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Abstrat. Considering a smooth manifold M provided with a sub-Riemannian struture,

i.e. with Riemannian metri and ompletely nonintegrable distribution, we set for two given

points q

0

; q

1

2M the problem of �nding a minimal path out of those tangent to the distribution

(admissible) and onneting these points. Extremals of this variational problem are alled sub-

Riemannian geodesis and we single out the abnormal ones whih orrespond to the vanishing

Lagrange multiplier for the length funtional. These abnormal geodesis are not related to the

Riemannian struture but only to the distribution and, in fat, are singular points in the set

of admissible paths onneting q

0

and q

1

: Developing the Legendre-Jaobi-Morse-type theory of

2nd variation for abnormal geodesis we investigate some of their spei� properties suh as

rigidity - isolatedness in the spae of admissible paths onneting the two given points.

1 Introdution

The paper deals with abnormal sub-Riemannian geodesis. Let us remind that a sub-Riemannian

struture on a Riemannian manifold M is given by a ompletely non-integrable (or ompletely

non-holonomi, or possessing full Lie rank) distribution D on M: A loally Lipshitzian path

q(�) 2 W

1

1

[0; T ℄) (W

1

1

[0; T ℄ denotes the spae of Lipshitzian paths � ! q(�) on M) is alled

admissible if its tangents ly in D for almost all � 2 [0; T ℄: Given two points q

0

and q

1

we set

a problem of �nding weakly (or equivalently W

1

1

�loally) minimal admissible path onneting

q

0

with q

1

:

The problem looks like diret generalization of the lassial Riemannian ase, but in fat

there is an essential di�erene. Namely the spae of all loally Lipshitzian paths, whih onnet

q

0

and q

1

, has natural struture of Banah manifold. Critial points of the length funtional on

this manifold are Riemannian geodesis and all paths of minimal length are among them. On

the ontrary the spae of admissible paths, whih onnet q

0

and q

1

, is not in general a manifold;

it may have singularities. These singularities orrespond to so alled abnormal sub-Riemannian

geodesis, whih do not depend on Riemannian struture onM and are ompletely determined

by distribution D.

The term 'abnormal' omes from optimization theory, sine the problem of �nding minimal

admissible path an be obviously reformulated as a Lagrange problem of Calulus of Variations.

The extremals of the last problem are sub-Riemannian geodesis and, in partiular, abnormal

extremals, with vanishing Lagrange multiplier for the (length) funtional, are abnormal sub-

Riemannian geodesis.

There was a lot of ativity tended to elimination of abnormal sub-Riemannian geodesis.

Preprint [18℄ of R.Montgomery lists several (given by di�erent authors) false proofs of the fat,

that a minimal admissible path should orrespond to some normal sub-Riemannian geodesi.
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The preprint ontains also an important ounterexample to this laim (see also [22℄).

Main ontribution of the paper is kind of Legendre-Jaobi-Morse-type theory of 2nd variation

for abnormal geodesis and its impliations. Starting with the de�nition of 2nd variation along

an abnormal geodesi, we set 2nd-order neessary/suÆient minimality onditions for abnormal

geodesis. The results have similar form to the lassi Legendre-Jaobi minimality onditions of

Calulus of Variations, but do not involving length funtional, they are appearanes of di�erent

phenomenon, whih is 'degenerate' form of loal minimality. Namely, the 2-nd order suÆient

'minimality' ondition imply rigidity of abnormal geodesi path, whih is isolatedness up to

reparametrization of this path in W

1

1

�topology in the spae of all admissible paths, whih

onnet given end-points. Therefore the 2-nd order neessary/suÆient minimality onditions

are in fat neessary/suÆient rigidity onditions.

We go further and ompute nullity and index of an abnormal geodesi, whih are orre-

spondingly dimension of the kernel and negative index of the 2nd variation along the abnormal

geodesi. This in partiular enables us to verify the 2-nd order rigidity onditions globally, on

large time intervals. We use the Index and Nullity theorems to establish rigidity for several

partiular situations.

The paper is organized in following way. Setion 2 ontains preliminary material; of most im-

portane for further presentation are some notations from hronologial alulus and auxiliary

results on sympleti geometry. In Setion 3 we present Hamiltonian form of 'geodesi equation'

and introdue some invariants of geodesis. In Setion 4 we introdue 1st and 2nd variations

along abnormal geodesis and de�ne Morse index and nullity. Involving Goh and Generalized

Legendre Condition along abnormal geodesis we derive (Theorem 4.4) a suÆient ondition

for smoothness of abnormal geodesi and announe (Theorems 4.1/4.8) neessary/suÆient

onditions of rigidity. In Setion 5 we introdue (De�nition 5.1) Jaobi urve in Lagrangian

Grassmanian for an abnormal geodesi and ompute (Theorems 5.1 and 5.4) index and nul-

lity of abnormal geodesis via sympleti invariants (Maslov-type indies) of the Jaobi urve.

This enables us to establish (Theorem 5.5) loal rigidity for abnormal geodesis meeting Goh

and Strong Generalized Legendre Condition. In Setion 6 we desribe some lass of distribu-

tions whih do possess rigid abnormal geodesis (Theorem 6.1 and 6.2). In Setion 7 we give

more nie and simpli�ed presentation of Legendre-Jaobi formalism for abnormal geodesis of

2-dimensional distributions. In Setion 8 we investigate rigidity of trajetories for aÆne ontrol

systems (Theorems 8.4- 8.8). In Appendix (Setion 9) we represent neessary/suÆient ondi-

tions (Theorems 9.1/ 9.5) for isolatedness of ritial points of smooth mapping on ritial level

and use them to prove the neessary/suÆient onditions of rigidity for abnormal geodesis,

whih were established in the Setion 4.

The presentation is self-ontained, although we often refer to the paper [7℄, whih deals with

abnormal extremums for Lagrange problem of Calulus of Variations. One an �nd in that

paper instrutive analogies and details of some proofs.

In our work we were muh inspired by a disussion on abnormal sub-Riemannian geodesis

at the Conferene 'Geometri Methods in Nonlinear Optimal Control' (Sopron, Hungary ,July

1991) and also by papers [10, 18℄ and disussions with M.Kawsky, R.Montgomery and H.J.Suss-

mann. The �nal version of this paper was prepared when the seond author was visiting the

Faulty of Applied Mathematis at Twente University, Enshede, The Netherlands ; he is

grateful to the faulty sta� and espeially to H. Nijmeijer and A. van der Shaft for hospitality.

2 Preliminaries

In the paper we use notation and tehnial tools of hronologial alulus developed by A.A.

Agrahev and R.V. Gamkrelidze (see [5, 6℄).

We will identify C

1

di�eomorphisms P : M �! M with automorphisms of the algebra

C

1

(M) of smooth funtions on M: �(�) �! P� = �(P (�)). The image of a point q 2M under

a di�eomorphism P will be denoted by q Æ P:

Vetor �elds on M are 1-st order di�erential operators on M or arbitrary derivations of the
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algebra C

1

(M), i.e. R-linear mappings X : C

1

(M) �! C

1

(M), satisfying the Leibnitz rule:

X(��) = (X�)� + �(X�). Value X(q) of a vetor �eld X at a point q 2M lies in the tangent

spae T

q

M to the manifoldM at the point q. We denote by [X

1

; X

2

℄ Lie braket or ommutator

X

1

ÆX

2

�X

2

ÆX

1

of vetor �elds X

1

; X

2

. It is again a 1-st order di�erential operator and in

loal oordinates on M the Lie braket an be presented as

[X

1

; X

2

℄ = [

n

X

i=1

X

1

i

�=�x

i

;

n

X

i=1

X

2

i

�=�x

i

℄ =

n

X

i=1

(�X

2

i

=�xX

1

� �X

1

i

=�xX

2

)�=�x

i

:

This operation introdues in the spae of vetor �elds the struture of a Lie algebra denoted

Vet M . For X 2 VetM we use the notation adX for the inner derivation of Vet M :

(adX)X

0

= [X;X

0

℄;8X

0

2 Vet M .

For a di�eomorphism P we use the notation AdP for the following inner automorphism of

the Lie algebra Vet M : AdPX = P Æ X Æ P

�1

= P

�1

�

X . The last notation stands for the

result of translation of the vetor �eld X by the di�erential of the di�eomorphism P

�1

.

A ow on M is an absolutely ontinuous w.r.t. � 2 R urve � �! P

�

in the group of di�eo-

morphisms Di� M , satisfying the ondition P

0

= I (where I is the identity di�eomorphism).

We assume all time-dependent vetor �elds X

�

to be loally integrable with respet to � . A

time-dependent vetor �eld X

�

de�nes an ordinary di�erential equation _q = X

�

(q(�)); q(0) = q

0

on the manifold M ; if solutions of this di�erential equation exist for all q

0

2 M; � 2 R, then

the vetor �eld X

�

is alled omplete and de�nes a ow on M , being the unique solution of the

(operator) di�erential equation:

dP

�

=d� = P

�

ÆX

�

; P

0

= I: (2.1)

This solution will be denoted by P

t

=

�!

exp

R

t

0

X

�

d� , and is alled (see [5, 6℄) a right hronologial

exponential of X

�

. If the vetor �eld X

�

� X is time-independent, then the orresponding ow

is denoted by P

t

= e

tX

.

We introdue also Volterra expansion (or Volterra series) for the hronologial exponential.

It is (see [5, 6℄):

�!

exp

Z

t

0

X

�

d� � I +

1

X

i=1

Z

t

0

d�

1

Z

�

1

0

d�

2

: : :

Z

�

i�1

0

d�

i

(X

�

i

Æ � � �X

�

1

)

:

We will need only the terms of zero-, �rst- and seond-order in this expansion, whih are

�!

exp

Z

t

0

X

�

d� � I +

Z

t

0

X

�

d� +

Z

t

0

d�

1

Z

�

1

0

d�

2

(X

�

2

ÆX

�

1

) + � � � (2.2)

For time-independent X one obtains

e

tX

� I + tX + (t

2

=2)X ÆX + � � � (2.3)

One more tool from hronologial alulus is a 'generalized variational formula'(see [5, 6℄ for

its drawing):

�!

exp

Z

t

0

(

^

X

�

+X

�

)d� =

�!

exp

Z

t

0

^

X

�

d�Æ

�!

exp

Z

t

0

Ad(

�!

exp

Z

�

t

^

X

�

d�)X

�

d�: (2.4)

Applying the operator Ad(

�!

exp

R

�

0

^

X

�

d�) to a vetor �eld Y and di�erentiating

Ad(

�!

exp

R

�

0

^

X

�

d�)Y = (

�!

exp

R

�

0

^

X

�

d�) Æ Y Æ (

�!

exp

R

�

0

^

X

�

d�)

�1

w.r.t. � one omes to the equality

(see [5, 6℄):

d

d�

Ad(

�!

exp

Z

�

0

^

X

�

d�Y ) = Ad(

�!

exp

Z

�

0

^

X

�

d�) ad

^

X

�

Y; (2.5)
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whih is of the same form as (2.1). Therefore Ad(

�!

exp

R

�

0

^

X

�

d�) an be presented as an operator

hronologoal exponential

�!

exp

R

t

0

ad

^

X

�

d� whih for a time-independent vetor �eld

^

X

�

�

^

X

an be written as e

t ad

^

X

: These exponentials also admit Volterra expansions:

�!

exp

Z

t

0

adX

�

d� � I +

1

X

i=1

Z

t

0

d�

1

Z

�

1

0

d�

2

: : :

Z

�

i�1

0

d�

i

(adX

�

i

Æ � � � adX

�

1

)

�

� I +

Z

t

0

adX

�

d� +

Z

t

0

d�

1

Z

�

1

0

d�

2

(adX

�

2

Æ adX

�

1

) + � � � ; (2.6)

and

e

t adX

� I + t adX + (t

2

=2) adX Æ adX + � � � : (2.7)

In this new notation the generalized variational formula (2.4) an be rerepresented as:

�!

exp

Z

t

0

(

^

X

�

+X

�

)d� =

�!

exp

Z

t

0

^

X

�

d�Æ

�!

exp

Z

t

0

(

�!

exp

Z

�

t

ad

^

X

�

d�)X

�

d� =

=

�!

exp

Z

t

0

(

�!

exp

Z

�

0

ad

^

X

�

d�)X

�

d�Æ

�!

exp

Z

t

0

^

X

�

d�: (2.8)

A distribution D on M is a subbundle of tangent bundle TM , whih we identify with the

spae of its setions. For a distribution dimD

q

does not hange with q 2M .

Generalizations of distributions are di�erential systems or distributions with singularities

1

whih are subbundles with nononstant dimD

q

. We all di�erential system any C

1

(M)�sub-

module of VetM ; then distributions orrespond to projetive C

1

�modules. Loally one may

treat germ of distribution as free module.

If D is a di�erential system, then taking C

1

�modules generated by Lie brakets of order

� k; k = 1; : : : ; of the vetor �elds subjeted to D one obtains an expanding sequene of

di�erential systems:

D � D

2

= [D;D℄ � � � � D

k

= [D;D

k�1

℄ � � � � :

For any q 2M the sequene of subspaes

D

q

� � � � D

k

q

� T

q

M

is alled ag of the di�erential system D at the point q 2 M , while the sequene n

1

(q) �

� � �n

k

(q) � � � �, where n

i

(q) = dimD

i

q

, is alled growth vetor of the di�erential system D at

the point q. Di�erential system is alled ompletely nonholonomi or having full Lie rank at a

point q 2M if D

�

k

q

= T

q

M for some

�

k. Di�erential system is alled ompletely nonholonomi or

having full Lie rank if for some

�

k D

�

k

q

= T

q

M for all q 2M .

If D is a distribution (n

1

(q) � onst), then still D

k

may lak to be distributions (may have

singularities), sine the growth vetor of a distribution in general hanges with q. Distribution

is alled regular if its growth vetor is onstant for all q.

We also have to introdue some notions of sympleti geometry (see [8, 13, 17℄ for more

details). A sympleti struture in an even-dimensional linear spae � is de�ned by a nondegen-

erate bilinear skewsymmetri 2-form �(�; �): Two vetors �

1

; �

2

2 � are alled skeworthogonal,

written �

1

[�

2

; if �(�

1

; �

2

) = 0: If N is a subspae of �, let us denote by N

[

its skeworthogonal

omplement: N

[

= f� 2 � j �(�; �) = 0;8� 2 Ng: Evidently dimN + dimN

[

= dim�: A

subspae � � � is alled isotropi, when � � �

[

; and oisotropi, when � � �

[

: A subspae

� � � is alled Lagrangian plane, when �

[

= �: Suh subspaes have dimension

1

2

dim�. If �

is a Lagrangian plane and � is isotropi, then it is easy to prove, that (�\�

[

)+� = (�+�)\�

[

is a Lagrangian plane. We denote it by �

�

:

1

Not to be mixed with the di�erential systems determined by the di�erential forms; those have di�erent kind

of singularities
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The sympleti group Sp(�) is the group of those linear transformations of �; whih preserve

the sympleti form:

Sp(�) = S 2 GL(�) j �(S�

1

; S�

2

) = �(�

1

; �

2

) 8�

1

; �

2

2 �:

The elements of this group are alled sympleti transformations of �: The Lie algebra of the

sympleti group is:

sp(�) = A 2 gl(�) j �(A�

1

; �

2

) = �(A�

2

; �

1

) 8�

1

; �

2

2 �:

Let H be a real quadrati form on � and d

�

H be the di�erential of H at a point � 2 �:

Then d

�

H is a linear form on � whih depends linearly on �: For every � 2 � there exists a

unique vetor

!

