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Abstrat

We investigate the loal length minimality (by the W

1;1

or H

1

-topology) of abnor-

mal sub-Riemannian geodesis for rank 2 distributions. In partiular, we demonstrate

that this kind of loal minimality is equivalent to the rigidity for generi abnormal

geodesis, and introdue an appropriate Jaobi equation in order to ompute onjugate

points. As a orollary, we obtain a reent result of Sussmann and Liu about the global

length minimality of short piees of the abnormal geodesis.

1 Introdution

In this paper we study abnormal sub-Riemannian geodesis. Let us reall that a sub-

Riemannian struture on a Riemannian manifoldM is de�ned by a braket generating (or

a possessing full Lie rank) distribution D onM: A loally Lipshitzian path q(�) (� 2 [0; T ℄)

is admissible if its tangents lie in D for almost all � 2 [0; T ℄: Given two points q

0

and q

1

one an set out the problem of �nding minimal (i.e. length-minimizing) admissible path

onneting q

0

with q

1

:

An essential distintion of this setting from the lassial Riemannian ase is that the

spae of all loally Lipshitzian paths onneting q

0

with q

1

has a struture of Banah

manifold with minimal paths being ritial points of the length funtional, or Riemannian

geodesis on the manifold M , whereas the spae of admissible paths is not, in general,

a manifold and may have singularities. These singularities orrespond to the so-alled

abnormal geodesis. In fat these abnormal geodesis do not depend on the Riemannian

struture and are determined by the distribution D.

The term 'abnormal' omes from the alulus of variations sine the problem of �nding

minimal admissible paths an be reformulated as the Lagrange problem of the alulus

of variations. The Euler-Lagrange equation for the Lagrange problem is alled a geodesi

equation; its solutions are extremals of the Lagrange problem or sub-Riemannian geodesis.

In partiular, abnormal extremals with a vanishing Lagrange multiplier for the (length)

funtional are abnormal geodesis.

For a long time abnormal sub-Riemannian geodesis were not treated by geometers as

proper andidates for minimizers until Montgomery gave in [15℄ an example of a mini-

mal admissible path whih does not orrespond to any normal sub-Riemannian geodesi.
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Later another example was onstruted by Kupka ([13℄), and Sussmann established in [19℄

the minimality of short abnormal geodesi subars for generi 2-distributions in R

4

. Later

Sussmann and Liu generalized the last result to the

2-distributions in R

n

([20℄).

Another approah to the investigation of weak (i.e. W

1;1

-loal)

1

minimality of ab-

normal extremals of the Lagrange problem and the abnormal sub-Riemannian geodesis

was suggested by the authors in [5, 6℄. It is a kind of Legendre-Jaobi-Morse-type theory

of a seond variation for abnormal extremals of the Lagrange problem and the abnormal

geodesis and, therefore, deals with geodesis of an arbitrary length. Among the results

established in [6℄ are seond order Jaobi-type onditions of weak minimality for abnormal

geodesis, whih turned out to be also onditions of rigidity for the orresponding abnor-

mal geodesi paths. Reall that rigidity means that an admissible path is isolated (up to a

reparametrization) in W

1;1

�topology of in the set of all admissible paths onneting the

given points q

0

; q

1

2M , see [7℄. As it was demonstrated in [6℄, the rigidity onditions fol-

low from a general neessary/suÆient onditions for ritial points of a smooth mapping

to be isolated at the orresponding ritial level. Developing in [6℄ the Jaobi-Morse-type

approah to abnormal geodesis, the authors introdued the notions of Morse index and

nullity and derived expliit formulas for these invariants. This made it possible to establish

loal rigidity of an abnormal geodesi meeting th Strong Generalized Legendre Condition.

In this paper we are going to establish suÆient onditions for W

1;1

-loal minimality of

abnormal sub-Riemannian geodesi paths. We all it strong minimality, although it di�ers

from the traditional de�nition of strong minimality in the alulus of variations, whih is

C

0

-loal minimality.

It turns out that unlike a weak minimality a strong minimality does not, in general,

result from positive de�niteness of the seond variation unless the distribution D has rank

2. We hoose to limit our onsideration to the sope of seond order onditions and,

therefore, deal with abnormal geodesis of rank 2 distributions.

The paper is organized in the following way. Setion 2 ontains preliminary material.

In Setion 3 we redue the problem of strong minimality of admissible paths to time

optimal ontrol problem, present the Hamilton-Pontryagin form of the geodesi equation

and de�ne normal and abnormal sub-Riemannian geodesis. In Setion 4 we de�ne the

�rst and the seond variations along an abnormal geodesi, introdue the Generalized

Legendre Conditions, the Jaobi equation and onjugate points. Setion 5 ontains all

substantial results of the paper. Thus Theorem 3 provides suÆient strong (=W

1;1

-loal)

minimality onditions for abnormal geodesi paths. Sine suÆiently short subars of a

strongly minimal path are automatially globally minimal, we an establish (Corollary 4)

with the aid of the previous theorem, the global minimality of short geodesi ars whih

satisfy the Strong Generalized Legendre Condition. It was already mentioned that the

weak (= W

1;1

-loal) minimality was often realized in the form of rigidity or isolation

(up to a reparametrization) of an abnormal geodesi path in W

1;1

-topology. On the

ontrary, as follows from the proof of the Rashevsky-Chow theorem (Theorem 2.1), an

admissible path of a distribution of full Lie rank is never isolated in W

1;1

-topology in the

1

By W

1;k

[0; T ℄; k = 1; 2; : : :1 we denote the spaes of absolutely ontinuous (vetor-) funtions on

[0; T ℄ (T <1) whose derivatives belong to L

k

[0; T ℄: They beome Banah spaes when provided with the

norms: kw(�)k

1;k

= (jw(0)j

2

+ k _w(�)k

2

L

k

)

1=2

: In partiular, W

1;1

[0; T ℄ is the spae of absolutely ontinuous

funtions, W

1;2

is Sobolev spae H

1

[0; T ℄.
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spae of admissible paths with given end{points. Nevertheless, for a generi abnormal

geodesi of rank 2 distribution the intervals of its rigidity and strong minimality oinide

(Theorem 5), i.e., the property of strong minimality does not depend on the Riemannian

struture. It an be explained by the that for a generi geodesi strong minimality is

equivalent to strong onstrained rigidity. Theorem 1 that gives suÆient onditions for

strong onstrained rigidity is proved in Setion 7, and Setion 6 ontains a redued form

of the Jaobi equation for abnormal geodesis satisfying some regularity onditions and

also some examples of strongly minimal abnormal geodesi paths.

We are grateful to F. Silva Leite who suggested some improvements of the text and

espeially to M. Zhitomirskii for the detailed reviewing of the manusript and a number

of helpful remarks and advie.

2 Preliminaries

Below we use notation and tehnial tools of hronologial alulus developed by Agrahev

and Gamkrelidze (see [3, 4℄).

We identify C

1

di�eomorphisms P : M ! M with automorphisms of the algebra

C

1

(M) of smooth funtions onM : �(�) 7! P� = �(P (�)). The image of point q 2M under

the di�eomorphism P will be denoted by qÆP: Vetor �elds onM are �rst-order di�erential

operators on M or arbitrary derivations of the C

1

(M) algebra, i.e., R-linear mappings

X : C

1

(M) �! C

1

(M), that obey the Leibnitz rule: X(��) = (X�)� + �(X�). The

value X(q) of the vetor �eld X at the point q 2 M lies in the spae T

q

M tangent to

the manifold M at the point q. We denote by [X

1

;X

2

℄ the Lie braket or ommutator

X

1

ÆX

2

�X

2

ÆX

1

of the vetor �elds X

1

;X

2

. It is again a �rst order di�erential operator

whih an be presented in loal oordinates on M as

[X

1

;X

2

℄ = [

n

X

i=1

X

1

i

�=�x

i

;

n

X

i=1

X

2

i

�=�x

i

℄ =

n

X

i=1

(�X

2

i

=�xX

1

� �X

1

i

=�xX

2

)�=�x

i

:

This operation introdues, in the spae of vetor �elds, a struture of Lie algebra, whih

is denoted by Vet M . For X 2 VetM the notation ad X is used for the inner derivation

of Vet M : (adX)X

0

= [X;X

0

℄;8X

0

2 VetM .

For a di�eomorphism P we use the notation AdP for the following inner automorphism

of the Lie algebra Vet M : AdPX = P Æ X Æ P

�1

= P

�1

�

X. The last notation is used

for the result of translation of the vetor �eld X by means of the di�erential P

�1

�

of the

di�eomorphism P

�1

.

A ow on M is an absolutely ontinuous with respet to � 2 R urve � 7! P

�

in the

group of di�eomorphisms Di� M subjet to the ondition P

0

= I (where I is the idential

di�eomorphism). We assume all time-dependent vetor �elds X

�

to be loally integrable

(see [3℄) with respet to � . The time-dependent vetor �eld X

�

de�nes the ordinary

di�erential equation _q = X

�

(q(�)); q(0) = q

0

on the manifold M ; if any solutions of this

di�erential equation exist for all q

0

2 M; � 2 R, then the vetor �eld X

�

is said to be

omplete and de�nes a ow on M , being the unique solution of the (operator) di�erential

equation

dP

�

=d� = P

�

ÆX

�

; P

0

= I: (2.1)
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We denote this solution by P

t

=

�!

exp

R

t

0

X

�

d� , and all it (see [3, 4℄) a right hronologial

exponential of X

�

. If the vetor �eld X

�

� X is time-independent, then the orresponding

ow is denoted by P

t

= e

tX

.

