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Abstra
t. Considering a smooth manifold M provided with a sub-Riemannian stru
ture,

i.e. with Riemannian metri
 and 
ompletely nonintegrable distribution, we set for two given

points q

0

; q

1

2M the problem of �nding a minimal path out of those tangent to the distribution

(admissible) and 
onne
ting these points. Extremals of this variational problem are 
alled sub-

Riemannian geodesi
s and we single out the abnormal ones whi
h 
orrespond to the vanishing

Lagrange multiplier for the length fun
tional. These abnormal geodesi
s are not related to the

Riemannian stru
ture but only to the distribution and, in fa
t, are singular points in the set

of admissible paths 
onne
ting q

0

and q

1

: Developing the Legendre-Ja
obi-Morse-type theory of

2nd variation for abnormal geodesi
s we investigate some of their spe
i�
 properties su
h as

rigidity - isolatedness in the spa
e of admissible paths 
onne
ting the two given points.

1 Introdu
tion

The paper deals with abnormal sub-Riemannian geodesi
s. Let us remind that a sub-Riemannian

stru
ture on a Riemannian manifold M is given by a 
ompletely non-integrable (or 
ompletely

non-holonomi
, or possessing full Lie rank) distribution D on M: A lo
ally Lips
hitzian path

q(�) 2 W

1

1

[0; T ℄) (W

1

1

[0; T ℄ denotes the spa
e of Lips
hitzian paths � ! q(�) on M) is 
alled

admissible if its tangents ly in D for almost all � 2 [0; T ℄: Given two points q

0

and q

1

we set

a problem of �nding weakly (or equivalently W

1

1

�lo
ally) minimal admissible path 
onne
ting

q

0

with q

1

:

The problem looks like dire
t generalization of the 
lassi
al Riemannian 
ase, but in fa
t

there is an essential di�eren
e. Namely the spa
e of all lo
ally Lips
hitzian paths, whi
h 
onne
t

q

0

and q

1

, has natural stru
ture of Bana
h manifold. Criti
al points of the length fun
tional on

this manifold are Riemannian geodesi
s and all paths of minimal length are among them. On

the 
ontrary the spa
e of admissible paths, whi
h 
onne
t q

0

and q

1

, is not in general a manifold;

it may have singularities. These singularities 
orrespond to so 
alled abnormal sub-Riemannian

geodesi
s, whi
h do not depend on Riemannian stru
ture onM and are 
ompletely determined

by distribution D.

The term 'abnormal' 
omes from optimization theory, sin
e the problem of �nding minimal

admissible path 
an be obviously reformulated as a Lagrange problem of Cal
ulus of Variations.

The extremals of the last problem are sub-Riemannian geodesi
s and, in parti
ular, abnormal

extremals, with vanishing Lagrange multiplier for the (length) fun
tional, are abnormal sub-

Riemannian geodesi
s.

There was a lot of a
tivity tended to elimination of abnormal sub-Riemannian geodesi
s.

Preprint [18℄ of R.Montgomery lists several (given by di�erent authors) false proofs of the fa
t,

that a minimal admissible path should 
orrespond to some normal sub-Riemannian geodesi
.
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The preprint 
ontains also an important 
ounterexample to this 
laim (see also [22℄).

Main 
ontribution of the paper is kind of Legendre-Ja
obi-Morse-type theory of 2nd variation

for abnormal geodesi
s and its impli
ations. Starting with the de�nition of 2nd variation along

an abnormal geodesi
, we set 2nd-order ne
essary/suÆ
ient minimality 
onditions for abnormal

geodesi
s. The results have similar form to the 
lassi
 Legendre-Ja
obi minimality 
onditions of

Cal
ulus of Variations, but do not involving length fun
tional, they are appearan
es of di�erent

phenomenon, whi
h is 'degenerate' form of lo
al minimality. Namely, the 2-nd order suÆ
ient

'minimality' 
ondition imply rigidity of abnormal geodesi
 path, whi
h is isolatedness up to

reparametrization of this path in W

1

1

�topology in the spa
e of all admissible paths, whi
h


onne
t given end-points. Therefore the 2-nd order ne
essary/suÆ
ient minimality 
onditions

are in fa
t ne
essary/suÆ
ient rigidity 
onditions.

We go further and 
ompute nullity and index of an abnormal geodesi
, whi
h are 
orre-

spondingly dimension of the kernel and negative index of the 2nd variation along the abnormal

geodesi
. This in parti
ular enables us to verify the 2-nd order rigidity 
onditions globally, on

large time intervals. We use the Index and Nullity theorems to establish rigidity for several

parti
ular situations.

The paper is organized in following way. Se
tion 2 
ontains preliminary material; of most im-

portan
e for further presentation are some notations from 
hronologi
al 
al
ulus and auxiliary

results on symple
ti
 geometry. In Se
tion 3 we present Hamiltonian form of 'geodesi
 equation'

and introdu
e some invariants of geodesi
s. In Se
tion 4 we introdu
e 1st and 2nd variations

along abnormal geodesi
s and de�ne Morse index and nullity. Involving Goh and Generalized

Legendre Condition along abnormal geodesi
s we derive (Theorem 4.4) a suÆ
ient 
ondition

for smoothness of abnormal geodesi
 and announ
e (Theorems 4.1/4.8) ne
essary/suÆ
ient


onditions of rigidity. In Se
tion 5 we introdu
e (De�nition 5.1) Ja
obi 
urve in Lagrangian

Grassmanian for an abnormal geodesi
 and 
ompute (Theorems 5.1 and 5.4) index and nul-

lity of abnormal geodesi
s via symple
ti
 invariants (Maslov-type indi
es) of the Ja
obi 
urve.

This enables us to establish (Theorem 5.5) lo
al rigidity for abnormal geodesi
s meeting Goh

and Strong Generalized Legendre Condition. In Se
tion 6 we des
ribe some 
lass of distribu-

tions whi
h do possess rigid abnormal geodesi
s (Theorem 6.1 and 6.2). In Se
tion 7 we give

more ni
e and simpli�ed presentation of Legendre-Ja
obi formalism for abnormal geodesi
s of

2-dimensional distributions. In Se
tion 8 we investigate rigidity of traje
tories for aÆne 
ontrol

systems (Theorems 8.4- 8.8). In Appendix (Se
tion 9) we represent ne
essary/suÆ
ient 
ondi-

tions (Theorems 9.1/ 9.5) for isolatedness of 
riti
al points of smooth mapping on 
riti
al level

and use them to prove the ne
essary/suÆ
ient 
onditions of rigidity for abnormal geodesi
s,

whi
h were established in the Se
tion 4.

The presentation is self-
ontained, although we often refer to the paper [7℄, whi
h deals with

abnormal extremums for Lagrange problem of Cal
ulus of Variations. One 
an �nd in that

paper instru
tive analogies and details of some proofs.

In our work we were mu
h inspired by a dis
ussion on abnormal sub-Riemannian geodesi
s

at the Conferen
e 'Geometri
 Methods in Nonlinear Optimal Control' (Sopron, Hungary ,July

1991) and also by papers [10, 18℄ and dis
ussions with M.Kawsky, R.Montgomery and H.J.Suss-

mann. The �nal version of this paper was prepared when the se
ond author was visiting the

Fa
ulty of Applied Mathemati
s at Twente University, Ens
hede, The Netherlands ; he is

grateful to the fa
ulty sta� and espe
ially to H. Nijmeijer and A. van der S
haft for hospitality.

2 Preliminaries

In the paper we use notation and te
hni
al tools of 
hronologi
al 
al
ulus developed by A.A.

Agra
hev and R.V. Gamkrelidze (see [5, 6℄).

We will identify C

1

di�eomorphisms P : M �! M with automorphisms of the algebra

C

1

(M) of smooth fun
tions on M: �(�) �! P� = �(P (�)). The image of a point q 2M under

a di�eomorphism P will be denoted by q Æ P:

Ve
tor �elds on M are 1-st order di�erential operators on M or arbitrary derivations of the
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algebra C

1

(M), i.e. R-linear mappings X : C

1

(M) �! C

1

(M), satisfying the Leibnitz rule:

X(��) = (X�)� + �(X�). Value X(q) of a ve
tor �eld X at a point q 2M lies in the tangent

spa
e T

q

M to the manifoldM at the point q. We denote by [X

1

; X

2

℄ Lie bra
ket or 
ommutator

X

1

ÆX

2

�X

2

ÆX

1

of ve
tor �elds X

1

; X

2

. It is again a 1-st order di�erential operator and in

lo
al 
oordinates on M the Lie bra
ket 
an be presented as

[X

1

; X

2

℄ = [

n

X

i=1

X

1

i

�=�x

i

;

n

X

i=1

X

2

i

�=�x

i

℄ =

n

X

i=1

(�X

2

i

=�xX

1

� �X

1

i

=�xX

2

)�=�x

i

:

This operation introdu
es in the spa
e of ve
tor �elds the stru
ture of a Lie algebra denoted

Ve
t M . For X 2 Ve
tM we use the notation adX for the inner derivation of Ve
t M :

(adX)X

0

= [X;X

0

℄;8X

0

2 Ve
t M .

For a di�eomorphism P we use the notation AdP for the following inner automorphism of

the Lie algebra Ve
t M : AdPX = P Æ X Æ P

�1

= P

�1

�

X . The last notation stands for the

result of translation of the ve
tor �eld X by the di�erential of the di�eomorphism P

�1

.

A 
ow on M is an absolutely 
ontinuous w.r.t. � 2 R 
urve � �! P

�

in the group of di�eo-

morphisms Di� M , satisfying the 
ondition P

0

= I (where I is the identity di�eomorphism).

We assume all time-dependent ve
tor �elds X

�

to be lo
ally integrable with respe
t to � . A

time-dependent ve
tor �eld X

�

de�nes an ordinary di�erential equation _q = X

�

(q(�)); q(0) = q

0

on the manifold M ; if solutions of this di�erential equation exist for all q

0

2 M; � 2 R, then

the ve
tor �eld X

�

is 
alled 
omplete and de�nes a 
ow on M , being the unique solution of the

(operator) di�erential equation:

dP

�

=d� = P

�

ÆX

�

; P

0

= I: (2.1)

This solution will be denoted by P

t

=

�!

exp

R

t

0

X

�

d� , and is 
alled (see [5, 6℄) a right 
hronologi
al

exponential of X

�

. If the ve
tor �eld X

�

� X is time-independent, then the 
orresponding 
ow

is denoted by P

t

= e

tX

.

We introdu
e also Volterra expansion (or Volterra series) for the 
hronologi
al exponential.

It is (see [5, 6℄):

�!

exp

Z

t

0

X

�

d� � I +

1

X

i=1

Z

t

0

d�

1

Z

�

1

0

d�

2

: : :

Z

�

i�1

0

d�

i

(X

�

i

Æ � � �X

�

1

)

:

We will need only the terms of zero-, �rst- and se
ond-order in this expansion, whi
h are

�!

exp

Z

t

0

X

�

d� � I +

Z

t

0

X

�

d� +

Z

t

0

d�

1

Z

�

1

0

d�

2

(X

�

2

ÆX

�

1

) + � � � (2.2)

For time-independent X one obtains

e

tX

� I + tX + (t

2

=2)X ÆX + � � � (2.3)

One more tool from 
hronologi
al 
al
ulus is a 'generalized variational formula'(see [5, 6℄ for

its drawing):

�!

exp

Z

t

0

(

^

X

�

+X

�

)d� =

�!

exp

Z

t

0

^

X

�

d�Æ

�!

exp

Z

t

0

Ad(

�!

exp

Z

�

t

^

X

�

d�)X

�

d�: (2.4)

Applying the operator Ad(

�!

exp

R

�

0

^

X

�

d�) to a ve
tor �eld Y and di�erentiating

Ad(

�!

exp

R

�

0

^

X

�

d�)Y = (

�!

exp

R

�

0

^

X

�

d�) Æ Y Æ (

�!

exp

R

�

0

^

X

�

d�)

�1

w.r.t. � one 
omes to the equality

(see [5, 6℄):

d

d�

Ad(

�!

exp

Z

�

0

^

X

�

d�Y ) = Ad(

�!

exp

Z

�

0

^

X

�

d�) ad

^

X

�

Y; (2.5)

3



whi
h is of the same form as (2.1). Therefore Ad(

�!

exp

R

�

0

^

X

�

d�) 
an be presented as an operator


hronologo
al exponential

�!

exp

R

t

0

ad

^

X

�

d� whi
h for a time-independent ve
tor �eld

^

X

�

�

^

X


an be written as e

t ad

^

X

: These exponentials also admit Volterra expansions:

�!

exp

Z

t

0

adX

�

d� � I +

1

X

i=1

Z

t

0

d�

1

Z

�

1

0

d�

2

: : :

Z

�

i�1

0

d�

i

(adX

�

i

Æ � � � adX

�

1

)

�

� I +

Z

t

0

adX

�

d� +

Z

t

0

d�

1

Z

�

1

0

d�

2

(adX

�

2

Æ adX

�

1

) + � � � ; (2.6)

and

e

t adX

� I + t adX + (t

2

=2) adX Æ adX + � � � : (2.7)

In this new notation the generalized variational formula (2.4) 
an be rerepresented as:

�!

exp

Z

t

0

(

^

X

�

+X

�

)d� =

�!

exp

Z

t

0

^

X

�

d�Æ

�!

exp

Z

t

0

(

�!

exp

Z

�

t

ad

^

X

�

d�)X

�

d� =

=

�!

exp

Z

t

0

(

�!

exp

Z

�

0

ad

^

X

�

d�)X

�

d�Æ

�!

exp

Z

t

0

^

X

�

d�: (2.8)

A distribution D on M is a subbundle of tangent bundle TM , whi
h we identify with the

spa
e of its se
tions. For a distribution dimD

q

does not 
hange with q 2M .

Generalizations of distributions are di�erential systems or distributions with singularities

1

whi
h are subbundles with non
onstant dimD

q

. We 
all di�erential system any C

1

(M)�sub-

module of Ve
tM ; then distributions 
orrespond to proje
tive C

1

�modules. Lo
ally one may

treat germ of distribution as free module.

If D is a di�erential system, then taking C

1

�modules generated by Lie bra
kets of order

� k; k = 1; : : : ; of the ve
tor �elds subje
ted to D one obtains an expanding sequen
e of

di�erential systems:

D � D

2

= [D;D℄ � � � � D

k

= [D;D

k�1

℄ � � � � :

For any q 2M the sequen
e of subspa
es

D

q

� � � � D

k

q

� T

q

M

is 
alled 
ag of the di�erential system D at the point q 2 M , while the sequen
e n

1

(q) �

� � �n

k

(q) � � � �, where n

i

(q) = dimD

i

q

, is 
alled growth ve
tor of the di�erential system D at

the point q. Di�erential system is 
alled 
ompletely nonholonomi
 or having full Lie rank at a

point q 2M if D

�

k

q

= T

q

M for some

�

k. Di�erential system is 
alled 
ompletely nonholonomi
 or

having full Lie rank if for some

�

k D

�

k

q

= T

q

M for all q 2M .

If D is a distribution (n

1

(q) � 
onst), then still D

k

may la
k to be distributions (may have

singularities), sin
e the growth ve
tor of a distribution in general 
hanges with q. Distribution

is 
alled regular if its growth ve
tor is 
onstant for all q.

We also have to introdu
e some notions of symple
ti
 geometry (see [8, 13, 17℄ for more

details). A symple
ti
 stru
ture in an even-dimensional linear spa
e � is de�ned by a nondegen-

erate bilinear skewsymmetri
 2-form �(�; �): Two ve
tors �

1

; �

2

2 � are 
alled skeworthogonal,

written �

1

[�

2

; if �(�

1

; �

2

) = 0: If N is a subspa
e of �, let us denote by N

[

its skeworthogonal


omplement: N

[

= f� 2 � j �(�; �) = 0;8� 2 Ng: Evidently dimN + dimN

[

= dim�: A

subspa
e � � � is 
alled isotropi
, when � � �

[

; and 
oisotropi
, when � � �

[

: A subspa
e

� � � is 
alled Lagrangian plane, when �

[

= �: Su
h subspa
es have dimension

1

2

dim�. If �

is a Lagrangian plane and � is isotropi
, then it is easy to prove, that (�\�

[

)+� = (�+�)\�

[

is a Lagrangian plane. We denote it by �

�

:

1

Not to be mixed with the di�erential systems determined by the di�erential forms; those have di�erent kind

of singularities

4



The symple
ti
 group Sp(�) is the group of those linear transformations of �; whi
h preserve

the symple
ti
 form:

Sp(�) = S 2 GL(�) j �(S�

1

; S�

2

) = �(�

1

; �

2

) 8�

1

; �

2

2 �:

The elements of this group are 
alled symple
ti
 transformations of �: The Lie algebra of the

symple
ti
 group is:

sp(�) = A 2 gl(�) j �(A�

1

; �

2

) = �(A�

2

; �

1

) 8�

1

; �

2

2 �:

Let H be a real quadrati
 form on � and d

�

H be the di�erential of H at a point � 2 �:

Then d

�

H is a linear form on � whi
h depends linearly on �: For every � 2 � there exists a

unique ve
tor

!

