Abnormal Sub-Riemannian Geodesics:
Morse Index and Rigidity

A A. Agrachev! A.V. Sarychev?

Abstract. Considering a smooth manifold M provided with a sub-Riemannian structure,
i.e. with Riemannian metric and completely nonintegrable distribution, we set for two given
points q°,q* € M the problem of finding a minimal path out of those tangent to the distribution
(admissible) and connecting these points. Extremals of this variational problem are called sub-
Riemannian geodesics and we single out the abnormal ones which correspond to the vanishing
Lagrange multiplier for the length functional. These abnormal geodesics are not related to the
Riemannian structure but only to the distribution and, in fact, are singular points in the set
of admissible paths connecting ¢° and q'. Developing the Legendre-Jacobi-Morse-type theory of
2nd variation for abnormal geodesics we investigate some of their specific properties such as
rigidity - isolatedness in the space of admissible paths connecting the two given points.

1 Introduction

The paper deals with abnormal sub-Riemannian geodesics. Let us remind that a sub-Riemannian
structure on a Riemannian manifold M is given by a completely non-integrable (or completely
non-holonomic, or possessing full Lie rank) distribution D on M. A locally Lipschitzian path
q(r) € WL[0,T]) (WL[0,T] denotes the space of Lipschitzian paths T — ¢(7) on M) is called
admissible if its tangents ly in D for almost all 7 € [0,T]. Given two points ¢° and ¢! we set
a problem of finding weakly (or equivalently W1 —locally) minimal admissible path connecting
q° with ¢'.

The problem looks like direct generalization of the classical Riemannian case, but in fact
there is an essential difference. Namely the space of alllocally Lipschitzian paths, which connect
q° and ¢!, has natural structure of Banach manifold. Critical points of the length functional on
this manifold are Riemannian geodesics and all paths of minimal length are among them. On
the contrary the space of admissible paths, which connect ¢° and ¢', is not in general a manifold;
it may have singularities. These singularities correspond to so called abnormal sub-Riemannian
geodesics, which do not depend on Riemannian structure on M and are completely determined
by distribution D.

The term ’abnormal’ comes from optimization theory, since the problem of finding minimal
admissible path can be obviously reformulated as a Lagrange problem of Calculus of Variations.
The extremals of the last problem are sub-Riemannian geodesics and, in particular, abnormal
extremals, with vanishing Lagrange multiplier for the (length) functional, are abnormal sub-
Riemannian geodesics.

There was a lot of activity tended to elimination of abnormal sub-Riemannian geodesics.
Preprint [18] of R.Montgomery lists several (given by different authors) false proofs of the fact,
that a minimal admissible path should correspond to some normal sub-Riemannian geodesic.
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The preprint contains also an important counterexample to this claim (see also [22]).

Main contribution of the paper is kind of Legendre-Jacobi-Morse-type theory of 2nd variation
for abnormal geodesics and its implications. Starting with the definition of 2nd variation along
an abnormal geodesic, we set 2nd-order necessary /sufficient minimality conditions for abnormal
geodesics. The results have similar form to the classic Legendre-Jacobi minimality conditions of
Calculus of Variations, but do not involving length functional, they are appearances of different
phenomenon, which is ’degenerate’ form of local minimality. Namely, the 2-nd order sufficient
‘'minimality’ condition imply rigidity of abnormal geodesic path, which is isolatedness up to
reparametrization of this path in W21 —topology in the space of all admissible paths, which
connect given end-points. Therefore the 2-nd order necessary /sufficient minimality conditions
are in fact necessary /sufficient rigidity conditions.

We go further and compute nullity and index of an abnormal geodesic, which are corre-
spondingly dimension of the kernel and negative index of the 2nd variation along the abnormal
geodesic. This in particular enables us to verify the 2-nd order rigidity conditions globally, on
large time intervals. We use the Index and Nullity theorems to establish rigidity for several
particular situations.

The paper is organized in following way. Section 2 contains preliminary material; of most im-
portance for further presentation are some notations from chronological calculus and auxiliary
results on symplectic geometry. In Section 3 we present Hamiltonian form of ’geodesic equation’
and introduce some invariants of geodesics. In Section 4 we introduce 1st and 2nd variations
along abnormal geodesics and define Morse index and nullity. Involving Goh and Generalized
Legendre Condition along abnormal geodesics we derive (Theorem 4.4) a sufficient condition
for smoothness of abnormal geodesic and announce (Theorems 4.1/4.8) necessary/sufficient
conditions of rigidity. In Section 5 we introduce (Definition 5.1) Jacobi curve in Lagrangian
Grassmanian for an abnormal geodesic and compute (Theorems 5.1 and 5.4) index and nul-
lity of abnormal geodesics via symplectic invariants (Maslov-type indices) of the Jacobi curve.
This enables us to establish (Theorem 5.5) local rigidity for abnormal geodesics meeting Goh
and Strong Generalized Legendre Condition. In Section 6 we describe some class of distribu-
tions which do possess rigid abnormal geodesics (Theorem 6.1 and 6.2). In Section 7 we give
more nice and simplified presentation of Legendre-Jacobi formalism for abnormal geodesics of
2-dimensional distributions. In Section 8 we investigate rigidity of trajectories for affine control
systems (Theorems 8.4- 8.8). In Appendix (Section 9) we represent necessary/sufficient condi-
tions (Theorems 9.1/ 9.5) for isolatedness of critical points of smooth mapping on critical level
and use them to prove the necessary/sufficient conditions of rigidity for abnormal geodesics,
which were established in the Section 4.

The presentation is self-contained, although we often refer to the paper [7], which deals with
abnormal extremums for Lagrange problem of Calculus of Variations. One can find in that
paper instructive analogies and details of some proofs.

In our work we were much inspired by a discussion on abnormal sub-Riemannian geodesics
at the Conference *Geometric Methods in Nonlinear Optimal Control’ (Sopron, Hungary ,July
1991) and also by papers [10, 18] and discussions with M.Kawsky, R.Montgomery and H.J.Suss-
mann. The final version of this paper was prepared when the second author was visiting the
Faculty of Applied Mathematics at Twente University, Enschede, The Netherlands ; he is
grateful to the faculty staff and especially to H. Nijmeijer and A. van der Schaft for hospitality.

2 Preliminaries

In the paper we use notation and technical tools of chronological calculus developed by A.A.
Agrachev and R.V. Gamkrelidze (see [5, 6]).

We will identify C°° diffeomorphisms P : M — M with automorphisms of the algebra
C> (M) of smooth functions on M: ¢(-) — P¢ = ¢(P(-)). The image of a point ¢ € M under
a diffeomorphism P will be denoted by ¢q o P.

Vector fields on M are 1-st order differential operators on M or arbitrary derivations of the



algebra C*°(M), i.e. R-linear mappings X : C*°(M) — C°° (M), satisfying the Leibnitz rule:
X(aB) = (Xa) +a(XpB). Value X(q) of a vector field X at a point ¢ € M lies in the tangent
space T, M to the manifold M at the point g. We denote by [X*!, X?] Lie bracket or commutator
X'oX? - X?0 X! of vector fields X!, X2, It is again a 1-st order differential operator and in
local coordinates on M the Lie bracket can be presented as

(X1 XY =) X}0/0n;,» X70/0w] = > (0X}/0xX' — 90X} /0xX?)D/0u;.
i=1

i=1 =1

This operation introduces in the space of vector fields the structure of a Lie algebra denoted
Vect M. For X € VectM we use the notation adX for the inner derivation of Vect M :
(ad X)X' = [X, X'],VX' € Vect M.

For a diffeomorphism P we use the notation Ad P for the following inner automorphism of
the Lie algebra Vect M: AdPX = Po X o P! = P71X. The last notation stands for the
result of translation of the vector field X by the differential of the diffeomorphism P~1.

A flow on M is an absolutely continuous w.r.t. 7 € R curve 7 — P; in the group of diffeo-
morphisms Diff M, satisfying the condition Py = I (where I is the identity diffeomorphism).
We assume all time-dependent vector fields X, to be locally integrable with respect to 7. A
time-dependent vector field X, defines an ordinary differential equation ¢ = X, (g(7)), ¢(0) = ¢°
on the manifold M; if solutions of this differential equation exist for all ¢° € M,r € R, then
the vector field X is called complete and defines a flow on M, being the unique solution of the
(operator) differential equation:

dP,[dr =P, 0 X, Py =I. (2.1)

This solution will be denoted by P; :e?f) fot X, dr, and is called (see [5, 6]) a right chronological
exponential of X . If the vector field X, = X is time-independent, then the corresponding flow
is denoted by P, = et¥X.

We introduce also Volterra expansion (or Volterra series) for the chronological exponential.
It is (see [5, 6]):

t o0 t T1 Ti—1
e?p/ XTdeI+Z/ dn/ dTQ.../ dri(Xyr 0+ Xy,
0 =170 0 0

We will need only the terms of zero-, first- and second-order in this expansion, which are

t t t T1
eﬁ’a/ XTdeI+/ XTdT—I—/ dﬁ/ dry( Xy 0 Xp ) 4 - - (2.2)
0 0 0 0

For time-independent X one obtains
X < T+tX + (/)Xo X +--- (2.3)

One more tool from chronological calculus is a ’generalized variational formula’(see [5, 6] for
its drawing):

t t t T
&b [ (X + X, )dr —exd / X, dro &xp / Ad(ep / Xydb) X, dr. (2.4)
0 0 0 t

Applying the operator Ad(e?p fOT ng@) to a vector field Y and differentiating
Ad(exp J) Xpdo)Y = (exp JJ Xpd) oY o (exp i Xpd6)~" w.r.t. T one comes to the equality
(see [5, 6]):

diAd(&f) / XpdfY) = Ad(exp / Xpdf) ad XY, (2.5)
T 0 0



which is of the same form as ( 1). Therefore Ad( exp fo X, pdf) can be presented as an operator
X

chronologocal exponential exp fo ad Xpdf which for a time- independent vector field X,

tad X

can be written as e . These exponentials also admit Volterra expansions:

t 0 t T1 Ti—1
eﬁ’a/ adXTder—l—Z/ dn/ de.../ dri(ad X, 0 - ad X,
0 i1 70 0 0

t t T1
=<1+ / ad X, dr —I—/ dn dry(ad Xy oad X )+ -+, (2.6)
0 0 0

X

and
MY < T+tad X + (12/2)ad X oad X + - --. (2.7)

In this new notation the generalized variational formula (2.4) can be rerepresented as:

t t t T
@5/ (X, + X, )dr =éxp XTdToera/ (eﬁ’a/ ad Xod0) X, dr =
0 0 0 t

t T t
—exp / (exp / ad Xgd0) X, dro exp | X, dr. (2.8)
0 0 0

A distribution D on M is a subbundle of tangent bundle 7 M, which we identify with the
space of its sections. For a distribution dim D, does not change with ¢ € M.

Generalizations of distributions are differential systems or distributions with singularities
which are subbundles with nonconstant dim D,. We call differential system any C°°(M)—sub-
module of VectM; then distributions correspond to projective C°°—modules. Locally one may
treat germ of distribution as free module.

If D is a differential system, then taking C'°°—modules generated by Lie brackets of order
<k, kE=1,..., of the vector fields subjected to D one obtains an expanding sequence of
differential systems:

1

DCD*=[D,D]---CD¥=[D,D 1) C
For any ¢ € M the sequence of subspaces

is called flag of the differential system D at the point ¢ € M, while the sequence nj(q) <

--ng(g) < ---, where n;(¢) = dim Dé, is called growth vector of the differential system D at
the point g. Differential system is called completely nonholonomic or having full Lie rank at a
point ¢ € M if D(’; = T,M for some k. Differential system is called completely nonholonomic or
having full Lie rank if for some k Dfl“ =T;M forallg e M.

If D is a distribution (n1(q) = const), then still D¥ may lack to be distributions (may have
singularities), since the growth vector of a distribution in general changes with ¢. Distribution
is called regular if its growth vector is constant for all q.

