A. A. Agrachev UDC 517.5

We show that if Φ is an arbitrary countable set of continuous functions of n variables, then there exists a continuous, and even infinitely smooth, function $\psi(x_1, \ldots, x_n)$ such that $\psi(x_1, \ldots, x_n) = g \left[\phi(f_1(x_1), \ldots, f_n(x_n)) \right]$ for any function ϕ from Φ and arbitrary continuous functions g and f_i , depending on a single variable.

1°. In k-valued logics Slupecki's criterion (see [1], for example), which gives a necessary and sufficient condition for the completeness of systems containing all functions of a single variable, is widely known.

In the generalization of this criterion to a countably valued logic (see [2]) it was found that if the function $\varphi(x_1, \ldots, x_n)$, together with all functions of a single argument, forms a complete system, then an arbitrary function $\psi(x_1, \ldots, x_n)$ can be obtained in the form of a superposition relative to φ of order not higher than the second, wherein only functions depending on a single variable are used, i.e., in the form

$$\psi(x_1, \ldots, x_n) = g_{\theta}(\varphi(g_1[\varphi(f_{11}(x_1), \ldots, f_{1n}(x_n))], \ldots, g_n[\varphi(f_{n1}(x_1), \ldots, f_{nn}(x_n))]).$$

Analogous problems for continuous functions are also of no small interest inasmuch as A. N. Kolmogorov [3] showed that an arbitrary function $\psi(x_1, \ldots, x_n)$, continuous on the unit n-dimensional cube, can be written in the form

$$\psi(x_1,\ldots,x_n) = \sum_{m=1}^{2n+1} g_m \left[\sum_{l=1}^n f_{ml}(x_l) \right],$$

where $g_m \in C$ [0, 1], $f_{ml} \in C$ [0, 1] for $l = 1, \ldots, n$; $m = 1, \ldots, 2n + 1$, i.e., as a completely specific superposition of continuous functions of a single argument and addition (in Kolmogorov's construction the functions f_{ml} do not even depend on ψ).

2°. In this note we establish a negative result connected with the possibility of representing continuous functions in the form of superpositions of bounded order.

Let $E = [0, 1], * n \ge 2$; E^n is the n-dimensional unit cube. Let $C(E^n)$ be the space of all real functions continuous on E^n . For any function φ from $C(E^n)$ let S_{φ} denote the set

$$\{s (x_1, \ldots, x_n) : s (x_1, \ldots, x_n) \in C (E^n) \& (\exists g, f_1, \ldots, f_n) (g \in C (E), f_i \in C (E), i = 1, \ldots, n) \& \\ \& s (x_1, \ldots, x_n) \equiv g [\varphi (f_1 (x_1), \ldots, f_n (x_n))] \}.$$

The following theorem is valid.

THEOREM. There exists a nondenumerable set of functions Ψ such that $\Psi \subset C(E^n)$ and such that for any function $\varphi \in C(E^n)$ the set $\Psi \cap S_{\varphi}$ is at most denumerable.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for \$15.00.

^{*}We can also take $E = (-\infty, +\infty)$.

M. V. Lomonosov Moscow State University. Translated from Matematicheskie Zametki, Vol. 16, No. 4, pp. 517-522, October, 1974. Original article submitted March 6, 1973.

For the proof of this theorem we require the following two lemmas.

<u>LEMMA 1.</u> Let $[a_0, b_0]$ be an interval and let $\Delta^k = [a_1, b_1] \times \ldots \times [a_k, b_k]$ be a k-dimensional cube, where $a_i \in E$, $b_i \in E$, $a_i \neq b_i$ for $i = 0, 1, \ldots, k$. There exists a nondenumerable set $\{I_{\alpha}\}$ of compacta such that for any α the compactum I_{α} is denumerable, is contained in $[a_0, b_0]$, and, if $\alpha_1 \neq \alpha_2$, then $I_{\alpha_1} \times \Delta^k$ is not homeomorphic to $I_{\alpha_2} \times \Delta^k$.

