex conjugate solutions
of Eq. (26) then we can assume that @ and @2 in S(2) are complex
conjugate. Now let p; and ps be such that p = p; 4+ 1ps € ker Q1, i.e.,

0= (Re(Q1) +2Im(Q1))p
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= (Re(Q1)p1 — Im(Q1)p2) + ¢ (Re(Q1)p2 + Im(Q1)p1) ,
hence, by setting P = [p1,p2], we obtain

Re(Q1) = PT(Re(Q1))P = [

—_ =
\

T
—_

Q) = P m(@0)P = | )
Denoting
fro= ST ), = S ),
we have that
Quf™ +Q2f™ =Re(Q)f™ —Im(Qy) f™

and obtain the following multiplication table:

[f1: Lfos Lfes 2l = [1,0] (Re(Q1) f™ — Im(Q1) f™) (1,017 = f™ + f™,
[f2> [f27 [fl; fQ]]] = [07 1](R6(Q1)fm - Im(Ql) ~W2)[07 HT = _fm - fﬂzﬂ
S

f
o L1, L1, fol]] = [0, 1)(Re(Q1) ™ —Tm(Qu) F7)[1, 01" = f™ — f™.
(28)
The normal form is given in Sec. 6 (see Eq. (50)).

6. NORMAL FORMS

To calculate the normal form of a set of smooth vector fields F, by the
known multiplication table, it suffices to apply the Campbell-Hausdorff
formula. Indeed, assume that F = {f1,..., fa} is regular at gy and the Lie
algebra Lie F is n-dimensional with the basis f?, i = 1,...,n. Then the
exponential mapping

D : infi > o exp <Zmzfl>
i=1 =1

is smoothly invertible in a neighborhood of 0 € Lie / = R™ and defines local
coordinates in a neighborhood of qq.
Let ¢ — get!”, t € R, be the flow on M generated by the field f7. If

qg=2o (Zn: xifi),then

i=1

qexp(tf?) = qoexp (Z xiﬂ) exp (tf7)

i=1

= qoexpln <exp (Z mi]”) exp (tfj)>

i=1
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= <1nexp (i xz]”) exp (tfj)> )

where the product under the logarithm is an element of the “abstract” Lie
group generated by the Lie algebra F. Hence the coordinate representation
of the flow ¢ — ge!” is as follows:

infi — In <exp (Z xzf’> exp(tfj)> ,

i=1 i=1

and the coordinate representation of the vector field f7 as a vector-valued
function of z = (z1,...,z,) is

0 In (exp (Z xzfl> exp(tfj)> .
t=0 i=1

T r— =
ot

By the Campbell-Hausdorff formula we can write
; 1 .
In(e/ ety = f+tf7 + S[f,tf]

+ ﬁ([fa [fatfjﬂ - [tfjv [fatfj]]) - ﬁ[fa [tfj7 [fatfj]]] +
(29)
from which
d

Sl mere = S P S P 30)

t=0

Note that in Eq. (29), the brackets of order 4 appear only as a O(t?) term.
Hence in Eq. (30), the brackets of order 4 disappear. Substituting in (30)
the expression of f yields:

Ol el le £ + Z w4 1" )] +

ot t=0 zh 1

(31)
and, finally, substituting the expressions for [f?, f/] and [f?, [f", f]] as in
the multiplication tables yields the expression for f7 in the coordinates
0/0x; at the point z.

Next we give the resulting expressions of f7 for each multiplication table.
First, we consider the rigid bidimension (d,d + 1) corresponding to r = 2
and m = 1. From the multiplication table given in (3), we have f! = f; for
i=1,...,d and f¥*! = [f}, fo]. Then Eq. (31) has the form

d

0 v 1

i In(efetli) = f; + 5 Z%[fmfjh
t=0 i=1
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and hence, in the coordinates 0/dx;, we have

i—i—lx» L if j is even
896]- 2 gt 8$d+1 J ’

fj = 9 1 o (32)
if 7 is odd.

