Abnormal geodesics and related topics!

Andrei A. Agrachev?

1 Definitions and notations

Let M be a smooth n-dimensional manifold and denote by TM = |J TyM,
qeM
dimT' M = 2n the tangent bundle of M. Let

A=A, AeTM
qeEM

be a vector distribution of a constant rank & on M: dimA, =k for all ¢ € M.

Definition 1 The distribution A is called integrable if at any point g € M there
exists an immersed sub-manifold Ny C M such that Ay = TNy for any § € Ny.
The distribution A is called completely non-holonomic if it is not tangent to any
sub-manifold N C M.

If £k =1, then A defines a prescribed single direction at any point ¢ of M. By
existence and uniqueness theorem for systems of ordinary differential equations
at any point ¢ € M there is a single trajectory passing in this direction, thus the
distribution A is integrable. The first nontrivial situation occurs when k = 2.
Already in this case a generic distribution is completely non-holonomic. Let us
discuss in more detail.

Let us consider two complete vector fields fq, fo € T'M such that A, =
span{ f1(q), f2(q)} at any ¢ € M. These vector fields define a pair of ODE on
M:

q:fi(Q)7 =12

Denote by etfi : M +— M the flow degenerated by f; on M. By definition,

L (g) = fi(ea)).

Fix some gy € M and t € R. Consider a trajectory which starts at ¢y and
consists of four pieces of duration ¢ each and such that the whole trajectory is
organized as follows: first we follow the integral curve of f; starting at ¢o, then
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Figure 1: The Lie bracket of the fields f; and fo

we switch the direction to fs, and finally we come back following —f; and — fa
subsequently. In such a way we come to the point

g =e Poe M oetloell(q) =qy+12(fio f2— fo0 f1)(q0) + o(t?).

It not hard to see that in general q; # qo and q1 = gy only if the vector fields
f1 and fo commute, i.e., if the differential operator [f1, fo] = fi1 0 fo — fa o f1,
called the Lie bracket of the fields f; and fo, is zero.
That is, the Lie bracket is a kind of measure of the non-integrability of the
vector distribution A.

Using the coordinate representation of the fields fi, fo in some local coordi-
nates on M one can see that the Lie bracket of a pair a vector fields is a first
order differential operator:

"9 "9
fi= ;aia—qi, fo= ;b"a_qi’

n ob; aal) 0 df2 dfl
ol =3 (e b o) = Py By
[f1, f2] zyjl( T9q; 70q;j) 0qi  dq i dg /2

i.e., it is again a vector field. Iterating this procedure one can construct the

vector fields [f1,[f1, f2l], [fe, [f1, f2]] and so on.
The importance of the commutation properties of vector fields spanning the
distribution A is shown by the following theorem. Denote

A™ = [A, AT, Al = A, m=1,....

Theorem 1 (Rashevski-Chow) If for any q € M there ezists an integer
mgq € N such that A;nq = TyM, then the distribution A is completely non-
holonomic and any two points of M can be connected by a path tangent to A at



any point. The integer my is called the degree of non-holonomy at q.

Let (-,-)4 be an inner product on A,. By definition, for any vector v € A,
we have |v| = y/(v,v),. The following function

1
5(Q07q1) = 1nf{/|7(t)|dt7 v [07 1] = M7 ’Y(t) € A’y(t)}7 go,q1 € M
0

is called the Sub-Riemannian or Carnot-Carathéodory distance on M. By the
Rashevski-Chow theorem, if the distribution A is completely non-holonomic,
then §(qo,q1) < +oo for any qop,q1 € M.

2 Isoperimetric problem on the plane

Let R? = {z = (z',2%)} and consider a 1-form pu = ajdz! + axdz?, where a4
and ao are two smooth functions on M. We want to find
1
(1) inf{ / |z(t)|dt : z(0) = zg, (1) =1 such that
0

1
/ p= /a(:r(t)):tl(t) + ay(z(t))2? (t)dt = const = yl}
(-) 0

Let us formulate this problem as the problem of minimizing of the Sub-
Riemannian distance. First of all we consider the extended state space M =
R} = {q = (x,9), * € R?, y € R}. The coordinate y is the current value of the
cost function. Denote

1 0
Ay = span 0 , 1 )
ai(q) az(q)
and set
ol
02 = ()2 + (v2)2)1/2.

ar(q)v' + az(q)v”

Then we can rewrite problem (1) as follows:

1

t { [ olat, 7 10,115 M, s 5000 € Ay 900 = () 70 = (21 ]

0
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Figure 2: Paths connecting two points

Exercise 1 Let

1 1
fl: 0 ) f2: 0
a1 az

Show that
finNfaN[f1, fo] #0 — dp # 0.

