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1. I n t r o d u c t i o n  

1. Let M be a real-analytic manifold, Vect M the Lie algebra of analytic vector 
fields on M. We consider a vector field f E Vect M as a differential operator of first 
order on the algebra of  smooth functions C ~ (M) which satisfies the differentiation 
rule 

f(W1W2) -" (fw1)W2 + wI(fW2) VWI, W2 E Coo(M). 

A point z E M will be identified with the corresponding homomorphism 

z: Coo(M) ~ I~, ~ ~ ~(z). 

A tangent vector ~ E T~M is a linear functional ~: Coo(M) ---* I~ which satisfies 
condition 

= + 

so that the value of  the field at the point x is considered as a composition: 

z o f: Coo(M) ],  C a ( M )  r4 Ii~. 

The Lie bracket of the fields f l ,  f2 has the usual meaning as the commutator of 
operators [fl ,  f2] = f l  o fz - f2 o fl .  The symbol C ! denotes a series in degrees of  t 
with operator coefficients of  the form 

~ t "  fn o f  e # = i d +  ~.I , fn  = f o . . .  . 

k=l  n times 
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Let z0 E M. If the function ~ is analytic in some neighborhood of x0, then the power 
series with real coefficients x o eq~o is convergent for small values of t and all z 
sufficiently close to z0. In addition, we have z(O) o e t! ~ = ~(z(t)), where t ~ x(~) 
is a solution of  the differential equation 

d 
= �9 o f .  (1) 

Therefore, in the sequel we use the notation z(t) = z ( 0 ) ~  eq .  For all future con- 
structions, we fix a point z0 E M and suppose that 5 r C Vect M is an arbitrary set 
of vector fields, which is uniformly bounded in the Cl-topology in some neighbor- 
hood of x0. Hence, there exists such a neighborhood O of (z0, 0) E M x ~ that 
z(t)  = x(0) o e q  is defined for all (z(0), t) E O and for all f E jr .  All our considera- 
tions will be local with regard to z, as well as with regard to t. In order to elucidate 
the exposition, we shall always suppose that the expression z o e t$ is defined for all 
values z, t, under consideration, which certainly will not restrict the generality or the 
rigor of reasoning. 

2. The set of differential equations 

~ = x o f ,  f E ~  r ,  z E M  (2) 

with the fixed initial condition z(O) - z0 defining a control system. We call a control 
(function) an arbitrary piecewise constant mapping of ~ + = {t [ t t> O} into ~'. The 
points of discontinuity of this mapping we call the switching points of the control. 
The trajectory of the control system, which corresponds to the control f r ,  r / >  O, is 
the solution of the differential equation 

z = z o L ,  z ( O ) = z o .  

Denote 

then, 

f r = f i  for t i _ l < r < t i ,  0 = ~ 0 < ~ l < . . . < t k  ~<t, 

z(t)  = Zo o e tl-ct o e (t2-t~)f2 o . . .  o e 0-tk)J~ . 

DEFINITION. The set 

.At(.T" ) = (:e 0 o e  slfl o . . . o e  ' ~ f k  I f i  E .~ ,  8i >t O, i - -  1, . . . , k ;  

~ - ~ s i < t ,  k > 0  , 
i=1 

is called the attainable set for the system (2) for times less than t. 
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One of the basic problems in control theory is to investigate the directions in which 
the controlled trajectory of (2) moves starting from xo, or, how do the attainable sets 
At behave for small t > 0. For example, if a,/3 t> 0, fx, f2 E ~', then, for every 
given t > 0 the point x0 o e "~.tl o e ~12 belongs to .4, for sufficiently small e > 0 
and is situated 'almost' in the direction of z0 o ( a l l  + j3f2) from the point x0. If 
f~, - f i  E .~', i = 1, 2, then the point u:0 o e ~-tl o e,12 o e -~11 o e -cy2 belongs to Mr for 
small e and is situated 'almost' in the direction of z0 o [fl, f2] from the point z0, etc. 

DEFINITION. The system (2) is called locally controllable at :Co for small time if 
x0 E in tA , (~ )  Vt > 0. 

If we remove in the definition of attainable sets all restrictions on si, we obtain 
an upper estimate for .At(.~) which is relatively easy to compute. For this purpose, 
we introduce the following definition. 

DEFINITION. The set 

O(.~')-- {z0 oe slfl o . . .  o e s~1~ I f i  E .~', si E I~, i = 1 , . . . , k  > 0} 

is called the orbit of  the system (2) (through zo). 

Denote by Lie.~" the Lie subalgebra in Vect M generated by the set .T and let 

L i e x ~ = { x o f [ f E L i e $ ' }  x E M .  

The following well-known theorem holds 

THEOREM 1 (Nagano-Sussmann). The orbit O(J r) is an immersed analytic sub- 
manifold in M and 

TxO(F) = L ie ,~"  Vz E O(.T). 

Since .At( f )  C O(.~') for all t /> 0, an evident necessary condition for local 
controllability is the equality 

Lie ~0.T" = Txo M. 

This is the so-called rank condition for controllability which we suppose to be fulfilled 
in the sequel without further mention. 

The following relation is well known: 

.A,(~ r) C intM,(~). 

Thus, ,4,(Y') contains interior points arbitrarily close to z0 (provided the rank condi- 
tion is fulfilled). The main problem is to find the conditions under which the initial 
point x0 is an interior point. 
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3. To fix the system of notions in which the answer should be given we shall describe 
here a complete system of invariants of a family of analytic vector fields. Let 

~" = {f~ I v E .hf} and ~ = {gv I u E A/'} 

be two families of analytic vector fields with identical index sets, and suppose that 
Liez0 ~" = Tzo M. Furthermore, suppose that L i e n  is a real free Lie algebra with 
the set of generators A/'. The mappings v ~ f~ and v ~ gv are uniquely extended 
to the homomorphisms 

]:  L i e n  , Vect M, ~: L i e n  , VectM, 

respectively. The system of invariants is described by the following proposition, 
which is a consequence of Theorem 1. 

PROPOSITION 1. The following two assertions are equivalent. 

(1) There exists a diffeomorphism e): 0~o ~ O" ~ defined on some neighborhood 

Oxo of  zo E M,  such that ~(z0) = Zo and d).f~ = gvlo, ~ Vu E A/'. 

(2) 

{)~ E LieA/" I z0 o f ( ,~)=  0} = {,~ E LieA/" I z0 o ~(,~) = 0}. 

Thus, the local behavior of a control system is completely defined by the values 
at zo of the commutator polynomials of the initial vector fields. We start with the 
formulation of results which could be obtained without considering the commutators, 
i.e., using only 'commutator polynomials' of vector fields of the first degree - -  
linear combinations of vector fields. Denote by conv .~" the convex hull of the subset 
.7 r C Vect M. A result from the sliding state theory implies 

int.A,(2") ~ int .Ar(conv~) Vt > ~- > O. 

Using this relation and the uniform boundedness of 5 r around z0, and denoting by 
rel int S the relative interior (i.e., the interior relative to the carder) of the convex set 
S, we come to the assertions 

0 E Zo o (relintconv5 r) ==~ zo E intalt(~') Vt > 0 ==~ 0 E zo o (conv~'); 

zo E int.At(~') Vt > 0 ~ z o E int.At(-Y:) Vt > O. 

The last relation asserts that the local controllability for small time is equivalent to the 
possibility of reaching the point x0 for small time from every point sufficiently close 
to x0 along the trajectories of system (2). This property indicates some superficial 
analogies between the problem of local controllability and the problem of asymptotic 
stability for dynamical systems (without controls). 



LOCAL CONTROLLABILITY AND SEMIGROUPS OF DIFFEOMORPHISMS 5 

4. In order to obtain deeper controllability conditions, we must use the commutator 
polynomials of vector fields from ~'. We shall mention here some illuminating 
results for the most descriptive (though, by far not easy) case of two vector fields 
~r = {X, Y),  to give some motivation for the general considerations in further 
sections. 

The permutation X ~ Y defines an involution on span~'. Put f = �89 + Y), 
1 which is a fixed element for this involution, and g = 2(X - Y) is an eigenvector 

with the eigenvalue ( -1) .  Furthermore, 

conv " = { f  + I1 '1 -< 1}. 

The earlier controllability conditions used the filtration of the algebra Lie {f, g) 
according to the powers of g, which corresponds to the asymptotic development of 
the solutions of the differential equation 

dz 
d--7 = f + I '1 ~< 1, (3) 

according to the powers of u. Suppose 7r is a commutator monomial of several 
variables. Denote by degi r the degree of ~r with respect to the ith variable, and by 
deg 7r the total degree over all variables. The set of all commutator monomials of 
two variables we denote by 9X2. Put 

Ln(g, f )  = span(It(g, f )  I degl r ~< n, 7r E 9~2}. 

In particular, 

L~ f) = {f) ,  Ll(g, f )  = span{(ad f)~g I i = 0, 1 , . . .  }, etc., 

where, as usual, 

(ad f)v = [f, v], (ad f) i+lv = [1, (ad f)iv], Vv E Vect M, i = 1, 2 , . . . .  

The obvious necessary condition of local controllability for small time, which will 
be always supposed to be satisfied, is z0 o f = 0. The simplest sufficient condition 
- -  controllability by linear approximation: 

x0 o Ll(g, f )  = T~:oM. 

A more sophisticated necessary condition - -  the generalized Legendre-Klebsch con- 
dition: 

x 0 o (ad g)21 E z0 o Ll(g, y). 

Already, these lower order conditions show that the monomials of even and odd 
degrees in g play different roles. The reason for such a behavior can be explained 
if we observe that the involution g ~ - g  changes the sign of the monomials of odd 
degree in g and leaves unchanged the monomials of even degree. The following 
theorem of Hermes and Sussmann, cf. [22], contains everything that could be ex- 
tracted, if we restrict our considerations to the filtration Lr~(g, f)  and the involution 
g --~ - g .  
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THEOREM 2. I f  

zooL2k(g, f )  C z o o L 2 k - l ( g , f ) ,  Vk/> 0, 

then the system is locally controllable for small time. 

The following necessary condition, generalizing the Legendre-Klebsch conditions, 
is due to Stefani [19]: 

PROPOSITION 2. I f  the system (3) is locally controllable for small time, then 

z0 o (ad g)2kf e xo o L 2k- l(g, f ) ,  Vk ~> 0. 

But still there is a deep gap between the necessary and sufficient conditions of 
local controllability. It could be somewhat narrowed if some other filtrations and 
additional symmetry considerations are used. First of all, we can make in (3) the 
change of time variable t = fo w(O)dO, which leads to the system 

dx 
d'--r = w f  + wug, w o, lul ~< 1. (4) 

Asymptotic expansion of solutions according to the powers of u or w leads us to 
a family of filtrations of the Lie algebra, generated by the fields g and f: if the 
field f has a 'zero weight' in the filtration L'~(g, f), then we can assign to the field 
f an arbitrary nonnegative weight, not exceeding the weight of g. The following 
theorem due to Sussmann [23] is based on such filtrations and special symmetries of 
concrete problems (they will appear in a more general context below), which allow 
us to distinguish the polynomials of even and odd degrees not only with respect to 
g, but also with respect to f ,  as well. 

THEOREM 3. Suppose an c~ E [0, 1] exists, such that for every ~r G 9X2 which is of 
even degree in the first variable and odd degree in the second, the following relation 
holds: 

xooTr(g, f )  G span{xooa"(g, f )  [ deg 1 7r'+c~ deg 2 7r' < deg 1 rr+o~ deg 2 r, a" 6 9312}. 

Then the system (3) is locally controllable for small time. 

Some additional necessary and sufficient conditions based on the same filtrations 
can be found in [6, 16]. It turns out, however, that the described filtrations are 
insufficient for obtaining satisfactory conditions of local controllability, even for 
simple polynomial systems of small dimensions. This is well demonstrated by the 
following remarkable example due to Kawski [15] which strongly influenced the 
content of this paper. 
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EXAMPLE. Let 

M = R 4, 0:0 "-  0,  ;g = ( 0 : 1 , . . . ,  0:4) E ~ 4 ,  

0 
0i = ~ x / E  Vect ~4 , i =  1 , . . . , 4 .  

Suppose 

g = 191, f = 0:1192 q_ (0:1)3193 .it. (( ;g3)2 - -  (0:2)7)194 . (5 )  

At the origin, only linear combinations of the following commutator monomials of  

f,  g differ from zero: 

g ---- 191, 0 o [g, f ]  = 192, (ad g)3f  = 6193, 

r l (g  , f )  -- (ad (ad g)3 f )2 f  -" 7204, or2(g , f )  = (ad [ g , / ] ) 7 / =  -7!194. 

We have 

deg 1 71" 1 = 6, deg 2 71" 1 = 3; deg 1 7r2 = 7, deg 2 71" 2 = 8. 

It is clear, that the fields g, f violate the above formulated sufficient condition of 
local controllability. One can even prove, that for all N > 0 there exists t > 0 such 

that, for every 

0: = (0:1,. . . ,  0:4) = 0o  e h(-t+u~a) o . . . o  e tN(y+uNa), luii <~ 1, 
N 

E ti <~ t, 
i = l  

the condition o: 1 = x 2 = z 3 = 0 implies X 4 /> 0. 
Nevertheless, as was shown by Kawski, the system (3) with the fields (5) is locally 

controllable for small time. All previous sufficient conditions failed for this system, 
since for t ~ 0 the number of switchings, which is necessary to attain all points of 
a neighborhood of 0, increases to the infinity. 

Hence, some new methods should be introduced to handle this 'fast switching' 

phenomenon. The development of  such methods is one of the purposes of this 
paper. But, as it frequently happens, to fully understand this particular phenomenon, 
we have to look at it from a much more general point of view. 

5. We start with a remark that the definition of attainable sets employs not the vector 
fields but the mappings of  the form 

(t, z)  ~ x o e ~] . (6) 

Therefore, nothing prevents us to consider from the beginning not a family of vector 
fields f but an arbitrary family 7 9 of  analytic mappings 

(t, 0:), , p(t, 0:), (7) 
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defined on a region in ~ x M, with values in M and the initial condition p(0, ~) = x. 
We shall adopt this approach. Furthermore, the parameter t does not necessarily plays 
the role of time, and the corresponding notion of local controllability is applicable not 
only to systems with continuous time, but to a broad class of systems with discrete 
time. Moreover, only in this more general situation can we achieve sufficiently 
flexible means for an adequate investigation of the original problem (2). Indeed, 
already the mapping (t, x) ~ x o e th  o eq2 could not be represented in the form (6) 

if [f l ,  f2] # 0. 
The germs of mappings of the form (7) at (0, z) constitute a semigroup: the 

product of the germs, represented by the mappings pl, 192, is the germ of the mapping 
(t, x) ~ p2(t, pl(t, x)). In fact, all germs are invertible and thus constitute a group. 
The first part of Section 2 contains a version of Lie theory of subgroups of this 
infinite-dimensional group. 

Let t ~ 7(0, 7(0) = a:0, be a smooth curve in M, hence t ~-* p(t, 7(0) is also a 
smooth curve starting at ~0. The transition from 7(0 to p(t, 7(0) defines an action 
of the group of germs of mappings of the form (7) on the set of germs of curves 
at zo. This action induces, in turn, an action of the same group on the space of 
n-jets of curves at Zo Vn > 0. Note that the space of 1-jets of curves at z0 is, by 
definition, T~oM, and the corresponding action depends only on the linearization of 
the mappings of the form (7) at (0, x0). For n > 1, higher polynomial approximations 
of these mappings enter into play. 

