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Abstract

Jacobi curves are far going generalizations of the spaces of “Jacobi fields” along Rieman-
nian geodesics. Actually, Jacobi curves are curves in the Lagrange Grassmannians. In our
paper we develop differential geometry of these curves which provides basic feedback or gauge
invariants for a wide class of smooth control systems and geometric structures. Two principal
invariants are: the generalized Ricci curvature, which is an invariant of the parametrized curve
in the Lagrange Grassmannian providing the curve with a natural projective structure, and a
fundamental form, which is a degree 4 differential on the curve. The so-called rank 1 curves
are studied in greater detail. Jacobi curves of this class are associated to systems with scalar
controls and to rank 2 vector distributions.

In the forthcoming second part of the paper we will present the comparison theorems
(i.e., the estimates for the conjugate points in terms of our invariants) for rank 1 curves and

introduce an important class of “flat curves“.
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1 Introduction

Suppose M is a smooth n-dimensional manifold and 7 : T*M — M is the cotangent bundle to
M. Let H be a codimension 1 submanifold in 7" M such that H is transversal to T M, Vq € M;
then H, = H NT; M is a smooth hypersurface in Ty’ M. Let ¢ be the canonical Liouville form on
TyM, on = Aom, A € T"M, and o0 = —dg be the standard symplectic structure on 7" M; then
olg is a corank 1 closed 2-form. The kernels of (o|g)x, A € H are transversal to T, M, q € M;
these kernels form a line distribution in H and define a characteristic 1-foliation C of H. Leaves

of this foliation are characteristic curves of o|g.
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Suppose 7 is a segment of a characteristic curve and O, is a neighborhood of v in H such that
N = 0,/(Clo,) is a well-defined smooth manifold. The quotient manifold N is in fact a symplectic
manifold endowed with a symplectic structure & induced by o|g. Let ¢ : O, — N be the canonical
factorization; then ¢(H, N O,), ¢ € M, are Lagrangian submanifolds in N. Let L(T,N) be the
Lagrangian Grassmannian of the symplectic space T,N, i.e. L(T,N) = {A C TN : A4 = A},
where D“ = {e € TyN : o(e,D) = 0}, VD C T,N. Jacobi curve of the characteristic curve v is
the mapping

A= ¢ (THyy), A€7,
from 7 to L(T),N).

Jacobi curves are curves in the Lagrange Grassmannians. They are invariants of the hy-
persurface H in the cotangent bundle. In particular, any differential invariant of the curves in
the Lagrange Grassmannian by the action of the linear Symplectic Group (i.e., any symplectic
invariant) produces a well-defined function on H.

To make things clear it is not worse to give a coordinate version of the construction of Jacobi
curve. In the neighborhood O, choose coordinates (zo, 1, ... ,Z2,-2) such that the characteristic
curves of o]y are the straight lines parallel to the zy-axis (here we do not care about the fact that
H come from the linear fiber bundle T* M, we forget about the linear structure of the fibers). In
these coordinates the sets Hy(y) are some (n — 1)-dimensional submanifolds of R?"=! For any
A € v take projection (parallel to zg-axis) of the spaces Th\H(y) to the hyperplane {zy = c} for
some c. Then we obtain a curve of (n—1)-dimensional subspaces in the (2n—2)-dimensional linear
space. The restriction of the form o to {zy = ¢} provides this space with symplectic structure
and the obtained curve is a curve of Lagrangian subspaces w.r.t. this structure. This curve is
exactly the Jacobi curve.

Set W = T, N and note that the tangent space Th L(W) to the Lagrangian Grassmannian at the
point A can be naturally identified with the space of quadratic forms on the linear space A C W.
Namely, take a curve A(t) € L(W) with A(0) = A. Given some vector [ € A, take a curve [(-) in
W such that [(t) € A(t) for all ¢ and [(0) = I. Define the quadratic form gy((l) = %6(%[(0),0.
Using the fact that the spaces A(t) are Lagrangian, i.e. A(t)¢ = A(t), it is easy to see that the
form g, (.)(/) depends only on %A(O). So, we have the map from T\ L(W) to the space of quadratic
forms on A. A simple counting of dimension shows that this mapping is a bijection. Below we
use the just described identification of tangent vectors to L(W) with quadratic forms without a

special mentioning.