We also introdue a Volterra expansion (or Volterra series) for the hronologial expo-

nential. It is (see [3, 4℄)

�!

exp

Z

t

0

X

�

d� � I +

1

X

i=1

Z

t

0

d�

1

Z

�

1

0

d�

2

: : :

Z

�

i�1

0

d�

i

(X

�

i

Æ � � � ÆX

�

1

)

�

� I +

Z

t

0

X

�

1

d�

1

+

Z

t

0

d�

1

Z

�

1

0

d�

2

(X

�

2

ÆX

�

1

) + � � � : (2.2)

For time-independent X we obtain

e

tX

�

1

X

i=0

(t

k

=k!)X Æ � � � ÆX

| {z }

k

� I + tX + (t

2

=2)X ÆX + � � � (2.3)

One more formula of hronologial alulus will be intensively used. It is a "generalized

variational formula" for a hronologial exponential

�!

exp

R

t

0

(

^

X

�

+X

�

)d� of a "perturbed"

vetor �eld

^

X

�

+ X

�

: We give two (left and right) variants of the formula (see [3, 4℄ for

their drawing):

�!

exp

Z

t

0

(

^

X

�

+X

�

)d� =

�!

exp

Z

t

0

^

X

�

d�Æ

�!

exp

Z

t

0

Ad(

�!

exp

Z

�

t

^

X

�

d�)X

�

d� =

=

�!

exp

Z

t

0

Ad(

�!

exp

Z

�

0

^

X

�

d�)X

�

d�Æ

�!

exp

Z

t

0

^

X

�

d�: (2.4)

By applying the operator Ad(

�!

exp

R

�

0

^

X

�

d�) to a vetor �eld Y and di�erentiating

Ad(

�!

exp

R

�

0

^

X

�

d�)Y = (

�!

exp

R

�

0

^

X

�

d�) Æ Y Æ (

�!

exp

R

�

0

^

X

�

d�)

�1

with respet to � , we ome to

the relation (see [3, 4℄)

d

d�

Ad(

�!

exp

Z

�

0

^

X

�

d�Y ) = Ad(

�!

exp

Z

�

0

^

X

�

d�) ad

^

X

�

Y;

whih is of the same form as (2.1). Therefore Ad(

�!

exp

R

�

0

^

X

�

d�) an be presented (at

least formally) as an operator hronologial exponential

�!

exp

R

t

0

ad

^

X

�

d� whih for the

time-independent vetor �eld

^

X

�

�

^

X an be written as e

t ad

^

X

:

Aording to this new notation, the generalized variational relation (2.4) an be repre-

sented as

�!

exp

Z

t

0

(

^

X

�

+X

�

)d� =

�!

exp

Z

t

0

^

X

�

d�Æ

�!

exp

Z

t

0

(

�!

exp

Z

�

t

ad

^

X

�

d�)X

�

d� =

=

�!

exp

Z

t

0

(

�!

exp

Z

�

0

ad

^

X

�

d�)X

�

d�Æ

�!

exp

Z

t

0

^

X

�

d�: (2.5)

The exponentials

�!

exp

R

t

0

ad

^

X

�

d� and e

t ad

^

X

also admit the Volterra expansions

�!

exp

Z

t

0

adX

�

d� � I +

1

X

i=1

Z

t

0

d�

1

Z

�

1

0

d�

2

: : :

Z

�

i�1

0

d�

i

(adX

�

i

Æ � � � adX

�

1

)

�

� I +

Z

t

0

adX

�

1

d�

1

+

Z

t

0

d�

1

Z

�

1

0

d�

2

(adX

�

2

Æ adX

�

1

) + � � � (2.6)
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and

e

t adX

� I + t adX + (t

2

=2) adX Æ adX + � � � : (2.7)

We all a r-distribution D on M the spae of smooth setions of a sub-bundle of the

tangent bundle TM ; dimD

q

� r is onstant for all q 2M . A generalization of the onept

of distribution is a di�erential system or a distribution with singularities, whih is a spae of

setions of a sub-bundle with nononstant dimD

q

. In other words, the di�erential systems

D are C

1

(M)-submodules of VetM; while the distributions orrespond to projetive

C

1

(M)-submodules. Loally one an treat the germ of a distribution as a free module.

If D is a di�erential system, then, taking theC

1

-modules generated by the Lie brakets

of order � k; k = 1; : : : ; of the vetor �elds subjet to D, we obtain an expanding sequene

of di�erential systems:

D � D

2

= [D;D℄ � � � � D

k

= [D;D

k�1

℄ � � � � :

For any q 2M the sequene of subspaes

D

q

� � � � D

k

q

� T

q

M

is alled a ag of the di�erential system D at the point q 2M , and the sequene n

1

(q) �

� � �n

k

(q) � � � �, where n

i

(q) = dimD

i

q

, is alled a growth vetor of the di�erential system

D at the point q. A di�erential system is braket generating or having full Lie rank at a

point q 2M if D

�

k

q

= T

q

M for a ertain

�

k. A di�erential system is braket generating or or

having full Lie rank if D

k

q

q

= T

q

M for a ertain k

q

and all q 2M:

A fundamental property of the full-Lie-rank di�erential systems is established by the

following theorem.

Theorem 2.1 (Rashevsky-Chow Theorem; see [14℄) If a di�erential system has a

full Lie rank on the manifold M , then any two points of M an be onneted by an admis-

sible path. 2

If D is a distribution (n

1

(q) � onst), then D

k

may still have singularities sine the growth

vetor of a distribution hanges, in general, with q. A distribution is alled regular if its

growth vetor is onstant for all q.

Below we use some standard (see, for example, [9℄) onepts of sympleti geometry. A

sympleti struture in an even-dimensional linear spae � is de�ned by a nondegenerate

bilinear skew-symmetri 2-form �(�; �): Two vetors �

1

; �

2

2 � are skew-orthogonal, written

�

1

[�

2

; if �(�

1

; �

2

) = 0: If N is a subspae of �, then N

[

is its skeworthogonal omplement:

N

[

= f� 2 � j �(�; �) = 0;8� 2 Ng: Obviously, dimN + dimN

[

= dim�: A subspae

� � � is isotropi when � � �

[

; and oisotropi when � � �

[

: A subspae � � � is

Lagrangian if �

[

= �: If � is a Lagrangian subspae and � is isotropi, then it is easy to

prove that (� \ �

[

) + � = (� + �) \ �

[

is a Lagrangian subspae. We denote it by �

�

:

3 Minimal Paths, Geodesis, Abnormal Geodesis

Reall that the problem we started with is: given a rank 2 distributionD on a Riemannian

manifold M; establish whether a given admissible nonsel�nterseting path t 7! q̂(t); t 2

[0; T ℄; onneting points q

0

= q̂(0); q

1

= q̂(T ) 2M; is a W

1;1

-loal length-minimizer in the

5



set of all admissible paths onneting q

0

and q

1

: In order to pose the problem properly, we

have to de�ne the W

1;1

-neighborhood of the given Lipshitzian path t 7! q̂(t); t 2 [0; T ℄:

Let us onsider the graph (t; q̂(t)) : [0; T ℄! [0; T ℄�M of this path. In the suÆiently

small neighborhood 
 of this graph in R �M we an hoose a basis B

t;q

: T

q

M ! R

n

of T

q

M ontinuously depending on (t; q) 2 W: Then any Lipshitzian path q(�) on M

parametrized by [0; T ℄ orresponds to a R

n

-valued vetor funtion t 7! B

t;q(t)

_q(t) de�ned

almost everywhere on [0; T ℄: We shall identify _q(t) with B

t;q(t)

_q(t): Assuming that the

distane � between two points of M is de�ned by the Riemannian metri, we an de�ne a

W

1;1

-norm loally in a small C

0

-neighborhood of q̂(�):

kq

1

(�)� q

2

(�)k

1;1

= �(q

1

(0); q

2

(0)) +

Z

T

0

j _q

1

(t)� _q

2

(t)jdt:

De�nition 3.1 A nonsel�nterseting admissible path t 7! q̂(t); t 2 [0; T ℄ of the distribu-

tion D with the end-points q

0

and q

1

is W

1;1

�loal minimizer if, for some neighborhood of

q̂(�)j

[0;T

0

℄

in W

1;1

[0; T

0

℄; the points q

0

and q

1

annot be onneted by a shorter admissible

path t 7! �q(t); t 2 [0; T ℄ belonging to this neighborhood. 2

The problem of �nding a minimal admissible path for a 2-dimensional distribution an

be represented as the following time-optimal ontrol problem:

T �! min; (3.1)

_q = g

1

(q)u

1

(�) + g

2

u

2

(�); q(0) = q

0

; u

2

1

+ u

2

2

� 1; (3.2)

q(T ) = q

1

; (3.3)

where g

1

(q); g

2

(q) are smooth vetor �elds, whih form a basis of the distribution D in

a small neighborhood of the given nonsel�nterseting admissible path q̂(�) on M: We

denote G(q) = (g

1

(q); g

2

(q)). The admissible ontrols u(�) = (u

1

(�); u

2

(�)) are measurable

funtions with the values in the unit ball B � R

2

; the set of admissible ontrols is denoted

by U : U � L

1

.

The following proposition establishes the equivalene of the optimal ontrol problem

(3.1-3.3) with the one of �nding W

1;1

-loally minimal admissible path.

Lemma 3.1 (Redution Lemma) An admissible path parametrized by the length of ar

� 7! q̂(�); 0 � � � T is a W

1;1

-loal minimizer if and only if the orresponding ontrol

û(�) is an L

1

-loal minimizer for the time-optimal problem ( 3.1)-(3.3). The orresponding

minimal time T is the length of the minimal admissible path. 2

Proof. a) We start with establishing the following inequality for the Eulidean norm

j � j in R

n

:

v; w 2 R

n

; jwj = 1; v 6= 0) jw �

v

jvj

j � 2jw � vj: (3.4)

Indeed, by arranging the terms in the equivalent inequality

(w �

v

jvj

) � (w �

v

jvj

) � 4(w � v) � (w � v)

and dividing it by 2; we transform it into

1� 4w � v +

w � v

jvj

+ 2jvj

2

� 0;

6



or, if � is the osine of the angle between v and w;

1� 4jvj os � + os � + 2jvj

2

� 0:

When os� � 0; the last inequality follows from the obvious inequalities 1 + os � � 0

and �4jvj os � + 2jvj

2

� 0: If, on the ontrary, os � � 0; then 1 + os � � 2 os

2

� and,

therefore

1 + os � + 2jvj

2

� 2(os

2

� + jvj

2

) � 4jvj os �

by virtue of the arithmeti-geometri mean inequality.

Before proving the equivalene of time-optimality of û(�) and strong minimality of q̂(�);

we �x a monotoni sequene f"

k

g > 0; lim

k!1

"

k

= 0: Note that when the ontrols

u

k

(�) tend to û(�) in the L

1

-norm, then the orresponding trajetories of the systems

_y

k

= G(y

k

)u

k

(t); y

k

(0) = q

0

tend to q̂(�) in the W

1;1

-norm and hene in the C

0

-norm as

well.

(b)Suppose that the ontrol û(�) produing the admissible path q̂(�) is not L

1

-loally

optimal for Problem (3.1)-(3.3). Then there exists a sequene of admissible (with their

values in the unit ball of R

2

) ontrols u

k

(�) belonging to the "

k

-neighborhoods of û(�) in

L

2

1

and steering system (3.2) from q

0

to q

1

in the time T

k

< T along the paths y

k

(�):

Obviously, length(y

k

(�)) < length(q̂(�)) = T: Without loss of generality, we an assume

that T

k

onverges. If lim

k!1

T

k

= T

0

< T then, sine lim

k!1

ku

k

� uj

[0;T

k

℄

k

L

1

= 0; we

�nd that q

1

= lim

k!1

y

k

(T

k

) = q̂(T

0

) and, therefore, q̂(�) must be sel�nterseting. If

lim

k!1

T

k

= T; then, hoosing k suh that ku

k

� uj

[0;T

k

℄

k

L

1

� "=2; T � T

k

� "=2 and

de�ning y

k

(t) = q

1

for t 2 [T

k

; T ℄; we obtain shorter admissible path between q

0

and q

1

whih belongs to the "-neighborhood of q̂(�) in the W

1;1

-metri.