H

(�) 2 � whi
h satis�es equality �(

!

H

(�); �) = d

�

H: It is easy to show that the

linear operator

!

H

: � ! � belongs to sp(�); and the mapping H !

!

H

is an isomorphism of

the spa
e of quadrati
 forms onto sp(�): The di�erential equation

_

� =

!

H

(�) is 
alled the linear

Hamiltonian system 
orresponding to the quadrati
 Hamiltonian H:

Denote by L(�) the Grassmanian of Lagrangian subspa
es of �. This is a smooth manifold

of dimension

1

8

dim�(dim�+ 2):

Certainly symple
ti
 transformations transform Lagrangian planes into Lagrangian ones,

hen
e the symple
ti
 group a
ts on L(�): It is easy to show that it a
ts transitively.

Let us 
onsider a tangent spa
e T

�

L(�); � 2 L(�): To every quadrati
 form h on � there


orresponds a linear Hamiltonian ve
tor �eld

!

h

and a one-parameter subgroup t ! e

t

!

h

in

Sp(�): Let us 
onsider the linear mapping

h �! d(e

t

!

h

�)=dt j

t=0

of the spa
e of quadrati
 forms to T

�

L(�): This mapping is surje
tive and its kernel 
onsists of

all quadrati
 forms whi
h vanish on �: Thus two di�erent quadrati
 forms 
orrespond to the

same ve
tor from T

�

L(�) if and only if the restri
tions of these forms on � 
oin
ide. Hen
e we

obtain a natural identi�
ation of the spa
e T

�

L(�) with the spa
e of quadrati
 forms on �:

A tangent ve
tor � 2 T

�

L(�) is 
alled nonnegative if the 
orresponding quadrati
 form is

nonnegative on �: An absolutely 
ontinuous 
urve �

�

(� 2 [0; T ℄) in L(�) is 
alled nonde
reasing

if the velo
ities

_

�

�

2 T

�

�

L(�) are nonnegative for almost all � 2 [0; T ℄:

Treating the a
tion of symple
ti
 group Sp(�) on L(�) one 
an easily verify, that pairs of

Lagrangian planes (�;�

0

) have only one invariant w.r.t. this a
tion: it is dim(� \ �

0

): For

triples of Lagrangian planes, there are more invariants.

Let �

1

;�

2

;�

3

be Lagrangian planes. Let us present a ve
tor � 2 (�

1

+ �

3

) \ �

2

as a sum

� = �

1

+ �

3

and 
onsider on (�

1

+�

3

) \�

2

properly de�ned quadrati
 form �(�) = �(�

1

; �

3

):

Maslov index of the triple (�

1

;�

2

;�

3

) is signature of �(�): It is an invariant of the a
tion of

symple
ti
 group.

In [1℄ a bit di�erent invariant of a triple of Lagrangian planes (�

1

;�

2

;�

3

) was exploited for


omputation of Morse index for singular extremals.

De�nition 2.1 Consider the quadrati
 form �(�) = �(�

1

; �

3

) with the domain ((�

1

+ �

3

) \

�

2

)=

T

3

i=1

�

i

: A sum

1

2

dimker� + ind

�

�, where ind

�

� is negative inertia index of �; is an

invariant of the triple (�

1

;�

2

;�

3

) of Lagrangian planes. It is denoted by ind

�

2

(�

1

;�

3

) and is


alled Maslov-type index. 2

Let us note, that ker� = ((�

1

\ �

2

) + (�

2

\ �

3

))=

T

3

i=1

�

i

: We refer to [1℄ for a simple

formula 
onne
ting this Maslov-type index with Maslov index of the triple and for the proof of

the following 'triangle inequality':

ind

�

0

(�

1

;�

3

) � ind

�

0

(�

1

;�

2

) + ind

�

0

(�

2

;�

3

):
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It also follows dire
tly from the de�nition, that

ind

�

1

(�

1

;�

3

) =

1

2

dimker� =

1

2

(dim�

1

� dim(�

1

\ �

3

)): (2.9)

A 
ontinuous 
urve �(�) 2 L(�); 0 � � � 1; is 
alled simple if there exists � 2 L(�) su
h

that �(�) \� = 0 8� 2 [0; 1℄:

Lemma 2.1 If �(�) 2 L(�); 0 � � � 1; is a simple nonde
reasing 
urve in L(�); and � 2

L(�); then

ind

�

(�(0);�(1)) = ind

�

(�(0);�(�)) + ind

�

(�(�);�(1)); 8� 2 [0; 1℄:2

Lemma 2.2 Let �

0

;�

1

2 L(�): There exist � 2 L(�) and neighborhoods V

0

3 �

0

;

V

1

3 �

1

in L(�) su
h that whenever � 2 V

0

;�

0

2 V

1

and dim(� \ �

0

) = dim(�

0

\ �

1

)

then there exists a simple nonde
reasing 
urve �(�); � 2 [0; 1℄ su
h that �(0) = �;�(1) =

�

0

; �(�) \� = 0 8� 2 [0; 1℄: 2

Both Lemmas are proved in [1℄.

De�nition 2.2 Let �(t); 0 � t � T; be a nonde
reasing 
urve in L(�) and 0 = t

0

< t

1

<

� � � < t

l

= T are su
h, that the 
urves �(�) j

[t

i

;t

i+1

℄

; i = 0; : : : l � 1; are simple and � 2 L(�):

The expression

ind

�

�(�) =

l�1

X

i=0

ind

�

(�(t

i

);�(t

i+1

)) (2.10)

is 
alled Maslov index of the 
urve �(t) with respe
t to �: 2

It follows from the Lemma 2.1 that (2.10) does not depend on a 
hoi
e of t

1

< � � � < t

l�1

: If

the 
urve �(t) is 
losed (�(0) = �(T )); then ind

�

�(�) does not depend also on the 
hoi
e of �

(
f. [1℄).

3 Normal and Abnormal Geodesi
s. Rigidity.

The problem of �nding minimal admissible path 
an be represented as following Lagrange

problem of the Cal
ulus of Variations with free �nal time:

`(T; u(�)) =

R

T

0

hG(q(�))u(�); G(q(�))u(�)i

1=2

d� �! min; (3.1)

_q = G(q)u; q(0) = q

0

; u 2 R

r

; kuk = 1; (3.2)

q(T ) = q

1

: (3.3)

Here h�; �i stays for the inner produ
t in the tangent spa
es T

q

M ; '
ontrol parameter' u be-

longs to the (r � 1)�dimensional unit sphere S

r�1

; the 
ontrols u(�) are measurable; G(q) =

(g

1

(q); : : : g

r

(q)) is a r�tuple of smooth ve
tor �elds, whi
h form a basis of the distribution D.

Sin
e our 
onsideration regards a small neighborhood of a nonsel�nterse
ting path on M , then

su
h basis 
an always be 
hosen.

We investigate problem of weak minimality, i.e. whether a given time T and an admissible


ontrol û(�) supply (R� L

1

)-lo
al minimum for the problem ( 3.1)-(3.3).

Let us introdu
e 
lassi
al 1-st-order ne
essary 
ondition of weak optimality, for the Lagrange

problem of Cal
ulus of Variations. This is Euler-Lagrange equation in Hamiltonian form.

Theorem 3.1 If a pair (T; û(�)) is weak minimizer for the problem ( 3.1)-(3.3), i.e. 
orre-

sponding traje
tory q̂(�) (� 2 [0; T ℄) of (3.2) is W

1

1

�lo
ally minimal admissible path, then there

exists a nonzero pair (

^

 

0

;

^

 (�)), where

^

 

0

� 0 is a 
onstant and

^

 (�) is an absolutely 
ontinuous

6




ove
tor-fun
tion on [0; T ℄; su
h that

^

 (�) 2 T

�

q̂(�)

M and the 5-tuple (û(�); q̂(�);

^

 

0

;

^

 (�); T ) :

1) satis�es Hamiltonian system

_q = �H=� ; q(0) = q

0

; q(T ) = q

1

; (3.4)

_

 = ��H=�q; (3.5)

with a Hamiltonian

H(u; q;  

0

;  ) =

^

 

0

hG(q)u;G(q)ui

1=2

+  �G(q)u; (3.6)

2) meets stationarity 
ondition

�H

�u

j

(û(�);q̂(�);

^

 

0

;

^

 (�))

v = 0; 8v 2 T

û(�)

S

r�1

; for almost all � 2 [0; T ℄; (3.7)

and 'transversality 
ondition'

H(û(�); q̂(�);

^

 

0

;

^

 (�)) = 0; for almost all � 2 [0; T ℄: 2 (3.8)

De�nition 3.1 Sub-Riemannian geodesi
 is an extremal of the Lagrange problem (3.1)-(3.3),

i.e. a 5-tuple (û(�); q̂(�);

^

 

0

;

^

 (�); T ) meeting the 
onditions of the Theorem 3.1. Sub-Riemannian

geodesi
 is 
alled normal, if

^

 

0

6= 0, and abnormal, if

^

 

0

= 0: The 
orresponding triple

(û(�); q̂(�); T ) is 
alled sub-Riemannian geodesi
 path. 2

Remark. Obviously for any normal or abnormal sub-Riemannian geodesi


(û(�); q̂(�);

^

 

0

;

^

 (�); T ) its restri
tion (û(�)j

[0;t℄

; q̂(�)j

[0;t℄

;

^

 

0

;

^

 (�)j

[0;t℄

; t) to a subinterval [0; t℄ �

[0; T ℄ is also normal or abnormal sub-Riemannian geodesi
 
orrespondingly.

Remark. A geodesi
 path (û(�); q̂(�); T ) may enter di�erent geodesi
s with di�erent

^

 

0

;

^

 (�):

De�nition 3.2 A 
orank of a geodesi
 path (û(�); q̂(�); T ) is dimemsion of the spa
e of pairs

(

^

 

0

;

^

 (�)); whi
h together with (û(�); q̂(�); T ) satisfy Theorem 3.1. 2

De�nition 3.3 A geodesi
 path (û(�); q̂(�); T ) is 
alled 
orank k abnormal geodesi
 path if the

spa
e of pairs (0;

^

 (�)), whi
h together with (û(�); q̂(�); T ) satisfy the Theorem 3.1, is k�dimensi-

onal. 2

Remark. One should take pre
autions, when determining 
orank of abnormal geodesi


path, sin
e in a k�dimensional linear spa
e of pairs (

^

 

0

;

^

 (�)) there is k� or (k�1)-dimensional

subspa
e of pairs with vanishing  

0

. Therefore it may happen, that 
orank k geodesi
 path is


orank (k � 1) abnormal geodesi
 path.

Whenever geodesi
 is abnormal, then the length fun
tional ` does not enter the minimality


onditions, given by the Theorem 3.1. No surprise that 
orresponding geodesi
 paths have not

too mu
h to do with the sub-Riemannian metri
 and minimality of length. It turns out that

they often exhibit a phenomenon 
alled in [23℄ rigidity.

De�nition 3.4 An admissible path q(�) of the distribution D with end-points q

0

and q

1

is


alled rigid if it is isolated up to a reparametrization in the metri
 of W

1

1

in the set P

q

1

q

0

of all

admissible paths, whi
h 
onne
t q

0

and q

1

: 2

Rigid admissible paths are formally weakly minimal and analysis of the proof of the Theorem

3.1 shows, that the theorem is valid for the rigid paths as well; in addition one 
an take

^

 

0

= 0.

This leads to

Proposition 3.2 If an admissible path (û(�); q̂(�)) is rigid on [0; T ℄, then (û(�); q̂(�); T ) is an

abnormal geodesi
 path. 2
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Remark. As it is known ([14℄), admissible paths (without or with pregiven end-points) of a


ompletely nonholonomi
 distribution D are dense in metri
 of C

0

in the spa
e of all paths onM

(
orrespondingly without or with pregiven end-points). Therefore an admissible path is never

isolated in the metri
 of C

0

, and hen
e strong (=C

0

�lo
al) minimality for sub-Riemannian

geodesi
s is another deal. We are going to perform results on strong minimality of abnormal

sub-Riemannian geodesi
s for 2-dimensional distributions in a forth
oming paper.

To �nish with the 1st-order 
ondition given by the Theorem 3.1 let us note that in the

abnormal 
ase the Hamiltonian (3.6) degenerates into an 'abnormal' Hamiltonian

H =  �G(q)u: (3.9)

If we denote by V

?

û(�)

the orthogonal 
omplement to the ve
tor û(�) in R

r

, then the station-

arity 
ondition (3.7) for an abnormal geodesi
 takes form

^

 (�) �G(q̂(�))v = 0; 8v 2 V

?

û(�)

; 8� 2 [0; T ℄; (3.10)

and (3.8) be
omes:

H(û(�); q̂(�);

^

 (�)) =

^

 (�) �G(q̂(�))û(�) = 0: (3.11)

Together with (3.10) it implies orthogonality of

^

 (�) to the distribution D at every point q̂(�) :

^

 (�) �G(q̂(�))v = 0; 8v 2 R

r

; 8� 2 [0; T ℄: (3.12)

4 Ne
essary/SuÆ
ient Conditions for Rigidity of Abnor-

mal Sub-Riemannian Geodesi
s

In the previous Se
tion we have redu
ed the problem of �nding minimal admissible (=tangent

to the distribution D) path between given points q

0

and q

1

; to the Lagrange problem (3.1)-(3.3).

We have formulated 1st-order ne
essary minimality 
ondition saying that the solutions of this

problem should be sought among geodesi
 paths. We have singled out the 
lass of abnormal

geodesi
s and de�ned what rigidity is. In this Se
tion we are going to introdu
e 2nd variation

and set 2-nd order ne
essary/suÆ
ient 
onditions for rigidity of abnormal geodesi
 paths.

Let us start with de�nitions of �rst and se
ond variations along an abnormal geodesi


(û(�); q̂(�);

^

 (�); T ). Everywhere in this Se
tion we assume, that û(�) is 
ontinuous (from the left)

at T: Let us introdu
e a (time � input)/state mapping F : R � L

r

1

[0; T ℄ �! M; whi
h maps

a pair (t; u(�)) into the point q(t) of the traje
tory q(�) of the system _q = G(q)u(�); q(0) = q

0

:

Obviously, F (t; û(�)) = q̂(�) and F (T; û(�)) = q̂(T ) = q

1

: We put

`(t; u(�)) =

Z

t

0

hG(q(�))u(�); G(q(�))u(�)i

1=2

d� ; ` : R� L

r

1

[0; T ℄! R:

A well known fa
t is that for (T; û(�)) 2 R � L

r

1

to be a minimizer for the Lagrange problem

(3.1)-(3.3) it must be 
riti
al point of the mapping (`; F ): Indeed otherwise in virtue of the

Impli
it Fun
tion Theorem the system of equations

`(t; u(�)) = `(T; û(�))� �; F (t; u(�)) = q

1

;

is lo
ally (in a neighborhood of (T; û(�))) solvable for any suÆ
iently small � > 0; and hen
e q

0

and q

1


an be 
onne
ted by an admissible path of length `(T; û(�)) � � < `(T; û(�)): If a pair

(T; û(�)) is 
riti
al point for the mapping (`; F ); i.e. the di�erential (`

0

; F

0

)j

(T;û(�))

: R�L

r

1

!

R�T

q

1

M is nonsurje
tive, then there exists a pair (

^

 

0

;

^

 

T

) 2 R�T

�

q

1

M; whi
h annihilates the

image of (`

0

; F

0

)j

(T;û(�))

:

^

 

0

`

0

+

^

 

T

F

0

� 0: (4.1)

This equality is equivalent to the statement of the Theorem 3.1 with

^

 

T

being the end-point

value

^

 (T ) for the solution of the adjoint equation (3.5). If

^

 

0

= 0; then the fun
tional ` does
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not enter both (4.1) and the Theorem 3.1. In this 
ase the pair (T; û(�)) enters an abnormal

geodesi
 (û(�); q̂(�);

^

 (�); T ) or, equivalently, is 
riti
al point of the mapping F:

To study abnormal geodesi
s (=
riti
al points of F ) we have to invoke (�rst terms of) Taylor

expansion for F (t; u(�)): Let us present F (t; u(�)) as 
hronologi
al exponential (see Se
tion 2 for

the notation):

F (t; u(�)) = q

0

Æ

�!

exp

Z

t

0

Gu(�)d�:

Putting u(�) = û(�) + v(�) and using the variational formula (2.4) we obtain

F (t; u(�)) = q

0

Æ

�!

exp

Z

t

0

G(û(�) + v(�))d� = q

0

Æ

�!

exp

Z

t

0

Gû(�)d�Æ

�!

exp

Z

t

0

Y

t;�

v(�)d�; (4.2)

where

Y

t;�

v = Ad

�!

exp

Z

�

t

Gû(�)d�Gv:

From the formula (2.5) it follows that

dY

t;�

=dt = � ad

^

f

t

Y

t;�

: (4.3)

Putting

Y

�

v = Y

T;�

v = Ad

�!

exp

Z

�

T

Gû(�)d�Gv; (4.4)

we 
ompute (
ompare with [7℄) the �rst di�erential of F at the point (T; û(�)):

F

0

j

(T;û(�))

(Æ�; u(�)) = G(q

1

)û(T )Æ� +

Z

T

0

Y

�

(q

1

)u(�)d�; u(�) 2 V

?