Proposition 1 Tangent vectors to the Jacobi curve Jy at a point Jy(X), X € 7, are equiva-



lent (under linear substitutions of variables in the correspondent quadratic forms) to the “second

fundamental form” of the hypersurface Hy(yy C T;(A)M at the point A.

Sketch of proof. In our local study we may assume without lack of generality that H is a regular
level set of a smooth function A on T*M. Then v is a trajectory of the Hamiltonian vector field
h defined by the identity |0 = dh. Let ¢ — ~(¢) be a parametrization of v defined by the
Hamiltonian system %fy = h(7), 7(0) = A. Given [ € ¢, (T\Hpr(y)), take a vector field £ on H such

that £(y(t)) € Ty H )» $«£(A) = [. Simple calculations show that %d)*ﬁ(fy(t)) = ¢.[h, O (v(t)).
Hence
d _,d -
gy li=0(D) = 0 (2 Ly (2))i=0,1) = o ([h, ] (A), £(A))-
Now we rewrite the last formula in coordinates. Let ¢ = (¢', ... ,¢") be local coordinates in M and
n ) n )
p = (p1,-.. ,pn) be induced coordinates in the fiber of 7% M so that ¢ = > pidq*, o = > dp; Adq".
i=1 i=1
Then h = ; (%% - %%) = z G2 1= ((*(A),... ,£"(A)). We have
- 0%h
a([h, £](A),€(N) = " L.
([, 21(A), £(N)) o2

Quadratic form [ — l* l is exactly the “second fundamental form” of the hypersurface Hy(y) =
h=1(h(X) DTy M in Tm)M. O

In particular, the velocity of J, at X is a sign-definite quadratic form if and only if the

hypersurface Hy () is strongly convex at A.

A similar construction can be done for a submanifold of codimension 2 in T*M. Namely,
let H be a transversal to fibers codimension 2 submanifold in 7*M. In general, characteristic
curves do not fill the whole submanifold H; they are concentrated in the characteristic variety
consisting of the points, where o|p is degenerate. In our local study we may always assume that
H is orientable and let  be a volume form on M. Then A" ' o|g = af2, where a is a smooth

function on H. We set

CH—{AEH CI, d)\a/\ U|)\|H7&0}

Assume that Cyp # 0. Then Cg is a codimension 1 submanifold of H and o|¢, is a 2-form
of corank 1 on Cp. Indeed, VA € Cpy, keroy|g is a 2-dimensional subspace in T\ H, which is
transversal to T)Cp, and we have ker o) |c, = keroy|g NThChq.

The characteristic curves of o|¢,, form a 1-foliation C of Cp. Let v be a segment of a char-
acteristic curve and O, be a neighborhood of 7 in H such that N = O,/(C|o,) is a well-defined

smooth manifold. The quotient manifold IV is a symplectic manifold endowed with a symplectic



structure ¢ induced by o|c,. Let ¢ : O, — N be the canonical factorization. It is easy to check
that ¢, ((TAHW()\) +keroy|g) N T)\CH) is a Lagrangian subspace of the symplectic space Ty(y) N,

VA € O,. Jacobi curve of the characteristic curve vy is the mapping
A'—)QS*((T/\HW()\) -I—keI‘U/\|H)ﬂT)\CH), A€,
from 7 to L(T),N).
We are mainly interested in submanifolds that are dual objects to smooth control systems.
Here we call a smooth control system any submanifold V' C T'M, transversal to fibers. Let
Vo =V NT,M; The “dual” normal variety H'" and abnormal variety H° are defined as follows:

H = J{ eT;M:3veV, (\v) =1, (\T,V,) =0},
qEM

H = [ J{AeT;M\0: 3w eV, (\v)=(\T,V,) =0}
qeEM

These varieties are not, in general, smooth manifolds; they may have singularities, which we do
not discuss here. Anyway, one can obtain a lot of information on the original system just studying
smooth parts of H', H.

One of the varieties H', H? can be empty. In particular, if V, = 0W,, where W, is a convex
set and 0 € intW,, then H 0 — (). Moreover, in this case the Liouville form never vanishes on the
tangent lines to the characteristic curves of 0|1, and any characteristic curve y has a canonical
parametrization by the rule (¢,¥) = 1. If subsets V;, C T, M are conical, aV; = V;, Va > 0, then,
in contrast to the previous case, H' = () and ¢ vanishes on the tangent lines to the characteristic
curves of o|go. The characteristic curves are actually unparametrized.