() If now q̂(�) is not a W

1;1

-loally minimal path, then there exist admissible paths

y

k

(�); parametrized by [0; T ℄; whih are "

k

-lose to q̂(�) in the W

1;1

-metri and have

thelength(y

k

(�)) < length(q̂(�) = T: Obviously, lim

k!1

l

k

= T: The relations _y

k

(t) =

G(y

k

(t))u

k

(t); t 2 [0; T ℄ unequely de�ne u

k

(�); k = 1; : : : The ontrols u

k

(�) may have

values outside of the unit ball in R

2

: Parametrizing eah y

k

(�) by the length of ar, we

represent them as trajetories of the di�erential equations

_y

k

= G(q)u

k

(t

k

(�))=ku

k

(t

k

(�))k; � [0; l

k

℄;

where t

k

(�) is the inverse to the funtion �

k

(t) =

R

t

0

ku

k

(s)kds: Then, by virtue of (3.4)

Z

l

k

0

�

�

�

�

�

u

k

(t

k

(�))

ju

k

(t

k

(�))j

� u

k

(�)

�

�

�

�

�

d� � 2

Z

l

k

0

ju

k

(t

k

(�))� u

k

(�)jd� �

� 2

 

Z

l

k

0

ju

k

(t

k

(�))� u

k

(�)jd� +

Z

l

k

0

ju

k

(�)� u(�)jd�

!

:

The seond term on the right-hand side obviously tends to zero as k ! 1 and, sine

ft

k

(�)g onverges uniformly to t(�) � � on any subinterval [0; T

0

℄ � [0; T ℄; the �rst term

tends to zero as well. 2

A �rst-order neessary minimality ondition for the time-optimal ontrol problem ( 3.1)-

(3.3) is provided by the Pontryagin Maximum Priniple. We assume the loal oordinates

(t; q) = (t; q

1

; : : : ; q

n

) to be de�ned in some neighborhood of the urve (t; q̂(t)); t 2 [0; T ℄:

7



Theorem 3.2 (Pontryagin Maximum Priniple; [16℄) If û(�) is a weak (= L

1

-lo-

al) minimizer for Problem ( 3.1)-(3.3), then there exists a nonvanishing absolutely ontin-

uous ovetor-funtion

^

 (�)) on [0; T ℄ suh that

^

 (�) 2 T

�

q̂(�)

M and, in the loal oordinates

(t; q), the 4-tuple (û(�); q̂(�);

^

 (�); T )

(1) satis�es the Hamiltonian system

_q =

�H

� 

; q(0) = q

0

; q(T ) = q

1

; (3.5)

_

 = �

�H

�q

; (3.6)

with the Hamiltonian

H(u; q;  ) =  �G(q)u; (3.7)

(2) obeys the maximality ondition a.e. on [0; T ℄ :

0 � onst = H(û(�); q̂(�);

^

 (�)) = maxfH(u; q̂(�);

^

 (�)) j u 2 R

2

; kuk � 1g: 2 (3.8)

De�nition 3.2 The 4-tuple (û(�); q̂(�);

^

 (�); T ) subjet to the onditions of the Pontryagin

Maximum Priniple is an extremal of the optimal ontrol problem (3.1)-(3.3) or a sub-

Riemannian geodesi. A sub-Riemannian geodesi is normal if H > 0 and abnormal, if

H = 0: The orresponding triple (û(�); q̂(�); T ) is alled sub-Riemannian geodesi path. 2

Remark. Obviously for any normal or abnormal sub-Riemannian geodesi

(û(�); q̂(�);

^

 (�); T ) its restrition (û(�)j

[0;t℄

; q̂(�)j

[0;t℄

;

^

 (�)j

[0;t℄

; t) to the subinterval [0; t℄ �

[0; T ℄ is also a normal or abnormal sub-Riemannian geodesi orrespondingly. 2

Remark. Several geodesis with di�erent

^

 (�) may orrespond to the geodesi path

(û(�); q̂(�); T ): 2

De�nition 3.3 The geodesi path (û(�); q̂(�); T ) is a orank k abnormal geodesi path if

the spae of

^

 (�), whih, together with (û(�); q̂(�); T ); satis�es Theorem 3.2 with H � 0, is

k-dimensional. 2

When a geodesi is abnormal, i.e., H = 0 in the Pontryagin Maximum Priniple, then

the maximality ondition (3.8) beomes maxf

^

 (�)G(q̂(�))u j u 2 R

2

; kuk � 1g = 0; whih

is equivalent to

H(u; q̂(�);

^

 (�)) =

^

 (�)G(q̂(�))u � 0;8u 2 R

2

: (3.9)

This means that

^

 (�) is orthogonal to the distribution D at q̂(�): Therefore we have one

more equivalent de�nition of abnormality.

De�nition 3.4 The geodesi (û(�); q̂(�);

^

 (�); T ) is abnormal if

^

 (�) ? D(q̂(�)) at every

point q̂(�): 2

We an see that the de�nition of an abnormal geodesi does not depend on a Riemannian

struture but is only de�ned by the distribution D:

Abnormal admissible geodesi paths of a distribution often exhibit a phenomenon alled

rigidity.

8



De�nition 3.5 The admissible path q(�) of the distribution D with end-points q

0

and q

1

is rigid if it is isolated (up to a reparametrization) in the topology of W

1;1

in the set of

all admissible paths onneting q

0

with q

1

: 2

Remark. Paper [6℄ ontains detailed onsideration of the rigidity phenomenon for distri-

butions and di�erential systems. 2

In [6℄ some neessary weak minimality onditions for abnormal geodesis are estab-

lished. First, di�erentiating identity (3.9) with respet to �; we derive

^

 (�) � [Gû(�); Gw℄(q̂(�)) = 0; 8w 2 R

2

; a.e. on [0; T ℄;

for almost all � 2 [0; T ℄; whih means that for all � 2 [0; T ℄ we have

^

 (�) � [Gv;Gw℄(q̂(�)) = 0 8v; w 2 R

2

; (3.10)

i.e., at every point q̂(�) of the abnormal geodesi (û(�); q̂(�);

^

 (�); T ) the ovetor

^

 (�)

annihilates the distribution [D;D℄(q̂(�)), spanned by the vetor �elds f; g from D and

their Lie braket [f; g℄:

The following Generalized Legendre Condition (see [11, 2, 12℄)

2

is neessary for the

weak and therefore also strong minimality of an abnormal geodesi path: for some

^

 (�)

satisfying Pontryagin Maximum Priniple (Theorem 3.2) we have

�

�u

d

2

d�

2

�H

�u

�

�

�

û(�)

(v; v) = 

�

(v; v) =

^

 (�) � [Gv; [Gû(�); Gv℄℄(q̂(�)) � 0: (3.11)

for all � 2 [0; T ℄; and v ? û(�).

In order to set out Jaobi-type minimality onditions, we introdue Strong Generalized

Legendre Condition: for some � > 0 and for all � 2 [0; T ℄ and v ? û(�) : we have



�

(v; v) =

^

 (�) � [Gv[Gû(�); Gv℄℄(q̂(�)) � �kvk

2

: (3.12)

The last ondition also implies the smoothness of the geodesi.

Theorem 3.3 (Smoothness of Abnormal Geodesis; see [6, Theorem 4.4℄) If the Strong

Generalized Legendre Condition (3.12) holds along the abnormal geodesi

(û(�); q̂(�);

^

 (�); T ); then û(�); q̂(�);

^

 (�) are smooth on [0; T ℄: 2

Note that (3.10) and (3.12) imply

^

 (�) 2 D

2

q̂(�)

n D

3

q̂(�)

; 8� 2 [0; T ℄. On the other hand,

di�erentiating (3.10) w.r.t. �; we derive

^

 (�) � [Gû(�); [Gv;Gw℄℄(q̂(�)) = 0 8v; w 2 R

2

:

Therefore, if

^

 (�) 2 D

2

q̂(�)

nD

3

q̂(�)

; 8� 2 [0; T ℄ for the smooth abnormal extremal (û(�); q̂(�);

^

 (�)),

then the Strong Generalized Legendre Condition holds either for (û(�); q̂(�);

^

 (�)) or for the

abnormal extremal (û(�); q̂(�);�

^

 (�)).

The abnormal extremals whih are subjet to the onditions

^

 (�) 2 D

2

q̂(�)

nD

3

q̂(�)

; 8� 2

[0; T ℄ are alled regular abnormal biextremals in [20℄. Therefore, the lass of abnormal

2

also alled Generalized Legendre-Klebsh Condition, or Kelley Condition

9



extremals whih satis�es ondition (3.10) together with the Strong Generalized Legendre

Condition oinides with the lass of "regular abnormal biextremals" introdued in [20℄.

Below we assume the Strong Generalized Legendre Condition to hold and our abnormal

geodesi (û(�); q̂(�);

^

 (�); T ) to be smooth. Then we an hoose smooth vetor �elds f; g

spanning the distribution D in some neighborhood of the urve q̂(�); 0 � � � T suh that

the abnormal geodesi path q̂(�) = q

0

Æ e

tf

starts at the q

0

trajetory of the vetor �eld f

(other trajetories of f need not be geodesis). It is more onvenient from the tehnial

point of view to introdue new notations for system (3.2), namely, we shall onsider the

admissible paths of the distribution D starting at q

0

as trajetories of the aÆne ontrol

system

_q = f(q)(1 + _v(�)) + g(q) _w(�); q(0) = q

0

; (3.13)

where u(�) = (v(�); w(�)) is a vetor funtion treated as ontrol; u(0) = 0. What we

have to do is to �nd out when the referene ontrol û � 0 shifting the aÆne ontrol

system (3.13) from q

0

to q

1

is W

1;1

-loally time optimal among the ontrols subjet to the

onstraint

(1 + _v)

2

+ _w

2

� 1: (3.14)

4 The First and Seond Variations along Abnormal Geodesis

Let us introdue a family of input/state mappings F

t

for the ontrol system (3.13). It is

de�ned in a neighborhood of the origin of W

2

1;1

[0; T ℄ (we ignore for the timebeing the

restritions imposed on the ontrol): F

t

maps the input u(�) into the point q(t) 2 M of

the trajetory q(�) of the di�erential equation _q = f(q)(1 + _v(�)) + g(q) _w(�); q(0) = q

0

:

Obviously, F

t

(0) = q̂(t) and F

T

(0) = q

1

:

In order to study F

t

(u(�)); we represent it as a hronologial exponential:

F

t

(u(�)) = q

0

Æ

�!

exp

Z

t

0

f(1 + _v(�)) + g _w(�)d�:

Rearranging the vetor �eld f(1+ _v)+ g _w as the sum f +(f _v+ g _w) and applying the �rst

of the generalized variational formulas (2.5), we transform the exponential into

F

t

(u(�)) = q

0

Æ e

tf

Æ

�!

exp

Z

t

0

(f _v(�) + Y

t;�

_w(�))d�; (4.1)

where

Y

t;�

= e

(��t)adf

g:

Taking into aount q

0

Æ e

tf

= q̂(t) and applying the seond of the relations (2.5) to the

hronologial exponential in (4.1) , we obtain

F

t

(u(�)) = q̂(t)Æ

�!

exp

Z

t

0

e

adfv(�)

Y

t;�

_w(�)d� Æ e

fv(t)

: (4.2)

Let us denote

Y

�

= Y

T;�

= e

(��T )adf

g; F

T

= F ; (4.3)

obviously, Y

T

= g:

10



The �rst and seond variations along the hosen abnormal extremal are, orrespond-

ingly, �rst and seond di�erentials of the input/state mapping F at the origin (see [6℄).

