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We consider a smooth control system of the form:

q̇ = f tu(q), q ∈M, u ∈ U, (1)

with a fixed initial point q0 ∈M . Here M and U are smooth man-

ifolds (without border) and the vector fu(q) ∈ TqM smoothly de-

pends on (q, u) ∈M ×U and is measurable bounded with respect

to t ∈ [0,1].

We denote by U the set of all admissible controls; then U is

an open subset of L∞ ([0,1];U). Hence U is a smooth Banach

manifold modelled on the space L∞
(
[0,1]; RdimU

)
.

Given t ∈ [0,1] we define the “evaluation map” Ft : U → M by

the formula Ft(u(·)) = q(t;u(·)); then Ft is a smooth map from

the Banach manifold U to M .
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Let ` : M × U → R be a smooth “Lagrangian”. We consider

functionals ϕt : U → R, 0 ≤ t ≤ 1, defined by the formula:

ϕt(u(·)) =
∫ t

0
`(q(τ ;u(·)), u(τ)) dτ. (2)

Definition 1. We say that u ∈ U is a normal extremal control if

there exists λ1 ∈ T ∗F1(u)M such that λ1DuF1 = duϕ1; here λ1DuF1

is the composition of DuF1 : TuU → TF1(u)M and λ1 : TF1(u)M →
R. We say that a normal extremal control is strictly normal if it

is a regular point of F1.

A family of Hamiltonians htu : T ∗MR, u ∈ U , is defined by the

formula:

htu(λ) = 〈λ, f tu(q)〉 − `(q, u), g ∈M, λ ∈ T ∗qM.
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Let σ be the canonical symplectic form on T ∗M and π : T ∗M →M

be the standard projection, π(T ∗qM) = q. Recall that σ = ds

where s is a Louville (or tautological) 1-form, 〈sλ, η〉 = 〈λ, π∗η〉,
∀λ ∈ T ∗M, η ∈ Tλ(T ∗M). Given a smooth function h : T ∗M → R,

the Hamiltonian vector field ~h on T ∗M is defined by the identity:

dh = σ(·,~h).

Proposition 1. Let ũ ∈ U and q̃(t) = q(t; ũ), 0 ≤ t ≤ 1; then ũ is

a normal extremal control if and only if there exists λ̃t ∈ T ∗q̃(t)M
such that

˙̃λt = ~htũ(t),
∂htu(λ̃t)

∂u

∣∣∣∣
u=ũ(t)

= 0, 0 ≤ t ≤ 1. (4)
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The time-varying Hamiltonian system λ̇ = ~ht
ũ(t)(λ) defines a flow

Φ̃t : T ∗M → T ∗M, Φ̃t : λ(0) 7→ λ(t),

where λ̇(τ) = ~ht
ũ(τ)(λ(τ)), 0 ≤ τ ≤ t. Obviously, Φ̃t(λ̃0) = λ̃t.

Moreover, π∗~htũ(t)(λ) = f t
ũ(t)(q), ∀ q ∈M, λ ∈ T ∗qM .

Let P̃ t : M → M be the flow generated by the time-varying sys-

tem q̇ = f t
ũ(t)(q), i. e. P̃ t : q(0) 7→ q(t), where q̇(τ) = fτ

ũ(τ)(q(τ)),

0 ≤ τ ≤ t. It follows that Φ̃t are fiberwise transformations and

Φ̃t(T ∗qM) = T ∗
P̃ t(q)

M .
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Now we consider Hamiltonian functions

gtu = (htu − htũ(t)) ◦ Φ̃t, u ∈ U, t ∈ [0,1].

A time-varying Hamiltonian vector field ~gtu generates the flow

(Φ̃t)−1 ◦Φt
u, where Φt

u is the flow generated by the field ~htu. We

have:

gtũ(t) ≡ 0,
∂gt
ũ(t)(λ̃0)

∂u
= 0,

∂2gt
ũ(t)(λ̃0)

∂2u
=
∂2ht

ũ(t)(λ̃t)

∂2u
.