We also have to introduce some notions of symplectic geometry (see [8, 13, 17] for more
details). A symplectic structure in an even-dimensional linear space X is defined by a nondegen-
erate bilinear skewsymmetric 2-form o (-, -). Two vectors &1,&; € X are called skeworthogonal,
written £,0&, if 0(&1,&) = 0. If N is a subspace of ¥, let us denote by N its skeworthogonal
complement: N* = {¢£ € £ | 0(&,v) = 0,Vr € N}. Evidently dim N + dim N° = dim¥. A
subspace I' C ¥ is called isotropic, when I' C I, and coisotropic, when I' D I'*. A subspace
A C ¥ is called Lagrangian plane, when A” = A. Such subspaces have dimension %dim Y. IFA
is a Lagrangian plane and I is isotropic, then it is easy to prove, that (ANT?)+I' = (A+T)NI”
is a Lagrangian plane. We denote it by Al

INot to be mixed with the differential systems determined by the differential forms; those have different kind
of singularities



The symplectic group Sp(X) is the group of those linear transformations of X, which preserve
the symplectic form:

Sp(X) =5 € GL(X) | 0(S5&1,56) = 0(&1,&2) VEr, &2 € X

The elements of this group are called symplectic transformations of ¥. The Lie algebra of the
symplectic group is:

sp(B) = A€ gl(D) | 0(A&1, &) = 0(A&, &) V&, 62 € X,

Let H be a real quadratic form on ¥ and d¢H be the differential of H at a point { € .
Then d¢H is a linear form on ¥ which depends linearly on . For every £ € X there exists a

— —

unique vector H () € ¥ which satisfies equality o(H (£),-) = d¢H. It is easy to show that the
— —

linear operator H: ¥ — ¥ belongs to sp(¥), and the mapping H — H is an isomorphism of

the space of quadratic forms onto sp(X). The differential equation ¢ :FI (&) is called the linear
Hamiltonian system corresponding to the quadratic Hamiltonian H.

Denote by £(X) the Grassmanian of Lagrangian subspaces of ¥. This is a smooth manifold
of dimension # dim ¥(dim X + 2).

Certainly symplectic transformations transform Lagrangian planes into Lagrangian ones,
hence the symplectic group acts on £(X). It is easy to show that it acts transitively.

Let us consider a tangent space Ty L(X), A € L(X). To every quadratic form h on ¥ there

— —
corresponds a linear Hamiltonian vector field h and a one-parameter subgroup ¢t — e’ in
Sp(X). Let us consider the linear mapping

h — d(ethA)/dt |t=0

of the space of quadratic forms to Tp £(X). This mapping is surjective and its kernel consists of
all quadratic forms which vanish on A. Thus two different quadratic forms correspond to the
same vector from T3 £(X) if and only if the restrictions of these forms on A coincide. Hence we
obtain a natural identification of the space Tx £(X) with the space of quadratic forms on A.

A tangent vector n € TAL(X) is called nonnegative if the corresponding quadratic form is
nonnegative on A. An absolutely continuous curve A, (7 € [0,T]) in £(X) is called nondecreasing
if the velocities A, € Ty, £(2) are nonnegative for almost all 7 € [0, T7.

Treating the action of symplectic group Sp(X) on £(X) one can easily verify, that pairs of
Lagrangian planes (A, A’) have only one invariant w.r.t. this action: it is dim(A N A’). For
triples of Lagrangian planes, there are more invariants.

Let Ay, Ao, A3 be Lagrangian planes. Let us present a vector A € (A; + Az) N Ay as a sum
A = A1 + A3 and consider on (A7 + As) N Ao properly defined quadratic form B(A\) = (A1, As).
Maslov indez of the triple (A1, A2, As) is signature of S(A). It is an invariant of the action of
symplectic group.

In [1] a bit different invariant of a triple of Lagrangian planes (A1, A2, A3) was exploited for
computation of Morse index for singular extremals.

Definition 2.1 Consider the quadratic form B(\) = o(Ai, A3) with the domain ((A1 + Az) N
Ag)/ﬂ?zl A;. A sum %dimkerﬁ +ind™ 3, where ind~ 8 is negative inertia index of 3, is an
invariant of the triple (A1, A2, A3) of Lagrangian planes. It is denoted by inda, (A1, A3) and is
called Maslov-type index. O

Let us note, that ker = ((A; N Az) + (A2 N A3z))/Ni_, A;. We refer to [1] for a simple
formula connecting this Maslov-type index with Maslov index of the triple and for the proof of
the following ’triangle inequality’:

iIldAO (Al, A3) S iIldAO (Al,Az) + iIldAO (Az,Ag).



It also follows directly from the definition, that
1 1
inda, (A1, As) = 3 dimker 8 = §(dim A — dim(A; N A3)). (2.9)

A continuous curve A(7) € L(X), 0 < 7 < 1, is called simple if there exists A € L(X) such
that A(7) N A =0Vr €[0,1].

Lemma 2.1 If A(7) € L(X), 0 < 7 < 1, is a simple nondecreasing curve in L(X), and I €
L(X), then

indr(A(0), A(1)) = indrr(A(0), A(r)) + indr(A(7), A(1)), ¥r € [0,1].0

Lemma 2.2 Let A°,A' € L(X). There exist A € L(X) and neighborhoods V° > A°
VI > Alin L(X) such that whenever A € VO A" € V1 and dim(A N A’) = dim(A° N Al)
then there exists a simple nondecreasing curve A(t), T € [0,1] such that A(0) = A, A(1) =
A, A()NA=0Vre0,1]. O

Both Lemmas are proved in [1].

Definition 2.2 Let A(t), 0 < t < T, be a nondecreasing curve in L(X) and 0 = 1y < t1 <
<+ <ty =T are such, that the curves A(") |(¢; 1,511, @ = 0,...1 — 1, are simple and II € L(X).
The expression

-1
indyA(-) = Y indn(A(t:), A(tis)) (2.10)

is called Maslov index of the curve A(t) with respect to I1. O

It follows from the Lemma 2.1 that (2.10) does not depend on a choice of t; < -+ < ;1. If
the curve A(¢) is closed (A(0) = A(T")), then indA() does not depend also on the choice of II

(ct. [1]).
3 Normal and Abnormal Geodesics. Rigidity.

The problem of finding minimal admissible path can be represented as following Lagrange
problem of the Calculus of Variations with free final time:

UT,u() = [y (Gla(m)ul(r), Gla(r))u(r)/?dr — min, (3.1)
¢ = G(qQu,q(0) = ¢°,u € R, [Jul| =1, (3.2)
q(T) = q'. (3.3)

Here (-,-) stays for the inner product in the tangent spaces T, M; ’control parameter’ u be-
longs to the (r — 1)—dimensional unit sphere S"~!; the controls u(7) are measurable; G(q) =
(g*(q),...9"(q)) is a r—tuple of smooth vector fields, which form a basis of the distribution D.
Since our consideration regards a small neighborhood of a nonselfintersecting path on M, then
such basis can always be chosen.

We investigate problem of weak minimality, i.e. whether a given time T and an admissible
control @(-) supply (R X L )-local minimum for the problem ( 3.1)-(3.3).

Let us introduce classical 1-st-order necessary condition of weak optimality, for the Lagrange
problem of Calculus of Variations. This is Euler-Lagrange equation in Hamiltonian form.

Theorem 3.1 If a pair (T,4(-)) is weak minimizer for the problem ( 3.1)-(3.83), i.e. corre-
sponding trajectory §(7) (r € [0,T]) of (3.2) is WL —locally minimal admissible path, then there
exists a nonzero pair (Yo, ¥(+)), where g > 0 is a constant and ¥(7) is an absolutely continuous



covector-function on [0,T], such that ) (t) € ToryM and the 5-tuple (@(),G(-), Po, (), T) :
1) satisfies Hamiltonian system

G =0H/dY, q(0) =¢°, ¢(T) =¢', (3.4)
) = —0H/0q, (3.5)

with a Hamiltonian
H(u,q,%0,%) = ho(G(q)u, Glg)u)"* + 4 - Gq)u; (3.6)

2) meets stationarity condition

0H

8_u|(g(r)7q(r)71;oﬂ;(r))v =0, Yo € Ty S, for almost all T € [0,T], (3.7)

and ’transversality condition’
H(a(7),§(7), 0,9 (7)) =0, for almost all 7 € [0,T]. O (3.8)

Definition 3.1 Sub-Riemannian geodesic is an extremal of the Lagrange problem (3.1)-(3.3),
i.e. a 5-tuple (4(-),4(-), Yo, ¥(-), T) meeting the conditions of the Theorem 3.1. Sub-Riemannian
geodesic is colled normal, if zﬁo # 0, and abnormal, if ¢0 = 0. The corresponding triple
(@(+),q(-), T) is called sub-Riemannian geodesic path. O

Remark. Obviously for any normal or abnormal sub-Riemannian geodesic

(ﬂ(~),(j(~),zﬁo,1ﬁ(-),T) its restriction (a(-)|f0,¢,4(*)l[0,4 wo, ()| 0,4,t) to a subinterval [0,t] C
[0,T7 is also normal or abnormal sub-Riemannian geodesic correspondingly. ®

Remark. A geodesic path (a(-),§(-), T) may enter different geodesics with different ¢, 1(-). m

Definition 3.2 A corank of a geodesic path (u(-),q(-),T) is dimemsion of the space of pairs
(o, (), which together with (4(-),q(-),T) satisfy Theorem 3.1. O

Definition 3.3 A geodesic path (u(-),q(-),T) is called corank k abnormal geodesic path if the
space of pairs (0,v(-)), which together with (4(-),q(-),T) satisfy the Theorem 3.1, is k— dimensi-
onal. O

Remark. One should take precautions, when determining corank of abnormal geodesic
path, since in a k—dimensional linear space of pairs (1/30, ’l[J()) there is k— or (k— 1)-dimensional
subspace of pairs with vanishing 9. Therefore it may happen, that corank k geodesic path is
corank (k — 1) abnormal geodesic path. B

Whenever geodesic is abnormal, then the length functional ¢ does not enter the minimality
conditions, given by the Theorem 3.1. No surprise that corresponding geodesic paths have not
too much to do with the sub-Riemannian metric and minimality of length. It turns out that
they often exhibit a phenomenon called in [23] rigidity.

Definition 3.4 An admissible path q(-) of the distribution D with end-points ¢° and ¢* is

1
called rigid if it is isolated up to a reparametrization in the metric of WL in the set 7750 of all
admissible paths, which connect ¢° and ¢*. O

Rigid admissible paths are formally weakly minimal and analysis of the proof of the Theorem
3.1 shows, that the theorem is valid for the rigid paths as well; in addition one can take g = 0.
This leads to

Proposition 3.2 If an admissible path (G(-),q(+)) is rigid on [0,T], then (G(-),d(-),T) is an
abnormal geodesic path. O



Remark. As it is known ([14]), admissible paths (without or with pregiven end-points) of a
completely nonholonomic distribution D are dense in metric of C° in the space of all paths on M
(correspondingly without or with pregiven end-points). Therefore an admissible path is never
isolated in the metric of C°, and hence strong (=C°—local) minimality for sub-Riemannian
geodesics is another deal. We are going to perform results on strong minimality of abnormal
sub-Riemannian geodesics for 2-dimensional distributions in a forthcoming paper ®

To finish with the 1st-order condition given by the Theorem 3.1 let us note that in the
abnormal case the Hamiltonian (3.6) degenerates into an ’abnormal’ Hamiltonian

H =49 -G(q)u. (3.9)

If we denote by VﬂL(T) the orthogonal complement to the vector 4(7) in R", then the station-
arity condition (3.7) for an abnormal geodesic takes form

$(7) - G(G(r))v =0, Yv € Vi, VT € (0,17, (3.10)
and (3.8) becomes:

~

H(a(r), 4(7), (7)) = $(7) - G(a(r)a(r) = 0. (3.11)
Together with (3.10) it implies orthogonality of ¢(7) to the distribution D at every point ¢(r) :

~

(1) - G(G(r))v =0, Yo e R", Vr € [0,T]. (3.12)

4 Necessary/Sufficient Conditions for Rigidity of Abnor-
mal Sub-Riemannian Geodesics

In the previous Section we have reduced the problem of finding minimal admissible (=tangent
to the distribution D) path between given points ¢ and ¢', to the Lagrange problem (3.1)-(3.3).
We have formulated 1st-order necessary minimality condition saying that the solutions of this
problem should be sought among geodesic paths. We have singled out the class of abnormal
geodesics and defined what rigidity is. In this Section we are going to introduce 2nd variation
and set 2-nd order necessary /sufficient conditions for rigidity of abnormal geodesic paths.

Let us start with definitions of first and second variations along an abnormal geodesic
(a(-),4(-),%(-), T). Everywhere in this Section we assume, that @(-) is continuous (from the left)
at T. Let us introduce a (time x input)/state mapping F' : R x L’ [0,T] — M, which maps
a pair (¢,u(-)) into the point g(t) of the trajectory ¢(-) of the system ¢ = G(q)u(7), ¢q(0) = ¢°.
Obviously, F(t,4(+)) = ¢(-) and F(T,a(-)) = ¢(T) = ¢*. We put

€(t, u(-)) :/0 (G(a(r)u(),Glg(n)u(r) 2 dr; €: R x LL[0,T] = R.