Using the Volterra expansions (2.2)-(2.7), we derive (see [6℄ for details) the expression

F

0

j

0

u(�) = f(q

1

)v(T ) +

Z

T

0

Y

�

(q

1

) _w(�)d� =

f(q

1

)v(T ) + g(q

1

)w(T )�

Z

T

0

_

Y

�

(q

1

)w(�)d�; (4.4)

where

_

Y

�

= [f; Y

�

℄ by virtue of (4.3) , for the �rst di�erential.

If 0 is a ritial point of F; i.e., ImF

0

j

0

6= T

q

1
M; then there exists a nonzero ovetor

^

 

T

2 T

�

q

1

M that annihilates ImF

0

j

0

: This implies

^

 

T

� f(q

1

) =

^

 

T

� g(q

1

) =

^

 

T

�

_

Y

t

(q

1

) = 0; a.e. on [0; T ℄. (4.5)

The ritial harater of 0 2 W

2

1;1

[0; T ℄ for F is another formulation of û � 0 whih

is an abnormal extremal ontrol or q̂(�) whih is an abnormal geodesi path. Indeed, we

an easily establish the equivalene of onditions (4.5) and (3.9). If we take the ovetor

^

 

T

from (4.5) and hoose the solution

^

 (�) of the adjoint equation (3.6) with the end-

point value

^

 (T ) =

^

 

T

; then

^

 (t) annihilates the distribution D at any point q̂(t) of the

abnormal geodesi path.

De�nition 4.1 The �rst di�erential F

0

j

0

: W

2

1;1

[0; T ℄ ! T

q

1
M; de�ned by relation (4.4)

is alled the �rst variation along the abnormal geodesi path q̂(t) = q

0

Æ e

tf

; t 2 [0; T ℄: 2

Let us introdue the seond variation along the abnormal geodesi

(û(�); q̂(�);

^

 (�); T ). This is a Hessian, or a quadrati di�erential of F at 0 2W

2

1;1

[0; T ℄: It is

a quadrati form whose domain is the kernel of the �rst variation. Choosing a smooth fun-

tion � : M �! R; suh that d�j

q

1
=

^

 

T

; we onsider the funtion �(u(�)) = �(F (u(�))):

Sine

^

 

T

annihilates ImF

0

j

0

; it follows that 0 is a ritial point for this funtion.

Let us ompute the quadrati term of the Taylor expansion for �(u(�)) at 0: Using the

Volterra expansion ( 2.2) for the hronolologial and ordinary exponent in (4.2), we derive

�

00

j

0

(u(�)) = ((

R

T

0

R

�

0

Y

�

_w(�)d� Æ Y

�

_w(�)d� +

+

1

2

fv(T ) Æ fv(T ) +

R

T

0

Y

�

_w(�)d� Æ fv(T ))�)(q

1

): (4.6)

When arrying out the omputation we took into aount the relations

([f; Y

�

℄ � �)(q

1

) =

^

 

T

[f; Y

�

℄(q

1

) =

^

 

T

_

Y

�

(q

1

) � 0: (4.7)

If we restrit the quadrati form (4.6) to the kernel of F

0

j

(T;û(�))

; we an subtrat from

(4.6) the vanishing value of

1

2

((fv(T ) +

Z

T

0

Y

�

_w(�)d�) Æ (fv(T ) +

Z

T

0

Y

�

_w(�)d�)�)(q

1

);

and, arranging the terms and taking (4.7) into aount, transform (4.6) into

1

2

((

Z

T

0

[

Z

�

0

Y

�

_w(�)d�; Y

�

_w(�)℄d� Æ �)(q

1

):
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The last expression does not depend on the hoie of � but only on

^

 

T

= d�j

q

1 and,

therefore, we an write it as

F

00

j

0

(u(�)) =

^

 

T

Z

T

0

[

Z

t

0

Y

�

_w(�)d�; Y

t

_w(t)℄(q

1

)dt; (4.8)

where u(�) = (v(�); w(�)) satis�es the equality

f(q

1

)v(T ) + g(q

1

)w(T )�

Z

T

0

_

Y

�

(q

1

)w(�)d� = 0: (4.9)

To get rid of the derivatives of w(�); we twie integrate (4.8) by parts transforming it into

a quadrati form in w(�):

F

00

j

0

(u(�)) =

Z

T

0

^

 

T

[

_

Y

t

; Y

t

℄(q

1

)w

2

(t)dt+

Z

T

0

^

 

T

[gw(T ) +

Z

t

0

_

Y

�

w(�)d�;

_

Y

t

w(t)℄(q

1

)dt: (4.10)

De�nition 4.2 The quadrati form (4.10)-(4.9) is alled the seond variation along the

abnormal geodesi (û(�); q̂(�);

^

 (�); T ): 2

Note that the quadrati form

^

 

T

[

_

Y

t

; Y

t

℄(q

1

)w

2

; whih appears in relation (4.10), oin-

ides with the form 

t

w

2

appearing in the Generalized Legendre Conditions (3.11)-(3.12).

Reall that we assumed the Strong Generalized Legendre Condition to be ful�lled, i.e.,



t

� � > 0;8t 2 [0; T ℄:

Next we introdue (as in [6℄) a sympleti representation of the seond variation (4:10)�

(4:9) along the abnormal geodesi. Let us set

W = spanff(q

1

) [ g(q

1

) [ f

_

Y

�

(q

1

)j� 2 [0; T ℄g � T

q

1
Mg: (4.11)

Obviously, W oinides with the image ImF

0

j

0

of the �rst variation (4.4) and

^

 

T

annihi-

lates W by virtue of (4.5).

Let us take the spae E

W

of the vetor �elds, whose values at q

1

lie in W; and onsider

the skew-symmetri bilinear form on E

W

:

^

 

T

� [X;X

0

℄(q

1

); 8X;X

0

2 E

W

: (4.12)

This form has a kernel of �nite odimension in E

W

; it is de�ned by the relations

X(q

1

) = 0;

^

 

T

� (�X=��)(q

1

) = 0;8� 2W:

Taking the quotient of E

W

with respet to this kernel, we obtain a (indued from (4.12))

nondegenerate skew-symmetri bilinear form �(�; �) on the �nite-dimensional quotient spae

�; whih de�nes the sympleti struture on �: A diret alulation gives dim� =

2dimW = 2(n � k): We denote by X the image of the X 2 E

W

under the anonial

projetion E

W

�! �:

Choosing loal oordinates (x

1

; : : : x

n

) : O �! R

n

in some neghborhood O of q

1

in M

suh that (1) x

i

(q

1

) = 0; (i = 1; : : : n); (2) the subspae W is de�ned by the equalities
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x

1

= � � � = x

k

= 0 and (3)

^

 

T

= ( 

1

; : : : ;  

k

; 0; : : : 0); we an represent the anonial

projetion X 7! X as

X =

P

n

i=1

X

i

(x)�=�x

i

7! X =

(X

k+1

(0); : : : X

n

(0); �(

P

k

i=1

 

i

X

i

)=�x

k+1

j

0

; : : : �(

P

k

i=1

 

i

X

i

)=�x

n

j

0

): (4.13)

The sympleti form �(X;Y ) an now be represented as

�(X;Y ) =

n

X

j=k+1

(X

j

(0)�(

k

X

i=1

 

i

Y

i

)=�x

j

j

0

� Y

j

(0)�(

k

X

i=1

 

i

X

i

)=�x

j

j

0

):

Let us denote by � the image under the anonial projetion of the spae of the vetor

�elds whih vanish at q

1

: Sine the Lie braket for two vetor �elds vanishing at q

1

also

vanishes at q

1

, � is a Lagrangian subspae (see Setion 2).

Using the notation introdued above we an represent the seond variation (4.10)-(4.9)

as the quadrati form

2F

00

j

0

(u(�)) =

Z

T

0



�

w

2

(�)d� +

Z

T

0

�(gw(T ) +

Z

t

0

_

Y

�

w(�)d�;

_

Y

t

w(t))dt (4.14)

with the domain

fu(�) = (v(�); w(�))jfv(T ) + gw(T )�

Z

T

0

_

Y

�

w(�)d� 2 �g: (4.15)

Let us extend the domain of the seond variation by onsidering not only the absolutely

ontinuous but also arbitrary w(�) 2 L

2

[0; T ℄ suh that

Z

T

0

_

Y

�

w(�)d� 2 � + spanff; gg; (4.16)

or, equivalently,

fv

T

+ gw

T

�

Z

T

0

_

Y

�

w(�)d� 2 �;

where v

T

; w

T

are uniquely de�ned linear ontinuous (by L

1

-norm) funtionals in w(�) :

v

T

= �(w(�)); w

T

= �(w(�)): The quadrati form (4.14) beomes

2F

00

j

0

(u(�)) =

Z

T

0



�

w

2

(�)d� +

Z

T

0

�(gw

T

+

Z

t

0

_

Y

�

w(�)d�;

_

Y

t

w(t))dt (4.17)

with w

T

= �(w(�)): Relation (4.16) an be represented as a system of relations:

Z

T

0

�(�;

_

Y

�

)w(�)d� = 0; 8� 2 � \ ff; gg

[

: (4.18)

Sine �(g; f) = �(Y

t

; f) � 0, i.e., all the vetors that appear in (4.17)-(4.15) are

skew-orthogonal to f; we an make a redution taking, instead of the sympleti spae

�, the quotient of its subspae f

[

by f ; we denote it by �

f

. From now on we onsider

13



�

f

= � \ f

[

+Rf instead of � and preserve the same notations for the vetors g and

_

Y

t

treated further modulo Rf . Relation (4.18) beomes

Z

T

0

�(�;

_

Y

�

)w(�)d� = 0; 8� 2 �

f

\ g

[

: (4.19)

Reall that the Legendre-Jaobi neessary/suÆient minimality onditions for normal

extremals in the Calulus of Variations amount to the nonnegativeness/positive de�nite-

ness of the seond variation. The positive de�niteness is also essential for the minimality

of abnormal geodesis.