H

(�) 2 � whih satis�es equality �(

!

H

(�); �) = d

�

H: It is easy to show that the

linear operator

!

H

: � ! � belongs to sp(�); and the mapping H !

!

H

is an isomorphism of

the spae of quadrati forms onto sp(�): The di�erential equation

_

� =

!

H

(�) is alled the linear

Hamiltonian system orresponding to the quadrati Hamiltonian H:

Denote by L(�) the Grassmanian of Lagrangian subspaes of �. This is a smooth manifold

of dimension

1

8

dim�(dim�+ 2):

Certainly sympleti transformations transform Lagrangian planes into Lagrangian ones,

hene the sympleti group ats on L(�): It is easy to show that it ats transitively.

Let us onsider a tangent spae T

�

L(�); � 2 L(�): To every quadrati form h on � there

orresponds a linear Hamiltonian vetor �eld

!

h

and a one-parameter subgroup t ! e

t

!

h

in

Sp(�): Let us onsider the linear mapping

h �! d(e

t

!

h

�)=dt j

t=0

of the spae of quadrati forms to T

�

L(�): This mapping is surjetive and its kernel onsists of

all quadrati forms whih vanish on �: Thus two di�erent quadrati forms orrespond to the

same vetor from T

�

L(�) if and only if the restritions of these forms on � oinide. Hene we

obtain a natural identi�ation of the spae T

�

L(�) with the spae of quadrati forms on �:

A tangent vetor � 2 T

�

L(�) is alled nonnegative if the orresponding quadrati form is

nonnegative on �: An absolutely ontinuous urve �

�

(� 2 [0; T ℄) in L(�) is alled nondereasing

if the veloities

_

�

�

2 T

�

�

L(�) are nonnegative for almost all � 2 [0; T ℄:

Treating the ation of sympleti group Sp(�) on L(�) one an easily verify, that pairs of

Lagrangian planes (�;�

0

) have only one invariant w.r.t. this ation: it is dim(� \ �

0

): For

triples of Lagrangian planes, there are more invariants.

Let �

1

;�

2

;�

3

be Lagrangian planes. Let us present a vetor � 2 (�

1

+ �

3

) \ �

2

as a sum

� = �

1

+ �

3

and onsider on (�

1

+�

3

) \�

2

properly de�ned quadrati form �(�) = �(�

1

; �

3

):

Maslov index of the triple (�

1

;�

2

;�

3

) is signature of �(�): It is an invariant of the ation of

sympleti group.

In [1℄ a bit di�erent invariant of a triple of Lagrangian planes (�

1

;�

2

;�

3

) was exploited for

omputation of Morse index for singular extremals.

De�nition 2.1 Consider the quadrati form �(�) = �(�

1

; �

3

) with the domain ((�

1

+ �

3

) \

�

2

)=

T

3

i=1

�

i

: A sum

1

2

dimker� + ind

�

�, where ind

�

� is negative inertia index of �; is an

invariant of the triple (�

1

;�

2

;�

3

) of Lagrangian planes. It is denoted by ind

�

2

(�

1

;�

3

) and is

alled Maslov-type index. 2

Let us note, that ker� = ((�

1

\ �

2

) + (�

2

\ �

3

))=

T

3

i=1

�

i

: We refer to [1℄ for a simple

formula onneting this Maslov-type index with Maslov index of the triple and for the proof of

the following 'triangle inequality':

ind

�

0

(�

1

;�

3

) � ind

�

0

(�

1

;�

2

) + ind

�

0

(�

2

;�

3

):
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It also follows diretly from the de�nition, that

ind

�

1

(�

1

;�

3

) =

1

2

dimker� =

1

2

(dim�

1

� dim(�

1

\ �

3

)): (2.9)

A ontinuous urve �(�) 2 L(�); 0 � � � 1; is alled simple if there exists � 2 L(�) suh

that �(�) \� = 0 8� 2 [0; 1℄:

Lemma 2.1 If �(�) 2 L(�); 0 � � � 1; is a simple nondereasing urve in L(�); and � 2

L(�); then

ind

�

(�(0);�(1)) = ind

�

(�(0);�(�)) + ind

�

(�(�);�(1)); 8� 2 [0; 1℄:2

Lemma 2.2 Let �

0

;�

1

2 L(�): There exist � 2 L(�) and neighborhoods V

0

3 �

0

;

V

1

3 �

1

in L(�) suh that whenever � 2 V

0

;�

0

2 V

1

and dim(� \ �

0

) = dim(�

0

\ �

1

)

then there exists a simple nondereasing urve �(�); � 2 [0; 1℄ suh that �(0) = �;�(1) =

�

0

; �(�) \� = 0 8� 2 [0; 1℄: 2

Both Lemmas are proved in [1℄.

De�nition 2.2 Let �(t); 0 � t � T; be a nondereasing urve in L(�) and 0 = t

0

< t

1

<

� � � < t

l

= T are suh, that the urves �(�) j

[t

i

;t

i+1

℄

; i = 0; : : : l � 1; are simple and � 2 L(�):

The expression

ind

�

�(�) =

l�1

X

i=0

ind

�

(�(t

i

);�(t

i+1

)) (2.10)

is alled Maslov index of the urve �(t) with respet to �: 2

It follows from the Lemma 2.1 that (2.10) does not depend on a hoie of t

1

< � � � < t

l�1

: If

the urve �(t) is losed (�(0) = �(T )); then ind

�

�(�) does not depend also on the hoie of �

(f. [1℄).

3 Normal and Abnormal Geodesis. Rigidity.

The problem of �nding minimal admissible path an be represented as following Lagrange

problem of the Calulus of Variations with free �nal time:

`(T; u(�)) =

R

T

0

hG(q(�))u(�); G(q(�))u(�)i

1=2

d� �! min; (3.1)

_q = G(q)u; q(0) = q

0

; u 2 R

r

; kuk = 1; (3.2)

q(T ) = q

1

: (3.3)

Here h�; �i stays for the inner produt in the tangent spaes T

q

M ; 'ontrol parameter' u be-

longs to the (r � 1)�dimensional unit sphere S

r�1

; the ontrols u(�) are measurable; G(q) =

(g

1

(q); : : : g

r

(q)) is a r�tuple of smooth vetor �elds, whih form a basis of the distribution D.

Sine our onsideration regards a small neighborhood of a nonsel�nterseting path on M , then

suh basis an always be hosen.

We investigate problem of weak minimality, i.e. whether a given time T and an admissible

ontrol û(�) supply (R� L

1

)-loal minimum for the problem ( 3.1)-(3.3).

Let us introdue lassial 1-st-order neessary ondition of weak optimality, for the Lagrange

problem of Calulus of Variations. This is Euler-Lagrange equation in Hamiltonian form.

Theorem 3.1 If a pair (T; û(�)) is weak minimizer for the problem ( 3.1)-(3.3), i.e. orre-

sponding trajetory q̂(�) (� 2 [0; T ℄) of (3.2) is W

1

1

�loally minimal admissible path, then there

exists a nonzero pair (

^

 

0

;

^

 (�)), where

^

 

0

� 0 is a onstant and

^

 (�) is an absolutely ontinuous
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ovetor-funtion on [0; T ℄; suh that

^

 (�) 2 T

�

q̂(�)

M and the 5-tuple (û(�); q̂(�);

^

 

0

;

^

 (�); T ) :

1) satis�es Hamiltonian system

_q = �H=� ; q(0) = q

0

; q(T ) = q

1

; (3.4)

_

 = ��H=�q; (3.5)

with a Hamiltonian

H(u; q;  

0

;  ) =

^

 

0

hG(q)u;G(q)ui

1=2

+  �G(q)u; (3.6)

2) meets stationarity ondition

�H

�u

j

(û(�);q̂(�);

^

 

0

;

^

 (�))

v = 0; 8v 2 T

û(�)

S

r�1

; for almost all � 2 [0; T ℄; (3.7)

and 'transversality ondition'

H(û(�); q̂(�);

^

 

0

;

^

 (�)) = 0; for almost all � 2 [0; T ℄: 2 (3.8)

De�nition 3.1 Sub-Riemannian geodesi is an extremal of the Lagrange problem (3.1)-(3.3),

i.e. a 5-tuple (û(�); q̂(�);

^

 

0

;

^

 (�); T ) meeting the onditions of the Theorem 3.1. Sub-Riemannian

geodesi is alled normal, if

^

 

0

6= 0, and abnormal, if

^

 

0

= 0: The orresponding triple

(û(�); q̂(�); T ) is alled sub-Riemannian geodesi path. 2

Remark. Obviously for any normal or abnormal sub-Riemannian geodesi

(û(�); q̂(�);

^

 

0

;

^

 (�); T ) its restrition (û(�)j

[0;t℄

; q̂(�)j

[0;t℄

;

^

 

0

;

^

 (�)j

[0;t℄

; t) to a subinterval [0; t℄ �

[0; T ℄ is also normal or abnormal sub-Riemannian geodesi orrespondingly.

Remark. A geodesi path (û(�); q̂(�); T ) may enter di�erent geodesis with di�erent

^

 

0

;

^

 (�):

De�nition 3.2 A orank of a geodesi path (û(�); q̂(�); T ) is dimemsion of the spae of pairs

(

^

 

0

;

^

 (�)); whih together with (û(�); q̂(�); T ) satisfy Theorem 3.1. 2

De�nition 3.3 A geodesi path (û(�); q̂(�); T ) is alled orank k abnormal geodesi path if the

spae of pairs (0;

^

 (�)), whih together with (û(�); q̂(�); T ) satisfy the Theorem 3.1, is k�dimensi-

onal. 2

Remark. One should take preautions, when determining orank of abnormal geodesi

path, sine in a k�dimensional linear spae of pairs (

^

 

0

;

^

 (�)) there is k� or (k�1)-dimensional

subspae of pairs with vanishing  

0

. Therefore it may happen, that orank k geodesi path is

orank (k � 1) abnormal geodesi path.

Whenever geodesi is abnormal, then the length funtional ` does not enter the minimality

onditions, given by the Theorem 3.1. No surprise that orresponding geodesi paths have not

too muh to do with the sub-Riemannian metri and minimality of length. It turns out that

they often exhibit a phenomenon alled in [23℄ rigidity.

De�nition 3.4 An admissible path q(�) of the distribution D with end-points q

0

and q

1

is

alled rigid if it is isolated up to a reparametrization in the metri of W

1

1

in the set P

q

1

q

0

of all

admissible paths, whih onnet q

0

and q

1

: 2

Rigid admissible paths are formally weakly minimal and analysis of the proof of the Theorem

3.1 shows, that the theorem is valid for the rigid paths as well; in addition one an take

^

 

0

= 0.

This leads to

Proposition 3.2 If an admissible path (û(�); q̂(�)) is rigid on [0; T ℄, then (û(�); q̂(�); T ) is an

abnormal geodesi path. 2
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Remark. As it is known ([14℄), admissible paths (without or with pregiven end-points) of a

ompletely nonholonomi distribution D are dense in metri of C

0

in the spae of all paths onM

(orrespondingly without or with pregiven end-points). Therefore an admissible path is never

isolated in the metri of C

0

, and hene strong (=C

0

�loal) minimality for sub-Riemannian

geodesis is another deal. We are going to perform results on strong minimality of abnormal

sub-Riemannian geodesis for 2-dimensional distributions in a forthoming paper.

To �nish with the 1st-order ondition given by the Theorem 3.1 let us note that in the

abnormal ase the Hamiltonian (3.6) degenerates into an 'abnormal' Hamiltonian

H =  �G(q)u: (3.9)

If we denote by V

?

û(�)

the orthogonal omplement to the vetor û(�) in R

r

, then the station-

arity ondition (3.7) for an abnormal geodesi takes form

^

 (�) �G(q̂(�))v = 0; 8v 2 V

?

û(�)

; 8� 2 [0; T ℄; (3.10)

and (3.8) beomes:

H(û(�); q̂(�);

^

 (�)) =

^

 (�) �G(q̂(�))û(�) = 0: (3.11)

Together with (3.10) it implies orthogonality of

^

 (�) to the distribution D at every point q̂(�) :

^

 (�) �G(q̂(�))v = 0; 8v 2 R

r

; 8� 2 [0; T ℄: (3.12)

4 Neessary/SuÆient Conditions for Rigidity of Abnor-

mal Sub-Riemannian Geodesis

In the previous Setion we have redued the problem of �nding minimal admissible (=tangent

to the distribution D) path between given points q

0

and q

1

; to the Lagrange problem (3.1)-(3.3).

We have formulated 1st-order neessary minimality ondition saying that the solutions of this

problem should be sought among geodesi paths. We have singled out the lass of abnormal

geodesis and de�ned what rigidity is. In this Setion we are going to introdue 2nd variation

and set 2-nd order neessary/suÆient onditions for rigidity of abnormal geodesi paths.

Let us start with de�nitions of �rst and seond variations along an abnormal geodesi

(û(�); q̂(�);

^

 (�); T ). Everywhere in this Setion we assume, that û(�) is ontinuous (from the left)

at T: Let us introdue a (time � input)/state mapping F : R � L

r

1

[0; T ℄ �! M; whih maps

a pair (t; u(�)) into the point q(t) of the trajetory q(�) of the system _q = G(q)u(�); q(0) = q

0

:

Obviously, F (t; û(�)) = q̂(�) and F (T; û(�)) = q̂(T ) = q

1

: We put

`(t; u(�)) =

Z

t

0

hG(q(�))u(�); G(q(�))u(�)i

1=2

d� ; ` : R� L

r

1

[0; T ℄! R:

A well known fat is that for (T; û(�)) 2 R � L

r

1

to be a minimizer for the Lagrange problem

(3.1)-(3.3) it must be ritial point of the mapping (`; F ): Indeed otherwise in virtue of the

Impliit Funtion Theorem the system of equations

`(t; u(�)) = `(T; û(�))� �; F (t; u(�)) = q

1

;

is loally (in a neighborhood of (T; û(�))) solvable for any suÆiently small � > 0; and hene q

0

and q

1

an be onneted by an admissible path of length `(T; û(�)) � � < `(T; û(�)): If a pair

(T; û(�)) is ritial point for the mapping (`; F ); i.e. the di�erential (`

0

; F

0

)j

(T;û(�))

: R�L

r

1

!