û(�)

: (4.5)

If a pair (T; û(�)) is 
riti
al point of F; then ImF

0

j

(T;û(�))

6= T

q

1

M; and there exists a nonzero


ove
tor

^

 

T

2 T

�

q

1

M; whi
h annihilates ImF

0

j

(T;û(�))

: This implies

^

 

T

�G(q

1

)û(T ) = 0; (4.6)

and

^

 

T

�

Z

T

0

Y

�

(q

1

)u(�)d� = 0;

for all u(�) 2 L

r

1

[0; T ℄ su
h that u(�) 2 V

?

û(�)

: In virtue of Dubois-Raymond Lemma the last

equality implies:

^

 

T

� Y

�

(q

1

)v = 0 8v 2 V

?

û(�)

; for almost all � 2 [0; T ℄: (4.7)

These 
onditions are equivalent to the 
onditions (3.10)-(3.11) of the Theorem 3.1 with the

'abnormal' Hamiltonian (3.9). Namely if we take the solution of the adjoint equation (3.5)

with the end-point value

^

 (T ) =

^

 

T

; then the 
ondition (4.7) is equivalent to the stationar-

ity 
ondition (3.7) and (4.6) implies, that the Hamiltonian H =  Gu; being 
onstant along

(û(�); q̂(�);

^

 (�)); vanishes. The 
orank of abnormal geodesi
 path (û(�); q̂(�); T ) 
oin
ides with

the 
orank of F

0

j

(T;û(�))

.

De�nition 4.1 The �rst di�erential F

0

j

(T;û(�))

: R � L

r

1

! T

q

1

M; at a 
riti
al point (T; û(�))

is 
alled �rst variation along abnormal geodesi
 path (û(�); q̂(�); T ): It is 
al
ulated a

ording to

the formula (4.5) 2

Now we introdu
e se
ond variation along an abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ). It is Hes-

sian, or quadrati
 di�erential of F , at the 
riti
al point (T; û(�)) 2 R�L

r

1

(see [9℄). Choosing a

fun
tion � :M �! R; su
h that d�j

q

1
=

^

 

T

; let us 
onsider a fun
tion �(t; u(�)) = �(F (t; u(�))):

Sin
e

^

 

T

annihilates ImF

0

j

(T;û(�))

; then (T; û(�)) is 
riti
al point for this fun
tion.
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Let us 
ompute the quadrati
 term of Taylor expansion for �(t; u(�)) at (T; û(�)): Appealing

to the Volterra expansion ( 2.2) for right 
ronolologi
al exponential, we derive

�

00

j

(T;û(�))

(Æ�; u(�)) = ((

R

T

0

R

�

0

Y

�

u(�)d� Æ Y

�

(u(�)d� �

R

T

0

[Gû(T )); Y

1

�

u(�)℄d� +

+(Gû(T )) Æ (Gû(T ))

Æ�

2

2

+ (Gû(T ))Æ� Æ

R

T

0

Y

�

u(�)d�)�)(q

1

): (4.8)

(When 
arrying the 
omputation one should take into a

ount the equalities (3.8), (4.3) and

(4.7)).

When restri
ting the quadrati
 form (4.8) to the kernel of F

0

j

(T;û(�))

; we are able to subtra
t

from (4.8) a vanishing value of

1

2

((Gû(T )Æ� +

Z

T

0

Y

�

u(�)d�) Æ (Gû(T )Æ� +

Z

T

0

Y

�

u(�)d�)�)(q

1

);

and transform (4.8) into

1

2

((

Z

T

0

[

Z

�

0

Y

�

u(�)d�; Y

�

u(�)℄d� + [�Gû(T )Æ�;

Z

T

0

Y

�

u(�)d� ℄�)(q

1

):

The last expression does not depend on 
hoi
e of � but only on

^

 

T

= d�j

q

1

and therefore

we 
ome to the

De�nition 4.2 The quadrati
 form

2F

00

j

(T;û(�))

[ 

T

℄(Æ�; u(�)) =

^

 

T

�

Z

T

0

[�Gû(T )Æ� +

Z

�

0

Y

�

u(�)d�; Y

�

u(�)℄(q

1

)d�; (4.9)

whose domain is subspa
e of R� L

r

1

de�ned by the 
ondition

G(q

1

)û(T )Æ� +

Z

T

0

Y

�

(q

1

)u(�)d� = 0; u(�) 2 V

?

û(�)

; � 2 [0; T ℄; (4.10)

is 
alled se
ond variation along the abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ): 2

De�nition 4.3 Morse index of abnormal geodesi
 is negative index of the quadrati
 form

(4:9)� (4:10), i.e. maximal among the dimensions of the subspa
es in its domain, on whi
h the

quadrati
 form is negative de�nite. 2

De�nition 4.4 Morse index of abnormal geodesi
 path is minimum of indi
es of those ab-

normal geodesi
s, whi
h this geodesi
 path enters, or minimum of indi
es of quadrati
 forms

2F

00

j

(T;û(�))

[

^

 

T

℄ for all possible

^

 

T

? ImF

0

j

(T;û(�))

: 2

We now set 2nd-order ne
essary rigidity 
ondition for 
orank k abnormal geodesi
s paths.

It follows from general ne
essary 
ondition for isolatedness of 
riti
al point of smooth mapping

on 
riti
al level. Formulation and proof of the general 
ondition (Theorem 9.1) as well as the

proof of the following Theorem 4.1 are given in the Appendix (Se
tion 9). Corresponding result

for 
orank 1 
ase was established in [7℄.

Theorem 4.1 (Ne
essary Rigidity Condition for Abnormal Geodesi
s) For a 
orank

k abnormal geodesi
 path (û(�); q̂(�); T ) to be rigid its index should not ex
eed k�1. In parti
ular

index of a rigid 
orank 1 abnormal geodesi
 path must vanish. 2

Generally rigidity is stronger than weak minimality. But whenever all geodesi
s, whi
h a

geodesi
 path (û(�); q̂(�); T ) enters, are abnormal, then the 
onditions of the Theorem 4.1 are

ne
essary for weak minimality of the path. It follows from the Propositions 9.4 and 9.3 (see

Appendix).
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Proposition 4.2 (Ne
essary Minimality Condition for Abnormal Geodesi
s) Let

(û(�); q̂(�); T ) be a 
orank k abnormal geodesi
 path, su
h that all geodesi
s it enters are abnor-

mal. Then for the geodesi
 path to be weakly minimal its index should not ex
eed k � 1: 2

It follows from the Theorem 4.1, that �niteness of index is ne
essary for rigidity. There-

fore we are going to invoke Conditions whi
h provide the �niteness for an abnormal geodesi


(û(�); q̂(�);

^

 (�); T ).

Denoting again by V

?

û(�)

the orthogonal 
omplement to û(�) in R

r

we introdu
e �rst of these


onditions: for almost all � 2 [0; T ℄

�=�u

d

d�

�H=�uj

û(�)

(v; w) =

^

 (�) � [Gv;Gw℄(q̂(�)) = 0 8v; w 2 V

?

û(�)

: (4.11)

In di�erent 
ontext it was introdu
ed by B.S. Goh in [12℄ and we 
all it Goh ne
essary 
ondition.

Di�erentiating the identity (3.10) w.r.t. � one obtains for almost all � 2 [0; T ℄

0 =

d

d�

�H=�uj

û(�)

(w) =

^

 (�) � [Gû(�); Gw℄(q̂(�)) = 0 8w 2 V

?

û(�)

: (4.12)

and together with (4.11): for almost all � 2 [0; T ℄

^

 (�) � [Gv;Gw℄(q̂(�)) = 0 8v; w 2 R

r

: (4.13)

We will also refer to the last 
ondition as to Goh 
ondition. This 
ondition together with (3.12)

implies, that at every point q̂(�) of rigid abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ) the 
ove
tor

^

 (�)

has to be orthogonal to D

2

(q̂(�)) = [D;D℄(q̂(�)), spanned by the ve
tor �elds from D and their

Lie bra
kets of the 2nd order:

^

 (�) �Gv(q̂(�)) = 0;

^

 (�) � [Gv;Gw℄(q̂(�)) = 0; 8v; w 2 R

r

: (4.14)

Another ne
essary 
ondition, whi
h is 
alled (see [15, 4, 16℄) Generalized Legendre Condition,

is: for all � 2 [0; T ℄

�=�u

d

2

d�

2

�H=�uj

û(�)

(v; v) = 


�

(v; v) =

^

 (�) � [Gv; [Gû(�); Gv℄℄(q̂(�)) � 0 (4.15)

(when 
omputing this 4-th-order derivative we took into a

ount the identity (4.13)); see the

proof in [3, 2℄).

We summarize the aforesaid in following

Proposition 4.3 (Ne
essary Goh and Generalized Legendre Conditions) For an abnormal

geodesi
 path (û(�); q̂(�); T ) to be rigid the Goh 
ondition (4.13) and the Generalized Legendre

Condition (4.15) have to hold for some abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ): 2

To set Ja
obi-type 
onditions we need Strong Generalized Legendre Condition. It is (
ompare

with (4.15)): for some � > 0 and for all � 2 [0; T ℄




�

(v; v) =

^

 (�) � [Gv[Gû(�); Gv℄℄(q̂(�)) � �kvk

2

; 8v 2 V

?

û(�)

: (4.16)

This last 
ondition, whi
h together with (4.13) is suÆ
ient for �niteness of Morse index of

an abnormal geodesi
, is not only essential for its rigidity but also provides smoothness and in

some 
ases uniqueness of the geodesi
.

Theorem 4.4 (Regularity of Abnormal Geodesi
s) Let Goh 
ondition (4.11) and Strong

Generalized Legendre Condition (4.16) hold along an abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ):

Then the 
orrespoding '
ontrol' û(�) and the traje
tory q̂(�) are smooth on [0; T ℄: If in addi-

tion the ve
tor spa
e [D;D℄)(q

0

(
orrespondingly [D;D℄(q

1

)) has 
odimension 1 in T

q

0
M (
or-

respondingly in T

q

1

M), then no other abnormal geodesi
 path, starting at q

0

(
orrespondingly,

�nishing at q

1

) may satisfy Goh 
ondition (4.11) and Generalized Legendre Conditions (4.15).

2
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Proof. Di�erentiating (4.13) w.r.t. � we obtain

^

 (�) � [Gû(�); [Gv;Gw℄℄(q̂(�)) = 0; 8v; w 2 R

r

;8� 2 [0; T ℄; (4.17)

and, in parti
ular,

^

 (�) � [Gû(�); [Gû(�); Gv℄℄(q̂(�)) = 0; 8v 2 R

r

;8� 2 [0; T ℄: (4.18)

Hen
e the points (û(�); q̂(�);

^

 (�)) of abnormal geodesi
 (û(�); q̂(�);

^

 (�)) must ly in the subset

of S

r�1

� T

�

M , de�ned by following system of relations:

�(u; q;  ) =  � [Gu; [Gu;G℄℄(q) = 0; (4.19)


(u; q;  ) =  � [Gv; [Gu;Gv℄℄(q) > 0; 8v 2 V

?

û(�)

: (4.20)

Here � : R

r

� T

�

M ! (R

r

)

�

; 
 : R

r

� T

�

M ! (R

r

)

�


 (R

r

)

�

:

The di�erential of the mapping � w.r.t. u at a point (û(�); q̂(�);

^

 (�)) is:

�

0

u

�u =

^

 (�) � [G�u; [Gû(�); G℄℄(q̂(�)) +

^

 (�) � [Gû(�)[G�u;G℄℄(q̂(�));

or sin
e in virtue of (4.17) the last addend vanishes:

�

0

u

j

(û(�);q̂(�);

^

 (�))

�u =

^

 (�) � [G�u[Gû(�); G℄℄(q̂(�)): (4.21)

Here �u 2 V

?

û(�)

' T

û

S

r�1

; but if we substitute �u = û(�) into (4.21), then in virtue of (4.18)

�

0

u

j

(û(�);q̂(�);

^

 (�))

û(�) = 0: In virtue of (4.16) �

0

u

j

(û(�);q̂(�);

^

 (�))

is nonsingular on V

?

û(�)

and hen
e

the equation �(u; q̂(�);

^

 (�)) = 0 
an be lo
ally (in a small neighborhood of (û(�); q̂(�);

^

 (�)))

uniquely solved w.r.t. u, presenting u as a smooth fun
tion u = u(q̂(�);

^

 (�)):

In fa
t the solution of the system (4.19)-(4.20) is globally unique, even more, there is no

other solution �u(q;  ) of the equation (4.19) su
h that

^

 (�) � [Gv; [G�u;Gv℄℄(q̂(�)) is nonnegative

quadrati
 form on V

?

�u

: Indeed let us assume, that �(û(�); q̂(�);

^

 (�)) = �(�u; q̂(�);

^

 (�)) = 0:

Then on the interval 
onne
ting û(�) with �u there must be a point u

�

= �û(�) + (1��)�u (0 <

� < 1) su
h that �

0

u

j

(u

�

;q̂(�);

^

 (�))

(û(�) � �u) = 0 or, sin
e �

0

u

j

(u

�

;q̂(�);

^

 (�))

is linear w.r.t. u

�

,

(��

0

u

j

(û(�);q̂(�);

^

 (�))

+ (1� �)�

0

u

j

(�u;q̂(�);

^

 (�))

)(û(�)� �u) = 0: (4.22)

The left-hand side of (4.22) belongs to R

r

�

; applying it to the ve
tor (û(�)� �u) 2 R

r

and taking

into a

ount, that �

0

u

j

(û(�);q̂(�);

^

 (�))

û(�) = �

0

u

j

(�u;q̂(�);

^

 (�))

�u = 0 we derive

0 = ��

0

u

j

(û(�);q̂(�);

^

 (�))

(�u; �u) + (1� �)�

0

u

j

(�u;q̂(�);

^

 (�))

(û(�); û(�)) = 0;

what may happen only if û(�) = ��u: But if û(�) = ��u; then the quadrati
 form

^

 (�) � [Gv[G�u;Gv℄℄(q̂(�)) is negative de�nite. Hen
e û(�) = �u:

Thus we have established, that for every � the solution û(�) of the system of relations

�(u; q̂(�);

^

 (�)) = 0; 
(u; q̂(�);

^

 (�)) � 0 is globally unique. Then the 
orresponding impli
it

fun
tion u(q;  ), whi
h is de�ned by the system (4.19)-(4.20), is 
ontinuous and hen
e smooth

w.r.t. q;  and therefore u(q̂(�);

^

 (�)) is smooth fun
tion of � .

Assume, that 
odim[D;D℄(q

0

) = 1: Then, as we will prove now, there is no other geodesi


path, starting at q

0

and meeting Goh and Ceneralized Legendre Conditions (4.11) and (4.15).

Assume on the 
ontrary that there is another geodesi
 (�u(�); �q(�);

�

 (�); T ) whi
h starts at q

0

and meets the 
onditions (4.13) and (4.15). Then

�

 (0) = k

^

 (0); or sin
e the geodesi
 equaions

and the 
onditions (4.13) and (4.15) are homogeneous in

^

 ; we may think, that

�

 (0) =

^

 (0).

We have already established existen
e of a unique smooth fun
tion u(q;  ) de�ned on some

neighborhoodW of the point (q̂(0);

^

 (0)) su
h that: û(�) = u(q̂(�);

^

 (�)); �u(�) = u(�q(�);

�

 (�)).

