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Abstract

We present an invariant definition of the hypoelliptic Laplacian on sub-Riemannian structures with con-
stant growth vector, using the Popp’s volume form introduced by Montgomery. This definition generalizes
the one of the Laplace-Beltrami operator in Riemannian geometry. In the case of left-invariant problems
on unimodular Lie groups we prove that it coincides with the usual sum of squares.

We then extend a method (first used by Hulanicki on the Heisenberg group) to compute explicitly
the kernel of the hypoelliptic heat equation on any unimodular Lie group of type I. The main tool is the
noncommutative Fourier transform. We then study some relevant cases: SU(2), SO(3), SL(2) (with the
metrics inherited by the Killing form), and the group SE(2) of rototranslations of the plane.

Our study is motivated by some recent results about the cut and conjugate loci on these sub-Riemannian
manifolds. The perspective is to understand how singularities of the sub-Riemannian distance reflect on
the kernel of the corresponding hypoelliptic heat equation.
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1 Introduction

The relation between the sub-Riemannian distance and the properties of the kernel of the hypoelliptic heat
equation (where the Laplacian is the sum of squares of orthonormal vector fields) attracted a lot of attention,
starting from the seminal work of Hörmander [25]. From that time, many estimates and properties of the kernel
in terms of the sub-Riemannian distance have been provided (see [8, 10, 20, 37, 42] and references therein).
For instance, a remarkable result is (see [28]):

Theorem 1. Let M be a C∞ compact manifold of dimension n and µ a C∞ measure on M . Let L =
∑m

i=1 L
2
Xi

,
where {X1, . . . , Xm} (m < n) is a set of smooth vector fields on M satisfying the Hörmander condition, and
{LX1 , . . . , LXm

} the corresponding Lie derivatives. Let pt(., .) be the kernel of the corresponding hypoelliptic
heat equation, i.e.,

φ(t, x) =

∫

M

pt(x, y)φ0(x)µ(y)
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is the solution to ∂tφ = Lφ, for t > 0, corresponding to the initial condition φ(0, x) = φ0(x), with φ0 ∈ L1(M,µ).
Let d(., .) be the sub-Riemannian distance for which {X1, . . . , Xm} is an orthonormal frame. Then there are
positive constants A1, A2, c1, c2 satisfying ∀ t > 0, y ∈M

A1

µ(Bx(t
1
2 ))

e−c1
d(x,y)2

t ≤ pt(x, y) ≤
A2

µ(Bx(t
1
2 ))

e−c2
d(x,y)2

t .

where Bx(t
1
2 ) is the sub-Riemannian ball centered in x and of radius t

1
2 .

Many sharper results are available for left-invariant problems on nilpotent Lie groups: see for instance [8, 13]
and references therein.

One very interesting question is the following:

Q How singularities of the sub-Riemannian distance reflect on the kernel of the hypoelliptic heat equation?

Here by singularities of the distance we mean the set of points where the sub-Riemannian distance is not
smooth. In particular we are interested in how the presence of the cut locus (the set of points where geodesics
lose optimality) reflects on the kernel. Indeed, the relation between cut locus and the kernel has been already
established in the case of Riemannian geometry, as stated in [34, 41]:

Theorem 2. Let M be a compact Riemannian manifold with distance d, ∆ the corresponding Laplace-Beltrami
operator and pt(., .) the kernel of the heat equation ∂tφ = 1

2∆φ. Define Et(x, y) := −t log(pt(x, y)). Then

lim
tց0

Et(x, y) =
1

2
d(x, y)2 (1)

uniformly on x, y.
Let Kx be the cut locus starting from x: then y 6∈ Kx if and only if limtց0 ∇2Et(x, y) = 1

2∇2d(x, y)2, while
y ∈ Kx if and only if lim suptց0 ‖∇2Et(x, y)‖ = ∞, where ‖.‖ is the operator norm.

A generalization of these results to sub-Riemannian geometry appears to be highly nontrivial. The first
difficulty one meets comes from the absence of an invariant definition of hypoelliptic Laplacian on a sub-
Riemannian manifold. This is the first question we adress in this paper.

In Riemannian geometry, if a metric is defined locally assigning a set of linearly independent vector fields
(an orthonormal basis), the sum of squares (i.e. the sum of the Lie derivatives of the vector fields applied
twice) is not a good definition of Laplacian, since it depends on the choice of the vector fields. For this
reason, in Riemannian geometry the invariant Laplacian (called the Laplace-Beltrami operator) is defined as
the divergence of the gradient where the gradient is defined via the Riemannian metric and the divergence via
the Riemannian volume form.

In the case of sub-Riemannian geometry, the situation is similar. If the sub-Riemannian structure is defined
locally assigning a set of linearly independent vector fields X1, . . . , Xm (in number less than or equal to the
dimension of the manifold), the sum of squares of the corresponding Lie derivatives

∑m
i=1 L

2
Xi

is not a good
definition of hypoelliptic Laplacian, since it depends on the choice of the vector fields. See also [33] for this
discussion in the sub-Riemannian context.

To get a definition that depends only on the sub-Riemannian structure, we proceed as in Riemannian
geometry: we define the invariant hypoelliptic Laplacian as the divergence of the horizontal gradient. The
horizontal gradient of a function is the natural generalization of the gradient in Riemannian geometry and it is
a vector field belonging to the distribution. The divergence is computed with respect to the sub-Riemannian
volume form, that can be defined for every sub-Riemannian structure with constant growth vector. This
definition depends only on the sub-Riemannian structure. The sub-Riemannian volume form, called the Popp’s
measure, was first introduced in the book of Montgomery [33], where its relation with the Hausdorff measure
is also discussed. The definition of the sub-Riemannian volume form is simple in the 3D contact case, and a
bit more delicate in general.

We then prove that for the wide class of unimodular Lie groups (i.e. the groups for which the right- and
left-Haar measures coincide), the hypoelliptic Laplacian is the sum of squares for any choice of a left-invariant
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Figure 1: The sub-Riemannian ball, cut and conjugate loci on H2.

orthonormal base. We recall that all compact and all nilpotent Lie groups are unimodular.

Once an invariant definition of sub-Lapacian is given, the first thing one could try to do, is to take a
specific example in which both the sub-Riemannian distance and the corresponding hypoelliptic heat kernel are
known globally and explicitly, and try to see if the Riemannian results applies to the sub-Riemannian context.
Not many such examples are known: indeed the explicit expression of the sub-Riemannian distance and of
the corresponding kernel are known only for the Heisenberg group and for nilpotent Lie groups of step 2 (see
[6, 16, 21, 26]). Unfortunately these cases are, in a sense, too degenerate. For instance, for the Heisenberg group,
the cut locus coincides globally with the conjugate locus (set of points where geodesics lose local optimality)
and many properties that one expects to be distinct for more generic situations cannot be distinguished. See
Figure 1.

Recently, some efforts have been made to compute the cut and the conjugate loci on less degenerate
examples than the Heisenberg one. In [9] we computed them for SU(2), SO(3) and SL(2) endowed with
the sub-Riemannian metric defined by the Killing form. In SU(2) the cut locus coincides globally with the first
conjugate locus and it is a circle S1 without one point, but in SO(3) and in SL(2) they are different (indeed
the first conjugate locus is included in the cut locus). More precisely, both for SO(3) and SL(2), the cut locus
is a stratified set made by two manifolds glued in one point. The first stratum is RP2 for SO(3) and R2 for
SL(2). The second stratum (coinciding with the first conjugate locus) is a circle S1 without one point. See
Figure 2.

A similar study is in progress for the group of rototranslations of the plane SE(2) (see [32]). In this case
the situation is even more complicated: the cut locus and the conjugate locus are distinct also in any small
neighborhood of the pole, as in the generic contact case. A deep study of the cut and conjugate locus in a
neighborhood of the pole has been performed in the generic contact case (see [2, 12]).

In view of trying to give an answer to the question Q, these recent results about cut and conjugate loci
in sub-Riemannian geometry motivate the present paper, in which we present a method to compute explicitly
the kernel to the hypoelliptic heat equation on a wide class of left-invariant sub-Riemannian structures on
Lie groups. We apply this method to the problems described above, i.e. to SU(2), SO(3) and SL(2) with
the metric defined by the Killing form and to SE(2). All the groups are unimodular, hence the hypoelliptic
Laplacian is the sum of squares. The interest of studying the kernel on SE(2) comes also from problems of
reconstruction of images [15, 36]. The application of our method to the Heisenberg group H2 provides in a few
lines the Gaveau-Hulanicki formula [21, 26].

The method is general and it is based upon the generalized (noncommutative) Fourier transform (GFT, for
short), that permits to disintegrate a function from a Lie group G to R on its components on (the class of)
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Figure 2: The cut loci for SU(2), SO(3), SL(2), for the sub-Riemannian metric defined by the Killing form.
The circle without one point belongs also to the conjugate locus.

non-equivalent unitary irreducible representations of G. This technique permits to transform the hypoelliptic
heat equation into an equation in the dual of the group1, that is particularly simple since the GFT disintegrate
the right-regular representations and the hypoelliptic Laplacian is built with left-invariant vector fields (to
which a one parameter group of right-translations is associated).

Unless we are in the abelian case, the dual of a Lie group in general is not a group. In the compact case
it is a so called Tannaka category and it is a discrete set. In the nilpotent case it has the structure of R

n for
some n. In the general case it can have a quite complicated structure. However, under certain hypotheses (see
Section 3), it is a measure space if endowed with the so called Plancherel measure. Roughly speaking, the GFT
is an isometry between L2(G,C) (the set of complex-valued square integrable functions over G, with respect
to the Haar measure) and the set of Hilbert-Schmidt operators with respect to the Plancherel measure.

The difficulties of applying our method in specific cases rely mostly on two points:

i) computing the tools for the GFT, i.e. the non-equivalent irreducible representations of the group and the
Plancherel measure. This is a difficult problem in general: however, for certain classes of Lie groups there
are suitable techniques (for instance the Kirillov orbit method for nilpotent Lie groups [30], or methods
for semidirect products). For the groups treated in this paper, the sets of non-equivalent irreducible
representations (and hence the GFT) are well known (see for instance [38]);

ii) finding the spectrum of an operator (the GFT of the hypoelliptic Laplacian). Depending on the structure
of the group and on its dimension, this problem gives rise to a matrix equation, an ODE or a PDE.

Then one can express the kernel of the hypoelliptic heat equation in terms of eigenfunctions of the GFT of the
hypoelliptic Laplacian, or in terms of the kernel of the transformed equation.

