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1 De�nitions and notations

Let M be a smooth n-dimensional manifold and denote by TM =

S

q2M

T

q

M ,

dimTM = 2n the tangent bundle of M . Let

� =

[

q2M

�

q

; �

q

2 T

q

M

be a ve
tor distribution of a 
onstant rank k on M : dim�

q

= k for all q 2M .

De�nition 1 The distribution � is 
alled integrable if at any point q 2M there

exists an immersed sub-manifold N

q

�M su
h that �

q̂

= T

q̂

N

q

for any q̂ 2 N

q

.

The distribution � is 
alled 
ompletely non-holonomi
 if it is not tangent to any

sub-manifold N �M .

If k = 1, then � de�nes a pres
ribed single dire
tion at any point q ofM . By

existen
e and uniqueness theorem for systems of ordinary di�erential equations

at any point q 2M there is a single traje
tory passing in this dire
tion, thus the

distribution � is integrable. The �rst nontrivial situation o

urs when k = 2.

Already in this 
ase a generi
 distribution is 
ompletely non-holonomi
. Let us

dis
uss in more detail.

Let us 
onsider two 
omplete ve
tor �elds f

1

; f

2

2 TM su
h that �

q

=

spanff

1

(q); f

2

(q)g at any q 2 M . These ve
tor �elds de�ne a pair of ODE on

M :

_q = f

i

(q); i = 1; 2:

Denote by e

tf

i

: M 7!M the 
ow degenerated by f

i

on M . By de�nition,

d

dt

e

tf

i

(q) = f

i

(e

tf

i

(q)):

Fix some q

0

2 M and t 2 R. Consider a traje
tory whi
h starts at q

0

and


onsists of four pie
es of duration t ea
h and su
h that the whole traje
tory is

organized as follows: �rst we follow the integral 
urve of f

1

starting at q

0

, then

1
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Figure 1: The Lie bra
ket of the �elds f

1

and f

2

we swit
h the dire
tion to f

2

, and �nally we 
ome ba
k following �f

1

and �f

2

subsequently. In su
h a way we 
ome to the point

q

1

= e

�tf

2

Æ e

�tf

1

Æ e

tf

2

Æ e

tf

1

(q

0

) = q

0

+ t

2

�

f

1

Æ f

2

� f

2

Æ f

1

�

(q

0

) + o(t

2

):

It not hard to see that in general q

1

6= q

0

and q

1

= q

0

only if the ve
tor �elds

f

1

and f

2


ommute, i.e., if the di�erential operator [f

1

; f

2

℄ = f

1

Æ f

2

� f

2

Æ f

1

,


alled the Lie bra
ket of the �elds f

1

and f

2

, is zero.

That is, the Lie bra
ket is a kind of measure of the non-integrability of the

ve
tor distribution �.

Using the 
oordinate representation of the �elds f

1

; f

2

in some lo
al 
oordi-

nates on M one 
an see that the Lie bra
ket of a pair a ve
tor �elds is a �rst

order di�erential operator:

f

1

=

n

X

i=1

a

i

�

�q

i

; f

2

=

n

X

i=1

b

i

�

�q

i

;

[f

1

; f

2

℄ =

n

X

i;j=1

�

a

j

�b

i

�q

j

� b

j

�a

i

�q

j

�

�

�q

i

=

df

2

dq

f

1

�

df

1

dq

f

2

;

i.e., it is again a ve
tor �eld. Iterating this pro
edure one 
an 
onstru
t the

ve
tor �elds [f

1

; [f

1

; f

2

℄℄, [f

2

; [f

1

; f

2

℄℄ and so on.

The importan
e of the 
ommutation properties of ve
tor �elds spanning the

distribution � is shown by the following theorem. Denote

�

m

= [�;�

m�1

℄; �

1

= �; m = 1; : : : :

Theorem 1 (Rashevski-Chow) If for any q 2 M there exists an integer

m

q

2 N su
h that �

m

q

q

= T

q

M , then the distribution � is 
ompletely non-

holonomi
 and any two points of M 
an be 
onne
ted by a path tangent to � at

2



any point. The integer m

q

is 
alled the degree of non-holonomy at q.