That means, that (q̂(�);

^

 (�)) and (�q(�);

�

 (�)) are lo
ally (inW) solutions of the same Hamiltonian

12



system with the same starting points. Hen
e they 
oin
ide in W . Standard reasoning proves,

that the set of those t; for whi
h (û(�); q̂(�);

^

 (�)) and (�q(�); �q(�);

�

 (�)) 
oin
ide, is 
losed and

open in [0; T ℄ and hen
e is [0; T ℄ itself. The same reasoning is appli
able to the geodesi
 paths

�nishing at the point q

1

:

Now we are going to set 2nd-order suÆ
ient rigidity 
ondition for abnormal geodesi
s. It

involves the introdu
ed above Goh and Generalized Strong Legendre Conditions, whi
h pro-

vide for the se
ond variation (4.9)-(4.10) weak positive de�niteness on some subspa
e of �nite


odimension in the domain (4.10) (see [1℄). To put it in a stri
t way, let us note, that if Goh


ondition (4.11) holds, then the quadrati
 form (4.9)-(4.10) 
an be ([1, Lemma 3.8℄) extended

by 
ontinuity onto subspa
e of �nite 
odimension in R � H

r

�1

[0; T ℄; the subspa
e is deter-

mined by the 
ondition (4.10). The notation H

r

�1

[0; T ℄ stays for Sobolev spa
e of order -1,

whi
h is dual spa
e to the spa
e H

r

1

[0; T ℄ of absolute-
ontinuous fun
tions with square inte-

grable derivatives. The spa
e L

r

2

[0; T ℄ is densely embedded into H

r

�1

[0; T ℄. For any fun
tion

u(�) 2 L

r

2

[0; T ℄ � H

r

�1

[0; T ℄; whose primitive is v(�) =

R

�

0

u(�)d�; the H

�1

-norm of u(�) 
an be

de�ned as: ku(�)k

�1

= (jv(T )j

2

+ kv(�)k

2

L

2

)

1=2

: There is a dire
t estimate

ku(�)k

�1

� (T +

p

T )ku(�)k

L

2

:

Let us also note, that fast-os
illating fun
tions have smallH

�1

�norms. Thus for a �nite interval

[0; T ℄: k sin �=Æk

�1

= O(Æ); for Æ ! 0; while k sin �=Æk

L

2

= T=2 + O(Æ); for Æ ! 0:

We de�ne weak positive de�niteness of a quadrati
 form in L

r

2

[0; T ℄ as its positive de�niteness

w.r.t. the norm of H

r

�1

[0; T ℄. We refer to [1℄ for the proof of the following

Proposition 4.5 If Goh 
ondition (4.11) and Generalized Strong Legendre Condition (4.16)

both hold along abnormal geodesi
, then the extension of the se
ond variation (4.8) is weak

positive de�nite on some subspa
e of �nite 
odimension in its domain whi
h is linear subspa
e

of R � H

r

�1

[0; T ℄ determined by the 
ondition (4.10). On this subspa
e the se
ond variation

admits lower estimate:

2F

00

j

(T;û(�))

[ 

T

℄(Æ�; u(�)) � 
(ku(�)k

2

�1

+ Æ�

2

): 2

Corollary 4.6 Under the 
onditions of the Proposition the extended se
ond variation admits

on some subspa
e of �nite 
odimension in its domain a lower estimate

2F

00

j

(T;û(�))

[ 

T

℄(Æ�; u(�)) � 
(kv(�)k

2

L

2

+ Æ�

2

);

where v(�) =

R

�

0

u(�)d�: 2

Everywhere below we assume that Goh 
ondition (4.11) and Generalized Strong Legendre


ondition (4.16) hold along geodesi
s we deal with. This implies, that the negative indi
es of

the se
ond variation (4:9) � (4:10) and of its extension onto (subspa
e of) R � H

r

�1

[0; T ℄ are

�nite and 
oin
ide.

De�nition 4.5 Nullity of an abnormal sub-Riemannian geodesi
 (û(�); q̂(�);

^

 (�); T ) is the di-

mension of the kernel of the se
ond variation (4:9)� (4:10) in R�H

r

�1

[0; T ℄: 2

It turns out, that in fa
t under the assumptions, we have made, the kernel 'is almost 
on-

tained in R � L

r

1

, namely it is 
ontained in R � (L

r

1

�H

r

�1

[0℄ �H

r

�1

[T ℄); where H

r

�1

[0℄ and

H

r

�1

[T ℄ 
onsist of R

r

�valued Dira
 measures lo
ated at 0 and T 
orrespondingly. Following

fa
t was established in [1℄.

Proposition 4.7 Under Generalized Strong Legendre Condition (4.16) and Goh 
ondition

(4.13) the kernel of the se
ond variation is 
ontained in R� (L

r

1

�H

r

�1

[0℄�H

r

�1

[T ℄); moreover

for an element (�; u(�)) of the kernel its se
ond 
omponent u(�) is C

1

on (0; T ): 2

Now we are able to set SuÆ
ient Rigidity Condition for abnormal geodesi
s.
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Theorem 4.8 (SuÆ
ient Condition of Rigidity for Abnormal Geodesi
s) If the se
ond

variation along abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ) is weak positive de�nite, then the geodesi


path (û(�); q̂(�); T ) is rigid, i.e. isolated up to a reparametrization in the topology of W

1

1

in the

set of admissible paths, whi
h 
onne
t q

0

and q

1

: 2

Corollary 4.9 If Goh 
ondition (4.11) and Generalized Strong Legendre Condition (4.16) hold

along abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ) and its Morse index and nullity both vanish, then

the geodesi
 path (û(�); q̂(�); T ) is rigid. 2

The two results follow from general suÆ
ient 
ondition for isolatedness of 
riti
al points of

smooth mappings on 
riti
al levels; formulation and proof of the general 
ondition (Theorem

9.5) as well as the proof of the Theorem 4.8 are to be found in the Appendix (Se
tion 9).

5 Morse Index and Nullity of Abnormal Sub-Riemannian

Geodesi
s

In the previous Se
tion we have set ne
essary (Theorem 4.1) and suÆ
ient (Theorem 4.8)


onditions for the rigidity of abnormal geodesi
s. The 
orresponding statements involve Morse

index and nullity, and in this Se
tion we are going to 
ompute Morse index and nullity for

an abnormal geodesi
. The s
heme of the 
omputation is in many aspe
ts similar to the

one presented in [7℄ for abnormal extremals of Lagrange Problem of Cal
ulus of Variations.

Refering to that paper for more details, we still provide a self
ontained exposition. The readers

are referred to the Se
tion 2 for notions and fa
ts from symple
ti
 geometry.

We start with the 
omputation of the Morse index. To this purpose we introdu
e symple
ti


representation of the se
ond variation (4:9)�(4:10) along abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ).

Let us put

W = spanffG(q

1

)û(T )g [ fY

�

(q

1

)vj� 2 [0; T ℄; v 2 V

?

û(�)

gg; (5.1)

where Y

�

is de�ned by (4.4). Evidently W � T

q

1

M 
oin
ides with an image ImF

0

j

(T;û(�))

of the

�rst variation (4.5). It follows from (4.6)-(4.7), that

^

 

T

annihilates W; and 
odim W = k is


orank of the abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ).

Taking the spa
e E

W

of the ve
tor �elds, whose values at q

1

ly in W; let us 
onsider a

skewsymmetri
 bilinear form on E

W

:

^

 

T

� [X;X

0

℄(q

1

); 8X;X

0

2 E

W

: (5.2)

This form has kernel of �nite 
odimension in E

W

, whi
h is de�ned by equalities:

X(q

1

) = 0;

^

 

T

� (�X=��)(q

1

) = 0;8� 2 W:

Taking the quotient of E

W

w.r.t. this kernel, one obtains on the �nite-dimensional quotient

spa
e � a (indu
ed from (5.2)) nondegenerate skewsymmetri
 bilinear form �(�; �): This form

de�nes symple
ti
 stru
ture on �: Dire
t 
al
ulation gives us dim� = 2dimW = 2(n� k): We

denote by X the image of an X 2 E

W

under the 
anoni
al proje
tion E

W

�! �:

Choosing lo
al 
oordinates (x

1

; : : : x

n

) : O �! R

n

on some neghborhood O of q

1

in M in

su
h a way that x

i

(q

1

) = 0; (i = 1; : : : n) and the subspa
e W is de�ned by the equalities

x

1

= � � � = x

k

= 0 while

^

 

T

= ( 

1

; : : : ;  

k

; 0; : : : 0); we may represent the 
anoni
al proje
tion

X ! X as:

X =

P

n

i=1

X

i

(x)�=�x

i

! X =

(X

k+1

(0); : : : X

n

(0); �(

P

k

i=1

 

i

X

i

)=�x

k+1

j

0

; : : : �(

P

k

i=1

 

i

X

i

)=�x

n

j

0

): (5.3)
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The symple
ti
 form �(X;Y ) 
an be then represented as:

�(X;Y ) =

n

X

j=k+1

(X

j

(0)�(

k

X

i=1

 

i

Y

i

)=�x

j

j

0

� Y

j

(0)�(

k

X

i=1

 

i

X

i

)=�x

j

j

0

):

Let us denote by � the image under the 
anoni
al proje
tion of the spa
e of those ve
tor

�elds, whi
h vanish at q

1

: Sin
e the Lie bra
ket of two vanishing at q

1

ve
tor �elds also vanish

at q

1

, then � is Lagrangian plane.

Instead of notations Y

�

and Gû(T ) for the images of the ve
tor �elds Y

�

and Gû(T ) under

the 
anoni
al proje
tion E

W

! � we use below �

�

and ĝ 
orrespondingly. A

ording to the

introdu
ed above de�nitions of �(�; �) and �; we may represent the se
ond variation (4.9)-(4.10)

as:

2F

00

j

[T;û(�); 

T

℄

(Æ�; u(�)) =

Z

T

0

�(�ĝÆ� +

Z

�

0

�

�

u(�)d�;�

�

u(�))d�; (5.4)

and its domain as:

f(Æ�; u(�)) 2 R� L

r

1

jĝÆ� +

Z

T

0

�

�

u(�)d� 2 �g: (5.5)

Under new notations the Goh 
ondition (4.13) and Strong Generalized Legendre Condition

(4.16) take form:

�(�

�

u;�

�

v) = 0; 8u; v 2 R

r

; 8� 2 [0; T ℄; (5.6)

and




�

(u; u) = �(

_

�

�

u;�

�

u) � �juj

2

;8u 2 V

?

û(�)

; (5.7)


orrespondingly.

Now we will transform the formulae (5.4)-(5.5) for the se
ond variation, representing it as a

quadrati
 form in Æ� and v(�) =

R

�

0

u(�)d� instead of Æ�; u(�). To this end let us integrate (5.4)

by parts in su
h a way, that u(�) is integrated:

2F

00

j

[T;û(�); 

T

℄

(Æ�; u(�)) =

R

T

0

�(�ĝÆ� +

R

�

0

�

�

u(�)d�

| {z }

dv

;�

�

u(�))d� =

R

T

0

�(�ĝÆ� +�

�

v(�);�

�

u(�))d�

| {z }

dv

�

R

T

0

�(

R

�

0

_

�

�

v(�)d�;�

�

u(�))d� =

R

T

0

�(

_

�

�

v(�);�

�

v(�))d� +

R

T

0

�(ĝÆ� +�

T

v(T ) +

R

�

0

_

�

�

v(�)d�;

_

�

�

v(�))d�:

When pro
eeding with this 
omputation we took into a

ount that

�(�

�

v(�);�

�

u(�)) = 0; �(ĝ;�

T

v(T )) = �(ĝ; Gv(T )) = 0

in virtue of Goh 
ondition (5.6).

The domain of the se
ond variation is:

f(Æ�; v(T ); v(�))jĝÆ� +Gv(T )�

Z

T

0

_

�

�

v(�)d� 2 �g: (5.8)

Let us put

� = spanfGvjv 2 R

r

g; �

%

= spanfGvjv 2 V

?

û(T )

g (�

%

� �): (5.9)

In virtue of Goh 
ondition (5.6) �(Gv;Gw) = �(�v;�w) = 0 and therefore � (and �

%

) is

isotropi
 subspa
e of � : � � �

[

:

Following [1℄ we introdu
e now Hamiltonian form of Ja
obi equation for abnormal geodesi
s.

Considering the de�ned by (5.7) positive de�nite quadrati
 form 


�

(u; u) on V

?

û(�)

, let us put

�


�

for the nonsingular selfadjoint operator �


�

: V

?

û(�)

�! V

?

�

û(�)

; whi
h 
orresponds to 


�

:
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�

(u; v) = h�


�

u; vi; 8u; v 2 V

?

û(�)

: Taking an inverse operator �


�1

�

: V

?

�

û(�)

�! V

?

û(�)

; we de�ne

a bilinear form 


�1

�

on V

?

�

û(�)

as 


�1

�

(u

�

; v

�

) = h�


�1

�

u

�

; v

�

i; 8u

�

; v

�

2 V

?

�

û(�)

: Obviously for any

x 2 � the mapping u �! �(

_

�

�

�; x) de�nes a linear form on V

?

û(�)

; i.e. an element of V

?

�

û(�)

;

whi
h depends linearly on x 2 �: This means, that the 
orresponden
e

x �!

1

2




�1

�

(�(

_

�

�

�; x))

de�nes a quadrati
 form on �:

Treating this quadrati
 form as time-dependent Hamiltonian on �; one may 
onsider on �

linear Hamiltonian system:

_x =

_

�

�

�


�1

�

(�(

_

�

�

�; x)); (5.10)

whi
h we 
all Ja
obi equation for abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ).

If for any � 2 [0; T ℄ the ve
tors u

1

(�); : : : u

r�1

(�) form su
h basises in V

?

û(�)

; that




�

(u

i

(�); u

j

(�)) = Æ

ij

; (i; j = 1; : : : r � 1), then the equation 
an be presented as

_x =

r�1

X

i=1

�(

_

�

�

u

i

(�); x)

_

�

�

u

i

(�):

Sin
e a Hamiltonian 
ow preserves symple
ti
 stru
ture of �; then the Ja
obi equation trans-

forms Lagrangian planes into Lagrangian ones. Therefore one may 
onsider the Hamiltonian


ow as a 
ow on Lagrangian Grassmanian L(�): It is generated by the following time-dependent

Hamiltonian system on L(�) :

_

� =

1

2




�1

�

(�(

_

�

�

�; x))j

�

(5.11)

(see Se
tion 2 for details).

De�nition 5.1 Ja
obi 
urve � ! �

�

(� 2 [0; T ℄) 
orresponding to the abnormal geodesi


(û(�); q̂(�);

^

 (�); T ) is the 
urve in Lagrangian Grassmanian L(�), whi
h starts at �

0

= �,


oin
ides for � 2 [0; T ) with the starting at � traje
tory of the Ja
obi equation (5.11) and

jumps at � = T � 0 to �

T

= �

�

T�0

= �

T�0

\ �

[

+ �: 2

Basing on this de�nition we set

Theorem 5.1 (Index Theorem for Abnormal Geodesi
s) Let � ! �

�

be the Ja
obi 
urve

in Lagrangian Grassmanian L(�); whi
h 
orresponds to abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ):

Then for any subdivision �

s+1

= 0 = �

0

< �

1

< � � � < �

s

= T of � ! �

�

into simple subar
s

�j

[�

i

;�

i+1

℄

; (i = 0; : : : s� 1) Morse index of the abnormal geodesi
 is equal to

s

X

i=0

ind

�

(�

�

i

;�

�

i+1

)� (n� k); (5.12)

where k is 
orank of the abnormal geodesi
 path (û(�); q̂(�); T ): 2

Proof. We give sket
h of the proof of this Theorem, referring for details to the performed

in [7℄ 
omputation of Morse index of an abnormal extremal for Lagrange problem of Cal
ulus

of Variations.

Putting Æ� = 0 in (5.4)-(5.5), we obtain a quadrati
 form whi
h we 
all redu
ed se
ond

variation. This quadrati
 form is a Hessian of input/state mapping (see [6℄) u(�)! F (T; u(�)):

Its domain has 
odimension 1 or 0 in the domain of the se
ond variation (5.4)-(5.5), hen
e its

index is not larger and di�ers at most by 1 from the index of the se
ond variation. It 
an be

represented as

2F

00

%

j

[T;û(�); 

T

℄

(0; u(�)) =

Z

T

0

�(

Z

�

0

�

�

u(�)d�;�

�

u(�))d�; (5.13)
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with the domain

f(0; u(�))j

Z

T

0

�

�

u(�)d� 2 �g: (5.14)

We de�ne Ja
obi 
urve for the redu
ed 2nd variation following [1℄.

De�nition 5.2 Ja
obi 
urve � ! �

%

�

(� 2 [0; T ℄) 
orresponding to the redu
ed se
ond variation

(5.13)-(5.14) is the 
urve in the Lagrangian Grassmanian L(�); whi
h starts at �

%

0

= � 
oin-


ides for � 2 [0; T ) with the starting at � traje
tory of the Ja
obi equation (5.11) and jumps at

� = T � 0 to �

%

T

= (�

%

T

)

�

%

= �

%

T

\ �

[

%

+ �

%

: 2

The following Proposition providing formula for the index of the redu
ed se
ond variation

(5.13)-(5.14) via Maslov indi
es of the Ja
obi 
urve �

%

�

is 
orollary of the Theorem 1 in [1℄.