<u>Proof.</u> Let α be an ordinal number, and let us denote by $W(\alpha)$ a topological Hausdorff space, the elements of which are all the ordinal numbers β such that $\beta \leq \alpha$, and the topology is induced by intervals of the form (β_1, β_2) . Assume now that $\alpha < \omega_1$. Then

- 1) $W(\alpha)$ is a compactum, since from an arbitrary infinite set in $W(\alpha)$ we can select a monotonically increasing sequence, and an arbitrary monotonically increasing sequence in $W(\alpha)$ is convergent.
 - 2) The compactum $W(\alpha)$ is homeomorphic to some compactum I_{α} , where $I_{\alpha} \subset [a_0, b_0]$.

Actually, the compactum $W(\alpha)$ is of measure zero since it consists of at most a denumerable number of points and is therefore homeomorphic to some closed subset of the Cantor perfect set (see, for example, [4]) and, hence, also of an interval.

To complete the proof of the lemma it remains to show that for any $\alpha < \omega_1$, we can find a γ such that $\alpha < \gamma < \omega_1$ and $W(\gamma) \times \Delta^k$ is not homeomorphic to any $W(\beta) \times \Delta^k$ for $\beta \leq \alpha$. Let $\gamma = \alpha \cdot \omega$; then if $W^{(\gamma)}(\alpha) \neq \phi$ [$W^{(\gamma)}(\alpha)$ is the ν -th derivative of the space $W(\alpha)$], then $\gamma \in W^{(\nu+1)}(\gamma)$. Consequently, if $W(\alpha) \times \Delta^k$ has exactly ν nonempty derivatives, then $W(\alpha) \times \Delta^k$ has at least $\nu+1$ nonempty derivatives. Hence no subspace of the compactum $W(\alpha) \times \Delta^k$ is homeomorphic to $W(\gamma) \times \Delta^k$. Thus the lemma is proved.

Let $\Delta^{n-1} = [a_1, b_1] \times \ldots \times [a_{n-1}, b_{n-1}]$ and $\tilde{\Delta}^{n-1} = [a_2, b_2] \times \ldots \times [a_n, b_n]$ be n-dimensional cubes, where $a_i \in E$, $b_i \in E$, $a_i \neq b_i$ for $i = 1, \ldots, n$. We consider the set

$$T^{n} = (x_1^0 \times \widetilde{\Delta}^{n-1}) \cup (\Delta^{n-1} \times x_n^0), \tag{1}$$

where $x_1^0 \in (a_1, b_1), x_n^0 \in [a_n, b_n]$. It is not hard to see that T^n is a continuum (a connected compact set).

LEMMA 2. In Eⁿ there exists an at most denumerable set of pairwise nonintersecting continua of the form (1).

In the case n = 2 this lemma is the well-known statement that we can locate on a plane an at most denumerable set of pairwise nonintersecting continua having the form of the letter "T."

- 3°. Let $f: E^n \to E^n$, where $f(x_1, \ldots, x_n) = (f_1(x_1), \ldots, f_n(x_n))$ and the f_i are strictly monotonic functions from C(E) (i = 1, ..., n). Then if $M = M_1 \times \ldots \times M_n$, where $M_i \subset E(i = 1, \ldots, n)$, it follows that $f(M) = f_1(M_1) \times \ldots \times f_n(M_n)$, moreover, if $M_i = [a_i, b_i] \subset E$, then $f_i(M_i) = [f(a_i), f(b_i)]$. From this it follows that if T^n is a set of the form (1), then $f(T^n)$ is also a set of the form (1).
- 4°. We proceed, finally, to the basic formulation. Let $A = \{x = (x_1, \ldots, x_n): x \in E^n \& x_1 = \ldots = x_n = x\}$. Further, let $\Delta^n = [a_1, b_1] \times \ldots \times [a_n, b_n] \subset \operatorname{int}(E^n \setminus A)$, where $a_i \in E$, $b_i \in E$, $a_i \neq b_i$ $(i = 1, \ldots, n)$. Let

$$\Delta^{n-2} = [a_2, b_2] \times \ldots \times [a_{n-1}, b_{n-1}],$$

$$\Delta^{n-1} = [a_1, b_1] \times \Delta^{n-2}, \quad \widetilde{\Delta}^{n-1} = \Delta^{n-2} \times [a_n, b_n].$$