The action of the group of germs of mappings of the form (7) on the spaces of jets 
of curves, thus introduced, play a central role in our investigation of the problem. 
It seems reasonable to suppose that similar considerations might render quite useful 
in other problems of geometric control and in the geometry of distributions. For 
example, the controllability problem is a special case of the problem of investigating 
attainable sets in the space of jets of curves. The results obtained can be easily 
applied to popular problems of curve interpolation. 

The second half of Section 2 is devoted to a detailed study of the orbits, in the 
space of jets of curves, of the group generated by a given family 79 of mappings of 
the form (7). In Section 3, we study the action of a semigroup, generated by the 
family 7 9, in the same spaces: we investigate the situation of orbits of semigroups 
and of stable subsemigroups in the group orbits and, correspondingly, in the stable 
subgroups. 

The basic results of the paper are formulated in Section 4. Theorem 4.1 formu- 
lates conditions which are sufficient for the orbit of a semigroup in the space of 
n-jets of curves to coincide with the orbit of group generated by this semigroup.* 
This theorem immediately implies an effective sufficient condition for controllability, 
which includes as a particular case Theorem 3 formulated above. But much more is 
achieved if we extend the semigroups with the aid of the so-called 'fast switching 

* Formulas, theorems, propositions and lemmas are numbered in each section separately. The references 
for the same items from a different section have a double numbering, the firs number indicating the 
number of the corresponding section. 
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variations'. Namely, the elements of the semigroup are products of finite numbers 
of elements of  the family 7 ~, and the fast-switching variations make it possible to 
indefinitely increase the number of  factors as t tends to zero. As a final outcome 
of the combination of all possible variations is our Theorem 4.2 - -  the central re- 
sult of this paper. The final Section 5 is devoted to the technique of handling of 
fast-switching variations and to the proof of  Theorem 4.2. 

Fast-switching variations can be considered to be a further development of  the idea 
of sliding states. Such fast-switching controls are successfully used in applications 
where one should not always consider the parameter t as a time-parameter. A good 
example is given by multi-layered materials: to attain the desired physical properties 
of a physical surface it is sometimes useful to combine a large number of  very thin 
layers of  different materials. Here t plays the role of the thickness of the layer. 

6. We shall not try to formulate all main results of the paper in this introductory 
section, but still we can give here some special consequences pertaining to the 
system (3). The following assertion uses the notion of a reachable subspace in 
TzoM. The exact definition is given in Section 4, here we can only mention that the 
sum of two reachable subspaces is a reachable subspace and that the reachability of  
the space T~oM implies the local controllability. 

THEOREM 4 (cf. Proposition 4.9). Let u E [0, 1], r /> 0, and let ['I 1 be a set of 
bihomogeneous commutator polynomials in two variables such that they generate a 
Lie algebra Lie FI 1 with the following properties: 

(a) H 1 is a set of free generators of  the algebra LieFll; 

(b) Lie FI 1 contains all commutator monomials which are of  even degree in the 
first argument and of odd degree in the second. 

Put 

FI~+I=[FI ,  FIk], duQr)=degTr-uk  VTrEFI k, k = 1 , 2 , . . . ;  

oo 

H =  U U  k. 
k = l  

Suppose that for all l >i 0 and every r E 1-I zz+l, which is of even degree in the first 
argument and of odd degree in the second and satisfies the relation dv (r) <<. r, the 
inclusion 

zoo  7r(9, f )  E span{zo o aJ(#, f )  I ~r' E H, d~(Tr') < d~(~r)} 

holds. Then the subspace 

span{z0 o 7r(9 , f )  I 7r E 17, d~(~r) ~< r} C T~oM 

is reachable for the system (3). 
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Let Lie {y, z) be the Lie algebra of all commutator polynomials in y, z, i.e., a free 
Lie algebra with two free generators y, z. Every subalgebra of a free Lie algebra is 
free. Therefore, to apply the formulated theorem, we can first choose a bigraduated 
Lie subalgebra in Lie {y, z), which contains all monomials of even degree in the 
first argument and of odd degree in the second, and only then choose some free 
generators in this subalgebra. For this purpose the so-caUed elimination theorem is 
quite useful, cf. [8]: Let S be an arbitrary set, so E S, then the linear hull of all 
commutator monomials in the elements of S, except the first degree monomial so, 
is a Lie algebra freely generated by the set 

{ (ads0) ' s  I s e S \ {so) ,  i = O, 1, 2 , . . . } .  

The only Lie subalgebra of codimension 1 in Lie {Y, z}, which satisfies the con- 
ditions of Theorem 4, is the linear hull of all commutator polynomials except Y. 
The elimination theorem implies that this subalgebra is freely generated by the set 
{(ady)iz [ i = O, 1, 2 , . . .} ,  i.e., by the set of all monomials of degree 1 in the 
second variable. Thus, if we put 1-I 1 = {(ady)iz [ i = 0, 1, 2 , . . .} ,  we obtain 
dv(Tr) = deg 1 a" + (1 - v) deg 2 r VTr E H. 

Put fi = (adg)if ,  i = 0, 1,2, . . . .  Since z0 og ~ 0, the field g can be represented 
in some local coordinates in a neighborhood of z0 in the form g = O/0z 1 = Ol. Sub- 
stituting, if necessary, the field f by the field s t + ~g, where ~ E C'~ ~(z0) = 0, 
i.e., after executing an elementary feedback transformation which does not influence 
the local controllability properties, we can represent the field f as f = ~ j # l  ~j0j ;  

O i then fi = )"~j#l( 19j)OJ �9 Thus, without a loss of generality, we can assume that 

z0 o g ~ Lie~0{f i [ i = 0, 1 , . . . ) .  

Summing up, we can assert that Theorem 3 is a Corollary of Theorem 4 for 

I-I x = { (ady) ' z  I i -- 0, 1 , . . . } .  

Now we shall examine the case when I-I 1 generates a subalgebra of codimension 2 
in Lie {y, z). It is easy to indicate all such subalgebras satisfying the conditions of 
Theorem 4. They depend on one integer-valued parameter which takes only odd 
values. The subalgebra corresponding to n is a linear hull of all monomials except 
Y and (ad y) '~ z. According to the elimination theorem, it is freely generated by the 
set {(ad(ady)'~z)J(ady)iz [ i , j  >>. O, i ~ n). Put 

h. n. = (ad fn)/fi = (ad (ad g)n f) J (ad g)i f ,  s3 

HA(n  ) =  span [ h ~ j k , [ . . . , [ h ~ 2 , h i l j ~ l . . . ] l ~ - ' ~ i ,  = i, ~ j ,  = j, i, r n . 
L=I ~=1 

The space H~.(n) consists of commutator polynomials in the fields g, f, of degree 
nj + i in g and j + k in f .  As a Corollary of Theorem 4, we obtain 
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PROPOSITION 3. Let # E [0, 1], r /> 0, and let n be a positive odd number. Suppose 
that for all even i, j and odd k, which satisfy the relation (n + 1)j + i + #k x< r, the 
inclusion 

xo o H A (n) C span { xo k' i' oH~,j,(n) l ( n+  l ) f  + + # k ' < ( n + l ) j + i + # k }  

holds. Then the space 

xo o span{x o HA(n ) ] (n + 1)j + i + / l k  ~< r} 

is reachable for the system (3). 

Thus, if all elements of the spaces xooH~ (n) for even i, j and odd k are 'neutralized 
by the brackets of lesser weight', then the system (3) is locally controllable. If i, j 
are even and k is odd, then the polynomials in g, f ,  constituting the space HA(n), 
are of even degree in g and of odd degree in f .  But the same is true if i, j are odd 
and k is even. Thus, contrary to Theorem 3, it is sufficient to neutralize only part of 
all brackets (roughly speaking, half of them), which are even in g and odd in f .  For 
such neutralization we can use all brackets of 'lesser weight' except x0 o (adg)nf.  
Certainly, the set of the brackets which are to be neutralized, as well as the system 
of weights, depend on n. 

Let us consider in more detail what happens with the brackets of fourth degree 
in g. For simplicity, we take the case # -- 0, then the 'weights' do not depend on k. 
Put Hij(n) - -  E ~ ~  H k (n). For the fourth-order brackets, the interesting cases could 
be only for n = 1, 3. The spaces z0 o H3,1(1) and z0 o Hi,l(3) consist completely of 
brackets of fourth degree in g which do not need neutralization. A simple calculation 
using the Jacobi identity leads us to the relations 

H3,1(1) = H'l,l(3) = span{ [(ad f)ig, (ad f)~(adg)Sf], i >>. 1, j >1 0}. 

All remainder brackets of fourth degree in g are contained in 

H4,oO) = Ha,o(1) + H2,2(1) + Ho,4(1). 

For n = 3 we obtain the following 

COROLLARY. I f  

xo o L2(g, f )  C zo o Ll(g, f ) ,  

xo o H~,o(3 ) C (xo o L2(g, f )  + xo o/-/3,0(3)), k = 1, 3, 5 , . . . ,  

then the space xo o L4(g, f )  + xo o//5,0(3) is reachable for the system (3). 

(We used here the equality/-/2,0(3) = LZ(g, f)). 
For n = 1, the fourth degree brackets are obtained in a somewhat different way. 
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COROLLARY. I f  

Xo o H2,0(I) = 0, xo o Ho,2(1) C xo o Ho, I(1), 

x~176 C Z xo o Hi,,(1) 
i+2~<4+j 

for j = 0, 2, 4, k = 1, 3, 5 , . . . ,  then the space xo o L4(g, f )  + x 0 o//5.0(1) is reachable 
for the system (3). 

It is interesting to notice that, according to the last corollary, the bracket xo o 
(ad[g, yl)4f, which belongs to z0 o H14(1), can be neutralized by an arbitrary element 
from the space x0oHT,0(1), which contains brackets of degree 7 in g and of arbitrarily 
high degree in f .  More generally, for arbitrary odd n and even j ,  the bracket 
Xo o (ad(ado)nf)J f = xo o h n 0j can be neutralized by the elements of the spaces 

Hi,o(n) for i < (n + 1)j. In the Kawski example, the bracket xo o h32 is neutralized 
by the bracket x0 o (ad [g, f ] )7 f  E x0 o H7,0(3). 

7. In this paper, we are considering only analytic systems, but all results of Section 4 
and everything pertaining to jets is valid for the C ~ case, and the proofs are similar 
to those given here. But the technique developed in this paper does not permit us to 
obtain the necessary conditions of controllability. At the same time, it seems quite 
promising to use this technique for obtaining sufficient conditions of 'controllability 
along the trajectory' and of the necessary conditions of optimality. 

Finally, the first of the authors would like to thank Gianna Stefani and Rosa-Maria 
Bianchini for useful discussions. 

2. Orbits  o f  G r o u p s  o f  D i f f e o m o r p h i s m s  and Groups  o f  Flows  

1. Let 7 ~ be a set of germs at (0, x0) of analytic mappings (s, z) ~ P(s, z) from 
x M into M, satisfying the condition P(O, x) = x. All subsequent considerations 

are local in both variables s and x, therefore we shall always consider instead of 
germs their representatives. Without restricting generality, we can also suppose that 
for every fixed s the mapping P(s, .): z ~ P(s, x) is a diffeomorphism of M, since 
for s = 0 we have the identity mapping of M and all considerations are local in 
s and z. 

Vector fields on M are considered in the standard way as linear operators (differ- 
entiations) on the algebra of smooth functions C ~ (M). Diffeomorphisms of M will 
also be identified with linear operators on C~176 - -  with automorphisms of the 
algebra Coo(M). The image of a function ~o E Coo(M) under the diffeomorphism p 
is defined according to the relation (p~)(z) = ~(p(x)). The points of M are identified 
in the usual way with linear multiplicative functionals on Coo(M) - - t h e  algebra of 

def 
homomorphisms Coo(M) ~ ~,  acting according to the relation x: ~ ~ z~ = ~(~:). 
Therefore, the point p(x) is identified with the composition 

o p :  , x o = = 
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The operator notations are very convenient while dealing with asymptotic expansions. 
After these introductory remarks we can consider 79 as a set of analytic curves 

s ~ p(s) in the group of diffeomorphisms: p(s) E Diff M Vs, p(0) = id. Such curves 
in Diff M starting at id are called (nonstationary) flows on M. Standard examples 
of such curves are given by one parameter subgroups s ~ e sy, f E Vect M, but, 
certainly, there are numerous other examples. 

DEFINITION. The sets 

.At(79) = { x  0 o pl (Sl)  o . . .  o pk(sk) I Pi( ' )  E 79, 

si>~O, i =  1 , . . . , k ,  Z s i < t ; k > O  
i=1 

are called attainable sets for the family 79. We say that 79 is locally controllable at 
z0 if 

zo E intAt(79) Vt > O. 

More generally, let p 6 79 be given; we say that 79 is locally controllable along the 
curve s ~ zo op(s), if xo o p(t) E int.4t(79) Vt > 0. 

If 79 consists of one-parameter subgroups only, the given definitions coincide with 
the usual definitions of local controllability for small time and local controllability 
along a trajectory for the corresponding control system, cf. Section 1. The general 
case also includes the local controllability for arbitrary time (with small controls in 
the integral norm) for a vast class of systems with continuous, as well as discrete 
time. 

2. Attainable sets At(79) are contained in the orbit through z0 of the group of dif- 
feomorphisms, generated by the diffeomorphisms p(s), p 6 79, s E I~. It is desirable 
to give a maximally explicit description of this orbit, as in Section 1, which leads to 
a simple 'upper bound' for the attainable sets. 

DEFINITION. The set 

0(79) : {;gO O q1(81)O ' . .O  qk(sk) lqi E 79 U79 -1, s, E ~ ,  i =  1 , . . . ,  k; k > 0}, 

where 79-1 = {s ~ p(s) -1 [ P(') E 79), is called the orbit of  the family 79 through 
the point z0. 

We shall consider the group generated by diffeomorphisms p(s), p E 79, s E ~ ,  as 
well as the group of flows generated by flows which are obtained from flows in 7 9 
by arbitrary polynomial substitutions of the parameter. 
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Let A be the space of all real polynomials without free coefficients: a(0) = 0 

Va E A. Put 

Or(~) = {S ~ ql(al(s)) o...o qk(ak(s)) t qi q ~ U79-1, 

a i E A ,  i =  l , . . . , k ; k > O } .  
(1) 

Evidently, 

O(P)=  { x o o q ( s ) l q e G r ( ~ ) }  V s e ~ .  

3. Since the diffeomorphisms and vector fields are linear operators in C~176 they 
can be added and multiplied, as well as multiplied with smooth functions. As a result, 
we again obtain linear operators, which are in general neither diffeomorphisms nor 

vector fields. We shall also differentiate and integrate with respect to the scalar 
parameter s E I~ one-parameter families of linear operators D(s) in Coo(M). We 
say that D(s) tends to D for n ~ cr if all derivatives of D(s,)~ tend uniformly to 
the corresponding derivatives of  D~  in a neighborhood of  xo for V~ E CooM. The 
derivative and the integral of D(s) are always considered in the week operator sense, 
for example 

(d) )  defd( 
z o  D(s ~p = zo  D(,)~o) V9 r COO(M), z r M. 

The validity of the standard rules for differentiation of  products, integration by parts, 

etc. in situations in which they are used in this article, should not cause any doubts. 
They are discussed in detail in [1]. 