Example 1 (Charged particle in the magnetic field on the plane) The isoperi-
metric problem is equivalent to the Least Action Principle of Classical Mechan-
ics applied to the plane motion of the charged particle in the magnetic filed
on the plane. Indeed, let b : R? — R be the curl of the vector potential of
the magnetic field, and let z = (z',2%) € R? be the coordinate of a charged
particle of unit mass. Then |Z(t)| = ¢|b(x)|, where ¢ € R is a scalar constant,
and du = b(z)dz' A dz?. We are interested in the trajectories z(t) such that
b(x(t)) = 0. More precisely, we would like to understand whether these trajec-
tories could be the minimizers of the isoperimetric problem?.

Assume that db # 0 and consider a smooth curve 79 = b~ 1(0). Let 7 be
another trajectory of the particle with the same terminal points: y(0) = y(0),
7(1) = (1), and let I" be the domain enclosed between the curves v and gy
(see Fig.1, a)). We have

(2) /u—/u:/du:/b(x)da;l/\da;2>0.

W) ey T r

This argument works also if the curves v and 9 have some intermediate inter-
section points (Fig.1, b)), but it fails if one of this curves has self-intersections
(Fig.1, ¢)). In the latter case one can choose () such that the integral in (2)
becomes zero. Therefore, g is not isolated in the H'!-topology, though it is
always a local minimizer (the proof of this fact is rather delicate, below we will
state a general result).

Exercise 2 Consider the case b(z) = z'z?. Here b=1(0) consists if the coor-

dinate axes and db‘0 = 0. Let v = (0,8) and 71 = («,0). Show that the
trajectory that pass through the origin is not a minimizer.

3This question was studied by R. Montgomery



Figure 3: Example of an alternative path

(Hint: Consider the path 4, which contains a circle loop of radius d, as at shown
in Fig. 2 Then I' = Dy U D»,

/mlxzd:rld:vz :/ xlxzdxld:v2+/ 2raldxtda?.
T Dy Dy

sre?detde? ~ et / sleldztds? ~ 52,
D,

Show that

Dy

so that by an accurate choice of € and ¢ one can make the right-hand side of (2)
to be zero while the length of the new curve will be shorter than the length of
the broken line passing through the origin.)

Open problem Does there always exist a smooth minimizer?

3 Singular curves

Let us come back to the general situation. For the moment we assume
M=R", Ay=span{fi(q),...,felq)}, g€ M, k<n.

Denote

0={y0): 0.1 M, sty e H'(0,1LEY, 4() € A},

Since §(t) € Ay for any t € [0, 1] we have

k
() = D wilt) fi(v(1)).-
1=1

We assume that the coordinate functions u;(-) € L?([0,1]) so that for any fixed
initial data v(0) = vy we have vy(:) ~ (70, u(-)), where v = (u1,...,ur). Hence
Q~ R x LE(]0,1)).



In the case of an arbitrary smooth manifold M the space €2 is a Hilbert
manifold modeled on R* x L5([0, 1]).
Let 4° € Q be a fixed curve. Along this curve we have

Aoy = span{ f1(° (1), -, L)),

where {fI}¥ | is a basis of vector fields possibly depending on ¢, which is well
defined along the curve v°. For any curve y(-) € €, which is uniformly close to
7°, we have

k
V() =Y wil) fE(v(1))-
1=1

Definition 2
9: Qo MxM: () = (1(0),7(1).

The mapping 0 is well defined C*°-mapping from the Hilbert manifold € to the
space of terminal points. The critical points of 0 are called singular curves or
abnormal geodesics.

Remark The constant curves y(t) = const are automatically critical points of

0.

Our next goal will be to characterize the singular curves.

3.1 The Lagrange multipliers method

Let F; : ~y(-) = 7(t) denote the evaluation mapping associated to the curve
v(-). Then O(y(-)) = (Fo, F1). By the classical Lagrange multipliers rule if the
curve y(-) € 2 is a singular trajectory then there exists a non-trivial pair of
co-vectors (Ag, A1), A; € Tv*(-)M’ 1 = 1,2 such that

XD~ Fy = M\ D, F\.