For the cases treated on this paper, we have the following (the symbol ∐ means disjoint union):

1 In this paper, by the dual of the group, we mean the support of the Plancherel measure on the set of non-equivalent unitary
irreducible representations of G; we thus ignore the singular representations.
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Group Dual of GFT Eigenfunctions of the GFT
the group of the hypoelliptic Laplacian of the hypoelliptic Laplacian

H2 R
d2

dx2
− λ2x2 (quantum Harmonic oscillator) Hermite polynomials

SU(2) N Linear finite dimensional operator related to the Complex homogeneous
quantum angular momentum polynomials in two variables

SO(3) N Linear finite dimensional operator related to Spherical harmonics
orbital quantum angular momentum

SL(2) R+ ∐ R+ Continuous: Linear operator on analytic functions Complex monomials
∐N ∐ N with domain {|x| = 1} ⊂ C

Discrete: Linear operator on analytic functions
with domain {|x| < 1} ⊂ C

SE(2) R+ d2

dθ2
− λ2 cos2(θ) (Mathieu’s equation) 2π-periodic Mathieu functions

The idea of using the GFT to compute the hypoelliptic heat kernel is not new: indeed, it was already used
on the Heisenberg group in [26] at the same time of the publication of the Gaveau formula [21], and on all step
2 nilpotent Lie groups in [16].

The structure of the paper is the following: in Section 2 we recall some basic definitions of sub-Riemannian
geometry and we construct the sub-Riemannian volume form. We then give the definition of the hypoelliptic
Laplacian on regular sub-Riemannian manifold, and we show that the hypothesis of regularity cannot be
dropped in general. To this purpose, we show that the invariant hypoelliptic Laplacian defined on the Martinet
sub-Riemannian structure is singular. We then pass to study left-invariant sub-Riemannian structures on Lie
groups and we show that a Lie group is unimodular if and only if the invariant hypoelliptic Laplacian is the sum
of squares. We also provide an example of a 3D non-unimodular Lie group for which the invariant hypoelliptic
Laplacian is not the sum of squares. The section ends with the proof that the invariant hypoelliptic Laplacian
can be expressed as

∆sr = −
m
∑

i=1

L∗
Xi
LXi

,

where the formal adjoint L∗
Xi

is built with the sub-Riemannian volume form, providing a connection with
existing literature. The invariant hypoelliptic Laplacian is then the sum of squares when LXi

are skew-adjoint.
This point of view permits to give an alternative proof to the fact that the invariant hypoelliptic Laplacian on
left-invariant structures on unimodular Lie groups is the sum of squares. Indeed left-invariant vector fields are
formally skew-adjoint with respect to the right-Haar measure. Since on Lie groups, the invariant volume form
is left-invariant, then it is proportional to the the left-Haar measure, that it is proportional to the right-Haar
measure on unimodular groups.

In Section 3 we recall basic tools about the GFT and we describe our general method to compute the kernel
for the hypoelliptic Laplacian on unimodular Lie groups of type I. We provide two useful formulas, one in the
case where the GFT of the hypoelliptic Laplacian has discrete spectrum, and the second in the case where the
GFT of the hypoelliptic heat equation admits a kernel.

In Section 4 we apply our method to compute the kernel on H2, SU(2), SO(3), SL(2) and SE(2). For the
Heisenberg group we use the formula involving the kernel of the transformed equation (the Mehler Kernel). For
the other groups we use the formula in terms of eigenvalues and eigenvectors of the GFT of the hypoelliptic
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Laplacian.
The application of our method to higher dimensional sub-Riemannian problems and in particular to the

nilpotent Lie groups (2, 3, 4) (the Engel group) and (2, 3, 5) is the subject of a forthcoming paper.

2 The hypoelliptic Laplacian

In this Section we give a definition of the hypoelliptic Laplacian ∆sr on a regular sub-Riemannian manifold
M .

2.1 Sub-Riemannian manifolds

We start recalling the definition of sub-Riemannian manifold.

Definition 3. A (n,m)-sub-Riemannian manifold is a triple (M,N,g), where� M is a connected smooth manifold of dimension n;� N is a smooth distribution of constant rank m ≤ n satisfying the Hörmander condition, i.e. N is a
smooth map that associates to q ∈M a m-dim subspace N(q) of TqM (possibly coinciding with TqM) and
∀ q ∈M we have

span {[X1, [. . . [Xk−1, Xk] . . .]](q) | Xi ∈ VecH(M)} = TqM (2)

where VecH(M) denotes the set of horizontal smooth vector fields on M , i.e.

VecH(M) = {X ∈ Vec(M) | X(p) ∈ N(p) ∀ p ∈M} .� gq is a Riemannian metric on N(q), that is smooth as function of q.

When M is an orientable manifold, we say that the sub-Riemannian manifold is orientable.

Remark 4. Usually sub-Riemannian manifolds are defined with m < n. In our definition we decided to include
the Riemannian case m = n, since all our results hold in that case. Notice that if m = n then condition (2) is
automatically satisfied.

A Lipschitz continuous curve γ : [0, T ] → M is said to be horizontal if γ̇(t) ∈ N(γ(t)) for almost every
t ∈ [0, T ].

Given an horizontal curve γ : [0, T ] →M , the length of γ is

l(γ) =

∫ T

0

√

gγ(t)(γ̇(t), γ̇(t)) dt. (3)

The distance induced by the sub-Riemannian structure on M is the function

d(q0, q1) = inf{l(γ) | γ(0) = q0, γ(T ) = q1, γ horizontal}. (4)

The hypothesis of connectedness of M and the Hörmander condition guarantee the finiteness and the
continuity of d(·, ·) with respect to the topology of M (Chow’s Theorem, see for instance [3]). The function
d(·, ·) is called the Carnot-Charateodory distance and gives to M the structure of metric space (see [7, 22]).

It is a standard fact that l(γ) is invariant under reparameterization of the curve γ. Moreover, if an admissible
curve γ minimizes the so-called energy functional

E(γ) =

∫ T

0

gγ(t)(γ̇(t), γ̇(t)) dt.

with T fixed (and fixed initial and final point), then v =
√

gγ(t)(γ̇(t), γ̇(t)) is constant and γ is also a minimizer
of l(·). On the other side, a minimizer γ of l(·) such that v is constant is a minimizer of E(·) with T = l(γ)/v.
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A geodesic for the sub-Riemannian manifold is a curve γ : [0, T ] →M such that for every sufficiently small
interval [t1, t2] ⊂ [0, T ], γ|[t1,t2]

is a minimizer of E(·). A geodesic for which gγ(t)(γ̇(t), γ̇(t)) is (constantly)
equal to one is said to be parameterized by arclength.

Locally, the pair (N,g) can be given by assigning a set of m smooth vector fields that are orthonormal for
g, i.e.

N(q) = span {X1(q), . . . , Xm(q)} , gq(Xi(q), Xj(q)) = δij . (5)

The set {X1, . . . , Xm} is called a local orthonormal frame for the sub-Riemannian structure. When (N,g)
can be defined as in (5) by m vector fields defined globally, we say that the sub-Riemannian manifold is
trivializable.

Given a (n,m)- trivializable sub-Riemannian manifold, the problem of finding a curve minimizing the energy
between two fixed points q0, q1 ∈M is naturally formulated as the optimal control problem

q̇(t) =

m
∑

i=1

ui(t)Xi(q(t)) , ui(.) ∈ L∞([0, T ],R) ,

∫ T

0

m
∑

i=1

u2
i (t) dt→ min, q(0) = q0, q(T ) = q1. (6)

It is a standard fact that this optimal control problem is equivalent to the minimum time problem with
controls u1, . . . , um satisfying u1(t)

2 + . . .+ um(t)2 ≤ 1 in [0, T ].
When the manifold is analytic and the orthonormal frame can be assigned through m analytic vector fields,

we say that the sub-Riemannian manifold is analytic.
We end this section with the definition of the small flag of the distribution N:

Definition 5. Let N be a distribution and define through the recursive formula

N1 := N Nn+1 := Nn + [Nn,N]

where Nn+1(q0) := Nn(q0)+[Nn(q0),N(q0)] = {X1(q0) + [X2, X3](q0) | X1(q), X2(q) ∈ Nn(q), X3(q) ∈ N(q) ∀ q ∈M} .
The small flag of N is the sequence

N1 ⊂ N2 ⊂ . . . ⊂ Nn ⊂ . . .

A sub-Riemannian manifold is said to be regular if for each n = 1, 2, . . . the dimension of Nn(q0) =
{f(q0) | f(q) ∈ Nn(q) ∀ q ∈M} does not depend on the point q0 ∈M .

A 3D sub-Riemannian manifold is said to be a 3D contact manifold if N has dimension 2 and N2(q0) =
Tq0M for any point q0 ∈M .

In this paper we always deal with regular sub-Riemannian manifolds.

2.1.1 Left-invariant sub-Riemannian manifolds

In this section we present a natural sub-Riemannian structure that can be defined on Lie groups. All along the
paper, we use the notation for Lie groups of matrices. For general Lie groups, by gv with g ∈ G and v ∈ L, we
mean (Lg)∗(v) where Lg is the left-translation of the group.

Definition 6. Let G be a Lie group with Lie algebra L and p ⊆ L a subspace of L satisfying the Lie bracket
generating condition

Lie p := span {[p1, [p2, . . . , [pn−1, pn]]] | pi ∈ p} = L.

Endow p with a positive definite quadratic form 〈., .〉. Define a sub-Riemannian structure on G as follows:� the distribution is the left-invariant distribution N(g) := gp;� the quadratic form g on N is given by gg(v1, v2) := 〈g−1v1, g
−1v2〉.

In this case we say that (G,N,g) is a left-invariant sub-Riemannian manifold.

Remark 7. Observe that all left-invariant manifolds (G,N,g) are regular.
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In the following we define a left-invariant sub-Riemannian manifold choosing a set of m vectors {p1, . . . , pm}
being an orthonormal basis for the subspace p ⊆ L with respect to the metric defined in Definition 6, i.e.
p = span {p1, . . . , pm} and 〈pi, pj〉 = δij . We thus have N(g) = gp = span {gp1, . . . , gpm} and gg(gpi, gpj) = δij .
Hence every left-invariant sub-Riemannian manifold is trivializable.

The problem of finding the minimal energy between the identity and a point g1 ∈ G in fixed time T becomes
the left-invariant optimal control problem

ġ(t) = g(t)

(

∑

i

ui(t)pi

)

, ui(.) ∈ L∞([0, T ],R) ,

∫ T

0

∑

i

u2
i (t) dt→ min, g(0) = Id, g(T ) = g1. (7)

Remark 8. This problem admits a solution, see for instance Chapter 5 of [11].