Let s ~ q(s) be a flow, i.e., a smooth curve in Diff M with the initial condition 

q(0) = id. Put 

d~ q(s)o=o } o r d q = m i n  k > O ] ~ - ~ s  k : / :0 , 

and call the number ord q the order of the curve q. If  ord q = n the operator 

d= q<s>l,=o ds n 

is a vector field. Indeed, 

dn q(s)s=O(qOlq02) d'd~---g'n ( ds n = (q(s)~l) (q(s)~2)) s=O 

( dd_ . . .=0,2) = q(s) ~2 + 91 q(s) . 
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The operator 

Toq de__f 1 d n q(8) ,=0 
n! ds" 

can be considered as the 'tangent field to the flow at q(0) = id'. Finally, put 

O(3 

Gr(7~). = {q 6 Gr (P )  I ordq = n}, Gr (P )  = ~.J G r ( P ) . .  
r l=l  

Our nearest goal is to describe all fields, tangent at id to the flows in Gr (p)n. 

4. To each p 6 P we correspond an analytic curve s ~ wp(s) in Vect M defined by 
the relation 

. . I  

Wp (8) -~ 19(8)- 1 0 ~8 p(8). (2)  

It is easily seen that if wp(s) # O, then the operator wp(s) is the tangent field to the 
f l ow  t ~ p(8)-  1 o p(8 -[- t). The relation (2) can be written as 

d 
-~s z o p(8) = z o V(S) o w(s) Vz 6 M. 

In standard notations, this is equivalent to a differential equation on M defined by 
the nonstationary field (z, s) ~ (z o wp(s)) 6 TzM. Thus, s ~ p(s) is a flow on M 
generated by the nonstationary vector field wp. The operator notations directly lead 
to the asymptotic representation of p(8) as a Volterra series 

f0' fo ~ p(s) = id + p(r)  o wp(r) d r  = id + wp (v) d r +  

+ / / 0  p(r2) o w(r2) o w(rl)  dr1 dr2 = " .  
~<r2~<rl~S 

o o  

~ i d +  E f "" f w v ( . ) o ~  
. = 1  

(3) 

where 

A~ = { ( r l , . . . ,  r , )  I 0 ~< r, < . . .  ~< rx ~< s}.  (4) 

The operator series (3) is divergent, but u 6 M and every real analytic function ~a 
in the neighborhood of Zo, the series 

o o  

n = l  h~ 
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converges to x o p(s)~ for (x, s) close to (x0, 0). We call the flow p which satisfies 
(3), the right chronological exponent of  wp and denote it by 

p(s) = e---of f0' ~p(~)dr. 

Formal properties of chronological exponents are studied in [1, 2]. 

$. Let 

oc  

wp (s) = Z s " -  1.wp ", wp" E Vect M, 

be a Taylor series, expansion of the analytic curve s ~ wp(s). Put 

k f 
= span~ [~L~, t . . . ,  [~Ll,,~~ I E i~ ~ n, p~. ~ ' ,  0 ~ k  < n~, f2,~ 

k ./=0 ) 

oo 

g2= U ~ n .  
n----1 

It is easily seen that g2 = Lie{w~ [ p E P,  n = 1, 2, . . .}  is a Lie subalgebra in 
Vect M generated by the fields w~, and the subspaces g2n constitute an increasing 
filtration of this subalgebra. 

THEOREM 1. For every n > O, the following relation holds 

f2, = {Toq l q e Gr(P),~}. 

Proof. Let s ~ q(s) be an analytic flow. Put 

d 
~nq(s) -- q(s) -1 o ~ss q(s). 

It is easily seen that 

f0 ' In q(r) d r  s~ O(s~ (5) + 

Furthermore, for arbitrary flows ql, q2 the following relation holds which is a direct 
consequence of the variation formula, cf. [1, 2]: 

1~1 ((ql o q21)(s)) = ex--~ ad l~l q2(v) d r  (l~l ql(s) - In qz(s)), (6) 
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where by definition 

--"/o' exp ad v(r) drw(s)  ~ w(s) + 

n = l  

for arbitrary curves v, w in Vect M. Hence, the relations (5), (6) imply the inclusion 

{T0q I q e Gr(79).}. 

To prove the inverse inclusion, we need some preparatory work. The following three 
statements are proved by direct calculation. 

LEMMA 1. For every .flow q and every real polynomial a(s) = E/k=l oti 8i , oQ ~ 0, 
the following equalities hold 

ordq = ordq -1 = ordq(a(.)) ;  Toq -1 : -Toq, Toq(a(.)) = c~~ 

L E M M A  2. Let ql, q2 be flows such that ord  ql  - -  o rd  q2 = n,  Toql + Toq2 ~ O. Then 

ord(ql  o q2) = n, To(ql o q2) = Toql + Toq2. 

LEMMA 3. For arbitrary flows ql, q2 the equalities 

ord(qloq2oqlloq2 1) = ord ql +o rd  q2, To(qloq2oqlloq2 1) = [Toql, Toq2] 

hold. 

Lemmas 1-3 imply that the inclusion g2~ C {Toq I q E Gr (79),,) holds if we prove 
the inclusions 

wpkE{ToqlqEGr(P) , } ,  k = l , . . . , n ,  pE79 .  (7) 

= Toq for some q E Gr (7~). For n = 1, We first prove by induction over n that wp 
the statement is evident. Applying Lemmas 1-3 and the inductive assumption, we 
come to the conclusion that it is sufficient to find q E Gr (79),~, for which 

T o q -  o{~; + ~r(6d 1, n-1 ), (8) 

where 7r is some commutator polynomial of w l , . . . ,  w~ -1 of weight n, if we agree 
i is equal to i, Vi > 0. We shall deduce (8) from a that the weight of the variable wp 

slightly more general assertion. Namely, we prove by induction over n the existence 
of a q E Gr (79), such that 

oo 
k - 1  k 1 k - 1  ~nq(s) = y ~  s (cekwp + 7r~(wp,...,wp )), 

k=n  
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where OLk # 0, and 7rk is a commutator polynomial of weight k, k = n, n + 1, . . . .  
The induction step: 

Let q E Gr (P) be such that In q(s) = ~._,k~~ 1 8k- lvk" Put 

= ~ ( 2  - ~-L-r- s ) .  ~'(s) q(2-  ~-~'- s) o q(s) -1 o q 

Relation (6) implies 

oo 

l ~ l q ' ( 8 ) :  Z sk-l ((1-- 2 ~ ) V k  -]-~k(Vl,...,Vk_l)) , 
k~n 

where ~k is a commutator polynomial of weight k of the variables ,31, . . . ,  Vk_l, if 
we assume that the weight of vi is equal to i, i > 0. Thus, the induction is complete 
and the inclusion w'~ E {Toq ] q E Gr(7~)n} is proved. If  a is a real polynomial, we 
denote by 

qa: S' )q(a(s)) 

the flow obtained from q by parameter substitution. 

LEMMA 4. Let q be a flow, lnq(s) ~ y~,~~176 s'~-lv,~. Then, for every integer n > 0 
and every w E span {v i , . . . ,  v,~_ l)  there is a polynomial c~(s) = s + ~ = 2  o~ks k, such 
that 

1 dn-1 qa(s)  s=O 
( n -  1)! ds  n-1  ~n = vn + w. 

Proof. We have 

~'~(S) = d ~ (or(S)) k Vk 
k__l T 

,~-1 vn + n~_,( ,~(~2, . . . ,~,)+~,+l)v~-,  , 
n = l  i = 1  

n - 1  where r~ is a polynomial of i - 1 variables. Let w = )"~i=1 3ivn-i .  To prove the 
lemma, it is sufficient to solve the following 'triangle' system of n - 1 equations in 
u n k n o w n s  o~2~ . . . ,  Otn: 

r n ( ~ 2 , . . . ,  Oq) + Oti+ 1 - -  - - ,  
n 

i =  1 , . . . , n -  1, 

which is uniquely solvable. 
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If we apply Lemma 4 to the flow p E ~o, we can conclude that for arbitrary 
n k is the coefficient at s '~- 1 in n > k > 0 there exists such a polynomial a, that wp +wp 

the Taylor series expansion of  the vector-function ~npa(s). Since p~ E Gr(7~), there 

exists such a flow ~" E Gr (P)  that T0~" = w;  + wg, ord ~" = n. Furthermore, there 
exists a flow q E Gr (P)  such that Toq = ~ ,  ord q = n. Hence, Lemmas 1-2 imply 

To(~- o q - l )  = wp, ord(~o q - l )  = n. 

. 

THEOREM 2. The orbit O(P)  is an immersed analytic submanifold in M,  and 

def 
T x O ( ' P ) = z o a  V z e O ( P ) ,  z o a  = { x o v l v e a } c T x M .  

Proof. Since f2 is a subalgebra in Vect M, the distribution z o f2, z E M, is 
generated by analytic vector fields and is involutive. According to Nagano [17], this 

distribution is completely integrable. Let N C M be the maximal integral manifold 
through z0 of this distribution. It is sufficient to prove that O is an open submanifold 

i n N .  
First of all, for arbitrary p E "P, Y E M,  s E ~ we have 

d 
d--~ y o p(s) = y o p(s) o wp(s) C y o p(s) o span {o~ In >i 1). 

Hence, the curve z op(s), s E I~, is contained in the orbit through y of the distribution 
z o g2, z E M. From this and from the connectivity of the integral manifolds, we 

derive the inclusion O C N. 

Furthermore, let z E O and Vl , . . . ,  vm E ~ are such that the convex cone spanned 
by z o V1, . . . ,  z o Vm coincides with T~N. Let vi E ~,,~, i = 1 , . . . ,  m. According to 
Theorem 1, there exist qi E Gr (~o), ord qi = ni, such that Toqi = vi. Consider the 

mapping 

_ ,  1/nl, qm(sl/n=), si>>.O, i = l , . .  ,m.  F:  (81, . . .  ,8rn) l , x o  ~1~.81 )0 . . . 0  

The image of  F is contained in O. On the other hand, 

F ( S l ,  . . . ,  s i n )  = x + s i  x o Vi + 0 s i  , 

i=1 i=1 

and we obtain by standard calculations that the image of F contains a neighborhood 

of x0 in N. 

7. After having discussed the orbits of groups of diffeomorphisms, we now turn to 
the orbits of groups of flows Gr(79). 
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The group operation in Gr (79) is the pointwise multiplication: 

(q l  0 q2)(8) d=ef q1(8 ) 0 qz(s), s �9 ~ .  

Let s ~ 7(s) E M be a representative of the germ of an analytic curve on M, 7(0) = 
x0, and s belongs to some  neighborhood of zero. Put (7 o q)(s) = 7(s) o q(s), 

Vq E Gr (P).  The correspondence 

q: 7 '  ' 7 ~  (10) 

defines an action of the group Gr (79) on the germs of analytic curves in M at z0. 
We shall study the orbits of the group Gr (7 9) not in the infinite-dimensional space 

of the germs of curves, but in the spaces of n-jets of these curves for n -- 1, 2 , . . . .  
We recall that the n-jet of a germ 7(s) E M, 7(0) is the equivalence class of curves 
which are tangent to 7 for s = 0 at least up to the order n. We denote the n-jet of 7 
by J'~7. In local coordinates the germ of a curve in M is identified with the germ of 
the corresponding vector function of dimension dim M and the n-jet is identified with 
the Taylor polynomial of degree n of this function. If we parametrize the jets with 
the Taylor polynomials, we obtain a natural structure of an n dim M-dimensional 
manifold on the space of all n-jets of curves at the point x0. The obtained manifold 
of the n-jets of curves we denote by C~n0 , and the symbol 

pr n : Cn0 , cn0 - 1 

will denote the canonical projection of the manifold of the n-jets onto the manifold 
of (n - 1)-jets. 

n The manifold C~0 ks diffeomorphic to an n dim M-dimensional linear space, but 
does not have an invariantly defined linear structure (independent of the choice of 

the local coordinates in M).  Nevertheless, some substitute of the linear structure 
exists and is rather useful. 

Let  c �9 C~o , ~ �9 T~:oM. Furthermore, let the germ of the curve s ~-+ 7(s) �9 M and 
the flow s ~ ,  q(s) �9 Diff M are such that 

Put 

Jn 7 = c, ord q = n, xo o Toq = ~. 

def n c + ~  = j n ( 7 o q ) � 9  

It is easy to see that the jet c + ~ indeed depends only on c and ~ and does not 
depend on the choice of the curve 7 and the flow q. Furthermore, for all c �9 Cn0 the 
following relations hold: 

(1) (c + ~1) + ~2 = c + (~1 + ~2), V~l, ~2 �9 T~oM; 

(2) pr . (c)  = pr . (c ' )  r d = c + ~ for some ~ �9 T~oM; 

(3) c + ~ = c  ~ ~ ~=0.  
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The relations (1)--(3), as well as the smooth dependence of c + ~ from (c, ~), can 
be proved by writing out these relations in local coordinates. Summing up, we come 
to the following proposition. 

PROPOSITION 1. The mapping 

(c ,~)~--~c+~, cEC'~o , ~ E T x o M  , 

defines the structure of  an affine bundle on the manifoM C'~o with the fibre %:o M, 
the base C~o 1 and the projection mapping pr,~: C~o ~ C~0" x. 

We emphasize that the structure of an affine bundle, and not of a vector bundle, 
is defined, i.e., the origins in the affine spaces c + T~oM, c E C~o, are not fixed. 

8. We consider the action of the group of flows on C~0 induced by the action (10) of 
the group on the space of germs of curves. Let c E C~no , and let s ~ q(s) be a flow. 

Put c o q 0__el jn (7  o q), where the curve s ~ 7(s) satisfies Jn 7 = c. The composition 
c o q depends only on c and q, but not on 7. 

The following theorem describes the structure of the orbits of the group Gr (P) in 
C~0 , and can be considered as a 'jet precision' of Theorem 2. In the space C~0 there 
is a singled point - -  the n-jet of the constant curve 7(s) - z0. The orbit of this 
selected jet coincides with the set {J"(z0 o q) [ q E Gr (P)}. The orbit of an arbitrary 
jet c E C~n0 is denoted by c o Gr (P). Thus, 

o {c o q lq Gr(p)}.  

According to the definition, the mapping prn: C~0 ~ C~o 1 is equivariant: pr,~(coq) = 
pr,~(c) o q. Thus, 

pr,~ (e o Gr (7~)) = pr.(e) o Gr (P). 

By C n, we denote the affine bundle prn: 
Proposition 1. 

THEOREM 3. Let n be a positive integer, 

Cno ---* C~o --1 with the fibre Tzo M, cf. 

c E C~ 0, O2 = c o Gr (P) C C~0, O2-1 = pr. (e) o Gr (P) C C~ o-  1; 

C n I O n-1 is the restriction of the bundle C n on the submanifold 0 n-1 of the base. 
Then, 0'~ is the total space of the affine subbundle in C '~ [ 0'~ -1 with the fibre 
zo o f2,~ = ( z o o v  I v ~ ~ , , ) .  

Proof. We have to prove that for every c' E O~ the relation 

(c' + O  e 02 r ~ ~ zooC2. (11) 
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holds. Let ~ = x0 o v for some v E s According to the Theorem 1, there exists a 
flow q E Gr (7 ~) such that ord q = n and Toq = v. From the definitions, we directly 
obtain c' o q = e' + ~. Hence, (e' + ~) E O~ n �9 

Conversely, suppose (e' + ~) E O~ for some ~ E T~oM. Then d + ~ = c' o q for 
some q E Gr (P). Since p rn (d+~)  = prn(e'), we have z0o q(s) = zo-~-sn~-~o(sn+l). 
Furthermore, 

xo o q(s )  = xo  + o qO') ~ 17 q(,-) d,-. 

