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Rank k vector distribution A on the n-dimensi-
onal smooth manifold M is a vector subbundle
of the tangent bundle T'M

Distributions A and A’ are called locally equiv-
alent at gg if 3 a neighborhood Oy, and a lo-
cal diffeomorphism ® : Og, — Og, such that

Horizontal paths: t — q(t), ¢(t) € A&y

Local bases: f1,..., fr € VecM,

Ag = span{f1(q), ..., f(@®)}, q € Ogy.

Horizontal paths are admissible trajectories of

k
the control system: ¢ = > u;f;(q).

=1



Let Ay = span{fi(q),..., f.(@)}. We have

k
CD*Aq = A/cb(q) iff Cb*fz — 'Z]_ aijf’», where aij -~
]:
C>®(Oqq),
a11(q) ... aip(q)
det |.......... . ... .... =0
anl(Q) anl(Q)

In other words, the distributions are equivalent
iff the control systems are equivalent by the
feedback and state transformations.

Flag of the distribution:

Aé — Span{(adfij o adlefZO)(Q) 10 < .] < l}7

d
where adf g 2 [f,g] is the Lie bracket.

Subspaces Aé do not depend on the basis of A
since adf(ag) = aadf g+ (fa)g but the struc-
ture of the generated by f1,..., fi Lie subalge-
bra of VecM essentially depends on the basis.



Local parameterization of the space of distri-
butions: M =~ R", TM ~ R" x R",

A R — G (R™),

where Gi(R™) is the Grassmann manifold of
k-dim. subspaces of R™. Recall that G, (R")
is a smooth k(n — k)-dim. manifold. Indeed,
all k-dim. subspaces that are transversal to a
fixed (n — k)-dim. subspace can be identified
with graphs of linear maps from R* to R»—k
(i.e. with k x (n — k) -matrices) and form a
coordinate chart of G (R"™):

n—k
A
V € Gx(R™)

T he space of rank k distributions is thus locally
parameterized by C°(R”; Rk(n—k))



On the other hand, local diffeomorphisms of
R"™ form an open subset of C°°(R";R"™). A
smooth change of coordinates allows to nor-
malize no more than n of k(n — k) functions.
The space of equivalence classes should be at
least as “massive” as C°(R"; Rk(n—k)—n)

1. k(n—k) <n,i.e. k=1ork=mn-—1 or
n =4,k = 2. Generic distributions can be
completely normalized:

k = 1 —rectification of vector fields;

k=mn—1 —Darboux normal forms for dif-
ferential 1-forms;

n =4k =2 —Engel structure.
2. k(n — k) > n. Any classification of generic

distributions must contain ‘“functional pa-
rameters’’ .



First nontrivial case: n=5, k=2 Vv 3.

Theorem. Let D.(R"™) be the space of germs
of k-distributions in R". If k(n — k) > n, then 3
a residual subset U4 C Di(R™) s.t. no one dis-
tribution from U possesses a basis generating
a finite dimensional Lie algebra.

Main steps of the proof:

1. If two distributions possess bases which gen-
erate finite dimensional Lie algebras and
have equal bracket relations, then the dis-
tributions are locally equivalent.

2. Take a Hall basis of Lie polynomials in k
indeterminates and consider the set of all
multiplication tables of Lie algebras addi-
tively generated by first m elements of this
basis. The set of pairs:

(multipl. table, codim. n Lie subalgebra)



forms a semi-algebraic subset of the ap-
propriate vector space. Each pair gener-
ates a germ of a k-tuple of vector fields in
R™. Moreover, VN > 0 the set of N-jets of
these germs is a semi-algebraic subset of
the space of N-jets and dimension of this
subset does not depend on N.

3. The group of N-jets of diffeomorphisms
acts on the space of jets of distributions
and codimension of the orbits of this ac-
tion tends to co as N — oo.

Looking for invariants

The growth vector:
(dimAg, dimAZ, dimAZ,...).

We mainly study distributions with maximal
growth vector (generic case). If kK = 2, then



maximal growth is: (2,3,5,8,...); in general:
(k, k(k+1)/2, k(k+1)(2k+1)/6,...).

If k(n—k) <n, k> 1, then any maximal growth
vector distribution possesses a basis generating
the nilpotent n-dimensional Lie algebra. This
is not true, if k(n — k) > n.

Natural questions:

e Equivalence problem for the maximal
growth vector distributions: Given two dis-
tributions, how to check are they locally
equivalent or not?

e How to characterize the distributions which
pOSssess bases generating the n-dim. nilpo-
tent Lie algebra?



e Is there a chance to make effective the
above theorem?

Cartan equivalence method, in principle, pro-
vides the answer to first two questions for the
following values of (k,n): (2,5) (E. Cartan),
(3,6) (R. Bryant), and (4,7) (R. Montgomery).

“Optimal control” approach

The space of horizontal paths:
Qp = {y110,1] = M :4(t) € Ay, 0<t< 1},
QA C H1([0,1]; M). Boundary mappings:

O » v +— (v(0),v(t)) € M x M.

Critical points of 81‘9 are singular curves of
A

A. Any singular curve is a critical point of
o Vt € [0, 1].



Moreover, any singular curve possesses a Sin-
gular extremal, i.e. a curve A :[0,1] — T*M in
the cotangent bundle to M s.t. A(t) € Tj;(t)M,

(A(t), —=A\(0)) D48 = 0, Vt € [0, 1].