Using Lemma 1, we construct a nondenumerable set of compacta $\{I_{\alpha}\}$ such that $I_{\alpha} \subset [a_1, b_1]$ and, if $\alpha_1 \neq \alpha_2$, then $I_{\alpha_1} \times \Delta^{n-2}$ is not homeomorphic to $I_{\alpha_2} \times \Delta^{n-2}$. We introduce the notation: $B_{\alpha} = (I_{\alpha} \times \widetilde{\Delta}^{n-1}) \cup (\Delta^{n-1} \times x_n^0)$, where $x_n^0 \in [a_n, b_n]$. It is obvious that the B_{α} are continua; $B_{\alpha} \subset \Delta^n \subset \text{int } (E^n \setminus A)$ and, if $\alpha_1 \neq \alpha_2$, then B_{α_1} is not homeomorphic to B_{α_2} since the set of branching points* of B_{α} coincides with $I_{\alpha} \times \Delta^{n-2}$. We now define functions ψ_{α} , belonging to $C(E^n)$, in the following way:

$$\psi_{\alpha}(x) = \frac{\rho(A, x)}{\rho(A, x) + \rho(B_{\alpha}, x)}$$

(where ρ represents distance in E^n).

^{*}We say that x is a branching point of the set B_{α} if $x \in B_{\alpha}$ and, for any closed neighborhood V of x, the intersection $V \cap B_{\alpha}$ is always nonhomeomorphic to E^{n-1} and B_{α} is locally connected at the point x.

It is clear that $A = \{x: x \in E^n \& \psi_\alpha(x) = 0\}$ is the level set of the function ψ_α corresponding to zero. $B_\alpha = \{x: x \in E^n \& \psi_\alpha(x) = 1\}$ is the level set corresponding to one. Let $\Psi = \{\psi_\alpha\}$ be a nondenumerable set of functions from $C(E^n)$.

Assume now that $\varphi \in C(E^n)$ and $\psi_\alpha \in S_\varphi \cap \Psi$, then $\psi_\alpha(x_1, \ldots, x_n) \equiv g_\alpha[\varphi(f_1^\alpha(x_1), \ldots, f_n^\alpha(x_n))]$, where $g_\alpha \in C(E)$, $f_i^\alpha \in C(E)$ $(i = 1, \ldots, n)$.

Let us suppose that some one of the functions $f_{\mathbf{i}}^{\alpha}$ ($1 \le \mathbf{i} \le \mathbf{n}$) is not strictly monotonic on E; assume, for definiteness, that it is $f_{\mathbf{i}}^{\alpha}$. Then there exist x', x" \in E, such that x' \neq x" and $f_{\mathbf{i}}^{\alpha}(\mathbf{x}') = f_{\mathbf{i}}^{\alpha}(\mathbf{x}'')$. If we let $f^{\alpha} = (f_{\mathbf{i}}^{\alpha}, \ldots, f_{\mathbf{n}}^{\alpha})$, then $f^{\alpha}(x', x', \ldots, x') = f^{\alpha}(x'', x', \ldots, x')$. Consequently, $\psi_{\alpha}(x', x', \ldots, x') = \psi_{\alpha}(x'', x', \ldots, x')$. But $(\mathbf{x}', \mathbf{x}', \ldots, \mathbf{x}') \in$ A and $(\mathbf{x}'', \mathbf{x}', \ldots, \mathbf{x}') \in$ Eⁿ\A. We have come to a contradiction with the fact that A is a level set of the function ψ_{α} . Thus, $f_{\mathbf{i}}^{\alpha}$ is strictly monotonic on E for $\mathbf{i} = 1, \ldots, n$. Consequently, f^{α} maps Eⁿ homeomorphically onto $f^{\alpha}(\mathbf{E}^n)$.

