VOLUME GEODESIC DISTORTION AND RICCI CURVATURE
FOR HAMILTONIAN DYNAMICS

ANDREI A. AGRACHEV!, DAVIDE BARILARI?, AND ELISA PAOLI?

ABSTRACT. We study the variation of a smooth volume form along extremals of a variational
problem with nonholonomic constraints and an action-like Lagrangian. We introduce a new
invariant describing the interaction of the volume with the dynamics and we study its basic
properties. We then show how this invariant, together with curvature-like invariants of the
dynamics introduced in [4], appear in the expansion of the volume at regular points of the
exponential map. This generalizes the well-known expansion of the Riemannian volume in terms
of Ricci curvature to a wide class of geometric structures, including all sub-Riemannian manifolds.
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1. INTRODUCTION

One of the possible ways of introducing Ricci curvature in Riemannian geometry is by computing
the variation of the Riemannian volume under the geodesic flow.

Given a point z on a Riemannian manifold (M, g) and a tangent unit vector v € T, M, it is
well-known that the asymptotic expansion of the Riemannian volume vol, in the direction of v
depends on the Ricci curvature at x. More precisely, let us consider a geodesic y(t) = exp,(tv)
starting at = with initial tangent vector v. Then the volume element, that is written in coordinates
as voly = /det g;;dx; ... dx,, satisfies the following expansion for ¢ — 0

o
(1) \/det gij(exp,(tv)) =1 — gRlc (v,0)t* + O(t?),

where Ric? is the Ricci curvature tensor associated with g (see for instance [12], Chapter 3] or [20]
Chapter 14]).

The left hand side of (Il) has a clear geometric interpretation. Indeed, fix an orthonormal basis
€1,...,en in T, M and let

0 .
8i|7(t) = (dy exp,)(e;) = s exp, (tv + se;), 1<i<mn,
s=0
be the image of e; through the differential of the Riemannian exponential map exp, : T, M — M at
tv. Once we take a set of normal coordinates centered at x, the vector fields 9; are the coordinate
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t01 = (dy exp,(t,-))(e1)
/—L(Qt) = t"eﬁ'("/(f)) (1 _ Rj‘é(”)t2 T O(t3)>

FIGURE 1. Volume distortion on a weighted Riemannian manifold with volume
= e¥vol
1= e¥voly

vector fields at «y(¢). Then the left hand side of (Il) measures the Riemannian volume of the
parallelotope with edges 9; at the point (¢), more explicitly

\/det g (v(t)) = vol, (/\ 8¢|7(t)> .

The purpose of this paper is to study the variation of a smooth volume form along extremals of
a variational problem with nonholonomic constraints and an action-like Lagrangian. To this aim,
let us first consider the case of a weighted Riemannian manifold (M, g, 1) endowed with a smooth
volume p = e¥vol,, where v is a smooth function on M. Let exp,(t,v) denote the exponential
map defined at time ¢ starting from z, i.e., set exp, (¢,v) := exp,(tv). Then

) (A exp, (1)) () = -

The volume of the parallelotope Q; with edges t 0;| +() has the following expansion for ¢ — 0,

exp, (t(v + se;)) =t Oil., () -
s=0

3) Q) = e 0 (1= ERict (0,0 + O )

as a direct consequence of ([I)) (see also Figure[ll). By writing

B((t)) = (x) + / o(V(x(s)),4(5)) ds

we reduce the previous identity to tensorial quantities as follows
b ) e 1
(4) w(Qr) = cot™elo POV ()ds (1 - ERicg(U, v)t? + O(t3)) ,

where we defined p(w) = g(Ve(z), w) for every w € T, M and ¢y = e¥(®@0),

To understand the general case, it is convenient to reinterpret the last variation of volume from
an Hamiltonian viewpoint. Indeed the Riemannian exponential map on M can be written in terms
of the Hamiltonian flow associated with the smooth function H : T*M — R given in coordinates
by

n
H(p,z) = % Z 9" (z)pip;, (p,x) € T*M,
1,7=1
where ¢” is the inverse matrix of the metric g. More geometrically, the Riemannian metric g
induces a canonical linear isomorphism i : T, M — T M between each tangent space T, M and its
dual T M. The function H is then (one half of the square of) the cometric, i.e., the metric g read
as a function on covectors. If A = i(v) denotes the element in T M corresponding to v € T, M
under the above isomorphism, the exponential map satisfies

(5) 7(t) = exp,(t,v) = m(e(N),
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T (T; M)

FIGURE 2. Volume distortion under the Hamiltonian flow

where 7w : T*M — M is the canonical projection and H is the Hamiltonian vector field on T*M
associated with H, whose coordinate expression is

= ~~0H 0 OH 0

A=y 0 0
= 8pj aiCj 81']' 8pj

Denote now E; := i(e;) the frame of cotangent vectors in T M associated with the orthonormal

frame {e;}"_, of T,M. Then, combining (&) and (&), we have t9; = (w0 '), E; and the left hand
side of @) can be written as

w(Qt) = (ky(t), (01, .. ., t0n))
= </}[/ﬂ_(etﬁ(k))’ ((ﬂ' o etH)*El, coy(mo etH)*En)>

= (o™ ulx, (Br, ..., B)).

We stress that in the last formula F;, which is an element of Ty M is treated as a tangent vector
to the fiber, i.e., an element of T\ (T M) (see Figure B). Indeed the pull-back (7 o e'#)* 1 defines
an n-form on T* M, that has dimension 2n, and the quantity that we compute is the restriction of
this form to the n-dimensional vertical space Vy ~ T (T M).

To write a coordinate-independent formula, we compare this volume with the volume ;3 defined
naturally on the fiber V) by the restriction of y at x. Recall that given a smooth volume form u
on M its value p, at a point is a nonzero element of the one-dimensional vector space A" (T, M).
We can associate with it the unique element pf in A" (T, M)* = A™(T; M) satisfying u’(u,) = 1.
This defines a volume form on the fiber T;*M. By the canonical identification T M ~ Ty (T M)
of a vector space with its tangent space to a point, this induces a volume form p3 on V.

With this interpretation, the Riemannian asymptotics @) computes the asymptotics in ¢ of

tﬁ)

(m o e'™)*p restricted to the fiber Vy, with respect to the volume p3, i.e.,

7+ t s 1
(6) (moefy b= ¢ elo P(5))ds (1 - ERng(v, v)t? + O(tg)) My
A

The constant ¢y appearing in (@) is reabsorbed in the volume puj.

Remark 1.1. As it follows from (@), the quantity p can be equivalently characterized as follows

W)

where A = i(v). The last formula inspires indeed the definition of p in the general case.

4
dt

(7) p(v)uy

<t—n (7TO etﬁ)*‘u
t=0
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Identity (@) can be generalized to every Hamiltonian that is quadratic and convex on fibers,
giving a suitable meaning to the terms in the right hand side. More precisely, we consider Hamil-
tonians H : T*M — R of the following form

k
1 1 N
3) Hip,2) = 5 S 00 K@) + (o, Xo(@)) + 5Q(),  (p) € T°M.
i=1
where X, X1, ..., X, are smooth vector fields on M and @ is a smooth function. We assume that

(HO) Xi,..., X} are everywhere linearly independent,
(H1) Lie{(ad Xo)?X;|i=1,...,k,j > 1}| =T, M for every z € M.

where (adY)X = [Y, X] and Lie F denotes the smallest Lie algebra containing a family of vector
fields F. The Hamitonian (8)) is naturally associated with the optimal control problem where the
dynamics is affine in the control

k
(9) i(t) = Xo(z(t)) + Zui(t)Xi(:c(t)), €M,

and one wants to minimize a quadratic cost with potential (here x, denotes the solution of ()
associated with u € L>([0, T], R¥))

(10) hww=1A|W@W—wamw.

We stress that when Xy = 0, @ = 0 and k = n, the optimal control problem described above is
the geodesic problem associated with the Riemannian metric defined by the orthonormal frame
Xq,...,X, on M and H is the corresponding Hamiltonian. The case Xo =0, @ =0 and k < n
includes the geodesic problem in sub-Riemannian geometry.

Consider the projections on M of integral curves of the Hamiltonian vector field Hin T*M.
Under our assumptions, short pieces of these curves are minimizers for the optimal control problem
(i.e., geodesics in the case of Riemannian or sub-Riemannian geometry). However, in general, not
all minimizers can be obtained in this way. This is due to the possible presence of the so-called
abnormal minimizers [I5]. The projected trajectories, as solutions of an Hamiltonian system in
T*M, are smooth and parametrized by the initial covector in the cotangent bundle.

If the initial covector A corresponds to an ample and equiregular trajectory (cf. Section Bl for
precise definitions) then the exponential map moe!! is a local diffeomorphism at A and it is possible
to compute the variation of a smooth volume p under the exponential map, as in the Riemannian
case.