Proposition 5.2 (Index of the Redu
ed Se
ond Variation). Let � ! �

%

�

(0 � � � T );

be Ja
obi 
urve 
orresponding to the redu
ed se
ond variation (5.13)-(5.14) along an abnormal

geodesi
 (û(�); q̂(�);

^

 (�); T ). Then for any subdivision �

m+1

= 0 = �

0

< �

1

< � � � < �

m

= T of

� �! �

%

�

into simple subar
s �

%

j

[�

i

;�

i+1

℄

; (i = 0; : : :m � 1) the negative index of the redu
ed

se
ond variation (5.13)-(5.14) is equal to

m

X

i=0

ind

�

(�

%

�

i

;�

%

�

i+1

) + dim\

�2[0;T ℄

�

%

�

� (n� k); (5.15)

where k is 
orank of the abnormal geodesi
 path (û(�); q̂(�); T ): 2

Starting from the formula (5.15) one is able to 
ompute negative index of the se
ond variation

(5.4)-(5.5), by using following te
hni
al Lemma (see [1℄).

Proposition 5.3 Assume, that a quadrati
 form Q(�; �) is de�ned on a Hilbert spa
e and is

positive de�nite on a subspa
e of �nite 
odimension. Let N be a 
losed subspa
e of the Hilbert

spa
e, Q

N

be the restri
tion of Q on N ; and N

?

Q

be the Q-orthogonal 
omplement to N : N

?

Q

=

fyjB(x; y) = 0;8x 2 Ng; where B is 
orresponding to Q symmetri
 bilinear form. Then

indQ = indQ

N

+ indQj

N

?

Q

+ dim(N \N

?

Q

)� dim(N \ kerQ):2 (5.16)

To apply the result in our 
ase we take for the Hilbert spa
e H set of the pairs (Æ�; u(�)),

whi
h meet the 
ondition (5.5), for the subspa
e N the set of pairs (0; u(�)), whi
h meet the


ondition (5.14), and for Q the quadrati
 form (5.4). Evidently 
odimN � 1:

Following this line the authors have already 
omputed in [7℄ index of abnormal extremal

for Lagrange problem of Cal
ulus of Variations. We have established in [7℄, that appearan
e of

additional term ĝÆ� in the se
ond variation (5.4)-(5.5) in 
omparison with the redu
ed se
ond

variation (5.13)- (5.14) leads to a 
hange of the �nal 'jump' of the Ja
obi 
urve, whi
h be
omes

�

T

= (�

�

%

T�0

)

ĝ

= �

�

%

T�0

\ ĝ

[

+ spanfĝg: Sin
e ĝ 2 �

[

%

, then �

ĝ

%

= �

%

+ spanfĝg = � and also

(�

�

%

T�0

)

ĝ

== �

�

T�0

: Therefore we 
ome to the formula (5.12) 
ompleting the proof of the

Theorem 5.1. .

Now we set Nullity Theorem for abnormal geodesi
s. Its proof is similar to the given in [7℄

proof of Nullity Theorem for abnormal extremals of Lagrange problem.

Theorem 5.4 (Nullity Theorem for Abnormal Geoesi
s) Let � �! �

�

be the Ja
obi


urve in Lagrangian Grassmanian L(�); whi
h 
orresponds to a 
orank k abnormal geodesi


(û(�); q̂(�);

^

 (�); T ): Then nullity of the abnormal geodesi
, i.e. the dimension of the kernel of

the se
ond variation (5.4)-(5.5), is equal to dim(�

T

\ �): 2

What follows is 
orollary of the Theorems 5.1 and 5.4 (
ompare with the Corollary 5.5 in

[7℄).
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Theorem 5.5 (Lo
al Rigidity Condition for Abnormal Geodesi
s) Let an abnormal

geodesi
 (û(�); q̂(�);

^

 (�); T ) meet Goh 
ondition (4.11) and Strong Generalized Legendre Con-

dition (4.16). Then for any small enough

�

t > 0 the restri
tions (û(�)j

[0;

�

t℄

; q̂(�)j

[0;

�

t℄

;

�

t) of the

geodesi
 path (û(�); q̂(�); T ) on [0;

�

t℄ are rigid. 2

Proof. Let us note �rstly, that 
orank of the restri
tions (û(�)j

[0;

�

t℄

; q̂(�)j

[0;

�

t℄

;

�

t) is integer-

valued non-de
reasing fun
tion of t, and hen
e for small enough t > 0 all the restri
tions have

the same 
orank k > 0.

We are going to prove, that both index and nullity along any restri
tion

(û(�)j

[0;t℄

; q̂(�)j

[0;t℄

;

^

 (�)j

[0;t℄

; t) vanish and then apply the Corollary 4.9.

To 
ompute the index of the restri
tion (û(�)j

[0;t℄

; q̂(�)j

[0;t℄

;

^

 (�)j

[0;t℄

; t) let us 
onsider 
orre-

sponding nonde
reasing Ja
obi 
urve �

�

j

[0;t℄

, in Lagrangian Grassmanian. Sin
e �\� = 0 then

� \ �

�

= 0 for any small enough � > 0 and therefore dim(�

�

�

\ �

�

) = 
onst for small � > 0:

Then a

ording to the Lemma 2.2 there exist t > 0 and a Lagrangian plane � su
h that for any

� 2 [0; t℄ �

�


an be 
onne
ted with �

�

�

by a simple nonde
reasing 
urve �

�

(s); 0 � s � 1 su
h

that �

�

(s)\� = 0; 8s 2 [0; 1℄: Then the 
on
atenation of the 
urve �j

[0;t℄

with the 
orrespond-

ing 
urve �

t

(s) is also simple and evidently nonde
reasing. A

ording to the Proposition 5.2

and Theorem 5.1 index of the (having 
orank 1) restri
tion (û(�)j

[0;t℄

; q̂(�)j

[0;t℄

;

^

 (�)j

[0;t℄

; t) equals

ind

�

(�;�

t

) + ind

�

(�

t

;�

�

t

) + ind

�

(�

�

t

;�)� (n� 1);

where �

�

t

= �

t

\�

[

+�: A

ording to the Lemma 2.1 ind

�

(�;�

t

)+ind

�

(�

t

;�

�

t

) = ind

�

(�;�

�

t

)

for all small enough t > 0 and we obtain for the Morse index the expression:

ind

�

(�;�

�

t

) + ind

�

(�

�

t

;�)� (n� 1) =

= 2

1

2

(n� 1� dim(�

�

t

\ �))� (n� 1) = � dim(�

�

t

\ �) � 0:

Being nonnegative this Morse index must vanish. That implies also dim(�

�

t

\�) = 0; i.e. in

virtue of the Theorem 5.4 nullity of the restri
tion (û(�)j

[0;t℄

; q̂(�)j

[0;t℄

;

^

 (�)j

[0;t℄

; t) also vanishes.

6 Distributions Exhibiting Rigidity Phenomenon

We are going to des
ribe some 
lass of distributions, for whi
h rigid abnormal geodesi
 paths

do exist. We will 
onsider germs of smooth r�dimensional distributions in R

n

: It turns out

that some 
onditions on growth ve
tors of the distributions provide existen
e of rigid geodesi


paths.

Theorem 6.1 Let n � 2r; q

0

2M: Then in the set of 2-jets at q

0

of distributions D satisfying

the 
ondition

dimD

2

q

� 2r � 1 (6.1)

there is an open subset, su
h that for any distribution D satisfying the 
ondition (6.1) with 2-jet

lying in this subset, there exists a rigid admissible path starting at q

0

: 2

Generi
 2-dimensional distributions on n�dimensional manifold M with n � 4 not only

meet the 
onditions of the Theorem 6.1, but possess stronger property.

Theorem 6.2 For any germ at a point q

0

2 M of 2-dimensional distribution D; su
h that

D

3

q

0

6= D

2

q

0

; there exists rigid admissible path starting at q

0

: 2

Proof of the Theorem 6.1. Let us assume that a distribution D meeting the 
onditions

of the Theorem 6.1 is spanned by the ve
tor �elds g

1

; : : : g

r

, while

D

2

= spanfg

1

; : : : g

r

; [g

1

; g

2

℄; : : : [g

1

; g

r

℄g: (6.2)
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Assume that for some  

0

2 T

�

q

0

M n 0, annihilating D

2

the ((r � 1)� r)�matrix

A

 

=

0

B

�

 [g

1

; [g

1

; g

2

℄℄

.

.

.

 [g

1

; [g

1

; g

r

℄℄

� � �

 [g

r

; [g

1

; g

2

℄℄

.

.

.

 [g

r

; [g

1

; g

r

℄℄

1

C

A

;

has the maximal rank (r� 1): Then it holds also for a nonzero  
lose to  

0

and there exists a

smoothly depending on  solution u( ) = (u

1

( ); : : : u

r

( )) 2 R

r

n0 of the systems A

 

u( ) = 0;

Without loss of generality we may assume u( 

0

) = (1; 0 : : : 0):

Assume in addition that the quadrati
 form

L

 

0

(v

2

; : : : ; v

r

) =  

0

[[Gu( 

0

); Gv℄; Gv℄(q

0

) =

r

X

i;j=2

 

0

[[g

1

; g

i

℄; g

j

℄(q

0

)v

i

v

j

is positive de�nite. Hen
e for  
lose to  

0

in T

�

M the quadrati
 forms

L

 

(v) =  [[Gu( ); Gv℄; Gv℄(q) (6.3)

are also positive de�nite on the orthogonal 
omplements V

 

to u( ) in R

r

:

Any distribution meeting the 
onditions of the theorem and with 2-jet belonging to a small

enough neighborhood of the 2-jet of D meets the above mentioned assumptions as well.

For any su
h distribution let us introdu
e a Hamiltonian h(q;  ) =

P

r

i=1

u

i

( ) g

i

(q): We

shall demonstrate that some subar
 of the starting at (q

0

;  

0

) traje
tory (q̂(�);

^

 (�)) of the


orresponding Hamiltonian system is an abnormal geodesi
, whi
h meets Goh and Strong Gene-

ralized Legendre Conditions.

The Strong Generalized Legendre Condition along a small subar
 starting at (q

0

;  

0

) is

implied by the positive de�niteness of the quadrati
 forms (6.3). We have to verify, that

 ? D

2

along the traje
tory. In virtue of (6.2) it is enough to establish the equalities

 g

i

�  [g

1

; g

i

℄ � 0; i = 1; : : : ; r:

along the traje
tory.

Let us put h

i

(t) =  g

i

(q̂(t);

^

 (t)); h

1i

(t) =  [g

1

; g

i

℄(q̂(t);

^

 (t)); (i = 1; : : : ; r) and 
ompute

_

h

i

;

_

h

1i

:

Sin
e h =

P

r

j=1

u

j

( )h

j

, then

_

h

i

= fh; h

i

g(q̂(t);

^

 (t)) = f

r

X

j=1

u

j

h

j

; h

i

g(q̂(t);

^

 (t)) =

=

r

X

j=1

u

j

( )fh

j

; h

i

g(q̂(t);

^

 (t)) +

r

X

j=1

fu

j

; h

i

gh

j

(q̂(t);

^

 (t)):

In virtue of (6.2) [g

j

; g

i

℄ lies in the linear span of ve
tor �elds g

1

; : : : g

r

; [g

1

; g

2

℄; : : : [g

1

; g

r

℄;

hen
e

fh

j

; h

i

g =  [g

i

; g

j

℄ =

r

X

k=2

�

k

(x) [g

1

; g

k

℄ =

r

X

k=2

�

k

h

1k

;

and therefore

_

h

i

(q̂(t);

^

 (t)) =

r

X

j=1

fu

j

; h

i

gh

j

(q̂(t);

^

 (t)) +

r

X

j=1

v

j

( )h

1j

(q̂(t);

^

 (t)): (6.4)

Also

_

h

1i

(q̂(t);

^

 (t)) = fh; h

1i

g(q̂(t);

^

 (t)) = f

r

X

j=1

u

j

h

j

; h

1i

g(q̂(t);

^

 (t)) =
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=

r

X

j=1

(u

j

 [g

j

; [g

1

; g

i

℄℄(q̂(t);

^

 (t)) + fu

j

; h

1i

gh

i

)(q̂(t);

^

 (t)) =

= A

 

u( )(q̂(t);

^

 (t)) +

r

X

j=1

fu

j

; h

1i

gh

i

(q̂(t);

^

 (t)) =

r

X

j=1

fu

j

; h

1i

gh

i

(q̂(t);

^

 (t)): (6.5)

Therefore the fun
tions h

i

(q̂(t);

^

 (t)); h

1i

(q̂(t);

^

 (t)); (i = 1; : : : r) satisfy the linear system

of di�erential equations (6.4)-(6.5), and sin
e

h

i

(q

0

;  

0

) =  

0

g

i

(q

0

) = h

1i

(q

0

;  

0

) =  

0

[g

1

; g

i

℄(q

0

) = 0; i = 1; : : : r;

then

h

i

(q̂(t);

^

 (t)) = h

1i

(q̂(t);

^

 (t)) � 0 (i = 1; : : : ; r):

We have established that the abnormal geodesi
 (q̂(�);

^

 (�)) satis�es the 
onditions of the The-

orem 5.5 and therefore is rigid.

To �nish the proof of the Theorem 6.1 we only have to 
onstru
t at least one r�dimensional

distribution D, with the growth ve
tor and the basis meeting all the assumptions we have done.

Let q

0

= 0

R

n

and R

n

= f(x; y; z)jx 2 R

r

; y 2 R

r

; z 2 R

n�2r

g: Let us put

g

1

= �=�x

1

; g

i

= �=�x

i

+ x

1

�=�y

i

+ y

i

�=�y

1

; i = 2; : : : ; r � 1;

g

r

= �=�x

r

+ x

1

�=�y

r

+ y

r

�=�y

1

+

n�2r

X

j=1

x

j+1

1

�=�z

j

:

The ve
tor �elds g

1

; : : : ; g

r

span germ of r�dimensional distribution of full Lie rank. In addition:

[g

1

; g

i

℄ = �=�y

i

; i = 2; : : : ; r � 1; [g

1

; g

r

℄ = �=�y

r

+

n�2r

X

j=1

(j + 1)x

j

1

�=�z

j

;

[g

i

; g

j

℄ = 0; i; j = 2; : : : r; [g

1

; [g

1

; g

i

℄℄ = 0; i = 2; : : : ; r � 1;

[g

1

; [g

1

; g

r

℄℄ is linear 
ombination of �=�z

j

, and [[g

1

; g

i

℄; g

j

℄ = Æ

ij

�=�y

1

; where Æ

ij

is Krone
ker

symbol. All the above mentioned assumptions will hold if we 
hoose  

0

su
h that

 

0

�=�x

i

=  

0

�=�z

j

= 0; i; j = 1; : : : ; r;  

0

�=�y

i

= 0; i = 2; : : : ; r;  

0

�=�y

1

= 1:

Proof of the Theorem 6.2. One 
an always 
hoose ve
tor �elds f; g, whi
h span D and

a 
ove
tor  

0

2 T

�

q

0

M n 0, in su
h a way, that following 
onditions hold:

 

0

f(q

0

) =  

0

g(q

0

) =  

0

[f; g℄(q

0

) =  

0

[f; [f; g℄℄(q

0

) = 0;

 

0

[g; [f; g℄℄(q

0

) > 0 (6.6)

(it is enough to 
hose  

0

? D

2

;  

0

6? D

3

and, when ne
essary, multiply  

0

by -1). The

inequality (6.6) holds for all  
lose to  

0

in T

�

M . Considering the equation

�( ; u) =  [f + gu; [f; g℄℄(q) = 0

we note, that, sin
e  

0

[g; [f; g℄℄(q

0

) > 0 then lo
ally the equation �( ; u) = 0 has smooth solu-

tion u( ) = ( [f; [f; g℄℄(q))=( [g; [f; g℄℄(q)); u( 

0

) = 0: As in the proof of the previous theorem

some subar
 of starting at (q

0

;  

0

) traje
tory of Hamiltonian system with the Hamiltonian

h =  (f + gu( )) is abnormal geodesi
, whi
h meets Goh and Strong Generalized Legendre

Condition and hen
e is rigid.
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7 Abnormal Geodesi
s for 2-dimensional Distributions:

Few More Steps

In this Se
tion we deal with abnormal geodesi
s for 2�dimensional smooth distributions. For

this 
ase we are able to pro
eed further with the 
omputation of Morse index and nullity and

obtain elegant representation of the Ja
obi equation and 
hara
terization of 
onjugate points.

