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Rank k vector distribution ∆ on the n-dimensi-

onal smooth manifold M is a vector subbundle

of the tangent bundle TM :

∆ = {∆q}q∈M , ∆q ⊂ TqM, dim∆q = k.

Distributions ∆ and ∆′ are called locally equiv-

alent at q0 if ∃ a neighborhood Oq0 and a lo-

cal diffeomorphism Φ : Oq0 → Oq0 such that

Φ∗∆q =∆′
Φ(q)

, ∀q ∈ Oq0.

Horizontal paths: t 7→ q(t), q̇(t) ∈∆q(t).

Local bases: f1, . . . , fk ∈ VecM ,

∆q = span{f1(q), . . . , fk(q)}, q ∈ Oq0.

Horizontal paths are admissible trajectories of

the control system: q̇ =
k
∑

i=1
uifi(q).



Let ∆′
q = span{f ′1(q), . . . , f ′k(q)}. We have

Φ∗∆q =∆′
Φ(q)

iff Φ∗fi =
k
∑

j=1
aijf

′
j, where aij ∈

C∞(Oq0),

det







a11(q) . . . a1n(q)
. . . . . . . . . . . . . . . . . . .
an1(q) . . . an1(q)






6= 0.

In other words, the distributions are equivalent

iff the control systems are equivalent by the

feedback and state transformations.

Flag of the distribution:

∆l
q = span

{

(adfij · · · adfi1fi0)(q) : 0 ≤ j < l
}

,

where adf g
def
= [f, g] is the Lie bracket.

Subspaces ∆l
q do not depend on the basis of ∆

since adf(ag) = aadf g + (fa)g but the struc-

ture of the generated by f1, . . . , fk Lie subalge-

bra of VecM essentially depends on the basis.



Local parameterization of the space of distri-

butions: M ≈ Rn, TM ≈ Rn × Rn,

∆ : Rn → Gk(Rn),

where Gk(Rn) is the Grassmann manifold of

k-dim. subspaces of Rn. Recall that Gk(Rn)

is a smooth k(n − k)-dim. manifold. Indeed,

all k-dim. subspaces that are transversal to a

fixed (n − k)-dim. subspace can be identified

with graphs of linear maps from Rk to Rn−k

(i. e. with k × (n − k) -matrices) and form a

coordinate chart of Gk(Rn):

k

n–k

V ∈ Gk(Rn)

The space of rank k distributions is thus locally

parameterized by C∞(Rn;Rk(n−k)).



On the other hand, local diffeomorphisms of

Rn form an open subset of C∞(Rn;Rn). A

smooth change of coordinates allows to nor-

malize no more than n of k(n − k) functions.

The space of equivalence classes should be at

least as “massive” as C∞(Rn;Rk(n−k)−n).

1. k(n − k) ≤ n, i. e. k = 1 or k = n − 1 or

n = 4, k = 2. Generic distributions can be

completely normalized:

k = 1 –rectification of vector fields;

k = n− 1 –Darboux normal forms for dif-

ferential 1-forms;

n = 4, k = 2 –Engel structure.

2. k(n − k) > n. Any classification of generic

distributions must contain “functional pa-

rameters”.



First nontrivial case: n = 5, k = 2 ∨ 3.

Theorem. Let Dk(Rn) be the space of germs

of k-distributions in Rn. If k(n− k) > n, then ∃
a residual subset U ⊂ Dk(Rn) s. t. no one dis-

tribution from U possesses a basis generating

a finite dimensional Lie algebra.

Main steps of the proof:

1. If two distributions possess bases which gen-

erate finite dimensional Lie algebras and

have equal bracket relations, then the dis-

tributions are locally equivalent.

2. Take a Hall basis of Lie polynomials in k

indeterminates and consider the set of all

multiplication tables of Lie algebras addi-

tively generated by first m elements of this

basis. The set of pairs:

〈multipl. table, codim. n Lie subalgebra〉



forms a semi-algebraic subset of the ap-

propriate vector space. Each pair gener-

ates a germ of a k-tuple of vector fields in

Rn. Moreover, ∀N > 0 the set of N-jets of

these germs is a semi-algebraic subset of

the space of N-jets and dimension of this

subset does not depend on N .

3. The group of N-jets of diffeomorphisms

acts on the space of jets of distributions

and codimension of the orbits of this ac-

tion tends to ∞ as N −→∞.

Looking for invariants

The growth vector:

(dim∆q, dim∆2
q , dim∆3

q , . . .).