2.2 Definition of the hypoelliptic Laplacian on a sub-Riemannian manifold

In this section we define the intrinsic hypoelliptic Laplacian on a regular orientable sub-Riemannian manifold
(M,N,g). This definition generalizes the one of the Laplace-Beltrami operator on an orientable Riemannian
manifold, that is ∆φ := div grad φ, where grad is the unique operator from C∞(M) to Vec (M) satisfying
gq(grad φ(q), v) = dφq(v) ∀ q ∈ M, v ∈ TqM, and the divergence of a vector field X is the unique function
satisfying divXµ = LXµ where µ is the Riemannian volume form.

We first define the sub-Riemannian gradient of a function, that is an horizontal vector field.

Definition 9. Let (M,N,g) be a sub-Riemannian manifold: the horizontal gradient is the unique operator
gradsr from C∞(M) to VecH(M) satisfying gq(gradsrφ(q), v) = dφq(v) ∀ q ∈M, v ∈ N(q).

One can easily check that if {X1, . . . Xm} is a local orthonormal frame for (M,N,g), then gradsrφ =
∑m

i=1 (LXi
φ)Xi.

The question of defining a sub-Riemannian volume form is more delicate. We start by considering the 3D
contact case.

Proposition 10. Let (M,N,g) be an orientable 3D contact sub-Riemannian structure and {X1, X2} a local
orthonormal frame. Let X3 = [X1, X2] and dX1, dX2, dX3 the dual basis, i.e. dXi(Xj) = δij. Then µsr :=
dX1 ∧ dX2 ∧ dX3 is an intrinsic volume form, i.e. it is invariant for a orientation preserving change of
orthonormal frame.

Proof. Consider two different orthonormal frames with the same orientation {X1, X2} and {Y1, Y2}. We
have to prove that dX1 ∧ dX2 ∧ dX3 = dY1 ∧ dY2 ∧ dY3 with X3 = [X1, X2], Y3 = [Y1, Y2]. We have

(

Y1

Y2

)

=

(

cos(f(q)) sin(f(q))
− sin(f(q)) cos(f(q))

)(

X1

X2

)

,

for some real-valued smooth function f . A direct computation shows show that

Y3 = X3 + f1X1 + f2X2 (8)

where f1 and f2 are two smooth functions depending on f .
We first prove that dX1 ∧ dX2 = dY1 ∧ dY2. Since the change of variables {X1, X2} 7→ {Y1, Y2} is norm-

preserving, we have dX1 ∧ dX2(v, w) = dY1 ∧ dY2(v, w) when v, w ∈ N. Consider now any vector v =
v1X1 + v2X2 + v3X3 = v′1Y1 + v′2Y2 + v′3Y3: as a consequence of (8), we have v3 = v′3. Take another vector
w = w1X1 + w2X2 + w3X3 = w′

1Y1 + w′
2Y2 + w3Y3 and compute

dX1 ∧ dX2(v, w) = dX1 ∧ dX2(v − v3X3, w − w3X3) = dY1 ∧ dY2(v − v3X3, w − w3X3) = dY1 ∧ dY2(v, w),

because the vectors v − v3X3, w − w3X3 are horizontal. Hence the two 2-forms coincide.
From (8) we also have dY3 = dX3 + f ′

1dX1 + f ′
2dX2 for some smooth functions f ′

1, f
′
2. Hence we have

dY1 ∧ dY2 ∧ dY3 = dX1 ∧ dX2 ∧ dY3 = dX1 ∧ dX2 ∧ (dX3 + f ′
1dX1 + f ′

2dX2) = dX1 ∧ dX2 ∧ dX3, where the last
identity is a consequence of skew-symmetry of differential forms.
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Remark 11. Indeed, even if in the 3D contact case there is no scalar product in TqM , it is possible to define
a natural volume form, since on N the scalar product is defined by g and formula (8) guarantees the existence
of a natural scalar product in (N + [N,N])/N.

The previous result generalizes to any regular orientable sub-Riemannian structure, as presented below.

2.2.1 Definition of the intrinsic volume form

Let 0 = E0 ⊂ E1 ⊂ . . . ⊂ Ek = E be a filtration of an n-dimensional space E. Let e1, . . . , en be a basis of
E such that Ei = span {e1, . . . , eni

}. Obviously, the wedge product e1 ∧ . . . ∧ en depends only on the residue
classes

ēj = (ej + Eij
) ∈ Eij+1/Eij

,

where nij
< j ≤ nij+1, j = 1, . . . , n. This property induces a natural (i e. independent on the choice of the

basis) isomorphism of 1-dimensional spaces:

∧n
E ∼=

n
∧

(

k
⊕

i=1

(Ei/Ei−1)

)

.

Now consider the filtration

0 ⊂ N1(q) ⊂ . . . ⊂ Nk(q) = TqM, dim Ni(q) = ni.

Let X1, . . . , Xi be smooth sections of N = N1; then the vector

(

[X1, [. . . , Xi] . . .](q) + Ni−1(q)
)

∈ Ni(q)/Ni−1(q)

depends only on X1(q) ⊗ . . .⊗Xi(q).
We thus obtain a well-defined surjective linear mapping

βi :
N(q)⊗i → Ni(q)/Ni−1(q)

X1(q) ⊗ . . .⊗Xi(q) 7→
(

[X1, [. . . , Xi] . . .](q) + Ni−1(q)
)

The Euclidean structure on N(q) induces an Euclidean structure on N(q)⊗i by the standard formula:

〈ξ1 ⊗ . . .⊗ ξi, η1 ⊗ . . .⊗ ηi〉 = 〈ξ1, η1〉 . . . 〈ξi, ηi〉, ξj , ηj ∈ N(q), j = 1, . . . , i.

Then the formula:
|v| = min{|ξ̄| : ξ̄ ∈ β−1

i (v)}, v ∈ N
i(q)/Ni−1(q)

defines an Euclidean norm on N
i(q)/Ni−1(q).

Let νi be the volume form on N
i(q)/Ni−1(q) associated with the Euclidean structure:

〈νi, v1 ∧ . . . vmi
〉 = det

1
mi {〈vj , vj′ 〉}mi

j,j′=1 ,

where mi = ni − ni−1.
Finally, the intrinsic volume form µsr on TqM is the image of ν1 ∧ . . . ∧ νk under the natural isomorphism

∧n

(

k
⊕

i=1

(Ni(q)/Ni−1(q))

)∗

∼=
∧n

(TqM)∗ .

Remark 12. The construction given above appeared for the first time in the book of Mongomery [33, Section
10.5]. Montgomey called the measure µsr the Popp’s measure. He also observed that a sub-Riemannian volume
form was the only missing ingredient to get an intrinsic definition of hypoelliptic Laplacian.2

2Montgomery had probably some good reason not to use the Popp’s measure to get the intrinsic definition of the hypoelliptic
Laplacian.
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Once the volume form is defined, the divergence of a vector field X is defined as in Riemannian geometry, i.e.
it is the function divsrX satisfying divsrXµsr = LXµsr. We are now ready to define the intrinsic hypoelliptic
Laplacian.

Definition 13. Let (M,N,g) be an orientable regular sub-Riemannian manifold. Then the intrinsic hypoelliptic
Laplacian is ∆srφ := divsrgradsrφ.

Consider now an orientable regular sub-Riemannian structure (M,N,g) and let {X1, . . .Xm} be a lo-
cal orthonormal frame. We want to find an explicit expression for the operator ∆sr. If n = m then
∆sr is the Laplace Beltrami operator. Otherwise consider n − m vector fields Xm+1, . . . , Xn such that
{X1(q), . . . , Xm(q), Xm+1(q), . . . , Xn(q)} is a basis of TqM for all q in a certain open set U . The volume
form µsr is µsr = f(q)dX1 ∧ . . .∧dXn, with dXi dual basis of X1, . . . , Xn: then we can find other n−m vector
fields, that we still call Xm+1, . . . , Xn, for which we have µsr = dX1 ∧ . . . ∧ dXn.

Recall that ∆srφ satisfies (∆srφ)µsr = LXµsr with X = gradsrφ. We have

LXµsr =

m
∑

i=1

(−1)i+1
[

d (〈dφ,Xi〉) ∧ dX1 ∧ . . . ∧ ˆdXi ∧ . . . ∧ dXn + 〈dφ,Xi〉d
(

dX1 ∧ . . . ∧ ˆdXi ∧ . . . ∧ dXn

)]

.

Applying standard results of differential calculus, we have d (〈dφ,Xi〉) ∧ dX1 ∧ . . . ∧ ˆdXi ∧ . . . ∧ dXn =

(−1)i+1L2
Xi
φ µsr and d

(

dX1 ∧ . . . ∧ ˆdXi ∧ . . . ∧ dXn

)

= (−1)i+1Tr (adXi)µsr, where the adjoint map is

adXi :
Vec (U) → Vec (U)
X 7→ [Xi, X ].

and by Tr (adXi) we mean
∑n

j=1 dXj([Xi, Xj ]). Finally, we find the expression

∆srφ =

m
∑

i=1

(

L2
Xi
φ+ LXi

φ Tr (adXi)
)

. (9)

Notice that the formula depends on the choice of the vector fields Xm+1, . . . , Xn.
The hypoellipticity of ∆sr (i.e. given U ⊂ M and φ : U → C such that ∆srφ ∈ C∞, then φ is C∞) follows

from the Hörmander Theorem (see [25]):

Theorem 14. Let L be a differential operator on a manifold M , that locally in a neighborhood U is written
as L =

∑m
i=1 L

2
Xi

+ LX0 , where X0, X1 . . . , Xm are C∞ vector fields. If Lieq{X0, X1, . . . , Xm} = TqM for all
q ∈ U , then L is hypoelliptic.

Indeed, ∆sr is written locally as
∑m

i=1 L
2
Xi

+ LX0 with the first-order term LX0 =
∑m

i=1 Tr (adXi) LXi
.

Moreover by hypothesis we have that Lieq{X1, . . . , Xm} = TqM , hence the Hörmander theorem applies.

Remark 15. Notice that in the Riemannian case, i.e. for m = n, ∆sr coincides with the Laplace-Beltrami
operator. The hypothesis that the sub-Riemannian manifold is regular is crucial for the construction of the
invariant volume form. For instance for the Martinet metric on R3, that is the sub-Riemannian structure for

which L1 = ∂x + y2

2 ∂z and L2 = ∂y form an orthonormal base, one gets on R3 \ {y = 0}

∆sr = (L1)
2 + (L2)

2 − 1

y
L2.

