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SYMPLECTIC GEOMETRY
AND NECESSARY CONDITIONS FOR OPTIMALITY
UDC 517.97

A. A. AGRACHEV AND R. V. GAMKRELIDZE

ABSTRACT. With the help of a symplectic technique the concept of a field of extremals
in the classical calculus of variations is generalized to optimal control problems. This
enables us to get new optimality conditions that are equally suitable for regular, bang-
bang, and singular extremals. Special attention is given to systems of the form % =
Jo(x) + ufi(x) with a scalar control. New pointwise conditions for optimality and
sufficient conditions for local controllability are obtained as a consequence of the
general theory.

§1. AN INVARIANT FORMULATION OF THE MAXIMUM PRINCIPLE

We consider the time-optimal problem on a smooth manifold A/ for the system
(1) Xx=f(x,u), xXeM, ueUCR;

here M is a manifold of the class C*, dimM = n, and f(x,u) € TxM is an
infinitely differentiable function of (x, u).
Consider the cotangent bundle

T"M={y,x)lxeM, yweT;M}

over M, and denote by dx the differential of the projection (v, x) — x of the
manifold 7*M onto M. Then the composition ydx|,, ) isa cotangent vector to
T*M at the point (y, x). We define the differential 1-form € on T*M by the
equality Q| x) = wdx|y x) andlet w = —dQ. The closed differential 2-form w
is the standard symplectic structure on 7M.

To each function ¢ € C>*°(7T*M) (Hamiltonian) there corresponds a Hamiltonian
vector field ¢ on T*A uniquely determined by the relation

dp =i,w,

where i is the interior multiplication by the field &, i:w(n) = w(&, 7).

Let X(t) and () be a solution of (1). We say that this solution satisfies the
Pontryagin maximum principle if there exists a curve ¥ (¢) € T;(I)M , W) #0,
such that the pair (y7(¢), %(¢)) satisfies the Hamiltonian system corresponding to the
Hamiltonian H,(y, x) = v f (x, @(t)), along with the maximum condition

0 < H(y(1), X(1) = max g () f(X(1), u), t=0.
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Such pairs (§(¢), (1)) are called extremals of the time-optimal problem for sys-
tem (1).

§2. THE PERTURBATION EQUATION FOR (1)

Let P M — M be a flow (nonstationary) on M satisfying the equation
d . .
E?Pt(x) = f(P(x), u(t)), Py =1d.
Making the nonstationary change of variables y = P7!(x) in (1), we get the system

(2) Y=gy, u,
where
gl w) = PIN(f (s u) = f(-, a(1).
We fix the initial condition xg = %£(0) we have that
P7L(x(8) = xo, gy, () =0 Vye M.

Note also that a solution (xp, #(z)) of (2) satisfies the “simplified” maximum

condition
Wogi(xo, u) <0 YueU, wo=y(0).

Thus, the study of the behavior of system (1) near a given solution (X(¢), #(7))
reduces to the study of the “perturbation equation” (2) near an equilibrium state.

§3. REGULAR EXTREMALS

The basic facts of the theory being developed have an especially simple appearance
if we confine ourselves to the consideration of regular extremals.

Definition. An extremal ((1), %(¢)) is said to be regular if the corresponding control
ii(t) is piecewise continuous and takes values in the interior of U, the r x r matrix
82
(3) e wo i (X0, Wlawm
is nonsingular for any ¢, and the equation
p(0)f(x(2), a(t)) = max w()f(x(1), u)

has a unique solution for ().
It is easy to see that (3) is nonsingular if and only if the r x ¥ matrix
82
EPyl wo&: (X0, U)luw

is nonsingular for any ¢. Thus, nondegeneracy of the extremal under consideration
enables us to express # as a smooth function of (y, x) in the equation

3}

5, V& xs 1) =0

forall (v, x) €@, where & is some neighborhood of the point (yp, xo) in T"M .
Let u, = u,(y, x) be the corresponding expression, and define the Hamiltonian

(4) H(y, x)=wa(x, uly,x)),  Hlw, x0)=0.

The solutions of the corresponding Hamiltonian system form a family of regular
extremals of the control system (2). We consider in greater detail the collection of
solutions satisfying the initial condition x(0) = xp.
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We define the homogenization of the cotangent bundle 7*Af to be the quotient
space T*M\M with respect to the equivalence relation

(aw, x)~ (¥, x) Ya>0.

Since the Hamiltonian (4) is homogeneous in y with degree of homogeneity I,
the domain of definition @ of the Hamiltonian can be assumed to be conical:

(W,x)€O@ = (ay,x) €@ VYa>0.

Denote by Q; the flow of our Hamiltonian system, and by .2 a conical neigh-
borhood of the point (wp, Xxo) in 7; M such that the family of submanifolds
£ = Q:(F) is defined for all ¢ under consideration.

Since the fiber 77 M is a Lagrangian submanifold of T*A , it follows that the
submanifolds % are also Lagrangian submanifolds. It is easy to see that all the
submanifolds % are conical and that their homogenizations are well defined. If we

denote the homogenization operator by # , then
AL =X (Qn2p) = QAL ).

The geometric properties of the projection (R, , x) — x of the manifold #%,;
onto the base A turn out to be closely related to the property of local optimality for
the trajectory X(t).

We say that the regular extremal under consideration is strongly regular if the
matrix

" 08 08t dt|, .
, Ou du ~ Mxo.H)

has rank n — 1 (i.e., the maximal possible rank) for all ¢, # . In this case yq is
determined uniquely up to a positive factor by the condition

wogi(xo, u) <0 V¢, u.

The so-called regular case of the classical calculus of variations with r = n — 1
obviously satisfies this condition.