Let us stress that in the Riemannian case all A € T*M satisfy these assumptions, while in the
sub-Riemannian case one can prove that there exists a non-empty open and dense set of covectors
A C T*M such that the corresponding geodesic is ample and equiregular (see Proposition [7.1]).
If the initial point x is fixed, then there exists a non empty Zariski open set of covectors in 7'M
such that the corresponding geodesic is ample, but the existence of equiregular geodesics is not
guaranteed. On the other hand, on any ample geodesic, there exists an open dense set of ¢ such
that the germ of the geodesic at y(t) is equiregular (cf. Section [7]).

The main result of this paper is the generalization of the asymptotics (@) to any flow arising
from an Hamiltonian that is quadratic and convex on fibers, along any trajectory satisfying our
regularity assumptions. In particular we give a geometric characterization of the terms appearing

tH and we

in the asymptotic expansion of a smooth volume p under the Hamiltonian flow m o e
interpret every coefficient as the generalization of the corresponding Riemannian element.

Fix z € M and A € Ty M. Let v(t) = (et ()\)) be the associated geodesic on M and assume
that it is ample and equiregular. With such a geodesic it is possible to associate an integer A/(\)
which is defined through the structure of the Lie brackets of the controlled vector fields X, ..., X
along 7 (cf. Definition [B7). This is in an invariant that depends only on the Lie algebraic structure
of the drift field X, and the distribution D = span{Xy,..., Xy} along the trajectory and not on
the particular frame (that induces the metric) on D. The notation stresses that this integer can a
priori depend on the trajectory.
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The results obtained in [4, Section 6.5] imply that there exists C > 0 such that, for ¢ — 0

(ro eyl =tV (O + O(1)) 3.

Va
Once the order of the asymptotics is determined, one can introduce the generalization of the
measure invariant introduced in () as follows
ANy = — ’
o = )

d <t./\/(/\) (ﬂ o etﬁ)*ﬂ
In Section [6] we show an explicit formula to compute p, in terms of the symbol of the structure
along the geodesic (cf. Definition B)) and we compute it explicitly for contact manifolds endowed
with Popp’s volume.

The Riemannian Ricci tensor appearing in (@) is replaced by the trace of a curvature operator
in the direction of A\. This curvature operator Ry : D, — D,, is a generalization of the sectional
curvature and is defined in [4] for the wide class of geometric structures arising from affine control
systems. In the Riemannian case Ry(w) = RI(w,v)v, where RY is the Riemann tensor associated
with g, A =i(v) and w € D, = T, M. Notice that in this case tr Ry = Ricci?(v,v).

All the geometric invariants are rational functions in the initial covector A\. The precise statement
of our theorem reads as follows.

t=0

Theorem 1.2. Let p be a smooth volume form on M and v(t) = w(A(t)) = ﬂ'(etﬁ()\)) be an ample
and equiregular trajectory, with A € Ty M. Then we have the following asymptotic expansion

7 3 PR t
(12) (moetfy ul = CntV® els pA)ds (1 - tQ% + 0(t2)> e

A

where (1} is the canonical volume induced by p on Vx ~ T\(T;M).

Again let us stress that in this asymptotics the choice of the volume form pu affects only the
function p. Indeed the constant Cy and the main order V() depend only on the Young diagram
associated with the curve 7, while the term Ry (and actually the whole asymptotic expansion
contained in the parentheses) depends only on the curvature like-invariants of the cost of the
optimal control problem (@)-(Id), i.e., on the Hamiltonian (8.

In other words, the asymptotics (I2]) “isolates” the contribution given by the volume form with
respect to the contribution given by the dynamics/geometry.

1.1. The invariant p in the Riemannian case. In the Riemannian case, for u = e¥voly, one
has p(v) = g(Vi,v) for every tangent vector v. If one writes explicitly the expansion of the
exponential term in (@) at order 2 one finds, for v(t) = exp, (tv)

b= tn (1 + p(v)t — (éRicg(U, v) — %p(v)Q — %Vp(v,v)) t*+ O(tg)) M-

(moe)p

In particular for X,Y vector fields on M
PP =NV,  p(X)?=g(Ve, X)
Vp=Hessv,  Vp(X,Y)=Y(Xt)— (Vy X)),
and if X7,..., X, is a local orthonormal basis for g we can compute the traces
tr p? = | VY2, tr Vp = Ay,

in terms of an orthonormal frame X;,...,X,, and the Christoffel symbols Ffj of the Levi-Civita
connection.

1.2. On the relation with measure contraction properties. Figure[3 gives another geometric
explanation of the variation of the volume. Let  C T)*M be an infinitesimal neighborhood of A

and let Q. :=mo et (Q) be its image on M with respect to the Hamiltonian flow. For every t
the set Q.+ C M is a neighborhood of (). By construction

M(Qm,t):/ﬂ(ﬂoetﬁ)*u,

and (@) represents exactly the variation of the volume element along ~.



6 A. AGRACHEV, D. BARILARI, AND E. PAOLI

FIGURE 3. Infinitesimal variation of the volume along a geodesic

Hence by integrating the asymptotic expansion ([2), under some uniformity assumption with
respect to A, one can compute the asymptotic expansion of measure of sets under geodesic con-
traction. This is strictly related to the so called measure contraction properties (MCP), where,
roughly speaking, one wants to control the measure p(€2; ) of the geodesic contraction for every
Borel set on M and every t € [0, 1].

A natural conjecture is that bounding the corresponding invariants that give control on the
asymptotic behavior at higher order, one could obtain indeed a global control.

1.3. On the relation with the small time heat kernel asymptotics. The new invariant p
introduced in this paper, together with the curvature-like invariants of the dynamics, characterize
in the Riemannian case the small time heat kernel expansion on the diagonal associated with a
weighted Laplacian A, = div, V.

Indeed let us consider a weighted Riemannian manifold (M, g, ) with p = ewvolg7 and denote
by pu(t, x,y) the fundamental solution of the heat equation 9; — A, = 0 associated with A,. Recall
that A, = Ay + g(Ve,V-), where A, is the Laplace-Beltrami operator of (M, g). One has the
following small time asymptotics (see for instance [I1])

)= £ [t 4o (52 ITUEI_ 201y )

for some ¢ > 0.

Hence the terms appearing in the heat kernel expansion are exactly the trace of the invariants
that determine the expansion of the exponential in (@) at order 2.

As a natural conjecture we then expect that the same three coefficients describe the heat kernel
small time asymptotics expansion also in the sub-Riemannian case. This conjecture is true in the
3D case with u equal to Popp volume as it is proved by the results obtained in [6], since on a 3D
manifold with p equal to Popp volume one has p = 0 (cf. Remark [Z8). See also [7, [I7] for some
results about small time heat kernel expansion for Hormander operators with drift.

1.4. Structure of the paper. In Section[2lwe describe the general setting, and in Section Bland [4]
we introduce some preliminaries. Section [Hlis devoted to the definition of the main invariant p and
its properties, while in Section [ we give a formula that permits to compute it. Section [ specifies
the construction to sub-Riemannian case. Finally, Section [§ contains the proof of the main result.
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2. THE GENERAL SETTING

Let M be an n-dimensional connected manifold and Xo, X; ..., X € Vec(M) be smooth vector
fields, with & < n. We consider the following affine control system on M

(13) a(t) = Xo(x(t)) + Zui(t)Xi(-T(t))a x €M,

where u € L°°(]0,T],R¥) is a measurable and essentially bounded function called control. In what
follows we assume that

(HO) Xi,..., X} are everywhere linearly independent,
(H1) Lie{(ad Xo) X, |i=1,...,k,j > 1}| =T, M for every x € M.

where (adY)X = [Y, X] and Lie F denotes the smallest Lie algebra containing a family of vector
fields F).

A Lipschitz curve v : [0,T] — M is said to be admissible for the system (I3)) if there exists
a control u € L>([0,T],R¥) such that v satisfies (I3) for a.e. ¢t € [0,7]. The pair (vy,u) of an
admissible curve v and its control u is called admissible pair.

Remark 2.1. The affine control system can be defined more generally as a pair (U, f), where U is
a smooth vector bundle of rank k£ with base M and fiber U,, and f : U — T'M is a smooth affine
morphism of vector bundles such that 7o f(u) = «, for every u € U,. Locally, by taking a local
trivialization of U, we can write f(u) = Xo + Zle u; X; for u € U. For more details about this
approach see [11 [4].

We denote by D C T'M the distribution, that is the family of subspaces spanned by the linear
part of the control problem at a point, i.e.,

D={D,}rerm, whereD, := span{Xl,...,Xk}‘z c T, M.

The distribution D has constant rank by assumption (HO), and we endow D with the inner product
such that the fields X1, ..., X} are orthonormal. We denote by I'(D) the set of smooth sections of
D, also called horizontal vector fields. Among all admissible trajectories that join two fixed points
in time 7" > 0, we want to minimize the quadratic cost functional

1 T
Ir(w) =5 [ (o) = Qe(s))ds.
0
where @ is a smooth function on M, playing the role of a potential. Here x, denotes the solution

of [I3) associated with w.
Definition 2.2. For zg,z1 € M and T > 0, we define the value function
(14) St (o, z1) := inf {Jr(u)| (v, u) admissible pair,y(0) = zg,v(T) = z1} .