—_— = =i
8xj 2 It a$d+1

For the dual case, the multiplication table is given in (4). Choose f7,
j=1,...,n, as follows:

fi:fh 7::17"'7d7
14 , d

fd 1+Z:[f2i711f2i]7 7’:2’"'§a

FUEIOE (1 R, k>4

5 1 ) 1 A .
where [(i) = Z—i—z(—l)”‘l +§i2+i andd=difdisevenord=d—1if d

is odd. Then we have the corresponding normal form:
0 1 0 1 0
IR P SN o F S A
81:1 2 i—2 al’d_1+i i—2 2 8xd+gil(1)+i
d

d
2

a1 & 9 1 9
e L DY rrarind DE L

i=2 2d+4—1(2)+i
1o} =2 ZT; 0 Tj—1 0
fi= 67% ™ zz ?8mid+iil(i)ﬂ. * 2 Oxy_ i
2 2 (33)
d xX; 0 g e s
- Z S if j is even,
imjr1 2 OFjar 1) vi
AN o S TSR
T 0xs A~ 20z, 4 . 2 Or, j+1
J i=1 id+§—1(i)+j d—L15=+1
d
i 0 e
— Z %67 if j is odd.
imjr2 © OTjard-1()+i

Now we consider the bidimensions (d,d + 2) corresponding to r = 2 and
m = 2. We have rigid cases for d = 4,6, each with two isomorphism classes,
and for d = 5,7 with one isomorphism class. For d = 4 and the multiplica-
tion table as in Eq. (6), by setting

fi=fi, i=1,...,4,
PP=1fufol =™ O =1fs fa = [,
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we have that the normal form is

o 0 i) 0
h 87331_?87%’
o 0 I 0
ﬁZ"égg E?é;;v
o 0 Ty 0
ﬁi 55; ?;Eﬂgv

0 I3 0
jA:: 5;1‘+‘§*5;g.

For d = 4 and the multiplication table as in Eq. (7), by setting
fr=Ff, i=1,...4,
fr = sl = =fa, fal = f,
fo =11 fa = [fos fs] = 72,

we have that the normal form is

= e T 2 0es 2 wg
o9 w0 w0
27 Ory 2 Oxs 2 Oxg’
PO Y )
8 3I3 2 8I5 2 6I67

0 z9 O 1 O
foa=——-F—+ .

6$4 2 8%5 2 6%6

For d = 5, considering the multiplication table (?7?) and setting
fr=fi, i=1,...,5,
o =1h, fol = [far fs] = f™,
fr=1fs fa = 1, fs] = [,

we obtain
o 0 i) 0 Ts 0
f1 87931_?87%_?8757’
8 X1 6
f2:87x2 ?5‘7%’
- 0 Is 0 T4 0
I3 %—7%—?%7
. 1o} I3 0
f4_8734 3 0z’
o 0 I3 1o} xT1 0
= b0t 2 0w 2

483

(36)
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For d = 6 with multiplication table as in (8), by setting
fi=fi, i=1,...,6,
[f17f2]2f77 [f37f4]:f87

we have:
0 1 0
h= 8901 2x2 Oxr’
0 1 0
o= 8x2 t3 2 8x7
0 1 0
Js = 8333 2964 Oxg’
1 9 (37)
fa= a T g
0 1 0
5= 87 + 51'6 ((%67 5%8)
1 0
fo = 76 2% (ax7 axg)

For d = 6 with multiplication table as in (9) and setting
f = fi, izl,...,ﬁ,
fT=1fs, fs) = =[fa, fo] = [,
£ =f3: fo] = [fa, fs) = £,

we have:
0 1 0 0
= 72" (a a)
Z1 Z7 Zy
0 1 0 0
2= a2 (a a)
1o} 1 0 1 0
f3 - (9$3 2x587337 2x6 8938 (38)
0 1 0 1 0
f4:87x4 B 687337 §$567368
0 1 0 1 0
1= Bus T 280 T 2" 00y’
0 1 0 1 0
f6_8x6_ 8 7+2 ail'g

Finally, for d = 7, whose multiplication table is given in (?7?), by setting
fif=fi, i=1,...,7,
f2 =111 f2) = s, 2] = s, f2] = f™,
F* = fas fal = L1, fo] = [fe, fo] = f™,
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we have the following normal form:

o019 10
! 8x1 21:2 8x8 2357 8:59’
e 241, 0
2 3172 2$1 6:687
PRI S W
3 3333 2 8.138 483)9
0 1 0
fa 87x4 535 87x97 (39)
0 1 0 1 0
f5 pr. + 5(336 x7)87x8 ~ 2% g0,
PRI SIS VR
6 (91'6 2x58$8 2 s 7 aiL’g
0 1 0
1= T3l ey, Taln bl

Next we consider the bidimensions (d, d + 3) corresponding to r = 2 and
m = 3. We have seen that such bidimensions are rigid for d =4 and d =5
with two isomorphism classes.