We introduce a simplified notation Ht
.

=
∂2ht

ũ(t)
(λ̃t)

∂2u
; recall that

Ht : Tũ(t)U → T ∗
ũ(t)U is a self-adjoint linear map.
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More notations. Consider the map u 7→ ~gtu(λ̃0) from U to Tλ̃0
(T ∗M)

We denote by Zt the differential of this map at ũ(t), Zt
.

=
∂~gt
ũ(t)

(λ̃0)

∂u ; then Zt is a linear map from Tũ(t)U to Tλ̃0
(T ∗M).

We also set Xt = π∗Zt; then Xt is a linear map from Tũ(t)U to

Tq̃(t)M . Finally, we denote by J : Tλ̃0
(T ∗M)→ T ∗

λ̃0
(T ∗M) the anti-

symmetric linear map defined by the identity σλ̃0
(·, ·) = 〈J ·, ·〉.
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Note that Tu(·)U is the space of measurable bounded mappings

t 7→ v(t) ∈ Tu(t)U, 0 ≤ t ≤ 1. We have:

(DũFt) v = P̃ t∗

∫ t
0
Xτv(τ) dτ.

Now we introduce a “Gramm matrix”, a self-adjoint linear map

Γt : T ∗q0
M → Tq0M defined by the formula:

Γt
.

=
∫ t

0
XτX

∗
τ dτ.

We see that ũ is a regular point of Ft (i. e. DũFt is surjective) if

and only if Γt is invertible.
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The Hessian of ϕ1|F−1
1 (q̃(1))

at ũ is a quadratic form D2 : kerDũF1 →
R. This is the “second variation” of the optimal control prob-

lem at ũ, the main object of this paper. It has the following

expression:

D2
ũϕ1(v) = −

∫ 1

0
〈Htv(t), v(t)〉 dt−

∫ 1

0

〈
J
∫ t

0
Zτv(τ) dτ, Ztv(t)

〉
dt,

(5)

where v ∈ TũU and
∫ 1
0 Xtv(t) dt = 0.

Definition 2. The extremal λ̃t, 0 ≤ t ≤ 1, is regular if ũ(·) is

smooth and Ht is invertible for any t ∈ [0,1].
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Linear map DũF1 : TũU → Tq̃(1)M and quadratic form D2
ũϕ1 are

continuous in the topology L2. Let V be the closer of kerDũF1

in the topology L2. Then V is a Hilbert space equipped with a

Hilbert structure

< v1|v2 >
.

=
∫ 1

0
〈−Htv1(t), v2(t)〉 dt.

Formula (5) implies that

D2
ũϕ1(v) =< (I +K)v|v >, v ∈ V, (6)

where K is a compact symmetric operator on V. In particular,

the spectrum of K is real, the only limiting point of the spectrum

is 0, and any nonzero eigenvalue has a finite multiplicity.

10



Example 1. Let M = U = R2, q = (q1, q2), u = (u1, u2), fu(q) =

u, `(q, u) = 1
2|u|

2 + r(q1u2 − q2u1), q0 = 0, ũ(t) = 0. Then

V = {v ∈ L2([0,1]; R2) :
∫ 1

0
v(t) dt = 0}.

It is convenient to identify R2 with C as follows: (v1, v2) =

v1 + iv2. A simple calculation gives the following expression for

the operator K:

Kv(t) =
∫ t

0
2riv(τ) dτ −

∫ 1

0

∫ t
0

2riv(τ) dτdt.

The eigenfunctions of this operator have a form t 7→ ce2πnit, 0 ≤
t ≤ 1, c ∈ C, n = ±1,±2, . . ., where the eigenfunction ce2πnit

corresponds to the eigenvalue r
πn.
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We denote by ζ̄t is the sum of positive roots (counted according

to multiplicity) of the equation

det

{∂htũ(t)

∂u
,
∂ht

ũ(t)

∂u

}
(λ̃t) + si

∂2ht
ũ(t)

∂u2
(λ̃t)

 = 0

with unknown s.