Let h�; �i

q

be an inner produ
t on �

q

. By de�nition, for any ve
tor v 2 �

q

we have jvj =

p

hv; vi

q

. The following fun
tion

Æ(q

0

; q

1

) = inf

n

1

Z

0

j _
(t)jdt; 
 : [0; 1℄ 7!M; _
(t) 2 �


(t)

o

; q

0

; q

1

2M

is 
alled the Sub-Riemannian or Carnot-Carath�eodory distan
e on M . By the

Rashevski-Chow theorem, if the distribution � is 
ompletely non-holonomi
,

then Æ(q

0

; q

1

) < +1 for any q

0

; q

1

2M .

2 Isoperimetri
 problem on the plane

Let R

2

= fx = (x

1

; x

2

)g and 
onsider a 1-form � = a

1

dx

1

+ a

2

dx

2

, where a

1

and a

2

are two smooth fun
tions on M . We want to �nd

(1) inf

n

1

Z

0

j _x(t)jdt : x(0) = x

0

; x(1) = x

1

su
h that

Z

x(�)

� =

1

Z

0

a(x(t)) _x

1

(t) + a

2

(x(t)) _x

2

(t)dt = 
onst = y

1

o

Let us formulate this problem as the problem of minimizing of the Sub-

Riemannian distan
e. First of all we 
onsider the extended state spa
e M =

R

3

= fq = (x; y); x 2 R

2

; y 2 Rg. The 
oordinate y is the 
urrent value of the


ost fun
tion. Denote

�

q

= span

8

<

:

0

�

1

0

a

1

(q)

1

A

;

0

�

0

1

a

2

(q)

1

A

9

=

;

;

and set

�

�

�

�

�

�

0

�

v

1

v

2

a

1

(q)v

1

+ a

2

(q)v

2

1

A

�

�

�

�

�

�

=

�

(v

1

)

2

+ (v

2

)

2

�

1=2

:

Then we 
an rewrite problem (1) as follows:

inf

n

1

Z

0

j _
(t)jdt; 
 : [0; 1℄ 7!M; s:t _
(t) 2 �


(t)

; 
(0) =

�

x

0

0

�

; 
(1) =

�

x

1

y

1

�

o

:
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Figure 2: Paths 
onne
ting two points

Exer
ise 1 Let

f

1

=

0

�

1

0

a

1

1

A

; f

2

=

0

�

1

0

a

2

1

A

:

Show that

f

1

^ f

2

^ [f

1

; f

2

℄ 6= 0 () d� 6= 0:

Example 1 (Charged parti
le in the magneti
 �eld on the plane) The isoperi-

metri
 problem is equivalent to the Least A
tion Prin
iple of Classi
al Me
han-

i
s applied to the plane motion of the 
harged parti
le in the magneti
 �led

on the plane. Indeed, let b : R

2

7! R be the 
url of the ve
tor potential of

the magneti
 �eld, and let x = (x

1

; x

2

) 2 R

2

be the 
oordinate of a 
harged

parti
le of unit mass. Then j�x(t)j = 
jb(x)j, where 
 2 R is a s
alar 
onstant,

and d� = b(x)dx

1

^ dx

2

. We are interested in the traje
tories x(t) su
h that

b(x(t)) � 0. More pre
isely, we would like to understand whether these traje
-

tories 
ould be the minimizers of the isoperimetri
 problem

3

.

Assume that db 6= 0 and 
onsider a smooth 
urve 


0

= b

�1

(0). Let 
 be

another traje
tory of the parti
le with the same terminal points: 
(0) = 


0

(0),


(1) = 


0

(1), and let � be the domain en
losed between the 
urves 
 and 


0

(see Fig.1, a)). We have

(2)

Z


(�)

��

Z




0

(�)

� =

Z

�

d� =

Z

�

b(x)dx

1

^ dx

2

> 0:

This argument works also if the 
urves 
 and 


0

have some intermediate inter-

se
tion points (Fig.1, b)), but it fails if one of this 
urves has self-interse
tions

(Fig.1, 
)). In the latter 
ase one 
an 
hoose 
(t) su
h that the integral in (2)

be
omes zero. Therefore, 


0

is not isolated in the H

1

-topology, though it is

always a lo
al minimizer (the proof of this fa
t is rather deli
ate, below we will

state a general result).