We set:
Ay ={veTM: (v,Ag) =0,v# 0},
1 _ 1
A= | Ag
qeM

LLet o be the canonical symplectic structure on
T*M. The PMP implies: A curve X\ in T*M is
a singular extremal iff it is a characteristics of

the form O"AJ_; in other words,

)\(t)eker(a‘AL), 0<t<l1.

Characteristic variety:

R

Ch = {z e AL kero,



We have: Cao = A2L if k=2; Cp = AL ifk
is odd; typically, Ca is a codim 1 submanifold
of A if k is even.

Reqgular part of the characteristic variety:

Cg = {z c Cp :dim kero;

AJ‘SQ,

dim ker o,

AJ_ﬂTzCAzl}.

If k=2, then CQ = A2\ A3L

Submanifold C{ is foliated by singular extremals
and by the fibers TyM N CQ.
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The movement along singular extremals is not
fiber-wise!

Canonical projection:

F:c%— Cg/{sing. ext. foliation}.

Let A be a sing. extremal associated to a sing.
curve ~. Consider a family of subspaces

IR = TAF (T M N CR)



of the space
T\CRQ /{sing. ext. foliation} = TA(O)Cg/T/\(O)A.

Then t — JQ(¢) is a curve in the Grassmannian.
Geometry of these curves reflects the dynam-
ics of the fibers along sing. extremals and con-
tains the fundamental information about dis-
tribution A.

Let n = 5; two interesting cases £k = 2 and
k = 3 are essentially equivalent:
dimAg =2 = dimA7 =3;
CA = Qo = A% dim(CRoNTFM) = 2.

Reconstruction of the 2-distribution from the
3-distribution:

A = {#(t) € TM : ~ is a sing. curve of A?}.



Let 7 : Tp(T*M) — Ty¢M be the differential of
the projection T*M — M; then w(JY(t)) C pt C
TyM and t — 7 (Jf\)(t)) iS a curve in the projec-

tive plane P (pJ‘/"y>.

Proposition: Distribution A has a basis gen-
erating the 5-dim. nilpotent Lie algebra iff this
curve is a quadric Vp,q.

In general, let Kp(q) C p- be the osculating
quadric to this curve: Ky(q) is zero locus of
a signature (2,1) quadratic form on pt/4. Fi-

nally, K(g) = U Kp(qg) is zero locus of a
pGAgL

(3,2) quadratic form on Ty M.



K(q), g € M is and intrinsically “raised” from
A conformal structure on M; Ay, C K(q).

Assume that k = 2, n > 5. Let p € CQ, A
the sing. extremal through p and ~ the corre-
sponding singular curve. We set:

I\(t) = DAF (7712 ) € TpCR/Tp.

Then Jy(t) D JY(¢) and J,\(t) is a Lagrangian
subspace of the symplectic space Tpcg/TpA.
In other words, Jy ()4 = Jy(t), where

S ¥ 1 e 1,0 0(¢,8) =0}, SC T

Given s € R\ {0}, s\ is the singular extremal
through sp € CQ. Hence Tp(Rp) C Jy(t), Vt
and Jy(t) C Tp(Rp)%.

Final reduction: ¥, = T,(Rp)4/T,Rp is a sym-
plectic space, dimx, = 2(n — 3). Then J)(t)
is @ Lagrangian subspace of 2.



Important property: Jy(t) N Jy(7) = 0 for suf-
ficiently small |t — 7| # 0.

Take projectors: myr @ 2p — 2 p,

””‘Jms) =0 ””’Jm =L
Lemma:
8277757' (n — 3)2
tr —_— t) )
(87537‘) (t —7)°2 ot T)

where g(¢,7) is a smooth symmetric function
of (¢, 7).

“Ricci curvature” on A: p\(A(t)) det g (t,1).

Chain rule: let ¢ : R — R be a change of the
parameter; then py,, (A(¢(t))) =

px ((())) 92(t) + (n — 3)?S(y),

e
where 8(o) = 5y — % (53)




“Ricci curvature” p can be killed by a local
reparametrization. A parametrization which
Kills p is called projective; it is defined up to
a Mobius transformation.

et ¢ be a projective parameter, then the quan-
tity:
8%g 4
A1) = ﬁ(t, )|  (dt)
T =1

is called the fundamental form on \.

For arbitrary parameter: A(A(t)) =

02g 3 5 3. 4
— — t)c — — t dt)”.
(23]~ sosppm@? - 2@ @
Assume that A(A(t)) # 0, then the identity
|A(A(s)) (%)| — 1 defines a unique (up to a

translation) normal parameter s.

Let z € Cg and M\s is the normally parameter-
ized singular extremal through z. We set

p(z) = py,(2),



the projective Ricci curvature. Then z — p(z)
IS a function on Cg which depends only on A.

Back to the (2,5) distributions. Such a dis-
tribution admits a basis generating the 5-dim.
nilpotent Lie algebra iff A = 0.

Example. A radius 1 ball is rolling over the ra-
dius r ball without slipping or twisting, 1 <r <
oco. Admissible velocities form a (2,5) distribu-
tion. Then (I. Zelenko): sgn(A) = sgn(r — 3);

In particular, the distributions corresponding to
different » are mutually non equivalent and the
distribution corresponding to »r = 3 admits a
basis generating the 5-dim. nilpotent Lie alge-
bra.