Let us start with an observation that the Strong Generalized Legendre Condition (3.12)

provides positive de�niteness of the seond variation for suÆiently small T > 0: Indeed,

sine jw

T

j = O(kw(�)k

L

1

) = O(

p

Tkwk

L

2

); the term

Z

T

0

�(gw

T

+

Z

t

0

_

Y

�

w(�)d�;

_

Y

t

w(t))dt

of (4.17) admits the upper estimate (

R

T

0

jw(t)jdt)

2

� T

R

T

0

jw(t)j

2

dt: Sine 

t

� � > 0 on

[0; T ℄ it follows that

2F

00

j

0

(u(�)) � (�� T )

Z

T

0

jw(t)j

2

dt (4.20)

for some onstant � > 0 and therefore is positive de�nite for small T > 0:

Following the Jaobi approah, we introdue the notion of onjugate points for abnormal

geodesis.

De�nition 4.3 The onjugate points of an abnormal geodesi are the time instants T for

whih the (depending on T ) quadrati form (4.17) with the domain determined by (4.15)

has a nontrivial kernel; the dimension of this kernel is the multipliity of the onjugate

point. 2

It follows from the aforesaid that under the Strong Generalized Legendre Condition

(3.12) the onjugate points of abnormal geodesi are isolated from 0 2 [0; T ℄:

In order to derive a ondition for onjugate points, let us �rst note that the kernel of

the quadrati form onsists of all (v

0

(�); w

0

(�)) suh that w

0

(�) satisfy (4.19) and

Z

T

0

(

t

w

0

(t) + �(

Z

t

0

gw

0

T

+

_

Y

�

w

0

(�)d�;

_

Y

t

))w(t)dt = 0

for any w(�) satisfying (4.19). This means that



t

w

0

(t) + �(

Z

t

0

gw

0

T

+

_

Y

�

w

0

(�)d�;

_

Y

t

) = �(��;

_

Y

�

) for some � 2 �

f

\ g

[

: (4.21)

If we set x(t) =

R

t

0

_

Y

�

w

0

(�)d� +gw

0

T

+�; then the integral equation (4.21) is equivalent

to the equation Jaobi di�erential equation

_x = 

�1

t

�(

_

Y

t

; x)

_

Y

t

; x(0) 2 �

f;g

; (4.22)

where �

f;g

= �

f

\ g

[

+ spanfgg: Condition (4.15) turns into the inlusion

x(T ) 2 �

f

: (4.23)

The boundary value problem (4.22)-(4.23) has a nontrivial solution if and only if the seond

variation is degenerate. Therefore, De�nition 4.3 is equivalent to the following de�nition.

14



De�nition 4.4 The time momemt T > 0 is a onjugate point for an abnormal geodesi if

there exists a nontrivial solution of the boundary value problem (4.22)-(4.23) on [0; T ℄: 2

The evolution of the seond variation with the growth of T was studied in [10℄ (see

also [17℄). It was shown that, provided the Strong Generalized Legendre Condition (3.12)

was full�lled, the minimal eigenvalue of the self-adjoint operator, whih orresponded to

the quadrati form (4.17)-(4.16), was a ontinuous noninreasing funtion of T: Sine the

quadrati form is positive de�nite for suÆiently small T > 0; the onjugate points are

isolated from 0: If a onjugate point appears, then the seond variation annot again

beome positive de�nite with a further growth of T . This means that the seond variation

possesses a lower estimate of the kind of(4.20) on [0; T ℄ if and only if there are no onjugate

points on [0; T ℄.

In Se.6 we shall derive, essentially following [6℄, another, redued, representation of

the Jaobi equation (4.22) for the abnormal extremals of the 2-dimensional distributions

whih satisfy some additional regularity onditions.

Now we are ready to formulate the main results of the paper.

5 Main Results

In the Setion 3 we have redued the problem of �nding a minimal admissible path for the

distribution D to the time optimal ontrol problem for the 2-input aÆne ontrol system

(3.13) with the inputs (v; w) subjeted to the onstraint: (1 + _v)

2

+ _w

2

� 1: Note that

the referene ontrol û = (v; w) � 0; whih we investigate, is an extremal ontrol for the

aÆne system (3.13); its values lie on the boundary of the onstraints.

The authors established in the[6℄ rigidity onditions for extremals of aÆne ontrol

systems with unonstrained ontrols or with the referene ontrol lying in the relative

interior of the onstraints. Reall that rigidity means that û(�) is isolated by L

1

-metri (up

to a reparametrization) in the set of ontrols whih steer the aÆne system from the given

initial point to the given end-point. It was already mentioned that when dimLieff; gg =

dimM at every point of q̂(�); then, by virtue of Rashevsky-Chow Theorem, û(�) is never

isolated by the L

1

-metri (strongly isolated). It turns out that for aÆne systems with

onstrained ontrols suh an isolation may our. We all it a strong onstrained rigidity.

The following theorem provides suÆient ondition for the strong onstrained rigidity.

Theorem 1 (Strong Constrained Rigidity for AÆne Control Systems) Let an abnor-

mal geodesi (q̂(t);

^

 (t)) of a 2-dimensional distribution D = spanff; gg satisfy the Strong

Generalized Legendre Condition (3.12) and q̂(t) be the trajetory of the vetor �eld f start-

ing at q

0

. Suppose that the set U � R

2

is onvex and bounded and

(0; 0) 62 intU; intU \ (R� f0g) 6= ;:

If there are no onjugate points of the abnormal geodesi on [0; t℄; then, for some " > 0,

we have

q

0

Æ

�!

exp

Z

t

0

f(1 + _v(�)) + g _w(�)d� 6= q̂(t) (5.1)

provided that ( _v(�); _w(�)) 2 U; for � 2 [0; t℄ and

0 <

Z

t

0

j( _v(�); _w(�))jd� < "; (5.2)
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where j( _v; _w)j = ( _v

2

+ _w

2

)

1=2

: 2

Remark. Conditions (5.1)-(5.2) mean that for suÆiently small " > 0 there is no

admissible ontrol from the "-neighborhood of the origin in L

1

whih steers in time t the

aÆne system _q = f(q)(1+ _v(�))+g(q) _w(�) from q

0

to q̂(t), i.e., the trajetory q̂(�) exhibits

strong onstrained rigidity. 2

We shall prove of the theorem in the next setion and shall now derive an important

orollary.

Corollary 2 Suppose that the abnormal geodesi (q̂(t);

^

 (t)); where q̂(t) = q

0

Æe

tf

; satis�es

the Strong Generalized Legendre Condition (3.12). Then for the arbitrary norm k � k in

R

2

there exists

�

t > 0 (depending on the norm) suh that 8t 2 [0;

�

t℄; 8s > 0 the relations

q

0

Æ

�!

exp

Z

s

0

f _v

?

(�) + g _w(�)d� = q̂(t); (5.3)

Z

s

0

k( _v

?

(�); _w(�)kd� � k(1; 0)kt (5.4)

an only hold if _v

?

(�) � 1; _w(�) � 0; on [0; s℄: 2

Proof. Aording to the aforesaid there are no onjugate points on [0;

�

t℄ for suÆiently

small

�

t > 0. Without loss of generality, we an assume that k(1; 0)k = 1: We an also

resale the time variable in the hronologial exponential of (5.3) and in the integral of

(5.4) in suh a way that k( _v

?

(t); _w(t)k � 1; there by transforming inequality (5.4) into

s � t for the resaled s:

Let us onsider the onvex bounded set U = fu 2 R

2

jk(1; 0) + uk � 1g and assume

that juj � kuk;8u 2 R

2

. If we extend ( _v

?

(t); _w(t)) by means of zero from [0; s℄ onto [0; t℄

and set _v(�) = _v

?

(�)� 1, then

Z

t

0

j( _v(�); _w(�))jd� =

Z

t

0

j( _v

?

(�); _w(�)) � (1; 0)jd� �

�

Z

s

0

j( _v

?

(�); _w(�))jd� + t � s+ t � (+ 1)t:

Choosing a positive

�

t <

"

+1

; we satisfy the upper inequality of (5.2) and use (5.1) to prove

the Corollary. 2

The previous results do not depend on any Riemannian struture onM but only depend

on the distribution D: Suppose now that M possesses a Riemannian struture. The

following two theorems are diret orollaries of the results that we formulated above.

Theorem 3 (The SuÆient Condition of Strong Minimality for Abnormal Geodesis)

If an abnormal sub-Riemannian geodesi satis�es the Strong Generalized Legendre Con-

dition (3.12), there are no onjugate points in its domain [0; T ℄; and the orresponding

geodesi path onneting the points q

0

and q

1

is nonsel�nterseting, then it is strongly

(=W

1;1

-loally) minimal. 2

Proof. We an assume that the abnormal geodesi path q̂(�); 0 � � � T; is a

trajetory of the vetor �eld f and f; g form an orthonormal basis of the distribution D
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in its neighborhood. Then the length of the geodesi path is T: Considering the onvex

bounded set U = fu 2 R

2

j ju + (1; 0)j � 1g; we an apply the Theorem 1 and infer

that there is not a single ontrol u(�) = (u

1

(�); u

2

(�)) whih is "-lose by L

1

-metri to

û(�) � (1; 0) and di�erent from û(�) with the values ju(�)j � 1 and whih an steer the

ontrol system _q = fu

1

+ gu

2

from q

0

to q

1

in time � T . Now the strong (W

1;1

-loal)

minimality follows from the Redution Lemma 3.1. 2

Remark. Note that we derive the strong minimality from the strong onstrained

rigidity and sine the suÆient ondition for the Strong Constrained Rigidity established

in Theorem 1 is valid for the arbitrary onvex bounded set U; the abnormal geodesi

path satisfying the onditions of Theorem 3 is W

1;1

-loally minimal for any hoie of the

Riemannian metri. 2

From Corollary 2 we an �nd the suÆient ondition for the global minimality of the

abnormal geodesi ars established in [20, Theorem 6℄.