If the extremal under consideration is strongly regular, then for sufficiently small
7 > 0 the projection %, — M is an immersion at the point (Ryy, Xp), and there
is a simple necessary condition for optimality on the given interval 0 < 1< t:

If the solution @(t), X(t), 0 <t <'t, is optimal, then the projection %=, — M
is an immersion at the point (Ryy, xo) VT €(0,1).

This assertion is a direct generalization of the field theory in the classical calculus
of variations.

The assertion “ %%, — M is an immersion” is equivalent to the Lagrange sub-
space 1(y,.x,)~Z: intersecting the “vertical” Lagrangian subspace Iy = T(y, x,) (75, M)
only in the line 7iy, »)(Ryo). We introduce the abbreviated notation A(r) =
Tiye . x)22 and Z = T, 4w (T*M). If strong regularity is lacking, then the im-
mersion condition formulated above is equivalent to the equality dim{(IlpNA;) =1,
which is no longer necessary for the optimality of the control. Nevertheless, taking
account of the arrangement of the family of subspaces A(t) with respect to Iy in
the symplectic space X enables us to get nice conditions for optimality also in the
general regular case. In the strongly regular situation these conditions reduce to the
immersion requirement already considered, and perhaps clarify the meaning of this
immersion.

The optimality conditions are formulated in terms of symplectic geometry. We
briefly describe the concepts used. Details can be found in [5] and [1].
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The skew inner product in the symplectic space X is given by the form |y, -
To each subset S C X corresponds its skew orthogonal complement S+ = {¢ €
Ziw(S, &) = 0}. The symbol L(Z) denotes the Lagrangian Grassmannian—the col-
lection of all Lagrangian subspaces of X, L(X) = {A C £|A+ = A}. The Lagrangian
Grassmannian is a smooth connected n(n + 1)/2-dimensional manifold. For an ar-
bitrary Il € L(Z) let

A0 = {A € L(Z)]ANT # 0}.

The closed subset .Zf; of L(X) is not a smooth submanifold; however, it is a
so-called pseudomanifold. More precisely, we have the following easily verified as-
sertions:

1) For r=1,...,n the subset .#Z] = {A € L(X)|dim(ANII) = r} is a smooth
imbedded submanifold of L(X) of dimension n(n+1)/2 —r(r+1)/2.

2) The decomposition .Z; = |J,_, 4 is a Whitney stratification for .Z; .

3) The hypersurface .Z3 in L(Z) has a natural co-orientation:

Let A,, ¢ € R, be a smooth curve in L(Z) that intersects %ﬁ transversally at the
point Ay, and let 1, € X be an arbitrary smooth curve in X satisfying the conditions
As €A Ve, Ag e AgNIL, and 4y # 0. One says that the curve A, has positive index
of intersection (equal to +1) with 1 at the point Ay if w(di/dele=o, 40) > 0,
and negative index of intersection (equal to —1) with .#; at the same point if
w(dAjdel.—0, 40) < 0. It is not hard to see this definition is unambiguous, i.e., does
not depend on the choice of the curve A, .

These properties enable us to correctly define the index of intersection of .#1; with
an arbitrary curve A(7), o < 1 < f, satisfying the condition A(a)NIT=A(S)NII =
0.

Indeed, it is possible by a small deformation to turn this curve into a smooth curve
A'(7) that is transversal to any of the submanifolds M[,, ¥=1, ..., n. The curve
A'(1) intersects MIII at finitely many points, and does not intersect .Z7 at all for
r>2.

The index of intersection of A'(t) with .71, denoted by IndpA’(:) in what fol-
lows, is simply the sum of the indices described in property 3) relating to each point
of the intersection of A'(7) with . . Actually, IndnA’(7) depends only on A(:),
and not on the method of deforming this curve, provided that in the deformation
process the endpoints of the curve do not intersect .#;;. The proof is based on the
fact that the submanifolds .Z%, r > 2, have codimension at least three in L(X), and
hence not only a curve in general position, but also a homotopy in general position
does not intersect these submanifolds.

It remains to set

IndpA(:) = IndpA'(+).
The quantity IndpA(-) is called the Maslov index of the curve A(-) (with respect to
IT).
The tangent spaces TpL(X), A € L(X), have a remarkable additional structure
that was used in part in the definition of the co-orientation of the submanifold %Hl .
Let A;, ¢ € R, be a smooth curve in L(Z) and A, a smooth curve in 2, with
Ae € A; Ve € R. Tt is not hard to show that the quantity %w(dl/ dele—o, Ap) depends
only on A9 € Ag and dA/del;—q € T),L(Z), and not on the choice of the curve 4, .
Computing this quantity for each ig € Ay, we get a quadratic form on Ag:

, 1 di

Thus, to each tangent vector dA/de € T, L(X) there corresponds a quadratic form

, io) , Ao € Ao.
&=0
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(5) on Ag. This correspondence is a linear isomorphism of the space T),L(Z) onto
the space of real quadratic forms on Ay. The isomorphism is natural, i.e., does
not use any additional structures on X besides the symplectic structure, and below
we identify without special mention the tangent vectors in T, L(X) with the cor-
responding quadratic forms on Ag. The cone of nonnegative forms determines a
partial order in the space of quadratic forms on Ag. Using the natural isomorphism,
we get a partial order on Ty L(X): for ¢ € T),L(Z) the expression & > 0 means
that the corresponding quadratic form on Ag is nonnegative.

An absolutely continuous curve A(t), T € R, in L(X) is said to be nondecreasing
if dA;/dt > 0 at every point of differentiability of the curve A;. It follows from the
definition of the natural co-orientation of the hypersurfaces .Z that IndpA(-) > 0
for any nondecreasing curve A(t) in L(X) and any I1 € L(Z) transversal to the
endpoints of this curve.