The assumption (H1) implies, by Krener’s theorem (see [I3} Theorem 3.10] or [I4, Chapter 3]),
that the attainable set in time 7" > 0 from a fixed point x¢y € M, that is the set

Agor ={x1 € M : Sp(x0,21) < 400}

has non empty interior for all 7' > 0. This is a necessary assumption to the existence of ample
geodesics.

Important examples of affine control problems are sub-Riemannian structures. These are a
triple (M, D, g), where M is a smooth manifold, D is a smooth, completely non-integrable vector
sub-bundle of T'M and g is a smooth inner product on D. In our context, these are included in the
case Xg =0 and @ = 0. The value function in this case coincides with (one half of the square of)
the sub-Riemannian distance, i.e., the infimum of the length of absolutely continuous admissible
curves joining two points. In this case the assumption (H1) on D implies, by the Rashevskii-Chow
theorem, that the sub-Riemannian distance is finite on M. Moreover the metric topology coincides
with the one of M. A more detailed introduction on sub-Riemannian geometry can be found in
[1, [16].
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For an affine optimal control system, the associated Hamiltonian is defined as follows

k
H(p.) = 3 3 (0. Xu(@))? + (. Xo(@) + 3Qa).  (p.a) € TM.

i=1
Hamilton’s equations are written as follows

oH o0H
= a5 )= ——— ) € T*Ma

o p=-5- (02
Theorem 2.3 (PMP, [ [I8]). Consider a solution \(t) = (p(t),v(t)) defined on [0,T] of the
Hamilton equations ([I8) on T*M. Then short pieces of the trajectory v(t) = w(A(t)) minimize the
cost between its endpoints.

(16) i

From now on, using a slight abuse of notation, we call geodesic any projection v : [0,T] = M
of an integral line of the Hamiltonian vector field. In the general case, some minimizers of the
cost might not satisfy this equation. These are the so-called strictly abnormal minimizers [I5],
and they are related with hard open problems in control theory and in sub-Riemannian geometry.
In what follows we will focus on those minimizers that come from the Hamilton equations (also
called normal) and that satisfy a suitable regularity assumption. Notice that normal geodesics are
smooth.

3. GEODESIC FLAG AND SYMBOL

In this section we define the flag and the symbol of a geodesic, that are elements carrying
information about the germ of the distribution and the drift along the trajectory. The symbol is
the graded vector space associated with the flag and is endowed with an inner product induced by
the metric on the distribution.

3.1. The class of symbols. We start by defining the class of objects we deal with.

Definition 3.1. A symbol S is a pair (V, L) where

i) V is a graded vector space V = @, V;, endowed with an inner product (-,-) on its first
=1
layer V7,
(i) L ={L;}™, is a family of surjective maps L; : Vi — V;.

Remark 3.2. Through the surjective linear maps L; : V7 — V;, the inner product on V; naturally
induces a norm on V such that the norm of v € V; is given by

lv]lv; := min {||u||v, s.t. L;(u) =v}.

It is easy to check that, since || - ||y, is induced by an inner product, then || - ||y, is induced by an
inner product too. Hence the family of surjective maps endows V' with a global inner product.

Definition 3.3. We say that the symbols S = (V,L) and S’ = (V’, L) are isomorphic if there
exists a linear map ¢ : V' — V such that ¢|y; : V1 — V{ is an isometry and L, o ¢ = ¢ o L; for
1> 1.

Lemma 3.4. If two symbols S and S’ are isomorphic, then they are isometric as inner product
spaces.

Proof. Let V =@, Vi and V! = @7, V/ and let ¢ be the map given in Definition Letve Wy
and v/ = ¢(v) € V. By the commutation property satisfied by ¢ one has

Li(v') = L (¢(v)) = ¢ (Li(v)) ,

therefore V/ = ¢(V;) for every ¢ > 1 and in particular m = m’. As a consequence the map ¢
descends to a family of maps between every layer of the stratification as follows: for v; € V; write
v; = L;(v) for some v € V; and define ¢; : V; — V/ by ¢;(v;) := Li(¢(v)). Since ¢ is an isometry
on Vi, then the map ¢|y, : V; — V/ is an isometry on each layer. O
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3.2. The symbol of a geodesic. Let v : [0,T] — M be a geodesic and consider a smooth
admissible extension of its tangent vector, namely a vector field T = Xo+ X, with X € T'(D), such
that T(y(t)) = ~(¢) for every t € [0, T].

Definition 3.5. The flag of the geodesic v : [0,T] — M is the sequence of subspaces

Fly = span{LH(X)|y) | X €T(D), j <i—1} CTyyM,  Vi>1,

for any fixed t € [0,T], where L1 denotes the Lie derivative in the direction of T.

Definition 3.8l is well posed, namely it does not depend on the choice of the admissible extension

T (see [ Sec. 3.4]). By construction, the flag is a filtration of 7',y M, i.e., ]-';'(t) - }“fy;;;, for all

1 > 1. Moreover, fvl(t) =Dy ). The growth vector of the geodesic (t) is the sequence of integers
g,y(t) = {dimf,i(t)7dimf3(t)7 oo }

A geodesic 7(t), with growth vector G, (4), is said to be

(i) equiregular if dim f,i(t) does not depend on ¢ for all ¢ > 1,
1) ample 1t for every t there exists m > 1 such that dim =dimi,, M.
ii le if f t th i >1 h that di f% dim Ty M

Ample (resp. equiregular) geodesics are the microlocal counterpart of bracket-generating (resp.
equiregular) distributions. Let d; := dim ! — dim F!~!, for i > 1, be the increment of dimension
of the flag of the geodesic at each step (with the convention dim }“,? = 0). The following result is
proved in [4, Lemma 3.5].

Lemma 3.6. For any ample, equireqular geodesic, di > ds > ... > dpy,.

Definition 3.7. Given an ample and equiregular geodesic with initial covector A € T* M we define

m

(17) N = (20 - 1)d.

i=1

Fix an ample and equiregular geodesic ~ : [0,7] = M and let T be an admissible extension of
its tangent vector. For every X € f;(t), consider a smooth extension of X such that X, ) € .7:;(8)
for every s € [0, T]. The Lie derivative £t in the direction of T induces a well defined linear map

ETXH [T,XH'Y mod ‘F”;(t)

(t)

Indeed a direct computation shows that this map does not depend on the admissible extension T
and on the extension of X, under the equiregularity assumption on . So one obtains well-defined
linear surjective maps

Ly Fly/Fooy = Ful

1 ) .
Yo = Faw/Fawy iz L

In particular L5 : Doy — f;&% /]-';'(t) are surjective linear maps defined on the distribution
Dywy = ‘le(t)'

Definition 3.8. Given an ample and equiregular geodesic « : [0, 7] — M we define its symbol at
7(t), denoted by S, ), as the pair

(i) the graded vector space: gr. ) (F) := er! f;&%/f;(ty
(ii) the family of operators: L4 : Doy — fiﬁ%/ffy(t) for i > 1,

where T denotes any admissible extension of 4.

Remark 3.9. Notice that, for the symbol (V| L) associated with an ample and equiregular geodesic,
the family of maps L = {L;}" satisfies the factorization property ker L; C ker L;y; for all 4 > 1.
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4. YOUNG DIAGRAM, CANONICAL FRAME AND JACOBI FIELDS

In this section we briefly recall how to define the canonical frame that can be associated with
any ample and equiregular geodesic, introduced in [21]. We follow the approach contained in [4][9],
where the interested reader can find more details.

For an ample, equiregular geodesic we can build a tableau D with m columns of length d;, for
i=1,...,m, as follows:

|

' | # boxes = d;

The total number of boxes in D is n =dim M = >"1", d;.
Consider an ample, equiregular geodesic, with Young diagram D, with k rows, and denote the

length of the rows by ni,...,ng. Indeed nq + ... 4+ nx = n. We are going to introduce a moving
frame on Ty (T M) indexed by the boxes of the Young diagram. The notation ai € D denotes
the generic box of the diagram, where a = 1,...,k is the row index, and ¢ = 1,...,n, is the
progressive box number, starting from the left, in the specified row. We employ letters a,b,c, ...
for rows, and 4, j, h, ... for the position of the box in the row.
evel W
(a) level 1 (b) (c) level 2
level 2
level 3

FIGURE 4. Levels (shaded regions) and superboxes (delimited by bold lines) for
different Young diagrams: (a) Riemannian, (b) contact, (c) a more general struc-
ture.

We collect the rows with the same length in D, and we call them levels of the Young diagram.
In particular, a level is the union of r rows D1, ..., D,, and r is called the size of the level. The set
of all the boxes ai € D that belong to the same column and the same level of D is called superboz.
We use Greek letters a, 3, ... to denote superboxes. Notice that two boxes ai, bj are in the same
superbox if and only if ai and bj are in the same column of D and in possibly distinct rows but
with same length, i.e. if and only if ¢ = j and n, = ny (see Fig. ).

In what follows, for V(¢) a vector field along an integral line A(¢) of the Hamiltonian flow, we
denote by

d

—eH
= — t .
|, © V(t+e)

V() :

the Lie derivative of V in the direction of H. The following theorem is proved in [21].

