# Geometric Control and Geometry of Vector Distributions 

A. Agrachev (SISSA, Trieste)

Rank $k$ vector distribution $\Delta$ on the $n$-dimensional smooth manifold $M$ is a vector subbundle of the tangent bundle $T M$ :

$$
\Delta=\left\{\Delta_{q}\right\}_{q \in M}, \Delta_{q} \subset T_{q} M, \operatorname{dim} \Delta_{q}=k .
$$

Distributions $\Delta$ and $\Delta^{\prime}$ are called locally equivalent at $q_{0}$ if $\exists$ a neighborhood $O_{q_{0}}$ and a local diffeomorphism $\Phi: O_{q_{0}} \rightarrow O_{q_{0}}$ such that $\Phi_{*} \Delta_{q}=\Delta_{\Phi(q)}^{\prime}, \forall q \in O_{q_{0}}$.

Horizontal paths: $t \mapsto q(t), \dot{q}(t) \in \Delta_{q(t)}$.
Local bases: $f_{1}, \ldots, f_{k} \in \operatorname{Vec} M$,

$$
\Delta_{q}=\operatorname{span}\left\{f_{1}(q), \ldots, f_{k}(q)\right\}, \quad q \in O_{q_{0}} .
$$

Horizontal paths are admissible trajectories of the control system: $\dot{q}=\sum_{i=1}^{k} u_{i} f_{i}(q)$.

Let $\Delta_{q}^{\prime}=\operatorname{span}\left\{f_{1}^{\prime}(q), \ldots, f_{k}^{\prime}(q)\right\}$. We have $\Phi_{*} \Delta_{q}=\Delta_{\Phi(q)}^{\prime}$ iff $\Phi_{*} f_{i}=\sum_{j=1}^{k} a_{i j} f_{j}^{\prime}$, where $a_{i j} \in$ $C^{\infty}\left(O_{q_{0}}\right)$,

$$
\operatorname{det}\left(\begin{array}{ccc}
a_{11}(q) & \ldots & a_{1 n}(q) \\
\ldots & \ldots & \ldots \\
a_{n 1}(q) & \ldots & a_{n 1}(q)
\end{array}\right) \neq 0
$$

In other words, the distributions are equivalent iff the control systems are equivalent by the feedback and state transformations.

Flag of the distribution:

$$
\Delta_{q}^{l}=\operatorname{span}\left\{\left(\operatorname{ad} f_{i_{j}} \cdots \operatorname{ad} f_{i_{1}} f_{i_{0}}\right)(q): 0 \leq j<l\right\}
$$

where ad $f g \stackrel{\text { def }}{=}[f, g]$ is the Lie bracket.

Subspaces $\Delta_{q}^{l}$ do not depend on the basis of $\Delta$ since $\operatorname{ad} f(a g)=a \operatorname{ad} f g+(f a) g$ but the structure of the generated by $f_{1}, \ldots, f_{k}$ Lie subalgebra of VecM essentially depends on the basis.

Local parameterization of the space of distributions: $M \approx \mathbb{R}^{n}, T M \approx \mathbb{R}^{n} \times \mathbb{R}^{n}$,

$$
\Delta: \mathbb{R}^{n} \rightarrow G_{k}\left(\mathbb{R}^{n}\right)
$$

where $G_{k}\left(\mathbb{R}^{n}\right)$ is the Grassmann manifold of $k$-dim. subspaces of $\mathbb{R}^{n}$. Recall that $G_{k}\left(\mathbb{R}^{n}\right)$ is a smooth $k(n-k)$-dim. manifold. Indeed, all $k$-dim. subspaces that are transversal to a fixed ( $n-k$ )-dim. subspace can be identified with graphs of linear maps from $\mathbb{R}^{k}$ to $\mathbb{R}^{n-k}$ (i.e. with $k \times(n-k)$-matrices) and form a coordinate chart of $G_{k}\left(\mathbb{R}^{n}\right)$ :


The space of rank $k$ distributions is thus locally parameterized by $C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}^{k(n-k)}\right)$.

On the other hand, local diffeomorphisms of $\mathbb{R}^{n}$ form an open subset of $C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}^{n}\right)$. A smooth change of coordinates allows to normalize no more than $n$ of $k(n-k)$ functions. The space of equivalence classes should be at least as "massive" as $C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}^{k(n-k)-n}\right)$.

1. $k(n-k) \leq n$, i. e. $k=1$ or $k=n-1$ or $n=4, k=2$. Generic distributions can be completely normalized:
$k=1$-rectification of vector fields;
$k=n-1$-Darboux normal forms for differential 1-forms;
$n=4, k=2$-Engel structure.
2. $k(n-k)>n$. Any classification of generic distributions must contain "functional parameters".