Let ¢, ¥ — R be a nonstationary quadratic Hamiltonian on X (i.e., a family of
quadratic forms on % dependenton ¢ € R), and Q;: X — I the corresponding linear
Hamiltonian flow. Let A € L(Z). Then Q,(A) € L(Z) V¢, and hence (d/dt)Q:(A) is
a quadratic form on Q,(A). It can be established by direct verification that

dQ.(A)/dt = qilg,a)-

In particular, if the quadratic Hamiltonian is nonnegative, ¢, > 0, then all the tra-
jectories of the flow A — Q,(A), t € R, on L(X) are nondecreasing, and the Maslov
index of any segment of any trajectory with respect to any I1 € L(X) (transversal to
the endpoints of the segment) is nonnegative.

All this has a direct relation to the curve A(t) = T{y, «)-Z; of interest to us, which
will be called the Jacobian curve of the extremal (y(t), X(1)) in what follows.

Propesition 1. The Jacobian curve A(t), 0 <1t <t, is nondecreasing.

Indeed, let Z: £ — X, 7 € [0, ], be the linear Hamiltonian flow on Z deter-
mined by the quadratic Hamiltonian d(ZWO,xO)H, . Then A, =#(I1y), 0<t<1. At
the same time,

L[ 07
d(zl/lo,xo)H‘t: f = _u/<§) (8—1/{2 Wgrl()m,ft(f))) u/(f) s é € Z:
where u/: £ — R? is the differential of the vector-valued function u(y, x) at the
point (wy, xp). B
We continue the consideration of our regular but perhaps not strongly regular

extremal. Let

* . 9,
W= {v € LM (0, 10) 20, v, g =0,

82
er/lg‘fl(xo’a(r))<0} s OSTSZ

It is easy to see that ¥, is a convex cone, and

g Ou du az.

dim¥, = n —rank

xq, #(7)

Moreover, (v, xy) €% VweV¥,, 0<7<1r. Let ‘i’, = span¥;. Identifying the
tangent space Tjy, 7y M with Tg M in the standard way, we get that T, )-27 D

0
Y, Yy e¥,, 1€][0, t]. Using the last inclusion, we introduce the subspaces

Ay(D) =Ty B /¥, weW, 10,1,
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which are Lagrangian subspaces of the symplectic space ‘/}\’f /@t. Finally, we write
Iy = (T¢ M/¥;) and note that Ily = A, (0), y € ¥,.

Theorem 1. If the control (1), 0 < 1t <, is locally optimal on the interval [0, t],
then

(6) H@] min{IndpA,(-)|w € ¥;, Iy, Ay (2) € #1} < n.
—1lg

The proof is based on results announced in [2] and [3] and proved in [4] and [1].
The simplest situation is in the case dim¥, = 1. In this case ¥, is a half-line,
inequality (6) simplifies sharply, and the local optimality condition is “almost suffi-
cient”. But if dim¥; > 1, then (6) suffices only for a so-called quasiextremal (see [2]
and [4]), while the stronger local optimality conditions use more detailed information
about the dependence of IndpgA,(-) on w € ¥, (see [1]), and a discussion of them
goes beyond the framework of this paper.

It should also be noted that, although the definition of the Maslov index given
above is geometrically clear and convenient for certain theoretical considerations, it
is not very suitable for computations. For nondecreasing curves we later (in §6) give
explicit formulas that require neither reducing to general position nor finding the
points of intersection of the curves with .#f.

§4. SYSTEMS AFFINE IN THE CONTROL

We considered regular extremals first of all in order to describe the necessary
concepts in a relatively simple situation, and to specify the direction of the investi-
gations. The main goal of this paper is nonregular extremals. If the extremal under
consideration is nonregular, then the maximum principle

l//gt(-xa u) = max l//gl(x: 'U)
vel

does not enable us to express u as a smooth function of (¥, x), not even for (v, x)
close to (wg, xp). We also lack a smooth Hamiltonian H,(y, x), and in general the
extremal singled out cannot be included in a Hamiltonian flow whose trajectories
satisfy the maximum principle (i.e., are extremals). It turns out, however, that in
many cases there is a family of extremals starting out on 7; M that, although not
includable in a flow (for example, it contains branchings), has a structure such that
the values of the extremals of the family at time ¢ fill some Lagrangian manifold %]
or at least can be well approximated by a Lagrangian manifold &% near (g, Xxg).
At the same time, it is Lagrangian manifolds and not a Hamiltonian flow that are
needed to get optimality conditions of the type formulated above. In this article we
describe the corresponding constructions for systems of the form

(7) X=Jox)+ufi(x),  Ju <1, x(0)=xo,

with scalar control, in the case when they are most transparent. Suppose, as above,
that #(7) and X(t) form a solution satisfying the maximum principle. In general
the control #(7) takes values both on the boundary and in the interior of the interval
[—1, 1] (which contains both relay and singular parts). Let B = {7 > 0| |a(t)| = 1}.
For t ¢ B only one-sided variations of #(t) are allowed. This inconvenience can
be avoided by using “time change” variations.

A “time change” variation is defined to be the following universal construction,
which is applicable to an arbitrary controllable system.

Let ¢:[0, t] — [0, ] be an absolutely continuous monotonically increasing invert-
ible mapping, let U(1), 7 € [0, ], be an admissible control of the general system
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(1), and let x(7) be a solution of the equation dx/d7 = f(x, u(p~'(1)). Then

®) L xto) =4S um), 0=t

We can proceed in reverse order, considering the extended system

) { f:co:vl}’(x, u), ueU, v>e>0, <);O((OO))> B ()2’) ’

with controlling parameters # and v .

It follows from (8) that a point x € M is attainable via trajectories of system (1)
in time ¢ if the point () is attainable via trajectories of system (1’).