R�T

q

1

M is nonsurjetive, then there exists a pair (

^

 

0

;

^

 

T

) 2 R�T

�

q

1

M; whih annihilates the

image of (`

0

; F

0

)j

(T;û(�))

:

^

 

0

`

0

+

^

 

T

F

0

� 0: (4.1)

This equality is equivalent to the statement of the Theorem 3.1 with

^

 

T

being the end-point

value

^

 (T ) for the solution of the adjoint equation (3.5). If

^

 

0

= 0; then the funtional ` does
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not enter both (4.1) and the Theorem 3.1. In this ase the pair (T; û(�)) enters an abnormal

geodesi (û(�); q̂(�);

^

 (�); T ) or, equivalently, is ritial point of the mapping F:

To study abnormal geodesis (=ritial points of F ) we have to invoke (�rst terms of) Taylor

expansion for F (t; u(�)): Let us present F (t; u(�)) as hronologial exponential (see Setion 2 for

the notation):

F (t; u(�)) = q

0

Æ

�!

exp

Z

t

0

Gu(�)d�:

Putting u(�) = û(�) + v(�) and using the variational formula (2.4) we obtain

F (t; u(�)) = q

0

Æ

�!

exp

Z

t

0

G(û(�) + v(�))d� = q

0

Æ

�!

exp

Z

t

0

Gû(�)d�Æ

�!

exp

Z

t

0

Y

t;�

v(�)d�; (4.2)

where

Y

t;�

v = Ad

�!

exp

Z

�

t

Gû(�)d�Gv:

From the formula (2.5) it follows that

dY

t;�

=dt = � ad

^

f

t

Y

t;�

: (4.3)

Putting

Y

�

v = Y

T;�

v = Ad

�!

exp

Z

�

T

Gû(�)d�Gv; (4.4)

we ompute (ompare with [7℄) the �rst di�erential of F at the point (T; û(�)):

F

0

j

(T;û(�))

(Æ�; u(�)) = G(q

1

)û(T )Æ� +

Z

T

0

Y

�

(q

1

)u(�)d�; u(�) 2 V

?

û(�)

: (4.5)

If a pair (T; û(�)) is ritial point of F; then ImF

0

j

(T;û(�))

6= T

q

1

M; and there exists a nonzero

ovetor

^

 

T

2 T

�

q

1

M; whih annihilates ImF

0

j

(T;û(�))

: This implies

^

 

T

�G(q

1

)û(T ) = 0; (4.6)

and

^

 

T

�

Z

T

0

Y

�

(q

1

)u(�)d� = 0;

for all u(�) 2 L

r

1

[0; T ℄ suh that u(�) 2 V

?

û(�)

: In virtue of Dubois-Raymond Lemma the last

equality implies:

^

 

T

� Y

�

(q

1

)v = 0 8v 2 V

?

û(�)

; for almost all � 2 [0; T ℄: (4.7)

These onditions are equivalent to the onditions (3.10)-(3.11) of the Theorem 3.1 with the

'abnormal' Hamiltonian (3.9). Namely if we take the solution of the adjoint equation (3.5)

with the end-point value

^

 (T ) =

^

 

T

; then the ondition (4.7) is equivalent to the stationar-

ity ondition (3.7) and (4.6) implies, that the Hamiltonian H =  Gu; being onstant along

(û(�); q̂(�);

^

 (�)); vanishes. The orank of abnormal geodesi path (û(�); q̂(�); T ) oinides with

the orank of F

0

j

(T;û(�))

.

De�nition 4.1 The �rst di�erential F

0

j

(T;û(�))

: R � L

r

1

! T

q

1

M; at a ritial point (T; û(�))

is alled �rst variation along abnormal geodesi path (û(�); q̂(�); T ): It is alulated aording to

the formula (4.5) 2

Now we introdue seond variation along an abnormal geodesi (û(�); q̂(�);

^

 (�); T ). It is Hes-

sian, or quadrati di�erential of F , at the ritial point (T; û(�)) 2 R�L

r

1

(see [9℄). Choosing a

funtion � :M �! R; suh that d�j

q

1
=

^

 

T

; let us onsider a funtion �(t; u(�)) = �(F (t; u(�))):

Sine

^

 

T

annihilates ImF

0

j

(T;û(�))

; then (T; û(�)) is ritial point for this funtion.
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Let us ompute the quadrati term of Taylor expansion for �(t; u(�)) at (T; û(�)): Appealing

to the Volterra expansion ( 2.2) for right ronolologial exponential, we derive

�

00

j

(T;û(�))

(Æ�; u(�)) = ((

R

T

0

R

�

0

Y

�

u(�)d� Æ Y

�

(u(�)d� �

R

T

0

[Gû(T )); Y

1

�

u(�)℄d� +

+(Gû(T )) Æ (Gû(T ))

Æ�

2

2

+ (Gû(T ))Æ� Æ

R

T

0

Y

�

u(�)d�)�)(q

1

): (4.8)

(When arrying the omputation one should take into aount the equalities (3.8), (4.3) and

(4.7)).

When restriting the quadrati form (4.8) to the kernel of F

0

j

(T;û(�))

; we are able to subtrat

from (4.8) a vanishing value of

1

2

((Gû(T )Æ� +

Z

T

0

Y

�

u(�)d�) Æ (Gû(T )Æ� +

Z

T

0

Y

�

u(�)d�)�)(q

1

);

and transform (4.8) into

1

2

((

Z

T

0

[

Z

�

0

Y

�

u(�)d�; Y

�

u(�)℄d� + [�Gû(T )Æ�;

Z

T

0

Y

�

u(�)d� ℄�)(q

1

):

The last expression does not depend on hoie of � but only on

^

 

T

= d�j

q

1

and therefore

we ome to the

De�nition 4.2 The quadrati form

2F

00

j

(T;û(�))

[ 

T

℄(Æ�; u(�)) =

^

 

T

�

Z

T

0

[�Gû(T )Æ� +

Z

�

0

Y

�

u(�)d�; Y

�

u(�)℄(q

1

)d�; (4.9)

whose domain is subspae of R� L

r

1

de�ned by the ondition

G(q

1

)û(T )Æ� +

Z

T

0

Y

�

(q

1

)u(�)d� = 0; u(�) 2 V

?

û(�)

; � 2 [0; T ℄; (4.10)

is alled seond variation along the abnormal geodesi (û(�); q̂(�);

^

 (�); T ): 2

De�nition 4.3 Morse index of abnormal geodesi is negative index of the quadrati form

(4:9)� (4:10), i.e. maximal among the dimensions of the subspaes in its domain, on whih the

quadrati form is negative de�nite. 2

De�nition 4.4 Morse index of abnormal geodesi path is minimum of indies of those ab-

normal geodesis, whih this geodesi path enters, or minimum of indies of quadrati forms

2F

00

j

(T;û(�))

[

^

 

T

℄ for all possible

^

 

T

? ImF

0

j

(T;û(�))

: 2

We now set 2nd-order neessary rigidity ondition for orank k abnormal geodesis paths.

It follows from general neessary ondition for isolatedness of ritial point of smooth mapping

on ritial level. Formulation and proof of the general ondition (Theorem 9.1) as well as the

proof of the following Theorem 4.1 are given in the Appendix (Setion 9). Corresponding result

for orank 1 ase was established in [7℄.

Theorem 4.1 (Neessary Rigidity Condition for Abnormal Geodesis) For a orank

k abnormal geodesi path (û(�); q̂(�); T ) to be rigid its index should not exeed k�1. In partiular

index of a rigid orank 1 abnormal geodesi path must vanish. 2

Generally rigidity is stronger than weak minimality. But whenever all geodesis, whih a

geodesi path (û(�); q̂(�); T ) enters, are abnormal, then the onditions of the Theorem 4.1 are

neessary for weak minimality of the path. It follows from the Propositions 9.4 and 9.3 (see

Appendix).
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Proposition 4.2 (Neessary Minimality Condition for Abnormal Geodesis) Let

(û(�); q̂(�); T ) be a orank k abnormal geodesi path, suh that all geodesis it enters are abnor-

mal. Then for the geodesi path to be weakly minimal its index should not exeed k � 1: 2

It follows from the Theorem 4.1, that �niteness of index is neessary for rigidity. There-

fore we are going to invoke Conditions whih provide the �niteness for an abnormal geodesi

(û(�); q̂(�);

^

 (�); T ).

Denoting again by V

?

û(�)

the orthogonal omplement to û(�) in R

r

we introdue �rst of these

onditions: for almost all � 2 [0; T ℄

�=�u

d

d�

�H=�uj

û(�)

(v; w) =

^

 (�) � [Gv;Gw℄(q̂(�)) = 0 8v; w 2 V

?

û(�)

: (4.11)

In di�erent ontext it was introdued by B.S. Goh in [12℄ and we all it Goh neessary ondition.

Di�erentiating the identity (3.10) w.r.t. � one obtains for almost all � 2 [0; T ℄

0 =

d

d�

�H=�uj

û(�)

(w) =

^

 (�) � [Gû(�); Gw℄(q̂(�)) = 0 8w 2 V

?

û(�)

: (4.12)

and together with (4.11): for almost all � 2 [0; T ℄

^

 (�) � [Gv;Gw℄(q̂(�)) = 0 8v; w 2 R

r

: (4.13)

We will also refer to the last ondition as to Goh ondition. This ondition together with (3.12)

implies, that at every point q̂(�) of rigid abnormal geodesi (û(�); q̂(�);

^

 (�); T ) the ovetor

^

 (�)

has to be orthogonal to D

2

(q̂(�)) = [D;D℄(q̂(�)), spanned by the vetor �elds from D and their

Lie brakets of the 2nd order:

^

 (�) �Gv(q̂(�)) = 0;

^

 (�) � [Gv;Gw℄(q̂(�)) = 0; 8v; w 2 R

r

: (4.14)

Another neessary ondition, whih is alled (see [15, 4, 16℄) Generalized Legendre Condition,

is: for all � 2 [0; T ℄

�=�u

d

2

d�

2

�H=�uj

û(�)

(v; v) = 

�

(v; v) =

^

 (�) � [Gv; [Gû(�); Gv℄℄(q̂(�)) � 0 (4.15)

(when omputing this 4-th-order derivative we took into aount the identity (4.13)); see the

proof in [3, 2℄).

We summarize the aforesaid in following

Proposition 4.3 (Neessary Goh and Generalized Legendre Conditions) For an abnormal

geodesi path (û(�); q̂(�); T ) to be rigid the Goh ondition (4.13) and the Generalized Legendre

Condition (4.15) have to hold for some abnormal geodesi (û(�); q̂(�);

^

 (�); T ): 2

To set Jaobi-type onditions we need Strong Generalized Legendre Condition. It is (ompare

with (4.15)): for some � > 0 and for all � 2 [0; T ℄



�

(v; v) =

^

 (�) � [Gv[Gû(�); Gv℄℄(q̂(�)) � �kvk

2

; 8v 2 V

?

û(�)

: (4.16)

This last ondition, whih together with (4.13) is suÆient for �niteness of Morse index of

an abnormal geodesi, is not only essential for its rigidity but also provides smoothness and in

some ases uniqueness of the geodesi.

Theorem 4.4 (Regularity of Abnormal Geodesis) Let Goh ondition (4.11) and Strong

Generalized Legendre Condition (4.16) hold along an abnormal geodesi (û(�); q̂(�);

^

 (�); T ):

Then the orrespoding 'ontrol' û(�) and the trajetory q̂(�) are smooth on [0; T ℄: If in addi-

tion the vetor spae [D;D℄)(q

0

(orrespondingly [D;D℄(q

1

)) has odimension 1 in T

q

0
M (or-

respondingly in T

q

1

M), then no other abnormal geodesi path, starting at q

0

(orrespondingly,

�nishing at q

1

) may satisfy Goh ondition (4.11) and Generalized Legendre Conditions (4.15).

2
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Proof. Di�erentiating (4.13) w.r.t. � we obtain

^

 (�) � [Gû(�); [Gv;Gw℄℄(q̂(�)) = 0; 8v; w 2 R

r

;8� 2 [0; T ℄; (4.17)

and, in partiular,

^

 (�) � [Gû(�); [Gû(�); Gv℄℄(q̂(�)) = 0; 8v 2 R

r

;8� 2 [0; T ℄: (4.18)

Hene the points (û(�); q̂(�);

^

 (�)) of abnormal geodesi (û(�); q̂(�);

^

 (�)) must ly in the subset

of S

r�1

� T

�

M , de�ned by following system of relations:

�(u; q;  ) =  � [Gu; [Gu;G℄℄(q) = 0; (4.19)


(u; q;  ) =  � [Gv; [Gu;Gv℄℄(q) > 0; 8v 2 V

?

û(�)

: (4.20)

Here � : R

r

� T

�

M ! (R

r

)

�

; 
 : R

r

� T

�

M ! (R

r

)

�


 (R

r

)

�

:

The di�erential of the mapping � w.r.t. u at a point (û(�); q̂(�);

^

 (�)) is:

�

0

u

�u =

^

 (�) � [G�u; [Gû(�); G℄℄(q̂(�)) +

^

 (�) � [Gû(�)[G�u;G℄℄(q̂(�));

or sine in virtue of (4.17) the last addend vanishes:

�

0

u

j

(û(�);q̂(�);

^

 (�))

�u =

^

 (�) � [G�u[Gû(�); G℄℄(q̂(�)): (4.21)

Here �u 2 V

?

û(�)

' T

û

S

r�1

; but if we substitute �u = û(�) into (4.21), then in virtue of (4.18)

�

0

u

j

(û(�);q̂(�);

^

 (�))

û(�) = 0: In virtue of (4.16) �

0

u

j

(û(�);q̂(�);

^

 (�))

is nonsingular on V

?

û(�)

and hene

the equation �(u; q̂(�);

^

 (�)) = 0 an be loally (in a small neighborhood of (û(�); q̂(�);

^

 (�)))

uniquely solved w.r.t. u, presenting u as a smooth funtion u = u(q̂(�);

^

 (�)):

In fat the solution of the system (4.19)-(4.20) is globally unique, even more, there is no

other solution �u(q;  ) of the equation (4.19) suh that

^

 (�) � [Gv; [G�u;Gv℄℄(q̂(�)) is nonnegative

quadrati form on V

?

�u

: Indeed let us assume, that �(û(�); q̂(�);

^

 (�)) = �(�u; q̂(�);

^

 (�)) = 0:

Then on the interval onneting û(�) with �u there must be a point u

�

= �û(�) + (1��)�u (0 <

� < 1) suh that �

0

u

j

(u

�

;q̂(�);

^

 (�))

(û(�) � �u) = 0 or, sine �

0

u

j

(u

�

;q̂(�);

^

 (�))

is linear w.r.t. u

�

,

(��

0

u

j

(û(�);q̂(�);

^

 (�))

+ (1� �)�

0

u

j

(�u;q̂(�);

^

 (�))

)(û(�)� �u) = 0: (4.22)

The left-hand side of (4.22) belongs to R

r

�

; applying it to the vetor (û(�)� �u) 2 R

r

and taking

into aount, that �

0

u

j

(û(�);q̂(�);

^

 (�))

û(�) = �

0

u

j

(�u;q̂(�);

^

 (�))

�u = 0 we derive

0 = ��

0

u

j

(û(�);q̂(�);

^

 (�))

(�u; �u) + (1� �)�

0

u

j

(�u;q̂(�);

^

 (�))

(û(�); û(�)) = 0;

what may happen only if û(�) = ��u: But if û(�) = ��u; then the quadrati form

^

 (�) � [Gv[G�u;Gv℄℄(q̂(�)) is negative de�nite. Hene û(�) = �u:

Thus we have established, that for every � the solution û(�) of the system of relations

�(u; q̂(�);

^

 (�)) = 0; 
(u; q̂(�);

^

 (�)) � 0 is globally unique. Then the orresponding impliit

funtion u(q;  ), whih is de�ned by the system (4.19)-(4.20), is ontinuous and hene smooth

w.r.t. q;  and therefore u(q̂(�);

^

 (�)) is smooth funtion of � .