Let us 
onsider a 2�dimensional distribution D on a (n+2)�dimensional manifold; let the

ve
tor �elds f; g 2 Ve
tM span D. Assume that:

i) the ve
tor �elds

f; g; [f; g℄; : : : (adf)

n�1

g

are linearly independent at every point of the domain we treat;

ii) (adf)

n

g 
an be presented as a linear 
ombination with C

1

�
oeÆ
ients of these n + 1

ve
tor �elds:

(adf)

n

g = �f +

n�1

X

i=0

�

i

(adf)

i

g (�; �

i

2 C

1

(M)): (7.1)

Then the traje
tories of the ve
tor �eld f are 
orank 1 abnormal geodesi
s for the distribution

D. Let us 
onsider distribution (free C

1

(M)�module of ve
tor �elds)

V = spanff; g; [f; g℄; : : : (adf)

n�1

gg;

and assume, that:

iii) in the treated domain

[[f; g℄g℄℄(q) 62 V (q):

Let  be a 1�form on the domain, de�ned by the 
onditions:

 ? V;  [[f; g℄g℄ = 1:

We shall derive Ja
obi equation for the abnormal geodesi
, whi
h 
orresponds to the ve
tor

�eld f . We denote by q̂(�) = q

0

Æ e

tf

the starting at q

0

= q̂(0) traje
tory of f ; q̂(T ) = q

1

:

Following the approa
h of the Se
tion 5 let us 
onsider skewsymmetri
 bilinear form (v

1

; v

2

)!

 � [v

1

; v

2

℄(q

1

); v

1

; v

2

2 V: Taking quotient of V w.r.t. the kernel of this form we obtain a

2(n + 1)�dimensional symple
ti
 spa
e �

0

: We redu
e the symple
ti
 spa
e 
onsidering the

(2n + 1)�dimensional skeworthogonal 
omplement to the 
anoni
al proje
tion ĝ of the ve
tor

�eld f onto �

0

and then taking quotient of �

0

w.r.t. spanfĝg. The result is denoted further

by �; it is 2n�dimensional symple
ti
 spa
e with skews
alar produ
t denoted by �. We again

denote by Y the image of a ve
tor �eld Y 2 V under the 
anoni
al proje
tion V ! �.

We are going to introdu
e spe
ial 
oordinates in � and to derive one more representation of

the Ja
obi equation (5.10).

Let us put for i � 0

g

t

= e

(t�T )adf

g; g

i

t

= e

(t�T )adf

(adf)

i

g = �

i

g

t

=�t

i

;




i

t

=

^

 � [g

1

t

; g

i

t

℄(q

1

) =

^

 (t)[[f; g℄; (adf)

i

g℄(q̂(t)):

Returning to the equality (7.1) we put �

i

t

= �

i

(q̂(t)) (i = 0; : : : n � 1); �

t

= �(q̂(t)); and

derive from (7.1):

g

n

t

(q

1

) = �

t

f(q

1

) +

n�1

X

i=0

�

i

t

g

i

t

(q

1

):

Lemma 7.1

g

n

t

=

n�1

X

i=0

�

i

t

g

i

t

: 2 (7.2)
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Proof. Chosing 
oordinates in � as in (5.3) (with k = 1) we only need to establish, that

�( � g

n

t

)=�xj

q

1
=

n�1

X

i=0

�

i

t

�( � g

i

t

)=�xj

q

1
+ �

t

�( � f)=�xj

q

1

for lo
al 
oordinates x = (x

1

; : : : x

n

) in the neighborhood of q

1

2 M . But this follows dire
tly

from (7.1) and the equalities ( g

i

t

)j

q

1

� 0; i = 0; : : : n� 1:

Let � be image under the 
anoni
al proje
tion of the ve
tor �elds Y , whi
h meet the


ondition  � [f; Y ℄(q

1

) = 0 and vanish at q

1

; � is Lagrangian plane in �: It follows from (7.1)-

(7.2), that � = �� spanfg

t

; t 2 Rg and for any � 2 R the ve
tors g

�

; g

1

�

: : : g

n�1

�

form the basis

of the subspa
e spanfg

t

; t 2 Rg = �: Let us emphasize, that the subspa
e � is not Lagrangian

and � de�nes a nondegenerate 
oupling between � and �.

Representing a x 2 � as x = z + �; where z 2 �; � 2 �; we may write the Ja
obi equation

(see (5.10)) in these 
oordinates as




0

t

( _z +

_

�) = �(g

1

t

; z + �)g

1

t

;

or




0

t

_z = �(g

1

t

; z)g

1

t

+ �(g

1

t

; �)g

1

t

;

_

� = 0: (7.3)

Evidently one of the solutions of this equation is: z

t

� g

t

; �

t

= 0:

We 
all

�

t a 
onjugate point of multipli
ity k > 0; for the abnormal geodesi
 q̂(t) = q

0

Æ e

tf

,

if for the equation (7.3) the spa
e of solutions, whi
h satisfy boundary 
onditions

z

0

= 0; z

�

t

k g

�

t

; �(g

0

; �

0

) = 0; (7.4)

is k�dimensional.

Let us put �

t

= �(g

t

; �

0

) and present z

t

in the form: z

t

=

P

n�1

i=0

z

i

t

g

i

t

: Then the equation

(7.3) 
an be transformed into the following system




0

t

( _z

1

+ �

1

t

z

n�1

) =

P

n�1

j=2




j

t

z

j

+

_

�; z

1

0

= 0

_z

j

+ �

j

t

z

n�1

= �z

j�1

; z

j

0

= 0; j = 2; : : : n� 1; (7.5)

�

(n)

=

P

n�1

i=0

�

i

t

�

(i)

; �

0

= 0:

(the equation for z

0

, whi
h enters neither (7.4) nor (7.5), is ommitted):

The multipli
ity of a 
onjugate point is dimension of the spa
e of those solutions of the

system (7.5), whi
h satisfy the 
onditions

z

i

�

t

= 0; i = 1; : : : n� 1: (7.6)

Summarizing the aforesaid we set following

Theorem 7.1 Assume that for starting at q

0

traje
tory q̂(t) = q

0

Æ e

tf

of 2-dimensional distri-

bution on an (n+ 2)�dimensional manifold the set above 
onditions i),ii) and iii) hold. Then:

1) q̂(t); t 2 [0; T ℄; is 
orank 1 abnormal geodesi
 path of the distribution;

2) it has �nite number (may be zero) of 
onjugate points

�

t

i

and multipli
ity of a 
onjugate

point

�

t is equal to the dimension of the spa
e of solutions of the system (7.5), whi
h satisfy the

boundary 
onditions (7.6);

3) Morse index of the abnormal geodesi
 is equal to the sum of multipli
ities of the 
onjugate

points, whi
h are lo
ated on (0; T );

4) nullity of the abnormal geodesi
 is equal to the multipli
ity of 
onjugate point at T (van-

ishes if T is not a 
onjugate point);

5) for the abnormal geodesi
 path to be rigid it is ne
essary, that (0; T ) does not 
ontain


onjugate points, and it is suÆ
ient, that (0; T ℄ does not 
ontain 
onjugate points. 2
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Proof. Statement 1) was established at the beginning of the Se
tion, �niteness of the set of


onjugate points and the statements 3),4) follow from strong regularity (see [21℄) of the abnormal

geodesi
 q̂(�); statement 5) follows from 
orank 1 variants of the Theorems 4.1 and 4.8 together

with 3) and 4).

Now we treat in more detailed way the 
ase n = 2; i.e. 2-dimensional distributions on

4-dimensional manifolds. Here the ve
tor �eld f; whi
h meets the 
ondition (7.1) exists and

is unique for any 2-dimensional distribution of maximal growth; su
h distributions de�ne so-


alled Engel stru
ture on 4-dimensional manifolds (readers 
an �nd in [11℄ a detailed survey of

di�erent problems 
onne
ted with these stru
tures). For n = 2 the system (7.5) takes form:

_z

1

= ��

1

t

z

1

+

_

�




0

t

; z

1

0

= 0;

::

�= �

0

t

� + �

1

t

_

�; �

0

= 0;

_

�

0

= 1: (7.7)

Besides

_


0

t

= d( [g

1

t

; g

t

℄)=dt =  [g

2

t

; g

t

℄ = �

1

t




0

t

; 


0

0

= 1:

Hen
e 


0

t

= e

R

t

0

�

1

�

d�

; and therefore

z

1

t

=

Z

t

0

1




0

�

e

�

R

t

�

�

1

�

d�

_

�

�

d� = �

t

e

�

R

t

0

�

1

�

d�

:

One sees, that

�

t is a 
onjugate point if and only if �

�

t

= 0: Multipli
ity of any 
onjugate point

equals to 1.

Therefore for the 2-dimensional 
ase the following 
orollary of the Theorem 7.1 is valid.

Corollary 7.2 For every 2-dimensional distribution of maximal growth on 4-dimensional man-

ifold M and for every point q

0

2 M there exists a 
orank 1 abnormal geodesi
 path q̂(t); (t 2

[0; T ℄) of the distribution starting at q

0

. Morse index of the 
orresponding abnormal geodesi
 is

equal to the number of lo
ated on (0; T ) zeros of the solution �(�) of the equation (7.7). For the

abnormal geodesi
 path to be rigid it is ne
essary (
orrespondingly, suÆ
ient), that there are no

zeros of �(�) on (0; T ) (
orrespondingly, on (0; T ℄). 2

8 Rigid Traje
tories of AÆne Control Systems

In the Se
tion we extend our approa
h onto the 
lass of aÆne 
ontrol systems

_q = f(q) +

r

X

i=1

g

i

(q)u

i

; q(0) = q

0

(8.1)

and derive rigidity 
onditions for extremals of these systems.

Here the drift ve
tor �eld f(q) and the 
ontrol ve
tor �elds g

i

(q); i = 1; : : : r; are C

1

on M:

Admissible 
ontrols u(�) = (u

1

(�); : : : u

r

(�)) 2 L

r

1

.

The material of this se
tion relates to the results of [7℄, where nonlinear Lagrange problem of

the Cal
ulus of Variations was treated, and also with [10℄, whi
h treated time-optimal problems

for aÆne 
ontrol systems.

We start with de�nition of rigidity for a given input û(t); t 2 [0; T ℄ of the aÆne 
ontrol

system (8.1), We assume û(�) to be 
ontinuous at T � 0. The extension of û(�) from [0; T ℄ onto

[0; T + Æ℄ by the 
onstant û(T ) will be denoted also by û(�). We assume that the starting at q

0

traje
tory q̂(�) of the system (8.1) driven by the 
ontrol û(�) exists on [0; T + Æ℄.

De�nition 8.1 A 
ontrol û(�) and the 
orresponding traje
tory q̂(�) of the 
ontrol system (8.1)

are 
alled rigid on [0; T ℄; if for some � > 0 no one (di�erent from û(�)) 
ontrol from Æ�neighbor-

hood of û(�) in L

r

1


an steer the system (8.1) from q

0

to q̂(T ) in a time T

0

2 [T � Æ; T + Æ℄: 2
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Following the approa
h of the Se
tion 4 we 
onsider for the system (8.1) a time�input/state

mapping F : R � L

r

1

! M ; F maps a pair (t; u(�)) 
onsisting of time moment t and an

admissible 
ontrol u(�) into the point q(t) of the traje
tory q(�) of the 
ontrol system (8.1).

It turns out that for (û(�); q̂(�); T ) to be rigid, (T; û(�)) has to be 
riti
al point of F: That

means ImF

0

j

(T;û(�))

6= T

q̂(T )

M; and there exists nonzero

^

 

T

2 T

�

q̂(T )

M annihilating ImF

0

j

(T;û(�))

:

For any su
h

^

 

T

one 
an transform the equality

^

 

T

F

0

� 0 into Hamiltonian form of the Euler-

Lagrange equation (
ompare with the Theorem 3.1), whi
h is extremality 
ondition for the path

(û(�); q̂(�)). It is more 
onvenient for us to set it this time as a De�nition.

De�nition 8.1 (Extremality) We 
all (û(�); q̂(�)) extremal pair for the aÆne 
ontrol system

(8.1) on [0; T ℄, if there exists an absolutely-
ontinuous 
ove
tor-fun
tion

^

 (�) on [0; T ℄) su
h

that the triple (û(�); q̂(�);

^

 (�)) :

1) satis�es Hamiltonian system

_q = �H=� ; q(0) = q

0

; (8.2)

_

 = ��H=�q; (8.3)

with an 'aÆne' Hamiltonian

H

f

(u; q;  ) =  � (f(q) +G(q)u); (8.4)

2)meets stationarity 
ondition

�H

f

�u

j

(û(�);q̂(�);

^

 (�))

=

^

 (�)G(q̂(�)) = 0; for almost all � 2 [0; T ℄; (8.5)

and 'transversality 
ondition'

H

f

(û(�); q̂(�);

^

 (�)) = 0; for almost all � 2 [0; T ℄: 2 (8.6)

We 
all û(�) extremal 
ontrol and q̂(�) extremal traje
tory of the 
ontrol system (8.1) on [0; T ℄.

The quadruple (û(�); q̂(�);

^

 (�); T ) is 
alled extremal of the 
ontrol system (8.1) on [0; T ℄.

Corank of an extremal path (û(�); q̂(�); T ) is the dimension of the spa
e of extremals, it

enters, or, equivalently, dimension of the spa
e of those

^

 (�); whi
h together with (û(�); q̂(�); T )

satisfy the De�nition (8.1), or, equivalently, 
orankF

0

j

(T;û(�))

at T

q̂(T )

M:

It follows from the Impli
it Fun
tion Theorem, that extremality is ne
essary for rigidity.

Proposition 8.1 A rigid path (û(�); q̂(�); T ) of the 
ontrol system (8.1) must be extremal pair

of the system. 2

To derive 2nd order rigidity 
onditions we have to involve again Goh and Generalized Leg-

endre Conditions along extremal. They are (
ompare with (4.11) and (4.15)):

^

 (�) � [Gv;Gw℄(q̂(�)) = 0; 8v; w 2 R

r

; (8.7)

and for all � 2 [0; T ℄ :




�

(v; v) =

^

 (�) � [Gv[

^

f

�

; Gv℄℄(q̂(�)) � 0; 8v 2 R

r

: (8.8)

Strong Generalized Legendre Condition (
ompare with (4.16)) looks like follows: for some

� > 0 and for all � 2 [0; T ℄ :




�

(v; v) =

^

 (�) � [Gv[

^

f

�

; Gv℄℄(q̂(�)) � �kvk

2

; 8v 2 R

r

: (8.9)

Following result is 'aÆne version' of the Proposition 4.3.

24



Proposition 8.2 (Goh and Legendre Ne
essary Rigidity Conditions) For an extremal

traje
tory of the aÆne 
ontrol system (8.1) to be rigid it is ne
essary, that any abnormal

geodesi
, it enters, satisfy the Goh 
ondition (8.7) and the Generalized Legendre Condition

(8.8). 2

Let us denote by �


�

the nonsingular symmetri
 (r � r)�matrix, whi
h 
orresponds to the

quadrati
 form 


�

(v; v) on R

r

. Let 


�1

ij

(�) be an ij�entry of the matrix �


�1

�

.

Following proposition is 'aÆne version' of the Theorem 4.4.

Proposition 8.2 (Regularity of Extremals for AÆne Systems) If Goh 
ondition (8.7)

and Strong Generalized Legendre Condition (8.9) hold along an extremal (û(�); q̂(�);

^

 (�); T ) of

the 
ontrol system (8.1), then the extremal 
ontrol û(�) is smooth and 
an be 
al
ulated as:

û

i

(�) = �

r

X

j=1




�1

ij

(�)

^

 (�) � [f; [f; g

j

℄℄(q̂(�)); i = 1; : : : r: 2

We de�ne 
orrespondingly 1st and 2nd variations of the system (8.1) along its extremal

(û(�); q̂(�);

^

 (�); T ) as the di�erential and the Hessian of the time�input/state mapping F (t; u(�)

at the point (T; û(�)) 2 R� L

r

1

:

The formulae are: for the �rst variation

F

0

j

(T;û(�))

(Æ�; u(�)) =

^

f

T

(q

1

)Æ� +

Z

T

0

Y

�

(q

1

)u(�)d�; (8.10)

and for the se
ond variation

2F

00

j

(T;û(�))

[

^

 

T

℄(Æ�; u(�)) =

^

 

T

� (

Z

T

0

[�

^

f

T

Æ� +

Z

�

0

Y

�

u(�)d�; Y

�

u(�)℄(q

1

)d�); (8.11)

with the domain

f(Æ�; u(�)) 2 (R � L

r

1

)j

^

f

T

(q

1

)Æ� +

Z

T

0

Y

�

(q

1

)u(�)d� = 0; (8.12)

where

^

f

�

(q) = f(q) +

r

X

i=1

g

i

(q)û

i

(�); Y

�

v = Ad(

�!

exp

Z

�

T

^

f

�

d�)Gv 8v 2 R

r

: (8.13)

We de�ne nullity and Morse index of extremal (û(�); q̂(�);

^

 (�); T ) as the dimension of the

kernel and negative index of the quadrati
 form (8:11)� (8:12). Morse index of extremal path

(û(�); q̂(�); T ) is minimum of the indi
es of the extremals (û(�); q̂(�);

^

 (�); T ), whi
h this path

enters.