It turns out that any piece of a singular trajectory is singular. More precisely,
we have the following lemma:

Lemma 2 If v is a singular trajectory, then for any t € [0,1] it is a critical
point for the pair (Fy, Fy).

Proof Let us use the special coordinates in Q defined above!: along (-) we
choose the frame of vector fields {f}¥_; such that for any ¢, € )

k
(3) e =Y ui(t)f(q),
im1

“We would like to stress out that we do not require any coordinates on M.



Ag, = span{f{(q:), ..., [i(q)}-

Admissible trajectories are solutions of control system (3) with

u() = (ur (), uk (")) € L5([0,1])

being control functions. Denote by u, the control, which generates the singular
trajectory «. Locally we have the following splitting

Q=M x L5([0,1]) = {(gt,u(-) : gt € Oyp),ul’) € L5([0,1]) = u(-) € Oy, }-
Let us first show that Ay uniquely defines A;. Indeed, it there would be two
co-vectors Ay and A\; such that A\gD,Fy = Ay Dy F; and \gD+Fy = A\ D~ Fy, then
(At — At)DyFy = 0, which is not possible because F; is a submersion.

Let us choose some specific control 4(-) and consider the corresponding curve

k

¥(r) =Y w(nff (v(r), t<T<L

i=1
Denote by
Prr: Oy = Oy
the flow that transforms the neighborhood of () into the neighborhood of (7).
By definition,

k

5 Prla) =) w(Df (Pir(0),  Pule) =q.

=1
Let
) = {a() € Q1 alr) € Prlat), t<7 <1}

If the curve 7 is a critical point for the pair (Fy, Fy), then it is critical for

(Fo, F1) ‘Qt () Essentially we have

Fl‘Qt(’Y) = Pt,l OFt7

where P;; is a fixed diffeomorphism that does not depend on the curve any
more!
Let us compute the restriction of D, F; to €(y). We have

MDD~y Fy = M\ Py Dy Fy, Vt.
On the other hand, by definition of the adjoint mapping,
(4) At = MNPy = PiAr

Thus
MDA Fy = M D Fy



which proves the lemma.

Observe that for any ¢
(5) (Ata Ay(t)) =0.

It is not hard to show now that conditions (4) and (5) are sufficient to charac-
terize the Lagrange multipliers.

Definition 3 A curve t — N, satisfying (4) and (5), is called the singular
extremal.

3.2 Hamiltonian setting

Here we recall briefly some classical facts of Hamiltonian Dynamics. Denote by
. T"M — M

the canonical projection of the cotangent bundle onto its base manifold. The
linear mapping
Ty - T)\(T*M) — Tﬂ.()\)M

is the differential of the projector . Let
sx: Th(T*M) — R, AxeT*M
be a one form on 7% M such that
Sy = A O Ty.

This form is called the tautological or Liouville form. Its differential ¢ = ds is a
non-degenerate closed 2-form and it defines the canonical symplectic structure
on T*M.

In what follows we will call the smooth functions on T*M Hamiltonians. To
any Hamiltonian h € C*°(T*M) there corresponds a unique vector field h on
T*M, called the Hamiltonian vector field associated to the Hamiltonian h:

d\h=o(,h(}), AeT*M.

n
If z1,...,z, are some local coordinates on M, then A = > ; dz;, where
i=1
(&, ) are the canonical coordinates on T*M. In these coordinates the Liouville
form and the symplectic structure have the following canonical representation:

n n
ds(e0) = Zfi dx;, o= Zd& A dx;.
i=1 i=1



The Hamiltonian system A = A(A) defined by the vector field & reads:

: Ooh
& = o
S i=1,...,n.

We can apply the Hamiltonian language to the description of singular ex-
tremals. Let us consider the curve Ay = P/; A;. By definition this curve is the lift-
ing of some curve“downstairs” on M: g(t) = (P A1) such that ¢(t) = fi(q(t)).
The flow P ;@ ¢(t) — ¢(1) is a Hamiltonian flow corresponding to the Hamil-
tonian

he = (A, fe(m(N)))
In other words, Ay = F;"y Ay if and only if it satisfies the Hamiltonian equation
At = he(Ny) and & = fi(z), where z(t) = w(\).

Let
At={XeT*M: (\A ) =0}

be the annihilator of the distribution A.