Exer
ise 2 Consider the 
ase b(x) = x

1

x

2

. Here b

�1

(0) 
onsists if the 
oor-

dinate axes and db

�

�

0

= 0. Let 


0

= (0; �) and 


1

= (�; 0). Show that the

traje
tory that pass through the origin is not a minimizer.

3

This question was studied by R. Montgomery
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Figure 3: Example of an alternative path

(Hint: Consider the path 
̂, whi
h 
ontains a 
ir
le loop of radius Æ, as at shown

in Fig. 2 Then � = D

0

[D

2

,

Z

�

x

1

x

2

dx

1

dx

2

=

Z

D

0

x

1

x

2

dx

1

dx

2

+

Z

D

1

x

1

x

2

dx

1

dx

2

:

Show that

Z

D

0

x

1

x

2

dx

1

dx

2

� "

4

;

Z

D

1

x

1

x

2

dx

1

dx

2

� Æ

3

;

so that by an a

urate 
hoi
e of " and Æ one 
an make the right-hand side of (2)

to be zero while the length of the new 
urve will be shorter than the length of

the broken line passing through the origin.)

Open problem Does there always exist a smooth minimizer?

3 Singular 
urves

Let us 
ome ba
k to the general situation. For the moment we assume

M = R

n

; �

q

= spanff

1

(q); : : : ; f

k

(q)g; q 2M; k < n:

Denote


 =

n


(�) : [0; 1℄ 7!M; s:t 
 2 H

1

([0; 1℄;R

n

); _
(�) 2 �


(�)

o

:

Sin
e _
(t) 2 �


(t)

for any t 2 [0; 1℄ we have

_
(t) =

k

X

i=1

u

i

(t)f

i

(
(t)):

We assume that the 
oordinate fun
tions u

i

(�) 2 L

2

([0; 1℄) so that for any �xed

initial data 
(0) = 


0

we have 
(�) � (


0

; u(�)), where u = (u

1

; : : : ; u

k

). Hen
e


 ' R

n

� L

k

2

([0; 1℄).

5



In the 
ase of an arbitrary smooth manifold M the spa
e 
 is a Hilbert

manifold modeled on R

n

� L

k

2

([0; 1℄).

Let 


0

2 
 be a �xed 
urve. Along this 
urve we have

�




0

(t)

= spanff

t

1

(


0

(t)); : : : ; f

t

k

(


0

(t))g;

where ff

t

i

g

k

i=1

is a basis of ve
tor �elds possibly depending on t, whi
h is well

de�ned along the 
urve 


0

. For any 
urve 
(�) 2 
, whi
h is uniformly 
lose to




0

, we have

_
(t) =

k

X

i=1

u

i

(t)f

t

i

(
(t)):

De�nition 2

� : 
 7!M �M : �(
(�)) =

�


(0); 
(1)

�

:

The mapping � is well de�ned C

1

-mapping from the Hilbert manifold 
 to the

spa
e of terminal points. The 
riti
al points of � are 
alled singular 
urves or

abnormal geodesi
s.

Remark The 
onstant 
urves 
(t) = 
onst are automati
ally 
riti
al points of

�.

Our next goal will be to 
hara
terize the singular 
urves.

3.1 The Lagrange multipliers method

Let F

t

: 
(�) 7! 
(t) denote the evaluation mapping asso
iated to the 
urve


(�). Then �(
(�)) = (F

0

; F

1

). By the 
lassi
al Lagrange multipliers rule if the


urve 
(�) 2 
 is a singular traje
tory then there exists a non-trivial pair of


o-ve
tors (�

0

; �

1

), �

i

2 T

�


(�)

M , i = 1; 2 su
h that

�

0

D




F

0

= �

1

D




F

1

:

It turns out that any pie
e of a singular traje
tory is singular. More pre
isely,

we have the following lemma:

Lemma 2 If 
 is a singular traje
tory, then for any t 2 [0; 1℄ it is a 
riti
al

point for the pair (F

0

; F

t

).