Let Sp(K) ⊂ R be the spectrum of the operator K, Sp(K)\{0} =

Sp+(K)∪Sp−(K), where Sp±(K) ⊂ R±. If Sp±(K) is an infinite

set, then we introduce a natural ordering of Sp±(K) that is a

monotone decreasing sequence αn, n ∈ Z±, with the following

properties:⋃
n∈Z±

{αn} = Sp±(K), #{n ∈ Z± : αn = α} = mα. (7)
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Theorem 1. If ζ̄t ≡ 0, then αn = O(|n|−2) as n → ±∞. If ζ̄t is

not identical zero and Ht and Zt are piecewise real analytic with

respect to t then Sp+(K) and Sp−(K) are both infinite and

αn =
1

πn

∫ 1

0
ζ̄t dt+O

(
|n|−5/3

)
as n→ ±∞. (8)

A cancellation of slow convergent to zero terms of the opposite

sign in the expansion (8) gives the following:

Corollary 1. The depending on ε > 0 families of real numbers∑
α∈Sp(K)
|α|≥ε

mαα,
∏

α∈Sp(K)
|α|≥ε

(1 + α)mα

have finite limits as ε→ 0.
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We use natural notations for these limits:

trK = lim
ε→0

∑
α∈Sp(K)
|α|≥ε

mαα, det(I +K) = lim
ε→0

∏
α∈Sp(K)
|α|≥ε

(1 + α)mα.

Assume that hτ(λ) = max
u∈U

hτu(λ) is smooth with respect to

λ ∈ T ∗M . We define the exponential map Etq : T ∗qM → M by

the formula Etq(λ0) = π(λt), where λ̇τ = ~hτ(λτ), 0 ≤ τ ≤ t, and

set: Qt = (P̃ t∗)
−1Dλ̃0

Etq0
.

Theorem 2. Under conditions of Theorem 1, the following iden-

tities are valid: det(I +K) = det(Q1Γ−1
1 ),

trK = tr

(∫ 1

0

∫ t
0
XtH

−1
t Z∗t JZτH

−1
τ X∗τ dτdtΓ

−1
1

)
.
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Let us consider a very simple example, a harmonic oscillator.

Example 2. M = U = R, fu(q) = u, `(q, u) = 1
2(u2 − rq2), q0 =

0, ũ(t) = 0. Operator K has a form:

Kv(t) = r
∫ t

0
(t− τ)v(τ) dτ − r

1∫
0

t∫
0

(t− τ)v(τ) dτdt.

The eigenfunctions of this operator have a form t 7→ c cos(πnt), c ∈
R, n = 1,2, . . ., where the eigenfunction c cos(πnt) corresponds
to the eigenvalue − r

(πn)2. Moreover, Q1 = sin
√
r√

r
if r > 0 and

Q1 =
sh
√
|r|√
|r|

if r < 0. The determinant formula from Theorem 2

coincides with the Euler identity:
∞∏
n=1

(
1− r

(πn)2

)
= sin

√
r√

r
or its

hyperbolic version. The trace formula gives another famous Eu-

ler observation:
∞∑
n=1

r
(πn)2 = r

6.
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Example 3. M = U = Rm, fu(q) = Aq + u, `(q, u) = 1
2(|u|2 −

〈q,Rq〉), q0 = 0, ũ(t) = 0, where A and R are symmetric m×m-

matrices. The determinant and trace identities take the form:

∞∏
n=1

det
(
I −R(A2 + (πn)2I)−1

)
=

2 det
(

sin
√
R−A2

)
det

(√
R−A2 ∫ 1

−1 e
tA dt

),
∞∑
n=1

tr(R(A2 + (πn)2I)−1) =

tr
( ∫∫∫
0≤τ1≤τ2≤t≤1

e(τ2−2t)ARe(τ2−2τ1) dτ2dτ1dt(
∫ 1

0
e−2tA dt)−1

)
.
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The right-hand side of the determinant formula has an obvious

meaning also in the case of a degenerate R−A2. If m = 1, A =

a, R = a2 + b2, we get:

∞∏
n=1

(
1−

a2 + b2

a2 + (πn)2

)
=
a sin b

b sh a

an “interpolation” between the classical Euler identity and its

hyperbolic version. The trace identity is essentially simplified if

the matrices R and A commute. In the commutative case we

obtain:
∞∑
n=1

tr(R(A2 + (πn)2I)−1) =
1

2
tr
(
R(A cthA− I)A−2

)
.
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Definition 3. We say that a compact quadratic form b(u) =

〈Bu, u〉, u ∈ V, has the spectrum of capacity ς > 0 with the

remainder of order ν > 1 if Sp+(b) and Sp−(b) are both infinite

and

βn =
ς

n
+O(n−ν) as n→ ±∞. (11)

We say that b has the spectrum of zero capacity with the re-

mainder of order ν if either Sp±(b) is finite or βn = O(n−ν) as

n→ ±∞.
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Proposition 2. (i) If b has the spectrum of capacity ς ≥ 0, then

sb has the spectrum of capacity sc with the remainder of the

same order as b, for any s ∈ R.

(ii) If b1, b2 have the spectra of capacities ς1, ς2 with the remain-

ders of equal orders, then b1⊕b2 has the spectrum of capacity

ς1 + ς2 and the remainder of the same order as b1, b2.

(iii) Let V0 be a Hilbert subspace of the Hilbert space V and

dim(V/V0) <∞. Assume that one of two forms b or b|V0
has

the spectrum of capacity ς ≥ 0 with a remainder of order

ν ≤ 2. Then the second form has the spectrum of the the

same capacity ς with a remainder of the same order ν.
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(iv) Let the forms b and b̂ be defined on the same Hilbert space
V, where b has the spectrum of capacity ς and b̂ has the
spectrum of zero capacity, both with the reminder term of
order ν. Then the form b+ b̂ has the spectrum of capacity ς
with the reminder term of order 2ν+1

ν+1 .

Proof. Statement (i) is obvious. To prove (ii) we re-write
asymptotic relation (11) in a more convenient form. An equiva-
lent relation for positive n reads:

#

{
k ∈ Z : 0 <

1

βk
< n

}
= ςn+O(n2−ν), as n→∞

and similarly for negative n. Statement (ii) follows immediately.

Statement (iii) follows from the Rayleigh–Courant minimax prin-
ciple for the eigenvalues and the relation:

∣∣∣ ςn − ς
n+j

∣∣∣ = O( 1
n2) as

|n| → ∞ for any fixed j.



To prove (iv) we use the Weyl inequality for the eigenvalues
of the sum of two forms. Weyl inequality is a straightforward
corollary of the minimax principle, it claims that the positive
eigenvalue number i + j − 1 in the natural ordering of the sum
of two forms does not exceed the sum of the eigenvalue number
i of the first summand and the eigenvalue number j of the sec-
ond summand. Of course, we may equally works with naturally
ordered negative eigenvalues simply changing the signs of the
forms.

In our case, to have both sides estimates we first present b + b̂

as the sum of b and b̂ and then present b as the sum of b + b̂

and −b̂. In the first case we apply the Weyl inequality with
i = n − [nδ], j = [nδ] for some δ ∈ (0,1), and in the second
case we take i = n, j = [nδ]. The best result is obtained for
δ = 1

ν+1. �



We have to prove that the spectrum of operator K (see (6), (5))

has capacity 1
π

∫ 1
0 ζ̄t dt with the remainder of order 5

3.