A well known fact is that for (T, 4(-)) € R x LT to be a minimizer for the Lagrange problem
(3.1)-(3.3) it must be critical point of the mapping (¢, F'). Indeed otherwise in virtue of the
Implicit Function Theorem the system of equations

Ut u() = UT,a() — e, Ft,u()) =4,

is locally (in a neighborhood of (T',4(-))) solvable for any sufficiently small € > 0, and hence ¢°
and ¢! can be connected by an admissible path of length £(T,a(-)) — e < £(T,a(-)). If a pair
(T',4(-)) is critical point for the mapping (¢, F), i.e. the differential (¢, F')| (7 a(.)) : B X L, —
R x T M is nonsurjective, then there exists a pair (LZAJO, LZAJT) € Rx 7;*1 M, which annihilates the
image of (E’, Fl)l(T7ﬂ(.)):

Yol + Y7 F' =0. (4.1)
This equality is equivalent to the statement of the Theorem 3.1 with 1/AJT being the end-point
value ¥(T) for the solution of the adjoint equation (3.5). If o9 = 0, then the functional ¢ does



not enter both (4.1) and the Theorem 3.1. In this case the pair (T, 4(-)) enters an abnormal
geodesic (a(-),§(-),¥(-),T) or, equivalently, is critical point of the mapping F.

To study abnormal geodesics (=critical points of F') we have to invoke (first terms of) Taylor
expansion for F'(¢,u(:)). Let us present F(¢,u(+)) as chronological exponential (see Section 2 for
the notation):

¢
F(t,u(-)) = ¢® exp / Gu(r)dr.
0
Putting u(7) = 4(7) + v(7) and using the variational formula (2.4) we obtain
¢ ¢ ¢
F(t,u(-)) = ¢ 0 exp / G(i(r) 4+ v(r))dr = ¢% exp / Gia(r)dro exp / Y o(r)dr, (4.2)
0 0 0

where

Y, v = Ad éxp / Ga(§)deGo.
t

From the formula (2.5) it follows that

dY; . /dt = —ad f;Y; ;. (4.3)
Putting
Yyv = Yr,v=Ad éxp / Ga(€)deG, (4.4)
T

we compute (compare with [7]) the first differential of F' at the point (T',4(-)):

T
F'|(,a() (08, u()) = G(q")a(T)s0 +/0 Yr (g )u(r)dr, u(r) € Vi) (4.5)

If a pair (T',4(-)) is critical point of F, then ImF"|(1 4(.)) # Ty M, and there exists a nonzero
covector zﬂT € 7:1’2 M, which annihilates ImF"'|(1 4.)). This implies

dr - G(g)a(T) =0, (4.6)
and

T
%mﬂsqfwmm:a

for all u(-) € L% [0,T] such that u(r) € VﬁL(T). In virtue of Dubois-Raymond Lemma the last
equality implies:

V- Y (g v =0Vu e Vﬂl(T), for almost all 7 € [0, T. (4.7)

These conditions are equivalent to the conditions (3.10)-(3.11) of the Theorem 3.1 with the
’abnormal’ Hamiltonian (3.9). Namely if we take the solution of the adjoint equation (3.5)
with the end-point value ¢(T) = tr, then the condition (4.7) is equivalent to the stationar-
ity condition (3.7) and (4.6) implies, that the Hamiltonian H = ©¥Gu, being constant along

(@(-),q(-),%(+)), vanishes. The corank of abnormal geodesic path (4(:),G(-),T) coincides with
the corank of Fll(Tﬂl(»))-

Definition 4.1 The first differential F'|(14(.)) : R X Ly, = Tpn M, at a critical point (T, a(-))
is called first variation along abnormal geodesic path (4(-),q(:),T). It is calculated according to
the formula (4.5) 0

Now we introduce second variation along an abnormal geodesic (a(-), ¢(-), ¥ (-), T). It is Hes-
sian, or quadratic differential of F, at the critical point (T, 4(-)) € R x L (see [9]). Choosing a
function x : M — R, such that dx|,» = ¥, let us consider a function ¢(t, u(-)) = x(F (¢, u(-))).
Since 97 annihilates ImF'| (7 4(.)), then (T',4(-)) is critical point for this function.



Let us compute the quadratic term of Taylor expansion for ¢(¢,u(-)) at (T, 4(-)). Appealing
to the Volterra expansion ( 2.2) for right cronolological exponential, we derive

8" (7,00 (00, u(-)) = (5} fi Yeu(€)de o Yy (u(r)dr — [ [GA(T)), Y u(r)ldr +
+(Ga(T)) o (Gﬁ(T))g + (Ga(T))d6 o fOT Y, u(r)dr)x)(q). (4.8)

(When carrying the computation one should take into account the equalities (3.8), (4.3) and
4.7)).

When restricting the quadratic form (4.8) to the kernel of F'|(r 4(.)), we are able to subtract
from (4.8) a vanishing value of

1 T A T )
5((Gu(T)69—I—/O YTu(T)dT)O(Gu(T)69—I—/0 Yru(r)dr)x)(q"),

and transform (4.8) into

1 T T A T L
S Veutde veumiar + =g, [ vaumar @),

The last expression does not depend on choice of x but only on I&T = dx|, and therefore
we come to the

Definition 4.2 The quadratic form

R T T
2| 0 [7)(66, u()) = r - / —Ga(T)6 + / Yeu(©)de, Vou(r)(gh)dr,  (4.9)

whose domain is subspace of R x L7 defined by the condition
T
G(¢"a(T)s6 +/ Y, (¢Mu(r)dr =0, u(r) € VQJ(T), T € 10,7, (4.10)
0

is called second variation along the abnormal geodesic (a(-),¢(-),¢(-),T). O

Definition 4.3 Morse index of abnormal geodesic is negative index of the quadratic form
(4.9) — (4.10), i.e. mazimal among the dimensions of the subspaces in its domain, on which the
quadratic form is negative definite. O

Definition 4.4 Morse index of abnormal geodesic path is minimum of indices of those ab-
normal geodesics, which this geodesic path enters, or minimum of indices of quadratic forms
28" | (ray 1] for all possible r L ImF"|(q 4(.y). O

We now set 2nd-order necessary rigidity condition for corank k£ abnormal geodesics paths.
It follows from general necessary condition for isolatedness of critical point of smooth mapping
on critical level. Formulation and proof of the general condition (Theorem 9.1) as well as the
proof of the following Theorem 4.1 are given in the Appendix (Section 9). Corresponding result
for corank 1 case was established in [7].

Theorem 4.1 (Necessary Rigidity Condition for Abnormal Geodesics) For a corank

k abnormal geodesic path (4(-),q(:),T) to be rigid its index should not exceed k—1. In particular
indez of a rigid corank 1 abnormal geodesic path must vanish. O

Generally rigidity is stronger than weak minimality. But whenever all geodesics, which a
geodesic path (a(-),q(+),T) enters, are abnormal, then the conditions of the Theorem 4.1 are
necessary for weak minimality of the path. It follows from the Propositions 9.4 and 9.3 (see
Appendix).
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Proposition 4.2 (Necessary Minimality Condition for Abnormal Geodesics) Let
(@(-),4(-),T) be a corank k abnormal geodesic path, such that all geodesics it enters are abnor-
mal. Then for the geodesic path to be weakly minimal its index should not exceed k — 1. O

It follows from the Theorem 4.1, that finiteness of index is necessary for rigidity. There-
fore we are going to invoke Conditions which provide the finiteness for an abnormal geodesic
(@(-),q(-), 9 (), T).

Denoting again by Vﬂl(T) the orthogonal complement to 4(7) in R" we introduce first of these
conditions: for almost all 7 € [0, 7]

a/au%aﬂ/amﬁm (v, w) = (7) - [Gv, Gu](§(r)) = 0 Yo,w € Vi, (4.11)

In different context it was introduced by B.S. Goh in [12] and we call it Goh necessary condition.
Differentiating the identity (3.10) w.r.t. 7 one obtains for almost all 7 € [0, 7

0= L0 [Duly(r)(w) = $(r) - [Gilr), Gul(d(r) = 0 Vw € Vi (1.12)

and together with (4.11): for almost all 7 € [0,T]

P(1) - [Gu, Gw](¢(7)) =0 Vo,w € R". (4.13)

We will also refer to the last condition as to Goh condition. This condition together with (3.12)
implies, that at every point ¢(7) of rigid abnormal geodesic (a(-), §(-), ¥ (-),T) the covector ¢ (7)
has to be orthogonal to D?(4(7)) = [D, D](4(r)), spanned by the vector fields from D and their

Lie brackets of the 2nd order:
B(r) - Gulg(r)) =0, P(r) - [Gv,Gu](4(r)) = 0, Yv,w € R". (4.14)

Another necessary condition, which is called (see [15, 4, 16]) Generalized Legendre Condition,
is: for all 7 € [0, 7]
d? R
0/0u 53 0H0ula(r)(v,0) = 17(0,0) = 9(r) - (G, [Gal), Gell( () 20 (4.15)
(when computing this 4-th-order derivative we took into account the identity (4.13)); see the
proof in [3, 2]).
We summarize the aforesaid in following

Proposition 4.3 (Necessary Goh and Generalized Legendre Conditions) For an abnormal
geodesic path (4(-),4(-),T) to be rigid the Goh condition (4.13) and the Generalized Legendre
Condition (4.15) have to hold for some abnormal geodesic (u(-),q(-),v(-),T). O

To set Jacobi-type conditions we need Strong Generalized Legendre Condition. It is (compare
with (4.15)): for some 8 > 0 and for all 7 € [0,T]

Ye(v,0) = (1) - [Gu[Ga(r), Gu]l(@(r) = Blloll®, Yo € Vi) (4.16)

This last condition, which together with (4.13) is sufficient for finiteness of Morse index of
an abnormal geodesic, is not only essential for its rigidity but also provides smoothness and in
some cases uniqueness of the geodesic.

Theorem 4.4 (Regularity of Abnormal Geodesics) Let Goh condition (4.11) and Strong
Generalized Legendre Condition (4.16) hold along an abnormal geodesic (a(-),q(-), (), T).
Then the correspoding ’control’ 4(r) and the trajectory ¢(-) are smooth on [0,T]. If in addi-
tion the vector space [D,D])(¢" (correspondingly [D,D](¢")) has codimension 1 in TpoM (cor-
respondingly in Ty M ), then no other abnormal geodesic path, starting at q° (correspondingly,
finishing at ¢* ) may satisfy Goh condition (4.11) and Generalized Legendre Conditions (4.15).
O
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Proof. Differentiating (4.13) w.r.t. 7 we obtain

~

¥(r) - [Ga(r), [Gu, Gw]](§(r)) =0, Yv,w € R",Vr € [0,T], (4.17)

and, in particular,

Y1) - [Ga(r), [Ga(r),Gv]](¢(r)) =0, Yv € R",VT € [0,T]. (4.18)

Hence the points (@(7),§(), 9 (7)) of abnormal geodesic (a(-),§(-),4(-)) must ly in the subset
of ST™1 x T*M, defined by following system of relations:

@(u,q,9) = ¢ - [Gu, [Gu, G]l(q) = 0, (4.19)

Vg, ) = ¥ - (G, [Gu, Goll(g) > 0, Yo € Vit .. (4.20)
Here & : R™ x T*M — (R')*, Q: R" x T*M — (R")* ® (R")*.
The differential of the mapping ® w.r.t. u at a point (4(7),q(7),¥ (7)) is:

!, Au = (1) - [GAu, [Ga(r), Gl)(§(7)) + P(7) - [Ga(r)[GAu, Gl (d(r)),

or since in virtue of (4.17) the last addend vanishes:

¢;|(a(7),q(7)7¢(7))Au = (1) - [GAu[Ga(7), G]|(4(7))- (4.21)

Here Au € Vﬂl(T) ~ TaS™™1, but if we substitute Au = @(7) into (4.21), then in virtue of (4.18)
<I>;|(ﬁ(T)7é(T)7¢(T))ﬁ(T) = 0. In virtue of (4.16) @H(a(r),q(r),z[;(r)) is nonsingular on VﬁL(T) and hence

~

the equation ®(u, ¢(7),% (7)) = 0 can be locally (in a small neighborhood of (a(7),§(7), ¥ (7))
uniquely solved w.r.t. u, presenting u as a smooth function u = u(4(7), ’l/;(T))

In fact the solution of the system (4.19)-(4.20) is globally unique, even more, there is no
other solution @(q, ¥) of the equation (4.19) such that ¢(r) - [Gv, [G@, Gv]](¢(r)) is nonnegative
quadratic form on Vi-. Indeed let us assume, that ®(a(r),{(r),% (7)) = ®(@,§(r),1(r)) = 0.
Then on the interval connecting 4(7) with @ there must be a point u, = pa(r) + (1 —p)a (0 <

p < 1) such that @u(u“ é(T)ﬂ;(T))(ﬂ(T) — @) = 0 or, since <I>L|(qu(7) O(ry) 18 linear wr.t. w,,

! ! ~ =\ __
(N‘I’u|(a(r)7g(7),¢(7)) +01- M)¢U|(ﬂ7zj(7'),1[)(r)))(u(7_> —1u) =0. (4.22)

The left-hand side of (4.22) belongs to R ; applying it to the vector (4(7) —@) € R" and taking
into account, that @[ ;) sr),6()HUT) = Pulia i(r), i) @ = 0 we derive

0= H‘I’;|(a(7),q(r)7,@(7))(ﬂaﬁ) + (1 - N)¢;|(ayg(r)7¢(ﬂ)(ﬂ(7)aﬂ(T)) =0,

what may happen ouly if 4(7) = Fa. But if 4(r) = —a, then the quadratic form
U(7) - [Gu[Ga, Gu]](¢(r)) is negative definite. Hence @(r) = 4.