Hence, 

q(r) + (12) XO 0 - -  

LEMMA 5. For every integer n > 0 the following relation holds 

I" dn-1 " } 
- -  l n q ( s ) [ , = o  q e O r ( P ) _ .  

Proof. The inclusion of ff~n into the right-hand set follows from the identity (6), 
which enables us to compute the In of the composition of two flows through the In 
of the factors. The inverse inclusion follows from Theorem 1. 

The equality (12) and Lemma 5 imply that ~ = z0 o v for some v E ff2~. 

COROLLARY. The conditions of Theorem 3 imply 

n 
dimO~ = E d i m ( x o  o ~ ) .  

k = l  

The proof by induction over n. 

9. The subspaces g)n, n = 1, 2 , . . . ,  constitute an increasing filtration of the Lie al- 
gebra ff~. Let Wn, n = 1, 2 , . . . ,  be another increasing filtration which is a refinement 
of ff~. This means that 

Wn C Wn+l, Wn C Vn, [Wi, Wj] C Wi+j V n, i, j. 

We correspond to the filtration W and to any positive integer m, the subgroup 

Gr~v(7~) d---ef q E Gr(P)  I dT~_llnq(s) ,=0 e Wk, k = 1 , . . . , m  (13) 

of the group Gr(P) .  Formula (6) implies that Gr~v(7~ ) is indeed a subgroup in 
Gr(T'). It turns out that for every subgroup of the type (13) a theorem, similar to 
the Theorem 3, is valid. 
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PROPOSITION 2. Let W1 C W2. . . ,  be an increasing filtration o f  the Lie algebra V, 
which is a refinement o f  the filtration ~ ,  i = 1, 2, . . . .  Furthermore, let 

~ c~ 5, o"~,"(w) = ~ o Or?v(79) c c "  x0 ~ 

n - 1  O ~ - l ' m ( W )  = pr , (e)o  Gr~'v(79) C C~ 0 , n ~< m. 

Then the orbit On~,m(W) is the total spaee o f  the affine subbundle in C" I o ~ - l ' m ( W )  
with the fibre xo o Wn. 

Proof  Suppose c I E O~'m(W).  We have to prove that 

(c' + ~) ~ o ~ , "  ( w )  r  ~ ~ z0 o w . .  

That the left inclusion implies the right one is proved similarly to the proof of the 
corresponding assertion in Theorem 3, cf. the proof of the formula (12). 

Conversely, let ~ = Xo o w, w E Wn. According to Theorem 1, there exists 
q E Gr (79) such that ord q = n, Toq = w. Let k(q) be the least among the numbers i 
for which 

d i -  1 

d ~ - ~  ff~q(~) .=o ~t W~. 

Evidently, k(q) > n. If  k(q) > m then q E Gr~nv(79), otherwise we can find a 
q' E Gr (79) for which 

1 dk(q)-I lnq(s) ,=o" ordq' = k(q), Toq' -" k(q)! dsk(q) -1 

Then, 

ord(qoq')=n, To(qoq' )=  w and k(qoq') > k(q). 

If k(q o q') still does not exceed m, we choose a corresponding q", etc. In any case, 
by a finite number of steps, we come to a flow in Gr~,(79) of order n with the tangent 
field w, and this completes the proof. 

3. Orbits of Semigroups 

1. According to Theorem 2, the orbit 0(7 9) is a submanifold in M. Clearly, the 
attainable sets .A~(79) are contained in 0(79) for every t > 0. An evident necessary 
condition for local controllability is the equality of the dimensions of 0(79) and M. 
In this case, 0(79) is an open set in M. In the future, all constructions are carried 
out in O(79), therefore we shall assume, to simplify the notations, that 0(79) = M. 
This convention does not restrict the generality and will be fulfilled in the sequel 
without further mention. 
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THEOREM 1. The attainable set .At(79) has interior points for every t > 0, and is 
contained in the closure of its interior .At(P) C int.At(79). 

The theorem almost immediately follows from the following lemma. 

LEMMA 1. For every x E M there exist Pl , . . . ,P~ E 79 such that the mapping 

(81 , . . .  ,Sk) l ' XOpl(81) O ' ' 'Opk(Sk)  (1) 

of I~ k into M has regular points, i.e., points, where the rank of the differential is 
equal to dim M (the number k depends, in general, on x). 

Suppose that Lemma 1 is proved, z E .At(79), and take the positive ortant in ~k, 

= I , ,  > 0, i =  1, . . , k ) .  

Then, we can find a neighborhood of the origin in It~ k, O0, such that the image of 
Oo f311~, under the mapping (1) is contained in .A,(79). The analyticity of the mapping 
and the existence of the regular points imply, that the regular points constitute an 
open everywhere dense subset in ~k. Hence, such points exist in O0 fl ]$~.. At the 
same time, the image of a small neighborhood of a regular point is open. 

Proof of Lemma 1. Suppose the contrary, that for a point x E M every mapping of 
the form (1) does not possess regular points. Let the maximal rank of the differentials 
of these mappings be equal to n < dim M, and is attained in some point (~ l , . . . ,  ~k). 
Since the rank is lower-semicontinuous, this rank is identically equal to n in some 
neighborhood O of (~ l , . . . ,~k) .  According to the rank theorem, the image of O 
under the mapping (1) is an n-dimensional submanifold N C M. 

Let y E N, p E 7 9, then y o p(s) E N for all s sufficiently close to zero. Indeed, 
the differential of the mapping 

( S l , . . . , S k , 8 )  I ' XOpl(Sl) O ' ' 'Opk(Sk)Op(8) ,  (81,. . . ,S/e) E O, 

is of rank n for sufficiently small s, hence, its image is an n-dimensional manifold 
which contains N. Therefore, N is an open set in this manifold. 

We shall now show that the fields w~, i = 1, 2 , . . . ,  are tangent to N: yow~ E TyN 
for all y E N. Indeed, if we suppose the contrary, then we can find a minimal i such 

i E TyN is not valid for all y E N. Hence, this relation is not that the relation y o w v 
valid on some open subset of N, and therefore in every point of this open set, we have 
yoa;p(s) ~ TuN for every sufficiently small s ~ 0. At the same time, differentiating 
the relation y o p(s) E N with respect to s, we obtain y o p(s)o wp(s) E Tyovo)N. 
Thus, wpi is tangent to the manifold N, i - 1, 2 , . .  ., p E 3 ~ But in this case, all the 
fields from Lie {w~ [ i > 0, p E 7 9} = ff~ are tangent to the manifold N, which is 
contradictory to the Theorem 2.2. 
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. 

DEFINITION. We say that the point z E .At(']:') is normally attainable if there exist 
such points 

p~ E 79, ~ ; > 0 ,  i =  1 , . . . , k ,  
k 

E ~ i  < t ,  
i = l  

so that 

x = xo o p1(~1) o . . .  o Pk(~k) 

and (~ l , . . . , ~k )  is a regular point of the mapping 

( 8 1 , . . . ,  8k ) ,  , ~0 o p1(~1) o ' "  o Pk(~k).  

It is easily seen that every normally attainable set is an interior point of .At(P).  
The opposite statement is not so evident, although it is true. 

PROPOSITION 1. Let  x E in t (Ar(P))  ]:or some 1" < t. Then x is a normally 
attainable poin t  o f  .At(P). 

Proof. Put e = t - 7-. Let O~ be a neighborhood of x E M which is contained 
in int(.A,_~(79)). Lemma 1 and the following lemma considerations applied to the 
family of flows p - 1  = {s ~ p(s) -x I P E P},  imply the existence of 

I 

y E Oz, Pi E 7 9, "t'i > O, i = 1 , . . . ,  l, E ~ r i  < r 
i=1 

such that y = z opl(Tt)o.. .opl(Wl) and ( r ' l , . . . ,  Vl) is a regular point of the mapping 

(7-1 ,"" ' ,  I ' / ) t  ; ~ O pt("t'/) - 1  O . . . O  191(7"1) - 1 .  (2)  

Put 

r = ( r b . . . ,  rl), P ( r )  = p l ( r l )  o . . .  o p,(r~). 

We have �9 = y o P(~). Differentiating the identity P ( r )  o P( r )  -1 = id gives 

o7-, (p(7-)-1) = _p(7-) 0 (p(7-)-1) 0 p(7-). 

From here we deduce that g is a regular point of the mapping r ~ y o P(r) .  Indeed, 
we have 

0 P(r) ~=r O~i ~--ffv o = - v  o P ( ~ )  o p ( ~ ) - ~  ~=~- o p ( ~ )  

= - z  o 0-~/P(r)-I  ~=r o P(~), 
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and the regularity of the mapping (2) is equivalent to the fact that among the vectors 

x o ~ P(r)-I ,=~ 

there are dim M linearly independent vectors. Since the operator P(~) is invertible, 
the same number of linearly independent vectors are contained among the vectors 

c9 Y o P( r )  r 
On 

Furthermore, since y E .A,_~(:P), there exist 

k 

q i E 7  ~, ~ > 0 ,  i = l , . . . , k ,  ~ _ s i < t - e ,  
i=1  

such that y = xo o q1(~1) o . . .  o qk(~k). Put 

8 - -  ( 8 1 , . . .  , a S )  , Q ( 8 )  = q1(81)  o . . .  o q k ( S k ) ,  

then x = xo o Q(~) o P(T), where (~, 7) is a regular point of the mapping (s, 7-) 
xo o Q(s) o P(r). 

PROPOSITION 2. The family of flows 79 is locally controllable iff the family 79-1 
is locally controllable. 

Proof. Suppose ~p-1 is locally controllable. Then for every t > 0, the set At/2(7 ~-1) 
contains a neighborhood of x0, in which a normally attainable point x E At/z(P) is 
contained. We have 

where 

X 0 o p l ( ' ~ l )  - 1  0 ' ' '  0 p l ( " ~ l )  - 1  "-- X "-  X 0 0 q1 ( ~1 )  0 - . . 0  q k ( ' g k )  , 

! k t t 
pi, qj E 7 9, vi, sj > O, Z r i < ~ ,  ~ s k < ~ .  

i = 1  j - -1  

Furthermore, (sl, . . .  ,~k) is a regular point of the mapping 

( 8 1 , . "  ": 8 k )  t ' XO o q l ( 8 1 )  o . . .  o qk(sk). 

Hence, 

�9 o = o q1( 1) o . . .  o o p l ( r l )  o - . .  o 

where (~1,. �9 s~, r l , . .  �9 ,~t) is a regular point of the mapping 

( 8 1 , - . - , $ k , ' r l , . . - , ' r l )  "~ ; XO o q 1 ( s 1 )  o " " " o q k ( $ k  ) o /91(7"1) o " ' " o p l (7" l ) .  
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3. We recall that A denotes the space of all real polynomials without free coefficients. 
Let 

A + =  a E A l a =  ais i, a k > 0 ;  0 < k ~ < l  
i=k 

be a subset in A consisting of polynomials with positive first nonzero coefficient. 
Put 

Sgr(P) = {s ~ p l ( a l ( s ) )  o . . .  o p k ( a k ( s ) ) l p  i e ~ ,  

a i 6 A + ,  i =  1 , . . . , k ;  k > 0 } ,  
(3) 

which is a subsemigroup of the group of flows Gr(T'), cf. (2.1). Evidently, for all 
q E Sgr(70, t > 0 there exists s > 0 such that xo o q(r) E ,4~(P) for 0 x< r ~< s. 
It should be clear that the orbits of the semigroup Sgr OR) permit us to estimate the 
lower bounds for the attainable sets. For an arbitrary integer m > 0, we put 

Gr~'(7 ~) = E ~ k - l ,  k = l , . ,  m (4) G r ' V " d s x - ' l n q ' s "  ,=o "' ' 

where, by definition, ~o = 0. The group (4) is a special case of the group Gr~v, cf. 
(2.13), for the filtration Wk = ~k-1.  

THEOREM 2. For a given positive integer n consider 

co E C~ o ,  O" = co o Gr (P), O~. = co o Sgr (7)). 

Denote by ri 0~. the set of  points in 0~_ which are interior relative to the manifold 
O n . Then, 

rl f t .  (1) O~_ C n-~--~-+, 

(2) Vc E ri 0~. the following inclusion is valid: c o Gr~ (7 ~) C ri O~. 

Proof. Assertion (1) is a special case of Theorem 1. Indeed, every flow q(-) can 
be considered as a diffeomorphism of the space Cno , acting according to the rule 
c ~ c o q(.). Hence, O~ is the attainable set (for arbitrary time) of the family of 
flows on C~" o, 

r ,  ,p(va(.)),  pE 'P ,  a E A + ,  (5) 

and the manifold O '~ is an orbit of the same family of flows. 
(2) Let e E r i o t ,  c' E eoGr~(7~). We have to prove that c' E riot_. By 

induction over n, the problem is reduced to the case pr,~e = prnd. Hence, according 
to Proposition 2.2, e I = e + ( for some ~ E xo o ~,~-1. Furthermore, the mapping 
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~" ~--~ 3 + ~ ,  3 E  O n, is a diffeomorphism of the manifold O n. Therefore, r io t .  + ~  
is an open subset in O n. Thus, it remains to prove that e + ~ E O~, Ve E ri 0~.. 

Proposition 1 (cf. also (5)) implies the existence o fpx , . . .  ,Pk E 7~, a l , . . . ,  ak E A+, 
such that e = e0 opl(al( .))o. . .opk(ak(.)) ,  and the vector (1 , . . . ,  1) E Rk is a regular 
point of the mapping 

( 7 - 1 , ' ' ' ,  7-k) '  ' e 0 0  ]91(7-1a1(.)) 0 . - . O  Pk (7-kak( ' ) )  

of IR A into O n. According to Theorem 2.3, pr,~c + x0 o ff~,~- 1 C prnO ~. The implicit 
function theorem implies the existence of smooth functions e ~ ri(e), i = 1 , . . . ,  k, 
defined for sufficiently small e and satisfying the conditions 

n ( 0 ) =  L i =  L . . . , k ;  

pr,~ ( c o  o P l  ( 7 - 1 ( e ) a l ( - )  o �9 �9 �9 o p k ( r k ( e ) a k ( ' ) ) )  = p r . e  + e~. 

Let s ~ 7o(s) be a curve in M such that dnTo(. ) = e. Put 

"r(,) = r0(s) o v l ( n ( s ) a l ( , ) )  o . . .  o 

Then dnT(. ) = c+~.  The jet JnT(. ) is unchanged if we substitute in the definition of 
the curve 7(') the smooth functions s v-. 7-i(s) by their Taylor polynomials of order n. 
Hence, dnT(. ) 6 0 ~ .  

4. We recall that in the space of jets On0 we have the singled point - -  the jet of the 
constant curve 7(s) ~ x0. The n-jet of the constant curve is denoted by dnzo, and 
for the corresponding orbits of the group and the semigroup, in the sequel we shall 
use the notations 

d'~xo o Gr(7~) = 0~,  d"xo o Sgr (P) = 0~+. 

Respectively, ri O~+ is the subset in O~+, consisting of interior points relative to 0 8. 

PROPOSITION 3. Let for a given n > O, xo o ~n  = Txo M. Then, for every t > 0 
and every curve 7 in M ,  which satisfies the condition dn 7 E r io t+ ,  there exists a 

7" > O, such that 7(s) E int.A,(~P)for all s E (0, 7-). 