First nontrivial case: $n=5, k=2 \vee 3$.

Theorem. Let $\mathcal{D}_{k}\left(\mathbb{R}^{n}\right)$ be the space of germs of $k$-distributions in $\mathbb{R}^{n}$. If $k(n-k)>n$, then $\exists$ a residual subset $\mathcal{U} \subset \mathcal{D}_{k}\left(\mathbb{R}^{n}\right)$ s.t. no one distribution from $\mathcal{U}$ possesses a basis generating a finite dimensional Lie algebra.

Main steps of the proof:

1. If two distributions possess bases which generate finite dimensional Lie algebras and have equal bracket relations, then the distributions are locally equivalent.
2. Take a Hall basis of Lie polynomials in $k$ indeterminates and consider the set of all multiplication tables of Lie algebras additively generated by first $m$ elements of this basis. The set of pairs:

〈multipl.table, codim. $n$ Lie subalgebra〉
forms a semi-algebraic subset of the appropriate vector space. Each pair generates a germ of a $k$-tuple of vector fields in $\mathbb{R}^{n}$. Moreover, $\forall N>0$ the set of $N$-jets of these germs is a semi-algebraic subset of the space of $N$-jets and dimension of this subset does not depend on $N$.
3. The group of $N$-jets of diffeomorphisms acts on the space of jets of distributions and codimension of the orbits of this action tends to $\infty$ as $N \longrightarrow \infty$.

## Looking for invariants

The growth vector:
$\left(\operatorname{dim} \Delta_{q}, \operatorname{dim} \Delta_{q}^{2}, \operatorname{dim} \Delta_{q}^{3}, \ldots\right)$.
We mainly study distributions with maximal growth vector (generic case). If $k=2$, then
maximal growth is: $(2,3,5,8, \ldots)$; in general: $(k, k(k+1) / 2, k(k+1)(2 k+1) / 6, \ldots)$.

If $k(n-k) \leq n, k>1$, then any maximal growth vector distribution possesses a basis generating the nilpotent $n$-dimensional Lie algebra. This is not true, if $k(n-k)>n$.

Natural questions:

- Equivalence problem for the maximal growth vector distributions: Given two distributions, how to check are they locally equivalent or not?
- How to characterize the distributions which possess bases generating the $n$-dim. nilpotent Lie algebra?
- Is there a chance to make effective the above theorem?

Cartan equivalence method, in principle, provides the answer to first two questions for the following values of $(k, n)$ : $(2,5)$ (E. Cartan), $(3,6)(R$. Bryant), and (4, 7) (R. Montgomery).

## "Optimal control" approach

The space of horizontal paths:
$\Omega_{\Delta}=\left\{\gamma:[0,1] \rightarrow M: \dot{\gamma}(t) \in \Delta_{\gamma(t)}, 0 \leq t \leq 1\right\}$, $\Omega_{\Delta} \subset H^{1}([0,1] ; M)$. Boundary mappings:

$$
\partial_{t}: \gamma \mapsto(\gamma(0), \gamma(t)) \in M \times M .
$$

Critical points of $\left.\partial_{1}\right|_{\Omega_{\Delta}}$ are singular curves of $\Delta$. Any singular curve is a critical point of $\partial_{t} \forall t \in[0,1]$.

Moreover, any singular curve possesses a singular extremal, i. e. a curve $\lambda:[0,1] \rightarrow T^{*} M$ in the cotangent bundle to $M$ s.t. $\lambda(t) \in T_{\gamma(t)}^{*} M$,

$$
(\lambda(t),-\lambda(0)) D_{\gamma} \partial_{t}=0, \forall t \in[0, t] .
$$

We set:

$$
\begin{gathered}
\Delta_{q}^{\perp}=\left\{\nu \in T_{q}^{*} M:\left\langle\nu, \Delta_{q}\right\rangle=0, \nu \neq 0\right\} \\
\Delta^{\perp}=\bigcup_{q \in M} \Delta_{q}^{\perp}
\end{gathered}
$$

Let $\sigma$ be the canonical symplectic structure on $T^{*} M$. The PMP implies: A curve $\lambda$ in $T^{*} M$ is a singular extremal iff it is a characteristics of the form $\left.\sigma\right|_{\Delta^{\perp}}$; in other words,

$$
\dot{\lambda}(t) \in \operatorname{ker}\left(\left.\sigma\right|_{\Delta^{\perp}}\right), \quad 0 \leq t \leq 1
$$

Characteristic variety:

$$
C_{\Delta}=\left\{z \in \Delta^{\perp}:\left.\operatorname{ker} \sigma_{z}\right|_{\Delta^{\perp}} \neq 0\right\}
$$

We have: $C_{\Delta}=\Delta^{2 \perp}$ if $k=2 ; C_{\Delta}=\Delta^{\perp}$ if $k$ is odd; typically, $C_{\Delta}$ is a codim 1 submanifold of $\Delta$ if $k$ is even.

