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Moscow, U.S.S.R.

1 INTRODUCTION

One of the main invariants of an extremal in a regular variational problem
is its Morse indez. If the extremal is optimal then its Morse index is zero.
In the geuerai case the Morse Index couid be interpicted as the mininai
number of (independent) additional relations that have to be satisfied by
the admissible variations of the given trajectory in order to make it optimal.

It turns out that there an analogue of this index in optimal control. If
the set of control parameters is open then the index is easy to define, though
much harder to compute. For strongly nondegenerate cases the analogue
of the Morse formula was obtained in [8] and [10]. The systematic use of
symplectic geometry offers a different way of computing the index, stable
under practically any perturbation, thus closing the problem for singular
extremals, cf. [4], [5].

In this paper we employ the latter method and compute the index for
the problem with constraints on the control parameters. We consider in
some detail Lang-bang controls and then brisfly present a universal formula
valid for bang-bang as well as singular parts of the optimal trajectory.
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We apply our results to the study of optimal control problems for
smooth systems. Necessary conditions for optimality are formulated for
controls (including bang-bang controls) that satisfy Pontryagin’s Maximum
Principle. As an example, we consider the case of a rigid body which is
controlled by rotating it with a given velocity around two fixed axes,

2 NONSTATIONARY VECTOR FIELDS AND FLOWS

ILet M be a C*°-manifold, f a complete vector field on M, et/ ¢t € R the
? corresponding one-parameter group of diffeomorphisms. The values of the
field f and of the diffeomorphism et/ at the point i € M will be denoted
respectively by g o f and u o etf, (Though somewhat unorthodox, these
notations will turn out to be very convenient for our purposes, as will be
seen later.) The field f acts as a first order differential operator on functions
a € C°°(M), and the result of this action is denoted by fa. For a pair of
fields f, g we form their commutator (Lie bracket) according to the formula
[figla = (adsg)a = f(ga) — 9(fa). The diffeomorphism etf also acts on
smooth functions: (e'fa)(y) =det (1o ef). Thus we consider vector felds
and diffeomorphisms as R-linear operators of special types on the space
C°(M). 1t is also evident that the composition g, = e’ 0 goe~tf is 3
vector field. For an arbitrary 4 € M we have the equation

fnog =poadsg, g, =g,

which justifies the notation ef o goe H = etdsy By g nonstationary
vector field on M we mean an arbitrary family f,,¢ € R, of smooth vector
fields f, such that for 4 € M the composition o f, is locally integrable in
t. The differential equation on M defined by a nonstationary field J,teR

can be written ag

i’g)‘ 2#(t)°ft

A nonstationary field [+ is called complete if there exists a family p,, t € R,
of diffeomorphisms of M, absolutely continuous in t, such that

VeeM  fuop,=popof, pop,=p.

The family p,,t € R, is unique and is called the flow generated by f,. We
denote it by p, =exp fot frdr. Suppose f, is defined for r & [0,¢] and is
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piecewise constant in 7, i.e._}f, ;—- fifort, <r< tip1, where 0 =1, < ¢, <
<t Sty =1t Thenexp [[ fodr =ettfooela—tfi | oe(t=t)fi For
a vector fleld g the family of fields p;ogop; ! satisfies the equation

d ) N
E(ptogopt 1)=ptoadf:gopt 1
which justifies the notation p;ogop;! =exp fot ad; dryg.
The following result can be considered as a generalization to the non-

stationary case of the formula

t
!9 =exp [ e gdroetf.
0

Proposition 1. Let f,, ft + 9:,t € R, be nonstationary complete vector
fields. Then the field exp fot ady drg,, t € R, is also complete and the
following “variational formula” (cf. [2]) holds:

¢ t T t
exp / (fr +g,)dr =exp / (e;p / ady, d99,_> dro exp / frdr. (1)
0 0 0 0

In the sequel we shall restrict ourselves to flows p; for nonnegative
values of .