We turn anew to the system (7) with distinguished control #(z). The extended
system (7') has two controlling parameters, but they are not independent in general.
For our purposes it is expedient to use controls (u(t), v(t)) such that u(t) = (1)
for t€ B and v(7) =1 for 7 ¢ B (the time change is switched on only at the points
of the set B, and the usual variations apply outside B).

Let xp(t) be the characteristic function of B. Setting

v(t) = 25(DW — )+ (1 = ga()u— i), fr= (fo-!-t}l(f)ﬁ) ,
ﬁ=xB<r>ﬁ+<1—xB<r>><J9l)  x= (ff) yo=<0) ,
we get the system

9) X=7X)+vfi(X),  X(0) =0

It is essential that at each moment of time the controlling parameter v can take
both positive and negative values. At the same time, if #&(-) is an optimal control for
system (7), then the zero control is optimal for system (9). The perturbation system
for system (9) has the form

(10) y=v&(), 0=y,
where 5
g=palfe,  SEX)=Ap(x), po=id

§5. THE PIECEWISE CONSTANT CASE

We begin our investigation of system (10) with the case when g;(y) depends in
a piecewise constant manner on 7. g, = g; for ; <1 < f;;;, where 0 =15 < f; <
-+ < f; < i1 = t. For example, this is the case when (1) is the usual bang-bang
control, i.e. [#(z7)] =1 and #(7) is constant on each half-open interval (¢;, t;,.,], i =

0, ..., /. Indeed, in this case f; does not depend on 7 for #; < 7 < t;,;, and
2] 3, _y= s s .8
Eg‘f = E(pr*lﬁ) :pr*l[ﬁ’ ‘ft] +pr*la_'j“t = O+ 0.

Aside from its being of independent interest, the piecewise constant case will be used
below for approximating the general case.

A solution (v(7), y(t)) of (10) with wv(7) sufficiently close to zero satisfies the
maximum principle if and only if there exists a nonzero (1) € T (R x M) such
that (y(7), y(7)) satisfies the Hamiltonian system corresponding to the Hamiltonian
(¥, y) = yeg(y)u(t), and w(1)g.(v(1)) = 0.
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Curves (w (1), y(1)) in T*(Rx M) satisfying these conditions are called extremals
in what follows. We assume that the solution v(7) = 0, y(1r) = y, satisfies the
maximum principle; hence wyg:(yo) =0 for some yq .

Let hi(y,y) = wgi(y); then h; = wg,, t; <1 <t;;. Let h; be the Hamilton-
ian vector field on 7*(R x M) corresponding to the Hamiltonian #;, and let e™:
T*(Rx M) — T*(Rx M), 7€R, be the Hamiltonian flow determined by the field
h;. Denote by K; = {(v,y) € T*(R x M)|hi(y, y) = 0} the zero level set of the
Hamiltonian #4; .

Let .Z; be the set of values at time 7 of all the extremals beginning on the set
L =T;(RxM)n&, where & is some neighborhood of (¥, yo) in T*(R x M)
whose size is not specified beforehand. Then £, is piecewise constant (constant on
each half-open interval (¢;, t;11]). We have that

Z={eM(y,»|(v,y) e L NK;, veR} forte(t, tiq], i=0,1,...,1

Furthermore, (g, yo) € %4 V1.

For our purposes the sets %, are too large, since arbitrarily large values of the
control v(7) are used in their construction. For every ¢ > 0 we define .%(e) by
setting A (e) =.Z) and

File) = {e"™ Ny, W)l € Zile)NK;, [v] <&} forTe (b, fini].
Proposition 2. Assume that gy(yo) # 0 and

wolgi» &i+11(yo) déf{hi, hiviHwo, vo) # 0, i=0,1,...,/-1

Then for all sufficiently small ¢ and all © € [0, 1] the sets Z(e) are smooth La-
grangian manifolds.

This proposition is an immediate consequence of the following assertion.

Lemma. Suppose that Z is a Lagrangian manifold, h is a Hamiltonian, and (v, yo)
€.Z . Assume that h(yy, yo) =0 and &(E, h(wo, yo)) # 0 for some & € T v0)"Z >

where & is a skew inner product in the symplectic space & = Tipo, v)(T*(R x M)).
Then there exists a neighborhood W of the point (yy, yo) in & and an & > 0 such
that the set

(11) {eMy, v, y)eW, hiy,»)=0, |s|<e}
is a Lagrangian manifold.
Proof of the lemma. We have that

(diyy, vyt » &) = w(h(wo, »o), &) #0.

Consequently, the hyperplane %~!'(0) is transversal to the submanifold & at the
point (¥, yo) (and hence at all nearby points). Hence, #~!(0) N W is a smooth
(n — 1)-dimensional submanifold for any sufficiently small neighborhood W of the
point (wp, yo) in .Z°. Further, the vector field h is tangent to A~'(0) and is
transversal to the submanifold .Z near (yg, yo) (otherwise the vector h(yyg, yo)
would be skew orthogonal to T, ,)-Z). Consequently, h is transversal to 2=1(0)N
W, so that the set (11) is a smooth n-dimensional submanifold. It remains to see that
it is a Lagrangian manifold. Since the flow e® preserves the symplectic structure,
it suffices to verify the Lagrangian property at the points (¥, y) € A~1(0) N W . We
have that

@(h(wo, yo). 1) = (diy,,yyh, 1) =0
Vi€ Ty 0L N1y wh™ ' (0) =Ty, »(Wnh™1(0). &
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Proposition 2 is easy to derive from the lemma by using induction on 7 and the
relations

hi(wo, yo) € Z(e) forf; <7<ty
@(hi 1 (Wo, o), hilwo, yo)) = {hi, hixi}(wo, yo) # 0.