Corollary 4 (The SuÆient Condition for The Global Minimality of Abnormal Geo-

desi Subars). If the abnormal sub-Riemannian geodesi (q̂(�);

^

 (�)) satis�es the Strong

Generalized Legendre Condition (3.12) and the orresponding geodesi path is nonsel�n-

terseting, then there exists

�

t > 0 suh that 8t 2 (0;

�

t) the restrition q̂(�)j

[0;t℄

is globally

minimal among the admissible paths onneting the point q

0

with the point q̂(t): 2

Proof. We an again assume that q̂(�) is the trajetory of the vetor �eld f or, all the

same, of the ontrol system _q = f(q) _v

?

+ g(q) _w driven by the ontrol û = ( _v; _w) � (1; 0):

Taking kuk = juj; j(1; 0)j = 1; we derive from Corollary 2 the existene of

�

t suh that for

any t 2 (0;

�

t℄ the system annot be steered in time � t from q

0

to q̂(t) by any other ontrol

than û(�) with the values in the unit ball juj � 1: This means that the restrition q̂(�)j

[0;t℄

is a stritly minimal path onneting q

0

with q̂(t): 2

Remark. In ontrast to the previous remark, here the interval [0;

�

t℄ depends on the

hoie ofthe Riemannian struture. 2

The following theorem is a orollary of Theorem 1 and of the rigidity onditions for

abnormal geodesi paths derived in [6℄ . Here rigidity is understood in aordane with

De�nition 3.5.

Theorem 5 (Minimality and Rigidity) Suppose that the Strong Generalized Legendre

Condition holds for the abnormal geodesi path q̂(t); t 2 [0; T ℄; and its restritions q̂(�)j

[t

1

;t

2

℄

on any nontrivial interval [t

1

; t

2

℄ have orank 1: Then:

(1) if q̂(�)j

[0;T ℄

is rigid then 8t 2 [0; T ) the restrition q̂(�)j

[0;t℄

is a strit W

1;1

-loal

length-minimizer in the set of the admissible paths onneting q

0

with q̂(t);

(2) if q̂(�)j

[0;T ℄

is not a normal geodesi path and is a W

1;1

-loal length-minimizer

in the set of the admissible paths onneting q

0

with q̂(T ); then q̂(�)j

[0;t℄

is rigid for any

t 2 (0; T ): 2

Proof. 1) If the orank 1 geodesi path q̂(�)j

[0;T ℄

is rigid, then, as it was established in

[6, Theorem 4.1℄, the seond variation along the geodesi must be nonnegative. Sine a

restrition of the abnormal geodesi path q̂(�) on any nontrivial interval [t

1

; t

2

℄ has orank

1; i.e., the so-alled strong regularity ondition (see [17℄) holds, then (see [10, 17℄) the

absene of onjugate points on (0; T ) is neessary for the nonnegativeness and we an
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apply Theorem 3 to establish the strit W

1;1

-loal minimality of the restrition q̂(�)j

[0;t℄

on

any t 2 (0; T ):

(2) If a orank 1 abnormal geodesi path q̂(�)j

[0;T ℄

is a W

1;1

-loally minimal, then,

as it was established in [6, Theorem 4.2℄ the seond variation along the geodesi must

be nonnegative. Together with the strong regularity ondition, it implies the absene

of onjugate points on (0; T ) and positive de�niteness of the seond variation along any

restrition q̂(�)j

[0;t℄

with t 2 (0; T ): Aording to [6, Theorem 4.8℄, all these restritions are

rigid. 2

6 A Redued Form of the Jaobi Equation for Regular Dis-

tributions. Examples

In this setion we introdue (essentially following [6℄) another form of the Jaobi equa-

tion for the 2-dimensional distributions whih satisfy some regularity ondition and also

provide some examples of strongly minimal abnormal geodesis for 2-dimensional smooth

distributions on 3- and 4-dimensional manifolds (ompare with [15, 7, 20℄).

Let us onsider a 2-dimensional distribution D on the (n + 2)�dimensional manifold

M ; let the vetor �elds f; g 2 VetM span D. Suppose that:

(i) the vetor �elds

f; g; [f; g℄; : : : (adf)

n�1

g

are linearly independent at every point of the domain that we onsider;

(ii) (adf)

n

g an be presented as a linear ombination with C

1

-oeÆients of these

n+ 1 vetor �elds:

(adf)

n

g = �f +

n�1

X

i=0

�

i

(adf)

i

g (�; �

i

2 C

1

(M)): (6.1)

Then the trajetories of the vetor �eld f are orank 1 abnormal geodesis for the distri-

bution D.

Let us onsider the distribution (free C

1

(M)-module of vetor �elds)

V = spanff; g; [f; g℄; : : : (adf)

n�1

gg

and assume that:

(iii) in the domain being onsidered we have

[[f; g℄g℄℄(q) 62 V (q):

Let  be a 1-form de�ned in the domain by the onditions

 ? V;  [[f; g℄g℄ = 1:

We shall derive the Jaobi equation for the abnormal geodesi, whih orresponds to

the vetor �eld f . We denote by q̂(�) = q

0

Æ e

tf

the trajetory of f ; starting at q

0

= q̂(0)

q̂(T ) = q

1

: Following the approah Setion 4 we shall onsider the skew-symmetri bilinear

form (v

1

; v

2

) 7!  � [v

1

; v

2

℄(q

1

); v

1

; v

2

2 V: Taking the quotient of V with respet to the

kernel of this form, we obtain a 2(n+ 1)-dimensional sympleti spae �

0

: We redue the
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sympleti spae by taking the (2n + 1)-dimensional skew-orthogonal omplement of the

anonial projetion f of the vetor �eld f onto �

0

and then, by taking its quotient with

respet to spanffg. The result is denoted by �

f

; it is a 2n-dimensional sympleti spae

with a skew-salar produt denoted by �. We again denote by Y the image of the vetor

�eld Y 2 V under the anonial projetion V ! �

f

.

We are going to introdue speial oordinates in �

f

and derive one more representation

of the Jaobi equation (4.22).

Let us set

Y

t

= e

(t�T )adf

g; Y

i

t

= e

(t�T )adf

(adf)

i

g = �

i

Y

t

=�t

i

;



i

t

=

^

 � [Y

1

t

; Y

i

t

℄(q

1

) =

^

 (t)[[f; g℄; (adf)

i

g℄(q̂(t))

for i � 0:

Returning to relation (6.1), we set �

i

t

= �

i

(q̂(t)) (i = 0; : : : n � 1); �

t

= �(q̂(t)); and

derive

Y

n

t

(q

1

) = �

t

f(q

1

) +

n�1

X

i=0

�

i

t

Y

i

t

(q

1

)

from (6.1)

Lemma 6.1

Y

n

t

=

n�1

X

i=0

�

i

t

Y

i

t

: 2 (6.2)

Proof. Chosing oordinates in �

f

as in (4.13) (with k = 1) we only need to establish

that

�( � Y

n

t

)=�xj

q

1
=

n�1

X

i=0

�

i

t

�( � Y

i

t

)=�xj

q

1
+ �

t

�( � f)=�xj

q

1

for the loal oordinates x = (x

1

; : : : x

n

) in the neighborhood of q

1

2M . But this follows

diretly from (6.1) and the identities ( Y

i

t

)j

q

1
� 0; i = 0; : : : n� 1: 2

Let � be the image under the anonial projetion of the vetor �elds Y , whih satisfy

the ondition  � [f; Y ℄(q

1

) = 0 and vanish at q

1

; � is a Lagrangian plane in �

f

: It

follows from (6.1)-(6.2) that �

f

= � � spanfY

t

; t 2 Rg and for any � 2 R the vetors

Y

�

; Y

1

�

: : : Y

n�1

�

form a basis of the subspae spanfY

t

; t 2 Rg = �: It should be emphasize,

that the subspae � is not Lagrangian and � de�nes a nondegenerate oupling between

� and �.

Representing x 2 �

f

as x = z + �; where z 2 �; � 2 �; we an write the Jaobi

equation (see (4.22)) in these oordinates as



0

t

( _z +

_

�) = �(Y

1

t

; z + �)Y

1

t

or



0

t

_z = �(Y

1

t

; z)Y

1

t

+ �(Y

1

t

; �)Y

1

t

;

_

� = 0: (6.3)

Obviously, one of the solutions of this equation is z

t

� Y

t

; �

t

= 0:

The point

�

t is a onjugate point of multipliity k > 0 for the abnormal geodesi q̂(t) =

q

0

Æ e

tf

, if, for Eq. (6.3), the spae of solutions whih satisfy the boundary onditions

z

0

= 0; z

�

t

k Y

�

t

; �(g; �

0

) = 0; (6.4)
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is k-dimensional.

Let us set �

t

= �(Y

t

; �

0

) and present z

t

in the form z

t

=

n�1

X

i=0

z

i

t

Y

i

t

: Then the equation

(6.3) an be transformed into the following system



0

t

( _z

1

t

+ �

1

t

z

n�1

t

) =

n�1

X

j=2



j

t

z

j

t

+

_

�

t

; z

1

0

= 0;

_z

j

t

+ �

j

t

z

n�1

t

= �z

j�1

t

; z

j

0

= 0; j = 2; : : : n� 1; (6.5)

�

(n)

=

n�1

X

i=0

�

i

t

�

(i)

t

; �

0

= 0

(the equation for z

0

, whih does not appear neither in (6.4) nor in (6.5), is omitted)

The multipliity of the onjugate point is equal to the dimension of the spae of the

solutions of system (6.5) whih satisfy the onditions

z

i

�

t

= 0; i = 1; : : : n� 1: (6.6)

Summarizing the aforesaid, we an formulate the following theorem (ompare with [6,

Theorem 7.1℄).

Theorem 6.1 Suppose that onditions (i),(ii) and (iii) hold for the trajetory q̂(t) =

q

0

Æ e

tf

of the 2-dimensional distribution on an (n + 2)-dimensional manifold starting at

q

0

. Then:

(1) q̂(t); t 2 [0; T ℄; is orank 1 abnormal geodesi path of the distribution;

(2) it has a �nite number (whih an be zero) of onjugate points

�

t

i

and the multipliity

of the onjugate point

�

t is equal to the dimension of the spae of solutions of system (6.5)

whih satisfy the boundary onditions (6.6);

(3) for the abnormal geodesi path to be strongly minimal, it is neessary (orr. suÆ-

ient) that (0; T ) (orr. (0; T ℄) does not ontain onjugate points. 2

Proof. Statement (1) was established at the beginning of the setion, and the �niteness

of the set of onjugate points follows from the strong regularity (see [17℄) of the abnormal

geodesi path q̂(�). Finally, for a strongly regular abnormal extremal (see the proof of

Theorem 5) the absene of onjugate points on [0; T ) is neessary for the rigidity of every

restrition of the orresponding geodesi path on [0; t℄ � [0; T ℄ and, therefore, by virtue of

Theorem 5, is neessary for strong minimality. The suÆieny of the absene of onjugate

points on [0; T ℄ for the strong minimality follows from Theorem 3. 2

Example 6.1

Let us onsider in greater detail the 2-dimensional distributions on 4-dimensional man-

ifolds. Here the vetor �eld f; whih satis�es the ondition (6.1), exists and is unique

for any 2-dimensional distribution D of maximal growth; suh distributions de�ne the so-

alled Engel struture on 4-dimensional manifolds (readers an �nd in [8℄ a detailed survey

of various problems onneted with these strutures). For n = 2 system (6.5) takes the

form

_z

1

= ��

1

t

z

1

+

_

�



0

t

; z

1

0

= 0;
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::

�= �

0

t

� + �

1

t

_

�; �

0

= 0;

_

�

0

= 1: (6.7)

In addition,

_

0

t

= d( [Y

1

t

; Y

t

℄)=dt =  [Y

2

t

; Y

t

℄ = �

1

t



0

t

; 

0

0

= 1:

Hene 

0

t

= e

R

t

0

�

1

�

d�

; and therefore

z

1

t

=

Z

t

0

1



0

�

e

�

R

t

�

�

1

�

d�

_

�

�

d� = �

t

e

�

R

t

0

�

1

�

d�

:

We an see that

�

t is a onjugate point if and only if �

�

t

= 0: The multipliity of any

onjugate point is 1.