We now define a remarkable action of the group of absolutely contin-
uous substitutions of time which plays a key role in the following. Let
@ i [0,4+00) — [0,400) be an absolutely continuous one-to-one trans-
formation of the time half-axis and P, =exp foi f.dr,t > 0. Define
(¢ * p), =exp f;a(t) fo-1(T)dr, and let i‘%&ﬂ =1+ aft),t 2 0. One can
easily see that

(¢ xp) =e;p /(; 1+ o)) f, dr. 2)

We may start with o(t) rather than with o(t): if a(t) is locally integrable
on [0,400), and a(t) > € —1 > —1, then the mapping ¢ — ¢ + fota(r) dr
of [0,+00) is one-to-one and absolutely continuous. From (2) we obtain
that the field (1 + a(t))f, is complete if £, is. For every ¢t > 0 let 2, be
the open set in L, of all functions & such that a(t) > € — 1 for every
7 € [0,%) and some ¢ > 0. ,

Fix a point y;, € M and define a family of mappings F,:Q,— Mby

¢
F,:a— pgoexp / (1 +a(r)f, dr.
0
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The mapping F, is infinitely differentiable from Q, to M (cf. [2]), and
F,(0) = pg 0 p,. In many respects the mapping G, ra— F(a)op;tis
more suitable for our purposes than F, is. Put h, =exp fo ady, dff,. The
variation formula (1) gives -

Ce)= oo [(alrihdr, GO =py (3

We shall need the first and second differentials of G, at zero. Denote them
respectively by

Gy L [0,¢] — T,,M,
G;I tker Gy x ker G}, — T, M.

Here G} is linear, G, is symmetric bilinear and ker G} denotes the kernel
of G}. We emphasize that the second differential G, is invariantly defined
(independently of local coordinates on M) since we consider it only on
ker G}. For an arbitrary a € C°°(M) we have

t
(e;p/ a(t)h, dr)a )
0
t - T
a+/ (exp/ a(8)h, db’oh,a) dr
0 0

t t T
=g+ / a(t)h.adr + / (/ a(G)thB) oa(r)h adr

+0 (/: la(r)] d7->3

a+/0ta(r)h,adr+%/ot ([Ara(a)hgdG,a(T)hr] adr
+3 (/ota(r)h,_dr)2a+ 0 (/Ot ]a(7)|dr>3

Therefore, according to (3)

I

t
Yae L_[0,1], Gla a(T)p, o h_dr.
0 k4 o 0 T

t T
Vag,ap €kerGl,  Gl(ay,ay) = /0 ,uoo[ /0 al(G)hng,az(T)hr} dr
(4)
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3 AN OPTIMALITY CONDITION

We now turn to optimal control, and consider the time-

optimal problem
for the system

ﬂ:yof(u), KEM, ,U(O)=,Ll0, ueUCR". (5)

where the family of smooth vector fields
missible controls we take arbitrary functions belonging to L7 [0, +00) with
values in U, and suppose that for every such control u(.) the noastationary
field f(u(r)),7 > 0, is complete. Since all subsequent considerations are

local this assumption does not restrict generality and strongly simplifies
notations,

f(u) is continuous in U. As ad-

Fix an admissible control 4 and write fr = f(4(r)). Let i be the
trajectory corresponding to 4 : i‘;@ = f(r)o f., g(0) = tq- Suppose
that the trajectory [ satisfies on [0,%] the Maximum Principle, which we
formulate in the following form:

There exists a nonzero covector Py € T5, M such that (g, g © fo) €0
and for almost all

(aooor [, Wi - ) <0, wev. (g

The Maximum Prinziple iz +ha mair nesessary condition for optimality
of a trajectory leading from y to [i(t). There are many different ways of
obtaining additional optimality conditions. A nontrivial condition could
be obtained for arbitrary set U ¢ RT if one considers the action of the
group of time substitutions considered in §2. Indeed, if the trajectory

A7),0<7<0,is optimal for (5) then it is also optimal for the system

t
F=Orefe wO)=pm,  e-1ga, [amarso
0

Using (3) and the Maximum Principle (6) we obtain

(Yo, g0 h,) = <z/)0,poo e;p/ ad, d9fT> = (Yo, 9 © fo) < 0,7 € [0, 1,
0 ;

and therefore (1, G}) = fot (Yos g 0 k) o) dr > 0 for every admissible a.