Proof Let us use the spe
ial 
oordinates in 
 de�ned above

4

: along 
(�) we


hoose the frame of ve
tor �elds ff

t

i

g

k

i=1

su
h that for any q

t

2 O


(t)

(3) _q

t

=

k

X

i=1

u

i

(t)f

t

i

(q

t

);

4

We would like to stress out that we do not require any 
oordinates on M .
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�

q

t

= spanff

t

1

(q

t

); : : : ; f

t

k

(q

t

)g:

Admissible traje
tories are solutions of 
ontrol system (3) with

u(�) = (u

1

(�); : : : ; u

k

(�)) 2 L

k

2

([0; 1℄)

being 
ontrol fun
tions. Denote by u




the 
ontrol, whi
h generates the singular

traje
tory 
. Lo
ally we have the following splitting


 =M � L

k

2

([0; 1℄) =

�

(q

t

; u(�)) : q

t

2 O


(t)

; u(�) 2 L

k

2

([0; 1℄) : u(�) 2 O

u




	

:

Let us �rst show that �

0

uniquely de�nes �

t

. Indeed, it there would be two


o-ve
tors �

t

and

^

�

t

su
h that �

0

D




F

0

= �

t

D




F

t

and �

0

D




F

0

=

^

�

t

D




F

t

, then

(�

t

�

^

�

t

)D




F

t

= 0, whi
h is not possible be
ause F

t

is a submersion.

Let us 
hoose some spe
i�
 
ontrol ~u(�) and 
onsider the 
orresponding 
urve

_
(�) =

k

X

i=1

~u

i

(�)f

�

i

(
(�)); t � � � 1:

Denote by

P

t;�

: O


(t)

7! O


(�)

the 
ow that transforms the neighborhood of 
(t) into the neighborhood of 
(�).

By de�nition,

�

��

P

t;�

(q) =

k

X

i=1

~u

i

(�)f

�

i

�

P

t;�

(q)

�

; P

t;t

(q) = q:

Let




t

(
) =

n

q(�) 2 
 : q(�) 2 P

t;�

(q(t)); t � � � 1

o

:

If the 
urve 
 is a 
riti
al point for the pair (F

0

; F

1

), then it is 
riti
al for

(F

0

; F

1

)

�

�




t

(
)

. Essentially we have

F

1

�

�




t

(
)

= P

t;1

Æ F

t

;

where P

t;1

is a �xed di�eomorphism that does not depend on the 
urve any

more!

Let us 
ompute the restri
tion of D




F

1

to 


t

(
). We have

�

0

D




F

0

= �

1

P

t;1�

D




F

t

; 8t:

On the other hand, by de�nition of the adjoint mapping,

(4) �

t

= �

1

P

t;1�

= P

�

t;1

�

1

:

Thus

�

0

D




F

0

= �

t

D




F

t

7



whi
h proves the lemma.

Observe that for any t

(5) h�

t

;�


(t)

i = 0:

It is not hard to show now that 
onditions (4) and (5) are suÆ
ient to 
hara
-

terize the Lagrange multipliers.

De�nition 3 A 
urve t 7! �

t

, satisfying (4) and (5), is 
alled the singular

extremal.

3.2 Hamiltonian setting

Here we re
all brie
y some 
lassi
al fa
ts of Hamiltonian Dynami
s. Denote by

� : T

�

M 7!M

the 
anoni
al proje
tion of the 
otangent bundle onto its base manifold. The

linear mapping

�

�

: T

�

(T

�

M) 7! T

�(�)

M

is the di�erential of the proje
tor �. Let

s

�

: T

�

(T

�

M) 7! R; � 2 T

�

M

be a one form on T

�

M su
h that

s

�

= � Æ �

�

:

This form is 
alled the tautologi
al or Liouville form. Its di�erential � = ds is a

non-degenerate 
losed 2-form and it de�nes the 
anoni
al symple
ti
 stru
ture

on T

�

M .