Theorem 4.1. Assume A(t) is the lift of an ample and equiregular geodesic ~y(t) with Young
diagram D. Then there exists a smooth moving frame {Eq;, Fui}aicp along A(t) such that

(i) W*Eai|/\(t) =0.
(i) It is a Darbouz basis, namely

O’(Ewm'7 Ebj) = O’(Fai, Fbj) = O’(Ewm'7 Fbj) — 5ab5ij = 0, ai, b] e D.

(iil) The frame satisfies the structural equations

Eui = Eq(i—v) a=1,....,k, 1=2,...,n4,
Ea = —l, a:1,...,k’,

(18) - '
Fai:ijeDRai,bj(t)Ebj7Fa(i+1) ail,...,k, 1*17' ana*la
Fana = ijeD Ranmbj(t)Ebj a=1,...,k,
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for some smooth family of n x n symmetric matrices R(t), with components Ry p;(t) =
Ryjai(t), indexed by the bozes of the Young diagram D. The matriz R(t) is normal in the
sense of [21].
If {Eqi, Fui Yaicp is another smooth moving frame along A(t) satisfying (i)-(iii), with some normal
matriz R(t), then for any superbox a of size r there exists an orthogonal constant r x r matriz O*
such that

Eai=) O%iyEvj.  Fai=) O%yFy,  aica.
bjEa bjea

The explicit condition for the matrix R(t) to be normal can be found in [4, Appendix F] (cf.
also the original definition in [2T]).

Remark 4.2. Fora = 1,...,k, we denote by E, the n,-dimensional row vector E, = (Eqa1, ..., Fan, ),
with analogous notation for F,. Denote then by E is the n-dimensional row vector E = (E1, ..., Ey),
and similarly for F'. Then, we rewrite the system (Ig]) as follows

(E)= (S %) (%),

where Cy = C1(D), Cy = C3(D) are n x n matrices, depending on the Young diagram D, defined

as follows: for a,b=1,...)k,i=1,...,n4,7=1,...,np:
[C1laipj = abdij—1,, [C2]aipj = apdindj-
It is convenient to see C; and C5 as block diagonal matrices:
C;(Dy)
Ci(D) = - . =12,
C;(Dy,)

the a-th block being the n, x n, matrices

0 I,- 10
Q@J:(O 0?’ CM%%:@ %J’

where I, is the m x m identity matrix and 0,, is the m X m zero matrix.

4.1. The Jacobi equation. A vector field J(¢) along A(¢) is called a Jacobi field if it satisfies
(19) J =0.
The space of solutions of ([[9) is a 2n-dimensional vector space. The projections J = 7. J are
vector fields on M corresponding to one-parameter variations of v(t) = w(A(¢t)) through geodesics;
in the Riemannian case (without drift field) they coincide with the classical Jacobi fields.

We intend to write (I9) using the natural symplectic structure o of T*M and the canonical
frame. First, observe that on T*M there is a natural smooth sub-bundle of Lagrangiarﬂ spaces:

Yy i=kerm |y = Ta(Tr\M).

We call this the vertical subspace. Then, let {FE;(t), F;(t)}?_, be a canonical frame along A(t). The
fields E1,..., F, belong to the vertical subspace. In terms of this frame, J(¢) has components

(p(t),z(t)) € R?™:
Jt) = Zpi(t)Ei(t) + 2 () Fi (1)
i=1
In turn, the Jacobi equation, written in terms of the components (p(t),z(t)), becomes

(20) (5)-(& 800

This is a generalization of the classical Jacobi equation seen as first-order equation for fields on
the cotangent bundle. Its structure depends on the Young diagram of the geodesic through the

N Lagrangian subspace L C X of a symplectic vector space (X,0) is a subspace with 2dimL = dim¥ and
ol =0.
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x = =S (z, (1))

FIGURE 5. The geodesic cost function

matrices C;(D), while the remaining invariants are contained in the curvature matrix R(t). Notice
that this includes the Riemannian case, where D is the same for every geodesic, with C'y = 0 and
Cy, =1

4.2. Geodesic cost and curvature operator. In this section we define the geodesic cost and
the curvature operator associated with a geodesic . This operator generalizes the Riemannian
sectional curvature operator.

Definition 4.3. Let o € M and consider an ample geodesic v such that v(0) = zg. The geodesic
cost associated with ~ is the family of functions

Ct(l') = 7St(z57(t))7 ZL'EM,t>O,
where S, is the value function defined in (I4)).

By [4, Theorem 4.2], given an ample curve (t) = ﬂ'(etﬁ (M) starting at xg, the geodesic cost
function ¢;(x) is smooth in a neighborhood of x¢ and for ¢ > 0 sufficiently small. Moreover the
differential d,,c; = A for every t small.

Let ¢; = %ct denote the derivative with respect to t of the geodesic cost. Then ¢, has a critical
point in z¢ and its second differential d2 ¢; : T, M — R is defined as

d2

dz,¢e(v) = |, ¢(v(s)),  7(0) =z, H(0) =v.

We restrict the second differential of ¢; to the distribution D, and we define the following family
of symmetric operators Qx(t) : Dy, — Dy, for small ¢, associated with d2 ¢; through the inner
product defined on D,,,:

(21) a2 é(v) == (QA(t)|0) 4y, t> 0,0 € Dy,.
The following result is contained in [4, Theorem A].

Theorem 4.4. Let v : [0,T] — M be an ample geodesic with initial covector A € T M and let
Oa(t) : Dyy — Dy, be defined by @I). Then t — t2Qx(t) can be extended to a smooth family of
symmetric operators on Dy, for small t > 0. Moreover

d
Ty = lim ?Qx(t) > 1> 0, —|  ?Q\(t) =0,
t\0 dt|,_,
where 1 is the identity operator. In particular, there exists a symmetric operator Ry : Dy, — Dy,
such that
1 1
(22) Q,\(t) = t—QI)\ + gR)\ + O(t), t> 0.
Definition 4.5. We call the symmetric operator Ry : Dy, — Dy, in [22) the curvature at A. Its
trace tr R is the Ricci curvature at .

If the curve < is also equiregular, the curvature operator R, can be written in terms of the
smooth n-dimensional symmetric matrix R(¢), introduced in the canonical equations (IS]).

Let y(t) = m(e!(\)) be ample and equiregular, and let {E,;(t), Fui(t)}aicp be a canonical
frame along the curve A(t).
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Lemma 4.6 ([4], Lemma 8.3). The set of vector fields along ~(t)

Xai(t) = 7T>s<F1ai(t)7 ai € D
is a basis for T, M adapted to the flag {‘Fi(t)}?ll and {Xa1(t)}E_, is an orthonormal basis for
D, ) along the geodesic.

The following proposition is proved in [4, Section 7.4].

Proposition 4.7. Let ~v be an ample and equireqular geodesic with initial covector A. The matriz
representing Ry in terms of the orthonormal basis {X,1(t)}Yr_, depends only on the elements of
R1,61(0) corresponding to the first column of the associated Young diagram. More precisely we
have

(23) (R)\)ab = 3Q(na, nb)Ral,bl (0), a, b = 1, ey k,
where for i,5 € N we set
ol li—jl=1,
Qi,j) = 4(i + 7) =l
7 . .
w1
5. INVARIANT INTERACTION VOLUME-DYNAMICS

In this section we introduce the main invariant p defining the interaction between the dynamics
and the volume p on the manifold, and we study its basic properties.

Recall that, given a smooth volume form p on M, its value p, at a point is a nonzero element
of the space A™(T,M). We can associate with it the unique element p% in A" (T, M)* = A™(T: M)
satisfying p (1) = 1. This defines a volume form on the fiber T, M. By the canonical identification
TXM ~ T\(T; M) of a vector space with its tangent space to a point, this induces a volume form
wi on the vertical space Vy := T\(T; M) for each A € T} M.

Let v(t) = m(A(t)) be an ample and equiregular geodesic defined on [0, 7], with A(t) = e'1())
and A € T)M. Denote by A the set of A € T*M such that the corresponding trajectory is ample
and equiregular. For a fixed xz € M, we set A, := ANT;M.

Notice that, if A € A,, then the exponential map 7o et TxM — M is a local diffeomorphism

at A, for small ¢ > 0. Then it makes sense to consider the pull-back measure (7 o et )

compare its restriction to the vertical space V) with 3.
vA) ’
where M () is defined in ().

Let {04:(t) }aicn € T,’Y*(t)M be the coframe dual to X4, (t) = 7. F,;(t) and define a volume form
w along v as

(25) Wa(t) 1= 911(t) A 912(t) AN Ogp, (t)
Given a fixed smooth volume p on M, let gy : [0,7] — R be the smooth function such that

*u and

Definition 5.1. For every A € A, we define the invariant

* d - 7\ *
o = | (V) oy

t=0

(26) oty = €2 Vewn o).
The first main result of this section is the relation between the invariant p and the function g (t)
just introduced.

Proposition 5.2. For every A € A, one has p(A) = gx(0).