Thus we have established, that for every 7 the solution @(7) of the system of relations
@(U,Q(T),LZ;(T)) =0, Qu, (j(T),’l/;(T)) > 0 is globally unique. Then the corresponding implicit
function wu(qg, ), which is defined by the system (4.19)-(4.20), is continuous and hence smooth
w.r.t. ¢,v and therefore u(g(7),4(r)) is smooth function of .

Assume, that codim[D, D](¢") = 1. Then, as we will prove now, there is no other geodesic
path, starting at ¢° and meeting Goh and Ceneralized Legendre Conditions (4.11) and (4.15).

Assume on the contrary that there is another geodesic (@(-),q(:), % (+),T) which starts at ¢°
and meets the conditions (4.13) and (4.15). Then $(0) = k(0), or since the geodesic equaions
and the conditions (4.13) and (4.15) are homogeneous in ¢, we may think, that ¢(0) = ¥ (0).

We have already established existence of a unique smooth function u(g,v) defined on some

~

neighborhood W of the point (§(0), 1(0)) such that: @(r) = w(G(r), ¥ (1)), a(r) = w(q(r), ¥(1)).

That means, that (G(+),¥(-)) and (g(+),%(+)) are locally (in W) solutions of the same Hamiltonian
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system with the same starting points. Hence they coincide in Y. Standard reasoning proves,
that the set of those ¢, for which (a(-),q(-),%(-)) and (g(-),q(-),%(-)) coincide, is closed and
open in [0,T] and hence is [0, T itself. The same reasoning is applicable to the geodesic paths
finishing at the point ¢'. m

Now we are going to set 2nd-order sufficient rigidity condition for abnormal geodesics. It
involves the introduced above Goh and Generalized Strong Legendre Conditions, which pro-
vide for the second variation (4.9)-(4.10) weak positive definiteness on some subspace of finite
codimension in the domain (4.10) (see [1]). To put it in a strict way, let us note, that if Goh
condition (4.11) holds, then the quadratic form (4.9)-(4.10) can be ([1, Lemma 3.8]) extended
by continuity onto subspace of finite codimension in R @& H";[0,7]; the subspace is deter-
mined by the condition (4.10). The notation HT",[0,T] stays for Sobolev space of order -1,
which is dual space to the space H][0,T] of absolute-continuous functions with square inte-
grable derivatives. The space L5[0,T] is densely embedded into H”,[0,T]. For any function
u(-) € L5[0,T) € H",[0,T], whose primitive is v(-) = [, u(7)dr, the H_;-norm of u(-) can be
defined as: |[u(-)||-1 = (Jo(T)|* + [lv()[|3,)*/?. There is a direct estimate

[u@)l]-1 < (T +VT)lju()L.-

Let us also note, that fast-oscillating functions have small H_; —norms. Thus for a finite interval
[0,T: ||sinT/d]|—1 = O(9), for 6 — 0, while ||sinT/d||z, = T/2 + O(6), for 6 — 0.

We define weak positive definiteness of a quadratic form in L5[0, T'] as its positive definiteness
w.r.t. the norm of H”,[0,T]. We refer to [1] for the proof of the following

Proposition 4.5 If Goh condition (4.11) and Generalized Strong Legendre Condition (4.16)
both hold along abnormal geodesic, then the extension of the second variation (4.8) is weak
positive definite on some subspace of finite codimension in its domain which is linear subspace
of R x H",[0,T] determined by the condition (4.10). On this subspace the second variation
admits lower estimate:

2F" (1,4 [r](66,u() = e(lu()||2, +66%). O

Corollary 4.6 Under the conditions of the Proposition the extended second variation admits
on some subspace of finite codimension in its domain a lower estimate

2F"|(a [01](86, u(-) > c(llv()I7, + 06°),

where v(-) = [, u(r)dr. O

Everywhere below we assume that Goh condition (4.11) and Generalized Strong Legendre
condition (4.16) hold along geodesics we deal with. This implies, that the negative indices of
the second variation (4.9) — (4.10) and of its extension onto (subspace of) R x H",[0,T] are
finite and coincide.

Definition 4.5 Nullity of an abnormal sub-Riemannian geodesic ((-),§(-), ¢ (-),T) is the di-
mension of the kernel of the second variation (4.9) — (4.10) in R x H",[0,T]. O

It turns out, that in fact under the assumptions, we have made, the kernel ’is almost con-
tained in R x L7, namely it is contained in R x (L%, & H",[0] @ H",[T]), where H",[0] and
HT,[T] consist of R"—valued Dirac measures located at 0 and T correspondingly. Following

fact was established in [1].

Proposition 4.7 Under Generalized Strong Legendre Condition (4.16) and Goh condition
(4.13) the kernel of the second variation is contained in R x (Ll ® H" [0]® H" [T), moreover
for an element (0,u(-)) of the kernel its second component u(-) is C* on (0,7). O

Now we are able to set Sufficient Rigidity Condition for abnormal geodesics.
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Theorem 4.8 (Sufficient Condition of Rigidity for Abnormal Geodesics) If the second
variation along abnormal geodesic (4(-),q(-),(-),T) is weak positive definite, then the geodesic
path (4(-),q(:), T) is rigid, i.e. isolated up to a reparametrization in the topology of WL in the
set of admissible paths, which connect ¢° and ¢'. O

Corollary 4.9 If Goh condition (4.11) and Generalized Strong Legendre Condition (4.16) hold

along abnormal geodesic (4(-),q(-),v(-),T) and its Morse index and nullity both vanish, then
the geodesic path (u(-),q(-),T) is rigid. O

The two results follow from general sufficient condition for isolatedness of critical points of
smooth mappings on critical levels; formulation and proof of the general condition (Theorem
9.5) as well as the proof of the Theorem 4.8 are to be found in the Appendix (Section 9).

5 Morse Index and Nullity of Abnormal Sub-Riemannian
Geodesics

In the previous Section we have set necessary (Theorem 4.1) and sufficient (Theorem 4.8)
conditions for the rigidity of abnormal geodesics. The corresponding statements involve Morse
index and nullity, and in this Section we are going to compute Morse index and nullity for
an abnormal geodesic. The scheme of the computation is in many aspects similar to the
one presented in [7] for abnormal extremals of Lagrange Problem of Calculus of Variations.
Refering to that paper for more details, we still provide a selfcontained exposition. The readers
are referred to the Section 2 for notions and facts from symplectic geometry.

We start with the computation of the Morse index. To this purpose we introduce symplectic
representation of the second variation (4.9) — (4.10) along abnormal geodesic (a(-),G(-), ¥ (-), T).

Let us put

W = span{{G(¢")a(T)} U {Y;(¢")olr € [0,T], v € Vi) 1}, (5.1)

where Y is defined by (4.4). Evidently W C 7,1 M coincides with an image ImF"|(7 4(.y) of the
first variation (4.5). It follows from (4.6)-(4.7), that ¢ annihilates W, and codim W = k is
corank of the abnormal geodesic (a(-), G(-), ¥ (), T).

Taking the space Ew of the vector fields, whose values at ¢' ly in W, let us consider a

skewsymmetric bilinear form on Eyy :
dr - [X, X')(q"), VX, X' € Ew. (5.2)
This form has kernel of finite codimension in £y, which is defined by equalities:
X(q") = 037 - (0X/¢)(q") = 0,6 € W.

Taking the quotient of &y w.r.t. this kernel, one obtains on the finite-dimensional quotient
space X a (induced from (5.2)) nondegenerate skewsymmetric bilinear form o(-,). This form
defines symplectic structure on X. Direct calculation gives us dim ¥ = 2dim W = 2(n — k). We
denote by X the image of an X € &y under the canonical projection &y — X.

Choosing local coordinates (z1,...x,) : O — R™ on some neghborhood O of ¢! in M in
such a way that z;(¢') = 0, (i = 1,...n) and the subspace W is defined by the equalities
Ty =--- = xp = 0 while 1/AJT = (¥1,...,%%,0,...0), we may represent the canonical projection
X — X as:

X = Z?:l Xl(.%')a/al'l - X =
(Xi11(0), -+ X0 (0), (L1, iX3)/Oxpialo, - AT iy ¥iXi)[Oxnlo). (5.3)
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The symplectic form ¢(X,Y) can be then represented as:

o(X,Y) = Z lez )/0xjlo — lez )/0;lo0)-

Let us denote by II the image under the canonical projection of the space of those vector
fields, which vanish at ¢'. Since the Lie bracket of two vanishing at ¢' vector fields also vanish
at ¢!, then II is Lagrangian plane.

Instead of notations Y and G@(T') for the images of the vector fields Y; and G4(T') under
the canonical projection &y — X we use below T, and § correspondingly. According to the
introduced above definitions of o (-, -) and II, we may represent the second variation (4.9)-(4.10)
as:

T T
2F" |17 a() 21 (06, u () :/0 0’(—§59+/0 Yeu(€)dE, Yru(r))dr, (5.4)

and its domain as:

{(66,u(-)) € R x L.,|§56 +/ Y u(r)dr € II}. (5.5)

Under new notations the Goh condition (4.13) and Strong Generalized Legendre Condition
(4.16) take form:
o(Tru,Y,v) =0, Yu,v € R", V7 € [0,T], (5.6)

and )
¥r(u,u) = o(Tru, Tru) > Bluf?,Yu € Vit a(r) (5.7)

correspondingly.

Now we will transform the formulae (5.4)-(5.5) for the second variation, representing it as a
quadratic form in §6 and v( fo &)d¢ instead of 60, u(+). To this end let us integrate (5.4)
by parts in such a way, that u( ) is integrated:

2F" |1y 00 (00, u() = [ 0(=308 + [T Teu()de, Y u(r))dr =
——
dv
T ~ T T ~
Jo 0(=300 + Yrv(r), Yo u(r))dr — [ o[, Tev(&)dE, Tru(r))dr =
——
dv
fOTa(TTU(T) v(T))dr —I—fo a(§60 + Yru(T) + fo Tev(€)de, T o(r))dr.

When proceeding with this computation we took into account that
o(Yru(r), Yru(r)) =0, o(g, Yro(T)) = 0(g, Gv(T) =0

in virtue of Goh condition (5.6).
The domain of the second variation is:

{(68,v(T),v(-))|§06 + Go(T / T, v(r)dr € II}. (5.8)

Let us put
I' = span{Gulv € R"}, T, = span{Gulv € Vi } (T, CT). (5.9)

In virtue of Goh condition (5.6) o(Gv,Gw) = o(Yv,Tw) = 0 and therefore I' (and T',) is
isotropic subspace of ¥ : I C I,

Following [1] we introduce now Hamiltonian form of Jacobi equation for abnormal geodesics.
Considering the defined by (5.7) positive definite quadratic form ¥r(u,u) on Vit a(r)? let us put

%, for the nonsingular selfadjoint operator ¥, : VaJ(r) — VL (T) which corresponds to ~;:
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¥ (u,v) = (Fru,v), Yu,v € VﬂL(T). Taking an inverse operator 7! : fo(:) — VﬂL(T), we define

1 L

a bilinear form v-' on Vﬂ(:) as v H(u*,v%) = (7wt v*), Yur, v € fo(:). Obviously for any

x € ¥ the mapping u — o(Y,-,x) defines a linear form on VﬂL(T), i.e. an element of fo(;),

which depends linearly on x € 3. This means, that the correspondence

1 .
& — 37 o (T, 2)
defines a quadratic form on X.
Treating this quadratic form as time-dependent Hamiltonian on X, one may consider on X
linear Hamiltonian system: ' _
&= T‘rﬁl—rfl(a(TT'vJ;))v (5.10)

which we call Jacobi equation for abnormal geodesic (ii(-), 4(-),1(-), T).
If for any 7 € [0, 7] the vectors ui(7), ... u,—1(7) form such basises in VﬂJET), that

¥r(ui(7),u;i (7)) = &5, (i,5 =1,...r — 1), then the equation can be presented as

r—1

&= Z o(Trui(1), )T ru(7).

i=1

Since a Hamiltonian flow preserves symplectic structure of 3, then the Jacobi equation trans-
forms Lagrangian planes into Lagrangian ones. Therefore one may consider the Hamiltonian
flow as a flow on Lagrangian Grassmanian £(X). It is generated by the following time-dependent
Hamiltonian system on £(X) :

1 )
A= 297 (T o)l (.11)
(see Section 2 for details).