Assume, that odim[D;D℄(q

0

) = 1: Then, as we will prove now, there is no other geodesi

path, starting at q

0

and meeting Goh and Ceneralized Legendre Conditions (4.11) and (4.15).

Assume on the ontrary that there is another geodesi (�u(�); �q(�);

�

 (�); T ) whih starts at q

0

and meets the onditions (4.13) and (4.15). Then

�

 (0) = k

^

 (0); or sine the geodesi equaions

and the onditions (4.13) and (4.15) are homogeneous in

^

 ; we may think, that

�

 (0) =

^

 (0).

We have already established existene of a unique smooth funtion u(q;  ) de�ned on some

neighborhoodW of the point (q̂(0);

^

 (0)) suh that: û(�) = u(q̂(�);

^

 (�)); �u(�) = u(�q(�);

�

 (�)).

That means, that (q̂(�);

^

 (�)) and (�q(�);

�

 (�)) are loally (inW) solutions of the same Hamiltonian

12



system with the same starting points. Hene they oinide in W . Standard reasoning proves,

that the set of those t; for whih (û(�); q̂(�);

^

 (�)) and (�q(�); �q(�);

�

 (�)) oinide, is losed and

open in [0; T ℄ and hene is [0; T ℄ itself. The same reasoning is appliable to the geodesi paths

�nishing at the point q

1

:

Now we are going to set 2nd-order suÆient rigidity ondition for abnormal geodesis. It

involves the introdued above Goh and Generalized Strong Legendre Conditions, whih pro-

vide for the seond variation (4.9)-(4.10) weak positive de�niteness on some subspae of �nite

odimension in the domain (4.10) (see [1℄). To put it in a strit way, let us note, that if Goh

ondition (4.11) holds, then the quadrati form (4.9)-(4.10) an be ([1, Lemma 3.8℄) extended

by ontinuity onto subspae of �nite odimension in R � H

r

�1

[0; T ℄; the subspae is deter-

mined by the ondition (4.10). The notation H

r

�1

[0; T ℄ stays for Sobolev spae of order -1,

whih is dual spae to the spae H

r

1

[0; T ℄ of absolute-ontinuous funtions with square inte-

grable derivatives. The spae L

r

2

[0; T ℄ is densely embedded into H

r

�1

[0; T ℄. For any funtion

u(�) 2 L

r

2

[0; T ℄ � H

r

�1

[0; T ℄; whose primitive is v(�) =

R

�

0

u(�)d�; the H

�1

-norm of u(�) an be

de�ned as: ku(�)k

�1

= (jv(T )j

2

+ kv(�)k

2

L

2

)

1=2

: There is a diret estimate

ku(�)k

�1

� (T +

p

T )ku(�)k

L

2

:

Let us also note, that fast-osillating funtions have smallH

�1

�norms. Thus for a �nite interval

[0; T ℄: k sin �=Æk

�1

= O(Æ); for Æ ! 0; while k sin �=Æk

L

2

= T=2 + O(Æ); for Æ ! 0:

We de�ne weak positive de�niteness of a quadrati form in L

r

2

[0; T ℄ as its positive de�niteness

w.r.t. the norm of H

r

�1

[0; T ℄. We refer to [1℄ for the proof of the following

Proposition 4.5 If Goh ondition (4.11) and Generalized Strong Legendre Condition (4.16)

both hold along abnormal geodesi, then the extension of the seond variation (4.8) is weak

positive de�nite on some subspae of �nite odimension in its domain whih is linear subspae

of R � H

r

�1

[0; T ℄ determined by the ondition (4.10). On this subspae the seond variation

admits lower estimate:

2F

00

j

(T;û(�))

[ 

T

℄(Æ�; u(�)) � (ku(�)k

2

�1

+ Æ�

2

): 2

Corollary 4.6 Under the onditions of the Proposition the extended seond variation admits

on some subspae of �nite odimension in its domain a lower estimate

2F

00

j

(T;û(�))

[ 

T

℄(Æ�; u(�)) � (kv(�)k

2

L

2

+ Æ�

2

);

where v(�) =

R

�

0

u(�)d�: 2

Everywhere below we assume that Goh ondition (4.11) and Generalized Strong Legendre

ondition (4.16) hold along geodesis we deal with. This implies, that the negative indies of

the seond variation (4:9) � (4:10) and of its extension onto (subspae of) R � H

r

�1

[0; T ℄ are

�nite and oinide.

De�nition 4.5 Nullity of an abnormal sub-Riemannian geodesi (û(�); q̂(�);

^

 (�); T ) is the di-

mension of the kernel of the seond variation (4:9)� (4:10) in R�H

r

�1

[0; T ℄: 2

It turns out, that in fat under the assumptions, we have made, the kernel 'is almost on-

tained in R � L

r

1

, namely it is ontained in R � (L

r

1

�H

r

�1

[0℄ �H

r

�1

[T ℄); where H

r

�1

[0℄ and

H

r

�1

[T ℄ onsist of R

r

�valued Dira measures loated at 0 and T orrespondingly. Following

fat was established in [1℄.

Proposition 4.7 Under Generalized Strong Legendre Condition (4.16) and Goh ondition

(4.13) the kernel of the seond variation is ontained in R� (L

r

1

�H

r

�1

[0℄�H

r

�1

[T ℄); moreover

for an element (�; u(�)) of the kernel its seond omponent u(�) is C

1

on (0; T ): 2

Now we are able to set SuÆient Rigidity Condition for abnormal geodesis.
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Theorem 4.8 (SuÆient Condition of Rigidity for Abnormal Geodesis) If the seond

variation along abnormal geodesi (û(�); q̂(�);

^

 (�); T ) is weak positive de�nite, then the geodesi

path (û(�); q̂(�); T ) is rigid, i.e. isolated up to a reparametrization in the topology of W

1

1

in the

set of admissible paths, whih onnet q

0

and q

1

: 2

Corollary 4.9 If Goh ondition (4.11) and Generalized Strong Legendre Condition (4.16) hold

along abnormal geodesi (û(�); q̂(�);

^

 (�); T ) and its Morse index and nullity both vanish, then

the geodesi path (û(�); q̂(�); T ) is rigid. 2

The two results follow from general suÆient ondition for isolatedness of ritial points of

smooth mappings on ritial levels; formulation and proof of the general ondition (Theorem

9.5) as well as the proof of the Theorem 4.8 are to be found in the Appendix (Setion 9).

5 Morse Index and Nullity of Abnormal Sub-Riemannian

Geodesis

In the previous Setion we have set neessary (Theorem 4.1) and suÆient (Theorem 4.8)

onditions for the rigidity of abnormal geodesis. The orresponding statements involve Morse

index and nullity, and in this Setion we are going to ompute Morse index and nullity for

an abnormal geodesi. The sheme of the omputation is in many aspets similar to the

one presented in [7℄ for abnormal extremals of Lagrange Problem of Calulus of Variations.

Refering to that paper for more details, we still provide a selfontained exposition. The readers

are referred to the Setion 2 for notions and fats from sympleti geometry.

We start with the omputation of the Morse index. To this purpose we introdue sympleti

representation of the seond variation (4:9)�(4:10) along abnormal geodesi (û(�); q̂(�);

^

 (�); T ).

Let us put

W = spanffG(q

1

)û(T )g [ fY

�

(q

1

)vj� 2 [0; T ℄; v 2 V

?

û(�)

gg; (5.1)

where Y

�

is de�ned by (4.4). Evidently W � T

q

1

M oinides with an image ImF

0

j

(T;û(�))

of the

�rst variation (4.5). It follows from (4.6)-(4.7), that

^

 

T

annihilates W; and odim W = k is

orank of the abnormal geodesi (û(�); q̂(�);

^

 (�); T ).

Taking the spae E

W

of the vetor �elds, whose values at q

1

ly in W; let us onsider a

skewsymmetri bilinear form on E

W

:

^

 

T

� [X;X

0

℄(q

1

); 8X;X

0

2 E

W

: (5.2)

This form has kernel of �nite odimension in E

W

, whih is de�ned by equalities:

X(q

1

) = 0;

^

 

T

� (�X=��)(q

1

) = 0;8� 2 W:

Taking the quotient of E

W

w.r.t. this kernel, one obtains on the �nite-dimensional quotient

spae � a (indued from (5.2)) nondegenerate skewsymmetri bilinear form �(�; �): This form

de�nes sympleti struture on �: Diret alulation gives us dim� = 2dimW = 2(n� k): We

denote by X the image of an X 2 E

W

under the anonial projetion E

W

�! �:

Choosing loal oordinates (x

1

; : : : x

n

) : O �! R

n

on some neghborhood O of q

1

in M in

suh a way that x

i

(q

1

) = 0; (i = 1; : : : n) and the subspae W is de�ned by the equalities

x

1

= � � � = x

k

= 0 while

^

 

T

= ( 

1

; : : : ;  

k

; 0; : : : 0); we may represent the anonial projetion

X ! X as:

X =

P

n

i=1

X

i

(x)�=�x

i

! X =

(X

k+1

(0); : : : X

n

(0); �(

P

k

i=1

 

i

X

i

)=�x

k+1

j

0

; : : : �(

P

k

i=1

 

i

X

i

)=�x

n

j

0

): (5.3)
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The sympleti form �(X;Y ) an be then represented as:

�(X;Y ) =

n

X

j=k+1

(X

j

(0)�(

k

X

i=1

 

i

Y

i

)=�x

j

j

0

� Y

j

(0)�(

k

X

i=1

 

i

X

i

)=�x

j

j

0

):

Let us denote by � the image under the anonial projetion of the spae of those vetor

�elds, whih vanish at q

1

: Sine the Lie braket of two vanishing at q

1

vetor �elds also vanish

at q

1

, then � is Lagrangian plane.

Instead of notations Y

�

and Gû(T ) for the images of the vetor �elds Y

�

and Gû(T ) under

the anonial projetion E

W

! � we use below �

�

and ĝ orrespondingly. Aording to the

introdued above de�nitions of �(�; �) and �; we may represent the seond variation (4.9)-(4.10)

as:

2F

00

j

[T;û(�); 

T

℄

(Æ�; u(�)) =

Z

T

0

�(�ĝÆ� +

Z

�

0

�

�

u(�)d�;�

�

u(�))d�; (5.4)

and its domain as:

f(Æ�; u(�)) 2 R� L

r

1

jĝÆ� +

Z

T

0

�

�

u(�)d� 2 �g: (5.5)

Under new notations the Goh ondition (4.13) and Strong Generalized Legendre Condition

(4.16) take form:

�(�

�

u;�

�

v) = 0; 8u; v 2 R

r

; 8� 2 [0; T ℄; (5.6)

and



�

(u; u) = �(

_

�

�

u;�

�

u) � �juj

2

;8u 2 V

?

û(�)

; (5.7)

orrespondingly.

Now we will transform the formulae (5.4)-(5.5) for the seond variation, representing it as a

quadrati form in Æ� and v(�) =

R

�

0

u(�)d� instead of Æ�; u(�). To this end let us integrate (5.4)

by parts in suh a way, that u(�) is integrated:

2F

00

j

[T;û(�); 

T

℄

(Æ�; u(�)) =

R

T

0

�(�ĝÆ� +

R

�

0

�

�

u(�)d�

| {z }

dv

;�

�

u(�))d� =

R

T

0

�(�ĝÆ� +�

�

v(�);�

�

u(�))d�

| {z }

dv

�

R

T

0

�(

R

�

0

_

�

�

v(�)d�;�

�

u(�))d� =

R

T

0

�(

_

�

�

v(�);�

�

v(�))d� +

R

T

0

�(ĝÆ� +�

T

v(T ) +

R

�

0

_

�

�

v(�)d�;

_

�

�

v(�))d�:

When proeeding with this omputation we took into aount that

�(�

�

v(�);�

�

u(�)) = 0; �(ĝ;�

T

v(T )) = �(ĝ; Gv(T )) = 0

in virtue of Goh ondition (5.6).

The domain of the seond variation is:

f(Æ�; v(T ); v(�))jĝÆ� +Gv(T )�

Z

T

0

_

�

�

v(�)d� 2 �g: (5.8)

Let us put

� = spanfGvjv 2 R

r

g; �

%

= spanfGvjv 2 V

?

û(T )

g (�

%

� �): (5.9)

In virtue of Goh ondition (5.6) �(Gv;Gw) = �(�v;�w) = 0 and therefore � (and �

%

) is

isotropi subspae of � : � � �

[

:

Following [1℄ we introdue now Hamiltonian form of Jaobi equation for abnormal geodesis.

Considering the de�ned by (5.7) positive de�nite quadrati form 

�

(u; u) on V

?

û(�)

, let us put

�

�

for the nonsingular selfadjoint operator �

�

: V

?

û(�)

�! V

?

�

û(�)

; whih orresponds to 

�

:
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�

(u; v) = h�

�

u; vi; 8u; v 2 V

?

û(�)

: Taking an inverse operator �

�1

�

: V

?

�

û(�)

�! V

?

û(�)

; we de�ne

a bilinear form 

�1

�

on V

?

�

û(�)

as 

�1

�

(u

�

; v

�

) = h�

�1

�

u

�

; v

�

i; 8u

�

; v

�

2 V

?

�

û(�)

: Obviously for any

x 2 � the mapping u �! �(

_

�

�

�; x) de�nes a linear form on V

?

û(�)

; i.e. an element of V

?

�

û(�)

;

whih depends linearly on x 2 �: This means, that the orrespondene

x �!

1

2



�1

�

(�(

_

�

�

�; x))

de�nes a quadrati form on �:

Treating this quadrati form as time-dependent Hamiltonian on �; one may onsider on �

linear Hamiltonian system:

_x =

_

�

�

�

�1

�

(�(

_

�

�

�; x)); (5.10)

whih we all Jaobi equation for abnormal geodesi (û(�); q̂(�);

^

 (�); T ).

If for any � 2 [0; T ℄ the vetors u

1

(�); : : : u

r�1

(�) form suh basises in V

?

û(�)

; that



�

(u

i

(�); u

j

(�)) = Æ

ij

; (i; j = 1; : : : r � 1), then the equation an be presented as

_x =

r�1

X

i=1

�(

_

�

�

u

i

(�); x)

_

�

�

u

i

(�):

Sine a Hamiltonian ow preserves sympleti struture of �; then the Jaobi equation trans-

forms Lagrangian planes into Lagrangian ones. Therefore one may onsider the Hamiltonian

ow as a ow on Lagrangian Grassmanian L(�): It is generated by the following time-dependent

Hamiltonian system on L(�) :

_

� =

1

2



�1

�

(�(

_

�

�

�; x))j

�

(5.11)

(see Setion 2 for details).