In what follows we will 
all the smooth fun
tions on T

�

M Hamiltonians. To

any Hamiltonian h 2 C

1

(T

�

M) there 
orresponds a unique ve
tor �eld

~

h on

T

�

M , 
alled the Hamiltonian ve
tor �eld asso
iated to the Hamiltonian h:

d

�

h = �(�;

~

h(�)); � 2 T

�

M:

If x

1

; : : : ; x

n

are some lo
al 
oordinates on M , then � =

n

P

i=1

�

i

dx

i

, where

(�; x) are the 
anoni
al 
oordinates on T

�

M . In these 
oordinates the Liouville

form and the symple
ti
 stru
ture have the following 
anoni
al representation:

ds

(�;x)

=

n

X

i=1

�

i

dx

i

; � =

n

X

i=1

d�

i

^ dx

i

:

8



The Hamiltonian system

_

� =

~

h(�) de�ned by the ve
tor �eld

~

h reads:

8

>

<

>

:

_

�

i

= �

�h

�x

i

_x

i

=

�h

��

i

i = 1; : : : ; n:

We 
an apply the Hamiltonian language to the des
ription of singular ex-

tremals. Let us 
onsider the 
urve �

t

= P

�

t;1

�

1

. By de�nition this 
urve is the lift-

ing of some 
urve\downstairs" onM : q(t) = �(P

�

t;1

�

1

) su
h that _q(t) = f

t

(q(t)).

The 
ow P

t;1

: q(t) 7! q(1) is a Hamiltonian 
ow 
orresponding to the Hamil-

tonian

h

t

= h�; f

t

(�(�))i

In other words, �

t

= P

�

t;1

�

1

if and only if it satis�es the Hamiltonian equation

_

�

t

=

~

h

t

(�

t

) and _x = f

t

(x), where x(t) = �(�

t

).

Let

�

?

=

�

� 2 T

�

M : h�;�

�(�)

i = 0

	

be the annihilator of the distribution �.

Proposition 3 The 
urve t 7! �

t

2 �

?

is a singular extremal if and only if

�(

_

�

t

; T

�(t)

�

?

) = 0;

or, equivalently, if and only if

_

� 2 Ker�

�

�

�

?

:

Proof For simpli
ity we assume that the ve
tor �elds f

i

t

are autonomous.

Let � = ff

1

; : : : ; f

k

g, u 2 R

2n

and f

u

=

k

P

i=1

u

i

f

i

. Denote by

h

i

(�) = h�; f

i

(�(�))i

the Hamiltonians asso
iated to the ve
tor �elds f

i

. Take some � 2 �

?

and let

� 2 T

�

(T

�

M). We 
laim that �(�; T

�

�

?

) = 0 if and only if � =

k

P

i=1

u

i

~

h

i

(�).

Indeed, by de�nition we have

(6) �(T

�

�

?

;

~

h

i

(�)) = hd

�

h

i

; T

�

�

?

i:

On the other hand, h

i

are 
onstant on �

?

:

�

?

= f� : h

i

(�) = 0; i = 1; : : : ; kg :

9



Hen
e the right hand side of (6) is zero. So there exists u(t) su
h that

_

� =

k

P

i=1

u

i

(t)

~

h

i

(�). But as we have already seen, this is possible if and only if �

t

=

P

�

t;1

�

1

, where the 
ow P

t;1

is generated by _q =

k

P

i=1

u

i

(t)f

i

(q).

Example 2 (Co-dimension one distribution)

Let ! be a 1-form on M su
h that

�

q

= fv 2 T

q

M : h!

q

; vi = 0g ; q 2M:

Then

�

?

q

= fu!

q

; u 2 Rg :

We have

s

�

�

�

?

= u!;

�

�

�

�

?

= d(u!) = du ^ ! + u d!:

Sin
e Ker (du ^ !) = � it follows that

_

� 2 Ker�

�

�

�

?

q

if and only if

_

� 2 Ker d!

�

�

�

q

.

If the manifold M is of even dimension, i.e. if n = 2m for some m 2 N, then

�

�

�

�

?

has a kernel and hen
e through ea
h point ofM passes a singular extremal.