Proof. Proposition 1 implies the existence of P l , . . . ,  pk E P,  and a l , . . . ,  a~ E A+, 
such that dn 7 = Jnx  o o p l ( a l ( ' ) ) o . . ,  o pk(ak(')), and the vector (1 , . . . ,  1) E $~ is a 
regular point of the mapping 

(7-1,""" , 7-k) I ' j n  x0 o P l  (7-lax(')) o . . . o  Pk (7-k ak(.)) 

of 11~ k into O~. According to Theorem 2.3, Jn 7 + z0 o f2n C O~. At the same time, 
�9 o o ~n  = TxoM. The implicit function theorem implies the existence of smooth 
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functions ~ ~ ri(~), i = 1 , . . . ,  k, defined for all ~ �9 T~oM, sufficiently close to 
zero, which satisfy the following conditions 

7-/(0)=1, i = l , . . . , k ;  

Jnx  o o p l ( T l ( ~ ) a i ( . ) )  o . . . o  Pk (rk(~)ak(')) = Jn7 + ~. (6) 

Put 

F(~, s) = x0 o Pl(rl(~)al(s))  o . . . o  Pk (rk(~)ak(s)), 

where (~, s) belongs to a neighborhood of zero in T~oM x R. The equality (6) implies 
that in arbitrary local coordinates in M, the following relation holds: 

F(~, s) - 7(s) = s"~ + s"+lr(~, s), 

where r(., .) is a smooth mapping. Hence, for every sufficiently small s, the image 
of the mapping ~ ~ F(~, s) contains a neighborhood of the point 7(s). 

5. For every integer n > 0 put 

En('P) = { ~ �9 Txo M [ 3q �9 Sgr (7~), Xo o q(s) = xo + sn$ + o(sn) }. 

An equivalent definition: 

E,(7 9) = {~ �9 T~oM I J n x o + ~  �9 O~+}. 

PROPOSITION 4. Suppose, En('P) = Txo M for some n > O. Then P is locally 
controllable at xo. 

Proof. Let [1 , . . . ,  ~k be nonzero vectors in Txo M,  such that 

k 

E ~ i  = 0, span{~l , . . .  ,~k) = Txo M. 
i=1 

There exist q l , . . . ,  qk �9 Sgr(P) ,  such that 

Jn(x o o q i ) = J n x o + ( i ,  i = l , . . . , k .  

For arbitrary s �9 11(, ri > O, i = 1 , . . . ,  k, we put 

1/n F ( r l , . . . , v k ; s ) - -  xO o ql(rl /ns)  o . . . o qk(r k s). 

Then ,  

k 

F(r l ,  �9 �9 rk; s) = xo + s '~ E viii + s n + l r ( r l , . . . ,  rk; s), 
i=l  

where r is a smooth mapping. Hence, there exists a neighborhood of the point 
(1 , . . . ,  1) in R~ such that its image under the mapping 

(Tl, . . . , ' t /e) '  : F (T1 , . . . , rk ; s )  

contains a neighborhood of x0 for all s, sufficiently close to zero. 
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PROPOSITION 5. For every integer n > O, the set En('P) is a convex co 
T~oM. I f  Ek(7 ~) = --Ek(79), Yk < n, then 

E,,(7 9) D xo o g2,-1, spanE,,(79) = ~:0 o g2,~. 

Proof. If  

xo o q(s) = xo + s"~ + o(s"), 

then 

~o o q ( ~ )  = -o + s"~"~ + o(~") w >i o; 

if 

xo o qi(s) = xo + sn~i + o(sn), i = 1, 2, 

then 

Z 00 q1(8) O q2(8) -~- Z 0 --~ 8 n ( ~ 1  -~- ~2) + o ( s n )  �9 

Hence, En(79) is a convex cone in T~oM. 
Let Ek(79) = --Ek(79) for k < n. We shall prove the existence of a curve 7,~ i 

such that 

Jn'/n E r i o t + ,  J~-l ' /n  - -  j n - l a :  O. 

If such a curve exists, then the inclusion En(79) D x0 o ~'~.-1 follows fror 
Theorem 2 and Proposition 2.2, if applied to the filtration Wk = g2k-1, k = 1, 
and the equality span E,~(79) = x0 o ~,~ - -  from the Theorem 2.3. 

Theorem 2 guarantees that r i o t +  is not empty. Let the curve 71 satisf 
relations 

Jn'/1 E lion+, J1'/1 --" Jlxo + ~I. 

Then ~I E E1(79). Since E~(P) = - E l ( P ) ,  we can find ql E Sgr(79), suct 

J1(x o o qx) = J1xo - ~I. Put '/2 = ")'I o el. Then 

Jn72 E r i o t + ,  J1V2 = Jlo, J270 - J2xo + ~2. 

Hence,  ~2 E E2(79). If E2(7 9) - -E2(:P),  then we can find q2 E Sgr(7~), suct 
J2(x  0 o q2) "- J10 - ~2. Put ")'3 = 72 o q2, etc. 

COROLLARY. Let for a given n > 0 zo o if2 n = Txo M. I f  Ek('P) = - E k ( T  
k = 1 , . . . ,  n, then xo E ira.A,(7 9) Vt > 0, hence, 7 9 is locally controllable at xo 

Proof. Proposition 5 implies that En(79) = Xo o f2n = TxoM. Hence, Proposit 
implies the local controllability of 79. 
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6. For every integer m > 0 denote by 12 'n the Lie algebra consisting of polynomials 
in s E X of the form 

r 

v ( s ) = ~ s ~ v k ,  vkEg2k, k = l , . . . , m ,  
k = l  

with the Lie multiplication 

rn k - 1  

Iv, = w -,l w ,  v 
k = l  i = 1  

The following proposition is easily obtained from Theorem 1.1 and formula (2.6). 

PROPOSITION 6. The space V rn coincides with the set of Taylor polynomials of 
degree m of vector functions of the form 

fo'" s~ , lnq(r)  dr, qEGr(~) .  

For every analytic curve s ~ v(s) E Vect M, v(0) = 0, denote by ~-~m(v) the 
Taylor polynomial of degree ra of the mapping 

i; i s ,  >exp ~)(r)dr ~ id + . . .  6(rk) o �9 �9 �9 o ~)(rl) d r l . . . d r k  , 

where t) = dv/ds, cf. (2.3). Thus, e ~ m  (v) is a polynomial of degree m in s, which 
has differential operators on M as coefficients. Let v, v I E ~'~ and 

rfi m 

e-~m(v) = id + ~ s ~ D k ,  ex~m(v') = id + ~-~skD'k. 
k = l  k = l  

It is easily seen that the multiplication 

ra  k - 1  
-" ' -6  ----)" # 

(eXPm(V),eXPm(V)) ' i d + E s k Z D i o D '  k - i  

k = l  i = 1  

defines on the set e-'-~r~(Y ) the structure of a connected Lie group, with the Lie 

algebra 12 m. It is easy to observe that the restriction ~ Y"* expm [ is a diffeomorphism 

expm(V ). of V m on the Lie group > m 
Finally, denote by ~;~ the set of Taylor polynomials of degree m of vector functions 

of the form 

s, , lnq(r) dr, qeSgr(P) .  

Thus, 17~ C V m, and expm(V~) is a subsemigroup of the Lie group expm(1; ), 
which generates this group. 
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THEOREM 3. For every rn > 0 the subset ~ has interior points in the space V r~ 

and, even more, is contained in the closure of  its interior: 17~ C int 1~.  
m Proof. The Lie group eXPm0; ) acts transitively on itself by left translations. 

This standard action turns the semigroup e~m(17~) into the semigroup of diffeo- 
-'----4. m morphisms of the manifold expm(1; ), and the orbit of this semigroup of diffeo- 

morphisms through the point id coincides with the initial semigroup. Every 'dif- 
feomorphism' e~m(v) ,  v E 17~, is imbedded into the 'flow' r ~ ex'-'-~r,(V~), where 
v~(s) = v(rs). Now we can apply to this family of 'flows' Theorem 1. All 'attainable 
sets' from id coincide with e--~m (17~). Hence 

"m int (e---~ 07~)). expm (13+) C 

But in this case we have ~;~ C int ~7~. 
Suppose for n > 0 we have Ek(7 ~) = -Ek( ;  o) for k = 1 , . . . ,  n. For every integer 

m > 0 put 

"12~'*={( ~--~Skvk)k-1 E Vm I X0~ - 0  for l<. i<<.min(m,n)} ,  

which is a linear subspace in 1; m. 

PROPOSITION 7. For every ra > 0 the relation 

l;~ n intlT~ # O 

holds. 
Proof. Let q E Gr (7~), and suppose 

s i d i 
Tmq = i d +  ~ ~ ~-~-s/q ~=o 

i=1 

(7) 

is the Taylor polynomial of degree m. It is easily seen that the mapping q 
T'~q, q E Gr(7~), is a homomorphism of Gr(P)  onto e---~m(V'~), where Sgr(7~) is 
mapped onto e--~m (~7~). 

Let qo E Sgr(7~) be such that Tmql E i n t e ~ m ( l ~ ) .  Suppose that 

J l (x  o o q l ) = J l z o + ~ l ,  ~ leTx0 M. 

Then E1 E El. Since E1 = - E l ,  we can find pl E Sgr (~o) such that 

J I ( z  0 o P l )  "- d l z o  - El. 

Put  q2 --- ql  o Pl ,  t h e n  J l ( x o  o q2) - -  Jlxo. F u r t h e r m o r e ,  

Tmq2 = (T~ql) o (T~pi)  E int e ~ m ( ~ ) .  
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Suppose 

JZ(z o o q2) = d2z0 + ~2, ~2 E T~oM. 

Then ~2 E//72. If 2 ~< n, then we can find P2 E Sgr(P)  such that 

d2(z 0 o P2) = d2z0 -- ~2" 

Put q3 = q2 o P2, then J2(x o o q3) = J2zo. Furthermore, 

Tmq3 = (Tmq2) o (Tmp2) E lnt eXPm (V+). 

Continuing this process, we can find qn E Sgr (79) such that 

Jn(z  0 o qn) = Jnxo, Tmqn E lnt expm(V + ). 

Since exlJm I vr" is a diffeomorphism, there exists a unique 

IT* 

i=1 

which satisfies the condition ex~rn(v ) = Tmqn. The jet dm(zo o q'n) depends only on 
Tmqn. Since ord(x0 o qn) > n, we obtain x0 o vi = 0 for 1 ~< i ~< mAn(m, n). 

4. O b s t r u c t i o n s  to L o c a l  C o n t r o l l a b i l i t y  

~,oo $nl-ln be the Taylor series expansions of the 1. Let p �9 79 and let p(s) ~ id + z--,n=l ~p 
mapping s ~-* p(s). Then, for every n > 0, D~ is a differential operator on M of 
degree ~< n, and D~ - ( 1 / n ) ~  is a polynomial in w l , . . . , w ~ - I  in the associative 
algebra of differential operators on M, cf. (2.3). We introduce the formal power 
series 

Ap(s) = snA~ = In id + s n = (_ l )n_  1 oo s~D~ 

n = l  n = l  n = l  n 

PROPOSITION 1. For arbitrary p �9 7 9, n > O, the relation 

n- -1  
l~n  ~-~ ~--~ . . 

= , I. .1 
o 

k = l  Iil=n 

holds, where i = (io, .. ., ik) is a multiindex, Ill = il + . . .  + ik, a nk,i are rational 
numbers (constants not depending on p). 
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Proof. We have, cf. (2.3), 

A~(s) = In i d +  . . .  ~op(rn)o. . .oo;p(rl)drl . . .drn 
= ," 

/; i = oo, (r)  d r  + . . .  7rn (O~io (rn), �9 �9 COp ( r l ) )  d r l  . . . drn, 
= .~ 

( -  1)a@) 
"n(Zri,...,%,l)-- Ep li2(~;J) [gp(n),l...,lgp(2),Zp(1)] ...1, 

where the summation is over all permutations 

p: { 1 , . . . , n }  , { 1 , . . . , n } ,  d ( p ) = # { l < < . i < n [ p ( i ) > p ( i + l ) } .  

The proof that the ~r,~ are commutator polynomials, with explicit expressions different 
from those given here, are found in [1]. The above formula is proved in [5]. 

For every flow q(s) ~ id + ~ 1  siDi and every integer m > 0 we put 

( - 1 )~ -1  s~Di = T ~ In q + O(sm+l). l n q =  n 
i=1  i=1  

THUS, T m In q is a segment of the power series for In q of the length m. 

COROLLARY (to Propositions 1 and 3.6). 

(1) For every m > 0 the relation 

{T ~ In q I q E Gr('R)} = skvk Iv* �9 a ,  = vm 

k i = l  

holds. 

(2) For every flow q the first nonzero terms of the series in the powers of s for 
the expressions In q(s) and fo In q(r) dr  have the same order and are equal. 

2. Denote by /2  the free Lie algebra over ~ with the set of free generators A~, p �9 ~P, 
i = 1, 2, . . . .  We emphasize that A~ are not vector fields but indexed free generators, 
h e n c e  

Z: = Lie {;~ Ip �9 P ,  i =  1 , 2 , . . . } .  

For arbitrary integers n 1> m > 0, we put 

[).i2 ) t i l l  E ( n , m ) = s p a n  � 9  . 
.i=1 
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Then s = Y~.n~176 }"~-~=1 s  m), and the subspaces s m) define a bigrading of  the 
Lie algebra s  if 0i E s m/), i = 1, 2, then [01, 02] E s + n2, ma + rn2). 

Let 

9J.=Ass{A~ [ p E P ,  i = 1 , 2 . . . }  

be a free associative algebra with the set of free generators At, p E 79, i = 1, 2,.... 
In the sequel, without additionally mentioning it we shall suppose that s is realized 
in the standard way, as a subspace in 9A consisting of  all commutator polynomials in 
A t with the commutator product as the Lie product: [01, 02] = 0102 - 0201. 

Denote by Ant (79) the group of all bijections of  the set P .  We have a natural left 
action of  the group Aut (P)  on the set 9A. This action identifies every o- E Aut (79) 
with the automorphism t9 ~-~ o-0 of  9.1 where 

. . .  Ap~) = A~0,0.. .  A~(p~) 

for every monomial Ate . . .  )tt~ E ~. It is easily seen that the action of Aut (7 9) 
preserves the spaces s m), in other words, 

o -0EZ;(n ,m)  go 'EAut(79) ,  O E E ( n , m ) ,  n > t m > 0 .  

Finally, let d: 9A ~ 9A be an antiautomorphism of the algebra 9A, acting according 
to the rule d(At] . . .At~ ) = Ate . . .At ] .  It is easily seen that do- = o-d, Vcr E Aut (79). 

PROPOSITION 2. For arbitrary n > /m > 0, 0 E E(n, m) the relation 

S0 = ( - 1 ) m - 1 0  (1) 

holds. 

The relation (1) seems to be well known. It is an easy consequence of  general 
symmetry relations for Lie polynomials, which are given in [3, 5]. But the proof of 
this special case is much easier, and we give here a sketch of  the proof. 

Proof. Consider the group generated by formal series 

ea'X~ = 1 + Z (~ n! 
n = l  

~ ,  c~ElI~, p E P ,  i = 1 , 2 , . . . ,  

with the usual multiplication. 
is Let 0 E s then there exist c~j E ~ ,  Avs, j = 1 , . . . , k ,  such that 

11 ik 
e ralx'l  . . .  e rc~kx,~ = 1 + rm0 + O('/'m+l). (2) 

The proof proceeds in the standard way used in Lie theory, which permits us to 
realize the commutators in the Lie algebra as the leading terms of commutators in 
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the group. Applying the involution J to the relation (2), we obtain 

i k i 1 erakapk . . .e~XX'~ = 1 + rmJO + --" "O(rm+l), 

i l  i 1 �9 i k  
(e -r'~kx;~, . . .e- 'mx' ,)(e r'~'x', . .e '~kx,,)= 1. 