It should be noted that Proposition 1 gives a sufficient but far from necessary
condition for the Z(¢) to be Lagrangian manifolds. Broader (but less explicit)
conditions are easy to get by analyzing the proof of the proposition.

The tangent space A; = Ty, ,,-Z:(¢e) is defined by the following recursion rela-

tions (we make the identification 7 (R x M) = T(y, ) (T (R x M)) C i)

A(‘L') = (AZ[ + ha’(WO» yO)) N {hl(WO > yo)}l s ti <T<L ti+1 3

A
(4) i=0,1,...,1

The relations (A) determine a piecewise constant curve A in the Lagrangian

o~

Grassmannian L(Z). To find this curve it is by no means necessary to know the
manifold #(e) itself.

What is more, the relations (A) always determine a piecewise constant family of
Lagrangian subspaces, without any preliminary conditions on /; and independently
of whether or not the % (¢) are smooth manifolds. In degenerate situations the
space A(; can be regarded as the generalized tangent space to -Z;(¢) at the point
(wo, yo).

It is possible to define the index of an arbitrary piecewise constant curve in the
Lagrangian Grassmannian with respect to a fixed Lagrangian subspace I1. This index
is defined in a purely algebraic manner, but turns out to be closely connected with
the Maslov index of the continucus curve considered in §3.

Let TI, Ap, Ay € L(i). We define a real quadratic form ¢ on the space (A +
Ay)NII by setting q(d) = @(dy, 51) if 0p+3d, =0 € (Ag+A)NIL, Jy € Ag, 6, € Ay.
It is easy to see that g(J) is well defined even when & does not have a unique
representation as a sum of elements in Ay and A;. As usual, indg denotes the
maximal dimension of a subspace of (Ag+A;)NII on which the form ¢ is negative
definite.

Let

indp(Ag, A) = ind g + L(dim(IT N Ag) + dim(TTN Ay))
—dim(IINANA),

a symplectic invariant of this triple of Lagrangian subspaces that takes nonnegative
half-integer values. It can be shown (see [1]) that the triangle inequality holds:

o~

(12) indpp(Ag, Az) <indp(Ag, Ay) +indp(Ar, Ay) VI, Ag, Ay, Ay € L(Z).
Let A(T)=A; € L(Z) for ti_,<t<t, i=0,1,...,[+1.
The index of the curve A(-) with respect to II is defined to be the quantity

/
indnA() = ) indn(Ar, Apy).
i=0

The quantity
indA() €indpA() + indp (A1, Ag)




38 A. A. AGRACHEV AND R. V. GAMKRELIDZE

is called the upper index of the curve A(:). Tt can be shown that the upper index
does not depend on II, and that

indA(-) = max indgA(-).
neL)

Using this index, we can formulate a necessary condition for optimality that is
analogous to Theorem 1. Let

O ={ye, RxM)=Ra T M) |y#0, v(le0) <0,
hi(l/layo):oa i:()ala'“,t}a
a half-space in T (R x M), with

!
dim®, = n + 1 —rank (Z gi(yo)gi(yo)*> .

i=0

Let (/I\)t = span®,, an isotropic subspace of $. For any v € &, we define
the piecewise constant curve A, (1), 0 < 7 < ¢, in the Lagrangian Grassmannian

L(®}/®,) by setting
Ay(0) = TR x M)/®,,  Ay(1) = (Ay () + Rhy(w, o)) N (i(w . o))",
ti<t1<tiy1, i=0, 1,..., 1L
In particular, Ay (1) = A(1)/D, .
Theorem 2. If the control #(t), 0 <1 <t, is optimal for system (7), then

min ind Ay (+) < #.
mn p(1) <

Remark. In Theorem 2, in contrast to Theorem 1, the operation of taking the limit
superior with respect to II is not present. It is possible to simplify the formulation
because in the situation under consideration the operations lim and min can be
transposed.

§6. CURVES OF BOUNDED MONOTONE VARIATION
ON THE LAGRANGIAN GRASSMANNIAN

In order to proceed further it is necessary to go somewhat deeper into the gecometry
of the Lagrangian Grassmannian and, in particular, to clarify the connection between
the indices considered in §§3 and 5.

Let X be a symplectic space with skew inner product @, and let dimX =2n. A
curve A(t), a <7< f,on L(X) is said to be simple if there exists a A € L(X)
such that A(1)NA=0Vre]0, ].

Proposition 3. 1) For any Ay, Ay € L(Z) there exists a simple smooth nondecreasing
curve A(t), 0< 1t <1, such that A(0) = Ay and A(1) =A,.

2) For any simple nondecreasing curve A(t), o <t < B, and for all 11 € L(Z)
with TINA(e) = INA(B) =0,

IndpA(-) = indp(A(e) , A(B)).
Corollary. If A(7), a <1< B, is a simple nondecreasing curve, then
indn(A(a), A(B)) = indn(A(a), A(7))
+indn(A(7), A(B)) V1 €[, B], [T € L(Z).
See [1] for a proof.
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Proposition 3 connects the indices of piecewise constant curves with the Maslov
indices of continuous curves. The index of a piecewise constant curve with respect
to Il introduced in §5 is equal to the Maslov index of the continuous curve (also
with respect to I1) obtained if the points of the piecewise constant curve are joined
successively by simple nondecreasing curves. The upper index of a piecewise constant
curve turns out to be equal to the Maslov index of the correspondingly constructed
closed nondecreasing curve.

Conversely, if A(t), 0 <71 <, is a continuous nondecreasing curve and 0 = fp <
t) < -+ <t <ty =t are such that the pieces A(-)|j,,;,,; of the curve are simple,
i=0,...,/[,then

i Litl

!
indpA(+) = > indn(A(7), A(zi41))
i=0

for all IT such that IINA(0) =1INA(z)=0.