This is not surprising at all. Indeed even the Laplace-Beltrami operator is singular in almost-Riemannian
geometry (see [4] and reference therein). For instance for the Grushin metric on R2, that is the singular
Riemannian structure for which L1 = ∂x and L2 = x∂y form an orthonormal frame, one gets on R2 \ {x = 0}

∆L.B. = (L1)
2 + (L2)

2 − 1

x
L1.
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2.3 The hypoelliptic Laplacian on Lie groups

In the case of left-invariant sub-Riemannian manifolds, there is an intrinsic global expression of ∆sr.

Corollary 16. Let (G,N,g) be a left-invariant sub-Riemannian manifold generated by the orthonormal basis
{p1, . . . , pm} ⊂ L. Then the hypoelliptic Laplacian is

∆srφ =

m
∑

i=1

(

L2
Xi
φ+ LXi

φ Tr (ad pi)
)

(10)

where LXi
is the Lie derivative w.r.t. the field Xi = gpi.

Proof. If m ≤ n, we can find n−m vectors {pm+1, . . . , pn} such that {p1, . . . , pn} is a basis for L. Choose
the fields Xi := gpi and follow the computation given above: we find formula (10). In this case the adjoint
map is intrinsically defined and the trace does not depend on the choice of Xm+1, . . . , Xn.

As stated above, the formula above reduces to the sum of squares in the wide class of unimodular Lie groups.
We recall that on a Lie group of dimension n, there always exist a left-invariant n-form µL and a right-invariant
n-form µR (called respectively left- and right-Haar measures) that are unique up to a multiplicative constant.
These forms have the properties that

∫

G

f(ag)µL(g) =

∫

G

f(g)µL(g),

∫

G

f(ga)µR(g) =

∫

G

f(g)µR(g), for every f ∈ L1(G,R) and a ∈ G,

where L1 is intended with respect to the left-Haar measure in the first identity and with respect to right-Haar
measure in the second. The group is called unimodular if µL and µR are proportional.

Remark 17. Notice that for left-invariant sub-Riemannian manifolds the intrinsic volume form and the Haus-
dorff measure µH are left-invariant, hence they are proportional to the the left Haar measure µL. On unimodular
Lie groups one can assume µsr = µL = µR = αµH , where α > 0 is a constant that is unknown even for the
simplest genuine sub-Riemannian structure i.e. the Heisenberg group.

Proposition 18. Under the hypotheses of Corollary 16, if G is unimodular then ∆srφ =
∑m

i=1 L
2
Xi
φ.

Proof. Consider the modular function Ψ, that is the unique function such that
∫

G
f(h−1g)µR(g) =

Ψ(h)
∫

G
f(g)µR(g) for all f measurable. It is well known that Ψ(g) = det(Adg) and that Ψ(g) ≡ 1 if and only

if G is unimodular.
Consider a curve γ(t) such that γ̇ exists for t = t0: then γ(t) = g0e

(t−t0)η+o(t−t0) with g0 = γ(t0) and for
some η ∈ L. We have

d

dt |t=t0

det(Adγ(t)) = Tr

(

(Adg0)
−1

[

d

ds |s=0

Adg0esη+o(s)

])

= Tr
(

Adg−1
0

Adg0ad η

)

= Tr (ad η) . (11)

Now choose the curve γ(t) = g0e
tpi and observe that det(Adγ(t)) ≡ 1, then Tr (ad pi

) = 0. The conclusion
follows from (10).

All the groups treated in this paper, (i.e. H2, SU(2), SO(3), SL(2) and SE(2)) are unimodular. Hence
the invariant hypoelliptic Laplacian is the sum of squares. A kind of inverse result holds:

Proposition 19. Let (G,N,g) be a left-invariant sub-Riemannian manifold generated by the orthonormal basis
{p1, . . . , pm} ⊂ L. If the hypoelliptic Laplacian satisfies ∆srφ =

∑m
i=1 L

2
Xi
φ, then G is unimodular.

Proof. We start observing that ∆srφ =
∑m

i=1 L
2
Xi
φ if and only if Tr (ad pi

) = 0 for all i = 1, . . . ,m.
Fix g ∈ G: due to Lie bracket generating condition, the control system (7) is controllable, then there exists

a choice of piecewise constant controls ui : [0, T ] → R such that the corresponding solution γ(.) is an horizontal
curve steering Id to g. Then γ̇ is defined for all t ∈ [0, T ] except for a finite set E of switching times.

Consider now the modular function along γ, i.e. Ψ(γ(t)), that is a continuous function, differentiable
for all t ∈ [0, T ]\E. We compute its derivative using (11): we have d

dt |t=t0

det(Adγ(t)) = Tr (ad η) with

η = γ(t0)
−1γ̇(t0). Due to horizontality of γ, we have η =

∑m
i=1 aipi, hence Tr (ad η) =

∑m
i=1 aiTr (ad pi

) = 0.
Then the modular function is piecewise constant along γ. Recalling that it is continuous, we have that it is
constant. Varying along all g ∈ G and recalling that Ψ(Id) = 1, we have Ψ ≡ 1, hence G is unimodular.
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2.3.1 The hypoelliptic Laplacian on a non-unimodular Lie group

In this section we present a non-unimodular Lie group endowed with a left-invariant sub-Riemannian structure.
We then compute the explicit expression of the intrinsic hypoelliptic Laplacian: from Proposition 19 we already
know that it is the sum of squares plus a first order term.

Consider the Lie group

A+(R) ⊕ R :=











a 0 b
0 1 c
0 0 1



 | a > 0, b, c ∈ R







.

It is the direct sum of the group A+(R) of affine transformations on the real line x 7→ ax + b with a > 0 and
the additive group (R,+). Indeed, observe that





a 0 b
0 1 c
0 0 1









x
d
1



 =





ax+ b
c+ d

1



 .

The group is non-unimodular, indeed a direct computation gives µL = 1
a2 da db dc and µR = 1

a
da db dc.

Its Lie algebra a(R) ⊕ R is generated by

p1 =





1 0 0
0 0 0
0 0 0



 , p2 =





0 0 1
0 0 1
0 0 0



 , k =





0 0 1
0 0 0
0 0 0



 ,

for which the following commutation rules hold: [p1, p2] = k [p2, k] = 0 [k, p1] = −k.
We define a trivializable sub-Riemannian structure on A+(R) ⊕ R as presented in Section 2.1.1: consider

the two left-invariant vector fields Xi(g) = gpi with i = 1, 2 and define

N(g) = span {X1(g), X2(g)} gg(Xi(g), Xj(g)) = δij .

Using (10), one gets the following expression for the hypoelliptic Laplacian:

∆srφ = L2
X1
φ+ L2

X2
φ+ LX1φ.

2.4 The intrinsic hypoelliptic Laplacian in terms of the formal adjoints of the

vector fields

In the literature one often finds the following definition of hypoelliptic Laplacian (see for instance [27]),

∆∗ = −
m
∑

i=1

L∗
Xi
LXi

, (12)

where {X1, . . . , Xm} is a set of vector fields satysfying the Hörmander condition and the formal adjoint L∗
Xi

is
computed with respect to a given volume form. This expression clearly simplifies to the sum of squares when
the vector fields are formally skew-adjoint, i.e. L∗

Xi
= −LXi

.
In this section we show that our definition of intrinsic hypoelliptic Laplacian coincides locally with (12),

when {X1, . . . , Xm} is an orthonormal frame for the sub-Riemannian manifold and the formal adjoint of the
vector fields are computed with respect to the sub-Riemannian volume form.

We then show that left-invariant vector fields on a Lie group G are formally skew-adjoint with respect to
the right-Haar measure, providing an alternative proof of the fact that for unimodular Lie Groups the intrinsic
hypoelliptic Laplacian is the sum of squares.
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Proposition 20. Locally, the intrinsic hypoelliptic Laplacian ∆sr can be written as −∑m
i=1 L

∗
Xi
LXi

, where
{X1, . . . , Xm} is a local orthonormal frame, and L∗

Xi
is the formal adjoint of the Lie derivative LXi

of the
vector field Xi i.e.

(φ1, L
∗
Xi
, φ2) = (φ2, LXi

φ1), for every φ1, φ2 ∈ C∞
c (M,R), i = 1, . . . ,m, (13)

and the scalar product is the one of L2(M,R) with respect to the invariant volume form, i.e. (φ1, φ2) :=
∫

M
φ1 φ2 µsr.

Proof. Given a volume form µ on M , a definition of divergence of a smooth vector field X (equivalent to
LXµ = div(X)µ) is

∫

M

div(X)φµ = −
∫

M

LXφµ, for every φ ∈ C∞
c (M,R);

see for instance [39]. We are going to prove that

∆srφ = −
m
∑

i=1

L∗
Xi
LXi

φ, for every φ ∈ C∞
c (M,R), (14)

then, by density, one conclude that the same holds on functions belonging to C2(M,R). Multiplying the
left-hand side of (14) by ψ ∈ C∞

c (M) and integrating with respect to µsr we have,

∫

M

(∆srφ)ψ µsr =

∫

M

(divsr(gradsrφ))ψ µsr =

∫

M

divsr

(

n
∑

i=1

(LXi
φ)Xi

)

ψ µsr = −
∫

M

n
∑

i=1

(LXi
φ)(LXi

ψ)µsr.

For the right hand side we get the same expression. Since ψ is arbitrary, the conclusion follows.

Proposition 21. Let G be a Lie group and X a left-invariant vector field on G. Then LX is formally skew-
adjoint with respect to the right-Haar measure.

Proof. Let φ ∈ C∞
c (M,R) and X = gp (p ∈ L, g ∈ G). Since X is left-invariant and µR is right-invariant,

we have
∫

G

(LXφ)(g0)µR(g0) =

∫

G

d

dt

∣

∣

∣

∣

t=0

φ(g0e
tp)µR(g0) =

d

dt

∣

∣

∣

∣

t=0

∫

G

φ(g0e
tp)µR(g0)

=
d

dt

∣

∣

∣

∣

t=0

∫

G

φ(g′)µR(g′e−tp) =
d

dt

∣

∣

∣

∣

t=0

∫

G

φ(g′)µR(g′) = 0.

Hence, for every φ1, φ2 ∈ C∞
c (M,R) we have

0 =

∫

G

LX(φ1φ2)µR =

∫

G

LX(φ1)φ2 µR +

∫

G

φ1 (LXφ2)µR = (φ2, LXφ1) + (φ1, LXφ2)

and the conclusion follows.
For unimodular groups we can assume µsr = µL = µR (cfr. Remark 17) and left-invariant vector fields are
formally skew-adjoint with respect to µsr. This argument provides an alternative proof of the fact that on
unimodular Lie groups the hypoelliptic Laplacian is the sum of squares.