Definition 5.1 Jacobi curve T — A, (7 € [0,T]) corresponding to the abnormal geodesic
(@(),4(-),9 (), T) is the curve in Lagrangian Grassmanian L(X), which starts at Ay = II,
coincides for T € [0,T) with the starting at Il trajectory of the Jacobi equation (5.11) and
Jumps at T =T — 0 to AT:A570 =Ar_oNnIP+T. 0O

Basing on this definition we set

Theorem 5.1 (Index Theorem for Abnormal Geodesics) Let T — A, be the Jacobi curve
in Lagrangian Grassmanian L(X), which corresponds to abnormal geodesic (G(-),q(+),v(-),T).
Then for any subdivision ns41 =0 =19 <m < --- <ns =71 of T = A, into simple subarcs

Az, (8=0,...58 = 1) Morse index of the abnormal geodesic is equal to

S indu(Ay,, Agy) — (0= F), (5.12)
=0

where k is corank of the abnormal geodesic path (4(-),4(:),T). O

Proof. We give sketch of the proof of this Theorem, referring for details to the performed
in [7] computation of Morse index of an abnormal extremal for Lagrange problem of Calculus
of Variations.

Putting 66 = 0 in (5.4)-(5.5), we obtain a quadratic form which we call reduced second
variation. This quadratic form is a Hessian of input/state mapping (see [6]) u(-) — F(T,u(-)).
Its domain has codimension 1 or 0 in the domain of the second variation (5.4)-(5.5), hence its
index is not larger and differs at most by 1 from the index of the second variation. It can be
represented as

T T
2E0 | ig,a0) 0 (0, 0() = / o / Teu(€)de, T, u(r))dr, (5.13)
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with the domain .
{(O,u(~))|/ Y, u(r)dr € 10}, (5.14)
0
We define Jacobi curve for the reduced 2nd variation following [1].

Definition 5.2 Jacobi curve T — A2 (7 € [0,T]) corresponding to the reduced second variation
(5.13)-(5.14) is the curve in the Lagrangian Grassmanian L(X), which starts at A3 = II coin-
cides for T € [0,T) with the starting at II trajectory of the Jacobi equation (5.11) and jumps at
T=T-0to A = (Af)le =AS NI +1,. O

The following Proposition providing formula for the index of the reduced second variation
(5.13)-(5.14) via Maslov indices of the Jacobi curve A2 is corollary of the Theorem 1 in [1].

Proposition 5.2 (Index of the Reduced Second Variation). Let 7 — A2 (0 <7 < T),
be Jacobi curve corresponding to the reduced second variation (5.18)-(5.14) along an abnormal
geodesic (ﬂ(),(j(),@f)(),T) Then for any subdivision (i1 = 0= < O < -+ < (Gn =T of
T — A2 into simple subarcs A°|i¢, ¢,,1), (6 = 0,...m — 1) the negative index of the reduced
second variation (5.18)-(5.14) is equal to

> indn(Ag,AZ )+ dim N oA — (n — k), (5.15)
=0

where k is corank of the abnormal geodesic path (4(-),4(-),T). O

Starting from the formula (5.15) one is able to compute negative index of the second variation
(5.4)-(5.5), by using following technical Lemma (see [1]).

Proposition 5.3 Assume, that a quadratic form Q(-,-) is defined on a Hilbert space and is
positive definite on a subspace of finite codimension. Let N be a closed subspace of the Hilbert
space, Qn be the restriction of Q on N, and Né‘ be the Q-orthogonal complement to N : N5 =
{y|B(z,y) = 0,Vx € N'}, where B is corresponding to Q symmetric bilinear form. Then

ind@ = ind Qu +ind Q|yx +dim(N N NF) = dim(N Nker Q).0 (5.16)

To apply the result in our case we take for the Hilbert space H set of the pairs (66, u(-)),
which meet the condition (5.5), for the subspace A the set of pairs (0,u(-)), which meet the
condition (5.14), and for @ the quadratic form (5.4). Evidently codimN < 1.

Following this line the authors have already computed in [7] index of abnormal extremal
for Lagrange problem of Calculus of Variations. We have established in [7], that appearance of
additional term ¢éf in the second variation (5.4)-(5.5) in comparison with the reduced second

variation (5.13)- (5.14) leads to a change of the final ’jump’ of the Jacobi curve, which becomes
Ar = (Al;io)g = Al;io N §* + span{j}. Since § € FZ, then Fg =Ty +span{g} = I' and also
(A;Q_O)g == AL . Therefore we come to the formula (5.12) completing the proof of the
Theorem 5.1. A

Now we set Nullity Theorem for abnormal geodesics. Its proof is similar to the given in [7]

proof of Nullity Theorem for abnormal extremals of Lagrange problem.

Theorem 5.4 (Nullity Theorem for Abnormal Geoesics) Let 7 — A, be the Jacobi
curve in Lagrangian Grassmanian L£(X), which corresponds to a corank k abnormal geodesic
(ﬁ(-),(j('),’(/;('),T). Then nullity of the abnormal geodesic, i.e. the dimension of the kernel of
the second variation (5.4)-(5.5), is equal to dim(Ar N1II). O

What follows is corollary of the Theorems 5.1 and 5.4 (compare with the Corollary 5.5 in

[7])-
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Theorem 5.5 (Local Rigidity Condition for Abnormal Geodesics) Let an abnormal
geodesic (6(-),4(-),(-),T) meet Goh condition (4.11) and Strong Generalized Legendre Con-
dition (4.16). Then for any small enough t > 0 the restrictions (4(-)j0,7,4(-)0,7,1) of the
geodesic path (4(-),4(-),T) on [0,t] are rigid. O

Proof. Let us note firstly, that corank of the restrictions (@(-)|j0,7,4(-)|j0,7,t) is integer-
valued non-decreasing function of ¢, and hence for small enough ¢ > 0 all the restrictions have
the same corank k > 0.

We are going to prove, that both index and nullity along any restriction
(@()lf0,4,4(-)j0,4> ¥ (-)j0,, t) vanish and then apply the Corollary 4.9.

To compute the index of the restriction (a(-)0,q,4(-)|0, z/AJ(-)|[0¢], t) let us consider corre-
sponding nondecreasing Jacobi curve A-|j 4, in Lagrangian Grassmanian. Since I'NII = 0 then
L' N A, =0 for any small enough 7 > 0 and therefore dim(AL N A;) = const for small 7 > 0.
Then according to the Lemma 2.2 there exist ¢ > 0 and a Lagrangian plane A such that for any
7 € [0,] A, can be connected with AL by a simple nondecreasing curve A, (s), 0 < s < 1 such
that A (s)NA =0, Vs € [0,1]. Then the concatenation of the curve A|jo 4 with the correspond-
ing curve A;(s) is also simple and evidently nondecreasing. According to the Proposition 5.2
and Theorem 5.1 index of the (having corank 1) restriction (4(-)ljo,q,4(")l[0,9, 1&(-)|[07ﬂ ,t) equals

indm (T, A¢) + ind(Ag, A}) + ind (ALY, 1) — (n — 1),

where A} = A, NT” +T. According to the Lemma 2.1 ind(IT, A¢) +indp (A, A}) = indr(IT, A})
for all small enough ¢ > 0 and we obtain for the Morse index the expression:

indp (I, A}) + indg (A} ,TI) — (n — 1) =

_ 2%(71 — 1 —dim(AL A TD)) = (n — 1) = — dim(AF N 1T) < 0.

Being nonnegative this Morse index must vanish. That implies also dim(Al NII) = 0, i.e. in

virtue of the Theorem 5.4 nullity of the restriction (4(-)lfo,¢,4(-)lj0,6,%(*)l[0,¢]> ) also vanishes.
| |

6 Distributions Exhibiting Rigidity Phenomenon

We are going to describe some class of distributions, for which rigid abnormal geodesic paths
do exist. We will consider germs of smooth r—dimensional distributions in R™. It turns out
that some conditions on growth vectors of the distributions provide existence of rigid geodesic
paths.

Theorem 6.1 Let n > 2r, q° € M. Then in the set of 2-jets at ¢° of distributions D satisfying
the condition
dimD; =2r — 1 (6.1)

there is an open subset, such that for any distribution D satisfying the condition (6.1) with 2-jet
lying in this subset, there exists a rigid admissible path starting at ¢°. O

Generic 2-dimensional distributions on n—dimensional manifold M with n > 4 not only
meet the conditions of the Theorem 6.1, but possess stronger property.

Theorem 6.2 For any germ at a point ¢° € M of 2-dimensional distribution D, such that
Dgo £ Dgo, there exists rigid admissible path starting at ¢°. O

Proof of the Theorem 6.1. Let us assume that a distribution D meeting the conditions
of the Theorem 6.1 is spanned by the vector fields g',...g", while

D? = span{gl,...gT,[gl,gQ],...[gl,gT]}. (6.2)
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Assume that for some ¢° € 75 M \ 0, annihilating D* the ((r — 1) x r)—matrix

vlgt Lot 'l Wle” et g7l
Ay = S :
Yot lat g dletlet gl
has the maximal rank (r — 1). Then it holds also for a nonzero 1 close to 1° and there exists a
smoothly depending on ¢ solution u(y)) = (u1(¥), ... u,(¢)) € R™\0 of the systems A, u(¢) = 0;

Without loss of generality we may assume u(4°) = (1,0...0).
Assume in addition that the quadratic form

LY (vy, ..., vr) = ¥'[[Gu(y’), Gv], Gu]( Zw 9, 9], 97)(¢")viv;

t,j=2

is positive definite. Hence for 9 close to ¥° in 7*M the quadratic forms

L? (v) = Y[[Gu(v), Gv], Gv](q) (6.3)

are also positive definite on the orthogonal complements Vi, to u(y) in R".

Any distribution meeting the conditions of the theorem and with 2-jet belonging to a small
enough neighborhood of the 2-jet of D meets the above mentioned assumptions as well.

For any such distribution let us introduce a Hamiltonian h(q,v) = >_i_; wi(¥)g'(q). We
shall demonstrate that some subarc of the starting at (¢°,¢°) trajectory (¢(-),4(-)) of the
corresponding Hamiltonian system is an abnormal geodesic, which meets Goh and Strong Gene-
ralized Legendre Conditions.

The Strong Generalized Legendre Condition along a small subarc starting at (q°,4°) is
implied by the positive definiteness of the quadratic forms (6.3). We have to verify, that
¢ L D? along the trajectory. In virtue of (6.2) it is enough to establish the equalities

wgizw[gl,gi] =0,i=1,...,r.

along the trajectory.