Further optimality conditions could be obtained by considering the

second differential G;'. The nature of these conditions depends heavily

on the set of covectors ¥y satisfying the Maximum Principle conditions
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(6). If ¥, is uniquely determined up to a scalar multiple, then an obvious
necessary condition for the optimality of ji is given by the inequality

<¢0,G’:(a,a)> >0, Va € ker Gl - (D

which is almost evident. If the linear hull of the covectors ¥, satisfying
(6) is two dimensional, then the optimality of ji implies that there exists a
nonzero covector for which both the Maximum Principle and inequality (7)
hold. This assertion is not so obvious and is a consequence of the fact that
the image in R? of any quadratic mapping is convex. But if this dimension is
more than two then the situation is much more complicated: inequality {7)
might be violated for all 9, even for the optimal . To obtain appropriate
optimality conditions in this case one is led to describing the dependence on
g of the index of the quadratic form <¢0, G;’(a, oz)>. We cannot dwell here
on the relevant theory, which derives conditions for solving general systems
of quadratic equations and inequalities, cf. [5], [6]. For our purposes it is
enough to suppose uniqueness of ¥, (up to scalar multiples). What has
been said can be summarized in the following.

.

Proposition 2. If the admissible trajectory i(r), 0 < 7 < £, of (5) is
time-optimal, then there exists a nonzero covector ¢, € T, M such that
for almost all 7

{$os 00 fo) <0, (?,bo,,uooh;_) =
={Lné1[1} <'ébo’#o° e;P/O ady, d@f(u)> (8)

In the case of a unique 9, (determined by (8) up to a scalar multiple)
the following additional relation holds.

(#0,6 (@,0)) = fo t <¢0,u0 o [ /0 ’ a(e)hsde,a(r)h,]> ir>0 (9

Va such that f; a(T)y 0 h,dr = 0, where h, =exp N ad, dff,.

The given optimality condition is particularly effective for the case of
piecewise constant (e.g. bang-bang) controls 4. In this case the action of the
group of time substitutions is reduced to variations of the switching times.
Let 4(r) = u; for t; < 7 < t;,,, where 0 = t; < t; < +-- <), <ty =1
f; = f(u;). Then using the obvious identity e*%: f; = f,, we obtain for
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ti<T<ti+l’i=O>1

< y ey
—_ T
h, ==exP/ ad; dff; = et1edso o g(ta=t)ady, o e(t‘"t""’)“d"‘if;.
]

~ Thus 2, = h; does not depend on r on the interval ¢; < 7 < ti4q- Let
@; = f:'_"“ a(7)dr. Then

l

i-1 [
<¢0,G;'(a,a)> =Z Yoy g © Zajhj,aih,- , Zai,uo oh; =0.
i=0 j=0 i=0
(10)
Certainly Proposition 2 has little value if there is no effective procedure for
establishing the non-negativity of the quadratic form (9). Actually, we can
even solve a more general problem, namely, that of computing the index

of this form (i.e. the maximal dimension of a subspace on which the form
is negative).

1

Equality (9) explicitly expresses the form < ¥y, G¢ ) through the vector
flelds A,,0 < 7 <t In fact, in this formula only 1-jets of h_ at fg are
used (and even these only partially). Our next goal is the elimination of
the unnecessary parameters.

Let T denote the quotient space of the space Vect(M) of all smooth
vector fields on M, modulo the kernel of the skew-symmetric form

&)
(o,. 5) — /.".I’::.“'c o [E’i;i’z}) s §15 32 € Vect(21). {i1)

Let ¢ be the nonsingular skew symmetric form on ¥ induced by (11).
The pair (2, 0) constitutes (by definition) a symplectic space. Let a €
C*(M) be such that the differential of a at Mo satisfles d, a = 1y, It is
easy to show that the kernel of the form (11) coincides with the kernel of

the linear mapping g s (Ko0+/7, d,.(g9a)) from Vect(M) to T, Mo M.
Furthermore,

(¢0a#0 o [91792]> = <dpo(.‘]2a),#o o 91) - <dm(g1a), Hg © 92> )

so that the indicated mapping induces an isomorphism of the symplectic
space (X, ¢) onto T, Me T, M with the standard skew-scalar product