3 The Generalized Fourier Transform on unimodular Lie groups

Let f ∈ L1(R,R): its Fourier transform is defined by the formula

f̂(λ) =

∫

R

f(x)e−ixλdx.
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If f ∈ L1(R,R) ∩ L2(R,R) then f̂ ∈ L2(R,R) and one has

∫

R

|f(x)|2dx =

∫

R

|f̂(λ)|2 dλ
2π
,

called Parseval or Plancherel equation. By density of L1(R,R) ∩ L2(R,R) in L2(R,R), this equation expresses
the fact that the Fourier transform is an isometry between L2(R,R) and itself. Moreover the following inversion
formula holds:

f(x) =

∫

R

f̂(λ)eixλ dλ

2π
,

where the equality is intended in the L2 sense. It is known from more than 50 years that the Fourier transform
generalizes to a wide class of locally compact groups (see for instance [14, 19, 24, 29, 40]). Next we briefly
present this generalization for groups satisfying the following hypothesis:

(H0) G is an unimodular Lie group of Type I

For the definition of groups of Type I see [18]. For our purposes it is sufficient to recall that all groups treated in
this paper (i.e. H2, SU(2), SO(3), SL(2) and SE(2)) are of Type I. Indeed both the real connected semisimple
and the real connected nilpotent Lie groups are of Type I [17, 23] and even though not all solvable groups are
of Type I, this is the case for the group of the rototranslations of the plane SE(2) [38]. In the following the Lp

spaces Lp(G,C) are intended with respect to the Haar measure µ := µL = µR.
Let G be a Lie group satisfying (H0) and Ĝ be the dual3 of the group G, i.e. the set of all equivalence

classes of unitary irreducible representations of G. Let λ ∈ Ĝ: in the following we indicate by X
λ a choice of

an irreducible representation in the class λ. By definition X
λ is a map that to an element of G associates an

unitary operator acting on a complex separable Hilbert space Hλ:

X
λ :

G → U(Hλ)

g 7→ X
λ(g).

The index λ for Hλ indicates that in general the Hilbert space can vary with λ.

Definition 22. Let G be a Lie group satisfying (H0), and f ∈ L1(G,C). The generalized (or noncommutative)

Fourier transform (GFT) of f is the map (indicated in the following as f̂ or F(f)) that to each element of Ĝ
associate the linear operator on Hλ:

f̂(λ) := F(f) :=

∫

G

f(g)Xλ(g−1)dµ. (15)

Notice that since f is integrable and X
λ unitary, then f̂(λ) is a bounded operator.

Remark 23. f̂ can be seen as an operator from
⊕
∫

Ĝ
Hλ to itself. We also use the notation f̂ =

⊕
∫

Ĝ
f̂(λ)

In general Ĝ is not a group, and its structure can be quite complicated. In the case in which G is abelian then
Ĝ is a group; if G is nilpotent then Ĝ has the structure of Rn for some n; if G is compact then it is a Tannaka
category (moreover in this case each Hλ is finite dimensional). Under the hypothesis (H0) one can define on Ĝ
a positive measure dP (λ) (called the Plancherel measure) such that for every f ∈ L1(G,C)∩L2(G,C) one has

∫

G

|f(g)|2µ(g) =

∫

Ĝ

Tr(f̂(λ) ◦ f̂(λ)∗)dP (λ).

By density of L1(G,C) ∩ L2(G,C) in L2(G,C), this formula expresses the fact that the GFT is an isometry

between L2(G,C) and
⊕
∫

Ĝ
HSλ, the set of Hilbert-Schmidt operators with respect to the Plancherel measure.

Moreover, it is obvious that:

3See footnote 1.
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Proposition 24. Let G be a Lie group satisfying (H0)and f ∈ L1(G,C)∩L2(G,C). We have, for each g ∈ G

f(g) =

∫

Ĝ

Tr(f̂(λ) ◦ X
λ(g))dP (λ). (16)

where the equality is intended in the L2 sense.

It is immediate to verify that, given two functions f1, f2 ∈ L1(G,C) and defining their convolution as

(f1 ∗ f2)(g) =

∫

G

f1(h)f2(h
−1g)dh, (17)

then the GFT maps the convolution into non-commutative product:

F(f1 ∗ f2)(λ) = f̂2(λ)f̂1(λ). (18)

Another important property is that if δId(g) is the Dirac function at the identity over G, then

δ̂Id(λ) = IdHλ . (19)

In the following, a key role is played by the differential of the representation X
λ, that is the the map

dXλ : X 7→ dXλ(X) :=
d

dt

∣

∣

∣

∣

t=0

X
λ(etp), (20)

where X = gp, (p ∈ L, g ∈ G) is a left-invariant vector field over G. By Stone theorem (see for instance [40,
p. 6]) dXλ(X) is a (possibly unbounded) skew-adjoint operator on Hλ. We have the following.

Proposition 25. Let G be a Lie group satisfying (H0) and X be a left-invariant vector field over G. The
GFT of X, i.e. X̂ = FLXF−1 splits into the Hilbert sum of operators X̂λ, each of them acting on the set HSλ

of Hilbert-Schmidt operators over Hλ:

X̂ =

⊕
∫

Ĝ

X̂λ.

Moreover

X̂λΞ = dXλ(X) ◦ Ξ, for every Ξ ∈ HSλ, (21)

i.e. the GFT of a left-invariant vector field acts as a left-translation over HSλ.

Proof. Consider the GFT of the operator Retp of right-translation of a function by etp, p ∈ L i.e.,

(Retpf) (g0) = f(g0e
tp),

and let us compute its GFT,

F (Retpf) (λ) = F
(

f(g0e
tp)
)

(λ) =

∫

G

f(g0e
tp)Xλ(g−1

0 )µ(g0) =

∫

G

f(g′)Xλ(etp)Xλ(g′−1)µ(g′e−tp)

=
(

X
λ(etp)

)

f̂(λ),

where in the last equality we used the right-invariance of the Haar measure. Hence the GFT acts as a left-
translation on HSλ and it disintegrates the right-regular representations. It follows

R̂etp = FRetpF−1 =

⊕
∫

Ĝ

X
λ(etp).

Passing to the infinitesimal generators, with X = gp, the conclusion follows.

Remark 26. From the fact that the GFT of a left-invariant vector field acts as a left-translation, it follows that
X̂λ can be interpreted as an operator over Hλ.
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3.1 Computation of the kernel of the hypoelliptic heat equation

In this section we provide a general method to compute the kernel of the hypoelliptic heat equation for left-
invariant sub-Riemannian manifold (G,N,g) such that G satisfies the assumption (H0).

In the following we recall some existence results (for the semigroup of evolution and for the corresponding
kernel) in the case of the sum of squares. We recall that for all the examples treated in this paper, the invariant
hypoelliptic Laplacian is the sum of squares.

Let G be an unimodular Lie group and (G,N,g) a left-invariant sub-Riemannian manifold generated by the
orthonormal basis {p1, . . . , pm}, and consider the hypoelliptic heat equation

∂tφ(t, g) = ∆srφ(t, g). (22)

Since G is unimodular, then ∆sr = L2
X1

+ . . . + L2
Xm

, where LXi
is the Lie derivative w.r.t. the vector field

Xi := gpi (i = 1, . . . ,m). Following Varopoulos, [42, pp. 20-21, 106], since ∆sr is a sum of squares, then it
is a symmetric operator that we identify with its Friedrichs (self-adjoint) extension, that is the infinitesimal
generator of a (Markov) semigroup et∆sr . Thanks to the left-invariance of Xi (with i = 1, . . . ,m), et∆sr admits
a a right-convolution kernel pt(.), i.e.

et∆srφ0(g) = φ0 ∗ pt(g) =

∫

G

φ0(h)pt(h
−1g)µ(h) (23)

is the solution for t > 0 to (22) with initial condition φ(0, g) = φ0(g) ∈ L1(G,R) with respect to the Haar
measure.

Since the operator ∂t −∆sr is hypoelliptic, then the kernel is a C∞ function of (t, g) ∈ R+ ×G. Notice that
pt(g) = et∆srδId(g).

The main results of the paper are based on the following key fact.

Theorem 27. Let G be a Lie group satisfying (H0) and (G,N,g) a left-invariant sub-Riemannian manifold
generated by the orthonormal basis {p1, . . . , pm}. Let ∆sr = L2

X1
+ . . . + L2

Xm
, be the intrinsic hypoelliptic

Laplacian where LXi
is the Lie derivative w.r.t. the vector field Xi := gpi.

Let
{

X
λ
}

λ∈Ĝ
be the set of all non-equivalent classes of irreducible representations of the group G, each acting

on an Hilbert space Hλ, and dP (λ) be the Plancherel measure on the dual space Ĝ. We have the following:

i) the GFT of ∆sr splits into the Hilbert sum of operators ∆̂λ
sr, each of them leaving Hλ invariant:

∆̂sr = F∆srF−1 =

⊕
∫

Ĝ

∆̂λ
srdP (λ), where ∆̂λ

sr =

m
∑

i=1

(

X̂λ
i

)2

. (24)

ii) The operator ∆̂λ
sr is self-adjoint and it is the infinitesimal generator of a contraction semi-group et∆̂λ

sr

over HSλ, i.e., et∆̂λ
srΞλ

0 is the solution for t > 0 to the operator equation ∂tΞ
λ(t) = ∆̂λ

srΞ
λ(t) in HSλ,

with initial condition Ξλ(0) = Ξλ
0 .

iii) The hypoelliptic heat kernel is

pt(g) =

∫

Ĝ

Tr
(

et∆̂λ
srX

λ(g)
)

dP (λ), t > 0. (25)

Proof. Following Varopoulos as above, and using Proposition 25, i) follows. Item ii) follows from the split
(24) and from the fact that GFT is an isometry between L2(G,C) (the set of square integrable function from G

to C with respect to the Haar measure) and the set
⊕
∫

Ĝ
HSλ of Hilbert-Schmidt operators with respect to the

Plancherel measure. Item iii) is obtained applying the inverse GFT to et∆̂λ
srΞλ

0 and the convolution formula
(18). The integral is convergent by the existence theorem for pt , see [42, p. 106].

Remark 28. As a consequence of Remark 26, it follows that ∆̂λ
sr and et∆̂λ

sr can be considered as operators on
Hλ.
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The following corollary gives an explicit formula for the hypoelliptic heat kernel in the case in which each
∆̂λ

sr has discrete spectrum, in terms of its eigenvalues and eigenvectors.