We now turn to arbitrary discontinuous curves. Let D = {7y, ..., 7} be some
finite subset of [0, ¢] with 7, < -+ < 1, and let A(r), 7 € [0, ], be a curve on
L(X). The symbol AP(1) denotes the piecewise constant curve defined as follows:
AP(0) =A(0), and AP(7) =A(z)) for 1,y <t <71;, i=1,...,k+1,where 70=0
and 7,y =1t. Then for all Il e L(Z)

k
indnAD(') = Z indH(A‘ci > ATi+1) s
i=0

ind AP(+) = indpAP(+) + indp(A,, Ag) < indpAP() + 7.
Moreover,

ind’(-) = max indpAP(.).
HeL(T)

Denote by & the collection of all finite subsets of [0, ¢]. For Dy, D, € Z with
D C D, the triangle inequality (12) gives us that

indgA? (1) <indpAP:(v) VII € L(Z).

The index of the curve A1), 0 <1 <t, with respect to Il € L(Z) is defined to be

the quantity
indgA(-) = sup indgAP(+),
DeZ
which is equal to a nonnegative half-integer or to +co, and the upper index of the
curve A() is defined to be the quantity
indA(+) = sup ind AP(+) = sup indg AP(.).
DeT DEF TEL(Z)

which is equal to a positive half-integer or to +oc.
We have

Ind A(+) = indpA(+) + indn(A®Z), A(0)) < indpA(-) + n.

In particular, ind A(.) is finite if and only if every indpA(+) is finite.

Acurve A(t), 0<t<t,in L(Z) is called a curve of bounded monotone variation
if indA(+) < 400.

Curves of bounded monotone variation have properties similar to the properties
of bounded monotonically nondecreasing real functions.
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Theorem 3. Suppose that A(z), 0 < 1 <t, is a curve of bounded monotone variation
in L(Z). Then:

1) The limits A(t £0) = limg_.,.oA(8) exist forany 7€ [0, t].

2) The curve A(-) has at most countably many points of discontinuity.

3) A(7) is differentiable almost everywhere on [0, t] and at any points of differen-
tiability the derivative is nonnegative, dAjdt > 0.

The proofs of this and the next theorem on compactness are based on the connec-
tion between the indices of a smooth nondecreasing curve and its length. We only
briefly explain this connection; it is described in greater detail in [1]. Assume that an
inner product (+|-) is given on X that is compatible with the symplectic structure w;
compatibility means that w(4,, 4;) = (44|4,), where A4: ¥ — X is an orthogonal
operator with respect to the given inner product.

Let A € L(Z). Recall that the space T,L(Z) is identified with the space of
quadratic forms on A. To each such form ¢ € TAL(Z) there corresponds a sym-
metric linear operator s(q), where g(i) = (s(g)A|A) VA € A. We specify a Rie-
mannian metric on L(X) by setting the inner product of a pair of tangent vectors
q1, @2 € TAL(Z) equal to tr(s(q;)s(g2)). The length of an absolutely continuous
curve A(t), a <1< B, is defined by

B
length(A(-)):/ \J1r(s(dA/dT)?) dr.

Further, if the curve A(7) is closed, A(a) = A(f), then its Maslov index IndpA(:)
does not depend on Il and has the integral representation

IndpA(-) = %/f tr (S (%)) dr.

If in addition the curve A(7) is nondec.easing, then
(a) indpA(-) = indA(:) and
(b) the eigenvalues of the symmetric operators s(dA/dt) are nonnegative, and

tr iié ’ <trs g—y—é < 4| mtr d—A ’
dz - dr) = dt ’
Therefore, a closed nondecreasing curve satisfies the inequality

length(A(+)) < indA(+) < v/nlength(A(-)).

According to Proposition 3, any nondecreasing curve can be completed to a closed
curve by adding some simple nondecreasing curve. This does not increase the upper
index; hence the inequality

length(A(+)) < ind A(-)

is valid for any nondecreasing curves, not necessarily closed.
The following theorem is an analogue of Helly’s principle for real functions of
bounded variation.

Theorem 4 (Compactness Principle). Let ¢ > 0. The set of all curves A(t) of bounded
monotone variation in L(Z) defined on the interval 0 < 1t <t and satisfying the
condition ind A(+) < ¢ is compact in the topology of pointwise convergence.

Let &/ be a directed set (i.e., a partially ordered set such that for any pair of
elements there is an element majorizing both of them) and let A,(-): [0, 1] — L(Z),
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a € &, be a generalized sequence of curves on the Lagrangian Grassmannian. If
the upper indices of the curves are uniformly bounded, then the sequence contains
a pointwise convergent subsequence. By considering not only the upper indices but
also the indices with respect to different subspaces Il € L(X) it is possible to get a
useful criterion for convergence of the whole sequence A,(:), a € & .

Proposition 4. Suppose that A(r), 0 < 1 < t, is a nonconstant curve of bounded
monotone variation on L(Z), and let A,(+): [0, t] — L(Z) be a generalized sequence
of curves. Assume that for any t© € [0, t] there exists a dense subset P, of L(Z) such
that

& -limindn(Aa(-)lo, 1) = indn(A(+)lp,q) VII€ Z, €0, 1].

Then
o -limAu(t) = A1) VT [0, 1].

Remark. The above sufficient condition for pointwise convergence is not necessary
in general. It becomes necessary if instead of curves on L(X) we consider liftings of
them to the universal covering of this manifold—the noncompact manifold Z(Z).
Continuous curves can be lifted to the universal covering “by definition”. Curves
of bounded monotone variation can also be lifted. Indeed, if we glue together the
discontinuities of a monotonically bounded curve by means of simple nondecreasing
curves, then we get a continuous rectifiable curve that can be lifted, and then we can
remove the liftings of the attached parts. The result does not depend on how the
gluing is done. The definition of the index of a curve with respect to a Lagrangian
subspace extends to curves on Z(E). There is a compactness principle that is a
strengthening of Theorem 4. In general, the whole theory (including the optimality
condition formulated in the next section) acquires a more complete form if we move
from L(Z) to f,(E). However, this material goes beyond the framework of the
present article and will be given in a more detailed publication.

