ON SUPERPOSITIONS OF CONTINUOUS FUNCTIONS

A. A. Agrachev UDC 517.5

We show that if & is an arbitrary countable set of continuous functions of n variables, then
there exists a continuous, and even infinitely smooth, function ¥(xy, ..., xp) such that v,
coaxpEgle (i@, . g, 0] for any function ¢ from & and arbitrary continuous functions g
and f;, depending on a single variable.

1°. In k-valued logics Slupecki's criterion(see [1], for example), which gives a necessary and suffi-
cient condition for the completeness of systems containing all functions of a single variable, is widely
known.

In the generalization of this criterion to a countably valued logic (see [2]) it was found that if the func-
tion @ (xy, «.«., Xp), together with all functions of a single argument, forms a complete system, then an arbi-
trary function ¢ (xy, ..., Xp) can be obtained in the form of a superposition relative to ¢ of order not higher
than the second, wherein only functions depending on a single variable are used, i.e., in the form

Yz, o zn) =g (@@leVu (@), - o fin @] - En L@ (Faa (@), < v oy Fan (@))D)).

Analogous problems for continuous functions are also of no small interest inasmuch as A. N. Kol-
mogorov [3] showed that an arbitrary function ¥(xy, -+ ., x,), continuous on the unit n-dimensional cube, can
be written in the form

2n-4-1

V@1 m) = S g[S, ()]s

where gn & C 10, 1], /e Cl0,1lforli=1,...,n3m=1, ..., 2n+1, i.e, as a completely specific super-
position of continuous functions of a single argument and addition (in Kolmogorov's construction the func-
tions fy,; do not even depend on ¥).

2°. In this note we establish a negative result connected with the possibility of representing contin-
uous functions in the form of superpositions of bounded order.

Let E = [0, 1],* n =2; E" is the n-dimensional unit cube. Let C(ED) be the space of all real functions
continuous on E%, For any function ¢ from C(ED) let S, denote the set

{S(xh ey xn) :S(xlv M xn)EC(En) &(E[gvflv - -yfn) (gEC(E)!fZEC(E)’ l 21’ LS ) n)&

&s (@ o) =gle (), oo fu (@)}

The following theorem is valid.

THEOREM. There exists a nondenumerable set of functions ¥ such that ¥ — C(ED) and such that for
any function ¢ € C(E™) the set ¥ n Sy is at most denumerable.

*We can also take E = (— o, + «),
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For the proof of this theorem we require the following two lemmas.

LEMMA 1. Let [a,, by be an interval and let A* = [a,, ] X ... X lay, b] be a k-dimensional cube,
where ¢; € E, bj€ E, aj=bj fori=0, 1, ..., K. There exists a nondenumerable set {Ia} of compacta such
that for any o the compactum I, is denumerable, is contained in [ag, bgl, and, if o;= a5, then g % Ak is
not homeomorphic to Iy, x Ak,

Proof. Let a be an ordinal number, and let us denote by W(a) a topological Hausdorff space, the ele-
ments of which are all the ordinal numbers g such that g8 = «, and the topology is induced by intervals of
the form (84, 8,). Assume now that o < wy. Then

1) W(a) is a compactum, since from an arbitrary infinite set in W(a) we can select a monotonically
increasing sequence, and an arbitrary monotonically increasing sequence in W(a) is convergent.

2) The compactum W(w) is homeomorphic to some compactum I, where I, c [ay, byl.

Actually, the compactum W(a) is of measure zero since it consists of at most a denumerable number
of points and is therefore homeomorphic to some closed subset of the Cantor perfect set (see, for example,
[4]) and, hence, also of an interval. '

To complete the proof of the lemma it remains to show that for any o < wy, we can find a y such that
@<y < wyand Wiy x AK ig not homeomorphic to any W(g) x AK for g < . Let y = o+ w; then if W (a) =
@ [W™a) is the v-th derivative of the space W(a)], then vy € wv+1) (y). Consequently, if W(e) x AK has ex-
actly v nonempty derivatives, then W(a) x AR hag at least v+ 1 nonempty derivatives. Hence no subspace of
the compactum W (o) X Ak ig homeomorphic to W(y)x AKX, Thus the lemma is proved.

Let A™! =[ay, b1 X ... X lany, bpyland A™-1 =[a,, by] X ...X [y, b,] be n-dimensional cubes, where
o, =E, bcE, ay=b fori=1, ..., n. We consider the set

™ = (2 X A"™1) (J (A™1 X 29), 1)

where 2} & (a;, by), #h & la,, b,]. It is not hard to see that T is a continuum (a connected compact set).

LEMMA 2. In E™ there exists an at most denumerable set of pairwise nonintersecting continua of the
form (1). .

In the case n = 2 this lemma is the well-known statement that we can locate on a plane an at most de-
numerable set of pairwise nonintersecting continua having the form of the letter "T."

3°. Let f: ER—ER, where f(xq, -, Xp) = (f1(x1), -+ s fnlxp)) and the f; are strictly monotonic fune-
tions from C(E) i=1, ..., n). Thenif M =M;X ... x My, where Mj cE(i =1, ..., n), it follows that FMm)=
F1(My) X «.. X f,(Mp), moreover, if M; = [a;, bj] CE, then f, (M;) = [f(a:), /(b)) From this it follows that
if T ig a set of the form (1), then f(TH) is also a set of the form (1).