Therefore, for the abnormal geodesi path to be strongly minimal it is neessary (orr.

suÆient) that there are no zeros of the solution �(�) of (6.7) on (0; T ) (orr. on (0; T ℄): 2

Example 6.2.

Suppose now that D is a 2-dimensional distribution on a 3-dimensional Riemannian

manifold M . Let us de�ne

N = fq 2M jD

q

= D

2

q

6= D

3

q

g:

Then N is either empty or a smooth 2-dimensional submanifold of M:

In order to prove it, let us take any point of N and hoose a basis ff; gg of D in the

neighborhoodW of this point. We assume that D

2

q

6= D

3

q

inW and hoose loal oordinates

q

i

; i = 1; 2; 3; inW: ThenN\W is determined by the equation �(q) = (f^g^[f; g℄)(q) = 0

and we only have to establish that 0 is a regular value of �:

Sine D

2

q

6= D

3

q

; it follows that there exists a vetor �eld X subjeted to D suh that

[X;D

2

℄

q

6� D

2

q

; without loss of generality we an assume that X = f and, hanging the

oordinates inW; transform f into a onstant vetor �eld. Then, obviously, (f Æ�)(q) 6= 0

in W; i.e., every q 2 W is a regular point of �: At the same time we have proved that

f(q) is transversal to N at every point q 2 N and, hene, D

q

j

N

are transversal to T

q

N:

Atually D has the well-known Martinet anonial form in the neighborhood of q 2 N:

The intersetions D

q

\T

q

N de�ne the 1-dimensional distribution on N and the equality

(f ^ g ^ [f; g℄)(q) = 0 implies that the integral urves of this distribution are orank 1

abnormal geodesis in M: Note that they do not satisfy ondition (i) of regularity for

2-distributions formulated at the beginning of this setion.

To establish their strong minimality, we shall apply Theorem 3 and the Jaobi equation

(4.22). In this ase the sympleti spae �

f

is 2-dimensional and, therefore, any solution of

(4.22) that satis�es the boundary ondition (4.23) must vanish identially. Hene there are

no onjugate points and every subar of these abnormal geodesis is a strong minimizer.

2

7 Proof of Theorem 1

The proof is based on the following result whih is a modi�ation of [6, Theorem 9.5℄.

Theorem 7.1 (Isolated Points at Critial Levels of Smooth Mappings: A SuÆient

Condition) Let U be a losed onvex subset of the normed spae X; whih is densely

embedded into a separable Hilbert spae H : X ,! H: Suppose that the mapping F : X !
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R

m

is twie Frehet di�erentiable at x̂ 2 U and x̂ is a ritial point of F; i.e., �F

0

(x̂) = 0

for some � 2 R

m

�

n 0: We denote by K

x̂

U a one tangent to U at x̂: Assume that:

(1) kF (x̂+ x)� F (x̂)� F

0

(x̂)xk = o(1)kxk

H

; as kxk

X

! 0; (7.1)

(2) k�F

0

(x)zk = O(1)kxk

H

; as kxk

X

! 0; for an arbitrary z 2 X; (7.2)

(3) the quadrati form �F

00

(x̂)(�; �) admits a ontinuous extension from kerF

0

(x̂) to the

ompletion of kerF

0

(x̂) in H and is H-positive de�nite on kerF

0

(x̂) \ K

x̂

U ; i.e.,

�F

00

(x̂)(�; �) � 2k�k

2

H

; 8� 2 (kerF

0

(x̂) \ K

x̂

U); (7.3)

4) k�(F (x̂+ �)� F (x̂))�

1

2

�F

00

(x̂)(�; �))k = o(1)k�k

2

H

; as k�k

X

! 0; (7.4)

for some  > 0: Then x̂ is an isolated point in X of the level set F

�1

(F (x̂)) \ U : 2

Remark. The one K

x̂

U tangent to the onvex set U at x̂ is a oni hull of U � x̂;

obviously, U � x̂+K

x̂

U : 2

Proof of Theorem 7.1. Without loss of generality we any assume that F (x̂) = 0

and x̂ is the origin of X: We are going to establish that kF (x)k � �kxk

2

H

for some � > 0

and all x from some small neighborhood of the origin of X.

Let us take for Z a �nite-dimensional omplement of kerF

0

(0) in X; F

0

(0) isomorphi-

ally maps Z onto the image F

0

(0)X and

kF

0

(0)zk � kzk 8z 2 Z for some  > 0: (7.5)

We de�ning N = fy 2 R

m

j� � y = 0g and hoose a vetor � 2 R

m

suh that � � � = 1:

Then R

m

= R� +N and ImF

0

(0) � N:

If x = z + �, then, using the Hadamard lemma, we an present F (x) as

F (x) = �(�) + F

0

(0)z +A(x)z:

Here A(x)z =

R

1

0

(F

0

(� + tz)� F

0

(0))zdt. By virtue of (7.1),

k�(�) +A(x)zk = o(1)(k�k

H

+ kzk); askxk

X

! 0;

and by virtue of (7.2),

j�A(x)zj = O(1)kxk

H

kzk; 8z 2 Z; as kxk

X

! 0:

Let us onsider the projetions of F (x) onto the vetor � and the subspae N ; they are

� � (�(�) +A(x)z)� and R(x) = F

0

(0)z +�

N

(�) +A

N

(x)z orrespondingly.

Fixing arbitrarily small � > 0 we may hoose a small neighborhood V of X suh that

for x 2 V and a ertain positive k we have

k�

N

(�) +A

N

(x)zk � �kxk

H

; j� � (�(�)�

1

2

F

00

(0)(�; �) +A(x)z)j � kkxk

H

kzk+ �k�k

2

H

:

It follows from (7.5) that

kR(x)k � max(0; ( � �)kzk � �k�k

H

); 8x 2 V;
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j�(�(�) +A(x)z)j � max(0; ( � �)k�k

2

H

� kkxk

H

kzk):

Settin  = � �;  =  � �; we obtain

kF (x)k � a(max(0; kzk � �k�k

H

)) + max(0; k�k

2

H

� kkxk

H

kzk)

for a ertain a > 0: Without loss of generality, we an assume that k(1+4�=)4�= � =2:

Now, if kzk � 4�k�k

H

; then

kF (x)k � a(



2

kzk + �k�k

H

) � a�(�; )kxk

2

H

with �(�; ) > 0:

Otherwise, if kzk � 4�k�k

H

; then

kF (x)k � a(k�k

2

H

� kkxk

H

kzk) � a(k�k

2

H

� k�k

2

H

k(1 + 4�=)4�=) �

� (a=2)k�k

2

H

� a�(; ; �)kxk

2

H

with �(; ; �) > 0: 2

Theorem 1 follows if we apply Theorem 7.1 to the end-point mapping

F (v(�); w(�)) =

= q

0

Æ

�!

exp

Z

T

0

f(1 + _v(�)) + g _w(�)d� = q

1

Æ

�!

exp

Z

T

0

f _v(�) + Y

�

_w(�)d�: (7.6)

Sine our onsideration is loal, we �x loal oordinates in the neighborhood of q

1

2 M

and treat the input/state mapping F as a mapping into R

n

:

We denote by U the set of Lipshitzian vetor funtions u(�) = (v(�); w(�)) suh that

u(0) = (v(0); w(0)) = 0; and ( _v(�); _w(�)) belongs to the set U from the statement of

Theorem 1. Sine U is onvex, bounded and losed,it follows that U is a onvex bounded

losed subset of both W

2

1;1

[0; T ℄ and W

2

1;1

[0; T ℄; we hoose the normed spae X whih

is W

2

1;1

[0; T ℄ equipped with the norm of W

2

1;1

[0; T ℄: Introduing in X the salar produt

hu

1

(t); u

2

(t)i = u

1

(T )u

2

(T ) +

R

T

0

u

1

(�)u

2

(�)d� and taking the ompletion of W

2

1;1

[0; T ℄

with respet to the orresponding norm denoted by k � k

2

; we obtain a Hilbert spae H;

whih an be identi�ed with the Sobolev spae H

2

�1

[0; T ℄: Obviously isolation of û(�) in

F

�1

(q

1

)\U with respet to the metri of W

2

1;1

[0; T ℄ is equivalent to the strong onstrained

rigidity, and, therefore, all that we need is to hek whether the input/state mapping F

satis�es the assumptions of Theorem 7.1.

First note that the input/state mapping F is smooth in W

1;1

[0; T ℄ (see [3, 4℄), and

the abnormal extremal ontrol û � 0; is, by de�nition, a ritial point of F ; � =

^

 

T

annihilates ImF

0

(0): Then �F

00

(0) oinides with the seond variation (4.17)-(4.15) along

the abnormal extremal. Due to the absene of onjugate points on [0; T ℄ and the Strong

Generalized Legendre Condition (3.12) the seond variation (4.17) is positive de�nite and,

hene, the ondition (7.3) is ful�lled.