We mainly study distributions with maximal

growth vector (generic case). If k = 2, then



maximal growth is: (2,3,5,8, . . .); in general:

(k, k(k+1)/2, k(k+1)(2k+1)/6, . . .).

If k(n−k) ≤ n, k > 1, then any maximal growth

vector distribution possesses a basis generating

the nilpotent n-dimensional Lie algebra. This

is not true, if k(n− k) > n.

Natural questions:

• Equivalence problem for the maximal

growth vector distributions: Given two dis-

tributions, how to check are they locally

equivalent or not?

• How to characterize the distributions which

possess bases generating the n-dim. nilpo-

tent Lie algebra?



• Is there a chance to make effective the

above theorem?

Cartan equivalence method, in principle, pro-

vides the answer to first two questions for the

following values of (k, n): (2,5) (E. Cartan),

(3,6) (R. Bryant), and (4,7) (R. Montgomery).

“Optimal control” approach

The space of horizontal paths:

Ω∆ = {γ : [0,1]→M : γ̇(t) ∈∆γ(t), 0 ≤ t ≤ 1},

Ω∆ ⊂ H1([0,1];M). Boundary mappings:

∂t : γ 7→ (γ(0), γ(t)) ∈M ×M.

Critical points of ∂1
∣

∣

∣

Ω∆
are singular curves of

∆. Any singular curve is a critical point of

∂t ∀t ∈ [0,1].



Moreover, any singular curve possesses a sin-

gular extremal, i. e. a curve λ : [0,1]→ T ∗M in

the cotangent bundle to M s. t. λ(t) ∈ T ∗
γ(t)

M ,

(λ(t),−λ(0))Dγ∂t = 0, ∀t ∈ [0, t].

We set:

∆⊥
q = {ν ∈ T ∗

q M : 〈ν,∆q〉 = 0, ν 6= 0},

∆⊥ =
⋃

q∈M
∆⊥

q .

Let σ be the canonical symplectic structure on

T ∗M . The PMP implies: A curve λ in T ∗M is

a singular extremal iff it is a characteristics of

the form σ
∣

∣

∣

∆⊥; in other words,

λ̇(t) ∈ ker
(

σ
∣

∣

∣

∆⊥

)

, 0 ≤ t ≤ 1.

Characteristic variety:

C∆ =
{

z ∈∆⊥ : ker σz

∣

∣

∣

∆⊥ 6= 0
}

.



We have: C∆ = ∆2⊥ if k = 2; C∆ = ∆⊥ if k

is odd; typically, C∆ is a codim 1 submanifold

of ∆ if k is even.

Regular part of the characteristic variety:

C0
∆ =

{

z ∈ C∆ : dim ker σz

∣

∣

∣

∆⊥ ≤ 2,

dim ker σz

∣

∣

∣

∆⊥ ∩ TzC∆ = 1
}

.

ker

C0
�

If k = 2, then C0
∆ =∆2⊥ \∆3⊥.

Submanifold C0
∆ is foliated by singular extremals

and by the fibers T ∗
q M ∩ C0

∆.



The movement along singular extremals is not

fiber-wise!

Canonical projection:

F : C0 → C0
∆/{sing. ext. foliation}.

Let λ be a sing. extremal associated to a sing.

curve γ. Consider a family of subspaces

J0λ(t) = TλF (T
∗
γ(t)M ∩ C0

∆)



of the space

TλC
0
∆/{sing. ext. foliation} ∼= Tλ(0)C

0
∆/Tλ(0)λ.

Then t 7→ J0λ(t) is a curve in the Grassmannian.

Geometry of these curves reflects the dynam-

ics of the fibers along sing. extremals and con-

tains the fundamental information about dis-

tribution ∆.

Let n = 5; two interesting cases k = 2 and

k = 3 are essentially equivalent:

dim∆q = 2 ⇒ dim∆2
q = 3;

C0
∆ = C0

∆2
=∆2⊥, dim(C0

∆2
∩ T ∗

q M) = 2.

Reconstruction of the 2-distribution from the

3-distribution:

∆ = {γ̇(t) ∈ TM : γ is a sing. curve of ∆2}.



Let π : Tp(T ∗M) → TqM be the differential of

the projection T ∗M →M ; then π(J0λ(t)) ⊂ p⊥ ⊂
TqM and t 7→ π

(

J0λ(t)
)

is a curve in the projec-

tive plane P
(

p⊥/γ̇
)

.