De�nition 5.1 Jaobi urve � ! �

�

(� 2 [0; T ℄) orresponding to the abnormal geodesi

(û(�); q̂(�);

^

 (�); T ) is the urve in Lagrangian Grassmanian L(�), whih starts at �

0

= �,

oinides for � 2 [0; T ) with the starting at � trajetory of the Jaobi equation (5.11) and

jumps at � = T � 0 to �

T

= �

�

T�0

= �

T�0

\ �

[

+ �: 2

Basing on this de�nition we set

Theorem 5.1 (Index Theorem for Abnormal Geodesis) Let � ! �

�

be the Jaobi urve

in Lagrangian Grassmanian L(�); whih orresponds to abnormal geodesi (û(�); q̂(�);

^

 (�); T ):

Then for any subdivision �

s+1

= 0 = �

0

< �

1

< � � � < �

s

= T of � ! �

�

into simple subars

�j

[�

i

;�

i+1

℄

; (i = 0; : : : s� 1) Morse index of the abnormal geodesi is equal to

s

X

i=0

ind

�

(�

�

i

;�

�

i+1

)� (n� k); (5.12)

where k is orank of the abnormal geodesi path (û(�); q̂(�); T ): 2

Proof. We give sketh of the proof of this Theorem, referring for details to the performed

in [7℄ omputation of Morse index of an abnormal extremal for Lagrange problem of Calulus

of Variations.

Putting Æ� = 0 in (5.4)-(5.5), we obtain a quadrati form whih we all redued seond

variation. This quadrati form is a Hessian of input/state mapping (see [6℄) u(�)! F (T; u(�)):

Its domain has odimension 1 or 0 in the domain of the seond variation (5.4)-(5.5), hene its

index is not larger and di�ers at most by 1 from the index of the seond variation. It an be

represented as

2F

00

%

j

[T;û(�); 

T

℄

(0; u(�)) =

Z

T

0

�(

Z

�

0

�

�

u(�)d�;�

�

u(�))d�; (5.13)

16



with the domain

f(0; u(�))j

Z

T

0

�

�

u(�)d� 2 �g: (5.14)

We de�ne Jaobi urve for the redued 2nd variation following [1℄.

De�nition 5.2 Jaobi urve � ! �

%

�

(� 2 [0; T ℄) orresponding to the redued seond variation

(5.13)-(5.14) is the urve in the Lagrangian Grassmanian L(�); whih starts at �

%

0

= � oin-

ides for � 2 [0; T ) with the starting at � trajetory of the Jaobi equation (5.11) and jumps at

� = T � 0 to �

%

T

= (�

%

T

)

�

%

= �

%

T

\ �

[

%

+ �

%

: 2

The following Proposition providing formula for the index of the redued seond variation

(5.13)-(5.14) via Maslov indies of the Jaobi urve �

%

�

is orollary of the Theorem 1 in [1℄.

Proposition 5.2 (Index of the Redued Seond Variation). Let � ! �

%

�

(0 � � � T );

be Jaobi urve orresponding to the redued seond variation (5.13)-(5.14) along an abnormal

geodesi (û(�); q̂(�);

^

 (�); T ). Then for any subdivision �

m+1

= 0 = �

0

< �

1

< � � � < �

m

= T of

� �! �

%

�

into simple subars �

%

j

[�

i

;�

i+1

℄

; (i = 0; : : :m � 1) the negative index of the redued

seond variation (5.13)-(5.14) is equal to

m

X

i=0

ind

�

(�

%

�

i

;�

%

�

i+1

) + dim\

�2[0;T ℄

�

%

�

� (n� k); (5.15)

where k is orank of the abnormal geodesi path (û(�); q̂(�); T ): 2

Starting from the formula (5.15) one is able to ompute negative index of the seond variation

(5.4)-(5.5), by using following tehnial Lemma (see [1℄).

Proposition 5.3 Assume, that a quadrati form Q(�; �) is de�ned on a Hilbert spae and is

positive de�nite on a subspae of �nite odimension. Let N be a losed subspae of the Hilbert

spae, Q

N

be the restrition of Q on N ; and N

?

Q

be the Q-orthogonal omplement to N : N

?

Q

=

fyjB(x; y) = 0;8x 2 Ng; where B is orresponding to Q symmetri bilinear form. Then

indQ = indQ

N

+ indQj

N

?

Q

+ dim(N \N

?

Q

)� dim(N \ kerQ):2 (5.16)

To apply the result in our ase we take for the Hilbert spae H set of the pairs (Æ�; u(�)),

whih meet the ondition (5.5), for the subspae N the set of pairs (0; u(�)), whih meet the

ondition (5.14), and for Q the quadrati form (5.4). Evidently odimN � 1:

Following this line the authors have already omputed in [7℄ index of abnormal extremal

for Lagrange problem of Calulus of Variations. We have established in [7℄, that appearane of

additional term ĝÆ� in the seond variation (5.4)-(5.5) in omparison with the redued seond

variation (5.13)- (5.14) leads to a hange of the �nal 'jump' of the Jaobi urve, whih beomes

�

T

= (�

�

%

T�0

)

ĝ

= �

�

%

T�0

\ ĝ

[

+ spanfĝg: Sine ĝ 2 �

[

%

, then �

ĝ

%

= �

%

+ spanfĝg = � and also

(�

�

%

T�0

)

ĝ

== �

�

T�0

: Therefore we ome to the formula (5.12) ompleting the proof of the

Theorem 5.1. .

Now we set Nullity Theorem for abnormal geodesis. Its proof is similar to the given in [7℄

proof of Nullity Theorem for abnormal extremals of Lagrange problem.

Theorem 5.4 (Nullity Theorem for Abnormal Geoesis) Let � �! �

�

be the Jaobi

urve in Lagrangian Grassmanian L(�); whih orresponds to a orank k abnormal geodesi

(û(�); q̂(�);

^

 (�); T ): Then nullity of the abnormal geodesi, i.e. the dimension of the kernel of

the seond variation (5.4)-(5.5), is equal to dim(�

T

\ �): 2

What follows is orollary of the Theorems 5.1 and 5.4 (ompare with the Corollary 5.5 in

[7℄).
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Theorem 5.5 (Loal Rigidity Condition for Abnormal Geodesis) Let an abnormal

geodesi (û(�); q̂(�);

^

 (�); T ) meet Goh ondition (4.11) and Strong Generalized Legendre Con-

dition (4.16). Then for any small enough

�

t > 0 the restritions (û(�)j

[0;

�

t℄

; q̂(�)j

[0;

�

t℄

;

�

t) of the

geodesi path (û(�); q̂(�); T ) on [0;

�

t℄ are rigid. 2

Proof. Let us note �rstly, that orank of the restritions (û(�)j

[0;

�

t℄

; q̂(�)j

[0;

�

t℄

;

�

t) is integer-

valued non-dereasing funtion of t, and hene for small enough t > 0 all the restritions have

the same orank k > 0.

We are going to prove, that both index and nullity along any restrition

(û(�)j

[0;t℄

; q̂(�)j

[0;t℄

;

^

 (�)j

[0;t℄

; t) vanish and then apply the Corollary 4.9.

To ompute the index of the restrition (û(�)j

[0;t℄

; q̂(�)j

[0;t℄

;

^

 (�)j

[0;t℄

; t) let us onsider orre-

sponding nondereasing Jaobi urve �

�

j

[0;t℄

, in Lagrangian Grassmanian. Sine �\� = 0 then

� \ �

�

= 0 for any small enough � > 0 and therefore dim(�

�

�

\ �

�

) = onst for small � > 0:

Then aording to the Lemma 2.2 there exist t > 0 and a Lagrangian plane � suh that for any

� 2 [0; t℄ �

�

an be onneted with �

�

�

by a simple nondereasing urve �

�

(s); 0 � s � 1 suh

that �

�

(s)\� = 0; 8s 2 [0; 1℄: Then the onatenation of the urve �j

[0;t℄

with the orrespond-

ing urve �

t

(s) is also simple and evidently nondereasing. Aording to the Proposition 5.2

and Theorem 5.1 index of the (having orank 1) restrition (û(�)j

[0;t℄

; q̂(�)j

[0;t℄

;

^

 (�)j

[0;t℄

; t) equals

ind

�

(�;�

t

) + ind

�

(�

t

;�

�

t

) + ind

�

(�

�

t

;�)� (n� 1);

where �

�

t

= �

t

\�

[

+�: Aording to the Lemma 2.1 ind

�

(�;�

t

)+ind

�

(�

t

;�

�

t

) = ind

�

(�;�

�

t

)

for all small enough t > 0 and we obtain for the Morse index the expression:

ind

�

(�;�

�

t

) + ind

�

(�

�

t

;�)� (n� 1) =

= 2

1

2

(n� 1� dim(�

�

t

\ �))� (n� 1) = � dim(�

�

t

\ �) � 0:

Being nonnegative this Morse index must vanish. That implies also dim(�

�

t

\�) = 0; i.e. in

virtue of the Theorem 5.4 nullity of the restrition (û(�)j

[0;t℄

; q̂(�)j

[0;t℄

;

^

 (�)j

[0;t℄

; t) also vanishes.

6 Distributions Exhibiting Rigidity Phenomenon

We are going to desribe some lass of distributions, for whih rigid abnormal geodesi paths

do exist. We will onsider germs of smooth r�dimensional distributions in R

n

: It turns out

that some onditions on growth vetors of the distributions provide existene of rigid geodesi

paths.

Theorem 6.1 Let n � 2r; q

0

2M: Then in the set of 2-jets at q

0

of distributions D satisfying

the ondition

dimD

2

q

� 2r � 1 (6.1)

there is an open subset, suh that for any distribution D satisfying the ondition (6.1) with 2-jet

lying in this subset, there exists a rigid admissible path starting at q

0

: 2

Generi 2-dimensional distributions on n�dimensional manifold M with n � 4 not only

meet the onditions of the Theorem 6.1, but possess stronger property.

Theorem 6.2 For any germ at a point q

0

2 M of 2-dimensional distribution D; suh that

D

3

q

0

6= D

2

q

0

; there exists rigid admissible path starting at q

0

: 2

Proof of the Theorem 6.1. Let us assume that a distribution D meeting the onditions

of the Theorem 6.1 is spanned by the vetor �elds g

1

; : : : g

r

, while

D

2

= spanfg

1

; : : : g

r

; [g

1

; g

2

℄; : : : [g

1

; g

r

℄g: (6.2)
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Assume that for some  

0

2 T

�

q

0

M n 0, annihilating D

2

the ((r � 1)� r)�matrix

A

 

=

0

B

�

 [g

1

; [g

1

; g

2

℄℄

.

.

.

 [g

1

; [g

1

; g

r

℄℄

� � �

 [g

r

; [g

1

; g

2

℄℄

.

.

.

 [g

r

; [g

1

; g

r

℄℄

1

C

A

;

has the maximal rank (r� 1): Then it holds also for a nonzero  lose to  

0

and there exists a

smoothly depending on  solution u( ) = (u

1

( ); : : : u

r

( )) 2 R

r

n0 of the systems A

 

u( ) = 0;

Without loss of generality we may assume u( 

0

) = (1; 0 : : : 0):

Assume in addition that the quadrati form

L

 

0

(v

2

; : : : ; v

r

) =  

0

[[Gu( 

0

); Gv℄; Gv℄(q

0

) =

r

X

i;j=2

 

0

[[g

1

; g

i

℄; g

j

℄(q

0

)v

i

v

j

is positive de�nite. Hene for  lose to  

0

in T

�

M the quadrati forms

L

 

(v) =  [[Gu( ); Gv℄; Gv℄(q) (6.3)

are also positive de�nite on the orthogonal omplements V

 

to u( ) in R

r

:

Any distribution meeting the onditions of the theorem and with 2-jet belonging to a small

enough neighborhood of the 2-jet of D meets the above mentioned assumptions as well.

For any suh distribution let us introdue a Hamiltonian h(q;  ) =

P

r

i=1

u

i

( ) g

i

(q): We

shall demonstrate that some subar of the starting at (q

0

;  

0

) trajetory (q̂(�);

^

 (�)) of the

orresponding Hamiltonian system is an abnormal geodesi, whih meets Goh and Strong Gene-

ralized Legendre Conditions.

The Strong Generalized Legendre Condition along a small subar starting at (q

0

;  

0

) is

implied by the positive de�niteness of the quadrati forms (6.3). We have to verify, that

 ? D

2

along the trajetory. In virtue of (6.2) it is enough to establish the equalities

 g

i

�  [g

1

; g

i

℄ � 0; i = 1; : : : ; r:

along the trajetory.

Let us put h

i

(t) =  g

i

(q̂(t);

^

 (t)); h

1i

(t) =  [g

1

; g

i

℄(q̂(t);

^

 (t)); (i = 1; : : : ; r) and ompute

_

h

i

;

_

h

1i

:

Sine h =

P

r

j=1

u

j

( )h

j

, then

_

h

i

= fh; h

i

g(q̂(t);

^

 (t)) = f

r

X

j=1

u

j

h

j

; h

i

g(q̂(t);

^

 (t)) =

=

r

X

j=1

u

j

( )fh

j

; h

i

g(q̂(t);

^

 (t)) +

r

X

j=1

fu

j

; h

i

gh

j

(q̂(t);

^

 (t)):

In virtue of (6.2) [g

j

; g

i

℄ lies in the linear span of vetor �elds g

1

; : : : g

r

; [g

1

; g

2

℄; : : : [g

1

; g

r

℄;

hene

fh

j

; h

i

g =  [g

i

; g

j

℄ =

r

X

k=2

�

k

(x) [g

1

; g

k

℄ =

r

X

k=2

�

k

h

1k

;

and therefore

_

h

i

(q̂(t);

^

 (t)) =

r

X

j=1

fu

j

; h

i

gh

j

(q̂(t);

^

 (t)) +

r

X

j=1

v

j

( )h

1j

(q̂(t);

^

 (t)): (6.4)

Also

_

h

1i

(q̂(t);

^

 (t)) = fh; h

1i

g(q̂(t);

^

 (t)) = f

r

X

j=1

u

j

h

j

; h

1i

g(q̂(t);

^

 (t)) =
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=

r

X

j=1

(u

j

 [g

j

; [g

1

; g

i

℄℄(q̂(t);

^

 (t)) + fu

j

; h

1i

gh

i

)(q̂(t);

^

 (t)) =

= A

 

u( )(q̂(t);

^

 (t)) +

r

X

j=1

fu

j

; h

1i

gh

i

(q̂(t);

^

 (t)) =

r

X

j=1

fu

j

; h

1i

gh

i

(q̂(t);

^

 (t)): (6.5)

Therefore the funtions h

i

(q̂(t);

^

 (t)); h

1i

(q̂(t);

^

 (t)); (i = 1; : : : r) satisfy the linear system

of di�erential equations (6.4)-(6.5), and sine

h

i

(q

0

;  

0

) =  

0

g

i

(q

0

) = h

1i

(q

0

;  

0

) =  

0

[g

1

; g

i

℄(q

0

) = 0; i = 1; : : : r;

then

h

i

(q̂(t);

^

 (t)) = h

1i

(q̂(t);

^

 (t)) � 0 (i = 1; : : : ; r):

We have established that the abnormal geodesi (q̂(�);

^

 (�)) satis�es the onditions of the The-

orem 5.5 and therefore is rigid.

To �nish the proof of the Theorem 6.1 we only have to onstrut at least one r�dimensional

distribution D, with the growth vetor and the basis meeting all the assumptions we have done.