Proposition 3 The curve t — A\, € AL is a singular extremal if and only if
O-()"hT/\(t)AL) =0,

or, equivalently, if and only if

Ae Kera‘Al.
Proof For simplicity we assume that the vector fields f; are autonomous.
k
Let A ={f1,..., fx}, u € R*" and f, = 3 u;f;. Denote by
i=1

hi(A) = (X, fi(w(A)))
the Hamiltonians associated to the vector fields f;. Take some A\ € AL and let

ko
£ € T\(T*M). We claim that o (¢, T\AL) = 0 if and only if £ = > u;h;(N).
=1
Indeed, by definition we have

(6) o(TAAT, hi(N) = (dahs, ThAA).
On the other hand, h; are constant on AL

At ={\: h(M\)=0,i=1,...k}.



Hence the right hand side of (6) is zero. So there exists u(t) such that A =
k

> ui(t)hi(A). But as we have already seen, this is possible if and only if A; =
i=1

k
P}y A1, where the flow Py, is generated by ¢ = > u;(t) fi(q)-

=1

Example 2 (Co-dimension one distribution)
Let w be a 1-form on M such that
Ag={veT,M: (wg,v)=0}, q€e M.

Then
AqL ={uwy, ueR}.

We have
S‘Al =uw,

O‘AL =d(uw) = du A w + udw.

Since Ker (du A w) = A it follows that A € Ker O"AJ_ if and only if A € Ker dw A
q q

If the manifold M is of even dimension, i.e. if n = 2m for some m € N, then
a‘ AL has a kernel and hence through each point of M passes a singular extremal.
Moreover, in this case singular extremals foliate AL,

In the case n = 2m+1 the 2-form dw can be non-degenerate. For example, if
w is a contact form, then Ker dw‘ A= (), i.e. there are no non-constant singular
extremals and hence no non-constant singular trajectories.

Let us consider in detail the case of lowest possible dimension n = 3. Let w
be a generic 1-form on M. In local coordinates we have

w A dw = b(z)dry A dxs A dxs.

If b(z) # 0 then w A dw # 0 and w is a contact form and vice versa.

Assume now that 5=1(0) is a smooth 2-dimensional manifold.> Out of b=1(0)
there are no singular trajectories. The singular trajectories are the leaves of the
line distribution 76=1(0) N A. In general this foliation may have singularities
of two types: saddle points or foci. Notice that any smooth peace of a singular
trajectory out of singularities is a strong minimizer for any Sub-Riemannian
distance.

Example 3 (2-dimensional distribution in R")

5This manifold is called the Martinet surface.

10



Figure 4: Martinet surface

Assume

Aq:{fl(Q)a fQ(Q)}a q€e M.
Then dim AL = 2n — 2. Let

hz(A) = <A7fZ(Q)>> 1=1,2,
h(A) =uh (A) + U9 hg()\)
The curve t — X; is a singular extremal if and only if
A = ur(B)hi(A) + uz(B)ha(N), and  hy(A) = ho(N) = 0.

Here the last condition means that \; € AL. The vector-function v = (uy,us)
is the unknown variable of the problem. Denote

We have
S = w1 (1) (B, b ) Fus(t) o, A} ) = wa(B)han(A) = 0.
N —
=0

Similarly
Ul (t)hlg()\t) = 0.

Thus we obtain the following system:

{ hi2(A) =0
hi(Mg) = ha(X) =0

11



Differentiating again we get
w1 (t)hi12(A) + w2 (t)hoia(A) =0
Then if h112()\t) 75 0 and h221 (>\t) 75 0 we get

{ uy () = hao1 ()
ua(t) = h112(As)

up to a multiplier. Hence the singular extremals satisfy the following ODE:
(7) Ao = ozt )i (M) + Bz (M) o (he).

Exercise 3 Show that the sub-manifold {\ : hi(A\) = ha(A) = hi2(A) = 0} s
invariant with respect to the flow generated by (7).

4 Properties of singular extremals

In this section consider the general situation: dimM =n, A C TM and

Aq:Spa‘n{fl(Q)7"'7fk(Q)}7 qEM'

As we have already seen, in the case £ = n — 1 the situation depends on whether
the integer n is even or odd. If k = 2, then generically through every ¢ € M
we have the (n — 4)-dimensional family of abnormal geodesics. For instance,
for (2,4) case we have exactly one geodesic through each point (see Example 6
below). In the case of a (2, 5)-distribution at any ¢ € M there is a one-parametric
family of abnormal geodesics, whose velocities covers A,.