Lt us put hit) = g (@(t), $(0)), hui() = ¥lo,61(@(0), D), G =1,...,r) and compute
hi, has.
SiIllce h=3""_  u;j(¥)hy, then

hi = {h, hi} (@(0), 9(2) —{thwh} Q). (1)) =

—Zuj ), @0, B0) + 3 (5, B 0) 96,

In virtue of (6.2) [¢7, g'] lies in the linear span of vector fields ¢',...¢",[¢%, ¢%],---[g*, 9"];
hence

{Rj, hi} = Vlg', g'] Zak Ylg', ¥ = arhu,
k=2

and therefore

T T

hid(t),$(t) = Z{w, hithi(a(t), & (1) + Z 03 () (G0, 9 (1)). (6.4)

Also

R(@(0), (1)) = {h, hi}(@(2), (1) —{Zuahmhu} Q). (1)) =
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T

= Apu(@)(@(), () + D {ug, bk hi(@(t), $ (1) = Z{uj’ hiha(G(0), (1)) (6.5)

~

Therefore the functions h;(G(t), ¥ (t)), hii(4(t), (), (i =1,...r) satisfy the linear system
of differential equations (6.4)-(6.5), and since

hi(q°,4°) = g (¢°) = hi(d®, ¥°) = ¥°lg", ¢'1(°) = 0, i =1,...r,

then

hz(d(t)7"/}(t>> = hlz((j(t>7w(t)) =0 (Z =1... 7T>'
We have established that the abnormal geodesic (§(-),%(-)) satisfies the conditions of the The-
orem 5.5 and therefore is rigid.
To finish the proof of the Theorem 6.1 we only have to construct at least one r—dimensional
distribution D, with the growth vector and the basis meeting all the assumptions we have done.
Let ¢° = Og» and R" = {(x,y,2)|v € R", y € R", z € R"?"}. Let us put

gt =08/0z1; g' = 0/0x; +x10/0y; + y:0/0yr, i =2,...,1 — 1;

n—2r

g" =0/0x" + x'0/0y, + y.0/0yr + Y _ ] 0/0z;.
j=1
The vector fields g', . . ., g" span germ of r—dimensional distribution of full Lie rank. In addition:
) n—2r )
l9',9') = 0/0yi, i=2,...,r =15 [¢",g") = 0/Dy, + Y (j +1)2]0/0z;
j=1

l¢,97) =0, i,j=2,...1; [¢",[¢",¢']] =0, i=2,...,r — 1;

[g',[g", ¢"]] is linear combination of 8/9z;, and (g, ¢°], 9] = 8:;0/Dy1, where §;; is Kronecker
symbol. All the above mentioned assumptions will hold if we choose 1/° such that

9°0/0z; = ¢°0/0z; =0, i,j=1,...,r; ¥°0/0y; =0, i=2,...,r; ¥'0/0y; =1. M

Proof of the Theorem 6.2. One can always choose vector fields f, g, which span D and
a covector ¥ € 7;’SM \ 0, in such a way, that following conditions hold:

PP F(q°) = ¥°9(d°) = ¥ £, 9(a") = LS. [f, 9]l(¢°) = O,

¥°lg, £, 91(a") > 0 (6.6)

(it is enough to chose ° L D% ° Y D? and, when necessary, multiply ¢° by -1). The
inequality (6.6) holds for all 1 close to ¢° in 7*M. Considering the equation

(h,u) = Y[f + gu, [f,gll(q) = 0

we note, that, since ¥'°[g, [f, 9]](¢°) > 0 then locally the equation ®(¢,u) = 0 has smooth solu-

tion u() = (4L, [f, a1l@)/ (¥1g. L1, g]](@)); u(é®) = 0. As in the proof of the previous theorem
some subarc of starting at (¢° ¢°) trajectory of Hamiltonian system with the Hamiltonian

h = ¥(f + gu(v)) is abnormal geodesic, which meets Goh and Strong Generalized Legendre
Condition and hence is rigid. ®
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7 Abnormal Geodesics for 2-dimensional Distributions:
Few More Steps

In this Section we deal with abnormal geodesics for 2—dimensional smooth distributions. For
this case we are able to proceed further with the computation of Morse index and nullity and
obtain elegant representation of the Jacobi equation and characterization of conjugate points.
Let us consider a 2—dimensional distribution D on a (n + 2)—dimensional manifold; let the
vector fields f,g € Vect M span D. Assume that:
i) the vector fields

L9, 0f9),. .- (adf)" g

are linearly independent at every point of the domain we treat;
ii) (adf)™g can be presented as a linear combination with C'* —coefficients of these n + 1

vector fields:
n—1

(adf)"g = 1 + 3 a'(adf)ig (8,0 € O (M)). (7.1)

=0

Then the trajectories of the vector field f are corank 1 abnormal geodesics for the distribution
D. Let us consider distribution (free C*°(M)—module of vector fields)

V =span{f,g,[f,g],-.- (adf)" "' g},

and assume, that:
iii) in the treated domain

[[f,9191(q) & V(q)-

Let ¢ be a 1—form on the domain, defined by the conditions:

Y LV, [[f,glg] =

We shall derive Jacobi equation for the abnormal geodesic, which corresponds to the vector
field f. We denote by ¢(-) = ¢° o €/ the starting at ¢° = §(0) trajectory of f; ¢(T) = ¢ .
Following the approach of the Section 5 let us consider skewsymmetric bilinear form (vy,vo) —
¥ - [v1,v2](qt), vi,v2 € V. Taking quotient of V w.r.t. the kernel of this form we obtain a
2(n 4+ 1)—dimensional symplectic space ¥'. We reduce the symplectic space considering the
(2n + 1)—dimensional skeworthogonal complement to the canonical projection § of the vector
field f onto ¥’ and then taking quotient of ¥’ w.r.t. span{g}. The result is denoted further
by X; it is 2n—dimensional symplectic space with skewscalar product denoted by o. We again
denote by Y the image of a vector field Y € V' under the canonical projection V — X.

We are going to introduce special coordinates in ¥ and to derive one more representation of
the Jacobi equation (5.10).

Let us put for i > 0

gu = TR g, gh = TR (ad f)g = 9y OF,

v =19l 9i(a") = P@LS. g, (ad )] (G(1))-

Returning to the equality (7.1) we put af = a®(4(t)) (i = 0,...n — 1), 8 = B(4(t)), and
derive from (7.1):

9i'(a") = Bef(q +Zatgt

Lemma 7.1

n—1
"= ajg. O (7.2)
=0
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Proof. Chosing coordinates in ¥ as in (5.3) (with £ = 1) we only need to establish, that

n—1

O - gi) [0zl =Y ajd( - g}) /Ol + Bid( - )/ D]

=0

for local coordinates z = (x1,...x,) in the neighborhood of ¢* € M. But this follows directly
from (7.1) and the equalities (¢g})|, =0, i=0,...n—1. W

Let II be image under the canonical projection of the vector fields Y, which meet the
condition v - [f,Y](¢*) = 0 and vanish at ¢*; II is Lagrangian plane in E It follows from (7.1)-
(7.2), that ¥ =II® Span{g t € R} and for any 7 € R the vectors g, g g ! form the basis
of the subspace span{g t 6 R} = A. Let us emphasize, that the subspace A'is not Lagrangian
and o defines a nondegenerate coupling between IT and A.

Representing a € ¥ as ¢ = z + &, where z € A, £ € I, we may write the Jacobi equation
(see (5.10)) in these coordinates as

WE+E =0lg), 2 +8)g;,

or
i =o0(g;,2)g, +olg;,8)g;, €=0. (7.3)
Evidently one of the solutions of this equation is: z; = g, & =0.

We call t a conjugate point of multiplicity k > 0, for the abnormal geodesic G(t) = ¢° o et/
if for the equation (7.3) the space of solutions, which satisfy boundary conditions

20 =0, < || gt—a 0(%750) =0, (74)

is k—dimensional.
Let us put {; = a(gt,ﬁg) and present z; in the form: z, = )]
(7.3) can be transformed into the following system

P g- Then the equation

Y E ) =300 WA +C 2 =0

nl— il 20:0 j=2,...n—1, (7.5)
C(n) = Z? 01 OétC , Go=0.

(the equation for 2%, which enters neither (7.4) nor (7.5), is ommitted):

The multiplicity of a conjugate point is dimension of the space of those solutions of the
system (7.5), which satisfy the conditions

2+ alz

22=0,i=1,...n— 1. (7.6)
Summarizing the aforesaid we set following

Theorem 7.1 Assume that for starting at ¢° trajectory 4(t) = q° o e’ of 2-dimensional distri-
bution on an (n + 2)—dimensional manifold the set above conditions i),ii) and iii) hold. Then:

1) 4(t), t € [0,T], is corank 1 abnormal geodesic path of the distribution;

2) it has finite number (may be zero) of conjugate points t; and multiplicity of a conjugate
point t is equal to the dimension of the space of solutions of the system (7.5), which satisfy the
boundary conditions (7.6);

3) Morse index of the abnormal geodesic is equal to the sum of multiplicities of the conjugate
points, which are located on (0,T);

4) nullity of the abnormal geodesic is equal to the multiplicity of conjugate point at T (van-
ishes if T is not a conjugate point);

5) for the abnormal geodesic path to be rigid it is necessary, that (0,T) does not contain
conjugate points, and it is sufficient, that (0,T] does not contain conjugate points. O
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Proof. Statement 1) was established at the beginning of the Section, finiteness of the set of
conjugate points and the statements 3),4) follow from strong regularity (see [21]) of the abnormal
geodesic ¢(-); statement 5) follows from corank 1 variants of the Theorems 4.1 and 4.8 together
with 3) and 4). m

Now we treat in more detailed way the case n = 2, i.e. 2-dimensional distributions on
4-dimensional manifolds. Here the vector field f, which meets the condition (7.1) exists and
is unique for any 2-dimensional distribution of maximal growth; such distributions define so-
called Engel structure on 4-dimensional manifolds (readers can find in [11] a detailed survey of
different problems connected with these structures). For n = 2 the system (7.5) takes form:
<
7"

.1

1 1_
= —oyz + z5 =0,

(=af¢+ai¢, o=0,{ =1. (7.7)
Besides )

t o1
d
Hence 7 = efo #-%7and therefore

t

1 _ [t 149 _ [t 1

Ztlz/ o€ fT agdgC‘rdT:Cte fo aTdT~
o r

One sees, that # is a conjugate point if and only if ¢z = 0. Multiplicity of any conjugate point
equals to 1.
Therefore for the 2-dimensional case the following corollary of the Theorem 7.1 is valid.

Corollary 7.2 For every 2-dimensional distribution of mazimal growth on 4-dimensional man-
ifold M and for every point ¢° € M there exists a corank 1 abnormal geodesic path G(t), (t €
[0,T]) of the distribution starting at ¢°. Morse index of the corresponding abnormal geodesic is
equal to the number of located on (0,T) zeros of the solution ((-) of the equation (7.7). For the
abnormal geodesic path to be rigid it is necessary (correspondingly, sufficient), that there are no
zeros of C(-) on (0,T) (correspondingly, on (0,T]). O

8 Rigid Trajectories of Affine Control Systems

In the Section we extend our approach onto the class of affine control systems
g= 1)+ 9" (@ui, q(0) =¢° (8.1)
i=1

and derive rigidity conditions for extremals of these systems.

Here the drift vector field f(q) and the control vector fields g*(q), i = 1,...r, are C* on M.
Admissible controls u(-) = (u1(-),...u.(:)) € L.

The material of this section relates to the results of [7], where nonlinear Lagrange problem of
the Calculus of Variations was treated, and also with [10], which treated time-optimal problems
for affine control systems.

We start with definition of rigidity for a given input 4(t), t € [0,T] of the affine control
system (8.1), We assume () to be continuous at T'— 0. The extension of 4(-) from [0,7'] onto
[0,T 4 8] by the constant 4(T") will be denoted also by @(-). We assume that the starting at ¢°
trajectory ¢(-) of the system (8.1) driven by the control @(-) exists on [0,7 + 4].

Definition 8.1 A control 4(-) and the corresponding trajectory 4(-) of the control system (8.1)
are called rigid on [0,T], if for some € > 0 no one (different from 4(-)) control from 6—neighbor-
hood of (-) in LT, can steer the system (8.1) from ¢° to G(T) in a time T' € [T —6,T + 4]. O
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Following the approach of the Section 4 we consider for the system (8.1) a timex input/state
mapping F' : R x LT, — M; F maps a pair (t,u(-)) consisting of time moment ¢ and an
admissible control u(-) into the point ¢(t) of the trajectory g(-) of the control system (8.1).

It turns out that for (a(-),(-),T) to be rigid, (T',a(-)) has to be critical point of F. That
means ImF"| (1 4(.)) # Tg(r)yM, and there exists nonzero Uy € T T)M annihilating ImF"| (1 4(.))-
For any such ’l/JT one can transform the equality ’l/JTF " = 0 into Hamiltonian form of the Euler-

Lagrange equation (compare with the Theorem 3.1), which is extremality condition for the path
(@(-),q(-)). It is more convenient for us to set it this time as a Definition.

Definition 8.1 (Extremality) We call (4(-),4(-)) extremal pair for the affine control system
(8.1) on [0,T], if there exists an absolutely-continuous covector-function () on [0,T]) such
that the triple (a(-),q(-),¥(+)) :

1) satisfies Hamiltonian system

g = 0H/0¥,q(0) = ¢°, (8:2)
b = —0H/dq, (8.3)

with an ’affine’ Hamiltonian
Hy(u,q,¢) =4 (f(q) + Glgu); (8.4)

2)meets stationarity condition

0H ~ .
8—uf| (@t (e = P(MGE(T)) =0, for almost all T € [0, T, (8.5)
and ’‘transversality condition’

Hy(u(r), 4(7),49(7)) = 0, for almost all 7 € [0,T]. O (8.6)

We call 4(-) extremal control and (-) extremal trajectory of the control system (8.1) on [0, T'].

The quadruple (a(-),§(-),¥(-),T) is called eztremal of the control system (8.1) on [0, 7.

Corank of an extremal path (@(-),¢(-),T) is the dimension of the space of extremals, it
enters, or, equivalently, dimension of the space of those ’l[J(), which together with (a(-),q(-),T)
satisfy the Definition (8.1), or, equivalently, corank F'|(7 4(.)) at Tgr)M

It follows from the Implicit Function Theorem, that extremality is necessary for rigidity.