§7. THE MAIN THEOREM

We now return to the investigation of system (10) (in order to get conditions for the
optimality of the control #(-) for system (7)), and we consider the case of an arbitrary
dependence of g;(v) on 7, rather than just a piecewise constant dependence as in
§5.

Let 4. (v, y) = wg(y), where y e Rx M and v € T7(Rx M), and let h.(y, y)
be the Hamiltonian vector field on 7*(R x M) corresponding to the Hamiltonian
he.

It is assumed that the control (z), 0 < 7 < ¢, satisfies the maximum principle.
This is equivalent to the nonemptiness of the set

O ={ye(RxM)=(Ra T,M) |y, y(1©0) <0,
ho(w.,yo) =0, forae. 7€(0,t]}.

Let @[ = span @, , a subspace of codimension

14
rank [ :(y0)g:(00)" 45 in T, (R x M),

Choose some y € ®,. The space 7 (Rx M) is identified in the usual way with the
“vertical” Lagrangian subspace in the symplectic space 7(,, y,(7*(R x M)). Thus,

we can regard @ as an isotropic subspace of Ty, yo)(T*(R x M)) and consider the
symplectic space @} /®,. Let D = {7|,..., 7} be a finite subset of [0, f] with
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Tt < < 7. We define a piecewise constant curve Afy)(r), 0 <7<, in the
Lagrangian Grassmannian L((f);L /EI\)Z) by setting
D I o) oy
Ay (0) = T, (Rx M)/®,,
AD(T) = (AD(x:) + Rhy, (v, yp)) (he, (v, yo))™
for 1, <1< 1544, i1=0,1,...,k, where 7y =0 and Teyr = 1.

Proposition 5. Suppose that Dy and D, are finite subsets of [0, t] with D, c D,.
Then

indpAy' () < indpAD(+) VITe L@ /®,),
sothat AP (t)nI1=0.

The scheme of the proof is as follows: with each finite set D = {1, ..., T} €
[0, ] we associate the linear space

VD={(l,vl,...,vk)MEAﬁ(O), viER,i=1,...,k,

k
A+ vihe (v, v € H}
i=1

and the quadratic form Qf: 1P — R defined by

k i—1
(13) QII%(’{: Visonn, Uk) = Zw (i"i—Z'U]th(l//, yO)s Ul'h‘ti(w, ,VO)) )

=0 j=0

where (-, -) is the symplectic form on DL /P, .
It can be shown that

indpAD(-) = ind @8 + % ( dim(AZ(0) n11)
(14) k+1 A
+dim(AD (1) N1I) — dim (ﬂ AD(z)n H))) .
=0
If Dy C Dy, then V' ¢ 1P and QB = Q& l,p, . which implies the required
inequality. B !
We remark that
k+1

¢ k

dim () AD(z)) = rankfO 8:(&0)&:(vo)" dt — rank <Z gr,-(yo)gf,(yo)*> :
i=0 i=0

This quantity can always be made zero by adding some points to D.

Let T be the collection of all points in [0, ¢] that are points of density of the
measurable vector-valued functions 7 — h:(y, yo) forany y € <f>t . Theset [0, t|\T
has zero measure (recall that h; depends affinely on ). Denote by & the directed
set whose elements are the finite subsets of T, partially ordered by inclusion.

Theorem 5. If the control #i(t), 0<t<¢, is optimal for the system (7), then
1) mingeq, suppesy indAD(-) < n; and
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2) for any w € ®; such that the quantity I(y) = suppey EA{B(-) is finite and any
T €0, 1] the limit Z-1im AD(x) = A, (1) exists, the curve T+ Ay (1) in L(®L/D)
has bounded monotone variation, and
mdA, () < I(p).

The proof of assertion 1) in Theorem 5, like the proofs of Theorems 1 and 2, is
based on results in [2] and [3] and on a study of the second variation of the control
system (10) along the zero control. Formula (14) connects indnAﬁ,’ (+) with the index
of the quadratic form (13), and the form (13) with I1= Ag(O) coincides in essence
with the second variation of system (10), regarded on the special finite-dimensional
space of “spike” variations of the zero control.

Assertion 2) follows from Propositions 4 and 5 and Theorem 4. The Lagrangian
space R

(Ay(2) + ) C Ty ) (T*(R x M)
can be interpreted geometrically as the tangent space at the point (y, yg) to the set
of values at time 7 of the extremals of system (10) that begin on T (Rx M).

§8. POINTWISE CONDITIONS FOR OPTIMALITY
Theorem 5 yields the following fact.

Corollary. If the control (1), 0 < t <t, is optimal for system (7), then for some
w € @, there is a curve of bounded monotone variation A(t), t € [0, 1], in the
Lagrangian Grassmannian L(T, ,(T*(R x M))) such that

(15) A0) = T;Rx M) and h(v,yo) € A(r+0) VreT.

It turns out that simply from the existence of such a curve A(t) (without construct-
ing it explicitly) we can derive all the generalized Legendre conditions for optimality
of singular controls, and get much additional information.

Recall that & denotes the closed differential 2-form determining the standard
symplectic structure on R x M .