4.1 Rigidity
Definition 4 Denote

Q={y(): [0,1] = M, ¥(t) € Ay } -

and consider the map

9: () = (7(0),7(1)).
We say that the curve v is rigid if and only if 0~ '(v(0,7v(1))) is isolated in
W _topology in .

In other words, if v is rigid we cannot deform it keeping fixed the end-points.
The condition for v to be a critical point of 9 is the necessary condition for
rigidity.

Above we have defined 0 = (Fy, F1), where Fy, F; are submersions. So,
instead of 0 we can consider the mapping F' = F}| Bt (qo). Note that the second
variations of d and F' coincide. From now on we will work with the map

F: ()=,  ~(0)=q,

12



with gg fixed. We can write

k
() = 3wt fily(1):
=1

As soon as the basis {f;}% ; is chosen, the control functions u;, i = 1,...,k
are the coordinates of Fo_l. By fixing u;(t), ¢ = 1,...,k and perturbing initial
conditions we produce the flow

de
P P Oy Oy

generated by the non-autonomous vector field
k
= uilt)fi(q)
i=1

Exercise 4 Show that D F (v fPt*fv ydt (y(1)).

Denote g}, = P f,. We have
1
0

1
If we choose v(-) such that [ g’ . dt(y(1)) = 0, then
5 v(t)

:/1 /19 AT, Gy dt(y(1)).
0 0

We omit the details of this calculation here. The interested reader can find them
in [1].
Since vy is a critical point the differential D, F'v is not onto, i.e., if
ImD.F = span {gi, tel0,1], ve }Rk} ,
then there exists A\; € T,’Y“(I)M such that
<>\17glt)> :07 <>\17Pt*fv> :07
which implies

(8) (BfAr, fo) = 0.

13



Denote A\ = Pj*A1. Then (8) becomes
<>‘t7 fv> =0.

Consider now the following quadratic form:

1 t

(9) AMD2F(v) = <,\1, / [ / Go(rdT, gg(t)]dt>, v € KerD,F.

0 0

Definition 5 The index of the extremal t — X ts the Morse index of the
quadratic form (9)°

ind(\) & ind (A, D2F) .
Definition 6
def . t k
corank()\;) = codim(span{g}, t€[0,1], veR"}).

The following two theorems illustrate the relation of the index of the ex-
tremals and the rigidity of the corresponding abnormal trajectories. We omit
the proofs here.

Theorem 4 If v is rigid, then its lift is an abnormal extremal A\ € T;‘(t)M such
that
ind(A;) < corank(A;).

Theorem 5 (Necessary and sufficient conditions for the finiteness of index) If
ind(\) < 400, then

(At [fors o) (7(2)) = 0 (Goh condition)
and for all v € RF
Ot [ fo), ) (Y(@) >0, t€[0,1). (generalized Legendre condition)
In addition, if
Aes [Lfugy Fols FII(Y(®) = clo* Vo Lu(t) (strong generalized Legendre

condition),

then
Hld()\t) < +o00.

We remark that just finiteness of the index is not enough for rigidity. Never-
theless, the strong generalized Legendre condition implies that the small enough
pieces of y are rigid and they are strong length minimizers for any Sub-Riemannian
distance (i.e., local minima in the C° topology).

Si.e., the maximal dimension the subspaces where the quadratic form AlDE,F is negative
definite.

14



4.2 Conjugate points

The points y(0) and (1) are called conjugate if there exists a C*°-small per-
turbation of A such that A; remains a singular extremal associated to the same
singular trajectory of the same corank and satisfying Goh and strong generalized
Legendre conditions, but the index changes.

Theorem 6 Ift — A is such that v(0) and v(1) are not conjugate and such
that ind(\y) = 0, then the curve y(t) = w(A) is rigid and it is a strong length
minimizer for any metric.

Definition 7 The singular extremal t — X, is sharp if its index is finite.
Example 4 Let A € T'M, and denote

AZ =span{[fi, fj](q), fi, f; €A}, q€ M.

From the Goh condition it follows that if the extremal A is sharp, it must
annihilate A2. Therefore if A? = T'M, then there are not sharp extremals.