Let q

0

= 0

R

n

and R

n

= f(x; y; z)jx 2 R

r

; y 2 R

r

; z 2 R

n�2r

g: Let us put

g

1

= �=�x

1

; g

i

= �=�x

i

+ x

1

�=�y

i

+ y

i

�=�y

1

; i = 2; : : : ; r � 1;

g

r

= �=�x

r

+ x

1

�=�y

r

+ y

r

�=�y

1

+

n�2r

X

j=1

x

j+1

1

�=�z

j

:

The vetor �elds g

1

; : : : ; g

r

span germ of r�dimensional distribution of full Lie rank. In addition:

[g

1

; g

i

℄ = �=�y

i

; i = 2; : : : ; r � 1; [g

1

; g

r

℄ = �=�y

r

+

n�2r

X

j=1

(j + 1)x

j

1

�=�z

j

;

[g

i

; g

j

℄ = 0; i; j = 2; : : : r; [g

1

; [g

1

; g

i

℄℄ = 0; i = 2; : : : ; r � 1;

[g

1

; [g

1

; g

r

℄℄ is linear ombination of �=�z

j

, and [[g

1

; g

i

℄; g

j

℄ = Æ

ij

�=�y

1

; where Æ

ij

is Kroneker

symbol. All the above mentioned assumptions will hold if we hoose  

0

suh that

 

0

�=�x

i

=  

0

�=�z

j

= 0; i; j = 1; : : : ; r;  

0

�=�y

i

= 0; i = 2; : : : ; r;  

0

�=�y

1

= 1:

Proof of the Theorem 6.2. One an always hoose vetor �elds f; g, whih span D and

a ovetor  

0

2 T

�

q

0

M n 0, in suh a way, that following onditions hold:

 

0

f(q

0

) =  

0

g(q

0

) =  

0

[f; g℄(q

0

) =  

0

[f; [f; g℄℄(q

0

) = 0;

 

0

[g; [f; g℄℄(q

0

) > 0 (6.6)

(it is enough to hose  

0

? D

2

;  

0

6? D

3

and, when neessary, multiply  

0

by -1). The

inequality (6.6) holds for all  lose to  

0

in T

�

M . Considering the equation

�( ; u) =  [f + gu; [f; g℄℄(q) = 0

we note, that, sine  

0

[g; [f; g℄℄(q

0

) > 0 then loally the equation �( ; u) = 0 has smooth solu-

tion u( ) = ( [f; [f; g℄℄(q))=( [g; [f; g℄℄(q)); u( 

0

) = 0: As in the proof of the previous theorem

some subar of starting at (q

0

;  

0

) trajetory of Hamiltonian system with the Hamiltonian

h =  (f + gu( )) is abnormal geodesi, whih meets Goh and Strong Generalized Legendre

Condition and hene is rigid.
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7 Abnormal Geodesis for 2-dimensional Distributions:

Few More Steps

In this Setion we deal with abnormal geodesis for 2�dimensional smooth distributions. For

this ase we are able to proeed further with the omputation of Morse index and nullity and

obtain elegant representation of the Jaobi equation and haraterization of onjugate points.

Let us onsider a 2�dimensional distribution D on a (n+2)�dimensional manifold; let the

vetor �elds f; g 2 VetM span D. Assume that:

i) the vetor �elds

f; g; [f; g℄; : : : (adf)

n�1

g

are linearly independent at every point of the domain we treat;

ii) (adf)

n

g an be presented as a linear ombination with C

1

�oeÆients of these n + 1

vetor �elds:

(adf)

n

g = �f +

n�1

X

i=0

�

i

(adf)

i

g (�; �

i

2 C

1

(M)): (7.1)

Then the trajetories of the vetor �eld f are orank 1 abnormal geodesis for the distribution

D. Let us onsider distribution (free C

1

(M)�module of vetor �elds)

V = spanff; g; [f; g℄; : : : (adf)

n�1

gg;

and assume, that:

iii) in the treated domain

[[f; g℄g℄℄(q) 62 V (q):

Let  be a 1�form on the domain, de�ned by the onditions:

 ? V;  [[f; g℄g℄ = 1:

We shall derive Jaobi equation for the abnormal geodesi, whih orresponds to the vetor

�eld f . We denote by q̂(�) = q

0

Æ e

tf

the starting at q

0

= q̂(0) trajetory of f ; q̂(T ) = q

1

:

Following the approah of the Setion 5 let us onsider skewsymmetri bilinear form (v

1

; v

2

)!

 � [v

1

; v

2

℄(q

1

); v

1

; v

2

2 V: Taking quotient of V w.r.t. the kernel of this form we obtain a

2(n + 1)�dimensional sympleti spae �

0

: We redue the sympleti spae onsidering the

(2n + 1)�dimensional skeworthogonal omplement to the anonial projetion ĝ of the vetor

�eld f onto �

0

and then taking quotient of �

0

w.r.t. spanfĝg. The result is denoted further

by �; it is 2n�dimensional sympleti spae with skewsalar produt denoted by �. We again

denote by Y the image of a vetor �eld Y 2 V under the anonial projetion V ! �.

We are going to introdue speial oordinates in � and to derive one more representation of

the Jaobi equation (5.10).

Let us put for i � 0

g

t

= e

(t�T )adf

g; g

i

t

= e

(t�T )adf

(adf)

i

g = �

i

g

t

=�t

i

;



i

t

=

^

 � [g

1

t

; g

i

t

℄(q

1

) =

^

 (t)[[f; g℄; (adf)

i

g℄(q̂(t)):

Returning to the equality (7.1) we put �

i

t

= �

i

(q̂(t)) (i = 0; : : : n � 1); �

t

= �(q̂(t)); and

derive from (7.1):

g

n

t

(q

1

) = �

t

f(q

1

) +

n�1

X

i=0

�

i

t

g

i

t

(q

1

):

Lemma 7.1

g

n

t

=

n�1

X

i=0

�

i

t

g

i

t

: 2 (7.2)
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Proof. Chosing oordinates in � as in (5.3) (with k = 1) we only need to establish, that

�( � g

n

t

)=�xj

q

1
=

n�1

X

i=0

�

i

t

�( � g

i

t

)=�xj

q

1
+ �

t

�( � f)=�xj

q

1

for loal oordinates x = (x

1

; : : : x

n

) in the neighborhood of q

1

2 M . But this follows diretly

from (7.1) and the equalities ( g

i

t

)j

q

1

� 0; i = 0; : : : n� 1:

Let � be image under the anonial projetion of the vetor �elds Y , whih meet the

ondition  � [f; Y ℄(q

1

) = 0 and vanish at q

1

; � is Lagrangian plane in �: It follows from (7.1)-

(7.2), that � = �� spanfg

t

; t 2 Rg and for any � 2 R the vetors g

�

; g

1

�

: : : g

n�1

�

form the basis

of the subspae spanfg

t

; t 2 Rg = �: Let us emphasize, that the subspae � is not Lagrangian

and � de�nes a nondegenerate oupling between � and �.

Representing a x 2 � as x = z + �; where z 2 �; � 2 �; we may write the Jaobi equation

(see (5.10)) in these oordinates as



0

t

( _z +

_

�) = �(g

1

t

; z + �)g

1

t

;

or



0

t

_z = �(g

1

t

; z)g

1

t

+ �(g

1

t

; �)g

1

t

;

_

� = 0: (7.3)

Evidently one of the solutions of this equation is: z

t

� g

t

; �

t

= 0:

We all

�

t a onjugate point of multipliity k > 0; for the abnormal geodesi q̂(t) = q

0

Æ e

tf

,

if for the equation (7.3) the spae of solutions, whih satisfy boundary onditions

z

0

= 0; z

�

t

k g

�

t

; �(g

0

; �

0

) = 0; (7.4)

is k�dimensional.

Let us put �

t

= �(g

t

; �

0

) and present z

t

in the form: z

t

=

P

n�1

i=0

z

i

t

g

i

t

: Then the equation

(7.3) an be transformed into the following system



0

t

( _z

1

+ �

1

t

z

n�1

) =

P

n�1

j=2



j

t

z

j

+

_

�; z

1

0

= 0

_z

j

+ �

j

t

z

n�1

= �z

j�1

; z

j

0

= 0; j = 2; : : : n� 1; (7.5)

�

(n)

=

P

n�1

i=0

�

i

t

�

(i)

; �

0

= 0:

(the equation for z

0

, whih enters neither (7.4) nor (7.5), is ommitted):

The multipliity of a onjugate point is dimension of the spae of those solutions of the

system (7.5), whih satisfy the onditions

z

i

�

t

= 0; i = 1; : : : n� 1: (7.6)

Summarizing the aforesaid we set following

Theorem 7.1 Assume that for starting at q

0

trajetory q̂(t) = q

0

Æ e

tf

of 2-dimensional distri-

bution on an (n+ 2)�dimensional manifold the set above onditions i),ii) and iii) hold. Then:

1) q̂(t); t 2 [0; T ℄; is orank 1 abnormal geodesi path of the distribution;

2) it has �nite number (may be zero) of onjugate points

�

t

i

and multipliity of a onjugate

point

�

t is equal to the dimension of the spae of solutions of the system (7.5), whih satisfy the

boundary onditions (7.6);

3) Morse index of the abnormal geodesi is equal to the sum of multipliities of the onjugate

points, whih are loated on (0; T );

4) nullity of the abnormal geodesi is equal to the multipliity of onjugate point at T (van-

ishes if T is not a onjugate point);

5) for the abnormal geodesi path to be rigid it is neessary, that (0; T ) does not ontain

onjugate points, and it is suÆient, that (0; T ℄ does not ontain onjugate points. 2
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Proof. Statement 1) was established at the beginning of the Setion, �niteness of the set of

onjugate points and the statements 3),4) follow from strong regularity (see [21℄) of the abnormal

geodesi q̂(�); statement 5) follows from orank 1 variants of the Theorems 4.1 and 4.8 together

with 3) and 4).

Now we treat in more detailed way the ase n = 2; i.e. 2-dimensional distributions on

4-dimensional manifolds. Here the vetor �eld f; whih meets the ondition (7.1) exists and

is unique for any 2-dimensional distribution of maximal growth; suh distributions de�ne so-

alled Engel struture on 4-dimensional manifolds (readers an �nd in [11℄ a detailed survey of

di�erent problems onneted with these strutures). For n = 2 the system (7.5) takes form:

_z

1

= ��

1

t

z

1

+

_

�



0

t

; z

1

0

= 0;

::

�= �

0

t

� + �

1

t

_

�; �

0

= 0;

_

�

0

= 1: (7.7)

Besides

_

0

t

= d( [g

1

t

; g

t

℄)=dt =  [g

2

t

; g

t

℄ = �

1

t



0

t

; 

0

0

= 1:

Hene 

0

t

= e

R

t

0

�

1

�

d�

; and therefore

z

1

t

=

Z

t

0

1



0

�

e

�

R

t

�

�

1

�

d�

_

�

�

d� = �

t

e

�

R

t

0

�

1

�

d�

:

One sees, that

�

t is a onjugate point if and only if �

�

t

= 0: Multipliity of any onjugate point

equals to 1.

Therefore for the 2-dimensional ase the following orollary of the Theorem 7.1 is valid.

Corollary 7.2 For every 2-dimensional distribution of maximal growth on 4-dimensional man-

ifold M and for every point q

0

2 M there exists a orank 1 abnormal geodesi path q̂(t); (t 2

[0; T ℄) of the distribution starting at q

0

. Morse index of the orresponding abnormal geodesi is

equal to the number of loated on (0; T ) zeros of the solution �(�) of the equation (7.7). For the

abnormal geodesi path to be rigid it is neessary (orrespondingly, suÆient), that there are no

zeros of �(�) on (0; T ) (orrespondingly, on (0; T ℄). 2

8 Rigid Trajetories of AÆne Control Systems

In the Setion we extend our approah onto the lass of aÆne ontrol systems

_q = f(q) +

r

X

i=1

g

i

(q)u

i

; q(0) = q

0

(8.1)

and derive rigidity onditions for extremals of these systems.

Here the drift vetor �eld f(q) and the ontrol vetor �elds g

i

(q); i = 1; : : : r; are C

1

on M:

Admissible ontrols u(�) = (u

1

(�); : : : u

r

(�)) 2 L

r

1

.

The material of this setion relates to the results of [7℄, where nonlinear Lagrange problem of

the Calulus of Variations was treated, and also with [10℄, whih treated time-optimal problems

for aÆne ontrol systems.

We start with de�nition of rigidity for a given input û(t); t 2 [0; T ℄ of the aÆne ontrol

system (8.1), We assume û(�) to be ontinuous at T � 0. The extension of û(�) from [0; T ℄ onto

[0; T + Æ℄ by the onstant û(T ) will be denoted also by û(�). We assume that the starting at q

0

trajetory q̂(�) of the system (8.1) driven by the ontrol û(�) exists on [0; T + Æ℄.

De�nition 8.1 A ontrol û(�) and the orresponding trajetory q̂(�) of the ontrol system (8.1)

are alled rigid on [0; T ℄; if for some � > 0 no one (di�erent from û(�)) ontrol from Æ�neighbor-

hood of û(�) in L

r

1

an steer the system (8.1) from q

0

to q̂(T ) in a time T

0

2 [T � Æ; T + Æ℄: 2
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Following the approah of the Setion 4 we onsider for the system (8.1) a time�input/state

mapping F : R � L

r

1

! M ; F maps a pair (t; u(�)) onsisting of time moment t and an

admissible ontrol u(�) into the point q(t) of the trajetory q(�) of the ontrol system (8.1).

It turns out that for (û(�); q̂(�); T ) to be rigid, (T; û(�)) has to be ritial point of F: That

means ImF

0

j

(T;û(�))

6= T

q̂(T )

M; and there exists nonzero

^

 

T

2 T

�

q̂(T )

M annihilating ImF

0

j

(T;û(�))

:

For any suh

^

 

T

one an transform the equality

^

 

T

F

0

� 0 into Hamiltonian form of the Euler-

Lagrange equation (ompare with the Theorem 3.1), whih is extremality ondition for the path

(û(�); q̂(�)). It is more onvenient for us to set it this time as a De�nition.

De�nition 8.1 (Extremality) We all (û(�); q̂(�)) extremal pair for the aÆne ontrol system

(8.1) on [0; T ℄, if there exists an absolutely-ontinuous ovetor-funtion

^

 (�) on [0; T ℄) suh

that the triple (û(�); q̂(�);

^

 (�)) :

1) satis�es Hamiltonian system

_q = �H=� ; q(0) = q

0

; (8.2)

_

 = ��H=�q; (8.3)

with an 'aÆne' Hamiltonian

H

f

(u; q;  ) =  � (f(q) +G(q)u); (8.4)

2)meets stationarity ondition

�H

f

�u

j

(û(�);q̂(�);

^

 (�))

=

^

 (�)G(q̂(�)) = 0; for almost all � 2 [0; T ℄; (8.5)

and 'transversality ondition'

H

f

(û(�); q̂(�);

^

 (�)) = 0; for almost all � 2 [0; T ℄: 2 (8.6)

We all û(�) extremal ontrol and q̂(�) extremal trajetory of the ontrol system (8.1) on [0; T ℄.

The quadruple (û(�); q̂(�);

^

 (�); T ) is alled extremal of the ontrol system (8.1) on [0; T ℄.

Corank of an extremal path (û(�); q̂(�); T ) is the dimension of the spae of extremals, it

enters, or, equivalently, dimension of the spae of those

^

 (�); whih together with (û(�); q̂(�); T )

satisfy the De�nition (8.1), or, equivalently, orankF

0

j

(T;û(�))

at T

q̂(T )

M:

It follows from the Impliit Funtion Theorem, that extremality is neessary for rigidity.