Corollary 29. Under the hypotheses of Theorem 27, if in addition for every λ, ∆̂λ
sr (considered as an operator

over Hλ) has discrete spectrum and
{

ψλ
n

}

is a complete set of eigenfunctions of norm one with the corresponding

set of eigenvalues
{

αλ
n

}

, then

pt(g) =

∫

Ĝ

(

∑

n

eαλ
nt〈ψλ

n,X
λ(g)ψλ

n〉
)

dP (λ) (26)

where 〈., .〉 is the scalar product in Hλ.

Proof. Recall that Tr (AB) = Tr (BA) and that Tr (A) =
∑

i∈I〈ei, Aei〉 for any complete set {ei}i∈I of

orthonormal vectors. Hence Tr
(

et∆̂λ
srX

λ(g)
)

=
∑

n〈ψλ
n,X

λ(g)et∆̂λ
srψλ

n〉. Observe that ∂tψ
λ
n = ∆̂λ

srψ
λ
n = αλ

nψ
λ
n,

hence et∆̂λ
srψλ

n = eαλ
ntψλ

n, from which the result follows.

The following corollary gives a useful formula for the hypoelliptic heat kernel in the case in which for all

λ ∈ Ĝ each operator et∆̂λ
sr admits a convolution kernel Qλ

t (., .). Here by ψλ, we mean an element of Hλ.

Corollary 30. Under the hypotheses of Theorem 27, if for all λ ∈ Ĝ we have Hλ = L2(Xλ, dθλ) for some
measure space (Xλ, dθλ) and

[

et∆̂λ
srψλ

]

(θ) =

∫

Xλ

ψλ(θ̄)Qλ
t (θ, θ̄) dθ̄,

then

pt(g) =

∫

Ĝ

∫

Xλ

X
λ(g)Qλ

t (θ, θ̄)
∣

∣

θ=θ̄
dθ̄ dP (λ),

where in the last formula X
λ(g) acts on Qλ

t (θ, θ̄) as a function of θ.

Proof. From (25), we have

pt(g) =

∫

Ĝ

Tr
(

et∆̂λ
srX

λ(g)
)

dP (λ) =

∫

Ĝ

Tr
(

X
λ(g)et∆̂λ

sr

)

dP (λ).

We have to compute the trace of the operator

Θ = X
λ(g)et∆̂λ

sr : ψλ(θ) 7→ X
λ(g)et∆̂λ

srψλ(θ) = X
λ(g)

∫

Xλ

ψλ(θ̄)Qλ
t (θ, θ̄) dθ̄ =

∫

Xλ

K(θ, θ̄)ψλ(θ̄)dθ̄ (27)

where K(θ, θ̄) = X
λ(g)Qλ

t (θ, θ̄) is a function of θ, θ̄ and X
λ(g) acts on Qλ

t (θ, θ̄) as a function of θ. The trace of
Θ is

∫

X
K(θ̄, θ̄)dθ̄ and the conclusion follows.

4 Explicit expressions on 3D unimodular Lie groups

4.1 The hypoelliptic heat equation on H2

In this section we apply the method presented above to solve the hypoelliptic heat equation (22) on the
Heisenberg group. This kernel, via the GFT, was first obtained by Hulanicki (see [26]). We present it as an
application of Corollary 30, since in this case an expression for the kernel of the GFT of this equation is known.

We write the Heisenberg group as the 3D group of matrices

H2 =











1 x z + 1
2xy

0 1 y
0 0 1



 | x, y, z ∈ R






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endowed with the standard matrix product. H2 is indeed R3,

(x, y, z) ∼





1 x z + 1
2xy

0 1 y
0 0 1



 ,

endowed with the group law

(x1, y1, z1) · (x2, y2, z2) =

(

x1 + x2, y1 + y2, z1 + z2 +
1

2
(x1y2 − x2y1)

)

.

A basis of its Lie algebra is {p1, p2, k} where

p1 =





0 1 0
0 0 0
0 0 0



 p2 =





0 0 0
0 0 1
0 0 0



 k =





0 0 1
0 0 0
0 0 0



 . (28)

They satisfy the following commutation rules: [p1, p2] = k, [p1, k] = [p2, k] = 0, hence H2 is a 2-step nilpotent
group. We define a left-invariant sub-Riemannian structure on H2 as presented in Section 2.1.1: consider the
two left-invariant vector fields Xi(g) = gpi with i = 1, 2 and define

N(g) = span {X1(g), X2(g)} gg(Xi(g), Xj(g)) = δij .

Writing the group H2 in coordinates (x, y, z) on R3, we have the following expression for the Lie derivatives of
X1 and X2:

LX1 = ∂x − y

2
∂z, LX2 = ∂y +

x

2
∂z.

The Heisenberg group is unimodular, hence the hypoelliptic Laplacian ∆sr is the sum of squares:

∆srφ =
(

L2
X1

+ L2
X2

)

φ. (29)

Remark 31. It is interesting to notice that all left-invariant sub-Riemannian structures that one can define on
the Heisenberg group are isometric.

In the next proposition we present the structure of the dual group of H2. For details and proofs see for
instance [30].

Proposition 32. The dual space of H2 is Ĝ =
{

X
λ | λ ∈ R

}

, where

X
λ(g) :

H → H
ψ(θ) 7→ eiλ(z−yθ+xy

2 )ψ(θ − x),

whose domain is H = L2(R,C), endowed with the standard product < ψ1, ψ2 >:=
∫

R
ψ1(θ)ψ2(θ) dθ where dθ is

the Lebesgue measure.

The Plancherel measure on Ĝ is dP (λ) = |λ|
4π2 dλ, where dλ is the Lebesgue measure on R.

Remark 33. Notice that in this example the domain of the representation H does not depend on λ.

4.1.1 The kernel of the hypoelliptic heat equation

Consider the representation X
λ of H2 and let X̂λ

i be the corresponding representations of the differential

operators LXi
with i = 1, 2. Recall that X̂λ

i are operators on H. From formula (20) we have

[X̂λ
1 ψ](θ) = − d

dθ
ψ(θ), [X̂λ

2 ψ](θ) = −iλθ ψ(θ), hence [∆̂λ
srψ](θ) =

(

d2

dθ2
− λ2θ2

)

ψ(θ).

The GFT of the hypoelliptic heat equation is thus

∂tψ =

(

d2

dθ2
− λ2θ2

)

ψ.
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The kernel of this equation is known (see for instance [5]) and it is called the Mehler kernel (its computation
is very similar to the computation of the kernel for the harmonic oscillator in quantum mechanics):

Qλ
t (θ, θ̄) :=

√

λ

2π sinh(2λt)
exp

(

−1

2

λ cosh(2λt)

sinh(2λt)
(θ2 + θ̄2) +

λθθ̄

sinh(2λt)

)

.

Using Corollary 30, and after straightforward computations, one gets the kernel of the hypoelliptic heat equation
on the Heisenberg group:

pt(x, y, z) =
1

(2πt)2

∫

R

2τ

sinh(2τ)
exp

(

− τ(x2 + y2)

2t tanh(2τ)

)

cos(2
zτ

t
)dτ. (30)

This formula differs from the one by Gaveau [21] for some numerical factors since he studies the equation

∂tφ =
1

2

(

(∂x + 2y∂z)
2 + (∂y − 2x∂z)

2
)

φ.

The Gaveau formula is recovered from (30) with t → t/2 and z → z/4. Moreover, a multiplicative factor 1
4

should be added, because from the change of variables one gets for the Haar measure 1
4dx dy dz instead of

dx dy dz as used by Gaveau.

4.2 The hypoelliptic heat equation on SU(2)

In this section we solve the hypoelliptic heat equation (22) on the Lie group

SU(2) =

{(

α β
−β̄ ᾱ

)

| α, β ∈ C, |α|2 + |β|2 = 1

}

.

A basis of the Lie algebra su(2) is {p1, p2, k} where4

p1 =
1

2

(

0 1
−1 0

)

p2 =
1

2

(

0 i
i 0

)

k =
1

2

(

i 0
0 −i

)

. (31)

We define a trivializable sub-Riemannian structure on SU(2) as presented in Section 2.1.1: consider the
two left-invariant vector fields Xi(g) = gpi with i = 1, 2 and define

N(g) = span {X1(g), X2(g)} gg(Xi(g), Xj(g)) = δij .

The group SU(2) is unimodular, hence the hypoelliptic Laplacian ∆sr has the following expression:

∆srψ =
(

L2
X1

+ L2
X2

)

ψ (32)

In the next proposition we present the structure of the dual group of SU(2). For details and proofs see for
instance [38].

Proposition 34. The dual space of SU(2) is Ĝ = {Xn | n ∈ N}.
The domain Hn of X

n is the space of homogeneous polynomials of degree n in two variables (z1, z2) with
complex coefficients Hn :=

{
∑n

k=0 akz
k
1z

n−k
2 | ak ∈ C

}

, endowed with the scalar product

〈
n
∑

k=0

akz
k
1z

n−k
2 ,

n
∑

k=0

bkz
k
1z

n−k
2 〉 :=

n
∑

k=0

k! (n− k)! ak b̄k.

The representation X
n is

X
n(g) :

Hn → Hn

n
∑

k=0

akz
k
1z

n−k
2 7→

n
∑

k=0

akw
k
1w

n−k
2

with (w1, w2) = (z1, z2)g = (αz1 − β̄z2, βz1 + ᾱz2).
The Plancherel measure on Ĝ is dP (n) = (n+ 1)dµ♯(n), where dµ♯ is the counting measure.

Notice that an orthonormal basis of Hn is {ψn
k }

n

k=0 with ψn
k :=

zk
1 zn−k

2√
k! (n−k)!

.

4See [38, pp. 67]: p1 = −X2, p2 = X1, k = X3.
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4.2.1 The kernel of the hypoelliptic heat equation

Consider the representations X̂n
i of the differential operators LXi

with i = 1, 2: they are operators on Hn,
whose action on the basis {ψn

k }
n

k=0 of Hn is (using formula (20))

X̂n
1 ψ

n
k =

i

2

{

kψn
k−1 + (n− k)ψn

k+1

}

X̂n
2 ψ

n
k =

1

2

{

kψn
k−1 − (n− k)ψn

k+1

}

hence ∆̂n
srψ

n
k =

(

k2 − kn− n
2

)

ψn
k . Thus the basis {ψn

k }
n

k=0 is a complete set of eigenfunctions of norm one for

the operator ∆̂n
sr. We are now able to compute the kernel of the hypoelliptic heat equation, using formula (26).