Let 0 = t0 < t1 < · · · < tl < tl+1 = 1 be a subdivision of the

segment [0,1]. The subspace

{v ∈ V :
∫ ti+1

ti
Xtv(t) dt = 0, i = 0,1, . . . , l} =

l⊕
i=0

Vi, Vi ⊂ L2([0,1]; Rm)

has a finite codimension in V. The quadratic form

< Kv|v >=
∫ 1

0

〈
JZtv(t),

∫ t
0
Zτv(τ) dτ

〉
dt (12)

restricted to this subspace turns into the direct sum of the forms

< Kiv|v >=
∫ ti+1

ti

〈
JZtv(t),

∫ t
ti
Zτv(τ) dτ

〉
dt, vi ∈ Vi, i = 0,1 . . . l.
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Under the analyticity condition we may assume that

Z∗t JZt =
k⊕

j=1

(
0 −ζj(t)

ζj(t) 0

)
,

where 0 ≤ 2k ≤ m and ζj(t) are not identical zero. Indeed,
according to the Rayleigh theorem, there exists an analytically
depending on t orthonormal basis in which our anti-symmetric
matrix takes a desired form.

The functions ζj(t), j = 1, . . . , k, are analytic and may have
only isolated zeros. Hence we may take a subdivision of [0,1] in
such a way that ζj(t), j = 1, . . . , k, do not change sign on the
segments [ti, ti+1]. Actually, to simplify notations a little bit, we
may simply assume that ζj(t) ≥ 0, 0 ≤ t ≤ 1, j = 1, . . . , k. In this

case ζ̄(t) =
k∑

j=1
ζj(t).
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Let us study our quadratic form on the space {v ∈ L2([0,1]; Rm) :∫ 1
0 v(t) dt = 0}. Recall that we are allowed by Proposition 3 to

work on any subspace of L2([0,1]; Rm) of a finite codimension.

We set w(t) =
∫ t
0 v(τ) dτ ; a double integration by parts gives:∫ 1

0

〈
JZtv(t),

∫ t
0
Zτv(τ) dτ

〉
dt =

∫ 1

0
〈JZtv(t), Ztw(t)〉 dt+

∫ 1

0

〈
JZtw(t), Żtw(t)

〉
dt+

∫ 1

0

〈
JŻtw(t),

∫ t
0
Żτw(τ) dτ

〉
dt.

Moreover, we have:∣∣∣∣∣
∫ 1

0

〈
JZtw(t), Żtw(t)

〉
dt+

∫ 1

0

〈
JŻtw(t),

∫ t
0
Żτw(τ) dτ

〉
dt

∣∣∣∣∣ ≤ c
∫ 1

0
|w(t)|2 dt.
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Let λ±n , n ∈ Z \ {0}, be naturally ordered non zero eigenvalues of

the quadratic form∫ 1

0
〈JZtv(t), Ztw(t)〉 dt± c

∫ 1

0
|w(t)|2 dt.

The minimax principle implies that λ−n ≤ αn ≤ λ+
n , n ∈ Z \ {0}.

Moreover, the form∫ 1

0
〈JZtv(t), Ztw(t)〉 dt± c

∫ 1

0
|w(t)|2 dt

splits in the direct sum of the forms∫ 1

0
ζj(t)〈Jvj(t), wj(t)〉 dt± c

∫ 1

0
|wj(t)|2 dt, j = 1, . . . , k, (13)

where vj(t) ∈ R2, wj(t) =
∫ t
0 vj(t), wj(1) = 0 and J =

(
0 −1
1 0

)
.
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It remains to estimate the spectrum of the forms (13). To do

that, we’ll study the spectrum of the forms∫ 1

0
ζj(t)〈Jvj(t), wj(t)〉 dt, c

∫ 1

0
|wj(t)|2 dt, (14)

and then use the Weyl inequality for the eigenvalues of the sum

of two forms. Weyl inequality is a straightforward corollary of the

minimax principle: it claims that the eigenvalue number i+ j−1

in the natural ordering of the sum of two forms does not exceed

the sum of the eigenvalue number i of the first summand and

the eigenvalue number j of the second summand.
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