Moreover, in this 
ase singular extremals foliate �

?

.

In the 
ase n = 2m+1 the 2-form d! 
an be non-degenerate. For example, if

! is a 
onta
t form, then Kerd!

�

�

�

= ;, i.e. there are no non-
onstant singular

extremals and hen
e no non-
onstant singular traje
tories.

Let us 
onsider in detail the 
ase of lowest possible dimension n = 3. Let !

be a generi
 1-form on M . In lo
al 
oordinates we have

! ^ d! = b(x)dx

1

^ dx

2

^ dx

3

:

If b(x) 6= 0 then ! ^ d! 6= 0 and ! is a 
onta
t form and vi
e versa.

Assume now that b

�1

(0) is a smooth 2-dimensional manifold.

5

Out of b

�1

(0)

there are no singular traje
tories. The singular traje
tories are the leaves of the

line distribution Tb

�1

(0) \ �. In general this foliation may have singularities

of two types: saddle points or fo
i. Noti
e that any smooth pea
e of a singular

traje
tory out of singularities is a strong minimizer for any Sub-Riemannian

distan
e.

Example 3 (2-dimensional distribution in R

n

)

5

This manifold is 
alled the Martinet surfa
e.

10



Figure 4: Martinet surfa
e

Assume

�

q

= ff

1

(q); f

2

(q)g ; q 2M:

Then dim�

?

= 2n� 2. Let

h

i

(�) = h�; f

i

(q)i; i = 1; 2;

h(�) = u

1

h

1

(�) + u

2

h

2

(�):

The 
urve t 7! �

t

is a singular extremal if and only if

_

�

t

= u

1

(t)

~

h

1

(�

t

) + u

2

(t)

~

h

2

(�

t

); and h

1

(�

t

) = h

2

(�

t

) = 0:

Here the last 
ondition means that �

t

2 �

?

. The ve
tor-fun
tion u = (u

1

; u

2

)

is the unknown variable of the problem. Denote

fh

i

; h

j

g(�) = h�; [f

i

; f

j

℄(q)i = h

ij

:

We have

d

dt

h

1

(�

t

) = u

1

(t) fh

1

; h

1

g(�

t

)

| {z }

=0

+u

2

(t)fh

2

; h

1

g(�

t

) = u

2

(t)h

12

(�

t

) = 0:

Similarly

u

1

(t)h

12

(�

t

) = 0:

Thus we obtain the following system:

�

h

12

(�

t

) = 0

h

1

(�

t

) = h

2

(�

t

) = 0

11



Di�erentiating again we get

u

1

(t)h

112

(�

t

) + u

2

(t)h

212

(�

t

) = 0

Then if h

112

(�

t

) 6= 0 and h

221

(�

t

) 6= 0 we get

�

u

1

(t) = h

221

(�

t

)

u

2

(t) = h

112

(�

t

)

up to a multiplier. Hen
e the singular extremals satisfy the following ODE:

(7)

_

�

t

= h

221

(�

t

)

~

h

1

(�

t

) + h

112

(�

t

)

~

h

2

(�

t

):

Exer
ise 3 Show that the sub-manifold f� : h

1

(�) = h

2

(�) = h

12

(�) = 0g is

invariant with respe
t to the 
ow generated by (7).

4 Properties of singular extremals

In this se
tion 
onsider the general situation: dimM = n, � � TM and

�

q

= spanff

1

(q); : : : ; f

k

(q)g; q 2M:

As we have already seen, in the 
ase k = n�1 the situation depends on whether

the integer n is even or odd. If k = 2, then generi
ally through every q 2 M

we have the (n � 4)-dimensional family of abnormal geodesi
s. For instan
e,

for (2; 4) 
ase we have exa
tly one geodesi
 through ea
h point (see Example 6

below). In the 
ase of a (2; 5)-distribution at any q 2M there is a one-parametri


family of abnormal geodesi
s, whose velo
ities 
overs �

q

.