The proof of this Proposition is a corollary of the proof of the main theorem, that is proved in
Section 8 We exploit the previous identity to prove some useful properties of the invariant p. We
start by the following lemma.

Lemma 5.3. Let v(t) = ﬁ(etﬁ(/\)) be an ample and equiregular geodesic. Then we have

() = ga)(0), vt € [0,T7].
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Proof. Let A(t) = etﬁ(/\) € T*M be the lifted extremal and denote by v (s) := v(t + s). Then
7e(s) = m(e*H (\(t))) and we have the sequence of identities

eI (t+s) )= edr (s)

Wy(t+s) = Hy(t+s) = Hyls Wi (s)

Moreover wy(s4s) = Wy, (s) since, if (Exqs); Fr@4s)) is a canonical frame along A(t + s), it is a
canonical frame also for e \(). It follows that gy (t +s) = gxt)(s) for every s and differentiating
with respcet to s at s = 0 one gets the result. O

Lemma allows us to write g as a function of p, as follows

aa(t) = ga(0) + / i (s)ds = gx(0) + / p(A(s))ds.

Proposition 5.4. Let T be any admissible extension of ¥ and w the n-form defined in [25). Then
for every A € TxM

(27) p(A) = (div, T —div,, T)|,.
Proof. Tt is a direct consequence of the classical identity
divs,X — div,X = X (log f)
which holds for every smooth volume form w, smooth function f and smooth vector field X. O
Remark 5.5 (On the volume form w, I). In the Riemannian case {X;(t)}aicp is an orthonormal

frame for the Riemannian metric by Lemma and the form w coincides with the restriction of
the canonical Riemannian volume vol, on the curve . Hence

p(v) = (div,T)|z — (divyel, T)le-

In the general case p can still be represented as the difference of two divergences but the volume
form w depends on the curve v and is not the restriction to the curve of a global volume form.

Next we recall a refinement of Lemma
Lemma 5.6 ([4], Lemma 8.5). Fort € [0,T], the projections Xqi(t) = m. Foi(t) satisfy

Xoi(t) = (1) LY H(Xar (1) mod Fri, a=1,... .k i=1...,n

Proposition 5.7 (p depends only on p and the symbol along ). Let v,~" be two geodesics
associated with initial covectors X € A,y and X' € Aoy respectively. Assume that there exists a
diffeomorphism ¢ on M such that for t > 0 small enough

(i) o(v(1)) = (D),

(ii) ¢«ly@) induces an isomorphism of symbols between S. ) and Sy ()

(i) "ty () = By (1)
Then p(A) = p(XN).
Proof. Let {Eq;(t), Fai(t) }aicp and {E!,(t), F..(t) }aicp be canonical frames with respect to A and
A respectively, and X;(t) = m. (Fui(t)), X;;(t) = m.(F,;(t)) be the associated basis of T’ ;)M and
TytyM. Since w evaluated on the projection of the canonical frame gives 1 by construction, we
have

egk(t) = |H"y(t)(X11(t)a e annk (t))|,
N W = |y (XT3 (8), s Xy (B))]-

Recall that {Xq1}%_; (resp. {X/;}F_,) is an orthonormal basis for D. ) (resp. D;(t)). Since the
linear map ¢u| ) : Dy) — D;( ) is an isometry for small ¢ > 0, there exists a family of orthogonal
k x k matrices O(¢) such that

k
ar(t) = Zoab(t)qﬁ* (Xu1(2)), fora=1,... k.

b=1
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Moreover using Lemma we have for 7 > 1

Xis(6) =(=1) LTV (X0 (1) mod Firh

k
(1Y (Z O(t)arh- <Xb1<t>>> mod 7

b=1
k
1)1’71 Z O(t)abﬁ'(;’_l) (¢* (Xbl (t))) mOd ]:'i’ (1)’

where the last identity follows by the chain rule. Indeed, when one differentiates the matrix O(t),
one obtains elements of ]:;/_(1)- Then

k
X0() =(=1)"71 3 0tapda L7V (X (1) mod Fyf)

b=1
d;
= O(t)ap« Xpi(t) mod F, Y

where the sum is restricted to those indices b such that bi € D. This proves that there exists an
orthogonal transformation that sends ¢.Xg; in X/,. Therefore

egy(t) = |M'y’(t) (X{ l(t)v v 7X]/cnk)} = },uv/(t) (¢*X1,1(t)a EER ¢*ank)|
—’ t) (X1 1() -7lek)‘ Zegk(t)a
and the proof is complete. O

Actually, from the previous proof it follows that the invariant p depends only on the 1-jet of the
one parametric family of symbols (and the volume form p) along the geodesics.

Remark 5.8 (On the volume form w, IT). The volume form w depends only the symbol of the struc-
ture along the geodesic, that represents the microlocal nilpotent approximation of the structure
at = along v(t). Symbols at different points along any geodesic in the Riemannian manifold are
isomorphic, while in the general case this symbol could depend on the point on the curve. This is
analogous to what happens for the nilpotent approximation for a distribution (see for instance the
discussion contained in [2]).

Lemma 5.9. Let y(t) = w(A(t)) be an ample and equiregular geodesic. Assume that T is an
admissible extension of its tangent vector such that e'' is an isometry of the distribution along
~(t). Then diva’,Y(t) =0 and p(A(t)) =div,T.

Proof. 1f we show that div,, T, ) = 0, then from (22) it immediately follows that p(A(t)) = div, T
and p depends only on the variation of the volume p along the curve.

Let {Xai(t)}aiep be the basis of T’ ;)M induced by the canonical frame along the curve A(t).
The divergence is computed as

lew ‘ (t w,y t)(Xll( ) .,ank(t)) :,CTW(XH,...,ank)‘

d
~ de Y W (e)(

v(t)

eiTXll, ey eiTank).

Since the flow of T is an isometry of the graded structure that defines the symbol, the last quantity
is equal to 0, which proves that div, T = 0 along the curve. ([l
Lemma 5.10. The function p: A — R is a rational function.

Proof. Since H is a quadratic function on fibers, then the vector field H is fiber-wise polynomial.
Therefore for any vector field V(t) € T (T*M), the quantity V = [H,V] is a rational function
of the initial covector A. It follows that both E and F' are rational as functions of A\, and so are
also the projections X (t) = m, F'(t). We conclude that

e = |11y (Xa1 (1), -, Xinyo (1))
and the coefficients of its Taylor expansion, are rational expressions in A. O
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Remark 5.11. If the symbol is constant along the trajectory (i.e., symbols at different points are
isomorphic) through a diffeomorphism ¢ and u is preserved by ¢, then p(A(t)) = 0.

Indeed it is sufficient to apply Proposition 5.7 to v:(s) := v(t + s) for every s and one gets for
s,t > 0 small g(t) = g(t + s), that means that g is constant and p = 0.

Definition 5.12. We say that an Hamiltonian of our class (IH) is unimodular if it exists a volume
form p such that p =0 on A.

It is easy to see that if an Hamiltonian is unimodular with respect to some volume form p, then
W is unique.
6. A FORMULA FOR p

In this section we provide a formula to compute p in terms only of the volume p and the linear
maps L£%. This will give another proof of the fact that the quantity p(A(t)) depends only on the
symbol and on p along v(t) = w(A(t)).

Fix a smooth volume g on M and let Yi,...,Y:r be an orthonormal basis of D in a neigh-
borhood of xy. Choose vector fields Yj41,...,Y, such that Y7,...,Y, is a local basis satisfying
w(Y1,...,Y,) =1 and define an auxiliary inner product on the tangent space declaring that this

basis is orthonormal.
Let v(t) = m(e'* (X)) be an ample and equiregular curve, with initial covector A € T M. Recall
that, according to the definition of gy (¢), it holds

(28) g (t) = log |u(Py)l,

where P, is the parallelotope whose edges are the projections {X,;(t) }aicp of the horizontal part
of the canonical frame X;(t) = m, 0 et Fyi(t) € T, ;)M , namely

Pr= N Xuilt).

aieD
By Lemma [5.6l we can write the adapted frame {Xg; }4iep in terms of the smooth linear maps L,
and we obtain the following identity

m d; m d;
(29) Pi= AN Xeil® = \ N\ L5 (Kan(®)).
i=1la;=1 i=1a;=1
Consider the flag {}“fy( t)};’ll and, using the auxiliary inner product induced by the choice of
the basis, define the following sequence of subspaces of T, M: for every i > 1 set (with the
understanding that F° = {0})

i i—1yL
Vi = ]:v(t) N (]:v(t)) .
The subspace V; has dimension dim V; = dim f,i(t) — dim .7-'%5 Therefore there exists an isomor-

phism between }“fy( 5 /‘T.:/Zt§ and V;, such that every Y € }“fy(t) /‘T.:/Zt§ is associated with the element
of its equivalent class that lies in V;. In conclusion, for the computation of gy (¢) in (28], one can
replace the vector £ '(X,,1(t)) of the parallelotope in (Z3) with the corresponding equivalent
element in V.