We have to verify estimates (7.1), (7.2) and (7.4) for the mapping (7.6). Sine U is

onvex, we an always transform the basis f; g of D into f; g+ af in suh a way that after

the orresponding transformation of R

2

the set U will lie either in the left or in the right

half-plane. Sine the two ases are similar we hoose the �rst one, i.e., from now on

( _v; _w) 2 U ) _v � 0:
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We also assume that ( _v; _w) 2 U ) j _vj � a and without loss of generality an take t = T in

the formulation of Theorem 1 sine we an redue the ase of arbitrary t � T to this one

by extending ( _v(�); _w(�)) by means of zero from [0; t℄ to [0; T ℄: Reall that Y

�

= e

(��T ) ad f

g

and q̂(T ) = q

0

Æ e

Tf

= q

1

:

Introduing the notation

�v(t) = v(t)� v

T

= v(t)�

Z

T

0

_v(t)dt; w

T

=

Z

T

0

_w(t)dt;

we apply suessively the two variants of the generalized variational formula (2.5) to the

hronologial exponential q

0

Æ

�!

exp

R

T

0

f(1 + _v(t)) + g _w(t)dt and obtain

q

0

Æ

�!

exp

Z

T

0

f(1 + _v(t))

| {z }

perturbation

+g _w(t)dt = q

0

Æ

�!

exp

Z

T

0

(1 + _v(t))e

w(t) ad g

fdt Æ e

w

T

g

=

= q

0

Æ

�!

exp

Z

T

0

(1 + _v(t))(e

w(t) ad g

f � f)

| {z }

perturbation

+(1 + _v(t))fdt Æ e

w

T

g

=

= q

0

Æ e

Tf

Æ e

v

T

f

Æ

�!

exp

Z

T

0

(1 + _v(t))(e

�v(t) ad f

e

(t�T ) ad f

e

w(t) ad g

f � f)dt Æ e

w

T

g

=

q

1

Æ e

v

T

f

Æ

�!

exp

Z

T

0

(1 + _v(t))(e

�v(t) ad f

e

w(t) adY

t

f � f)dt Æ e

w

T

g

= q

1

Æ e

v

T

f

Æ

Æ

�!

exp

Z

T

0

(1 + _v(t))(w(t)[Y

t

; f ℄ + (w

2

(t)=2)[Y

t

; [Y

t

; f ℄℄ + �v(t)w(t)[f; [Y

t

; f ℄℄)dt

Æe

w

T

g

+ o(1)(jv

T

j

2

+ kw(�)k

2

2

); as k( _v(�); _w(�))k

L

1

! 0

(reall that jv

T

j =

R

T

0

j _v(�)jd� , sine v(0) = 0; and _v(�) � 0): Choosing loal oordinates

in the neighborhood of q

1

2 M and using the Volterra expansions for the ordinary and

hronologial exponentials, we derive, from the last formula,

q

0

Æ

�!

exp

Z

T

0

f(1 + _v(t)) + g _w(t)dt� q

1

= (fv

T

+ gw

T

+

Z

T

0

[Y

t

; f ℄w(t)dt)(q

1

)

| {z }

1

+

+(fv

T

Æ

Z

T

0

[Y

t

; f ℄w(t)dt +

Z

T

0

[Y

t

; f ℄w(t)dt Æ gw

T

+

Z

T

0

[Y

t

; [Y

t

; f ℄℄

w

2

(t)

2

dt+

| {z }

2

+

1

2

(v

T

)

2

(f Æ f) + +

1

2

(w

T

)

2

(g Æ g)) +

Z

T

0

[f; [Y

t

; f ℄℄�v(t)w(t)dt+

| {z }

2

(7.7)

+

Z

T

0

[Y

t

; f ℄ _v(t)w(t)dt +

Z

T

0

Z

t

0

[Y

�

; f ℄w(�)d� Æ [Y

t

; f ℄w(t)dt)(q

1

)

| {z }

2

+

+

Z

T

0

[Y

t

; [Y

t

; f ℄℄(q

1

) _v(t)

w

2

(t)

2

dt

| {z }

3

+

Z

T

0

[f; [Y

t

; f ℄℄(q

1

) _v(t)�v(t)w(t)dt

| {z }

4

+

+o(1)(jv

T

j

2

+ kw(�)k

2

2

)
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(when establishing the estimate for the other term, we have used the estimate

8t 2 [0; T ℄ :

Z

t

0

j _v(�)w(�)jd� � k _vk

1=2

L

1

a

1=2

kwk

L

2

whih is valid when j _v(�)j � a on [0; T ℄). To establish estimate (7.1) for mapping (7.6),

we must only note that, if the terms marked by "1" in relation (7.7) vanish, then the

remainder is O((k _vk

1

2

L

1

+ kwk

2

)kwk

2

) as ku(�)k

L

1

! 0:

To �nd estimate (7.4) for mapping (7.6), let us �rst note that in the last relation the

underbraed terms marked by "1" orrespond to the �rst variation (�rst di�erential of F )

whereas those marked by "2" orrespond to the seond di�erential; all the other forms of

the seond order are the terms whih we have to estimate. The term marked by "4" is

annihilated by

^

 

T

= � and, hene, does not perturb estimate (7.4). The main obstale

is the "prinipal" third-order term marked by "3" , whih, in general, does not admit

estimate (7.4) (see [18℄); in this partiular ase we ahieve the result by using essentially

the sign de�niteness of _v(�):

Indeed, integrating the prinipal term by parts, we derive

Z

T

0

[Y

t

; [Y

t

; f ℄℄(q

1

)

w

2

(t)

2

_v(t)dt

| {z }

= [Y

T

; [Y

T

; f ℄℄(q

1

)v

T

w

2

T

2

�

�

Z

T

0

v(t)

w

2

(t)

2

d

dt

[Y

t

; [Y

t

; f ℄℄(q

1

)dt�

Z

T

0

[Y

t

; [Y

t

; f ℄℄(q

1

)v(t)w(t) _w(t)dt:

The �rst two terms on the right-hand side admit an estimate O(1)k _v(�)k

L

1

kw(�)k

2

2

; and

the last integral an be estimated from above as

j

Z

T

0

[Y

t

; [Y

t

; f ℄℄(q

1

)v(t)w(t) _w(t)j � sup

0�t�T

(k[Y

t

; [Y

t

; f ℄℄(q

1

)kjv(t)j)

Z

T

0

jw(t)jj _w(t)jdt:

Sine v(t) is a monotonially dereasing funtion and v(0) = 0; it follows that max

0�t�T

jv(t)j =

jv

T

j. Denoting b = sup

0�t�T

k[Y

t

; [Y

t

; f ℄℄(q

1

)k and applying the Cauhy-Shwartz inequal-

ity to the last integral, we �nd the upper estimate bjv

T

jkwk

2

k _wk

L

2

for the prinipal term,

whih is o(1)(jv

T

j

2

+kwk

2

2

) as k _wk

L

1

! 0: Therefore we ome to estimate (7.4) for mapping

(7.6).

To �nd estimate (7.2), we have to ompute the �rst di�erential of the input/state

mapping (7.6) at the point u

0

(�) = (v

0

(�); w

0

(�)): Substituting u

0

(�) + u(�) for u(�) in

relation (4.1), we obtain

F (u

0

(�) + u(�)) = q

1

Æ

�!

exp

Z

t

0

(f( _v

0

(�) + _v(�)) + Y

�

( _w

0

(�) + _w(�))d�:

Setting

X

0

t

= f _v

0

(t) + Y

�

_w

0

(t); P

0

t

=

�!

exp

Z

t

0

X

0

�

d�

and applying the generalized variational formula (2.5), we obtain

F (u

0

(�) + u(�)) = q

1

Æ P

0

T

Æ

�!

exp

Z

T

0

(X

v

t

_v(t) +X

w

t

_w(t))dt;
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where

X

v

t

= AdP

0

t

f; X

w

t

= AdP

0

t

Y

t

:

The �rst di�erential of F at u

0

(�) is given by the relation

F

0

j

u

0
= q

1

Æ P

0

T

Æ

Z

T

0

(X

v

t

_v(t) +X

w

t

_w(t))dt

and, in partiular,

F

0

j

0

= q

1

Æ

Z

T

00

(f _v(t) + Y

t

_w(t))dt:

We know that

^

 

T

F

0

j

0

= 0 and therefore

^

 

T

F

0

j

u

0
=

^

 

T

F

0

j

u

0
�

^

 

T

F

0

j

0

:

We obtain

(F

0

j

u

0
� F

0

j

0

)u(�) = q

1

Æ (P

0

T

Æ

Z

T

0

(X

v

t

_v(t) +X

w

t

_w(t))dt �

Z

T

0

(f _v(t) + Y

t

_w(t))dt) =

q

1

Æ (P

0

T

Æ

Z

T

0

((X

v

t

� f) _v(t) + (X

w

t

� Y

t

) _w(t))dt +(P

0

T

� I) Æ

Z

T

0

(f _v(t) + Y

t

_w(t))dt: (7.8)

To �nd (7.2) we �x ( _v(t); _w(t)) 2 U � L

1

:

Let us estimate (X

w

t

� Y

t

); (X

v

t

� f). By de�nition,

j(X

w

t

� Y

t

)(q)j = j(AdP

0

t

� I)Y

t

(q)j = j

Z

t

0

AdP

0

�

ad(f _v

0

(�) + Y

�

_w

0

(�))d�Y

t

(q)j =

= jAdP

0

t

Æ ad(fv

0

(t) + Y

t

w

0

(t))Y

t

(q)�

Z

t

0

(AdP

0

�

_

Y

�

w

0

(�) +

+AdP

0

�

Æ adX

0

�

(fv

0

(�) + Y

�

w

0

(�)))d�Y

t

(q)j � C(j(v

0

(t); w

0

(t))j + k(v

0

(�); w

0

(�))k

L

1

):

When deriving the last inequality, we have used the fat that for any k � 0 and a ompat

K � R

n

the di�eomorphisms P

0

t

and the vetor �elds X

0

t

and their derivatives in q of

order � k are bounded on [0; T ℄ �K by a onstant depending on k;K and independent

of u

0

(�) 2 U (see [3℄). Obviously, (X

v

t

� f) admits a similar estimate and, realling that

the values of _v(t); _w(t) are bounded by the onstant a; we infer that the �rst term on the

right-hand side of (7.8) admits the estimate

O(1)k(v

0

(�); w

0

(�))k

L

1

= O(1)k(v

0

(�); w

0

(�))k

2

: (7.9)

To estimate the seond term we ompute

jq

1

Æ P

0

T

� q

1

j =

Z

T

0

q

1

Æ P

0

t

Æ (f _v

0

(t) + Y

t

_w

0

(t))dt =

= q

1

Æ (P

0

T

Æ (fv

0

(T ) + Y

T

w

0

(T ))�

Z

T

0

(P

0

t

ÆX

0

t

Æ (fv

0

(t) + Y

t

w

0

(t)) + P

0

t

Æ

_

Y

t

w

0

(t))dt =

= O(1)(j(v

0

(T ); w

0

(T ))j+ k(v

0

(�); w

0

(�))k

L

2

) = O(1)k(v

0

(�); w

0

(�))k

2

and, using again the boundedness of _v(t); _w(t);8t we �nd estimate (7.9) for the seond

term of (7.8) and omplete the proof of Theorem 1. 2
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