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Abstract

We prove the result stated in the title; it is equivalent to the exis-
tence of a regular point of the sub-Riemannian exponential mapping.
We also prove that the metric is analytic on an open everywhere dense
subset in the case of a complete real-analytic sub-Riemannian mani-
fold.

1. Preliminaries

Let M be a smooth (i. e. C∞) Riemannian manifold and ∆ ⊂ TM a smooth
vector distribution on M (a vector subbundle of TM). We denote by ∆̄
the space of smooth sections of ∆ that is a subspace of the space VecM of
smooth vector fields on M . The Lie bracket of vector fields X, Y is denoted
by [X,Y ]. We assume that ∆ is bracket generating; in other words, ∀q ∈M ,

span{[X1, [· · · , [Xm−1, Xm] · · ·](q) : Xi ∈ ∆̄, i = 1, . . .m, m ∈ N} = TqM.

Given q0, q1 ∈M , we define the space of starting from q0 admissible paths:

Ωq0 = {γ ∈ H1([0, 1],M) : γ(0) = q0, γ̇(t) ∈ ∆γ(t) for almost all t}
and the sub-Riemannian distance:

δ(q0, q1) = inf{`(γ) : γ ∈ Ωq0 , γ(1) = q1},
where `(γ) =

∫ 1

0
|γ̇(t)| dt is the length of γ and ∆q = ∆ ∩ TqM . Classical

Rashevskij–Chow theorem implies that δ is a well-defined continuous function
on M ×M .
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An admissible path γ is a length-minimizer if `(γ) = δ(γ(0), γ(1)). Given
s ∈ [0, 1], we define a re-scaled path γs : t 7→ γ(st), t ∈ [0, 1]. The re-scaled
paths of any length-minimizer are also length-minimizers. According to the
standard Filippov existence theorem, any q ∈ M belongs to the interior of
the set of points connected with q by a length-minimizer. If M is a complete
Riemannian manifold, then length-minimizers connect q with all points of
M .

From now on, the point q0 ∈M is supposed to be fixed. Note that Ωq0 is
a smooth Hilbert submanifold of H1([0, 1],M). A smooth endpoint mapping
f : Ωq0 → M is defined by the formula: f(γ) = γ(1). Let J : Ωq0 →
R be the action functional, J(γ) = 1

2

∫ 1

0
|γ̇(t)|2 dt. The Cauchy–Schwartz

inequality implies that an admissible curve realizes min
γ∈f−1(q)

J(γ) if and only

if this curve is a connecting q0 with q and parameterized proportionally to the
length length-minimizer. Then, according to the Lagrange multipliers rule,
any starting at q0 and parameterized proportionally to the length length-
minimizer is either a critical point of f or a solution of the equation

λDγf = dγJ (1)

for some λ ∈ T ∗γ(1)M , where λDγf ∈ T ∗γΩq0 is the composition of linear
mappings Dγf : TγΩq0 → Tγ(1)M and λ : Tγ(1)M → R.

Now let a ∈ C1(M) and a curve γ realizes min
γ∈Ωq0 (M,∆)

(J(γ)− a(γ(1)));

then DγJ − dγ(1)aDγf = 0. Hence γ satisfies (1) with λ = dγ(1)a.
Solutions of (1) are called normal (sub-Riemannian) geodesics while crit-

ical points of f are abnormal geodesics. If a geodesic satisfies (1) for at least
two different λ, then it is simultaneously normal and abnormal; all other
geodesics are either strictly normal or strictly abnormal.

The sub-Riemannian Hamiltonian is a function h : T ∗M → R defined
by the formula: h(λ) = max

v∈∆q

(〈λ, v〉 − 1
2
|v|2) , λ ∈ T ∗qM, q ∈ M. We denote

by ~h the associated to h Hamiltonian vector field on T ∗M . A pair (γ, λ)
satisfies (1) if and only if there exists a solution ψ of the Hamiltonian system

ψ̇ = ~h(ψ) such that ψ(1) = λ and ψ(t) ∈ T ∗γ(t)M, ∀t ∈ [0, 1]; this fact is a
very special case of the Pontryagin maximum principle.