Now consider the surjective map L',f'lfl :Dywy — H(w/f%%' For every ¢ = 1,...,m this map
descends to an isomorphism EiT_l : Doy /ker EiT_l — f;'(t) / .7-';(_5 ~ V;. Then, thanks to the inner
product structure on V;, we can consider the map

(;Cél—_l)* o Eél—_l : 'D,Y(t)/ker Aczll—_l — D,Y(t)/ker E}'l—_l
obtained by composing E-ilfl with its adjoint ([f,fl)*. This composition is a symmetric invertible
operator and we define the smooth family of symmetric operators
M;(t) = (L) o £ ’D,Y(t)/kerﬁ'r_l — Dv(t)/kerﬁﬁ-_l, 1=1,...,m.
Recall in particular that for every vy, ve € Dy )/ ker Efr_l it holds the identity

(L) o L5 Mo, v2)p, ) = (L7 Mo, L7 v2) v
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By the expression of the parallelotope P, with elements of the subspaces V; and the definition
of p as the dual of an orthonormal basis of T’ ;) M, we have

m  d;
. (/\ A ,ca-locail(m)

i=1a;=1

|u(Py)| =

ﬁ det Mz(t)
i=1

This formula does not depend on the chosen extension Yy41,...,Y, of the orthonormal basis of
D, since in the computations we only used that the volume p evaluated at this basis is equal to 1.
- d

For p(\) = 4;|,_, log|u(P:)|, a simple computation shows that

(30) o) =3 >t (M) 0E(0))

7. SUB-RIEMANNIAN MANIFOLDS

In this section we specify our construction to sub-Riemannian manifolds and we investigate in
more details the properties of the invariant p for these structures.

Recall that a sub-Riemannian structure on a smooth manifold M is given by a completely non-
integrable vector distribution D endowed with an inner product on it. An admissible curve is a
curve that is almost everywhere tangent to D and for such a curve v we can compute its length by
the classical formula

o) = / () llds.

Once we fix a local orthonormal frame Xj, ..., X for g on D, the problem of finding the geodesics
in a sub-Riemannian manifold, namely the problem of minimizing the length of a curve between
two fixed points, is equivalent to the minimization of the energy (with 7' > 0 fixed) and can be
rewritten as the control problem

{ &= Y0 wiXi(a)

Jr(u) = 3 [ [u(s)]|%ds ~ min,

This is an affine control problem, with zero drift field and quadratic cost. The complete non-
integrability assumption on the distribution D = span{ Xy, ..., Xi} implies that the assumptions
(HO)-(H1) are satisfied. The Hamiltonian function is fiber-wise quadratic and convex on fibers. In
coordinates it is written as

k
1
H(p,x) =5 Zl@, Xi(@)?,  (px) e T*M.
Denote by A the set of A € T*M such that the corresponding trajectory is ample and equiregular.
For a fixed x € M we set A, = ANTiM.

Proposition 7.1. The set A is a non-empty open dense subset of T*M.

Proof. Denote by ]-'i = ]-'fly(o) where v is the trajectory associated with initial covector A and set

ki(\) = dim F. By semicontinuity of the rank the integer valued and bounded function A — k;(\)
is locally constant on an open dense set €; of T*M. Since the intersection of a finite number of
open dense sets is open and dense, if follows that the set 2 = N;€; where the growth vector is
locally constant is open and dense in T*M. To prove that it is non empty fix an arbitrary point
x € M and counsider a A € TxM such that the corresponding trajectory is ample for all ¢ (the
existence of such a trajectory is proved in [4] Section 5.2]). Since the functions ¢ — dim f;\(t) are
lower semi-continuous and bounded with respect to ¢, repeating the previous argument we have
that they are locally constant on an open dense set of [0, 7], then the curve is equiregular at these
points. O

We stress once more that for a fixed x € M one can have A, = 0, as for instance in the non
equiregular case (for instance in the Martinet structure). On the other hand, for every fixed z
the set A such that the corresponding trajectory is ample is open and dense and on each of these
trajectories we can find equiregular points arbitrarily close to x.
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7.1. Homogeneity properties. For all ¢ > 0, let H, := H~!(c/2) be the level set of the Hamil-
tonian function. In particular H; is the unit cotangent bundle: the set of initial covectors asso-
ciated with unit-speed geodesics. Since the Hamiltonian function is fiber-wise quadratic, we have
the following property for any ¢ > 0
(31) et (e)) = cet ().
Let 6. : T*M — T*M Dbe the dilation along the fibers 6.(A) = ¢ (if we write A = (p, x) this means
dc(p, ) = (ep,x)). Indeed o — o is a one-parameter group of diffeomorphisms. Its generator is
the Buler vector field ¢ € T'(V), and is characterized by d. = e, We can rewrite ([BI)) as the
following commutation rule for the flows of H and e:

HO(SczécOGCtH

Observe that 6, maps H; diffeomorphically on H.. Let A € H; be associated with an ample,
equiregular geodesic with Young diagram D. Clearly also the geodesic associated with A¢ :=c\ €
H, is ample and equiregular, with the same Young diagram. This corresponds to a reparametriza-
tion of the same curve: in fact A°(t) = e (c\) = c(A(ct)), hence v°(t) = 7(A°(t)) = 7(ct). The
canonical frame associated with A°(¢) can be recovered by the one associated with A(t) as shown
in the following proposition. Its proof can be found in [10].

Proposition 7.2. Let A € Hy and {Eq4;, Fuitaicp be the associated canonical frame along the
extremal \(t). Let ¢ > 0 and define, for ai € D

1
Egi(t) = g(d)\(ct)PC)Eai(Ct)v F5i(t) := ¢ (d(er)0c) Failct).

The moving frame {Eg;(t), Fg;(t)aiep € They(T*M) is a canonical frame associated with the
wnatial covector \¢ = cA € H., with matrix

Raz b]( ) - CZJFJ Raz ,bj (Ct)

By this Proposition, it follows the following homogeneity property of gy, and as a consequence
of the function p.

Lemma 7.3. For every A € A, and ¢ > 0 one has cA € A,. Moreover

e9er(t) — CQ—negA(ct)’
where n and Q are respectively the topological and the Hausdorff dimension of M.

Proof. Let X¢,(t) and X, (ct) be the basis of Tye(yM = T (yM induced by the canonical frame.
Then by Proposition [[.2] it holds the identity X¢,(t) = ¢!~! X,;(ct). Therefore by the definition of
gx and g.) we have

egcx(t) :|/}[/7 ct)(chl(t) e X]ink (t))|

=TT e (160 X, ()] = e O

i=1j=1
Lemma [T3] gives gea(t) = ga(ct) + (Q — n)log(c) and differentiating at ¢ = 0 we obtain
Corollary 7.4. For every A € A, and ¢ > 0 one has
(32) pled) = cp(X).

Remark 7.5. The function p is homogeneous of degree one but, in general, it might not be smooth.
Indeed using formula [B0) and denoting by M (¢) the matrices associated with the reparametrized
curve ¢, one can show from the homogeneity properties of Proposition that

(33) ME(t) = 2 My(ct), ME(t) = ¢ My(ct)

from which it follows that p is a rational function in A with the degree of the denominator which
is at most A>™~2. Notice that using ([@3) at ¢ = 0 one can obtain another proof of [B2) by

= %itf (Mf(O)‘le(O)) = % itr (cMi(O)_lMi(O)) = cp(N).



VOLUME DISTORTION AND RICCI CURVATURE FOR HAMILTONIAN DYNAMICS 19

7.2. Contact manifolds. In this section we focus on the special case of a contact sub-Riemannian
manifold. Recall that a sub-Riemannian manifold (M, D, g) of odd dimension 2n + 1 is contact if
there exists a non degenerate 1-form w € A'(M), such that D, = kerw, for every z € M and dw|p
is non degenerate. In this case D is called contact distribution.

Remark 7.6. Given a sub-Riemannian contact manifold, the contact form w is not unique. Indeed
if w is a contact form then also aw is a contact form for any non vanishing smooth function «.
Once a contact form w is fixed we can associate the Reeb vector field, Xy, which is the unique
vector field such that w(Xp) = 1 and dw(Xy,-) = 0. Since the Reeb vector field X is transversal
to D, we normalize w so that || Xo||p2/p = 1.

The contact form w induces a fiber-wise linear map J : D — D, defined by
(JX,Y) = dw(X,Y) VX,Y € D.
Observe that the restriction J, := J|p, is a linear skew-symmetric operator on (D, g;).
Let Xi,...,Xs, be a local orthonormal frame of D, then Xi,..., Xs,, X is a local frame

adapted to the flag of the distribution. Let v', ..., 2", 0 be the associated dual frame. The Popp
volume p on M (see [§] for more details) is the volume

(34) pw=v A AV AL,

On contact sub-Riemannian manifolds, every non constant geodesic v(t) = m(e!f ()\)) is ample
and equiregular with the same growth vector (2n,2n + 1). Moreover, it is possible to compute
explicitly the value of the associated smooth function gy (t) and the constant C of Theorem

We compute now the value of the function gy (t) with respect to the Popp’s volume and a given
geodesic.