Theorem 6. Assume that A(t),t € [0, t], is a curve of bounded monotone variation
in the Lagrangian Grassmannian and satisfies condition (15). Then for any 7 € [0, t]
there exists an ¢ > O such that either hy € A1 V0 € (1, T+€)NT, or there exists
a 1-form Q. defined in some neighborhood of the point (y, yy) in T*(Rx M) such
that dQ, = @&, the zeros of the form Q. constitute a Lagrangian manifold with Ao
as its tangent space at (v, yg), and the following conditions are satisfied:

(a) (ihgdihegr)(wo > yO) >0 voe (T> T+ 6) N T>

(b) @4, hy(w, ¥0))*/(ingdin, Q) (W, yo) = 0 as 0 | 7 (6 € T) VA € Acy.

The proof of Theorem 6 is based on the use on the Lagrangian Grassmannian of
natural local coordinates (see [5]) in which each Lagrangian subspace close to A;.o
can be represented by a quadratic form on A,,o. For example, the subspace A..g
itself can be represented by the zero form, and the quadratic form in (b) represents
the subspace (Ario+ Rhy(yp, o)) NAL,. B

The formulation of conditions (a) and (b) can be simplified at points where #;
depends smoothly on 7: if the first nonzero derivative of the quantity

a:(0) = in,(din, )0, Yo)
with respect to 6 has order m at 6 = 1, then condition (b) is equivalent to the
inclusion
(k) d*
(16) hy’ € Arjg, 0<k<

s where hg—k) = Whg\gzr ,

(YIS
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and condition (a) is equivalent to the inequality o™ &ef d™/d0™)a(0)|g—r > 0. At
the same time, if (16) holds, then aﬁm) does not depend on the choice of 2, and
can be computed by the formula

[n/2]

o= %" (’Z) om{"™" ),

k=0
Recall that

oM, b)) = (i BNy, yo) = wig?, eP10),
where g\ = (d¥/d1¥) gyls_. .

Corollary. Let i(t), 0 < t < t, be an optimal control for system (7). Then there
exists a y € @, such that the following condition holds for any integer m > 0 and

any point t € [0, t) for which the vector field g,(m) is defined.

If
[Fc/2] el
(17) Z<j)w[g¥),g£ Mw=0, 0<k<m,
j=0

then wig, ¢/ (o) =0 for 0< i, j<m/2, and
[m/2]

> (T) wig?, & o) 2 0.

Jj=0

Remark. 1t can be shown that if the equalities (17) hold identically for all 7’ close
to 7, then the corollary reduces to the generalized Legendre conditions (see [2]);
however, in contrast to the generalized Legendre conditions, it is still of substance
even when the equalities do not hold identically.

§9. A CONDITION FOR LOCAL CONTROLLABILITY

To every necessary condition for optimality there usually corresponds a sufficient
condition for local controllability. Here we present a condition for local controlla-
bility corresponding to the optimality conditions in §8.

Consider the control system
(18) X = fo(x)+ufi(x), xeM, x(0)=xqg, ueR,
where fy and f; are vector fields of class C® on M .

Let x;, t > 0, be the trajectory corresponding to the zero control.

Let ¢ > 0 be real and N > 0 an integer. Denote by 2,(e, N) the subset of
M consisting of the points that can be reached in precisely the time ¢ by moving
from the point X, along trajectories of system (18) and using only piecewise constant
controls #(7), 0 < 7 < t, having at most N points of discontinuity and satisfying
the condition |u(7)| <e, 0< 1< ¢.

We say that system (18) is strongly locally controllable along the trajectory x, if
for any ¢ > 0 there is an N, such that

X € int Q[t(g, N[) Ve > 0.
Let

So = span{ad' fo fi(x0), 0 < i< +oo},
Sk = So+span{lad' fofy, ad’ fofillxo), 0<i, j<k},  k=1,2,...
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which is a nondecreasing sequence of subspaces of 7%, M , and let
[k/2]

G=% (5)dhifi, ad I hA0, k=12,

=0
which is a sequence of vectors in 7, M .

Proposition 6. If & € Syyy for any k > 0 and S,, = Ty M for some m, then
system (18) is strongly locally controllable along the trajectory x; .

Remark. The condition ¢&; € Sy is the well-known necessary condition [f;, [fo, fil]
€ Sy for local controllability; if it holds, then S; = Sp, but S now can differ from
So . For example, the system in R? given by

X1 =1+ u(x1x2+ x3),
xZ:—uxlz’ XZ(O)ZO, i:1,2,3,

X3=u(x}+c),

where ¢ is an arbitrary constant, satisfies the conditions of Proposition 6. For this
system

S1=So={(0,a, B)la, BeER}, S$H=R}, ¢ =E=86=0.
BIBLIOGRAPHY

1. A. A. Agrach&v, Quadratic mappings in geometric control theory, Itogi Nauki i Tekhniki: Problemy
Geometrii, vol. 20, VINITIL, Moscow, 1988, pp. 111-205; English transl. in J. Soviet Math. 51
(1990), no. 6.

2. A. A. Agrachév and R. V. Gamkrelidze, The index of extremality and quasiextremal controls, Dokl.
Akad. Nauk SSSR 284 (1985), 777-781; English transl. in Soviet Math. Dokl. 32 (1985).

3. —, The Morse index and the Maslov index for the extremals of control systems, Dokl. Akad.
Nauk SSSR 287 (1986), 521-524; English transl. in Soviet Math. Dokl. 33 (1986).
4. ——, Quasiextremality for control systems, Itogi Nauki i Tekhniki: Sovremennye Problemy Mat.:

Noveishie Dostizheniya, vol. 35, VINITI, Moscow, 1989, pp. 109-134; English transl. in J. Soviet
Math. 55 (1991), no. 4.

5. Victor Guillemin and Shlomo Sternberg, Geomerric asymptotics, Amer. Math. Soc., Providence,
R.L, 1977.

Moscow
Received 5/MAR/90

Translated by H. H. McFADEN