(z, @ 8,2, ® &) — (&,2,) — {€1,2,) ,2; € T, M¢ e T, M.
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Let dimM = m, hence dimY = 2m. The space X contains a par-
ticular m-dimensional subspace II,—the image under the canonical pro-
jection Vect(M) — T of all smooth vector felds vanishing at p,. The
image of the vector field A_,0 < 7 < ¢, under this factorization will
also be denoted by A,. Finally, we introduce one more notation to sim-

plify formulas: we let Q(a) = <¢0,G:(a,a)>, a € kerG,. We have
Qa) = fot o( fy hoc(8)d8, b ofT))dr fot h.a(r)dr € TI,. For piecewise

constant A (cf. (10)), the resulting expression reduces to

H i—1 !
Qa)=) o |3 hja;ha; |, > hg el (12)

i=1 =0 i=0

4 REVIEW OF SYMPLECTIC GEOMETRY

The form Q is explicitly expressed through the skew scalar product o.
Therefore the investigation of Q is a problem in symplectic geometry. We
shall indicate here some necessary definitions and results from this siibject.
(A detailed discussion can be found in [91)

Let S be a subset of . We denote by S+ the skew-orthogonal com-
plement to S, S* = {z € £ : o(z,5) = 0 Vs € S}. A subspace T C 5
is called isotropic if I' C T+, and Lagrangian if T' = I'*. Since & is non-
degenerate we have dim T+ = rcdimT = 2=; - dimT. Ty perticular, an
arbitrary Lagrangian subspace is of dimension m. Note that the subspace
II, C T defined in §3 is Lagrangian.

The set L(Z) = {A C oA+ = A} of all Lagrangian subspaces con-
stitutes a submanifold of the Grassmann manifold of all m-dimensional
subspaces in . We will call it the Lagrange Grassmannian.

A linear operator A: £ — ¥ is called symplectic if o( Az, Ay) = o(z,y)
Vz,y € T. The set of all symplectic operators constitutes the symplectic
group Sp(X), which acts transitively on L(Z). Furthermore, the only sym-
plectic invariant of a pair of Lagrangian subspaces A,, A, is the dimension
of their intersection. This means that, if A%, AY is any other such pair,
and dim(A; N A;) = dim(A} N A}), then there exists A € Sp(%) such
that AA, = A{,AA, = A, A complete set of invariants of a triple of La-
grangian subspaces A, A,, A; is given by the dimensions dim(A, NA,NA;),
dim(A; N A;), 1 < < 7 <3, and the Maslov indez p(Ay, Ay, Ay), which

def
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a par- can be defined in the following way: #(Ay, Ay, A,) is equal to the signature
al pro- of the quadratic form X, @ A2 @3 = (A, N,) + (A2 A3) + a(A5, A,), )
. The . defined on the 3-dimensional space A; @ A, ® A,;. (We recall that the sig-
on will nature of a quadratic form is defined as the number of positive members
to sim- minus the number of negative members in the diagonal form.) Evidently,
« have : 1(Ay, Ay, Ag) is skew-symmetric in all three arguments.
: To clarify the above relations suppose Ay, A, is a pair of transversal
cewise Lagrangian subspaces, hence AyNA; =0. We can suppose ¥ = R™ @ .
Rm*aa(‘fh @ py,q, GBPZ) = <P27ql> - (Pu%) Ay =R™ @ 07A1 =04 R™. ;
Then any m-dimensional subspace A C % transversal to A, is represented
(12) as A= {g0S, ¢:¢ € R™)}, where Sa 1 R™ — R™ is linear. The subspace