Proposition 7.7. Let v = ﬂ(etﬁ (M) be a geodesic on a contact manifold. Then
(35) gx(t) = log [T,

In particular if J?> = —1 then gx(t) = 0.

Proof. Recall that, by definition of gy (cf. (26])), one has

(36) ga(t) = log |u(F)]
where P; is the parallelotope whose edges are given by the projections X,;(t) of the fields Fy;(t)
of a canonical basis along A(t) on T’y M.

Let T be an horizontal extension of the tangent vector field 4(¢) and consider the map Lt :
Dy — D?y(t)/D'Y(t)' Since the manifold is contact, this map is surjective. and its kernel is a
subspace of D, (;) of dimension 2n — 1. Let X3,..., X2, be an orthonormal basis of D,,(;) such that
X, € (ker E-r)l and Xo,..., X5, € ker L1. Then there exists an orthogonal map that transforms
the first 2n vectors projections of the canonical basis, in this basis.

Notice that the definition [B6) of g (t) does not change if we replace the first 2n edges of the
parallelotope by X1, ..., Xa,. Moreover, by Lemma [5.6 the last projected vector X,; = X; 2 can
be written as

X172(t) = 7£,TX1 (t) mod D.
Notice that X; is not in the kernel of L1, thus this basis is also adapted to the Young diagram of
~. Thanks to ([B4]), the Popp volume of the parallelotope is equal to the length of the component
of L1X(t) with respect to Xg, namely

(P = [([T, X1], Xo)y
This quantity can be written equivalently in terms of the map J. Indeed
(Pl = [{[T, X1, Xo)y (5| = lwn) ([T, Xa])| = [dews o) (T, X))
=KL T, Xyl

Since (JT,Y) = —w(L7Y) for every horizontal field Y, then ker L1 = JT+. This implies that JT
is a multiple of Xy, i.e., JT = ||JT||X;1. Then we simplify the formula for |u(P;)| as

|N(Pt)| = |<J'y(t)TaX1>'y(t)| = HJT'y(t)H'
Notice that if J? = —1, then J is an isometry, hence [|[JT [l = || Tl = 1. O
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Remark 7.8. If dim M = 3, then p()\(t)) = 0 for every t. Indeed ker L1 has dimension 1 and
= ||T||X2. Moreover, if we denote by cf; the structure constants such that [X;, X;] = Zi:o ki X,

then the normalization of w implies ¢}y = —1 and
[u(Po)l = [T, Xal, Xo)| = [Tyl [{[X2, X1l, Xo)|
=Tyl =1

Remark 7.9. Notice that even in the contact case, not every structure is unimodular (in the sense
of Definition (.12). When J? = —1 then the structure is unimodular, choosing u as the Popp
volume. See also [3] for the computation of the curvature in the contact case.

8. PROOF OF THE MAIN RESULT

In this section we prove the following proposition, that is Theorem [[.2] written along the canon-
ical frame.

Proposition 8.1. Let v(t) = ﬂ'(etﬁ()\)) be an ample equiregular geodesic and let w. () be the n-
form defined in 23). Given a volume p on M, define implicitly the smooth function gy : [0,T] = R
by piy(r) = eg*(t)wv(t). Then we have the following Taylor expansion

(37) <(7r o etﬁ)* 1hy E(O)>’)\ = OV Weor® <1 - tQ% + 0(t2)>

where E is the n-dimensional row vector introduced in Remark [{.Z and Cx depends only on the
structure of the Young diagram. In particular we have the identity

(17 (mo ey ) =i

Remark 8.2. As it follows from the proof, the constant C) is explicitly computed by

t=0 Y

k Hna
11=0 J° J!
Cy = H —ona—1 ' > 0.
a=1 J=ngq
In the contact case, since the Young diagram is equal for all A\, with 2n rows of length 1, and one
row of length 2, the leading constant is C = 1—12

Proof. The left hand side of the equation (B7) can be rewritten as

((r2) 80N, = (50 (5207) £0)]

For every ai € D, the field eiﬁEai(O) is a Jacobi field, so in coordinates with respect to the
canonical frame we can write

e E(0) = E()M(t) + F()N(t)

for n x n matrices M and N, that satisfy the Jacobi equations (20)). More explicitly we have the
system

Naipj = Nai-1,b5 ifi#1
Nai,pj = Ma1,p;

Maip; = —R()ai,cnNenvy — Maiv1,pj i i 7# na
Mana,bj = _R(t)ana,cthh,bj-

Moreover M (0) = Id and N(0) = 0. It follows that

<(7T o etﬁ)* u,E(O)>‘)\ = e9®) det N (t).

In what follows we compute the Taylor expansion of the matrix N (¢) in 0.
Let us first discuss the proof in the case of a Young diagram made of a single row. In this case,
for simplicity, we will omit the index a in the notation for NV and M. Fix integers 1 < 1,5 < n.

(38)
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The coefficients N;; can be computed by integrating M;;. So let us find the asymptotic expansion
of My;. Notice that

M;;(0) = 645

Mij = —RipNpj — Maj(1 — 61,)

My; = —RipNpj — Z R1nNp—1j — R11Myj + (1 — 61p) (RenNnj + M3 (1 — d2,,))
h#1
In these equations the only non-vanishing component at ¢ = 0 is M;;(0) = 1, that can be obtained
only by differentiating terms M;; with ¢ < j. Thus, in the expansion of Mj;(¢), the element Mj;
appears first at (j—1)-th derivative. Next, it appears, multiplied by R11(0), at (j+1)-th derivative.
We can conclude that the asymptotics of My; at £t =0 is
71 I+t

m — (71)j71R11(0)m + O(thrl).

Since My is the i-th derivative of NV;; and N(0) = 0, we have also the expansion for N:

My(t) = (-1)7

i - firitl
N"tzilj_%iilj_R 07
() =(=1) (i+75—1)! (=1) 11(>(z+]+1)!
Let us now consider a general distribution of dimension k£ > 1. Now we have to study the whole
system in (38). Fix indeces ai,bj € D. Again, to find Ny, 3; it’s enough to determine the expansion
of Ma1,;, by integration. To compute the latter, notice that
Ma1.65(0) = dap01;

Maibj = —Ra1,enNen b — Ma2,pi(1 — 61n,)

Mﬁ?bj = _Ral,cthh,bj - Z Ral,cthh—l,bj - Ral,clMcl,bj
h#1
+ (1 - 5171,1) (RaQ,cthh,bj + ]\4a3,bj(1 - 52na))

When a # b, the argument is similar to the one discussed above when k& = 1 (in this case ev-
ery derivative generates also terms like M,y o5, but these terms, when ¢ # a, need higher order
derivatives to generate non vanishing terms). One obtains:

ti—1 ti+1

m — (_1)j_1Ra1,a1m + O(tj+1)a

ti-i—j—l

+ ot T).

May,a5(t) = (1)1

- - fitit1
Ngiai(lt) = (=17 ——— — (-1))7'R —_—

az,a]( ) ( ) (’L +j — 1)! ( ) al,al (Z Jrj i 1)!
On the other hand, if a # b, then the first term different from zero of M,; ; appears at j 4+ 1-th
derivative, multiplied by Rq151, Therefore the Taylor expansions of M, ;; and of a generic element
of the matrix N can be derived as

+ ot T,

ti—1 ti+1

Moy i (1) = 0ap(—1)7 s — (= 1)7 7 Ry 1 (0) o + 0771,
Nai,bj(t) = Nai,bjti-"_j_l _ Gai,bjti-‘rj-‘rl + O(ti+j+1).
where the constant matrices N and G are defined by
N = Oab 1 Ra1,01(0)
Naipj = (1)) ' ——"—=, Gy = (-1 —=—
o= (=) (i+j—1) bi = (1) Y

To find the asymptotics of the left hand side of (B7), we need only to determine the asymp-
totic of det N(¢t). Let I i be a n-dimensional diagonal matrix, whose jj-th element is equal

to \/521-71, for k;—1 < j < k;i. Then the Taylor expansion of N can be written as N(t) =
I (N —t2G + O(tg)) I j; and its determinant is
det N(t) = det N ¢V (1 —tr (N*G) 2 4 0(t2)) ,

where N' = NM()\) is the geodesic dimension given in Definition 371 The main coefficient is com-
puted in the following lemma, whose proof is contained in Appendix [Al
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Lemma 8.3. The determinat of]v s given by

k a_l s
H? o J- !
T12na—1 .
a=1 H] Na '
Since the matrix N is block-wise diagonal, to find the trace of NG we just need the elements

of G with a = b. Thanks to (23)), that relates the curvature operator R with the elements of the
matrix Rqq 1, we have

Cy = detj\vf

Nq

4n2 —1

a

7?faa =3 Ral,al(o)-

Moreover we have the following identity

k n i
~ N~ —1)i-t
tr (N G) = Z Z [N]ai’ajm Ra1,41(0).

a=1 \i,j=1

The proof of the statement is then reduced to the following lemma, whose proof is postponed in
Appendix Bl

Lemma 8.4. Let N and G be nxn matrices, whose elements are Nij = % and Gu = %
Then