Proposition 8.1 A rigid path (û(�); q̂(�); T ) of the ontrol system (8.1) must be extremal pair

of the system. 2

To derive 2nd order rigidity onditions we have to involve again Goh and Generalized Leg-

endre Conditions along extremal. They are (ompare with (4.11) and (4.15)):

^

 (�) � [Gv;Gw℄(q̂(�)) = 0; 8v; w 2 R

r

; (8.7)

and for all � 2 [0; T ℄ :



�

(v; v) =

^

 (�) � [Gv[

^

f

�

; Gv℄℄(q̂(�)) � 0; 8v 2 R

r

: (8.8)

Strong Generalized Legendre Condition (ompare with (4.16)) looks like follows: for some

� > 0 and for all � 2 [0; T ℄ :



�

(v; v) =

^

 (�) � [Gv[

^

f

�

; Gv℄℄(q̂(�)) � �kvk

2

; 8v 2 R

r

: (8.9)

Following result is 'aÆne version' of the Proposition 4.3.
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Proposition 8.2 (Goh and Legendre Neessary Rigidity Conditions) For an extremal

trajetory of the aÆne ontrol system (8.1) to be rigid it is neessary, that any abnormal

geodesi, it enters, satisfy the Goh ondition (8.7) and the Generalized Legendre Condition

(8.8). 2

Let us denote by �

�

the nonsingular symmetri (r � r)�matrix, whih orresponds to the

quadrati form 

�

(v; v) on R

r

. Let 

�1

ij

(�) be an ij�entry of the matrix �

�1

�

.

Following proposition is 'aÆne version' of the Theorem 4.4.

Proposition 8.2 (Regularity of Extremals for AÆne Systems) If Goh ondition (8.7)

and Strong Generalized Legendre Condition (8.9) hold along an extremal (û(�); q̂(�);

^

 (�); T ) of

the ontrol system (8.1), then the extremal ontrol û(�) is smooth and an be alulated as:

û

i

(�) = �

r

X

j=1



�1

ij

(�)

^

 (�) � [f; [f; g

j

℄℄(q̂(�)); i = 1; : : : r: 2

We de�ne orrespondingly 1st and 2nd variations of the system (8.1) along its extremal

(û(�); q̂(�);

^

 (�); T ) as the di�erential and the Hessian of the time�input/state mapping F (t; u(�)

at the point (T; û(�)) 2 R� L

r

1

:

The formulae are: for the �rst variation

F

0

j

(T;û(�))

(Æ�; u(�)) =

^

f

T

(q

1

)Æ� +

Z

T

0

Y

�

(q

1

)u(�)d�; (8.10)

and for the seond variation

2F

00

j

(T;û(�))

[

^

 

T

℄(Æ�; u(�)) =

^

 

T

� (

Z

T

0

[�

^

f

T

Æ� +

Z

�

0

Y

�

u(�)d�; Y

�

u(�)℄(q

1

)d�); (8.11)

with the domain

f(Æ�; u(�)) 2 (R � L

r

1

)j

^

f

T

(q

1

)Æ� +

Z

T

0

Y

�

(q

1

)u(�)d� = 0; (8.12)

where

^

f

�

(q) = f(q) +

r

X

i=1

g

i

(q)û

i

(�); Y

�

v = Ad(

�!

exp

Z

�

T

^

f

�

d�)Gv 8v 2 R

r

: (8.13)

We de�ne nullity and Morse index of extremal (û(�); q̂(�);

^

 (�); T ) as the dimension of the

kernel and negative index of the quadrati form (8:11)� (8:12). Morse index of extremal path

(û(�); q̂(�); T ) is minimum of the indies of the extremals (û(�); q̂(�);

^

 (�); T ), whih this path

enters.

The following Proposition is diret generalization of the Propositions 4.5 and 4.7.

Proposition 8.3 If Goh ondition (8.7) and Generalized Strong Legendre ondition (8.9) hold

along extremal (û(�); q̂(�);

^

 (�); T ) of the a�ine ontrol system (8.1), then:

1) the seond variation (8:11) � (8:12) an be extended by ontinuity onto the spae R �

H

r

�1

[0; T ℄ and is weak positive de�nite on some subspae of �nite odimension in R�H

r

�1

[0; T ℄;

i.e. admits on this subspae a lower estimate:

2F

00

j

(T;û(�))

[

^

 

T

℄(Æ�; u(�)) � (ku(�)k

2

�1

+ Æ�

2

); (8.14)

2)the kernel of the seond variation is ontained in R� (L

r

1

�H

r

�1

[0℄�H

r

�1

[T ℄); moreover

for an element (�; u(�)) of the kernel its seond omponent u(�) is C

1

on (0; T ): 2

The following two theorems are slight generalizations of the obtained in the Setion 4 rigidity

onditions for distributions.
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Theorem 8.4 (Neessary Rigidity Conditions for AÆne Systems) If a orank k extre-

mal path (û(�); q̂(�); T ) of the system (8.1) is rigid on [0; T ℄, then its Morse index should not

exeed k � 1. In partiular for a rigid orank 1 extremal path the index must vanish. 2

Theorem 8.5 (SuÆient Rigidity Conditions for AÆne Systems) 1) If the seond vari-

ation along an extremal (û(�); q̂(�);

^

 (�); T ) of the a�ine ontrol system (8.1) is weak positive

de�nite, then the extremal path (û(�); q̂(�); T ) is rigid. 2)In partiular, if Goh ondition (8.7)

and Strong Generalized Legendre ondition (8.9) hold along the extremal (û(�); q̂(�);

^

 (�); T ) and

Morse index and nullity of the extremal both vanish, then the extremal path (û(�); q̂(�); T ) is

rigid. 2

To ompute Morse index and nullity whih play an important role for the rigidity onditions

for extremal paths of aÆne ontrol system (8.1) we have to repeat almost literally what was

done in the Setion 5. We refer to that Setion marking only minor di�erenes.

Given an extremal (û(�); q̂(�);

^

 (�); T ) of the aÆne ontrol system (8.1), we de�ne linear spae

W (ompare with (5.1)) as:

W = spanff

^

f

T

(q

1

)g [ fY

�

(q

1

)vj� 2 [0; T ℄; v 2 R

r

gg;

where

^

f

T

and Y

�

are de�ned by (8.13). EvidentlyW = ImF

0

j

(T;û(�))

and odimW = k is orank

of the extremal path (û(�); q̂(�); T ).

Introduing like in the Setion 5 the sympleti spae � (dim� = 2(n � k)); Lagrangian

plane � and denoting by f the anonial projetion of the vetor �eld

^

f

T

we see, that (5.4)-(5.5)

is as well sympleti representation for the seond variation (8:11)� (8:12) of the aÆne ontrol

system (8.1).

Therefore the Jaobi equation for the extremal (û(�); q̂(�);

^

 (�); T ) of the aÆne ontrol system

(8.1) has the same form (5.10) or (5.11). Introduing isotropi subspae:

�

f

= spanff [Gvjv 2 R

r

g � �;

we de�ne Jaobi urve in Lagrangian Grassmanian for the extremal (û(�); q̂(�);

^

 (�); T ) (ompare

with the De�nition 5.1).

De�nition 8.2 (Jaobi urve for extremal of aÆne system) Jaobi urve orresponding

to an extremal of the aÆne ontrol system (8.1) is a urve � ! �

�

(� 2 [0; T ℄) in Lagrangian

Grassmanian L(�); whih oinides for � 2 [0; T ) with the starting at � trajetory of the Jaobi

equation (5.11) in L(�) and jumps at T � 0 to �

T

= �

�

f

T�0

= �

T�0

\ �

[

f

+ �

f

: 2

As for abnormal sub-Riemannian geodesis Morse index and nullity of the extremal of aÆne

system an be omputed via sympleti invariants of the Jaobi urve.

Theorem 8.6 (Index Theorem for Extremals of AÆne System) Let � ! �

�

(� 2 [0; T ℄);

be the Jaobi urve, whih orresponds to an extremal (û(�); q̂(�);

^

 (�); T ) of the aÆne ontrol

system (8.1). Then for any subdivision �

s+1

= 0 = �

0

< �

1

< � � � < �

s

= T of � ! �

�

into

simple subars �j

[�

i

;�

i+1

℄

; (i = 0; : : : s� 1) Morse index of the extremal equals to

s

X

i=0

ind

�

(�

�

i

;�

�

i+1

)� (n� k); (8.15)

where k is the orank of the extremal path (û(�); q̂(�); T ): 2

Theorem 8.7 (Nullity Theorem for Extremals of AÆne System) Let � ! �

�

(� 2 [0; T ℄);

be the Jaobi urve, whih orresponds to an extremal (û(�); q̂(�);

^

 (�); T ) of the aÆne ontrol

system (8.1). Then nullity of the extremal, i.e. the dimension of the kernel of the seond

variation (8:11)� (8:12), equals to dim(�

T

\ �): 2

Theorem 8.8 (Loal Rigidity for Extremals of AÆne System) Let an extremal

(û(�); q̂(�);

^

 (�); T ) of the aÆne ontrol system (8.1) meet Goh ondition (8.7) and Strong

Generalized Legendre Condition (8.9). Then for any small enough

�

t > 0 the restritions

(û(�)j

[0;

�

t℄

; q̂(�)j

[0;

�

t℄

;

�

t) of the extremal path (û(�); q̂(�); T ) on [0;

�

t℄ are rigid. 2
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9 Appendix: Isolated Points on Critial Levels of Smooth

Mappings and Rigidity of Abnormal Geodesis

In the Setion 3 we have represented the problem of �nding minimal geodesis as Lagrange

Problem of Calulus of Variations, whih is in turn partiular ase of problem of relative ex-

tremum:

J (x) �! min; F (x) = 0; (9.1)

where J is a salar funtion(al) on a Banah spae X and F maps X into R

k

.

Neessary 1st order ondition for loal minimality of point x̂ 2 X for this problem is ex-

tremality of x̂. Namely, if x̂ is point of minimum and J ; F are Frehet di�erentiable at x̂, then

there exists a nonzero pair of Lagrange multipliers (�

0

; �) 2 R

+

� R

k

�

; suh that x̂ is ritial

point for Lagrangian L = �

0

J (x)+�F (x) (Lagrange multipliers rule). We all suh x̂ extremal

point and (x̂; �

0

; �) extremal for the problem (9.1).

Evidently an extremal point x̂ may enter di�erent extremals with di�erent Lagrange multi-

pliers; orank of an extremal point is the dimension of the spae of Lagrange multipliers, whih

orrespond to it.

An extremal (x̂; �

0

; �) is normal, whenever �

0

6= 0; and abnormal otherwise. We use the

notation (x̂; �) for abnormal extremals. If �

0

= 0; then the funtional J does not at all enter

the 1st-order ondition. Sine we suppose to deal only with abnormal extremals, then we may

at all forget about the funtional J and at one about the words 'abnormal' and 'extremal'.

A orank k abnormal extremal point is in fat a orank k ritial point of the mapping F . We

avoid introduing an extra word 'rigidity' for phenomenon of isolatedness of point x̂ on the level

F

�1

(0) of the mapping F , the phenomenon, we suppose to deal with in this Setion.

Certainly for x̂ to be isolated it is neessary to be ritial, sine otherwise loally in a small

neighborhood of x̂ the level F

�1

(0) is Banah manifold (without isolated points). We are going

to set neessary/suÆient onditions for isolatedness of ritial point x̂ on the ritial level

F

�1

(0) of the mapping F .

Assuming that F is twie Frehet di�erentiable at the point x̂ we involve into onsideration

the Hessian of F at the point x̂ (see [9℄). It is quadrati mapping F

00

(x̂) : kerF

0

j

x̂

! okerF

0

j

x̂

:

One an represent it as a bundle of quadrati forms

�! �F

00

(x̂)(�; �); � 2 kerF

0

j

x̂

; � ? ImF

0

j

x̂

;

with the domain kerF

0

j

x̂

.

We de�ne index and nullity of (x̂; �) as negative index and dimension of the kernel of the

quadrati form �F

00

(x̂)(�; �) on kerF

0

j

x̂

. Index of ritial point x̂ is minfind�F

00

j� ? ImF

0

j

x̂

g.

We will show now, that index and nullity provide essential information about loal struture

of the ritial level F

�1

(0).

Theorem 9.1 (Isolated Points on Critial Levels: Neessary Condition) Assume, that

X is a Banah spae and let x̂ 2 X be a orank m ritial point for the mapping F : X ! R

k

,

whih is twie Frehet di�erentiable at x̂. Then for x̂ to be an isolated point of the set F

�1

(0),

its index an not exeed m� 1: 2

Proof of Theorem 9.1. We assume without loss of generality, that x̂ is the origin of X .

We denote by D and h orrespondingly the di�erential and the Hessian of the mapping F at

the origin. Suppose, that for any � 2 (ImD)

?

index of the quadrati form �h on kerD is � m:

We are going to prove that then x̂ = 0 is not isolated point of the set F

�1

(0):

The equation F (x) = 0 an be represented as a system f(y; z) = 0; g(y; z) = 0, where

(y; z) = x is suh splitting of x, that: i) z oordinatizes kerD; �F=�z = 0;

ii) dim f = dim y = rankD = k �m; rank�F=�yj

0

= rank�f=�yj

0

= rankD

Then in virtue of Impliit Funtion Theorem the equation f(y; z) = 0 an be resolved uniquely

w.r.t. y : y = y(z): Substituting y(z) into the equation g(y; z) = 0 we obtain an equation
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'(z) = g(y(z); z) = 0. Obviuously x = 0 is an isolated point of the set F

�1

(0); if and only if

z = 0 is an isolated point of '

�1

(0). Let us note, that '

0

(0) = 0 and hene we may investigate

now the mapping ', whose di�erential vanishes at the origin. To avoid additional notation we

will assume, instead of it, that D = F

0

j

0

= 0, and then h = F

00

j

0

is a quadrati mapping of X

into R

m

. Again we assume, that for any nonzero � 2 R

m

�

index of the quadrati form �h is

� m:

Now we will get rid of in�nite-dimensional spae X .

Lemma 9.2 Under the onditions of the Theorem 9.1 there exists a �nite-dimensional subspae

W � X; suh that for any nonzero � 2 R

m

�

index of the quadrati form �hj

W

is � m: 2

Proof of Lemma 9.2. For any unit ovetor

�

� 2 R

m

�

; there exists a m�dimensional

subspae W

�

�

� X; suh that the restrition

�

�hj

W

�

�

is negative de�nite. For all �'s from some

small neighborhood 


�

�

of

�

� the quadrati forms �hj

W

�

�

are also negative de�nite. Choosing a

�nite overing of the sphere k�k = 1 by orresponding neighborhoods 


�

�

1

; : : :


�

�

s

we may take

W =W

�

�

1

+ � � �W

�

�

s

:

From now on we onsider W in plae of X or, all the same, assume dimX <1.

The following statement enables us to investigate the quadrati mapping h instead of F .

Lemma 9.3 If the one (h)

�1

(0) ontains a regular point of the quadrati mapping h : X !

R

m

, then 0 is not isolated point of the set F

�1

(0): 2

Proof. If y 2 h

�1

(0) is a regular point of h, then there exists a m�dimensional subspae

Z � X , suh that hj

y+Z

: (y+Z)! R

m

is loal di�eomorphism at y. Sine h is homogeneous,

then the same holds for all points �

2

y; � 6= 0.