Proposition 35. The kernel of the hypoelliptic heat equation on (SU(2),N,g) is

pt(g) =

∞
∑

n=0

(n+ 1)

n
∑

k=0

e(k
2−kn−n

2 )tAn,k(g)

where

An,k (g) := 〈ψn
k ,X

n(g)ψn
k 〉 =

min{k,n−k}
∑

l=0

(

k
k − l

)(

n− k
l

)

ᾱk−lαn−k−l
(

|α|2 − 1
)l

with g =

(

α β
−β̄ ᾱ

)

.

Proof. The formula pt(g) =
∑∞

n=0(n + 1)
∑n

k=0 e
(k2−kn−n

2 )t〈ψn
k ,X

n(g)ψn
k 〉 is given by applying formula

(26) in the SU(2) case.
We now prove the explicit expression for 〈ψn

k ,X
n(g)ψn

k 〉: a direct computation gives

X
n(g)ψn

k =

∑n
s=0 ψ

n
s

√

s! (n− s)!

(

∑min{s,n−k}
l=max{0,s−k}

(

k
s− l

)(

n− k
l

)

αs−l(−β̄)k−s+lβlᾱn−k−l

)

√

k! (n− k)!

Observe that ψn
k is an orthonormal frame for the inner product: hence

〈ψn
k ,X

n(g)ψn
k 〉 = 〈ψn

k , ψ
n
k

min{k,n−k}
∑

l=0

(

k
k − l

)(

n− k
l

)

αk−l(−β̄)lβlᾱn−k−l〉.

The result easily follows.

Remark 36. Notice that, as the sub-Riemannian distance (computed in [9]), pt(g) does not depend on β. This
is due to the cylindrical symmetry of the distribution around ek =

{

eck | c ∈ R
}

.

4.3 The hypoelliptic heat equation on SO(3)

Let g be an element of SO(3) =
{

A ∈ Mat(R, 3) | AAT = Id, det(A) = 1
}

. A basis of the Lie algebra so(3)
is {p1, p2, k} where5

p1 =





0 0 0
0 0 −1
0 1 0



 p2 =





0 0 1
0 0 0
−1 0 0



 k =





0 −1 0
1 0 0
0 0 0



 (33)

We define a trivializable sub-Riemannian structure on SO(3) as presented in Section 2.1.1: consider the
two left-invariant vector fields Xi(g) = gpi with i = 1, 2 and define

N(g) = span {X1(g), X2(g)} gg(Xi(g), Xj(g)) = δij .

5See [38, pp. 88]: p1 = Z1, p2 = Z2, k = Z3.
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The group SO(3) is unimodular, hence the hypoelliptic Laplacian ∆sr has the following expression:

∆srφ =
(

L2
X1

+ L2
X2

)

φ. (34)

We present now the structure of the dual group of SO(3). For details and proofs see [38].
First consider the domain Hn, that is the space of complex-valued polynomials in three real variables x, y, z

that are homogeneous of n-th degree and harmonic

Hn = {f(x, y, z) | deg (f) = n, f homogeneous ,∆f = 0} ,

Notice that an homogeneous polynomial f ∈ Hn is uniquely determined by its value on S2 =
{

(x, y, z) | x2 + y2 + z2 = 1
}

,

indeed f(rx, ry, rz) = rnf(x, y, z). Define f̃(α, β) := f(sin(α) cos(β), sin(α) sin(β), cos(α)). Then endow Hn

with the scalar product

< f1(x, y, z), f2(x, y, z) >:=
1

4π

∫

S2

f̃1(α, β)f̃2(α, β) sinα dα dβ.

In the following proposition we present the structure of the dual group.

Proposition 37. The dual space of SO(3) is Ĝ = {Xn | n ∈ N}.
Given g ∈ SO(3), the unitary representation Xn(g) is

Xn(g) :
Hn → Hn

f(x, y, z) 7→ f(x1, y1, z1)

with (x1, y1, z1) = (x, y, z)g.
The Plancherel measure on SO(3) is dP (n) = (2n+ 1)dµ♯(n), where dµ♯ is the counting measure.

An orthonormal basis for Hn is given by {ψm
n }n

m=−n with ψ̃m
n (α, β) := eimβPn

−m(cos(α)), where Pn
m(x) are

the Legendre polynomials6.

4.3.1 The kernel solution of the hypoelliptic heat equation

Consider the representations X̂n
i of the differential operators LXi

with i = 1, 2: using formula (20), we find the
following expressions in spherical coordinates7

X̂n
1 ψ = sin(β)

∂ψ

∂α
+ cot(α) cos(β)

∂ψ

∂β
, X̂n

2 ψ = − cos(β)
∂ψ

∂α
+ cot(α) sin(β)

∂ψ

∂β

hence

∆̂n
srψ =

∂2ψ

∂α2
+ cot2(α)

∂2ψ

∂β2
+ cot(α)

∂ψ

∂α
(35)

and its action on the basis {ψm
n }n

m=−n of Hn is

∆̂n
srψ

m
n =

(

m2 − n(n+ 1)
)

ψm
n . (36)

Hence the basis {ψm
n }n

m=−n is a complete set of eigenfunctions of norm one for the operator ∆̂n
sr.

We compute now the kernel of the hypoelliptic heat equation, using (26).

Proposition 38. The kernel of the hypoelliptic heat equation on (SO(3),N,g) is

pt(g) =

∞
∑

n=0

(2n+ 1)

n
∑

m=−n

e(m
2−n(n+1))t < ψm

n ,Xn(g)ψm
n > . (37)

6Recall that P n
m(x) is defined by P n

m(x) :=
(1−x

2)
m
2

n!2n
d

n+m(x2+1)n

dxn+m .
7i.e. x = ρ sin(α) cos(β), y = ρ sin(α) sin(β), z = ρ cos(α).

21



4.4 The hypoelliptic heat equation on SL(2)

In this section we solve the hypoelliptic heat equation (22) on the Lie group SL(2) = {g ∈ Mat(R, 2) | det(g) = 1}.
A basis of the Lie algebra sl(2) is

p1 =
1

2

(

1 0
0 −1

)

p2 =
1

2

(

0 1
1 0

)

k =
1

2

(

0 −1
1 0

)

.

We define a trivializable sub-Riemannian structure on SL(2) as presented in Section 2.1.1: consider the two
left-invariant vector fields Xi(g) = gpi with i = 1, 2 and define

N(g) = span {X1(g), X2(g)} gg(Xi(g), Xj(g)) = δij .

The group SL(2) is unimodular, hence the hypoelliptic Laplacian ∆sr has the following expression:

∆srφ =
(

L2
X1

+ L2
X2

)

φ. (38)

It is well known that SL(2) and SU(1, 1) =

{(

α β
β̄ ᾱ

)

| |α|2 − |β|2 = 1

}

are isomorph Lie groups via

the isomorphism

Π :
SL(2) → SU(1, 1)
g 7→ G = CgC−1 with C =

1√
2

(

1 −i
1 i

)

.

This isomorphism also induce an isomorphism of Lie algebras dΠ : sl(2) → su(1, 1) defined by dΠ(p1) = p′1,
dΠ(p2) = p′2, dΠ(k) = k′ with

p′1 =
1

2

(

0 1
1 0

)

p′2 =
1

2

(

0 −i
i 0

)

k′ =
1

2

(

−i 0
0 i

)

.

This isomorphism induces naturally the definitions of left-invariant sub-Riemannian structure and of the hy-
poelliptic Laplacian on SU(1, 1).

We present here the structure of the dual of the group SU(1, 1), observing that the isomorphism of groups
induces an isomorphism of representations. For details and proofs, see [38].

The dual space Ĝ of SU(1, 1) contains two continuous and two discrete parts: Ĝ = ĜC ∐ ĜD with ĜC =
{

X
j,s | j ∈

{

0, 1
2

}

, s = 1
2 + iv, v ∈ R+

}

and ĜD =
{

X
n | n ∈ 1

2Z, |n| ≥ 1
}

.
We define the domain HC of the continuous representation X

j,s: it is the Hilbert space of L2 complex-valued
functions on the unitary circle S1 = {x ∈ C | |x| = 1} with respect to the normalized Lebesgue measure dx

2π
,

endowed with the standard scalar product 〈f, g〉 :=
∫

S1 f(x)g(x) dx
2π

. An orthonormal basis is given by the set
{ψm}m∈Z

with ψm
n (x) := x−m.

Proposition 39. The continuous part of the dual space of SU(1, 1) is ĜC =
{

X
j,s | j ∈

{

0, 1
2

}

, s = 1
2 + iv, v ∈ R+

}

.
Given G ∈ SU(1, 1), the unitary representation X

j,s(G ) is

X
j,s(G ) :

HC → HC

ψ(x) 7→ |β̄x+ ᾱ|−2s

(

β̄x+ ᾱ

|β̄x+ ᾱ|

)2j

ψ

(

αx+ β

β̄x+ ᾱ

)

with G −1 =

(

α β
β̄ ᾱ

)

.

The Plancherel measure on ĜC is dP (j, 1
2 +iv) =

{

v
2π

Tanh(πv) dv j = 0
v
2π

Cotanh(πv) dv j = 1
2 .

where dv is the Lebesgue

measure on R.

Remark 40. Notice that in this example the domain of the representation HC does not depend on j, s.
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We turn now our attention to the description of principal discrete representations8.
We first define the domain Hn of these representation X

n: consider the space Ln of L2 complex-valued

functions on the unitary discD = {x ∈ C | |x| < 1} with respect to the measure dµ∗(z) = 2|n|−1
π

(1−|z|2)2n−2 dz
where dz is the Lebesgue measure. Ln is an Hilbert space if endowed with the scalar product 〈f, g〉 :=
∫

D
f(z)g(z) dµ∗(z). Then define the space Hn with n > 0 as the Hilbert space of holomorphic functions of

Ln, while Hn with n < 0 is the Hilbert space of antiholomorphic functions of L−n. An orthonormal basis for

Hn with n > 0 is given by {ψn
m}m∈N

with ψn
m(z) =

(

Γ(2n+m)
Γ(2n)Γ(m+1)

)
1
2

zm where Γ is the Gamma function. An

orthonormal basis for Hn with n < 0 is given by {ψn
m}m∈N

with ψn
m(z) = ψm

−n(z).

Proposition 41. The discrete part of the dual space of SU(1, 1) is ĜD =
{

X
n | n ∈ 1

2Z, |n| ≥ 1
}

Given G ∈ SU(1, 1), the unitary representation X
n(G ) is

X
n(G ) :

Hn → Hn

ψ(x) 7→ (β̄x+ ᾱ)−2|n|ψ

(

αx+ β

β̄x+ ᾱ

)

with G −1 =

(

α β
β̄ ᾱ

)

.