We prove that the continuum $f^{\alpha}(\mathbf{B}_{\alpha})$ is a connected component of some level set of the function φ .

- 1) It is obvious that $f^{\alpha}(B_{\alpha}) \subset \operatorname{int}(f^{\alpha}(E^{n}))$. It is therefore sufficient to show that $f^{\alpha}(B_{\alpha})$ is, in fact, a level set of the function $\widetilde{\varphi} = \varphi|_{f^{\alpha}(E^{n})}$.
- 2) Let M_{α} be a level set of the function $\widetilde{\varphi}$ such that $f^{\alpha}(B_{\alpha}) \cap M_{\alpha} \neq \emptyset$. Let us suppose that M_{α} does not appear in $f^{\alpha}(B_{\alpha})$. Then there exist points $x \in B_{\alpha}$, $\widetilde{x} \in E^{n} \setminus B_{\alpha}$, such that $f^{\alpha}(x) \in M_{\alpha}$ and $f^{\alpha}(\widetilde{x}) \in M_{\alpha}$, consequently, $\varphi(f^{\alpha}(x)) = \varphi(f^{\alpha}(\widetilde{x}))$, and, hence, also $\psi_{\alpha}(x) = \psi_{\alpha}(\widetilde{x})$. But the last equation contradicts the fact that B_{α} is a level set of the function ψ_{α} . Thus $M_{\alpha} \subseteq f^{\alpha}(B_{\alpha})$.
- 3) If the closed set M_{α} appears in $f^{\alpha}(B_{\alpha})$, then $f^{\alpha}(E^{n}) \setminus M_{\alpha}$ is connected. Actually, this follows from the fact that $E^{n} \setminus B_{\alpha}$ is connected, B_{α} is a set nowhere dense in E^{n} , and f^{α} is a homeomorphism.

It follows from 2) and 3) that if M_{α} is a level set of the function $\widetilde{\varphi}$ such that $M_{\alpha} \cap f^{\alpha}(B_{\alpha}) \neq \emptyset$, then either

$$\phi\left(M_{\alpha}\right) = \max_{x \in f^{\alpha}\left(E^{n}\right)} \phi\left(x\right), \quad \text{or} \quad \phi\left(M_{\alpha}\right) = \min_{x \in f^{\alpha}\left(E^{n}\right)} \phi\left(x\right).$$

That is, the continuous function φ assumes on the continuum $f^{\alpha}(B_{\alpha})$ at most two values, consequently, it assumes exactly one value. Using 2) and 1), we find that $f^{\alpha}(B_{\alpha})$ is a connected component of some level set of the function φ . Therefore, if $\alpha_1 \neq \alpha_2$ and ψ_{α_1} , $\psi_{\alpha_2} \in S_{\varphi} \cap \Psi$, then either $f^{\alpha_1}(B_{\alpha_2}) \cap f^{\alpha_2}(B_{\alpha_2}) = \emptyset$, or $f^{\alpha_1}(B_{\alpha_1}) = f^{\alpha_2}(B_{\alpha_2})$. But B_{α_1} is not homeomorphic to B_{α_2} , while f^{α_1} and f^{α_2} are homeomorphic, consequently, $f^{\alpha_1}(B_{\alpha_2}) \cap f^{\alpha_2}(B_{\alpha_2}) = \emptyset$.

We note also that each $B_{\mathcal{Q}}$ contains a continuum of the form (1). Then if $\psi_{\alpha} \in S_{\varphi} \cap \Psi$, then (see 3°) $f^{\alpha}(B_{\mathcal{Q}})$ also contains a continuum of the form (1). Therefore, using Lemma 2, we find that the set $S_{\varphi} \cap \Psi$ is at most denumerable. This completes the proof of the theorem.