Example 5 (Carnot groups) Assume dim A, = k. The following situations are
possible:

i) if n < k+(k—1)?, then a generic Carnot group does not admit sharp extremals;
ii) if n > k + (K — 1)?, then there exists an open set of Carnot groups admitting
sharp extremals;

i) if n >> k + (k — 1)%, then a generic Carnot group admits sharp extremals.

Note that if £ = 2 and A; is a singular extremal, then the Goh condition is
satisfied automatically. Indeed,

0

E(Ata f?)> = 07

and hence

<>‘t7 [fu(t)7 f?)]) = 0.

Example 6 (k =2, generic germs of the distribution A)
i) If n =3, then Ag = T, M and this situation is not of interest for us.
ii) Assume n = 4, dim Ag = 3 and dim Ag = 4. Such a distribution is called the
Engel distribution. Let A = span{f1, fo} and consider the Lie bracket [v f1 +
vafa, A?]. There exists a unique vector field uifi + uzfo (singular direction)
such that

[uy f1 + ug fa, A%] € A2,

15



Therefore there is exactly one singular trajectory passing through every point
of M. Without loss of generality we can assume that vy f; + uofo = fi. Then
[f1,A%] € A% We have

elifi=h,  dhat=a% diaza

Therefore the distribution el/' A “rotates” around the direction of f; in AZ2.
The points gp and e/l are conjugate if and only if eIA = A, i.e. the time ¢
corresponds to a complete revolution of eif 'A. The index of a singular extremal
then equal to the number of complete revolutions.

Remark Let p(q1, go) denote the Carnot-Carathéodory distance between points
g1 and qg. Counsider the sphere

Se(r) ={qge M : plg,q) <},

where r is sufficiently small. If v is a singular geodesic starting at ¢p and
v(1) € Sy, (I(7)), then the distance p is not C and d.1yp is not defined. If the
strong generalized Legendre condition holds, then (1) belongs to the closure of
the cut-locus of ¢.

References

[1] A. A. Agrachev, Yu. L. Sachkov Control Theory from the Geometric View-
point. Berlin, Springer-Verlag 2004

[2] A. A. Agrachev On the equivalence of different types of local minima in
sub-Riemannian problems. Proc. 37th Conference on Decision and Control,
1998, pp. 2240-2243

[3] A. A. Agrachev Compactness for sub-Riemannian length-minimizers and
sub-analyticity. Rend.Semin.Mat. Torino, 1998, v.56, pp.1-12

[4] A. A. Agrachev, B. Bonnard, M. Chyba, I. Kupka Sub-Riemannian sphere
in Martinet flat case. ESAIM: J. Control, Optimization and Calculus of
Variations, 1997, v.2, pp.337-448

[5] A. A. Agrachev, J.-P. Gauthier On subanalyticity of Carnot-Caratheodory
distances. Annales de I'Institut Henry Poincar/’e - Analyse non lin/’eaire,
2001, v.18, pp. 359-382

[6] A. A. Agrachev, A. V. Sarychev Strong minimality of abnormal geodesics
for 2-distributions. J. Dynamical and Control Systems, 1995, v.1, pp.139-
176

[7] A. A. Agrachev, A. V. Sarychev Abnormal sub-Riemannian geodesics:
Morse index and rigidity. Annales de I'Institut Henry Poincar/’e - Anal-
yse non lin/’eaire, 1996, v.13, pp. 635-690

16



8]

[10]

[11]

[12]

[13]

A. A. Agrachev, A. V. Sarychev Sub-Riemannian metrics: minimality of
abnormal geodesics versus subanalicity. ESAIM: J. Control, Optimization
and Calculus of Variations, 1999, v.4, pp.377-403

R. Bryant, L. Hsu Rigid trajectories of rank 2 distributions. Invent.Math.,
1993, v.114, pp.435-461

A. V. Dmitruk Quadratic sufficient conditions for strong minimality of ab-
normal sub-Riemannian geodesics. Russian Journal of Math. Ph., 1999, v.6,
pp.363-372

W. S. Liu, H. J. Sussmamm.Shortest paths for sub-Riemannian metrics on
rank-2 distributions. Memoirs of AMS, 1995, v.118, N. 569

R. Montgomery A tour of subriemannian geometries, their geodesics and
applications. AMS, 2002

I. Zelenko Non-regular abnormal extremals for 2-distributions: existence,
second variation and rigidity. J. Dynamical and Control Systems, 1999, v.5,
pp.347-383

17