4°. We proceed, finally, to the basic formulation. Let 4 ={z =(zy, ..., &) 2 EE&n =... =
z, =x}. Further, let A™ =la;, 4] X ... Xlay, b,] C int (E*\4), where a; € E, b, &EE, a; b (i =1,
.o n). Let
Aﬂ-2 = [az, bz] X oo X,[an—-l, bn—1]’

A" = [ay, by) X A™2, A" =A™ X [a,, byl

Using Lemma 1, we construct a nondenumerable set of compacta {Iy} such that Iy < [a4, by] and, if
@y # @y then Ip x A" js not homeomorphic to Io, x A™?. We introduce the notation: B. = (. X A1 Y
(A™* X z7), where x)) € [ap, byl. It is obvious that the By, are continua; Bs C A™ C int (E" \ 4) and, if
@y # a3, then By, is not homeomorphic to B, since the set of branching points* of By coincides with I x
A™2, We now define functions ¥, belonging to C(ED), in the following way:

) . o (4, ©) 7
V() = TTa 5 15 By )

(where p represents distance in ED).

*We say that x is a branching point of the set By if x€ By and, for any closed neighborhood V of x, the in-
tersection V n By is always nonhomeomorphic to EM! and B, is locally connected at the point x.
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It is clear that A = {z: = = E" &Y. (z) = 0} is the level set of the function ¥ corresponding to zero.
B, ={x:z & E"&{, (x) =1} is the level set corresponding to one. Let ¥ = {z,ba} be a nondenumerable set
of functions from C(ED).

Assume now that ¢ € C(E®) and v« = S, () ¥, then ¥ (zy, . . ., ) = & [9 (i (x), - . ., fa (z.))], where
g =C(E), f =C(E) (i=1,...,n).

Let us suppose that soorlne one of the functions f1 (1 =i = n) is not strictly monotomc on E; assume,
for definiteness, that it is i . Then there exist x', x" € E, such that x' = x" and f1 x' = f1 x"). I we let

%= (rg, .. ,fn) then f (z', ', ..., o) =/ (2", 2, ..., 2°). Consequently, . (z', 2, ..., 2') =
Ya (2", 2, ..., z). But &' X', ..., X")EA and (x", x' .. ')6 E™A. We have come to a contradiction
with the fact that A is a level set of the function $q. Thus f1 is strictly monctonic on E for i = 1, ..., n.

Consequently, £& maps E® homeomorphically onto FYUE ).
We prove that the continuum £%(By) is a connected component of some level set of the function ¢.

1) 1t is obvious that f= (B,) C int (f* (E™). It is therefore sufficient to show that f*(B,) is, in fact, a
level set of the function § = ¢ agn,-

2) Let M, be a level set of the function ¢ such that /* (Bs) N My # 4. Let us suppose that My does
not appear in f¥(B,). Then there exist points z & Bs, & & E" \ Ba, such that f%(x) € My and /* () & M.,
consequently, ¢ (f {z)) = ¢ (/* (¥)), and, hence, also Y« (x) =V« (¥). But the last equation contradicts the fact
that By is a level set of the function ¥. Thus My < f¥(Bg)

3) If the closed set Mq appears in f%(By), then /= (E") \ M, is connected Actually, this follows
from the fact that E® \ B, is connected, B, is a set nowhere dense in E", and f®is a homeomorphism.

1t follows from 2) and 3) that if My, is a level set of the function ¢ such that M, ) 7* (B,) == #, then
either

@(Mz)= max ¢(z), oo @M= min @)
x=fHE™) *=fHE™)

That is, the continuous function ¢ assumes on the continuum F¥(Bq) at most two values, consequently,
it assumes exactly one value. Using 2) and 1), we find that f¥(B,) is a connected component of some level
set of the function ¢. Therefore, if a;= ap and Ve, ¥, = S, N ¥, then either f* (B,,) N f* (B.,) = ¢, or
f# (Ba,)= f* (B,,). But Bey is not homeomorphic to By,, while f*1 and % are homeomorphic, consequently,

fm‘ (311) m faz (Blz) = ¢

We note also that each B, contains a continuum of the form (1). Then if ¢, = S, N ¥, then (see 3°)
F%(Bg) also contains a continuum of the form (1). Therefore, using Lemma 2, we find that the set ng nw
is at most denumerable. This completes the proof of the theorem.

Remark. From a corresponding theorem of Whitney [5] it follows that for an arbitrary closed set B,
lying in ER, there exists a function np(x), nonnegative and infinitely differentiable in E", such that B is the
level set of the function np /) corresponding to zero.

If in the definition of the function ,(x) we replace p(A, x) by nA(x) and p(By, x) by np &), then the
proof goes through without any changes and we may assume that all the functions of the set ¥ are infinitely
differentiable.

COROLLARY 1. Assume again that {¢;}{5, = ® € (E"), then for an arbitrary function F(x) from
C(E™ and an arbitrary neighborhood of the function F in C(ED), it follows that the intersection of this neigh-
borhood with the set C(E™) \Sg is nondenumerable, i.e., an arbitrary element of the space C(ED) is a con-
densation point of the set C(E")\ Sg.

Proof. Suppose that Fe= C(EY, ¢ >0. For arbitrary 6 >0 we denote [0, 6] by Egs, and we choose a
8y >0, such that if x€ EJ , then | F () —F (0) | <e/2.

For any x from E(S we now define the function v:* (z) as follows: Vi (z) = F (0) + %wpa (—go—) . Itis

then obvious that max | F (z) — 42" (z)'| < &. We extend the function zpF *® onto the whole of ER, so that the
LS4 .

last inequality is maintained.
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Let WFs = {yf*}. then the set So () ¥F¢ is at most denumerable. We can prove this fact in the same
way we proved the theorem, the only difference being that, here and there, instead of fia we need to consider
fi lgn . and instead of @ ljmy to consider @ lfu(Eg). The Corollary 2 now follows immediately from the non-

denumerability of the set ¥I€,

In conclusion, the author thanks G. P. Gavrilov for his statement of the problem and for his constant
help.
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