(39) tr (ﬁ*lé) 1l

24n2 —1°

APPENDIX A. PROOF OF LEMMA R3]

We compute the value of the leading constant C'y := det N. Recall that N is a block matrix,
whose only non vanishing blocks are the diagonal ones. Moreover, every aa-block of the diagonal
is the matrix N of dimension ng. Thus, to find the determinant of N , it is sufficient to evaluate
the determinant of the generic matrix N of dimension n defined by

g, o
Y i+ - 1)
The matrix N has already been studied in [4], Section 7.3 and Appendix G, and its inverse can

be expressed as a product of two matrices ]Vgl = (§—1E—1) ~, where
ij

~ (=) S s
i =y T

St= w%l<nl+_211) (njill)(n—@(;—'():—ﬁ

Therefore the inverse of N is

N - (—1)k—d n+i—1\/n+k—1 (n})?
(40) Nij Z(i+k—1)(k—j)!< i—1 >< k—1 )(n—z’)!(n—k)!'

k=j

By Cramer’s rule one obtains

0
1 (-1 ZﬂdetN
7 det N’

where ]V 9 is the matrix of dimension n — 1 obtained from N by removing the j-th row and the i-th
column. Applylng ) for i = j = n we reduce the computation of the determmant of the matrix

(41)

N of dimension n as the product of the (n,n)-entry of the matrix N—! and the the determinant
of the matrix N of dimension n — 1, namely we get the recursive formula:

~ det ]/\}(n—l) . = (TL — 1)'2
N (2n —2)!(2n — 1)V
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where the last equality follows from equation ([@0). Using that, for n = 1, the determinant is equal
to 1, we obtain the general formula

det ]/\7(”) =1 : .
szn J!
The value of the constant C) is then obtained as the product
k k Hna71 3
_ N Alj—0 J°
C)‘ - H det N(na) - H TT2ne—1 .y '
a=1 a=1 Jj=ng

This concludes the proof of Lemma
APPENDIX B. PROOF OF LEMMA [R4]
In this appendix we compute the trace of N _1@, for the matrices N and G defined by:
N o B o
Y i -1 Y i+l
The trace in (39) is computed as follows

~_ 1A ~_ 1A
tr (N G) = E Nij Gji-
i,j=1

Using the formula (@) for the expression of N;;!, our goal is to prove

z]’

" n+i—1\(n+k—-1 (n!)? (-t 1 n
ZZZ z+k—1 ])( i—1 )( E—1 )(ni)!(nk)!(i+j+1)!_§4n21'

=1 j=1k=j

It is immediate to check that for n = 1 the previous identity is true. Then in what follows we
assume that n > 2. R R

Notice that for i = 1,...,n—2, we have Gj; = Nj(;;2) therefore this sum reduces to the sum of
the components with i =n — 1 and ¢ = n:

n n—2 n n n
S 1A ~_ 15 ~_ 15
D NG'Gu =) Y NG G+ >0 Y NG
i,j=1 =1 j=1 1=n—1j5=1
n—2 n n

I
]
]
s2>
=
’_:E
T
N
tﬂ:
&

=1 j=1 1=n—1j5=1
n—2 n n
_ ~_ 1A
= § 6z(z+2) + E E Nz] G]Z
i=1 i=n—1j=1
n n
_ ~_ A
- § § Nij Ggu
1=n—1j5=1

where 0;; is the Kronecker symbol. In particular, our initial claim (B9) will follow by summing the
next two combinatiorial identities, valid for n > 2:

1)k—itn 2n—2\ (n+k—1 (n!)? . on—1
(42) ZZ n+k72 )( 2)( k—1 )(nk)!(n+j)!__4(2n1)’

Jj=1k=
Ye—itntl 2n—1\(n+k—-1 (n!)? _ on+1
(43) ]Zlkzj n—l—k—l (k=) (n—l)( kE—1 >(n—kz)!(n+j+1)!4(2n+1)'

Before proving the two identities, let us first simplify them. Using the binomial identity for n > 2
and 1 <j<k<n

(e e = o) G )
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one gets that ([@2) is equivalent to
ZZ n+k+] 271 n+k n+k/’_1 o 1
i n+k—2 n+k/\n+j k—1 2

Lemma B.1. For k,n > 1, one has the following combinatorial identity

zk:(*l)j n+k\  (n+k-1
n+ij) k-1 )
Proof of Lemmal[Bl. Tt follows from
k

;(_w <Zi’;> = (-1)" :lii(_nj (n ;L k>

S (T - =01,

where in the first identity we used a change of variable j — 7 + n in the sum, while in the second
one we used the general identity 0 = (—1 + 1)V = Z;V:O(fl)j (]j) The last equality follows from

the identity
= (n+k nfn+k—1
S (" = (TR,
i=0 J
that can be easily proved for every fixed k, by induction on n > 1. O

Using Lemma Bl we have

ZZ n+k+] TL+]€ TL+I€*1 -

o o n+k—2 n+k n-+j k-1 B
_zn: zk: nJrk 1)ntk 2n n+k—1
_k:1 = n+] n+k—2 nJrk k—1

77” (-1 ”"'k n+k—1
N 1n+k—2 k: k-1 '

Thus we have finally proved that equation [@2]) is equivalent to

i(q)wk on \ (n+k-1\* 1
k:1n+k_2 n—k E—1 2

Performing analogous transformations, one proves that ([@3)) is equivalent to

é (n+/(<:)(1737i:2 —1) <2:—+k:1> <Ztl1€)2 B %

The proof is then completed thanks to the next lemma.

Lemma B.2. Forn > 2, one has the following combinatorial identities

S () (Y
(45) g:l (n+ /E;)(lrffz —1) <2:_+/<;1> <Z ! lf)z N %

Proof of Lemmal[B2 Let us first prove (@4]). Denote by

B 1= (—D)m™tF 2n \ (n+k—1)\°
b k—2\n—k k-1 )
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the coefficient appearing in the sum (@), we want to prove > ;_; Brn = % To this aim, we apply
Lemma B3] to two different matrices.
Let us first consider the Hilbert matrix Hy := [lﬂ%l} . It is a matrix of type {@8), with a; := i

ij
and bj := —j + 1. We compute the coefficients of the (n — 1)-th row of H; :

U — [l(n+2-k)(G+k-1)
1 Jn—1,j _”+2_jnk¢j(j_k/’)Hz;ﬁn,l(—n—i-Q—i—l—1)
~ n(n—1)? L (=1)nHiHLop ntj—1\2
v s 0+ e () ()
~_ n(n—1)> _
**5@;j5%n+JH%n

Then consider Hy := {ﬁ}, with a; =i for ¢ < n and a, = —n, while b; = —j + 1. We compute

the coefficients of the (n — 1)-th row of H; !. For j < n we have

- — L Tgnnt2- Bt 24 LG +E-D)
2N 2 = Ty G = 8) (0 DTl (- +2+1—1)
U N ) S A VUE AR
(47) - 2(2n—1) (n=1) ”+j2(”j)( g1 )
a1y
= —m (n—]) /B],n)

while for j = n we get

1 [Lizn(-n+2=k)(—n+24+n)[[,(-n+k—-1) n2(n-1)

HyYyin= : = .
(Hy o, -n+2+n Hk;ﬁn(_n_k) (n+J)Hl;ﬁn—1(_n+2+l_1) 2(2n —1)
Setting
aq = Z(Hl_l)nij, Qg = Z(HQ_I)H*LJ'
j=1 Jj=1

and summing over j the identities ([@6]) and ([@1) one gets

- 1 [2(2n—1 2(2n — 1 n*(n —1
o L[, A (o)

— 2n [n(n—1) n(n —1) 2(2n —1)

Now the proof of equation ([#4]) is completed once we use formula (@) to find the values

(2n —2)! 2(2n — 3)!

e A L

Equation (@3]) can be proved along the same lines. More precisely, define

- (—1)ntk 2n 41\ (n+ k\?
e k)t k—D\n—k ) \k—1
as the coefficients appearing in the sum ([@H), and consider the Hilbert matrix H;, and the matrix
Hj obtained by a; = j if j <n and a, = —n — 1, and b; = —j + 1. Then by Lemma [B.3|

n(n+1)?

H{ Y., = 1) i
( 1 )J (TL+]+ )2(271-1-1)7]1

Moreover, for j < n
_ , n(n+1)>2
HiYi=—j) —————~. 1,
( 3 ) 5J (7’L j) (2n+1)(2n—1)%’
while for j =n
n(n + 1)

(Hy Do = 2 —1)
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One can also compute

n

m= 3 (Hi Yy = % m =D (Hs = %

j=1
Then the sum in (@3] is given by

i%n_ 1 [2(2n+1) +(2n+1)(2n—1) (n3+n(n+1)2)]:1

T2+l [nnt12 " n(n + 1)2 2(2n — 1)
that completes the proof of the lemma. O
The following lemma concerns the inverse of the generalized Hilbert matrix.

Lemma B.3 (see [19]). Let a1,...,an,b1,...,b, be 2n distinct reals and define the n X n matriz
1

ai—bj'

(48) Hij =

Then we have
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