4.1 Rigidity

De�nition 4 Denote


 =

�


(�) : [0; 1℄ 7!M; _
(t) 2 �


(t)

	

:

and 
onsider the map

� : 
(�) 7! (
(0); 
(1)):

We say that the 
urve 
 is rigid if and only if �

�1

(
(0; 
(1))) is isolated in

W

1;1

-topology in 
.

In other words, if 
 is rigid we 
annot deform it keeping �xed the end-points.

The 
ondition for 
 to be a 
riti
al point of � is the ne
essary 
ondition for

rigidity.

Above we have de�ned � = (F

0

; F

1

), where F

0

, F

1

are submersions. So,

instead of � we 
an 
onsider the mapping F = F

1

j

F

�1

0

(q

0

). Note that the se
ond

variations of � and F 
oin
ide. From now on we will work with the map

F : 
(�) 7! 
(1); 
(0) = q

0

;

12



with q

0

�xed. We 
an write

_
(t) =

k

X

i=1

u

i

(t)f

i

(
(t)):

As soon as the basis ff

i

g

k

i=1

is 
hosen, the 
ontrol fun
tions u

i

, i = 1; : : : ; k

are the 
oordinates of F

�1

0

. By �xing u

i

(t), i = 1; : : : ; k and perturbing initial


onditions we produ
e the 
ow

P

t;1

def

= P

t

: O


(t)

7! O


(1)

generated by the non-autonomous ve
tor �eld

f

u(t)

(q) =

k

X

i=1

u

i

(t)f

i

(q):

Exer
ise 4 Show that D




F (v(�)) =

1

R

0

P

t�

f

v(t)

dt (
(1)):

Denote g

t

v

= P

t�

f

v

. We have

D




F (v(�)) =

1

Z

0

g

t

v(t)

dt:

If we 
hoose v(�) su
h that

1

R

0

g

t

v(t)

dt(
(1)) = 0, then

D

2




F (v(�)) =

1

Z

0

�

1

Z

0

g

�

v(�)

d�; g

t

v(t)

�

dt(
(1)):

We omit the details of this 
al
ulation here. The interested reader 
an �nd them

in [1℄.

Sin
e 
 is a 
riti
al point the di�erential D




Fv is not onto, i.e., if

ImD




F = span

n

g

t

v

; t 2 [0; 1℄; v 2 R

k

o

;

then there exists �

1

2 T

�


(1)

M su
h that

h�

1

; g

t

v

i = 0; h�

1

; P

t�

f

v

i = 0;

whi
h implies

(8) hP

�

t

�

1

; f

v

i = 0:

13



Denote �

t

= P

�

t

�

1

. Then (8) be
omes

h�

t

; f

v

i = 0:

Consider now the following quadrati
 form:

(9) �

1

D

2




F (v) =

*

�

1

;

1

Z

0

�

t

Z

0

g

�

v(�)

d�; g

t

v(t)

�

dt

+

; v 2 KerD




F:

De�nition 5 The index of the extremal t 7! �

t

is the Morse index of the

quadrati
 form (9)

6

ind(�

t

)

def

= ind

�

�

1

D

2




F

�

:

De�nition 6


orank(�

t

)

def

= 
odim

�

span

�

g

t

v

; t 2 [0; 1℄; v 2 R

k

	

�

:

The following two theorems illustrate the relation of the index of the ex-

tremals and the rigidity of the 
orresponding abnormal traje
tories. We omit

the proofs here.

Theorem 4 If 
 is rigid, then its lift is an abnormal extremal �

t

2 T

�


(t)

M su
h

that

ind(�

t

) < 
orank(�

t

):

Theorem 5 (Ne
essary and suÆ
ient 
onditions for the �niteness of index) If

ind(�) < +1, then

h�

t

; [f

v

1

; f

v

2

℄i(
(t)) = 0 (Goh 
ondition)

and for all v 2 R

k

h�

t

; [[f

u

; f

v

℄; f

v

℄i(
(t)) � 0; t 2 [0; 1℄: (generalized Legendre 
ondition)

In addition, if

h�

t

; [[f

u(t)

; f

v

℄; f

v

℄℄(
(t)) � 
jvj

2

8v ? u(t) (strong generalized Legendre


ondition);

then

ind(�

t

) < +1:

We remark that just �niteness of the index is not enough for rigidity. Never-

theless, the strong generalized Legendre 
ondition implies that the small enough

pie
es of 
 are rigid and they are strong length minimizers for any Sub-Riemannian

distan
e (i.e., lo
al minima in the C

0

topology).