A is Lagrangian iff S a = SA, hence dim I(L) = ﬂ";+—1) Furthermore,
any symplectic transformation leaving A, and A, unchanged has the form
(¢,p) — (471, A*p), where A € GL(R™). The subspace A, characterized
by the mapping S A R™ — R™* is transformed by this correspondence
; into the subspace characterized by the mapping A*S a4 The Maslov index

uct o, #(Ag, A A,) is equal to the signature of the quadratic form g —{~Sarq,9),
ry. We f ¢ € R™. The nontransversal case is also quite simple. :
ibject. : We now return to coordinate-free language. Let £ D T be an isotropic
: " subspace. Denote by Lp(X) the set of all Lagrangian subspaces in I con-
1 com- : taining T. Passing to the skew-orthogonal complement in the relation
ey I’ C A we obtain A c T+ VA ¢ Lp(Z). 1t is easy to show that the factor-
s non- : ization Tt — I'L /T induces a one-to-one mapping of In(X) ez LT+ ,T),
ar, an f In particular, Lp(%) is a closed smooth submanifold in L(5). We project
bspace L(Z) onto the submanifold Lp(X), assigning to A € L(X) the Lagrangian
! subspace Al = ANTL 4 1. In general the mapping A — AT is discontinu-
s con- ous, but it is smooth on submanifolds {A€ L(Z): dim(ANT) = const}. If :
sional 7 € % we shall use the abbreviated notation AY =def ARY. (It is clear that :
every one-dimensional subspace is isotropic.) Note that dim(ANAY) = m—1
H(z,y) Vy € T\ A
plectic The manifold L(X) is particularly simple if dim & = 2. In this case La-
7 sym- grangian subspaces coincide with arbitrary one-dimensional subspaces and
ension the group Sp(X) consists of all linear transformations with unit determi-
1 pair, ! nant. Thus L(Z) is diffeomorphic to the circle S'. The skew scalar product
) such ‘ defines a definite orientation of S! : for sufficiently close nonzero v,~' € T
of La- the line R” is supposed to be to the positive side of RY if a(4/,v) > 0.
NAy), T The Maslov index in this case is an invariant of a triple of points on the

which D oriented circle. Let 81,82, 83 be three different points on S and suppose
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that as we move along S? in the positive direction from some initial point
we meet the selected points in the sequence $i1»84,» 8, The permutation
(i1,%5,13) depends on the choice of the initial point, but its parity does not.
The Maslov index #(81,8,,385) is equal to 1 or —1 depending on whether
the permutation is even or odd.

Finally let us define (for an arbitrary dimension m) a half-integer val-
ued invariant of a triple of Lagrangian subspaces A, A, A, by

indAg(Ah Ap) = %(#(Ao,Aqu) —dim(A; N Ay) + m).

One can show that 0 < indy (A;,4;) < m — dim(A; NA,). A crucial
property of this invariant is the triangle inequality for A € L(D),: =
0,1,2,3 (cf. [5]):

indAo(Al,As) < indAo (AnA2) + indAo (A, Ay). (13)

5 THE INDEX OF THE FORM Q

We now describe an explicit formula for calculating the index ind @ of
the quadratic form Q(a) (which in the finite dimensional case coincides
with the number of negative squares in the diagonal form). Proposition
2 proves that the equality indQ = 0 is necessary for the optimality of
%. As indicated, this condition is close to be sufficient when 4 is bang-
bang, bulin the genwial situation it evidently needs further strengthening.
Therefore in this section we shall consider only the case of a piecewise-
constant k., cf. (12). Stronger conditions for optimality of a control that
contains both piecewise-constant and singular parts will be considered in

87.

Theorem 1. Let0 =t <t < - < ty <ty =tand h. = h; on
h<TStgg Let A=Ay =T, € LX), A =AM, i=0,1,..., L
Then for the quadratic form Q(e) given by (12) we have

I+1 141
indQ =Y "indy (A;_;,A;) + dim N A ) —m. (14)

The theorem is proved by induction. During the n-th step we compute
the index of Q(«), restricted to the subspace of admissible o = (ogy-very)
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such that o; = 0 for { > n. The induction step uses the following el-
ementary fact from linear algebra. Let E be a finite dimensional vec-
tor space, ¢ a nondegenerate symmetric bilinear form on E. For an
arbitrary subspace V C E let the index of ¢, restricted to V, be de-
noted by ind, ¢, and lei V) = {e€ E:q(e,V)=0}. Then indgg =
indy, ¢ + indvql ¢ +dim(V N V}).