Characteristic curves of o|y1 (o]go) are associated with normal (abnormal) extremals of the
control system V. In [1,2] Jacobi curves of extremals were defined in purely variational way in
terms of the original control system and in a very general setting (singularities included), see also
[6]. The introduced here Jacobi curves of characteristic curves of o|z1 (o|go) coincide with Jacobi
curves of the extremals, associated with these characteristic curves, in the following important

cases:

1. If H! has codimension 1 in T*M. It occurs, for example, if subsets Vy are compact Vq € M;

2. If H° has codimension 1 in 7% M, but H' = . It occurs, for example, if for any g subset Vy

is conical but does not contain a 2-dimensional linear space;

3. If H' has codimension 2. It occurs, for example, if for any ¢ subset Vy is affine line in T, M,

not containing the origin;



4. HY has codimension 2. It occurs, for example , if V, are 2-dimensional linear spaces, i.e.,
subsets V; define rank 2 vector distribution on M, or if V;, = D, N OW,, where D, is

2-dimensional linear space and W, is a convex set such that 0 € intW,.

Jacobi curves associated with extremals of given control system are not arbitrary curves of
Lagrangian Grassmannian but they inherit special features of the control system. The rank of the
“second fundamental form” of the submanifolds qu and Hg of Ty M at any point is no greater
than dimV;. Indeed, let A € H,}; then A € (T,V,)*t, (\,v) = 1, for some v € V,. We have
A+ (T, Vy, + Ro)t C Hj. So X belongs to an affine subspace of dimension n — dim V; — 1, which is
contained in H(}. For A € Hg, Jv € T,M such that A € (T,V,)*, (,v) = 0. Then linear subspace
(T,,V; + Ru)t is contained in H, 3. It follows that the second fundamental forms of Hl} and H, g
have rank no greater than (dim V, — codim H' + 1) and (dim V, — codim H° 4 1) correspondently.

In the cases 1 and 2 the velocity of the Jacobi curve A — J, (X)), A € v, associated with the
extremal 7, has rank no greater than dim V) (see Prop. 1). The same is true for the Jacobi
curves of the extremals in the cases 3 and 4, although Prop. 1 cannot be directly applied.

Dimension of V, is the number of inputs or control parameters in the control system. Less
inputs means more “nonholonomic constraints” on the system. It happens that the rank of
velocity of any Jacobi curve generated by the system never exceeds the number of inputs.

Note that by construction these Jacobi curves are feedback invariants of the control system
(i.e., they do not depend on a parametrization of the sets V;). Hence any symplectic invariants
of the Jacobi curves, associated with extremals, defines a function on appropriate submanifold
of T*M that is a feedback invariant of the control system. In this way the problem of finding
feedback invariants of control systems can be reduced to the much more treatable problem of
finding symplectic invariants of certain curves in the Lagrange Grassmannian.

A curve in the Lagrange Grassmannian is called regular, if its velocity at any point is a non-
degenerated quadratic forms. Regular curves were studied in [1], where notions of the derivative
curve and the curvature operator were introduced. Actually the derivative curves of Jacobi curves,
associated with the hypersurface H, provide a canonical connection on the cotangent bundle. If
H is a spherical bundle of a Riemannian manifold, then this connection is just the Levi-Civita
connection. The curvature operator of the Jacobi curve is intimately related to the curvature
tensor of the canonical connection.

In the present paper we develop general theory of curves in the Lagrangian Grassmannian.
The first steps in this direction were made in [3]. It makes sense to restrict ourselves to studying
so-called monotonic (i.e, nondecreasing or nonincreasing) curves. The curve in Lagrangian Grass-

mannian is called nondecreasing (nonincreasing), if the velocity at any its point is nonpositive



(correspondingly, nonnegative) quadratic form. Jacobi curve associated with the extremal of finite
Morse index is automatically monotonic.

This paper is organized as follows. In section 2 we give the general construction of the
derivative curve and introduce two principal discrete characteristic of the curves in the Lagrange
Grassmannian: the rank and the weight. In particular, regular curves have maximal rank and
minimal weight. Derivative curve is defined for any curve of the finite weight. In section 3 we
define the curvature operator and show its role for the regular curves.