Hence rmO + ( - r ) m J O  = O. 

3. Let A: s ~ ~ be a Lie algebra homomorphism, defined by the relations A(A~) = 
A~, p E 79, i = 1, 2, . . . .  Proposition 1 implies: 

) A E 1 2 ( i ' J )  = a n ,  g n > O .  
i=1 j = l  

(3) 

Let O E 12, the value of the field A(O) at zo will be denoted by O,~o; thus, O=o = 
xo o A(0). 

It turns out that the mapping zoo  A: 0 ~ O= o defines the family 7 ) up to the 
change of variables in M. Let 79' be a family of genus of analytic flows at Zo' E M, 

oo rt n 
l n p t  = E n = l  8 h ; , ,  Vp' e 791; 

A': Z2' , L i e { A ~ , l p E 7 9 ' , n = l , 2 , . . . }  

be a homomorphism of the free Lie algebra 

s  = Lie{A~, Iv' E P ' ,  n =  1 ,2 , . . . } ,  

defined by the relations A'(A~,) = A~,. 

PROPOSITION 3. Let r 79 ~ 79' be a bijection, r  s ~ 12' be a monomorphism 
of Lie algebras defined by the relations r = )~00' p E 79, n = 1, 2, . . . .  The 
following two assertions are equivalent. 

(1) There exists a diffeomorphism W: Oro ~ 0~, o, defined on a neighborhood Ozo 

of ~o, such that t~(zo) = Z~o and ~ o p o tp-1 = r Vp E P. 

(2) ker(z0 o A) = ker(z~ o A' o r 

Proof. The implication (1) ==~ (2) easily follows from the definitions. To prove 
the opposite implication, consider the family of germs of flows (19, r p E 7 9, of 
the manifold M x M at the point (~:0, z~). Theorem 2.2 and Proposition 1 imply that 
the orbit O__ of this family through (z0, z~) is a submanifold in M x M and 

T(~o,r~)O__ = {(zoo A(tg), x~ o A' o r  I t9 e 12} C T~oM x 7"=0 M. 
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The assertion (2) implies that the space T(~0,~)O__ is dim M-dimensional and is pro- 
jected without singularities on both factors of  M x M. Hence some coordinate 
neighborhood of  (x0, a:~) in O is a graph of the diffeomorphism W: O~0 , O'~. It 

is easy to show that for the diffeomorphism tIZ, the assertion (2) is valid. 
We have proved Proposition 3 which generalizes Proposition 1.1 of the Introduc- 

tion. 

THEOREM 1. Let x be a finite subgroup in Aut (~o) and n > O. Suppose that for 
every k, ! subject to the relation 21 + 1 <<. k <x n, and every ~ E s 21 + 1), for 
which c~O = ~, V~, E Y, the inclusion O~ o E Z 0  o ~"2k-1 holds. Then zoog2n = En(79). 

The proof is based on two propositions which are also of  independent interest. 

PROPOSITION 4. Suppose there exist q E Sgr(7~), T n In q = ~ = 1  s~vk, such that 

Jn(xooq) EriO~+, x0o vk E z 0 o D k _ l ,  k = l , . . . , n . *  

Then d~Xo E r i o t +  and En(P) = zoo fan. 
Proof. We have x0 o v 1 = 0 ,  hence 

.J2(:r 0 o q)  = . ]2x  0 + z 0 o v 2. 

Since x0 o v2 E z0 o if21, there exists P2 E Gr~(P)** such that ordp2 = 2 and 
xO o Top 2 = -a t  0 o v 2. 

Pu t  q2 = q o P2. According to  t h e  T h e o r e m  3.2, 

J n ( x  0 o q2) E r i o t +  a n d  ar2(xo o q2) "- J2xo .  

x--,n s ~. 2 We have In q2 In (e In q o e In p2). Proposition 1 and the Let T n In q2 = / - - , , k= l  v k "  = 

Campbell-Hausdorff  formula imply 

( '02 - -  'ok) E ~"~k-1, k = 1 , . . . ,  n.  

Thus 

X 0 0  V 2 E ;gO O ~"~k- 1, Vk <~ n, J 3 ( x  0 o q2) - -  j 3 X o  + xo o v 2. 

There exists P3 E Gr~(Y') such that ordp3 = 3 and xo o ToP3 = - x o  o v 2. Put 

q3 -"  q2 o P3, 
".2.. 

T"in  q3 = 2 . , s%~.  
k = l  

* The set ri O~'+ is defined in No. 4, w 

The definition of the group Gr,~('P) is given by the formula (3.4) 
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Then j4(x 0 o q3) = J4ar0 + a:0 o v 3. Proceeding in the described way, we finally get 
to a flow (In such that 

J"(xo o q,,) e r i o t + ,  Y'(xo o a , )  = J"xo.  

Hence 

En(7 ~) = {~ E T=oM l J"Xo + ~ ~ 0~ } = xoog~,. 

PROPOSITION 5 (cf. [23]). Let  L be a Lie algebra, G be a finite group o f  linear 
transformations o f  L. Let  #G = m + l  and l = ( m + l ) n - 1 ,  n > 0. Then there exists a 
sequence g l , . . . ,  gt E G such that Vz E L the polynomial T n In (e'ZeSal(z). . .e sg~(z)) 
is invariant under the group G. In this expression, the exponent 

oo 8n 
y ~ Z  n e sz = 1 + n! 

is a power  series with coefficients in universal enveloping algebra U L, and T n In (.) 
denotes the segment o f  the length n of  the power  series in In (.). 

Proof. Let g l , . . . ,  g,,  be all nonunit elements of G, go be the unit. Then 

rn 

In (e'Ze'g'(z)...e '9"(z)) = s '~-~ gi(z) + O(s2). 
i=0 

Evidently, the element ~_,i~=o gi(z) is invariant under G. Further, we use induction 
over n. 

Suppose that 

n + l  

In (eSZe'al(z). . .e ~ = ~ s i zl + O(s n+2) = Z, 

i=1  

where the elements Zx, . . . ,  z,~ are invariant under G. Then 

m 

In (eZeal(z).  . . e  a'~(z)) = (m + 1) ~ s i zi + s n ~ gj(zn+x) + O(s'~+2), 
i=1  j = 0  

where ri  are commutator polynomials in z l , . . . ,  zi_l. Since such polynomials of 
invariant elements are themselves invariant, to make the induction step it is sufficient 
to extend the sequence gx , . . . ,  gt by the sequence 

gig1, �9 �9 �9 glgt , gzgl, �9 �9 g2gz , �9 �9 grngl, �9 �9 grog1. 

Now we go to the proof of Theorem 1. Let q E Sgr (7 9) satisfy the the condition 
jn  (xooq) E ri OR+. The flow q, as an element of the semigroup Sgr (79), is represented 
as, cf. (3.3), 

q ( s ) = p l ( a x ( s ) ) o . . . o p k ( a k ( s ) ) ,  P i e  P,  ai e A+, i -  1 , . . . , k .  
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For every o, E Y, C Aut (5 o) put 

qa ($ )  --" o ' ( p l ) ( a l ( s ) )  o . . . o  ~ ( P k ) ( a k ( S ) ) .  

Let 

((s)  = In (eX'l(al0))...eX,~ Ok0))), 

where 

O0 

= 

i--1 

p E P .  

39 

polynomial 

n i 
Thin  (er162 ~'(r - Z s i t g i ,  Oi E Z 12(i, ra), 

i=1 ra= l  

is invariant under the group E. Put qa = q o q#l o �9 �9 �9 o qoz, then 

n 

Jn(x  o o qa) E fi 0~+ and Z siA(tgl) = Tn In qa. 
i= l  

If tgi E ~ j / 2 ( i ,  2j + 1), i = 1 , . . . ,  n, then, under the hypothesis of  the theorem, 
we have 

X 0 0  A(~9i) -"  (~gi)xo E :gO o ~ i - 1 ,  i = 1 , . . . ,  n, 

and the assertion of the theorem follows from Proposition 4. Otherwise, we need 
some additional work. We shall use the inclusion, cf. Proposition 2, (0i + J0 i )  E 
~ j  s 2j + 1) for all i. 

LEMMA 1. Let 

f2[s] = s'vi ] vi E D~., i = 1 , . . . , k ;  k > 0 
i=1 

be a Lie algebra over the ring of  polynomials in s, and let 

~'~<[S]---- 8 i v i l v i E f f 2 i ,  X 0 O U i E X 0 O ~ - " 2 i _ I ,  i = l , . . . , k ; k > O  . 
k i = l  

Then the subspace ~<  [s] is a Lie subalgebra in f~[s]. 

Proposition 5 implies the existence of a sequence o'1,... , O'l E X such that the 
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Proof. Let 

V ~ ~"~i, ~0  0 V ~ X 0 0 ~'~di_l, 

Then 

v = v O + v  - , 

where 

~ 0 ~  0 = X O o w  0 = O, 

We have 

W - . - w O + w -  

A. A. AGRACHEV AND R. V. GAMKRELIDZE 

wEg2j, z0 o w E :co o ~j_l. 

v-  E g2i-1, w -  E ~ j - t .  

n 

i=1 

Suppose that (Oi)~o E zoo g2i-1 for i ~< i0. The Campbell-Hausdorff formula, 
Proposition 2, and Lemma 1 imply (Oi)~:o ~ xo o ~i-1 for i ~< i0 + 1. Furthermore, 
0i are invariant under the group Y for i = 1 , . . . ,  n, and Jn(~ 0 o q~ o ~ )  E r i o t + .  

The transition from the flow Cl a to the flow q~ o ~ can be considered as the 
induction step. Repetition of this construction leads to a flow which satisfies the 
conditions of  Proposition 4. 

Let 

Hence 

A(Tnin(eXS 'd 'eX"J~  = T n l n ( q a o ~ ) .  

xo o [v, w] = ~o o [v ~ w - ]  + zo o [ v - ,  w].  

At the same time [v~ E g2i+j_l, since 0 C g21 C g22 C . , .  is an 
increasing filtration of the Lie algebra g2. 

For every a E Z put 

L(s) = ~'(pk)(ak(,)) o...o ~(Pl)(al(s)), 

and let ~a = ~, o �9 .. o q~l" We recall that 

It is easily seen that 

(5 A siJd~ = 7 TM In ~ .  
\ i = 1  / 
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Remark. Theorem 1 and Proposition 3.4 imply Theorem 1.3 formulated in the 
Introduction. Indeed, it is enough to formulate this theorem for rational numbers 
ot = k / m  > 0. In this case, the hypothesis of Theorem 1.3 is identical to the 
hypothesis of Theorem 1 when applied to the family 79 = {eSk/+s~'g,eS*l-s'~s}, 
consisting of two flows. 

4. Theorem 1 formulates sufficient conditions for the cone En(P) to be a-priori 
maximal. The cones En(79), n = 1, 2 . . . ,  consist of vectors tangent to the curves 

s,  , zooq(s) ,  q E Sgr(P).  (4) 

But the vectors, which are tangent in a reasonable sense to the attainable sets .At, 
t > 0, are not necessarily tangent to the curves (4). To obtain a deeper insight into 
the local structure of the attainable sets, we have to go beyond the cones En(79). 

DEFINITION. A subspace R C T~:oM is called reachable for 79 if there exists a 
sequence of mappings 

~n: V ~ {pl (Sl )  

! 

o . . .  o p~(s~) I p~ ~ P, s~ >t o, ~ s~ < t . ,  l > o} ,  
i=1 

V is a neighborhood of zero in R, tn ~ 0, such that 

(1) the mapping (z, ~) ~ z o ~,~(~) is continuously differentiable near (z0, 0) and 
tends to the constant mapping (x, ~) ~ zo for n ~ oo in the Cl-topology; 

(2) ~,(Xo o ~n(~) - z0) --* ~ uniformly in ~ for some c~, ~ cr 

PROPOSITION 6. I f  R1, Rz are reachable subspaces for 79, then the subspace R I +  
R2 is also reachable; if T~oM is a reachable space, then P is locally controllable 

at  zo. 

Proof. We can suppose without a loss of generality that R1 M R2 0. If 1 2 
are mappings which ensure the reachability of the subspaces R1 and R2, then the 
mapping (~l +~z) ~ ~1(~1)o ~zn(~2 ) ensures the reachability of the subspace Rl  + R2. 
If the space Tzo M is reachable, then the local controllability follows from the implicit 
function theorem. 

The proof of the following assertion is identical to the proof of Proposition 3.4. 

PROPOSITION 7. For every n > 0 the subspace En(79) M (-En(79)) is reachable 
for 7 9 . 

Our next goal is to describe a purely algebraic method for constructing reachable 
subspaces. To do this, we have to fix some terminology. 

Up to now, we meant under a grading of a Lie algebra gradings by nonnegative 
integers. From now on we shall have to consider algebras which are graded by 
positive real numbers. We shall say that a Lie algebra L is graded if it is represented 
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as a direct sum L = (~r~>o L~, where the set {r/> 0 { L~ # 0) has no limit points 
and [L~I, Lr2] C L~I+~ 2. Furthermore, put L<~ = ~ , < r  L,. 

Let L = Lie (S) be a free Lie algebra with the set of free generators S. Put 
L 1 -- spans  C L. For every integer n > 0 define a space L n by the relation 
L n = [L, L'~-I]. Then 

O0 

L ", c L '+j vi, j. 
n = l  

The grading thus obtained will be called a canonical grading of the free Lie algebra L. 
Suppose now that L is not simply a free Lie algebra, but a free (not necessarily 

canonically) graded Lie algebra, L = @~>o Lr. We call L a free gradedLie algebra 
if L 1 = ~ > 0  L1 n Lr. Then 

oO 

n = l  r~>0 

and the subspaces L n n Lr define a bigrading of L. 
By ~5(L) we define the group of all automorphisms and antiautomorphisms of the 

Lie algebra L which preserve the bigrading. Thus 

~ ( i )  - {g: L , i I g[01,  ~2] --- -~[g(01),  g(02)] ,  

g(L n n Lr) = L n N Lr, Vt91,02 E L, r ,n > 0}. 
(5) 

As above, we denote by J: L ~ L an automorphism defined by the relation JO = 
( -1)n-10,  V0 E L n. It is easily seen that Jg = g J, Vg E r From this and from the 
fact that L is a free Lie algebra, we obtain the following proposition. 

PROPOSITION 8. Let ~5o(L) be a subgroup in r consisting of all automorphisms 
of the Lie algebra L contained in ~5(L), Then 

(1) ~(L) = ~5o(L)U J~fo(L), 

(2) the mapping g ~ g I L1, g E ~5o(L) defines the isomorphism qSo(L) on 
xr~>o GL (Lr n Lt). In particular, 

r (x\r~>0GL(LrNL1)) xZz" 

DEFINITION. By a system of vector fields on M, we call a triple L = (L, h, G), where 
L is a free graded Lie algebra, h: L ---* Vect M is a homomorphism of Lie algebras, 
G is a finite subgroup in r which contains J; in particular, G = G0U JGo, where 
Go = G n ~o(L). 
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Put 

Inv(L__) - {~9 E L I g(O)= ~ Vg E G}. 

Let r(L_) be a supremum of such r > 0 that for every positive r ~ < r and every 
ELr ,  f3 Inv(L__) the following inclusion holds 

Zo o h(O) E z0 o h(L<,,)  C Txo M. 