The following Proposition is dire
t generalization of the Propositions 4.5 and 4.7.

Proposition 8.3 If Goh 
ondition (8.7) and Generalized Strong Legendre 
ondition (8.9) hold

along extremal (û(�); q̂(�);

^

 (�); T ) of the a�ine 
ontrol system (8.1), then:

1) the se
ond variation (8:11) � (8:12) 
an be extended by 
ontinuity onto the spa
e R �

H

r

�1

[0; T ℄ and is weak positive de�nite on some subspa
e of �nite 
odimension in R�H

r

�1

[0; T ℄;

i.e. admits on this subspa
e a lower estimate:

2F

00

j

(T;û(�))

[

^

 

T

℄(Æ�; u(�)) � 
(ku(�)k

2

�1

+ Æ�

2

); (8.14)

2)the kernel of the se
ond variation is 
ontained in R� (L

r

1

�H

r

�1

[0℄�H

r

�1

[T ℄); moreover

for an element (�; u(�)) of the kernel its se
ond 
omponent u(�) is C

1

on (0; T ): 2

The following two theorems are slight generalizations of the obtained in the Se
tion 4 rigidity


onditions for distributions.
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Theorem 8.4 (Ne
essary Rigidity Conditions for AÆne Systems) If a 
orank k extre-

mal path (û(�); q̂(�); T ) of the system (8.1) is rigid on [0; T ℄, then its Morse index should not

ex
eed k � 1. In parti
ular for a rigid 
orank 1 extremal path the index must vanish. 2

Theorem 8.5 (SuÆ
ient Rigidity Conditions for AÆne Systems) 1) If the se
ond vari-

ation along an extremal (û(�); q̂(�);

^

 (�); T ) of the a�ine 
ontrol system (8.1) is weak positive

de�nite, then the extremal path (û(�); q̂(�); T ) is rigid. 2)In parti
ular, if Goh 
ondition (8.7)

and Strong Generalized Legendre 
ondition (8.9) hold along the extremal (û(�); q̂(�);

^

 (�); T ) and

Morse index and nullity of the extremal both vanish, then the extremal path (û(�); q̂(�); T ) is

rigid. 2

To 
ompute Morse index and nullity whi
h play an important role for the rigidity 
onditions

for extremal paths of aÆne 
ontrol system (8.1) we have to repeat almost literally what was

done in the Se
tion 5. We refer to that Se
tion marking only minor di�eren
es.

Given an extremal (û(�); q̂(�);

^

 (�); T ) of the aÆne 
ontrol system (8.1), we de�ne linear spa
e

W (
ompare with (5.1)) as:

W = spanff

^

f

T

(q

1

)g [ fY

�

(q

1

)vj� 2 [0; T ℄; v 2 R

r

gg;

where

^

f

T

and Y

�

are de�ned by (8.13). EvidentlyW = ImF

0

j

(T;û(�))

and 
odimW = k is 
orank

of the extremal path (û(�); q̂(�); T ).

Introdu
ing like in the Se
tion 5 the symple
ti
 spa
e � (dim� = 2(n � k)); Lagrangian

plane � and denoting by f the 
anoni
al proje
tion of the ve
tor �eld

^

f

T

we see, that (5.4)-(5.5)

is as well symple
ti
 representation for the se
ond variation (8:11)� (8:12) of the aÆne 
ontrol

system (8.1).

Therefore the Ja
obi equation for the extremal (û(�); q̂(�);

^

 (�); T ) of the aÆne 
ontrol system

(8.1) has the same form (5.10) or (5.11). Introdu
ing isotropi
 subspa
e:

�

f

= spanff [Gvjv 2 R

r

g � �;

we de�ne Ja
obi 
urve in Lagrangian Grassmanian for the extremal (û(�); q̂(�);

^

 (�); T ) (
ompare

with the De�nition 5.1).

De�nition 8.2 (Ja
obi 
urve for extremal of aÆne system) Ja
obi 
urve 
orresponding

to an extremal of the aÆne 
ontrol system (8.1) is a 
urve � ! �

�

(� 2 [0; T ℄) in Lagrangian

Grassmanian L(�); whi
h 
oin
ides for � 2 [0; T ) with the starting at � traje
tory of the Ja
obi

equation (5.11) in L(�) and jumps at T � 0 to �

T

= �

�

f

T�0

= �

T�0

\ �

[

f

+ �

f

: 2

As for abnormal sub-Riemannian geodesi
s Morse index and nullity of the extremal of aÆne

system 
an be 
omputed via symple
ti
 invariants of the Ja
obi 
urve.

Theorem 8.6 (Index Theorem for Extremals of AÆne System) Let � ! �

�

(� 2 [0; T ℄);

be the Ja
obi 
urve, whi
h 
orresponds to an extremal (û(�); q̂(�);

^

 (�); T ) of the aÆne 
ontrol

system (8.1). Then for any subdivision �

s+1

= 0 = �

0

< �

1

< � � � < �

s

= T of � ! �

�

into

simple subar
s �j

[�

i

;�

i+1

℄

; (i = 0; : : : s� 1) Morse index of the extremal equals to

s

X

i=0

ind

�

(�

�

i

;�

�

i+1

)� (n� k); (8.15)

where k is the 
orank of the extremal path (û(�); q̂(�); T ): 2

Theorem 8.7 (Nullity Theorem for Extremals of AÆne System) Let � ! �

�

(� 2 [0; T ℄);

be the Ja
obi 
urve, whi
h 
orresponds to an extremal (û(�); q̂(�);

^

 (�); T ) of the aÆne 
ontrol

system (8.1). Then nullity of the extremal, i.e. the dimension of the kernel of the se
ond

variation (8:11)� (8:12), equals to dim(�

T

\ �): 2

Theorem 8.8 (Lo
al Rigidity for Extremals of AÆne System) Let an extremal

(û(�); q̂(�);

^

 (�); T ) of the aÆne 
ontrol system (8.1) meet Goh 
ondition (8.7) and Strong

Generalized Legendre Condition (8.9). Then for any small enough

�

t > 0 the restri
tions

(û(�)j

[0;

�

t℄

; q̂(�)j

[0;

�

t℄

;

�

t) of the extremal path (û(�); q̂(�); T ) on [0;

�

t℄ are rigid. 2
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9 Appendix: Isolated Points on Criti
al Levels of Smooth

Mappings and Rigidity of Abnormal Geodesi
s

In the Se
tion 3 we have represented the problem of �nding minimal geodesi
s as Lagrange

Problem of Cal
ulus of Variations, whi
h is in turn parti
ular 
ase of problem of relative ex-

tremum:

J (x) �! min; F (x) = 0; (9.1)

where J is a s
alar fun
tion(al) on a Bana
h spa
e X and F maps X into R

k

.

Ne
essary 1st order 
ondition for lo
al minimality of point x̂ 2 X for this problem is ex-

tremality of x̂. Namely, if x̂ is point of minimum and J ; F are Fre
het di�erentiable at x̂, then

there exists a nonzero pair of Lagrange multipliers (�

0

; �) 2 R

+

� R

k

�

; su
h that x̂ is 
riti
al

point for Lagrangian L = �

0

J (x)+�F (x) (Lagrange multipliers rule). We 
all su
h x̂ extremal

point and (x̂; �

0

; �) extremal for the problem (9.1).

Evidently an extremal point x̂ may enter di�erent extremals with di�erent Lagrange multi-

pliers; 
orank of an extremal point is the dimension of the spa
e of Lagrange multipliers, whi
h


orrespond to it.

An extremal (x̂; �

0

; �) is normal, whenever �

0

6= 0; and abnormal otherwise. We use the

notation (x̂; �) for abnormal extremals. If �

0

= 0; then the fun
tional J does not at all enter

the 1st-order 
ondition. Sin
e we suppose to deal only with abnormal extremals, then we may

at all forget about the fun
tional J and at on
e about the words 'abnormal' and 'extremal'.

A 
orank k abnormal extremal point is in fa
t a 
orank k 
riti
al point of the mapping F . We

avoid introdu
ing an extra word 'rigidity' for phenomenon of isolatedness of point x̂ on the level

F

�1

(0) of the mapping F , the phenomenon, we suppose to deal with in this Se
tion.

Certainly for x̂ to be isolated it is ne
essary to be 
riti
al, sin
e otherwise lo
ally in a small

neighborhood of x̂ the level F

�1

(0) is Bana
h manifold (without isolated points). We are going

to set ne
essary/suÆ
ient 
onditions for isolatedness of 
riti
al point x̂ on the 
riti
al level

F

�1

(0) of the mapping F .

Assuming that F is twi
e Fre
het di�erentiable at the point x̂ we involve into 
onsideration

the Hessian of F at the point x̂ (see [9℄). It is quadrati
 mapping F

00

(x̂) : kerF

0

j

x̂

! 
okerF

0

j

x̂

:

One 
an represent it as a bundle of quadrati
 forms

�! �F

00

(x̂)(�; �); � 2 kerF

0

j

x̂

; � ? ImF

0

j

x̂

;

with the domain kerF

0

j

x̂

.

We de�ne index and nullity of (x̂; �) as negative index and dimension of the kernel of the

quadrati
 form �F

00

(x̂)(�; �) on kerF

0

j

x̂

. Index of 
riti
al point x̂ is minfind�F

00

j� ? ImF

0

j

x̂

g.

We will show now, that index and nullity provide essential information about lo
al stru
ture

of the 
riti
al level F

�1

(0).

Theorem 9.1 (Isolated Points on Criti
al Levels: Ne
essary Condition) Assume, that

X is a Bana
h spa
e and let x̂ 2 X be a 
orank m 
riti
al point for the mapping F : X ! R

k

,

whi
h is twi
e Fre
het di�erentiable at x̂. Then for x̂ to be an isolated point of the set F

�1

(0),

its index 
an not ex
eed m� 1: 2

Proof of Theorem 9.1. We assume without loss of generality, that x̂ is the origin of X .

We denote by D and h 
orrespondingly the di�erential and the Hessian of the mapping F at

the origin. Suppose, that for any � 2 (ImD)

?

index of the quadrati
 form �h on kerD is � m:

We are going to prove that then x̂ = 0 is not isolated point of the set F

�1

(0):

The equation F (x) = 0 
an be represented as a system f(y; z) = 0; g(y; z) = 0, where

(y; z) = x is su
h splitting of x, that: i) z 
oordinatizes kerD; �F=�z = 0;

ii) dim f = dim y = rankD = k �m; rank�F=�yj

0

= rank�f=�yj

0

= rankD

Then in virtue of Impli
it Fun
tion Theorem the equation f(y; z) = 0 
an be resolved uniquely

w.r.t. y : y = y(z): Substituting y(z) into the equation g(y; z) = 0 we obtain an equation
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'(z) = g(y(z); z) = 0. Obviuously x = 0 is an isolated point of the set F

�1

(0); if and only if

z = 0 is an isolated point of '

�1

(0). Let us note, that '

0

(0) = 0 and hen
e we may investigate

now the mapping ', whose di�erential vanishes at the origin. To avoid additional notation we

will assume, instead of it, that D = F

0

j

0

= 0, and then h = F

00

j

0

is a quadrati
 mapping of X

into R

m

. Again we assume, that for any nonzero � 2 R

m

�

index of the quadrati
 form �h is

� m:

Now we will get rid of in�nite-dimensional spa
e X .

Lemma 9.2 Under the 
onditions of the Theorem 9.1 there exists a �nite-dimensional subspa
e

W � X; su
h that for any nonzero � 2 R

m

�

index of the quadrati
 form �hj

W

is � m: 2

Proof of Lemma 9.2. For any unit 
ove
tor

�

� 2 R

m

�

; there exists a m�dimensional

subspa
e W

�

�

� X; su
h that the restri
tion

�

�hj

W

�

�

is negative de�nite. For all �'s from some

small neighborhood 


�

�

of

�

� the quadrati
 forms �hj

W

�

�

are also negative de�nite. Choosing a

�nite 
overing of the sphere k�k = 1 by 
orresponding neighborhoods 


�

�

1

; : : :


�

�

s

we may take

W =W

�

�

1

+ � � �W

�

�

s

:

From now on we 
onsider W in pla
e of X or, all the same, assume dimX <1.

The following statement enables us to investigate the quadrati
 mapping h instead of F .

Lemma 9.3 If the 
one (h)

�1

(0) 
ontains a regular point of the quadrati
 mapping h : X !

R

m

, then 0 is not isolated point of the set F

�1

(0): 2

Proof. If y 2 h

�1

(0) is a regular point of h, then there exists a m�dimensional subspa
e

Z � X , su
h that hj

y+Z

: (y+Z)! R

m

is lo
al di�eomorphism at y. Sin
e h is homogeneous,

then the same holds for all points �

2

y; � 6= 0.

Consider the mapping �

�

(z) = h(y + �z); where z belongs to the unit sphere S

m�1

� Z.

Obviously h(�y + ��z) = �

2

�

�

(z) and, for small enough � > 0, the topologi
al degree of the

mapping �

�

=k�

�

k : S

m�1

! S

m�1

is +1 or -1. Sin
e the di�erentials of h at the points �y are

nondegenerate, then 9a > 0, su
h that for small enough � > 0; 8z 2 S

n�1

: kh(�y + ��z)k �

a�

2

�.

On the other side

kF (�y + ��z)� h(�y + ��z)k = o(�

2

)

and therefore for some � > 0 and small enough � > 0 topologi
al degree of the mapping

z �! F (�y + ��z)=kF (�y + ��z)k

is +1 or -1. Hen
e for every small enough � > 0 the equation F (�y+ ��z) = 0 has a solution z

�

belonging to the unit ball B

n

� R

n

and therefore 0 is not isolated point of the set F

�1

(0):

This Lemma allows us to deal with the quadrati
 mapping h instead of F . The 
on
lusion

of the Theorem 4.1 is implied by the following

Proposition 9.4 Let P : X ! R

m

be quadrati
 mapping (dimX < 1), su
h that ind�P �

m; 8� 2 R

m

�

n 0: Then P

�1

(0) 
ontains regular point of the mapping P: 2

Proof. Without loss of generality we may assume, that P

0

j

x

= 0 if and only if x = 0:

Indeed otherwise the 
ondition P

0

j

x

= 0 means, that x lies in the interse
tion of the kernels of

the (quadrati
 forms, whi
h are) 
omponents of P , and we may take quotient of X w.r.t. to

this interse
tion.

Let us start indu
tion w.r.t. m: For m = 1 the theorem was proved in [7℄. Taking m > 1

we will treat separately two 
ases.

i) P

�1

(0) 6= f0g: Let P (y) = 0 for some y 6= 0. Then P

0

j

y

6= 0 and �P

00

j

y


oin
ides

with the restri
tion of �P onto kerP

0

j

y

(� ? ImP

0

j

y

). Conditions of the Proposition imply

ind�P

00

j

y

� 
odim ImP

0

j

y

; 8� ? ImP

0

j

y

: Sin
e dim 
okerP

0

j

y

< m; then a

ording to the

indu
tive assumption the inverse image (P

00

j

y

)

�1

(0) 
ontains regular point and hen
e P

�1

(0)


ontains regular point.
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ii) P

�1

(0) = f0g: Then ImP is a 
losed 
one. Applying indu
tive assumption to the Hessians

P

00

j

y

for any y 6= 0 we obtain, that 8z 2 ImP n 0 the inverse image P

�1

(z) 
ontains regular

point of P and therefore ImP n 0 is open. This means that ImP = R

m

:

Let S be unit sphere in X . Then P=kPkj

S

: S ! S

m�1

is a surje
tive mapping. In virtue of

Sard theorem there exists regular value v of this mapping. If P (x) = av for some a > 0; then

rank(P j

S

)

0

x

� m� 1: Let a

v

= minfa > 0jav 2 P (S)g; a

v

> 0; sin
e P

�1

(0) = 0. Let x

v

2 S

and P (x

v

) = a

v

v. The pair (a

v

; x

v

) is point of lo
al minimum and normal extremal point for

the following problem of relative extremum:

a! min; P (x) � av = 0:

Standard 2nd-order ne
essary optimality 
ondition for this problem provides existen
e of � 2

R

m

�

n 0, su
h that:

�v � 0; �(P j

S

)

0

j

x

v

= 0; �(P j

S

)

00

j

x

v

� 0:

Dire
t 
omputation gives

1=2�(P j

S

)

00

j

x

v

(y) = �P (y)� jyj

2

�P (x

v

);

and hen
e �P (y) � 0 for all y 2 N = fy j y ? x

v

; P

0

j

x

v

y = 0g. ObviouslyN is a linear subspa
e

of 
odimension m in X . Sin
e �P (x

v

) = �v � 0 and x

v

is orthogonal and P�orthogonal to

N , then �P is nonnegative on N � spanfx

v

g and hen
e ind�P � m � 1, i.e. we 
ome to a


ontradi
tion, whi
h �nishes the proofs of the Proposition 9.4 and Theorem 9.1.