For d = 4 and multiplication table (14), by setting

fi=fi, i=1,....4,
= =—fufol = f, fC=f"=fsfd+ [,
f7 = [f17f3] = [anf4] :fﬁga

we obtain:
0 1 0 1 0
fi 911 + 536287:&5 + 5(172 - x3)87x7’
0 1 0 1 0
fo Bixg 533187%—5(301 +$4)87x7, (40)
PR S VR
3 813 2 431’6 2 ! 4 (3'1'77
0 1 0 1 0
Ji= gy T 2", T2 T gy
For d = 4 and multiplication table (16), by setting

fi=fi, i=1,...,4,
fr=rfm ff=
T =1[f1, fo] = [fs, fa] = £,



486 A. AGRACHEV and A. MARIGO

we obtain:
0 1 0 1 0 1 0
i T L T v
0 1 0 1 0 1 0
SR R T L TR S Tr
f_ a_|_1( + )7_1( _ )i_l i
7 Oxy | 2 R Oxs 2 o Oxg 27" Oxr’
f + 1( _ )i+ }( + )i_i'_l i
1T Oy | 2 R Jxs 2 R Jxg 2333 ox7
For d = 5 and multiplication table (17), by setting
fi:fiv izla"'a5a
fO=1fo, fs] = [fs, fal = 7,
ff==f, fal = =[fs, 5] = [,
f8 = [f17f3] = _[f27f3] = :F[f47f5] = fﬂ:}v
we have:
f = 0 +1 0 1x 0
te 6.231 2 481‘7 2 36.1?8
fo = 0 1x i+ 1 0
2= 81’2 2 58$6 2 381‘8
0 1 0 1 0 1 0
- 2 — 22 4
Js Oxs " 2" Ozg t3 2% 5 Dar + 2(331 xQ)@xg’ (42)
0 1 0 1 0 1 0
1= G T 3% 00 2% 0y T 2% Gy
F _ 0 1 0 1 0 1 0
57 Ous | 20w 2 00zr 2 Y Ors

Now we consider the bidimension (d,d + 4) corresponding to r = 2 and
m = 4. This bidimension is rigid with three isomorphism classes for d = 5.
First, we consider the multiplication table as in (18) and set

fi=fi, i=1,...,5,
o= fsl =1 fT=1[f2 f3] = f™,
=1 sl =, ) = [fs, f5) = ™,
[P ==lf1, f2) = Uf1, fa] = [fo, fa] = f7.
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The normal form is

fi= a% %(w3+w5)ais +%($2—$4)%’
0 1 0 1 0
fzzg §$337x7 2(551 +$4)8 9
0 1 0 1 0
f3:67+2 287337—’—5(%1_965)8768’
0 1 0 1 0
fa= 87:104 - 21358766 + 2(551 +$2)ax9
0 1 0 1 0
f5= 37%4-5 87+2(331 +$3)am8

Next, for the multiplication table as in (19), setting

fi=fi, i=1,...,5,
SO =1fa, fs] = =[fa fs] = /™,
fT==lf. fs] = f2. fs] = ™,
[P =—=lfo, fal = 1™, 2 =1f, fs] = f™,

we have the following normal form:

fi= aixl - i(xz - $4)76 i(xz + 24— 2185)327 %%%,
fo= %Jr%(zl—xg)ai%+i(x1+$3*2x5)a % a%
fs = % + i(m + x4 — 2%)% - %(332 - M); + % aixg,
fs = ai% + %(303 - 964)8%;6 - %(xl - $2)8i337~

Finally, for the multiplication table as in (22), setting

fi=+fi, i=1,...,5,

fo==lfa fsl = 1 [T =1fa, f5] = [f3: fa] = [,
fsz[flaf4]:fﬂ3a fgz_[f17f3]:[f23f4]:fﬂ4a

487

(43)

(44)
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we obtain the normal form

0 1 0 1 0
= e T 2 0w 2 0y
0 1 0 1 0 1 0 0
2= G T 2% 29”4(9@*23(3%‘@%’
0 1 0 1 0 1 0 0
f38x32x4(9x72x18$92x2<3x6xg>’ (45)
0 1 0 1 0 1 0 1 0
f4*874+§ 87.%+§ 8717+§x167.%'8+§ 28797
0 1 0 1 0
5=t T 9wy T 200

For r = 3, the unique rigid case is the Engel algebra. The multiplication
table is given by

fr=f, i=12,
fgz[f17f2]7 f4:[f17f3]:[f2’f3}'

The normal form of F is

f — i _ 1 i L (6 + + )
YT on 912 Oxs 12 T3 T AT T Oxy’