Proposition: Distribution ∆ has a basis gen-

erating the 5-dim. nilpotent Lie algebra iff this

curve is a quadric ∀p, q.

In general, let Kp(q) ⊂ p⊥ be the osculating

quadric to this curve: Kp(q) is zero locus of

a signature (2,1) quadratic form on p⊥/γ̇. Fi-

nally, K(q) =
⋃

p∈∆2⊥q
Kp(q) is zero locus of a

(3,2) quadratic form on TqM .



K(q), q ∈ M is and intrinsically “raised” from

∆ conformal structure on M ; ∆q ⊂ K(q).

Assume that k = 2, n ≥ 5. Let p ∈ C0
∆, λ

the sing. extremal through p and γ the corre-

sponding singular curve. We set:

Jλ(t) = DλF
(

π−1∆γ(t)

)

⊂ TpC
0
∆/Tpλ.

Then Jλ(t) ⊃ J0λ(t) and Jλ(t) is a Lagrangian

subspace of the symplectic space TpC0
∆/Tpλ.

In other words, Jλ(t)
∠ = Jλ(t), where

S∠ def
= {ζ ∈ TpC

0
∆ : σ(ζ,S) = 0}, S ⊂ Tp.

Given s ∈ R \ {0}, sλ is the singular extremal

through sp ∈ C0
∆. Hence Tp(Rp) ⊂ Jλ(t), ∀t

and Jλ(t) ⊂ Tp(Rp)∠.

Final reduction: Σp = Tp(Rp)∠/TpRp is a sym-

plectic space, dimΣp = 2(n − 3). Then Jλ(t)

is a Lagrangian subspace of Σp.



Important property: Jλ(t) ∩ Jλ(τ) = 0 for suf-

ficiently small |t− τ | 6= 0.

Take projectors: πtτ : Σp → Σp,

πtτ

∣

∣

∣

Jλ(t)
= 0, πtτ

∣

∣

∣

Jλ(τ)
= 1.

Lemma:

tr

(

∂2πtτ

∂t∂τ

)

=
(n− 3)2

(t− τ)2
+ gλ(t, τ),

where g(t, τ) is a smooth symmetric function

of (t, τ).

“Ricci curvature” on λ: ρλ(λ(t))
def
= gλ(t, t).

Chain rule: let ϕ : R → R be a change of the

parameter; then ρλ◦ϕ (λ(ϕ(t))) =

ρλ ((ϕ(t))) ϕ̇
2(t) + (n− 3)2S(ϕ),

where S(ϕ) =
...
ϕ(t)
eϕ̇(t)

− 3
4

(

ϕ̈(t)
ϕ̇(t)

)2
.



“Ricci curvature” ρ can be killed by a local

reparametrization. A parametrization which

kills ρ is called projective; it is defined up to

a Möbius transformation.

Let t be a projective parameter, then the quan-

tity:

A(λ(t)) =
∂2g

∂τ2
(t, τ)

∣

∣

∣

∣

τ=t
(dt)4

is called the fundamental form on λ.

For arbitrary parameter: A(λ(t)) =
(

∂2g

∂τ2

∣

∣

∣

∣

τ=t
− 3

5(n− 3)2
ρλ(t)

2 − 3

2
ρ̈λ(t)

)

(dt)4.

Assume that A(λ(t)) 6= 0, then the identity

|A(λ(s))
(

d
ds

)

| = 1 defines a unique (up to a

translation) normal parameter s.

Let z ∈ C0
∆ and λs is the normally parameter-

ized singular extremal through z. We set

ρ̄(z) = ρλs(z),



the projective Ricci curvature. Then z 7→ ρ̄(z)

is a function on C0
∆ which depends only on ∆.

Back to the (2,5) distributions. Such a dis-

tribution admits a basis generating the 5-dim.

nilpotent Lie algebra iff A ≡ 0.

Example. A radius 1 ball is rolling over the ra-

dius r ball without slipping or twisting, 1 < r ≤
∞. Admissible velocities form a (2,5) distribu-

tion. Then (I. Zelenko): sgn(A) = sgn(r − 3);

ρ̄ =
4
√
35(r2+1)

3
√

(r2 − 9)(9r2 − 1)
.

In particular, the distributions corresponding to

different r are mutually non equivalent and the

distribution corresponding to r = 3 admits a

basis generating the 5-dim. nilpotent Lie alge-

bra.