Now we are going to derive from the previous theorem the ne
essary rigidity 
ondition for

abnormal geodesi
s, whi
h was established in the Se
tion 4.

Proof of the Theorem 4.1. We 
onsider fx = (t; u(�)) 2 R � L

r

1

[0; T ℄j ju(t)j � 1g; x̂ =

(T; û(�)); and F = F (t; u(�)) be the (time�input)/state mapping. Sin
e our 
onsideration

is lo
al, we may 
oordinatize small neighborhood of q

1

= F ((T; û(�)) in M by R

n

and small

neighborhood of (T; û(�)) byX = R�L

r�1

1

[0; T ℄:The (time�input)/state mapping is not smooth

w.r.t. time parameter t but be
omes C

`

�smooth if we restri
t it on the spa
e of C

`

�smooth


ontrols u(�): Obviously the hessian of this restri
tion 
oin
ides with the 2nd variation (4.9)-

(4.10) and index of the 
riti
al point x̂ = (T; û(�)) for this restri
tion 
oin
ides with the one

from the De�nition 4.4.

Now the Theorem 4.1 follows from the Theorem 9.1.

Theorem 9.5 (Isolated Points on Criti
al Levels: SuÆ
ient Condition) Let the Bana
h

spa
e X be densely embedded into separable Hilbert spa
e H : X ,! H: Let a mapping

F : X ! R

m

be Fre
het di�erentiable at x̂ 2 X whi
h is a 
riti
al point of F : �F

0

(x̂) =

0 for some � 2 R

m

�

n f0g. Assume that for F the following Taylor formula at x̂

F (x̂+ x)� F (x̂) = F

0

(x̂)x+ F

00

(x̂)(x; x) + o(kxk

2

X

)

holds where F

00

(x̂)(x; x) is 
ontinuous quadrati
 mapping: F

00

: X ! R

m

: Let us 
hoose a


omplementary spa
e Z to kerF

0

(x̂) and represent any x 2 X as: x = z + �; z 2 Z; � 2

kerF

0

(x̂): If:

i) kF (x̂+ x)� F (x̂)� F

0

(x̂)xk = o(1)kxk

H

as kxk

X

! 0; (9.2)

ii) the quadrati
 form �F

00

(x̂)(�; �) admits 
ontinuous extension from kerF

0

(x̂) onto its 
om-

pletion in H and is H�positive de�nite on this 
ompletion, i.e. for some 
 > 0

�F

00

(x̂)(�; �) � 2
k�k

2

H

(9.3)

for � 2 kerF

0

(x̂);

iii) k�F (x̂+ �)� (�F (x̂) +

1

2

�F

00

(x̂)(�; �))k = o(1)k�k

2

H

; as k�k

X

! 0; (9.4)

for � 2 kerF

0

(x̂);

iv) k�F (x̂+ x)� (�F (x̂) +

1

2

�F

00

(x̂)(�; �))k = O(1)kxk

H

kzk+ o(1)k�k

2

H

; as kxk

X

! 0; (9.5)

then x̂ is an isolated point of the level set F

�1

(F (x̂)): 2
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Proof of the Theorem 9.5. Without loss of generality we may assume, that F (x̂) = 0

and x̂ is the origin of X: We are going to establish, that kF (x)k � �kxk

2

H

for some � > 0 and

all x from some small neighborhood of the origin in X .

Let us take for Z the �nite-dimensional orthogonal (in H) 
omplement to kerF

0

(0); F

0

(0)

maps Z isomorphi
ally onto the image F

0

(0)X and for some 
 > 0

kF

0

(0)zk � 
kzk 8z 2 Z: (9.6)

De�ning N = fy 2 R

m

j� � y = 0g we 
hoose a ve
tor � 2 R

m

su
h, that � � � = 1: Then

R

m

= R� +N and ImF

0

(0) � N:

If x = z + � then using Hadamard lemma we may present F (x) as

F (x) = �(�) + F

0

(0)z +A(x)z:

In virtue of (9.2), k�(�) +A(x)zk = o(1)(k�k

H

+ kzk) askxk

X

! 0:

Let us 
onsider the proje
tions of F (x) onto the ve
tor � and the subspa
e N ; they are

� � (�(�) +A(x)z)� and R(x) = F

0

(0)z +�

N

(�) +A

N

(x)z 
orrespondingly.

Fixing arbitrarily small � > 0 we may 
hoose a small neighborhood V in X su
h that for

some positive k and x 2 V :

k�

N

(�) +A

N

(x)zk � �kxk

H

; j� � (�(�) �

1

2

�F

00

(0)(�; �) +A(x)z)j � kkxk

H

kzk+ �k�k

2

H

:

It follows from (9.6) that

kR(x)k � max(0; (
� �)kzk� �k�k

H

); 8x 2 V;

j�(�(�) +A(x)z)j � max(0; (
 � �)k�k

2

H

� kkxk

H

kzk):

Putting 
 = 
� �; 
 = 
 � � we obtain

kF (x)k �

1

p

2

(max(0; 
kzk� �k�k

H

)) + max(0; 
k�k

2

H

� kk�k

H

kzk):

Without loss of generality we may assume that k(1 + 4�=
)4�=
 � 
=2:

Now if 
kzk � 4�k�k

H

then

kF (x)k �

1

p

2

(




2

kzk+ �k�k

H

) � �(�; 
)kxk

2

H

:

with �(�; 
) > 0:

Otherwise if 
kzk � 4�k�k

H

then

kF (x)k �

1

p

2

(
k�k

2

H

� kkxk

H

kzk) �

1

p

2

(
k�k

2

H

� k�k

2

H

k(1 + 4�=
)4�=
) �

� (
=2

p

2)k�k

2

H

� �(
; 
; �)kxk

2

H

with �(
; 
; �) > 0:

Basing on the Theorem 9.5 we shall prove the Theorem 4.8, whi
h provides suÆ
ient rigidity


ondition for abnormal geodesi
s.

Proof of the Theorem 4.8. We will verify the assumptions of the Theorem 9.5 for the

time�input/state mapping F . Sin
e our 
onsideration is lo
al i.e. regards small neighborhoods

of q

1

2 M of (T; û(�)) 2 f(t; u(�)) 2 R � L

r

1

[0; T ℄jju(t)j � 1g then 
oordinatizing these neigh-

borhoods by R

n

and X = R � L

r�1

1

[0; T ℄ 
orrespondingly taking H = R � H

r�1

�1

[0; T ℄; x =

(t; u(�)); x̂ = (T; û(�)); � =

^

 

T

and F = F (t; u(�)) being the (time�input)/state mapping. If

(T; û(�)) enters an abnormal geodesi
 (û(�); q̂(�);

^

 (�); T ); then (T; û(�)) is a 
riti
al point of F

and

^

 

T

2 R

n

�

(see above) is an annihilator of ImF

0

j

(T;û(�))

:
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Let us put

k(t; u(�))k

1

= jtj+ ku(�))k

L

1

; k(t; u(�))k

�1

= (jtj

2

+ ku(�))k

2

H

�1

)

1=2

and extend û(t) smoothly onto [0; T+1℄. The 
ondition (9.3) is full�lled by virtue of the positive

de�niteness of the 2nd variation. To verify other 
onditions it is useful to introdu
e another

representation of F: Re
all that

F (T + �; u(�)) = q

0

Æ

�!

exp

Z

T+�

0

Gû(�)d�Æ

�!

exp

Z

T+�

0

Y

T+�;�

u(�)d� =

= q

1

Æ

�!

exp

Z

T+�

T

Gû(�)d�Æ

�!

exp

Z

T+�

0

Y

T+�;�

u(�)d�;

where Y

t;�

v =

�!

exp

R

�

t

adGû(�)d�Gv:

Now we shall transform the 
hronologi
al exponential

�!

exp

R

T+�

0

Y

T+�;�

u(�)d� by means of

the integration by parts formula for a 
hronologi
al exponential, established in [20℄. We derive:

F (T + �; u(�)) = q

1

Æ

�!

exp

Z

T+�

T

Gû(�)d�Æ (9.7)

�!

exp

Z

T+�

0

((I �

Z

1

0

e

(1��) adY

T+�;�

v(�)

d�)Y

T+�;�

u(�)�

Z

1

0

e

(1��) adY

T+�;�

v(�)

d�

_

Y

T+�;�

v(�))d� Æ e

Gv(T+�)

(here

_

Y denotes the partial derivative �Y

t;�

=��).

Taking Volterra expansions for

�!

exp

R

T+�

T

Gû(�)d� and for the ordinary and 
hronologi
al

exponentials in the last formula we derive

F (T + �; û(�) + u(�)) = q

1

+ q

1

Æ (

^

f

T

� �

Z

T

0

_

Y

T+�;�

v(�)d� +Gv(T ))

+o(1)(j�j+ jv(T )j+ kv(�)k

L

2

) as k(�; u(�))k

1

! 0

from where the estimate (9.2) follows dire
tly.

To verify other estimates we will multiply (9.7) by � =

^

 

T

and simplify it getting rid of the

terms whi
h are more than quadrati
 in v(�) and therefore admit an estimate o(1)ku(�)k

2

�1

. We

obtain

^

 

T

(F (T + �; û(�) + u(�))� q

1

) =

^

 

T

q

1

Æ

�!

exp

Z

T+�

T

Gû(�)d�Æ

Æ(�I+

�!

exp

Z

T+�

0

�[Y

T+�;�

v(�); Y

T+�;�

u(�)℄ �

_

Y

T+�;�

v(�) + [

_

Y

T+�;�

v(�); Y

T+�;�

v(�)℄d� Æ e

Gv(T+�)

)

+o(1)k(�; u(�)k

2

�1

Taking into a

ount the 
ontinuity of

^

f� w.r.t. �; the equalities:

8u; v 2 R

r

^

 

T

[Y

T;�

v; Y

T;�

u℄(q

1

) = 0;

^

 

T

G(q

1

)u = 0;

^

 

T

Y

T;�

(q

1

)u =

^

 

T

_

Y

T;�

(q

1

)v = 0

and 
olle
ting in the rest term the terms of order > 2 in (�; u(�); v(�)) in the Volterra expansions

of the 
hronologi
al exponentials we derive:

^

 

T

(F (T + �; û(�) + u(�))� q

1

) =

=

^

 

T

q

1

Æ (

^

f

T

Æ

^

f

T

�

2

=2� �

Z

T

0

�=��j

0

_

Y

T+�;�

v(�)d� +

Z

T

0

[

_

Y

T;�

v(�); Y

T;�

v(�)℄d� +

^

f

T

�

Z

T

0

_

Y

T;�

v(�)d�

+

Z

T

0

Z

t

0

_

Y

T;�

v(�)d� Æ

_

Y

T;t

v(t)dt + �

^

f

T

Gv(T ) +

1

2

Gv(T ) ÆGv(T ) +O(k(�; u(�))k

1

k(�; u(�))k

2

�1

):
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Therefore we have established for the time�input/state mapping F the estimates (in the

notations of the previous theorem):

j�F (x̂+ x) � �F (x̂)j = O(1)kxk

2

H

; as kxk

X

! 0 (9.8)

k�F (x̂ + x)� (�F (x̂) +

1

2

�F

00

(x̂)(x; x))k = O(kxk

X

kxk

2

H

); as kxk

X

! 0 (9.9)

and the 
ontinuity of the quadrati
 form �F

00

(x̂)(x; x) on H: This implies (9.4).

To derive (9.5) from (9.8)-(9.9) it is enough to establish the estimate j�F

00

(x̂)(x; x) �

�F

00

(x̂)(�; �)j = O(1)kxk

H

kzk whi
h follows from the 
ontinuity of �F

00

(x̂)(x; x) in H:

Referen
es

[1℄ A.A. Agra
hev, Quadrati
 Mappings in Geometri
 Control Theory, in: Itogi Nauki

i Tekhniki; Problemy Geometrii, VINITI, A
ad. Nauk SSSR, Mos
ow, Vol.20,pp.11-

205,1988. English transl. in J.Soviet Math.,Vol.51,pp.2667-2734,1990.

[2℄ A.A. Agra
hev, Topology of Quadrati
 Mappings and Hessians of Smooth Mappings,

in: Itogi Nauki i Tekhniki; Algebra, Topologia, Geometria; VINITI, A
ad. Nauk SSSR,

Vol.26,pp.85-124,1988.

[3℄ A.A. Agra
hev, The Se
ond-Order Optimality Condition in the General Nonlinear

Case,Matem Sbornik, Vol. 102, pp.551-568, 1977. English transl. in: Math. USSR

Sbornik,Vol. 31, 1977.

[4℄ A.A.Agra
hev and R.V.Gamkrelidze, Se
ond-Order Optimality Condition for the Time-

Optimal Problem, Matem Sbornik, Vol.100,pp.610-643,1976. English transl. in: Math.

USSR Sbornik,Vol.29,pp.547-576,1976.

[5℄ A.A.Agra
hev and R.V.Gamkrelidze, Exponential Representation of Flows and Chrono-

logi
al Cal
ulus, Matem. Sbornik, Vol.107, pp.467-532,1978. English transl. in: Math.

USSR Sbornik, Vol.35, pp.727-785,1979.

[6℄ A.A. Agra
hev, R.V. Gamkrelidze and A.V. Sary
hev, Lo
al Invariants of Smooth Con-

trol Systems, A
ta Appli
andae Mathemati
ae, Vol.14,pp.191-237,1989.

[7℄ A.A.Agra
hev and A.V. Sary
hev, On Abnormal Extremals for Lagrange Variational

Problems, to appear in J.Mathemati
al Systems, Estimation and Control.

[8℄ V.I. Arnol'd,Mathemati
al Methods of Classi
al Me
hani
s, Springer-Verlag, New York-

Berlin, 1978.

[9℄ V.I. Arnol'd, A.N.Var
henko and S.M.Gusein-Zade, Singularities of Di�erentiable Map-

pings, Vol.1,Birkh�auser,Boston,1985.

[10℄ B.Bonnard and I.Kupka, Theorie de Singularites de l'Appli
ation Entree/Sortie et Opti-

malite des Traje
toires Singulieres dans le Probleme du Temps Minimal, Preprint,1990.

[11℄ V. Gershkovi
h, Engel Stru
tures on Four Dimensional Manifolds, University of Mel-

bourne, Department of Mathemati
s, Preprint Series No. 10, 1992.

[12℄ B.S.Goh, Ne
essary Conditions for Singular Extremals Involving Multiple Control Vari-

ables, SIAM J.Control, Vol.4, pp.716-731,1966.

[13℄ V.Guillemin and S.Sternberg, Geometri
 Asymptoti
s, Amer.Math.So
., Providen
e,

Rhode Island,1977.

[14℄ G.W.Haynes and H.Hermes, Nonlinear Controllability via Lie Theory, SIAM J. on

Control,Vol.8,pp.450-460,1970.

32



[15℄ H.J.Kelley, R.Kopp and H.G. Moyer, Singular Extremals, in: G.Leitman Ed., Topi
s in

Optimization, A
ademi
 Press, New York,N.Y.,pp.63-101,1967.

[16℄ A.J.Krener, The High-Order Maximum Prin
iple and its Appli
ations to Singular Ex-

tremals, SIAM J. on Control and Optimiz.,Vol.15,pp.256-293,1977.

[17℄ G.Lion and M.Vergne, The Weyl Representation, Maslov Index and Theta-series,

Birkh�auser,Boston,1980.

[18℄ R.Montgomery, Geodesi
s, Whi
h Do Not Satisfy Geodesi
 Equations, Preprint, 1991.

[19℄ M.Morse, The Cal
ulus of Variations in the Large, Amer.Math.So
.,New York,NY,1934.

[20℄ A.V. Sary
hev, Integral representation for the traje
tories of 
ontrol system with

generalized right-hand side (in Russian), Di�erentsialnye Uravnenia,Vol.24,pp.1551-

1564,1988. English transl.: Di�erential Equations, Vol.24, pp.1021-1031,1988.

[21℄ A.V.Sary
hev, The index of the se
ond variation of the 
ontrol system, Matemat.

Sbornik, Vol.113, pp.464-486, 1980. English transl. in: Math.USSR Sbornik, Vol.41,

pp.383-401, 1982.

[22℄ H.J.Sussmann, A Cornu
opia of Abnormal SubRiemannian Minimizers. Part I: the

Four-Dimensional Case, IMA Preprint Series #1073,1992.

[23℄ L.C.Young, Le
tures on the Cal
ulus of Variations and Optimal Control Theory,

Chelsea, New York, 1980.

33