0 1 0 1 0 (46)
fo= — (623 — 2172 — 27) —

o1y 2 0m, 12 EIo%

For r = 4, the unique rigid bidimensions are (2,6) and (2,7); the corre-
spond to d = 2, m = 1 and d = 2, m = 2 respectively. For n = 6,7, we
calculate the brackets [f, f;] by setting f* = f; fori = 1,2 and f3 = [f1, f2],

fr=1[f1, 7], and f° = [fa, f?]:
[}, 1) = Za:z fis h] = +@a[fo, /1] + @3((f1, fo], f1]

+ 334[[f17 [f1, fol], fal + @s[[f2, [f1, f2l], f1]
== *I'Q[flva] - x3[f1a [flan]]
- 1‘4[f1, [fh [flan]]] - x5[f17 [f27 [flu fQH]ﬂ

[f, fa] = sz fis fo] = +ailfu, fo] + @s[f1, fol, f2]

+ $4[[f1, [f1, foll, fo] + @s[[f2, [f1, fol], fol
= +x1lf1, fo] — x3lf2, [f1, f2]]
— x4l fo, [f1, 1, folll = @[Sz, [f2: [ foll,
U U Al = =z (@[ f1, [ fol] + 2a2[fo, [ f1, f2l])
—az (x1[f1, [f1, Lf1, foll] + @2l fo, [f1s L1 f2ll])
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[fs [fs foll = +x1 (z1[f1, [f1, fol] + @2l fo, [f1, fol])
— a3 (v1[f1, [f2, [f1, foll] + @2lf2, [f2, [f1, f2]]]) -

Then according to the multiplication table (24) for m =1 and setting

f6: [f2>f4] = f™ we have:

0 1 0 0 0
= — — — o e 2 _—
ho= oy ~ 2y, Tasg,, T Cratas)g)
! 0 129 1 (Qusar + wswa) -
12 ,Tg.rla s {EQ(() . 31 3T 3336
o 1 8 1 1, 0
=0 20, 10Tt nas) - " 120,
1
— — (1224 + 625 + 22123 + 1’2$3)i
12 8336 (47)
fo= 0 + ! 0 - 9 (x4 + 22 )i
27 8x2 8 I3 38905 4 5 8x6
8 0 0
+ - ( %6 151328 — (z321 + 2233362)(%)
a 10 1,0 1
=0 20w 12 0e, 120 T gy,

1 0
_ E(12:135 + 624 + 22073 + $1$3)8$6

For the multiplication table (25), setting f& = [f1, f°] = f™, we have
instead the following normal form:

JORLI Y R R
1_81‘1 or €T3 38 T4 58$6

R I )
12 2 18.’174 28I5 3 281‘6

S VO A WP

N 8.%‘1 2 28.’1,’3 12 3 12 8374
1,0 1 B,

_ E$2 . T 12 (61‘5 + I2$3) Drg’ (48)
0

0
S Y R R
81‘2 31‘3 3 81’5 48$6

+1<2a+x:ra:cxa)

19 B

1 a0 1,90

5 873 721.18334
1

(6I3 — fElIg) — 7(61»4 + 93113)

9
Ors 12 Oz
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For m = 2 and the multiplication table (27), setting

o= = fT=1[f =1,
we have

fi= o -

‘»—li%

0
(9176’

"2z 5
ISR
2\ " x5 3 Ors ® a7

das 12

Finally, for the multiplication table (28), setting f¢ = f™ and f7 = f72,
we have:

P (e R (A
1 8901 2 2 8;53 3 8%4 4 8%6 8$7

s O 20 (9 O\ (o o
12 Ttz T2 8$5 T1ts 81‘6 81:7 T2ts 8I6 61‘7

0x4
1o} 1 0 1 0 1 5, 0
_ 6x3 +m1$2)8$4 ExQT%

1 0 1 0
—E(Gm + 625 + z123 + 332333)8 + 12( 64 + 625 — T173 + 332953)

f_i+l o099 9N _,
2T 920 2\ 025 P0xs oz Oxr ° axﬁ a

1 ﬁ51+x$:1_xx 41_42,_$x NS
12 ! 8$4 12 8$5 3 8;26 8]27 3%2 8306 8557
0 0 1 2 0 1

572**1$+* 92, 12078 —mw2) g

8 2" * 03 12(

81‘5

0
6x4 — 625 + T123 — Tow3) =— +

Oxe 12(

6x4 + 625 + T123 + T23) =—

L 1o}
12 oz
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