Note that h|T ∗q M is a nonnegative quadratic form on T ∗qM whose kernel

equals ∆⊥
q = {λ ∈ T ∗qM : λ ⊥ ∆q}. Given ξ ∈ T ∗q0M we denote by γξ normal

geodesic that is the projection to M of the solution of the Cauchy problem:
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ψ̇ = ~h(ψ), ψ(0) = ξ. This notation is well-coordinated with re-scalings:
γsξ = γsξ, ∀s ∈ [0, 1]. Finally, we define the exponential map E : ξ 7→ γξ(1);

this is a smooth map of a neighborhood of ∆⊥
q0

in T ∗q0M toM and E(∆⊥
q0

) = q0.

2. Statements

A point q ∈M is called a smooth point (for the triple (M,∆, q0)) if ∃ ξ ∈ T ∗q0M
such that q = E(ξ), ξ is a regular point of E and γξ is a unique length-
minimizer connecting q0 with q. We denote by Σ the set of all smooth
points and assume (for all statements of this section) that M is a complete
Riemannian manifold.

Theorem 1. Σ is an open everywhere dense subset of M .

The term “smooth point” is justified by the following fact, which should
be well-known to the experts even if it is not easy to find an appropriate
reference. A very close statement is contained in [4].

Theorem *. (i) If q ∈ Σ, then the sub-Riemannian distance δ is smooth in
a neighborhood of (q0, q). If, additionally, M and ∆ are real-analytic,
then δ is analytic in a neighborhood of (q0, q).

(ii) If δ is C2 in a neighborhood of (q0, q), then q ∈ Σ and δ is actually
smooth at (q0, q).

Corollary 1. Sub-Riemannian distance δ is smooth on an open everywhere
dense subset S ⊂ M ×M . Moreover, S ∩ {q0} ×M is everywhere dense in
{q0} ×M, ∀q0 ∈M . If M and ∆ are real-analytic, then δ is analytic on S.

2. Proofs

We have: imDξE ⊂ imDγξ
f, ∀ξ ∈ T ∗q0M , since E(ξ) ≡ f(γξ). Given a

normal geodesic γ we say that the point γ(1) is conjugate to q0 along γ if
imDξE 6= imDγξ

f for some ξ such that γ = γξ. The following three properties
of conjugate points are specifications of more general facts whose proofs can
be found in [3, Ch. 21].

i) If E(sξ) = γξ(s) is not conjugate to q0, ∀s ∈ [0, 1], then γξ is strictly
shorter than any other connecting q0 with γξ(1) admissible path from a C0-
neighborhood of γξ.
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ii) If ξ is a regular point of E and γξ is strictly shorter than any other
connecting q0 with γξ(1) admissible path from a C∞-neighborhood of γξ, then
γξ(s) is not conjugate to q0 along γsξ, ∀s ∈ [0, 1].

iii) The set {s ∈ [0, 1] : γξ(s) is conjugate to q0 along γsξ} is a closed
subset of [0, 1] which does not contain 0. Moreover, this is a finite subset of
[0, 1] if M and ∆ are real-analytic.

We say that that q ∈M is a RT-point (after Rifford and Trelat) if q = E(ξ)
for some ξ ∈ T ∗M such that γξ is a unique length-minimizer connecting q0
with q. Obviously, any smooth point is a RT-point but not vice versa! In
particular, a normal geodesic γξ from the definition of the RT-point can be
also abnormal. If M is complete, then the set of RT-points is everywhere
dense in M . This fact is proved in [5]; the proof is simple and we present it
here.

Given an open subset O ⊂ M we denote by RTO the set of all RT-
points of O. We have to show that RTO is not empty. Let a : O → R be
a smooth function such that a−1([c,∞)) is compact for any c ∈ R. Then
the function q′ 7→ δ(q0, q

′) − a(q′), q′ ∈ O, attains minimum at some point
q ∈ O. Hence any connecting q0 with q length-minimizer γ satisfies equation
(1) with λ = dqa. Then γ is the projection to M of the solution to the

Cauchy problem ψ̇ = ~h(ψ), ψ(1) = dqa; in other words, γ = γψ(0).
Now we prove that Σ is everywhere dense in M . Suppose that there exists

an open subset O ⊂M such that any point of RTO is connected with q0 by an
abnormal length-minimizer. Given q ∈ RTO we set rk(q) = rankDγf , where
γ is the length-minimizer connecting q0 with q. Finally, let kO = max

q∈RTO

rk(q).