Put R(L_) = xo o h(L<~ LCL.)). Important examples of  systems of vector fields represent 
the systems 

= {s A,Z U J E } ,  E C Aut(P) .  (6) 

Using the introduced notations we can reformulate Theorem 1 in the following way: 
I f  for a finite subgroup E C Au t (P )  we have n < r s then E,~(79) = zo o g2n. 

COROLLARY. The spaces R(s E C Aut (P)  are reachable for 7 9. 

It turns out that other systems of vector fields L exist such that R(L_.) are normally 
accessible spaces for 79. These systems could be constructed from ~ with the help 
of special procedures which we are now going to describe. 

DEFINITION. Let L_. = (L, h, G), ~ = (L, h, G) b e  systems of  vector fields. We 
shall say that the system L is induced by the ~s tem L_. if there exist a linear mapping 
(I:): L 1 ~ i and a homomorphism ~: Go ~ G, such that (Po e = !a(#)o~, V# E Go, 
h i l l  - -  "h o ~, and 

Inv (~.) f3 L<r C (YP(L 1 f'l L<r) C L<r, Vr > O. (7) 

Furthermore, for a free graded Lie algebra L and v >/0, such that the set {t - vn I 
L n M Lt # 0} is contained in R+ and has no limit points, we put 

L (v) = (L- n Vr o. (s) 

We have L = ~ > o  L~(v). The grading L~(v), r />  0, will be called the v mod- 
ification of  the grading Lr, r >>. O, or simply a v-grading, if the initial grading 
(corresponding to v = 0) is given. The Lie algebra L, equipped with the v-grading, 
is denoted by L(v),  for v = 0 the argument will be omitted. 

A system of vector fields L__(v) = (L(v), h, G) is called the v-modification o f  the 
system L_(v) = (L, h, G). 

THEOREM 2. Let n >i 1, v l , . . . ,  v,~ be a sequence of  nonnegative numbers, vl + 
. . .+vn  ~ 1, and L_l, . . . , L_.n be a sequence of  systems of  vector fields, where L 1 = s163 
for some finite subgroup E C Aut (79). Suppose that the system L~+ 1 is induced by 
the system L__i(vi) for i = 1 , . . . , n .  Then R(L_,(v,~)) is a reachable space for 79. 

5. The proof of  Theorem 2 will be given in the next section. Now we shall give 
some implications of  this general theorem. First of all, we obtain, for n = 1, the 
following essential generalization of the corollary to Theorem 1 formulated above. 
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COROLLARY. The subspace R(s is reachable for 79, Vu E [0, 1] and for every 
finite subgroup E C Aut (79). 

DEFINITION. Let L = (L, h, G), ~ = (L, h, G) be two systems of vector fields. We 
shall say that L__ C L_, or that L is a subsystem of the system L, if 

L c L ,  L 1 M L r = L I M L r ,  Vr>/O, G o C G ,  h='hlL. 

THEOREM 3. Let L = (L,h,G) C L_~ for some finite subgroup Y C Aut (79), and 
Inv (s C L. Then R(L(u)) is a reachable space for 7 9 for all v E [0, 1]. 

Proof. We can assume that u E (0, 1) since R(L(v)) is semicontinuous from below 
in u. Let L be a free Lie algebra such that ~1 M Lr = L,; G0 be a subgroup in 
~o, consisting of automorphisms which have restrictions on L coinciding with the 
elements of Go; let r  L ---, s be a homomorphism induced by the imbedding 
L ~.-.~ s ; "h = h o d~. 

Put L_- = (L, h, G0 U JG0). It is easily seen that the system of vector fields L_- is 
induced by the system s Therefore, Theorem 3 follows from Theorem 2 and from 
the following assertion. 

LEMMA 2. For all v E (0, 1) the relation (L_.(v)) = R@_(u)) holds. 
Proof. It is easy to show that 

( L , n ~  L')  ~ ~(Z, nZ ~) ~ L, nL k, 
i>>.k 

L k n(I)(L k nInv (~-3) = Lk nInv (L). 

Hence 

�9 (L<,(v)) = L<,(v), L,(v)n(p(L,,(v)nInvf~_)) = L,(~)n Inv(L_). 

Since h = h o ~ we obtain r@.(u)) = r(.L(v)) and R(L_.-(u)) = R@_(u)). 
We apply now Theorem 3 to the case when 79 consists of two one-parameter 

subgroups in Diff M, 

7 9 = { p + , p _ } ,  p •  sU*g), f, g E V e c t M ,  (9) 

and Z = Aut (79) is a two-element group of permutations of a two-element set 79. 
We have 

�9 i = 0  for i > 1 .  AI+ = %,  

Furthermore, 

s = Lie{A~. l i = 1, 2 . . .} .  
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Since A(A~,) = A~. = 0 for i > 1, there is no need to consider the whole Lie 
algebra s but it is sufficient to restrict ourselves to its Lie subalgebra, generated by 
elements )~vl.. Put 

1 1 _ /~1 1 1 1 y = ~ (~p+ p_), z = ~ (~p+ + ~p_ ). 

Then 

A(y) = g, A(z) = f,  Lie {A~. } = Lie {y, z). 

The only nonunit element o" E Aut (P)  acts according to the formulas ~r v = -Y, ~rz = 
z. Hence, Inv E(_~) 0 Lie {Y, z) is a linear hull of all commutator monomials in Y, z, 
of even degree in Y and odd degree in z. Furthermore, 

s 1 6 3  Vk>O. 

As a very special case of Theorem 3 (not to mention Theorem 2), we obtain the 
following proposition. 

PROPOSITION 9. Let v E [0, 1], r /> 0, and let 1-11 be a set of bihomogeneous 
commutator polynomials in two variables Y, z, such that: 

(a) Tl'e elements of  the set 1-I 1 are free generators of  the Lie subalgebra Lie 171 C 
Lie {Y, z} generated by these elements;* 

(b) Lie l"l I contains all commutator monomials which are of even degree in the 
first variable and of  odd degree in the second. 

Put 

I'I k+l  = [FI, l -Ik],  d~(Tr) = deg 7r - vk, k = 1, 2 , . . . ,  

o o  

l-I= U 1 7  k. 
k=l  

Suppose that for all l >1 0 and every 7r E H 21+1, which is of even degree in the first 
variable and of  odd degree in the second, and satisfies the condition d~(~r) <~ r, the 
inclusion 

zo o 0r(g, f )  E span {Xo o ~r'(g, f )  I r E 1-1, d~(r ')  < d~(Tr)} 

holds. Then the space 

span {z0 o ~r(g, f )  I 7r E H, d~(lr) ~< r} 

is reachable for the family of flows (9). 

* Notice that every Lie subalgebra of a free Lie algebra is free. 
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5. Fast-Switching Variations 

1. Let s ~ p(s) be an analytic curve in Diff M (a flow on M). From a given 
79 , we constructed other curves, using polynomial substitutions of the parameter 
and pointwise multiplication of curves. In this section, we consider one additional 
construction - -  we correspond a sequence of curves of the type 

n times 

to a given curve p(.). 
With these sequences, we can work in the same way as with analytic curves in 

Diff M, and we start by introducing the relevant system of notions. 

OO DEFINITION. Let Q = {q'~(')},=l be a sequence of flows on M, qn(s) 6 DiffM,  
s 6 R. We shall call Q a tame sequence if Vm > 0 there exists an expansion 

m 

q,~(s) = id + ~ n-i DiQ(s) + o(sn-m), s n--- J ~ O, (1) 
i=1  

where DO(s ) are differential operators on M polynomially depending on s, D 0 (0) = 
0. 

Let Q = {qn}n=l,~176 Q, = {q,}n=l' oo be two tame sequences of flows. Put 

Q-1 --1 oo Q] t oo = {q .  } . = .  Q o = {q .  

It is easily seen that the sequences Q-1 and QoQ' are also tame. Hence, the termwise 
multiplication and taking the inverse, define the structure of a group on the set of 
all tame sequences. 

Define ord Q = min {i I D0( ' )  ~ 0) and call this number the order of the sequence 
Q. Let ordQ = k and put ToQ(s) = D~(s). It is easily seen that ToQ(s) 6 
Vect M, s 6 R. Finally, suppose that 

OO 

Qr(s) = id + Z viDiq (s) 
i=1  

is a formal power series in v, and TmQr(s) = id + ~"~im=x riDio(s) is a segment of 
the length m of this series. 

Consider the formal series 

= 
d 

K-~ vi- lw i ' s  ~ In Qr(s) = f iAt ( s ) .  o j, 
i = l  i=1  
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It is easily seen that the differential operators w~ are in fact vector fields on M. 

Proposition 4.1 implies that A~ are commutator polynomials in w~, in particular, 

A~ E Vect M. Furthermore, the first nonzero terms of the series In Q~(s) and 

~0 r Do i 

i=l 

coincide and are equal to r~ 

2. Denote A 2 the space of all real polynomials in two variables without free terms: 
a(0,0) = 0, Va E A 2. If a E A 2 and s ~ q(s) is a flow, then s ~-* q(a(r,s))o 
q(a(r, 0)) -1 is again a flow, Vr E N. If {q-(')}~=l is a tame sequence of flows then 
{qn(a(n -1, .))o qn(a(n -1, 0))-l}ncX~_l is again a tame sequence of flows. 

Let 2 be a set of tame sequences of flows. We shall denote by Gr (2)  the group 
generated by all tame sequences of flows of the form 

0"1]- 1 ~ ~176 { q n ( a ( n - x , ' ) )  O q n ( a (  n - x ,  ,,, J n = l '  

where 

{qn(')}n~_l E 2 ,  a E A 2. 

For every integer m/> 0 we put 

(2) 

il a m ( 2 )  = span [W~k(Sk), [ . . . ,  [wQ,(sl),W~o(so)l...]l 

k 
Z i j  ~ m ,  Qj E 2 ,  sj EI~; k/>O}, 
j=o 

o ~  

g2(2) = U a m ( 2 )  = Lie {w~(s) 
m----1 

Proposition 4.1 implies that 

Q E 2 ,  s e N ,  i = 1 , 2 , . . . }  

am (2)  = span { [A~k (sk), [ . . . ,  [A~, (s,), A~o (So)] �9 �9 .] 

k 
y]i~ ~< m, Qi ~2, s~ 6~; k~> 0.} 
j=0  

THEOREM 1. For every set 2 of tame sequences and every integer m > 0, the 
following relation holds 

a.~(2) -- {ToP(s) IP ~ Gr(2),  ordP = m, s E ~}. 
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Proof It proceeds analogous to the proof of Theorem 2.1. Let 

7"r~ = {ToP(s) IP  E Gr(O),  o r d P  = m, s E R}. 

Formula (2.6) implies that ff2m(~) D 7",~. To prove the opposite inclusion, it is 
sufficient to show that 

w~(s) eT"rn, k = l , . . . , m ,  seI t~ ,  Q E Q ,  

and use Lemmas 2.1-2.3.* The inclusion w~(s)  E 7"m, s E ~ ,  Q E Q is proved 
exactly as the inclusions 0;~ n E {Toq I q E Gr(7~)m} from Theorem 2.1. But to 
deduce from here the inclusions w~(s) E Tm for k < m, we have to use a different 
reasoning. First of  all, substituting, if necessary, the sequence Q = {qn(.)}n~__l 

ra-I- 1 r162 by the sequence {s ~-} qn(s )}n=l '  we can suppose without a loss of generality 
that ~;~(s) = o(sm), s - .  0, Vk x< m. Since 7"m is a linear space the relation 
di/dsia;~(s) E Tin, Vs E 11~, is equivalent for all i x< m to the relation ~;~(s) E Tm 
Vs E ~ .  

Now we apply induction on k. Suppose that the assertion is proved for k' < k. 
Let 

O= eCr( ). 
n.~'l 

The coefficient at v" of the series In~)~ coincides with the coefficient at ~..~-i of 
the series ~nQr(s + r "~-k) and is equal to 

1 d w~(s)+ E 1 d' a,~_(m_k)i(s)" 
wrY(s) + -k "~s i!(m - (m - k)i) ds i 

1<i< ,~-k 
(3) 

Considering the sequence t~ instead of Q, we conclude that the field (3) belongs to 
7-r~. Since w~(s) E 7-,,~ and since, according to the induction hypothesis di/dsiw~'(s) E 
7-m for k ~ < k, we obtain the relation d/dsw~(s) E 7"m, Vs E I~, which implies the 
inclusion w~(s) E Tin. 

3. Let Q = {qn(')}n=l be a tame sequence of flows. For every s, put Q(s) = 
{q,,(s))~= 1. The sequence of  diffeomorphisms Q(s) is also called tame. 

Let ~- ~ 7( r )  be a smooth curve in M, 7(0) = z0. There exists a smooth curve 
in M such that ~(n -1) = 7(n -1) o Q(s), n = 1, 2, . . . .  The curve ~ is not uniquely 
defined, nevertheless, it is easily seen that the jet J ' ~  depends only on J '~7 and on 
the polynomial TmQr(s), Vm > 0. Put (JmT) o Q(s) = jm'~. The mapping 

c, , e o Q ( s ) ,  c E C ~  o ,  (4) 

* It is worth mentioning that the relation Toq(a(.)) = c~d~Toq appearing in Lemma 2.1 is useless in 
the considered situation. But Lemmas 2.1-2.2 imply that Tm is an additive group. Since 7"m is at 
the same time arcwise connected, we deduce that it is a linear space. 
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is a diffeomorphism of the manifold of jets C~.  Additionally, we have 

(c o r  o o ( s )  -1  = c  o o -1)  

for all tame sequences of diffeomorphisms Q(s) and Q'(s'). In other words, mappings 
of the form (4) define an action of the group of tame sequences of diffeomorphisms 
on the manifold C'~. 

Let 2 be a set of tame sequences of flows, c E C~. We denote 

c O ' ( 2 )  = { c o P(s)  I P ~ Or (2),  s e ~ }, cO n -  1(2) -" pr m (cOrn(2)). 

Theorem 2.2 implies that corn(2) is an immersed analytic submanifold in C~,  
and cOrn-l(2) in C~ -1. We also recall that we denoted by C rn the affine bundle 
prra: C~  ---, C~-1,  cf. Section 2, No. 8. 

m ra rn 1 PROPOSITION 1. Let c E C~o and let C I cO - (2)  be a restriction of  the bundle 
ra  ra 1 ra C on the submanifold cO - (2)  in the base. Then cO (2) is the total space of  

an affine subbundle in C 'n I c0m-1(2)  with the fibre Xo o ff~,n(2). 

The proposition is obtained from Theorem 1 exactly as Theorem 2.3 is obtained 
from Theorem 2.1. 

By analogy with the group of flows (3.4), we introduce the group of tamed se- 
quences of flows 

G r ~ ( 2 ) =  P E G r ( 2 ) ]  E ~ k - l ( 2 ) , s E N ; k ~ < m  

Let c E G~, and denote 

c 0 ~ ( 2 )  = { c o P(s)  ] P E Gr 7 (2), s E ~ }, cO~-1(2)  = prr~ (cO~' (2)) .  

The following proposition is easily obtained from Theorem 1, cf. Proposition 2.2. 

PROPOSITION 2. For every e E C,moo the manifold c 0 ~ ( 2 )  is the total space of  an 
affine subbundle in C m I cO~-1(2)  with the fibre xo o ~rn-l(2) .  

oo 4. Let Q = {qn(')},~=l be a lame sequence of flows, a E A 2, s E I~. Put 

Qa(s) = {qn(a(n,s)) },~176 (5) 

which is a tame sequence of diffeomorphisms. Finally, for every c E C~ 0 and every 
set of tame sequences of flows 2 ,  we put 

CO~(~t.l) : .  {C 0 Ql1(81) O ' ' ' O  Qkak(Sk) [ Qi ~ ~.~, ai E A2+, si >>. 0; k > 0}, 

where 

A~ = {a ~ AZ l a(r,s) >>. 0 for r /> 0, s/> 0}. 