Regular part of the characteristic variety:

$$
C_{\Delta}^{0}=\left\{z \in C_{\Delta}:\left.\operatorname{dim} \operatorname{ker} \sigma_{z}\right|_{\Delta^{\perp}} \leq 2\right.
$$

$\left.\left.\operatorname{dim} \operatorname{ker} \sigma_{z}\right|_{\Delta^{\perp}} \cap T_{z} C_{\Delta}=1\right\}$.


If $k=2$, then $C_{\Delta}^{0}=\Delta^{2 \perp} \backslash \Delta^{3 \perp}$.
Submanifold $C_{\Delta}^{0}$ is foliated by singular extremals and by the fibers $T_{q}^{*} M \cap C_{\Delta}^{0}$.


The movement along singular extremals is not fiber-wise!

Canonical projection:

$$
F: C^{0} \rightarrow C_{\Delta}^{0} /\{\text { sing. ext. foliation }\}
$$

Let $\lambda$ be a sing. extremal associated to a sing. curve $\gamma$. Consider a family of subspaces

$$
J_{\lambda}^{0}(t)=T_{\lambda} F\left(T_{\gamma(t)}^{*} M \cap C_{\triangle}^{0}\right)
$$

of the space
$T_{\lambda} C_{\triangle}^{0} /\{$ sing. ext. foliation $\} \cong T_{\lambda(0)} C_{\triangle}^{0} / T_{\lambda(0)} \lambda$.
Then $t \mapsto J_{\lambda}^{0}(t)$ is a curve in the Grassmannian. Geometry of these curves reflects the dynamics of the fibers along sing. extremals and contains the fundamental information about distribution $\Delta$.

Let $n=5$; two interesting cases $k=2$ and $k=3$ are essentially equivalent:

$$
\begin{gathered}
\operatorname{dim} \Delta_{q}=2 \Rightarrow \operatorname{dim} \Delta_{q}^{2}=3 \\
C_{\Delta}^{0}=C_{\Delta^{2}}^{0}=\Delta^{2 \perp}, \operatorname{dim}\left(C_{\Delta^{2}}^{0} \cap T_{q}^{*} M\right)=2
\end{gathered}
$$

Reconstruction of the 2-distribution from the 3-distribution:

$$
\Delta=\left\{\dot{\gamma}(t) \in T M: \gamma \text { is a sing. curve of } \Delta^{2}\right\}
$$



Let $\pi: T_{p}\left(T^{*} M\right) \rightarrow T_{q} M$ be the differential of the projection $T^{*} M \rightarrow M$; then $\pi\left(J_{\lambda}^{0}(t)\right) \subset p^{\perp} \subset$ $T_{q} M$ and $t \mapsto \pi\left(J_{\lambda}^{0}(t)\right)$ is a curve in the projective plane $\mathbb{P}\left(p^{\perp} / \dot{\gamma}\right)$.

Proposition: Distribution $\Delta$ has a basis generating the 5-dim. nilpotent Lie algebra iff this curve is a quadric $\forall p, q$.

In general, let $K_{p}(q) \subset p^{\perp}$ be the osculating quadric to this curve: $K_{p}(q)$ is zero locus of a signature $(2,1)$ quadratic form on $p^{\perp} / \dot{\gamma}$. Finally, $\mathcal{K}(q)=\bigcup K_{p}(q)$ is zero locus of a $p \in \Delta_{q}^{2 \perp}$
$(3,2)$ quadratic form on $T_{q} M$.
$\mathcal{K}(q), q \in M$ is and intrinsically "raised" from $\Delta$ conformal structure on $M ; \Delta_{q} \subset K(q)$.

Assume that $k=2, n \geq 5$. Let $p \in C_{\Delta}^{0}, \lambda$ the sing. extremal through $p$ and $\gamma$ the corresponding singular curve. We set:

$$
J_{\lambda}(t)=D_{\lambda} F\left(\pi^{-1} \Delta_{\gamma(t)}\right) \subset T_{p} C_{\Delta}^{0} / T_{p} \lambda .
$$

Then $J_{\lambda}(t) \supset J_{\lambda}^{0}(t)$ and $J_{\lambda}(t)$ is a Lagrangian subspace of the symplectic space $T_{p} C_{\Delta}^{0} / T_{p} \lambda$. In other words, $J_{\lambda}(t)^{\llcorner }=J_{\lambda}(t)$, where

$$
\mathcal{S}^{\angle} \stackrel{\text { def }}{=}\left\{\zeta \in T_{p} C_{\Delta}^{0}: \sigma(\zeta, \mathcal{S})=0\right\}, \mathcal{S} \subset T_{p}
$$

Given $s \in \mathbb{R} \backslash\{0\}, s \lambda$ is the singular extremal through $s p \in C_{\Delta}^{0}$. Hence $T_{p}(\mathbb{R} p) \subset J_{\lambda}(t), \forall t$ and $J_{\lambda}(t) \subset T_{p}(\mathbb{R} p)^{\llcorner }$.