According to our assumption, kO < dimM .
Now take q̂ ∈ RTO such that rk(q̂) = kO. Then rk(q) = kO for any

sufficiently close to q̂ point q ∈ RTO. Indeed, take a convergent to q̂ sequence
qn ∈ RTO, n = 1, 2, . . . . Let γn be the length-minimizer connecting q0 with
qn and γ̂ be the unique length-minimizer connecting q with q̂. The uniqueness
property and compactness of the space of length-minimizers (see [1]) imply
that γn → γ̂ in the H1-topology and Dγnf → Dγ̂f as n → ∞. Hence
rk(q̂) ≤ rk(qn) for all sufficiently big n.

Now, if necessary, we can substitute O by a smaller open subset and
assume, without lack of generality, that rk(q) = kO, ∀q ∈ O. Given q ∈ RTO
and the connecting q0 with q length-minimizer γ we set

Πq = {ξ ∈ T ∗q0M : γξ = γ}.
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It is easy to see that Πq is an affine subspace of T ∗q0M ; moreover, ξ ∈ Πq if

and only if λ = e
~h(ξ) satisfies (1), where et

~h : T ∗M → T ∗M, t ∈ R, is the

generated by ~h Hamiltonian flow. The already used compactness–uniqueness
argument implies that the affine subspace Πq ⊂ T ∗q0M continuously depends
on q ∈ RTO.

Consider again q̂ = γ̂(1) ∈ RTO and take a containing ξ̂ and transversal to
Πq̂ (dimM − kO)-dimensional ball B in T ∗q0M . There exists a neighborhood

Ô of q̂ such that Πq ∩B 6= ∅, ∀q ∈ Ô ∩ RTO. Hence any sufficiently close
to q̂ element of RTO belongs to the compact zero measure subset E(B). We
obtain a contradiction with the fact that RTO is everywhere dense in M .

This contradiction proves that the set

RT ′O
def
= {q ∈ RTO : rk(q) = dimM}

of RT-points connected with q0 by a strictly normal length-minimizer is ev-
erywhere dense in M . Now we are going to find a smooth point arbitrary
close to the given point q ∈ RT ′O. According to the definitions, a point
q′ ∈ RT ′O is smooth if and only if it is not conjugate to q0 along a length-
minimizer γξ, where q′ = γξ(1). If M and ∆ are real-analytic, then γ(s) is
a smooth point for any sufficiently close to 1 number s < 1 (see iii)). In the
general C∞ situation we need the following

Lemma 1 (L. Rifford). Let q ∈ RT ′O; then the function

q′ 7→ δ(q0, q
′) (2)

is Lipschitz in a neighborhood of q.

Proof. In order to prove this local statement, we may fix some local
coordinates in Ωq0 and M and make all the computations under assumption
that Ωq0 is a Hilbert space and M = Rn. Let γξ be the connecting q0 with
q length-minimizer; then γξ is a regular point of the endpoint map f : γ 7→
γ(1), γ ∈ Ωq0 . Let Bγ(ε) and Bq(ε) be the centered at γ and q radius ε balls in
Ωq0 and Rn. The implicit function theorem implies the existence of constants
c, α > 0 and a neighborhood Oγξ

of γξ in Ωq0 such that Bγ(1)(ε) ⊂ f (Bγ(cε))
for any γ ∈ Oγξ

and any ε ∈ (0, α]. Then δ(q0, q
′) ≤ `(γ) + c̄|γ(1) − q′|, for

some constant c̄ > 0 and any γ ∈ Oγξ
, q′ ∈ Bγ(1)(α).

Now take a neighborhood Uq of q in M such that Uq ⊂ Bq(α), RTUq =
RT ′Uq

and the connecting q0 with points from RT ′Uq
length-minimizers belong
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to Oγξ
. Then

δ(q0, q1)− δ(q0, q2) ≤ c̄|q1 − q2|, ∀q1, q2 ∈ RTUq .