Consider the mapping �

�

(z) = h(y + �z); where z belongs to the unit sphere S

m�1

� Z.

Obviously h(�y + ��z) = �

2

�

�

(z) and, for small enough � > 0, the topologial degree of the

mapping �

�

=k�

�

k : S

m�1

! S

m�1

is +1 or -1. Sine the di�erentials of h at the points �y are

nondegenerate, then 9a > 0, suh that for small enough � > 0; 8z 2 S

n�1

: kh(�y + ��z)k �

a�

2

�.

On the other side

kF (�y + ��z)� h(�y + ��z)k = o(�

2

)

and therefore for some � > 0 and small enough � > 0 topologial degree of the mapping

z �! F (�y + ��z)=kF (�y + ��z)k

is +1 or -1. Hene for every small enough � > 0 the equation F (�y+ ��z) = 0 has a solution z

�

belonging to the unit ball B

n

� R

n

and therefore 0 is not isolated point of the set F

�1

(0):

This Lemma allows us to deal with the quadrati mapping h instead of F . The onlusion

of the Theorem 4.1 is implied by the following

Proposition 9.4 Let P : X ! R

m

be quadrati mapping (dimX < 1), suh that ind�P �

m; 8� 2 R

m

�

n 0: Then P

�1

(0) ontains regular point of the mapping P: 2

Proof. Without loss of generality we may assume, that P

0

j

x

= 0 if and only if x = 0:

Indeed otherwise the ondition P

0

j

x

= 0 means, that x lies in the intersetion of the kernels of

the (quadrati forms, whih are) omponents of P , and we may take quotient of X w.r.t. to

this intersetion.

Let us start indution w.r.t. m: For m = 1 the theorem was proved in [7℄. Taking m > 1

we will treat separately two ases.

i) P

�1

(0) 6= f0g: Let P (y) = 0 for some y 6= 0. Then P

0

j

y

6= 0 and �P

00

j

y

oinides

with the restrition of �P onto kerP

0

j

y

(� ? ImP

0

j

y

). Conditions of the Proposition imply

ind�P

00

j

y

� odim ImP

0

j

y

; 8� ? ImP

0

j

y

: Sine dim okerP

0

j

y

< m; then aording to the

indutive assumption the inverse image (P

00

j

y

)

�1

(0) ontains regular point and hene P

�1

(0)

ontains regular point.
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ii) P

�1

(0) = f0g: Then ImP is a losed one. Applying indutive assumption to the Hessians

P

00

j

y

for any y 6= 0 we obtain, that 8z 2 ImP n 0 the inverse image P

�1

(z) ontains regular

point of P and therefore ImP n 0 is open. This means that ImP = R

m

:

Let S be unit sphere in X . Then P=kPkj

S

: S ! S

m�1

is a surjetive mapping. In virtue of

Sard theorem there exists regular value v of this mapping. If P (x) = av for some a > 0; then

rank(P j

S

)

0

x

� m� 1: Let a

v

= minfa > 0jav 2 P (S)g; a

v

> 0; sine P

�1

(0) = 0. Let x

v

2 S

and P (x

v

) = a

v

v. The pair (a

v

; x

v

) is point of loal minimum and normal extremal point for

the following problem of relative extremum:

a! min; P (x) � av = 0:

Standard 2nd-order neessary optimality ondition for this problem provides existene of � 2

R

m

�

n 0, suh that:

�v � 0; �(P j

S

)

0

j

x

v

= 0; �(P j

S

)

00

j

x

v

� 0:

Diret omputation gives

1=2�(P j

S

)

00

j

x

v

(y) = �P (y)� jyj

2

�P (x

v

);

and hene �P (y) � 0 for all y 2 N = fy j y ? x

v

; P

0

j

x

v

y = 0g. ObviouslyN is a linear subspae

of odimension m in X . Sine �P (x

v

) = �v � 0 and x

v

is orthogonal and P�orthogonal to

N , then �P is nonnegative on N � spanfx

v

g and hene ind�P � m � 1, i.e. we ome to a

ontradition, whih �nishes the proofs of the Proposition 9.4 and Theorem 9.1.

Now we are going to derive from the previous theorem the neessary rigidity ondition for

abnormal geodesis, whih was established in the Setion 4.

Proof of the Theorem 4.1. We onsider fx = (t; u(�)) 2 R � L

r

1

[0; T ℄j ju(t)j � 1g; x̂ =

(T; û(�)); and F = F (t; u(�)) be the (time�input)/state mapping. Sine our onsideration

is loal, we may oordinatize small neighborhood of q

1

= F ((T; û(�)) in M by R

n

and small

neighborhood of (T; û(�)) byX = R�L

r�1

1

[0; T ℄:The (time�input)/state mapping is not smooth

w.r.t. time parameter t but beomes C

`

�smooth if we restrit it on the spae of C

`

�smooth

ontrols u(�): Obviously the hessian of this restrition oinides with the 2nd variation (4.9)-

(4.10) and index of the ritial point x̂ = (T; û(�)) for this restrition oinides with the one

from the De�nition 4.4.

Now the Theorem 4.1 follows from the Theorem 9.1.

Theorem 9.5 (Isolated Points on Critial Levels: SuÆient Condition) Let the Banah

spae X be densely embedded into separable Hilbert spae H : X ,! H: Let a mapping

F : X ! R

m

be Frehet di�erentiable at x̂ 2 X whih is a ritial point of F : �F

0

(x̂) =

0 for some � 2 R

m

�

n f0g. Assume that for F the following Taylor formula at x̂

F (x̂+ x)� F (x̂) = F

0

(x̂)x+ F

00

(x̂)(x; x) + o(kxk

2

X

)

holds where F

00

(x̂)(x; x) is ontinuous quadrati mapping: F

00

: X ! R

m

: Let us hoose a

omplementary spae Z to kerF

0

(x̂) and represent any x 2 X as: x = z + �; z 2 Z; � 2

kerF

0

(x̂): If:

i) kF (x̂+ x)� F (x̂)� F

0

(x̂)xk = o(1)kxk

H

as kxk

X

! 0; (9.2)

ii) the quadrati form �F

00

(x̂)(�; �) admits ontinuous extension from kerF

0

(x̂) onto its om-

pletion in H and is H�positive de�nite on this ompletion, i.e. for some  > 0

�F

00

(x̂)(�; �) � 2k�k

2

H

(9.3)

for � 2 kerF

0

(x̂);

iii) k�F (x̂+ �)� (�F (x̂) +

1

2

�F

00

(x̂)(�; �))k = o(1)k�k

2

H

; as k�k

X

! 0; (9.4)

for � 2 kerF

0

(x̂);

iv) k�F (x̂+ x)� (�F (x̂) +

1

2

�F

00

(x̂)(�; �))k = O(1)kxk

H

kzk+ o(1)k�k

2

H

; as kxk

X

! 0; (9.5)

then x̂ is an isolated point of the level set F

�1

(F (x̂)): 2
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Proof of the Theorem 9.5. Without loss of generality we may assume, that F (x̂) = 0

and x̂ is the origin of X: We are going to establish, that kF (x)k � �kxk

2

H

for some � > 0 and

all x from some small neighborhood of the origin in X .

Let us take for Z the �nite-dimensional orthogonal (in H) omplement to kerF

0

(0); F

0

(0)

maps Z isomorphially onto the image F

0

(0)X and for some  > 0

kF

0

(0)zk � kzk 8z 2 Z: (9.6)

De�ning N = fy 2 R

m

j� � y = 0g we hoose a vetor � 2 R

m

suh, that � � � = 1: Then

R

m

= R� +N and ImF

0

(0) � N:

If x = z + � then using Hadamard lemma we may present F (x) as

F (x) = �(�) + F

0

(0)z +A(x)z:

In virtue of (9.2), k�(�) +A(x)zk = o(1)(k�k

H

+ kzk) askxk

X

! 0:

Let us onsider the projetions of F (x) onto the vetor � and the subspae N ; they are

� � (�(�) +A(x)z)� and R(x) = F

0

(0)z +�

N

(�) +A

N

(x)z orrespondingly.

Fixing arbitrarily small � > 0 we may hoose a small neighborhood V in X suh that for

some positive k and x 2 V :

k�

N

(�) +A

N

(x)zk � �kxk

H

; j� � (�(�) �

1

2

�F

00

(0)(�; �) +A(x)z)j � kkxk

H

kzk+ �k�k

2

H

:

It follows from (9.6) that

kR(x)k � max(0; (� �)kzk� �k�k

H

); 8x 2 V;

j�(�(�) +A(x)z)j � max(0; ( � �)k�k

2

H

� kkxk

H

kzk):

Putting  = � �;  =  � � we obtain

kF (x)k �

1

p

2

(max(0; kzk� �k�k

H

)) + max(0; k�k

2

H

� kk�k

H

kzk):

Without loss of generality we may assume that k(1 + 4�=)4�= � =2:

Now if kzk � 4�k�k

H

then

kF (x)k �

1

p

2

(



2

kzk+ �k�k

H

) � �(�; )kxk

2

H

:

with �(�; ) > 0:

Otherwise if kzk � 4�k�k

H

then

kF (x)k �

1

p

2

(k�k

2

H

� kkxk

H

kzk) �

1

p

2

(k�k

2

H

� k�k

2

H

k(1 + 4�=)4�=) �

� (=2

p

2)k�k

2

H

� �(; ; �)kxk

2

H

with �(; ; �) > 0:

Basing on the Theorem 9.5 we shall prove the Theorem 4.8, whih provides suÆient rigidity

ondition for abnormal geodesis.

Proof of the Theorem 4.8. We will verify the assumptions of the Theorem 9.5 for the

time�input/state mapping F . Sine our onsideration is loal i.e. regards small neighborhoods

of q

1

2 M of (T; û(�)) 2 f(t; u(�)) 2 R � L

r

1

[0; T ℄jju(t)j � 1g then oordinatizing these neigh-

borhoods by R

n

and X = R � L

r�1

1

[0; T ℄ orrespondingly taking H = R � H

r�1

�1

[0; T ℄; x =

(t; u(�)); x̂ = (T; û(�)); � =

^

 

T

and F = F (t; u(�)) being the (time�input)/state mapping. If

(T; û(�)) enters an abnormal geodesi (û(�); q̂(�);

^

 (�); T ); then (T; û(�)) is a ritial point of F

and

^

 

T

2 R

n

�

(see above) is an annihilator of ImF

0

j

(T;û(�))

:
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Let us put

k(t; u(�))k

1

= jtj+ ku(�))k

L

1

; k(t; u(�))k

�1

= (jtj

2

+ ku(�))k

2

H

�1

)

1=2

and extend û(t) smoothly onto [0; T+1℄. The ondition (9.3) is full�lled by virtue of the positive

de�niteness of the 2nd variation. To verify other onditions it is useful to introdue another

representation of F: Reall that

F (T + �; u(�)) = q

0

Æ

�!

exp

Z

T+�

0

Gû(�)d�Æ

�!

exp

Z

T+�

0

Y

T+�;�

u(�)d� =

= q

1

Æ

�!

exp

Z

T+�

T

Gû(�)d�Æ

�!

exp

Z

T+�

0

Y

T+�;�

u(�)d�;

where Y

t;�

v =

�!

exp

R

�

t

adGû(�)d�Gv:

Now we shall transform the hronologial exponential

�!

exp

R

T+�

0

Y

T+�;�

u(�)d� by means of

the integration by parts formula for a hronologial exponential, established in [20℄. We derive:

F (T + �; u(�)) = q

1

Æ

�!

exp

Z

T+�

T

Gû(�)d�Æ (9.7)

�!

exp

Z

T+�

0

((I �

Z

1

0

e

(1��) adY

T+�;�

v(�)

d�)Y

T+�;�

u(�)�

Z

1

0

e

(1��) adY

T+�;�

v(�)

d�

_

Y

T+�;�

v(�))d� Æ e

Gv(T+�)

(here

_

Y denotes the partial derivative �Y

t;�

=��).

Taking Volterra expansions for

�!

exp

R

T+�

T

Gû(�)d� and for the ordinary and hronologial

exponentials in the last formula we derive

F (T + �; û(�) + u(�)) = q

1

+ q

1

Æ (

^

f

T

� �

Z

T

0

_

Y

T+�;�

v(�)d� +Gv(T ))

+o(1)(j�j+ jv(T )j+ kv(�)k

L

2

) as k(�; u(�))k

1

! 0

from where the estimate (9.2) follows diretly.

To verify other estimates we will multiply (9.7) by � =

^

 

T

and simplify it getting rid of the

terms whih are more than quadrati in v(�) and therefore admit an estimate o(1)ku(�)k

2

�1

. We

obtain

^

 

T

(F (T + �; û(�) + u(�))� q

1

) =

^

 

T

q

1

Æ

�!

exp

Z

T+�

T

Gû(�)d�Æ

Æ(�I+

�!

exp

Z

T+�

0

�[Y

T+�;�

v(�); Y

T+�;�

u(�)℄ �

_

Y

T+�;�

v(�) + [

_

Y

T+�;�

v(�); Y

T+�;�

v(�)℄d� Æ e

Gv(T+�)

)

+o(1)k(�; u(�)k

2

�1

Taking into aount the ontinuity of

^

f� w.r.t. �; the equalities:

8u; v 2 R

r

^

 

T

[Y

T;�

v; Y

T;�

u℄(q

1

) = 0;

^

 

T

G(q

1

)u = 0;

^

 

T

Y

T;�

(q

1

)u =

^

 

T

_

Y

T;�

(q

1

)v = 0

and olleting in the rest term the terms of order > 2 in (�; u(�); v(�)) in the Volterra expansions

of the hronologial exponentials we derive:

^

 

T

(F (T + �; û(�) + u(�))� q

1

) =

=

^

 

T

q

1

Æ (

^

f

T

Æ

^

f

T

�

2

=2� �

Z

T

0

�=��j

0

_

Y

T+�;�

v(�)d� +

Z

T

0

[

_

Y

T;�

v(�); Y

T;�

v(�)℄d� +

^

f

T

�

Z

T

0

_

Y

T;�

v(�)d�

+

Z

T

0

Z

t

0

_

Y

T;�

v(�)d� Æ

_

Y

T;t

v(t)dt + �

^

f

T

Gv(T ) +

1

2

Gv(T ) ÆGv(T ) +O(k(�; u(�))k

1

k(�; u(�))k

2

�1

):
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Therefore we have established for the time�input/state mapping F the estimates (in the

notations of the previous theorem):

j�F (x̂+ x) � �F (x̂)j = O(1)kxk

2

H

; as kxk

X

! 0 (9.8)

k�F (x̂ + x)� (�F (x̂) +

1

2

�F

00

(x̂)(x; x))k = O(kxk

X

kxk

2

H

); as kxk

X

! 0 (9.9)

and the ontinuity of the quadrati form �F

00

(x̂)(x; x) on H: This implies (9.4).

To derive (9.5) from (9.8)-(9.9) it is enough to establish the estimate j�F

00

(x̂)(x; x) �

�F

00

(x̂)(�; �)j = O(1)kxk

H

kzk whih follows from the ontinuity of �F

00

(x̂)(x; x) in H:
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