Proposition 8.1 A rigid path (4(-), (), T) of the control system (8.1) must be extremal pair
of the system. O

To derive 2nd order rigidity conditions we have to involve again Goh and Generalized Leg-
endre Conditions along extremal. They are (compare with (4.11) and (4.15)):

(r) - [Gv, Gu((r)) = 0, Yo,w € R, (8.7)
and for all 7 € [0,T] :
¥ (v,0) = $(7) - [Gol fr, Go])(d(r)) > 0, Yo € R". (8.8)

Strong Generalized Legendre Condition (compare with (4.16)) looks like follows: for some
B >0 and for all 7 € [0, :

¥r (0,0) = §(7) - [Golfr, Gul(@(r) > Bllvl*, Vo € R (8.9)

Following result is ’affine version’ of the Proposition 4.3.
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Proposition 8.2 (Goh and Legendre Necessary Rigidity Conditions) For an extremal
trajectory of the affine control system (8.1) to be rigid it is necessary, that any abnormal
geodesic, it enters, satisfy the Goh condition (8.7) and the Generalized Legendre Condition
(8.8). O

Let us denote by 7, the nonsingular symmetric (r x r)—matrix, which corresponds to the
quadratic form v, (v,v) on R". Let %.;1(7) be an ij—entry of the matrix 3,
Following proposition is ’affine version’ of the Theorem 4.4.

Proposition 8.2 (Regularity of Extremals for Affine Systems) If Goh condition (8.7)

and Strong Generalized Legendre Condition (8.9) hold along an extremal (a(-),q(-),¥(-),T) of
the control system (8.1), then the extremal control 4(7) is smooth and can be calculated as:

Z’V fv[fag]]]( ( ))7 1=1,...r. O

We define correspondingly 1st and 2nd variations of the system (8.1) along its extremal
(@(),d(-),9(-), T) as the differential and the Hessian of the time xinput/state mapping F (¢, u(-)
at the point (T,4(-)) € R x L.

The formulae are: for the first variation

T
F'l a0y (08, u() = Fr(g})é0 + / Y, (¢ )u(r)dr, (8.10)
and for the second variation
R R T R T
2| .00 [7)(660, u()) = Pr - ( / = o0 + / Yeu(€)de, Yyu(r)](g)dr),  (8.11)
with the domain
R T
{(60,u()) € (R x L7.)|fr(¢")00 + / Y, (¢ )u(r)dr = 0, (3.12)

where

frq ) + Zg , Yyv = Ad(exp / fed€)Go Vv € R (8.13)

We define nullity and Morse indez of extremal (a(-),4(-),%(-),T) as the dimension of the
kernel and negative index of the quadratic form (8.11) — (8.12). Morse index of extremal path
(a(-),4(-),T) is minimum of the indices of the extremals (a(-), (), (-),T), which this path
enters.

The following Proposition is direct generalization of the Propositions 4.5 and 4.7.

Proposition 8.3 If Goh condition (8.7) and Generalized Strong Legendre condition (8.9) hold
along extremal (4(-),§(-),¢(-),T) of the afiine control system (8.1), then:

1) the second variation (8.11) — (8.12) can be extended by continuity onto the space R x
HT [0, T] and is weak positive definite on some subspace of finite codimension in Rx H" 1[0,T],
i.e. admits on this subspace a lower estimate:

2F" |, (7] (08, u()) > e(ljul-)||y + 66%); (8.14)

2)the kernel of the second variation is contained in R x (LT, & H",[0]® H",[T]), moreover
for an element (0,u(-)) of the kernel its second component u(-) is C* on (0,7). O

The following two theorems are slight generalizations of the obtained in the Section 4 rigidity
conditions for distributions.
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Theorem 8.4 (Necessary Rigidity Conditions for Affine Systems) If a corank k extre-
mal path (4(-),q(-),T) of the system (8.1) is rigid on [0,T], then its Morse index should not
exceed k — 1. In particular for a rigid corank 1 extremal path the index must vanish. O

Theorem 8.5 (Sufficient Rigidity Conditions for Affine Systems) 1) If the second vari-
ation along an extremal (i(-),q(-),(-),T) of the afiine control system (8.1) is weak positive
definite, then the extremal path (4(-),q(-),T) is rigid. 2)In particular, if Goh condition (8.7)
and Strong Generalized Legendre condition (8.9) hold along the extremal (a(-),4(-), (), T) and
Morse index and nullity of the extremal both vanish, then the extremal path (4(-),q(-),T) is
rigid. O

To compute Morse index and nullity which play an important role for the rigidity conditions
for extremal paths of affine control system (8.1) we have to repeat almost literally what was
done in the Section 5. We refer to that Section marking only minor differences.

Given an extremal (a(-),§(-),%(-),T) of the affine control system (8.1), we define linear space
W (compare with (5.1)) as:

W = span{{fr(¢")} U {¥+(¢")v|r € [0,T],v € R"}},

where fr and Y; are defined by (8.13). Evidently W = ImF"|(7 4(.)) and codim W = k is corank
of the extremal path (a(-),4(-),T).

Introducing like in the Section 5 the symplectic space ¥ (dim ¥ = 2(n — k)), Lagrangian
plane IT and denoting by f the canonical projection of the vector field fr we see, that (5.4)-(5.5)
is as well symplectic representation for the second variation (8.11) — (8.12) of the affine control
system (8.1).

Therefore the Jacobi equation for the extremal (ii(-), (), % (-), T) of the affine control system
(8.1) has the same form (5.10) or (5.11). Introducing isotropic subspace:

I'y =span{f UGulv € R"} C X,

we define Jacobi curve in Lagrangian Grassmanian for the extremal (a(-), §(-), ¢ (-), T) (compare
with the Definition 5.1).

Definition 8.2 (Jacobi curve for extremal of affine system) Jacobi curve corresponding
to an extremal of the affine control system (8.1) is a curve T — A (7 € [0,T]) in Lagrangian
Grassmanian L(X), which coincides for T € [0,T) with the starting at I1 trajectory of the Jacobi

equation (5.11) in L(X) and jumps at T —0 to Ay = A;f_o =Ar_oN be +1Iy. 0O

As for abnormal sub-Riemannian geodesics Morse index and nullity of the extremal of affine
system can be computed via symplectic invariants of the Jacobi curve.
Theorem 8.6 (Index Theorem for Extremals of Affine System) LetT — A (7 € [0,7T]),
be the Jacobi curve, which corresponds to an eztremal (a(-),G(-), % (-),T) of the affine control
system (8.1). Then for any subdivision nsy1 = 0=1ng <m < --- <ns =T of T = A, into
simple subarcs A i=0,...8s — 1) Morse index of the extremal equals to

imit1]s (
S ind(Ag Agy) — (0 — k), (8.15)
=0

where k is the corank of the extremal path (u(-),4(-),T). O

Theorem 8.7 (Nullity Theorem for Extremals of Affine System) Let7 — A (7 € [0,T7]),

be the Jacobi curve, which corresponds to an extremal (a(-),4(-),¥(:),T) of the affine control
system (8.1). Then nullity of the extremal, i.e. the dimension of the kernel of the second
variation (8.11) — (8.12), equals to dim(Ar N1II). O

Theorem 8.8 (Local Rigidity for Extremals of Affine System) Let an extremal

(@(), (), (), T) of the affine control system (8.1) meet Goh condition (8.7) and Strong
Generalized Legendre Condition (8.9). Then for any small enough & > 0 the restrictions
(@()jo,7,4()j0,,1) of the extremal path (a(-),q(-),T) on [0,%] are rigid. O
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9 Appendix: Isolated Points on Critical Levels of Smooth
Mappings and Rigidity of Abnormal Geodesics

In the Section 3 we have represented the problem of finding minimal geodesics as Lagrange
Problem of Calculus of Variations, which is in turn particular case of problem of relative ex-
tremum:

J(x) — min, F(x) =0, (9.1)

where J is a scalar function(al) on a Banach space X and F maps X into RF.

Necessary 1st order condition for local minimality of point & € X for this problem is ez-
tremality of . Namely, if Z is point of minimum and 7, F' are Frechet differentiable at Z, then
there exists a nonzero pair of Lagrange multipliers (Ao, A\) € R, x R’ such that 2 is critical
point for Lagrangian £ = Ao J (z) + AF(z) (Lagrange multipliers rule). We call such & extremal
point and (&, Ao, A) extremal for the problem (9.1).

Evidently an extremal point & may enter different extremals with different Lagrange multi-
pliers; corank of an extremal point is the dimension of the space of Lagrange multipliers, which
correspond to it.

An extremal (&, Ao, A) is normal, whenever Ay # 0, and abnormal otherwise. We use the
notation (&, \) for abnormal extremals. If A\g = 0, then the functional J does not at all enter
the 1st-order condition. Since we suppose to deal only with abnormal extremals, then we may
at all forget about the functional 7 and at once about the words ’abnormal’ and ’extremal’.
A corank k abnormal extremal point is in fact a corank k critical point of the mapping F. We
avoid introducing an extra word ’rigidity’ for phenomenon of isolatedness of point & on the level
F~1(0) of the mapping F, the phenomenon, we suppose to deal with in this Section.

Certainly for & to be isolated it is necessary to be critical, since otherwise locally in a small
neighborhood of Z the level F~1(0) is Banach manifold (without isolated points). We are going
to set necessary/sufficient conditions for isolatedness of critical point & on the critical level
F~1(0) of the mapping F.

Assuming that F' is twice Frechet differentiable at the point & we involve into consideration
the Hessian of F' at the point & (see [9]). It is quadratic mapping F"' (%) : ker F'|; — coker F'|;.
One can represent it as a bundle of quadratic forms

A= AF"(2)(6,€), € €ker F'l;, A LImF'|;,

with the domain ker F”|;.
We define index and nullity of (£, \) as negative index and dimension of the kernel of the
quadratic form AF"'(Z2)(€,€) on ker F'|;. Index of critical point & is min{ind AF" |\ L ImF"|;}.
We will show now, that index and nullity provide essential information about local structure
of the critical level F~1(0).

Theorem 9.1 (Isolated Points on Critical Levels: Necessary Condition) Assume, that
X is a Banach space and let & € X be a corank m critical point for the mapping F : X — RF,
which is twice Frechet differentiable at . Then for & to be an isolated point of the set F~1(0),
its index can not exceed m — 1. O

Proof of Theorem 9.1. We assume without loss of generality, that Z is the origin of X.
We denote by D and h correspondingly the differential and the Hessian of the mapping F' at
the origin. Suppose, that for any A € (Im D)+ index of the quadratic form Ah on ker D is > m.
We are going to prove that then Z = 0 is not isolated point of the set F~1(0).

The equation F(z) = 0 can be represented as a system f(y,z) = 0, g(y,z) = 0, where
(y,z) = x is such splitting of z, that: i) z coordinatizes ker D, 0F/dz = 0,

ii) dim f = dimy =rank D = k —m, rank 0F/0y|o = rank 0f/0y|o = rank D

Then in virtue of Implicit Function Theorem the equation f(y,z) = 0 can be resolved uniquely
w.rt. vy y = y(z). Substituting y(z) into the equation g(y,z) = 0 we obtain an equation
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©(2) = g(y(2),2z) = 0. Obviuously z = 0 is an isolated point of the set F~1(0), if and only if
z = 0 is an isolated point of ¢~1(0). Let us note, that ¢'(0) = 0 and hence we may investigate
now the mapping ¢, whose differential vanishes at the origin. To avoid additional notation we
will assume, instead of it, that D = F'|g = 0, and then h = F"'|j is a quadratic mapping of X
into R™. Again we assume, that for any nonzero A € R™" index of the quadratic form Ak is
> m.

Now we will get rid of infinite-dimensional space X.

Lemma 9.2 Under the conditions of the Theorem 9.1 there exists a finite-dimensional subspace
W C X, such that for any nonzero X\ € R™ index of the quadratic form Ah|lw is >m. O

Proof of Lemma 9.2. For any unit covector A € R™ , there exists a m—dimensional
subspace Wy C X, such that the restriction Ah|w, is negative definite. For all X’s from some
small neighborhood 5 of A the quadratic forms Ah|w, are also negative definite. Choosing a
finite covering of the sphere ||| = 1 by corresponding neighborhoods Q4 ,... Q5 we may take
W=Ws+---Ws,. 1

From now on we consider W in place of X or, all the same, assume dim X < oo.

The following statement enables us to investigate the quadratic mapping h instead of F.

Lemma 9.3 If the cone (h) 1(0) contains a regular point of the quadratic mapping h : X —
R™, then 0 is not isolated point of the set F~1(0). O

Proof. If y € h=1(0) is a regular point of h, then there exists a m—dimensional subspace
Z C X, such that hly4z : (y+Z) = R™ is local diffeomorphism at y. Since h is homogeneous,
then the same holds for all points n?y, n # 0.