The Plancherel measure on ĜD is dP (n) = 2|n|−1
4π

dµ♯(n), where dµ♯ is the counting measure.

4.4.1 The kernel of the hypoelliptic heat equation

In this section we compute the representation of differential operators LXi
with i = 1, 2 and give the explicit

expression of the kernel of the hypoelliptic heat equation.
We first study the continuous representations X̂j,s

i , for both the families j = 0, 1
2 . Their actions on the

basis {ψm}m∈Z
of HC is

X̂j,s
1 ψm =

s−m− j

2
ψm−1 +

s+m+ j

2
ψm+1, X̂j,s

2 ψm = i
s−m− j

2
ψm−1 − i

s+m+ j

2
ψm+1.

Hence

∆̂j,s
sr ψm = −

(

(m+ j)2 + v2 +
1

4

)

ψm.

Moreover, the set {ψm
n }m∈Z

is a complete set of eigenfunctions of norm one for the operator ∆̂j,s
sr .

Remark 42. Notice that the operators X̂j,s
i are defined only on the space of C∞ vectors, i.e. the vectors

v ∈ HC such that the map g → [Xj,s(g)] v is a C∞ mapping. This restriction is not crucial for the following
treatment.

We turn now our attention to the discrete representations in both the cases n > 0 (holomorphic functions)
and n < 0 (antiholomorphic functions). Consider the discrete representation X

n of SU(1, 1) and let X̂n
i be the

representations of the differential operators LXi
with i = 1, 2. Their actions on the basis {ψn

m}m∈N
of Hn are

X̂n
1 ψ

n
m =

√

(2|n| +m)(m+ 1)

2
ψn

m+1 −
√

(2|n| +m− 1)m

2
ψn

m−1

X̂n
2 ψ

n
m = −i

√

(2|n| +m)(m+ 1)

2
ψn

m+1 − i

√

(2|n| +m− 1)m

2
ψn

m−1

Hence ∆̂n
srψ

n
m = −

(

|n| + 2m|n| +m2
)

ψn
m, thus the basis {ψn

m}m∈N
is a complete set of eigenfunctions of norm

one for the operator ∆̂n
sr.

We can now compute the kernel of the hypoelliptic heat equation, using Formula (26).

8There exist also the so-called complementary discrete representations, whose Plancherel measure is vanishing. Hence they do
not contribute to the GFT of a function defined on SU(1, 1). For details, see for instance [38].
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Proposition 43. The kernel of the hypoelliptic heat equation on (SL(2),N,g) is

pt(g) =

∫ +∞

0

v

2π
Tanh(πv)

∑

m∈Z

e−t(m2+v2+ 1
4 )〈ψm,X

0,s(G )ψm〉 dµ(v) +

+

∫ +∞

0

v

2π
Cotanh(πv)

∑

m∈Z

e−t(m2+m+v2+ 1
2 )〈ψm,X

1
2 ,s(G )ψm〉 dµ(v) +

+
∑

n∈ 1
2 Z, |n|≥1

2|n| − 1

4π

∑

m∈N

e−t(|n|+2m|n|+m2)〈ψn
m,X

n(G )ψn
m〉. (39)

where G = Π(g−1) ∈ SU(1, 1).

4.5 The hypoelliptic heat kernel on SE(2)

Consider the group of rototranslations of the plane

SE(2) =











cos(α) − sin(α) x1

sin(α) cos(α) x2

0 0 1



 | α ∈ R/2π, xi ∈ R







In the following we often denote an element of SE(2) as g = (α, x1, x2).
A basis of the Lie algebra of SE(2) is {p0, p1, p2}, with

p0 =





0 −1 0
1 0 0
0 0 0



 , p1 =





0 0 1
0 0 0
0 0 0



 , p2 =





0 0 0
0 0 1
0 0 0



 (40)

We define a trivializable sub-Riemannian structure on SE(2) as presented in Section 2.1.1: consider the
two left-invariant vector fields Xi(g) = gpi with i = 0, 1 and define

N(g) = span {X0(g), X1(g)} gg(Xi(g), Xj(g)) = δij .

The group SE(2) is unimodular, hence the hypoelliptic Laplacian ∆sr has the following expression:

∆srφ =
(

L2
X0

+ L2
X1

)

φ (41)

Remark 44. As for the Heisenberg group, all left-invariant sub-Riemannian structures that one can define on
SE(2) are isometric.

In the following proposition we present the structure of the dual of SE(2).

Proposition 45. The dual space of SE(2) is Ĝ =
{

X
λ | λ ∈ R+

}

.
Given g = (α, x1, x2) ∈ SE(2), the unitary representation X

λ(g) is

X
λ(g) :

H → H
ψ(θ) 7→ eiλ(x cos(θ)−y sin(θ))ψ(θ + α),

where the domain H of the representation X
λ(g) is H = L2(S1,C), the Hilbert space of L2 functions on

the circle S1 ⊂ R2 with respect to the Lebesgue measure dθ, endowed with the scalar product < ψ1, ψ2 >=
∫

S1 ψ1(θ)ψ2(θ) dθ.

The Plancherel measure on Ĝ is dP (λ) = λdλ where dλ is the Lebesgue measure on R.

Remark 46. Notice that in this example the domain of the representation H does not depend on λ.
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4.5.1 The kernel of the hypoelliptic heat equation

Consider the representations X̂λ
i of the differential operators LXi

with i = 1, 2: they are operators on H, whose
action on ψ ∈ H is (using formula (20))

[

X̂λ
0 ψ
]

(θ) =
dψ(θ)

dθ

[

X̂λ
1 ψ
]

(θ) = iλ cos(θ)ψ(θ), hence
[

∆̂n
srψ
]

(θ) =
d2ψ(θ)

dθ2
− λ2 cos2(θ)ψ(θ).

We have to find a complete set of eigenfunctions of norm one for ∆̂n
sr . An eigenfunction ψ with eigenvalue

E is a 2π-periodic function satisfying the Mathieu’s equation

d2ψ

dx2
+ (a− 2q cos(2x))ψ = 0 (42)

with a = −λ2

2 − E and q = λ2

4 . For details about Mathieu functions see for instance [1, ch. 20].

Remark 47. Notice that we consider only 2π-periodic solutions of (42) since H = L2(S1,C).

There exists an ordered discrete set {an(q)}+∞
n=0 of distinct real numbers (an < an+1) such that the equation

d2f
dx2 + (an − 2q cos(2x))f = 0 admits an unique even 2π-periodic solution of norm one. This function cen(x, q)
is called an even Mathieu function.

Similarly, there exists an ordered discrete set {bn(q)}+∞
n=1 of distinct real numbers (bn < bn+1) such that

the equation d2f
dx2 + (bn − 2q cos(2x))f = 0 admits an unique odd 2π-periodic solution of norm 1. This function

sen(x, q) is called an odd Mathieu function.

The set Bλ :=
{

cen

(

x, λ2

4

)}+∞

n=0
∪
{

sen

(

x, λ2

4

)}+∞

n=1
is a complete set of 2π-periodic eigenfunctions of

norm one for the operator ∆̂n
sr. The eigenvalue for cen

(

x, λ2

4

)

is aλ
n := −λ2

2 − an

(

λ2

4

)

. The eigenvalue for

sen

(

x, λ2

4

)

is bλn := −λ2

2 − bn

(

λ2

4

)

.

We can now compute the explicit expression of the hypoelliptic kernel in the SE(2) case.

Proposition 48. The kernel of the hypoelliptic heat equation on (SE(2),N,g) is

pt(g) =

∫ +∞

0

λ dλ

(

+∞
∑

n=0

eaλ
nt < cen(θ),Xλ(g)cen(θ) > +

+∞
∑

n=1

ebλ
nt < sen(θ),Xλ(g)se(θ) >

)

(43)

The function (43) is real for all t > 0.

Proof. The formula (43) is given by writing the formula (26) in the SE(2) case.
We have to prove that pt(g) is real: we claim that < cen,X

λ(g)cen > is real. Indeed, write the scalar
product with g = (α, x, y):

< cen,X
λ(g)cen >=

∫ 2π

0

eiλ(x cos(θ)−y sin(θ))cen(θ)cen(θ + α).

Its imaginary part is
∫ 2π

0 sin (λ(x cos(θ) − y sin(θ))) cen(θ)cen(θ + α). Its integrand function assumes opposite
values in θ and θ + π: indeed

sin (λ(x cos(θ + π) − y sin(θ + π))) = sin (λ(−x cos(θ) + y sin(θ))) = − sin (λ(+x cos(θ) − y sin(θ))) ,

while cen(θ+π) = (−1)ncen(θ) as a property of Mathieu functions. Thus the integral over [0, 2π] is null. With
similar observations it is possible to prove that < sen(θ),Xλ(g)sen(θ) > is real.

Thus pt(g) is an integral of a sum of real functions, hence it is real.
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[25] L. Hörmander, Hypoelliptic Second Order Differential Equations, Acta Math., 119 (1967), pp. 147–171.

[26] A. Hulanicki, The distribution of energy in the Brownian motion in the Gaussian field and analytic-
hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math. 56 (1976), no. 2,
pp. 165–173.

[27] D. Jerison, A. Sanchez-Calle Subelliptic, second order differential operators. in Complex analysis,
III, Lecture Notes in Math., 1277, Springer, Berlin, 1987, pp. 46-77.

[28] D. Jerison, A. Sanchez-Calle, Estimates for the heat kernel for the sum of squares of vector fields,
Indiana Univ. Math. Journ., 35 (1986), pp. 835–854.

[29] A.A. Kirillov, Elements of the theory of representations. Grundlehren der Mathematischen Wis-
senschaften, Band 220. Springer-Verlag, Berlin-New York, 1976.

[30] A.A. Kirillov, Lectures on the orbit method, American Mathematical Society 2004 Series Graduate
studies in mathematics 64, 2004.

[31] J. Mitchell, On Carnot-Carathodory metrics. J. Differential Geom. 21 (1985), no. 1, pp. 35–45.

[32] I. Moiseev, Yu.L. Sachkov, Cut locus for the sub-Riemannian problem on E(2), work in progress.

[33] R. Montgomery, A Tour of Subriemannian Geometries, their Geodesics and Applications, Mathematical
Surveys and Monographs 91, AMS, Providence, RI, 2002.

[34] R. Neel, D. Stroock, Analysis of the cut locus via the heat kernel, in Surv. Differ. Geom., IX, Int.
Press, Somerville, MA, (2004), pp. 337–349.
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