Note that the quantity / in Theorem 1 denotes the number of switchings
of the bang-bang control 4. From §4 it follows that each of the [ + 2 terms
under the summation symbol in (14) is equal to 0, 1/2, or 1. The triangle
inequality (13) permits, by reducing the number of summands, to esti-
mate ind @ from below. For example, indg, (A;_q, A;) + indp (A, Ay) 2
indp (A;_;,A;;). For certain nondegeneracy conditions formula (14)
might be even more effective, For example, if o(h;_,,k;) # 0, then the
symplectic transformation A — A+ U—(ih(j’h—’\_%(h, —hi_1), A€ T, maps A;_,
onto A;. If we choose X;_; € A;_, such that Ai—1 + k; € IT, we obtain that
indpy (A;;,4;) takes the values 0, 1/2, 1 when o(X;_, k) is accordingly
positive, zero or negative,

More refined results from symplectic geometry enable us to achieve
further simplifications and, in particular, to reduce the dimension of 2. An
analysis of formula (14) leads to the following

Corollary. Assume that the conditions of Theorem 1 are valid, and sup-
pose that at least one of the quantities indp (Ao, A), i =1, ..., 1 is
equal to 1. Then indQ > 0.

Using Theorem 1 and the corollary we can give in many cases upper
bounds for the number of switches of bang-bang optimal controls. The
situation can be most easily understood when the first switching already
violates optimality. Let u; = py 0 et/ and Y = (e7nfo)xy, € Ty M, so
that (@1’17‘#1 og) = (@/’07#0 oetladf°g> Vg € I M.

Lemma. The equality indgy (Ag,A;) = 1 is equivalent to the relations
0# pofi=aly of,), where a < 0 and (Y1, 0 [f1, fo]) #0.

As is well known, certain regularity conditions in the classical Calculus
of Variations guarantee the absence of optimal trajectories with corners.
The previous lemma guarantees that for optimal control, where the trajec-
tories as a rule have corners, there are no trajectories with cusps if certain
regularity conditions are satisfied.
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6 APPLICATIONS

In this section we give simple applications of the general theory to some
special classes of systems. We shall only present the final results and omit
intermediary calculations, though the latter are quite instructive. Consider
a control system

p=po(f+ug), WISl fgeVeelM)  u(0)=po (15)

Anumber of important results have recently appeared concerning the time-
optimal control of such systems in dimensions < 3, cf. [7], [11], [12]. We
shall now apply our method to (15).

Suppose i(r), 0 < 7 < ¢, is a bang-bang control (hence taking only
values +1 ) with [ switches, satisfying the Maximum Principle, and write
fr = f +u(r)g. In the above discussion, carried out in a more general
setting, the flelds h;, ¢ = 0, 1, ..., I and the quadratic form () were derived
from f.. A local investigation permits in this situation to replace the
fields h; by the segments of their Taylor series expansions in , up to the.
orders Whlch are necessary for computing the index of Q according to (14).
Precisely, the following proposition is valid.

Proposition 3. Let dimM = 3 and suppose that the tensor felds
gAf,9) Af £ g,[f,9]] do not vanish at o € M. Then there exist a
neighporhood ¥, of u, aiid a time T > 0 such that any time-optimal tra-
jectory of (15) corresponding to a bang-bang control, contained in J,,,and
defined on a time interval of length < T, has at most two sw1tches

The above result was obtained in [12] by a completely different method
under stronger conditions. We can apply our method even in more degen-
erate cases and for greater dimensions. To compute the index we only need
to solve systems of linear equations, though one should emphasize that the
amount of computation sharply increases with the number of switches and
the number of terms of the Taylor expansion.