6

i.e., the maximal dimension the subspa
es where the quadrati
 form �

1

D

2




F is negative

de�nite.
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4.2 Conjugate points

The points 
(0) and 
(1) are 
alled 
onjugate if there exists a C

1

-small per-

turbation of � su
h that �

t

remains a singular extremal asso
iated to the same

singular traje
tory of the same 
orank and satisfying Goh and strong generalized

Legendre 
onditions, but the index 
hanges.

Theorem 6 If t 7! �

t

is su
h that 
(0) and 
(1) are not 
onjugate and su
h

that ind(�

t

) = 0, then the 
urve 
(t) = �(�

t

) is rigid and it is a strong length

minimizer for any metri
.

De�nition 7 The singular extremal t 7! �

t

is sharp if its index is �nite.

Example 4 Let � 2 TM , and denote

�

2

q

= span f[f

i

; f

j

℄(q); f

i

; f

j

2 �g ; q 2M:

From the Goh 
ondition it follows that if the extremal � is sharp, it must

annihilate �

2

. Therefore if �

2

= TM , then there are not sharp extremals.

Example 5 (Carnot groups) Assume dim�

q

= k. The following situations are

possible:

i) if n � k+(k�1)

2

, then a generi
 Carnot group does not admit sharp extremals;

ii) if n > k+(k� 1)

2

, then there exists an open set of Carnot groups admitting

sharp extremals;

iii) if n >> k + (k � 1)

2

, then a generi
 Carnot group admits sharp extremals.

Note that if k = 2 and �

t

is a singular extremal, then the Goh 
ondition is

satis�ed automati
ally. Indeed,

�

�t

h�

t

; f

v

i = 0;

and hen
e

h�

t

; [f

u(t)

; f

v

℄i = 0:

Example 6 (k = 2, generi
 germs of the distribution �)

i) If n = 3, then �

2

q

= T

q

M and this situation is not of interest for us.

ii) Assume n = 4, dim�

2

q

= 3 and dim�

3

q

= 4. Su
h a distribution is 
alled the

Engel distribution. Let � = spanff

1

; f

2

g and 
onsider the Lie bra
ket [v

1

f

1

+

v

2

f

2

;�

2

℄. There exists a unique ve
tor �eld u

1

f

1

+ u

2

f

2

(singular dire
tion)

su
h that

[u

1

f

1

+ u

2

f

2

;�

2

℄ 2 �

2

:
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Therefore there is exa
tly one singular traje
tory passing through every point

of M . Without loss of generality we 
an assume that u

1

f

1

+ u

2

f

2

= f

1

. Then

[f

1

;�

2

℄ 2 �

2

. We have

e

tf

1

�

f

1

= f

1

; e

tf

1

�

�

2

= �

2

; e

tf

1

�

� 6= �:

Therefore the distribution e

tf

1

�

� \rotates" around the dire
tion of f

1

in �

2

.

The points q

0

and e

tf

1

are 
onjugate if and only if e

tf

1

�

� = �, i.e. the time t


orresponds to a 
omplete revolution of e

tf

1

�

�. The index of a singular extremal

then equal to the number of 
omplete revolutions.

Remark Let �(q

1

; q

0

) denote the Carnot-Carath�eodory distan
e between points

q

1

and q

0

. Consider the sphere

S

q

0

(r) = fq 2M : �(q; q

0

) � rg;

where r is suÆ
iently small. If 
 is a singular geodesi
 starting at q

0

and


(1) 2 S

q

0

(l(
)), then the distan
e � is not C

1

and d


(1)

� is not de�ned. If the

strong generalized Legendre 
ondition holds, then 
(1) belongs to the 
losure of

the 
ut-lo
us of q

0

.
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