It is easily seen that c 0 ~ ( 2 )  C corn(2). For c = dmxo, i.e., for the m-jet of a 
constant curve, we shall omit the symbol c in the expressions cOm(~), c0~ (2 ) ,  
co7_'(2). 
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PROPOSITION 3. Let c 6 C~mo, and denote ri(cO~(L1)) the set of points in cO'~(D.) 
which are interior relative to the manifold cOm(L~). Then 

(1) c 

(2) Vc' 6 ri(cO~(Q)) the inclusion c'Or~(~) C d(cO~(L~)) holds. 

Proof of the Proposition 3 is similar to the proof of Theorem 3.2. The only 
difference consists in considering not the family of flows (3.5), but the family of 
flows s ~ Q~(s), Q 6 L~, a 6 A2+ on C~, (the tame sequence Q~(s) is considered 
here as a diffeomorphism e ~-* c o Qa(s) of the manifold C~0 ). 

The role of the set O~(Q) is clarified by the following 

PROPOSITION 4. Let Jraxo 6 ri (O~(s Then xo o g2rn(~) is a reachable space 
for the family of  flows 

( s ,  , qk(t~ks) [ k > N, {q,(.)}n~=l 6 ~} (6) 

for every sequence of real numbers ak --* oo (k ~ oo) and every N > O. 
Proof. Proposition 3.1 implies the existence of 

Q~ E Q, ai E A2+, ~ i > 0 ,  i = l , . . . , k ,  

such that 

:;n o -- Jnz  0 o Ql1(~1) o . . . o  Qakk(~k) 

and the vector (~1,.. . ,~k) 6 ~ is a regular point of the mapping 

k 8 ( s i , . . . ,Sk) ,  , Jnx  OOQ1 (sl) o . . . o Q a k ( k )  

from I~ k into Ore(Q). Proposition 1 implies that 

J xo + xo o c 

According to the implicit function theorem, there exists a neighborhood of zero V 
in x0 o g2, and smooth functions ~ ~ si(~), ~ 6 V, i = 1 , . . . ,  k, such that si(0) = ~i 
and 

Jra x 0 o Q11(Sa(~) ) o . . . o  Qkak (sl:(~)) = Jinx 0 + ~. (7) 

Let Qi i oo = {qn('))n=l and put 

~n(~) "- ql (a 1 (n, 81(~))) o . . . o  qk n (ak (n, Sk(~))), ~ ~ V, n -- 1, 2, . . . .  

The relation (7) together with (5) imply 

nra (ZO 0 ~n(~) -- ;gO) --" ~ -I- n-lpn(~), 

where p.(~) is uniformly bounded with respect to n and ~. In this case the sequence 
of mappings Io,~ guarantees that the space zoo ~m(Q) is reachable for the family of 
flows (6). 
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5. In accordance with the notation of the Lie algebra ~;rn (cf. Section 3, No. 6), 
we denote Vm(Q) the Lie algebra consisting of all polynomials in 7- of the form 
v(7-) . ,  = ~ k = l  7-kvk, v~ �9 ff~k(Q), k = 1,..  m, with the Lie multiplication 

ra k - 1  

[v, wl(r ) = y ~  7-k ~ [ v i ,  Wk-ll, Vv, w �9 Vm(2). 
k=l  i=1 

PROPOSITION 5. The following relations hold 

( /o ) ~'~ ( 2 )  = T ~ In P~, ( s ) d r ' l  P �9 Gr ( 2 ) ,  s �9 

= {Tm In P~(s) I P �9 Gr (Q), s �9 JR}, 

where, as usually, the symbol T ra applied to a series in powers of 1" denotes a 

segment of  this series of the length m. 
Proof. The first equality is easily obtained from Theorem 1, and the second one 

from Proposition 4.1. 
Consider the semigroup of tame sequences of diffeomorphisms (not flows!), 

Sg(2)  = {QaXl(Sl) k s q '  A2+, s, o...oQo (k) l � 9  />0, k>o} .  

Put 

~'~(~) = {Train P~ I P �9 Sg (2)} C ~;m(2), 

{/o ) ~7~(2)-- T m lnPr, dT'IP E Sg(Q) C 1)re(Q). 

PROPOSITION 6. The subsets V~(2 ) ,  ~ ( 2 )  of the space ~)m(2) have interior 
points, and even more, they are contained in the closure of their interior. 

The assertion about the set ~ is proved as in Theorem 3.3, and the assertion 
about the set ~;~ can be deduced from the assertion about ~ra+ with the aid of 
Proposition 4.1, or it can be proved directly, if we substitute in all our reasonings 
the chronological exponent by the usual exponent and use the Campbell-Hausdorff 
formula instead of (2.6). 

6. Let 

s  Lie{A~ I Q e 2 ,  i , j  = 1 ,2 , . . .} ,  

9A(Q)-Ass{A~ I Q E 2 ,  i , j - I , 2 , . . . )  
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be a free Lie algebra and a free associative algebra with the set of free generators A~. 
As usual, we identify s  with a subspace in Ass (2), consisting of all commutator 
polynomials in A~, and we put 

[01, 02] = '0102 -- '02'01 V'01, '02 �9 .~(L,~). 

As above, we denote by Aut (2)  the group of bijections of the set L~ and identify 
�9 Aut (2)  with the automorphism 0 ~ o-0 of the algebra 9.t(2), which acts 

according to the rule: ~AiO = )~,(O),i VQ �9 2 ,  i = 1, 2, . . . .  
For every integer k > 0 we put 

..] 1 } 
s  [A~',[ .  [A~2, x'l~'' Q, e 2 ,  y ~ i ,  k , l > O  

~ 1  

s  = [s163 where s  span{A~ ]Q �9 2 ,  i , j  > 0}. 

Denote A: L(2)  ~ Vect M a homomorphism of Lie algebras defined by the relation 

E e / A ( A ~  ) = A ~ ( s )  V Q � 9  i = l , 2 , . . . ,  s � 9  
J 

THEOREM 2. Let X be a finite subgroup in Aut (2)  and m > O. Suppose that for 
every '0 E Lk(D) N E21+x(D), where 21 + 1 <~ k <~ m, which satisfies the relation 
a0 = 0, Vcr �9 Aut (2), the relation ~o o A(0) �9 a:o o g)k-x(2) holds. 

Then zoo D.m (~) is a reachable space for the family of flows 

{s ~ qk(o~s) I k > N, {qn('))n~_--i �9 2 }  

for every sequence of reals ak -* oo (k ~ oo) u  > O. 
Proof. According to Proposition 4, it is sufficient to prove that jm ~o �9 ri ( 0~  (2)). 

The following assertion is obtained from Propositions 2 and 3 in the same way as 
the analogous Proposition 4.4 - -  from Proposition 2.2 and Theorem 3.2. 

PROPOSITION 7. Suppose there exists 

m 

P E Sg (2), T"* In P~- = ~ r k vk, 
k=l  

such that 

J'~(xo o P)  e r i (O~(2)) ,  xo o vk �9 xo o g2k_l(2), k = 1 , . . . , m .  

Then J'~xo e ri (0~(2) ) .  
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To complete the proof of Theorem 2, we have to establish the existence of a 
polynomial 

m 

o(7")= 
k=l i 

such that 
(1) ri0(7-) = 0(7-), Vri ~ Z, 
(2) A(0(r)) = T m In Pr, 

where P E Sg(D), Ym(xo o P) E ri (O~.'(D)). 
The next proposition states even more, and the additional information will be used 

in the sequel. 

PROPOSITION 8. There exists a family of elements O(r, s) E T.(n), polynomially 
depending on r, s, such that 

riO(7", 8) = 0(7-, 8), 0(7", S) e Z ~2i+l (D) '  Vri e •, 7", 8 e ~ ,  
i 

and for every s > 0 the relations 

(1) A(0(-, s)) E int V~, 

(2) A(d(r, s)) = T m in Pr(s), 

hold, where P(s) E Sg(D), Jm(xo o P(8)) e ri(O~(D)). 
Proof First of all, Proposition 3.6 implies the existence of a P E Sg (2) such that 

Jm(x o o ? )  E ri (O~ (D)), T m In P ~ int 12~. (S) 

Let 

. . .  l A2+ , s i  ? a, > O, 

then for Vs > 0 the tame sequence of diffeomorphisms P(s) = Q1 (ssl)o.. .o Qla~ (SSl) 
also satisfies the inclusions (8). Put 

~(r,s) = Train (e~176 

where 

A(Oi(r,s)) = In Qia,r(SSi), i = 1,.. . ,1. 

As above, let J: ~(D) ,9A(D) be an antiautomorphism, defined by the relation 

j (A~I  ikjk/ Aikj~ Aqii �9 "AQk / =  Qk "'" Q1 " 
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We recall, cf. Proposition 4.2, that 

J0 = ( -1)k- lo ,  VO e s 

We have 

d(e o) = e zo , 
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Then 

In p~ (s) ~. n tO In p(n-l - t~ s) = Z n -  -r~-r 
i=1 

Consider the family of tame sequences of flows 

v ~ 
{Pn( ' ) )n=l  , p E 79, (11) 

J(e 01 . . . e  ~z) = eJOl . . . e  J~l , 

A(J0( r ,  s)) = T m In (Q~,r(ss,) o . . . 0  Q~l~(ssl)). (9) 

Furthermore, let a E Aut (P), then a(e '~) -- e a~ and 

A(erO(r, r)) = T m In (~r(Q1)alr(SSl) o . . . o  tr(Q')a,r(ss,)). (10) 

Consider the group G = E U JZ. Proposition 4.5 guarantees the existence of a 
sequence of elements of this finite group gl, �9 �9 �9 gn such that for 

~9(r, S ) - -  T m In (e~'(r'S)egl~'(r")...e g'~(r's)) 

the relations 

g0(r, s) = 0(r, s), Vg e G, 

hold. In particular, 0(r, s) E ~ i / ; a i + l ( ~ )  since J E G. Relations (9), (10) imply 
the relation A(~9(r, s)) = T m In Pr(s) for some P(s) E Sg(D.), which, together with 
if, satisfy the inclusions (8). 

7. Proof of  Theorem 4.2. Without loss of generality, we assume that ui are rationals, 
0 < ui < 1. To begin with, we prove the theorem for a sequence consisting of a 
single system of vector fields ~__~. Let 

v k 

1 - u  l '  

where k, l are positive integers. For all p E 79, n > 0, s E R, we put 

v,~(s) = ,v(n-~-~s)  o . - .  o v (n -~ -~s ) ;  

n ~ times 
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which satisfies the conditions of  Theorem 2 for all 

l 
< 

Hence, R(~_~z(~')) is a reachable space for P .  
Let ~ be a family of tame sequences of flows. We shall say that ~ is a P-admis- 

sible family, if for arbitrary {qn)n~176 E 2 ,  s > O, we have a representation 

qn(S)=pI(Sl)O'''OPk~(Sk~), PiEP, ZSi----*O (n--~or 
i=1 

A typical example of a P-admissible family is represented by the family (11). 
We shall say that the system of vector fields L. = (L, h, G) is P-admissible if 

for all N > 0 there exist a P-admissible family ~ of tame sequences of flows, a 
homomorphism F: Go --* Aut (~) ,  and a > 0 such that 

(a) h(L 1 n L<~) = h(Z: l (~)  n s 0 < r ~< N, 

(b) for arbitrary y E L, t9 E s which satisfy the relations h0/) = A(tg), 
Vg E Go the equality h(grl) = A(F(g)tg) holds. 

A simple example of  a P-admissible system of fields is given by s where the 
family (11) is the corresponding P-admissible family of tame sequences. 

Let L__ be a P-admissible system of fields, and ~., F, a satisfy conditions (a), (b). 
It is easy to show that for all k ~< aN,  I/> 0, and for an arbitrary F(G0)-invariant 
element 0 E/~k(,$-~) f"1s there exists a G-invariant element ~7 E (Lk/a + L<k/a) 
such that h(r/) = A(0). Hence, ~ satisfies the conditions of  Theorem 2 for 5~ = F(G0) 
and Vm < r(L__). Therefore, R(L__) is a reachable space for 7 9. 

To complete the proof of  Theorem 4.2, it is sufficient to show that every system 
of vector fields induced by a P-admissible system is itself P-admissible and that the 
P-admissibility of  the system L_. implies the P-admissibility of the system L__(#) for 
every positive rational 

# < i n f ( t  ]L n 

Let 

tg_ 
1 - #  1 

n L t r  0 t . 

n ~ times 

Suppose that a P-admissible family of tame sequences of  flows ~ satisfies conditions 
(a), (b) for some N, a, F. For all Q = {qn}n~=X E ~ we put 
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It is easy to show that the P-admissible family of tame sequences L~ u = {Qu ] 
Q E L~} satisfies conditions (a), (b), if we substitute N by (1 - #)N, L by L_.(#), 

by io~/(1 - #), and if we consider instead of F the homomorphism F~(g): Go ---* 
Aut (L~,), where 

r.(g): Q~, , (r(g)Q)~., vg �9 Go, Q �9 ~. 

Finally, let the system of vector fields ~ = (I_,, h, G) be induced by L__, i.e., there 
exists a linear mapping cI,: ~i ~ L and a homomorphism ~: G0 '--* G, such that 

([~ ~ g "- ~P(D ~ (I), ~/'g �9 V0, hl'~l =h~ 

and 

Inv(L_) n L<, C (I)(L x n Z<,) c L<,, V, > 0. (12) 

As above, we suppose that s is a P-admissible family of tame sequences of 
flows satisfying conditions (a), (b). Let ~ be the set of all tame sequences of flows 

= {Pn('))n=l such that 

P(8) = {p"n(S))n~176 �9 Sg (L~) 
and 

Tmlnf f r ( s ) � 9  V s > 0 ,  r � 9  m < ~ a N .  

Consider the space of vector polynomials 

W = vi'h(tgi) 0i �9 ~x M L<r for i < c~r . 

Proposition 8, inclusions (12), and the equality hl~t = h o ~p, imply that the set 

{T~m g(,)I ~�9 b, ,>O}cW 
has interior points in W. Hence, 

~(ZlnZ<,) = A ( C i ( ~ ) n s  0 <  r~< N. 

Put 

= { ( Q I  . . . ,  Qk;  e l , . . . ,  ak) I Qi �9 l.~, ai �9 A~., k > 0; Q~, o . . . o  Qakk �9 2}  

and denote 

o k PI = Qia 1 o . . .  Qak for I ---- (Q1,. . . ,  QlC;al , . . . ,  ale) �9 3. 

Then ~ = {PI I I �9 ~}. In other words, the family ~ is indexed by the set ~. 
At this place, we have to distinguish between the set of tame of sequences and the 
family of tame sequences. The difference arises when the elements corresponding 
to different values of the index coincide. 

Let 

(r �9 F o ~a(G0), I = (Q1 . . . , Q k ; a i , . . . , a k )  �9 3, 
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then ~I  = (o'(Q1),.. . ,  o'(Q~); a l , . . . ,  ak) also belongs to I. This follows from the 
fact that the group ~((~0) preserves ~(~1).  We obtain a homomorphism F o ~: ~0 
Aut (~) ,  F o ~(#): Px ~ Pr0~(g)z which satisfies condition (b). 

Thus, s is a P-admissible system of fields, where ~ is the corresponding 7 9- 
admissible family of tame sequences of flows. 
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