Remark. From a corresponding theorem of Whitney [5] it follows that for an arbitrary closed set B, lying in E^n , there exists a function $\eta_B(x)$, nonnegative and infinitely differentiable in E^n , such that B is the level set of the function $\eta_B(x)$ corresponding to zero.

If in the definition of the function $\psi_{\alpha}(x)$ we replace $\rho(A, x)$ by $\eta_{A}(x)$ and $\rho(B_{\alpha}, x)$ by $\eta_{B_{\alpha}}(x)$, then the proof goes through without any changes and we may assume that all the functions of the set Ψ are infinitely differentiable.

 $\frac{\text{COROLLARY 1.}}{\text{and an arbitrary neighborhood of the function } F(x)_{i=1}^{+\infty} = \Phi \subset \mathcal{C}(E^n), \text{ then for an arbitrary function } F(x) \text{ from } C(E^n) \text{ and an arbitrary neighborhood of the function } F \text{ in } C(E^n), \text{ it follows that the intersection of this neighborhood with the set } C(E^n) \setminus S_{\Phi} \text{ is nondenumerable, i.e., an arbitrary element of the space } C(E^n) \text{ is a condensation point of the set } C(E^n) \setminus S_{\Phi}.$

<u>Proof.</u> Suppose that $F \subseteq C(E^n)$, $\varepsilon > 0$. For arbitrary $\delta > 0$ we denote $[0, \delta]$ by E_{δ} , and we choose a $\delta_0 > 0$, such that if $x \in E_{\delta_n}^n$, then $|F(x) - F(0)| < \varepsilon/2$.

For any x from $E_{\delta_0}^n$ we now define the function $\psi_{\alpha}^{F,\varepsilon}(x)$ as follows: $\psi_{\alpha}^{F,\varepsilon}(x) = F(0) + \frac{\varepsilon}{2} \psi_{\alpha} \left(\frac{x}{\delta_0}\right)$. It is then obvious that $\max_{x \in E_{\delta_0}^n} |F(x)| - \psi_{\alpha}^{F,\varepsilon}(x)| < \varepsilon$. We extend the function $\psi_{\alpha}^{F,\varepsilon}(x)$ onto the whole of E^n , so that the last inequality is maintained.

Let $\Psi^{F,\varepsilon} = \{\psi_{\alpha}^{F,\varepsilon}\}$ then the set $S_{\Phi} \cap \Psi^{F,\varepsilon}$ is at most denumerable. We can prove this fact in the same way we proved the theorem, the only difference being that, here and there, instead of $f_{\mathbf{i}}^{\alpha}$ we need to consider $f_{\mathbf{i}}^{\alpha}|_{E_{\delta_0}^n}$, and instead of $\Phi|_{f^{\alpha}(E^n)}$ to consider $\Phi|_{f^{\alpha}(E_{\delta_0}^n)}$. The Corollary 2 now follows immediately from the non-denumerability of the set $\Psi^{F,\varepsilon}$.

In conclusion, the author thanks G. P. Gavrilov for his statement of the problem and for his constant help.

LITERATURE CITED

- 1. S. V. Yablonskii, "Functional constructions in a k-valued logic," Trudy Matem. Inst. Akad. Nauk SSSR, 1, 5-142 (1958).
- 2. G. P. Gavrilov, "On functional completeness in a countably valued logic," in: Problems of Cybernetics, Vol. 15 [in Russian], Moscow (1965), pp. 5-64.
- 3. A. N. Kolmogorov, "On the representation of continuous functions of several variables in the form of a superposition of continuous functions of one variable and an addition," Dokl. Akad. Nauk SSSR, 114, No. 5, 953-956 (1957).
- 4. P. S. Aleksandrov, Combinatorial Topology [in Russian], Moscow (1947).
- 5. H. Whitney, "Analytic extensions of differentiable functions defined in closed sets," Trans. Amer. Math. Soc., 36, No. 1, 63 (1934).