Hence function (2) is Lipschitz on RTUq and, by the continuity, on

Uq = RTUq . ¤
A Lipschitz function is differentiable almost everywhere. It is easy to see

that any point of differentiability of function (2) is an RT-point. Indeed, set
φ(q) = 1

2
δ2(q0, q), q ∈ M . The functional J(γ) − φ(γ(1)), γ ∈ Ωq0 , attains

minimum exactly on the length-minimizers. Hence a connecting q0 with
a differentiability point of φ length-minimizer γ must satisfy the equation
dγ(1)φDγf = dγJ and is thus unique and normal. All RT-points are values
of the exponential map; according to the Sard Lemma, almost all of them
must be regular values and thus smooth points!

In the next lemma, we allow to perturb the sub-Riemannian structure, i. e.
the Riemannian structure on the given smooth manifold and the vector dis-
tribution ∆. The space of sub-Riemannian structures (shortly SR-structures)
is endowed with the standard C∞ topology.

Lemma 2. Assume that M is complete and q is a smooth point. Then any
sufficiently close to q point is smooth. Moreover, all sufficiently close to
q points remain to be smooth after a small perturbation of q0 and the SR-
structure; the connecting q0 with q length-minimizer smoothly depends on the
triple (q, q0, SR-structure).

Proof. Let γξ be the connecting q0 with q length-minimizer. The fact
that ξ is a regular point of E allows to find normal geodesics connecting any
close to q0 point with any close to q point for any sufficiently close to (M,∆)
SR-structure in such a way that the geodesic smoothly depends on all the
data. It remains to show that the found geodesic is a unique length-minimizer
connecting corresponding points!

It follows from property ii) of the conjugate points that γξ(s) is not conju-
gate to q0 along γsξ, ∀s ∈ [0, 1]. This fact implies the existence of a containing

ξ Lagrange submanifold L ⊂ T ∗M such that π ◦ et~h|L is a diffeomorphism
of L on a neighborhood of γξ(t), ∀t ∈ [0, 1], where π : T ∗M → M is the
standard projection (see [2] or [3, Ch.21]). Then γξ is strictly shorter than
any connecting q0 with q admissible path γ such that

γ(t) ∈ π ◦ et~h(L), ∀t ∈ [0, 1]. (3)
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Moreover, compactness of the space of length-minimizers implies that ∃ ε > 0
such that `(γ)−`(γξ) ≥ ε for any connecting q0 with q admissible γ which does
not satisfy (3). It remains to mention that construction of L survives small
perturbations of the SR-structure and of the initial data for normal geodesics.
Hence found geodesics are indeed unique length minimizers connecting their
endpoints. ¤

Lemma 2 implies that Σ is open as soon as M is complete. This finishes
proof of Theorem 1. Moreover, statement (i) of Theorem * is also a direct
corollary of Lemma 2. Here is the proof of statement (ii): Let φ(q′) =
1
2
δ2(q0, q

′), q′ ∈M , then the functional γ 7→ J(γ)− φ(γ(1)), γ ∈ Ωq0(M,∆)
attains minimum on the length-minimizers. Hence q is an RT-point and the

connecting q0 with q length-minimizer is γξ, where ξ = e−t~h(dqφ). Now the

mapping q′ 7→ e−t~h(dq′φ) defines a local inverse of E on a neighborhood of
q = E(ξ). Hence ξ is a regular point of E and q ∈ Σ.

Acknowledgments. I am grateful to professors Morimoto, Rifford and Zelenko
for very useful discussions.

Remark. The first version of this paper with a little bit weaker result to
appear in the “Russian Math. Dokl.”. The improvement made in the present
updated version concerns the density of the set of smooth points in the
general C∞ case. The density was originally proved only for real-analytic
sub-Riemannian structures while in the general smooth case we guaranteed
the existence of a nonempty open subset of smooth points. I am indebted to
Ludovic Rifford for the nice observation (see Lemma 1) which allows to get
rid of the analyticity assumption.
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