Consider the mapping ¢.(z) = h(y + €z), where z belongs to the unit sphere S™~! C Z.
Obviously h(ny + nez) = n?¢.(z) and, for small enough € > 0, the topological degree of the
mapping ¢ /||de|| : S™ 1 — S™ 1is +1 or -1. Since the differentials of h at the points ny are
nondegenerate, then Ja > 0, such that for small enough € > 0, Vz € S*': ||h(ny + nez)|| >
an’e.

On the other side

|1E(ny + nez) — h(ny + nez)|| = o(n*)

and therefore for some € > 0 and small enough 1 > 0 topological degree of the mapping

z — F(ny + nez) /|| F(ny + nez)||

is +1 or -1. Hence for every small enough n > 0 the equation F'(ny + nez) = 0 has a solution z,
belonging to the unit ball B C R™ and therefore 0 is not isolated point of the set F~1(0). m

This Lemma allows us to deal with the quadratic mapping h instead of F. The conclusion
of the Theorem 4.1 is implied by the following

Proposition 9.4 Let P : X — R™ be quadratic mapping (dim X < o0), such that ind AP >
m, YA€ R™ \ 0. Then P~'(0) contains reqular point of the mapping P. O

Proof. Without loss of generality we may assume, that P'|, = 0 if and only if z = 0.
Indeed otherwise the condition P'|, = 0 means, that « lies in the intersection of the kernels of
the (quadratic forms, which are) components of P, and we may take quotient of X w.r.t. to
this intersection.

Let us start induction w.r.t. m. For m = 1 the theorem was proved in [7]. Taking m > 1
we will treat separately two cases.

i) P71(0) # {0}. Let P(y) = 0 for some y # 0. Then P'|, # 0 and AP"|, coincides
with the restriction of AP onto ker P'|, (A L ImP'|,). Conditions of the Proposition imply
ind \P"|, > codimImP'|,, YA L ImP’|,. Since dim cokerP'|, < m, then according to the
inductive assumption the inverse image (P"|,)*(0) contains regular point and hence P~1(0)
contains regular point.
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ii) P=1(0) = {0}. Then ImP is a closed cone. Applying inductive assumption to the Hessians
P"|, for any y # 0 we obtain, that Vz € ImP \ 0 the inverse image P~!(z) contains regular
point of P and therefore ImP \ 0 is open. This means that InP = R™.

Let S be unit sphere in X. Then P/||P|||s : S — S™~! is a surjective mapping. In virtue of
Sard theorem there exists regular value v of this mapping. If P(z) = av for some a > 0, then
rank(P|s)!, > m — 1. Let a, = min{a > Olav € P(S)}; a, > 0, since P~*(0) = 0. Let z, € S
and P(z,) = a,v. The pair (a,,z,) is point of local minimum and normal extremal point for
the following problem of relative extremum:

a — min, P(z) —av =0.

Standard 2nd-order necessary optimality condition for this problem provides existence of A €
R™" \ 0, such that:
Av >0, A(Pls)'le, = 0, M(Pls)"|e, > 0.

Direct computation gives
1/2M(P]s5)"]a., () = AP(y) = ly[*AP(w0),

and hence AP(y) > O0forally € N ={y |y L zy, P'|s,y = 0}. Obviously N is a linear subspace
of codimension m in X. Since AP(z,) = Av > 0 and z, is orthogonal and P—orthogonal to
N, then AP is nonnegative on N @ span{z,} and hence ind A\P < m — 1, i.e. we come to a
contradiction, which finishes the proofs of the Proposition 9.4 and Theorem 9.1. ®

Now we are going to derive from the previous theorem the necessary rigidity condition for
abnormal geodesics, which was established in the Section 4.

Proof of the Theorem 4.1. We consider {z = (¢t,u(-)) € R x LL[0,T]] |u(t)| =1}, & =
(T,a(")), and F = F(t,u(-)) be the (timexinput)/state mapping. Since our consideration
is local, we may coordinatize small neighborhood of ¢! = F((T,4(-)) in M by R" and small
neighborhood of (T',4()) by X = Rx L’;1[0,T]. The (timexinput)/state mapping is not smooth
w.r.t. time parameter ¢ but becomes C*—smooth if we restrict it on the space of C*—smooth
controls u(-). Obviously the hessian of this restriction coincides with the 2nd variation (4.9)-
(4.10) and index of the critical point £ = (T, 4(-)) for this restriction coincides with the one
from the Definition 4.4.

Now the Theorem 4.1 follows from the Theorem 9.1. ®

Theorem 9.5 (Isolated Points on Critical Levels: Sufficient Condition) Let the Banach
space X be densely embedded into separable Hilbert space H : X — H. Let a mapping
F : X — R™ be Frechet differentiable at & € X which is a critical point of F' : AF'(Z) =
0 for some A\ € R™ \ {0}. Assume that for F the following Taylor formula at &

F(&+xz)— F(&) = F'(&)x + F"(@)(x,2) + o(|]z||%)

holds where F'"(&)(x,x) is continuous quadratic mapping: F'' : X — R™. Let us choose a
complementary space Z to ker F'(Z) and represent any x € X as: © = z+&, 2z € Z, £ €
ker F'(&). If:

i) [|F(& +x) = F(&) — F'(@)z]| = o(D)l|z]|la as ||lz][x — 0; (9.2)

ii) the quadratic form AF"(%)(€,€) admits continuous extension from ker F'(Z) onto its com-
pletion in H and is H—positive definite on this completion, i.e. for some v > 0

AE"(£)(€,6) > 29I€ll% (9.3)
for € € ker F'(%);

iit) [|AF(2 + &) — (AF(2) + %AF"(@(&@)H = o(L)|I€ll, as [I€llx — 0, (9-4)
for € € ker F'(%);
w) [|AF (& +z) — (AF(2) + %AF"(@)(&@)H = O)lzllzll=ll + o(V)IE]7 as l|zllx — 0, (9.5)

then & is an isolated point of the level set F~*(F(%)). O
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Proof of the Theorem 9.5. Without loss of generality we may assume, that F (&) = 0
and # is the origin of X. We are going to establish, that ||F(z)|| > pl|z||3 for some p > 0 and
all z from some small neighborhood of the origin in X.

Let us take for Z the finite-dimensional orthogonal (in H) complement to ker F'(0); F'(0)
maps Z isomorphically onto the image F'(0)X and for some ¢ > 0

IF/(0)2] = efl2]| ¥z € 2. (9.6)

Defining N = {y € R™|A -y = 0} we choose a vector € R™ such, that A -7 = 1. Then
R™ = Rnp+ N and ImF'(0) C N.
If = z + ¢ then using Hadamard lemma we may present F'(z) as

F(z) = ®(&) + F'(0)z + A(z)z.

In virtue of (9.2), [|®(£) + A(x)z[| = o(1)([I¢|er + |lz[]) asllzl|x — 0.

Let us consider the projections of F(x) onto the vector n and the subspace N; they are
A-(®() + A(z)2)n and R(z) = F'(0)z + ®n (&) + An(x)z correspondingly.

Fixing arbitrarily small € > 0 we may choose a small neighborhood V' in X such that for
some positive k and z € V :

1

128 () + An(2)2]l < ellzllzr, [A-(2(6) - 5

AF"(0)(€,€) + A(2)2)| < Kllzllzllz|l + ell€llz-
It follows from (9.6) that
[1R(2)|| =2 max(0, (¢ — )[|z| — ell¢|lm), Ve eV,

IN@(8) + A(x)2)] > max(0, (v — e)ll&llzr — KllllmllzI))-

Putting ¢ = ¢ — €, v = v — € we obtain

1E ()] > T(maX(OchIZII = elléllz) + max(0,711€lZ — Kllgllzll=ll)-

Without loss of generality we may assume that k(1 + 4e/c)de/c < v/2.
Now if ¢||z|| > 4€||€]|x then

1E ()] > 7(—||Z||+6||€IIH) ale, o)l

with a(e, ¢) > 0.
Otherwise if ¢||z]| < 4€]|€|| g then

1E ()] = \lf(vllﬂlg kllzllwll=ll) = 7(7I|€IIH—|I€||Hk(1+46/0)46/0)
> (v/2V2)liEllT = B(v: e eIzl

with 8(y,¢,e) > 0.1

Basing on the Theorem 9.5 we shall prove the Theorem 4.8, which provides sufficient rigidity
condition for abnormal geodesics.

Proof of the Theorem 4.8. We will verify the assumptions of the Theorem 9.5 for the
time xinput/state mapping F'. Since our consideration is local i.e. regards small neighborhoods
of ¢t € M of (T,a(-)) € {(t,u(:)) € R x L-,[0,T]||u(t)] = 1} then coordinatizing these neigh-
borhoods by R" and X = R x L7, '[0,T] correspondingly taking H = R x H"[*[0,T], =
(t,u(); & = (T,a(-)),A = ¢y and F = F(t,u(-)) being the (timexinput)/state mapping. If

(T, u( )) enters an abnormal geodesic (a(-), 4(+), ¥ (-),T), then (T, a(-)) is a critical point of F
and ¢7 € R"" (see above) is an annihilator of ImF'|(7,4(.))-
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Let us put

It w()lloo = 6]+ luCDllzws 1t u) =t = (8 + luC)IE_ )

and extend @(t) smoothly onto [0, T+1]. The condition (9.3) is fullfilled by virtue of the positive
definiteness of the 2nd variation. To verify other conditions it is useful to introduce another
representation of F. Recall that

_ T+6 _ T+6
F(T +6,u(-)) = % exp / Gi(r)dro exp / Yriou(r)dr =
0 0

L, THe L, THe
=qloexp / Gu(r)dro exp / Yrio-u(r)dr,
T 0

where Y v =exp [, ad Ga(€)d¢Gu.
Now we shall transform the chronological exponential e;f) f0T+9 Yrio -u(T)dr by means of

the integration by parts formula for a chronological exponential, established in [20]. We derive:

L, THe
F(T +6,u(-)) = q*oexp /T Gu(r)dro (9.7)

T+0 1 1 )

e?p /((] _/e(l—n) ad YT+9,TD(T)d77)YT+97Tu(7—) — /e(lfn) ad YT+9,Tv(r)dnyTJrer(T))dT o0 eGu(1+6)
0 0 0
(here Y denotes the partial derivative Y - /0T).

Taking Volterra expansions for e?f) fg +o Gu(r)dr and for the ordinary and chronological
exponentials in the last formula we derive

T
F(T +6,a() +u()) = ¢* +¢* o (fr — / Yo r0(r)dr + Gu(T))
Fo(1)(18] + ()] + [O)lILs) as (18, u()llso — 0

from where the estimate (9.2) follows directly.

To verify other estimates we will multiply (9.7) by A = ¢y and simplify it getting rid of the
terms which are more than quadratic in v(-) and therefore admit an estimate o(1)||u(-)||%,. We
obtain

T+0

Gr(F(T+8,a0) +u() ~ ") = bra'o b [ Girldro
T
T4 ) )
o(—I+ exp / —Yri9,-v(7), Yrye ru(7)] — Yrge,r0(7) + [Yri40,,0(7), Yrio,v(7)]dr 0 eG”(T+9))
0

+o(1)1(6, u() |2y
Taking into account the continuity of fT w.r.t. 7, the equalities:
Vu,v € R™ r[Yr-0,Yr ul(g") = 0; rG(g" )u=0; dr¥Vr,(¢" )u=drYr (¢ )v =0

and collecting in the rest term the terms of order > 2 in (8, u(-),v(-)) in the Volterra expansions
of the chronological exponentials we derive:

P (F(T +6,4(-) + u() — ¢') =
R F r ) T R T
=gt o (fro fr6*/2 -6 /8/89|0YT+97TU(T)dT + /[YTJU(T), Yr-v(r)ldr + fré /YT7TU(T)dT
0 0 0

T ot ) . 1 )
+ / / Vi ()7 o Vi w(t)dt +0f1Go(T) + 5Go(T) o Go(T) + OB, u()llo I8, u( DI,
0 0
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Therefore we have established for the timexinput/state mapping F' the estimates (in the
notations of the previous theorem):

INF (& +a) = AF ()] = O()||z[lZ, as llz]lx =0 (9-8)

IAF (& + x) — (AF(2) + %AF"(U?)(I,I))II = Ollzllxl=llZ,), as flzllx — 0 (9.9)

and the continuity of the quadratic form AF"(£)(x,z) on H. This implies (9.4).
To derive (9.5) from (9.8)-(9.9) it is enough to establish the estimate |AF"(Z)(z,z) —
AF"(2)(€,8)| = O1)||z|| ]|z|| which follows from the continuity of A\F"'(£)(z,z) in H. W
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