Final reduction: $\Sigma_{p}=T_{p}(\mathbb{R} p)^{\llcorner } / T_{p} \mathbb{R} p$ is a symplectic space, $\operatorname{dim} \Sigma_{p}=2(n-3)$. Then $J_{\lambda}(t)$ is a Lagrangian subspace of $\Sigma_{p}$.

Important property: $J_{\lambda}(t) \cap J_{\lambda}(\tau)=0$ for sufficiently small $|t-\tau| \neq 0$.

Take projectors: $\pi_{t \tau}: \Sigma_{p} \rightarrow \Sigma_{p}$,

$$
\left.\pi_{t \tau}\right|_{J_{\lambda}(t)}=0,\left.\quad \pi_{t \tau}\right|_{J_{\lambda}(\tau)}=1
$$

## Lemma:

$$
\operatorname{tr}\left(\frac{\partial^{2} \pi_{t \tau}}{\partial t \partial \tau}\right)=\frac{(n-3)^{2}}{(t-\tau)^{2}}+g_{\lambda}(t, \tau)
$$

where $g(t, \tau)$ is a smooth symmetric function of $(t, \tau)$.
"Ricci curvature" on $\lambda: \rho_{\lambda}(\lambda(t)) \stackrel{\text { def }}{=} g_{\lambda}(t, t)$.

Chain rule: let $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ be a change of the parameter; then $\rho_{\lambda \circ \varphi}(\lambda(\varphi(t)))=$

$$
\rho_{\lambda}((\varphi(t))) \dot{\varphi}^{2}(t)+(n-3)^{2} \mathbb{S}(\varphi)
$$

where $\mathbb{S}(\varphi)=\frac{\dddot{\varphi}(t)}{e \dot{\varphi}(t)}-\frac{3}{4}\left(\frac{\ddot{\varphi}(t)}{\dot{\varphi}(t)}\right)^{2}$.
"Ricci curvature" $\rho$ can be killed by a local reparametrization. A parametrization which kills $\rho$ is called projective; it is defined up to a Möbius transformation.

Let $t$ be a projective parameter, then the quantity:

$$
A(\lambda(t))=\left.\frac{\partial^{2} g}{\partial \tau^{2}}(t, \tau)\right|_{\tau=t}(d t)^{4}
$$

is called the fundamental form on $\lambda$.
For arbitrary parameter: $A(\lambda(t))=$

$$
\left(\left.\frac{\partial^{2} g}{\partial \tau^{2}}\right|_{\tau=t}-\frac{3}{5(n-3)^{2}} \rho_{\lambda}(t)^{2}-\frac{3}{2} \ddot{\rho}_{\lambda}(t)\right)(d t)^{4} .
$$

Assume that $A(\lambda(t)) \neq 0$, then the identity $\left|A(\lambda(s))\left(\frac{d}{d s}\right)\right|=1$ defines a unique (up to a translation) normal parameter $s$.

Let $z \in C_{\Delta}^{0}$ and $\lambda_{s}$ is the normally parameterized singular extremal through $z$. We set

$$
\bar{\rho}(z)=\rho_{\lambda_{s}}(z),
$$

the projective Ricci curvature. Then $z \mapsto \bar{\rho}(z)$ is a function on $C_{\Delta}^{0}$ which depends only on $\Delta$.

Back to the $(2,5)$ distributions. Such a distribution admits a basis generating the 5-dim. nilpotent Lie algebra iff $A \equiv 0$.

Example. A radius 1 ball is rolling over the radius $r$ ball without slipping or twisting, $1<r \leq$ $\infty$. Admissible velocities form a $(2,5)$ distribution. Then (I. Zelenko): $\operatorname{sgn}(A)=\operatorname{sgn}(r-3)$;

$$
\bar{\rho}=\frac{4 \sqrt{35}\left(r^{2}+1\right)}{3 \sqrt{\left(r^{2}-9\right)\left(9 r^{2}-1\right)}}
$$

In particular, the distributions corresponding to different $r$ are mutually non equivalent and the distribution corresponding to $r=3$ admits a basis generating the 5-dim. nilpotent Lie algebra.