Now we describe one more application which is global in character.
Consider the system (15) assuming that M = SO(3)—the group of rota-
tions of R3-—and that f, ¢ are left invariant, i.e. f;g € so(3). Furthermore
suppose (f,g) = 0, where (.,.) is an invariant scalar product on s0(3). We
are still interested in bang-bang time-optimal controls. The problem could
be interpreted as follows. A rigid body can be rotated around two fixed axes
with equal constant velocities. It is required to bring the body into a given
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position in minimal time. The only parameter of the problem which could
influence the motion is the angle ¢ between the oriented axis, 0 < ¢ < 7. _,
ne Without loss of generality we can suppose that (f,f)+{g,9) = 1, and then
it '_,_; cos¢ = (f, f) — (g9,9). The bang-bang trajectories that satisfy the Max- - ‘g

ler imum Principle can have an arbitrary number of switches, and are com-
4 pletely characterized by the condition that the time elapsed between neigh-

boring switches (i.e. the angle of rotation ) depends only on the trajectory
5) but not on the number of the switches, and belongs to the interval [m,2m).
o We can deduce from here that for any neighborhood ¢ 4o 2nd any integer
,;Ve N there exists a bang-bang trajectory satisfying the Maximum Principle
for which the first N switching points belong to o+ Such trajectories are
; not optimal, but they cannot be eliminated by local considerations, since
.1y between two neighboring switches they might not stay in ¢ 0"
ite Suppose 4 is a bang-bang control having | > 2 switches and satis- :
ral . . . . i
od fying the maximum principle, and suppose further that o € [x,27) is
he the time elapsed between two neighboring switches. The composition
f‘ ef=9) 6 ¢2(J+9) of two consecutive rotations can be represented as a ro-
‘?e tation by an angle 26 around an axis, where § € (0,7) is defined by the :
) relation tan® g- = tan? % + (cot 5/ cos %)2 When « increases from = to « i
27 the angle # increases monotonically from ¢ to . It can be shown
lds ' that the quadratic form @ in 4, constructed above satisfies the inequalities
- [%] -1<indQ < [%], and consequently any bang-bang optimal control in ERL !
ra- our problem has no more than [2—"] switches. 1 hi
nd ; For.completeness we shall alsn mention some praperties of trajectories .
x with singular arcs (cf. [3]). Suppose the optimal control u(7) is singular
on the interval [r,7;] which is maximal with respect to inclusion. Then
1od (a) w(r) = Ofor 7 € (rg,7y), B) 1y — 7 < m/cos %, (c) u(t) has no
en- switchings other than 7, 7;.
sed
the
ind
7 A GENERAL FORMULA FOR THE INDEX
ser.
ha- In [4], [5], the index of second variation along a singular arc was computed.
ore In Theorem 1 the same index is computed along a bang-bang arc. In these
WGA - two cases completely different variations of the initial control are used,
uld ‘ though the expressions for the index have similar forms. Here we define a
xes unified “symplectic” expression for the index, which does not need different
ven considerations for bang-bang and singular arcs. However we still restrict
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the control system under consideration to the form (5) and suppose that
f(u) depends on u affinely and U C R" is a convex polyhedron.

Suppose that the given control 4 is piecewise continuous and satisfies
the Maximum Principle. We shall use the Notations of §3 and suppose that
the covector ¢, € T oM is defined by (6) uniquely up to a scalar multiple.
For every 7 € [0,%] denote by V. C U the face of minimal dimension of
U containing 4(7); we suppose that V, is piecewise constant in 7. Let -
II : Vect(M) — T be the canonical factorization and put T'_ = span(II exp
Jy ad;, d6f.(V,)),7 € [0,4]. As a simple consequence of the generalized
Legendre-Clebsch conditions (cf. [1]) we obtain

Proposition 4. If the trajectory ji(7),0 < 7 < ¢ is time optimal then
Vr € [0,¢] T', is an isotropic subspace of the symplectic space .

Suppose now that I', 0 < 7 < ¢, are isotropic and denote by D the
set of all finite subsets of [0,¢]. Let D = {¢;,...,4,} € D,0<¢; <--- <,
Define the sequence of Lagrangian subspaces A(D),7=0,1,...,1+1, by
Ay(D) = Ay, =TI, A(D) = AL(D), i =1, ..., L

Theorem 2. For an arbitrary D € D put .

41 {
I(D) = indy, (A;_y(D), (D)) + dim (ﬂ A,.(D)> —m >0,

i=1 =0
where | = number of points in D. Then:
(1) if D C D' then I(D) < I(D)'.
(2) if the trajectory ji(r),0 < 7 < ¢, is time optimal, then

VDeD, ID)=0.
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