In section 4 we study the cross-ratio of four points and an infinitesimal cross-ratio of two
tangent vectors at two distinct points in the Lagrange Grassmannian. The last one leads to an
intrinsic pairing Vo, Vi — (Vy | V1), Vi € Ta,L(W), i = 0, 1, of the tangent spaces to two distinct
points Ag, A; of the Grassmannian. The pairing (A(t) | A(7)) of the velocities of the curve
t — A(t) gives a symmetric function of two variables which keeps all essential information about
the curve. This function is defined out of the diagonal {¢t = 7} and has a very simple singularity

at the diagonal:

—ﬁ =g, (t,7),

(A) | Alr)) =
where £ is the weight of the curve and g, (¢, 7) is a smooth function!
The first coming invariant of the parametrized curve, the generalized Ricci curvature, is just
g, (t,t), the value of g, at the diagonal. For regular curves and for rank 1 curves Ricci curvature
is equal also to the trace of the defined earlier curvature operator.
In section 5 we are focused on unparametrized curves. Our investigation is based on a simple

chain rule for a function g,. Indeed, let ¢ : R — R be a smooth monotonic function. It follows

directly from definition of g, that

s 1.7) = L0010, (o0 ) + 1 (O L)

In particular,
. k
Grop (1) = 9() 29, (0(2), (1)) + 35(9),

where S(y) is a Schwarzian derivative of ¢. The class of local parametrizations that kill the
generalized Ricci curvature defines a canonical projective structure on the curve. The princi-
pal invariant of the unparametrized curve, the fundamental form, is a degree four differential

on the curve; in the canonical projective parameter the fundamental form has the expression

82
LS00 (8, ) (dt)™.

In section 6 we start a systematic study of the rank 1 curves and show that a rank 1 curve

has a constant weight out of a discrete set of its interval of definition. In section 7 we prove that
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0%g,
or2

and a constant weight curve A(-) in the Lagrange Grassmannian L(R?™).

functions (t,t), 0 < i <m —1 form a complete system of symplectic invariants of a rank 1

The Lagrange Grassmannian L(R?™) is a submanifold of the manifold G(m,2m) of all m-
dimensional subspaces of R?™. The constructions of the derivative curve, the function g, , the
canonical projective structure, and the fundamental form can be done in the same way for general

curves in G(m,2m).

2 Derivative Curve

From now on W will be the 2m-dimensional linear space provided with the symplectic form
o. Let A be a Lagrangian subspace of W, i.e. A € L(W). For any w € A, the linear form
o(-,w) vanishes on A and thus defines a linear form on W/A. The nondegeneracy of ¢ implies
that the relation w — o (-, w), w € A, induces a canonical isomorphism A = (W/A)* and, by the
conjugation, A* = W/A.

We set A" = {I' € L(W) : TN A = 0}, an open everywhere dense subset of L(W). Let
Sym?(A) be the space of self-adjoint linear mappings from A* to A; this notation reflects the
fact that Sym?(A) is the space of quadratic forms on A* that is the symmetric square of A. A™
possesses a canonical structure of an affine space over the linear space Sym?(A) = Sym?((W/A)*).
Indeed, for any A € A™ and coset (w + A) € W/A, the intersection A N (w + A) of the linear
subspace A and the affine subspace w4+ A in W consists of exactly one point. To a pair I', A € A™
there corresponds a mapping (I' — A) : W/A — A, where

C—-A)w+A)ZTnw+A) —An(w+A).

It is easy to check that the identification W/A = A* makes (I' — A) a self-adjoint mapping from
A* to A. Moreover, given A € A", the correspondence I' — (I' — A) is a one-to-one mapping of
A™ onto Sym?(A) and the axioms of the affine space are obviously satisfied.

Fixing A € A™ one obtains a canonical identification A = W/A = A*. In particular, ([ —A) €
Sym?(A) turns into the mapping from A to A. For the last linear mapping we will use the notation
(A,T',A) : A — A. In fact, this mapping has a much more straightforward description. Namely,
the relations W = A@ A, I'N A = 0, imply that " is the graph of a linear mapping from A to
A. Actually, it is the graph of the mapping (A,I';A). In particular, ker(A,I';A) = ANT. If
ANT =0, then (A,T,A) = (A, T,A)~L.

Let us give coordinate representations of the introduced objects. We may assume that

W=R"®R" ={(z,y) : 2,y € R™},



6(($1uy1)7 (x2ay2)) = <$17y2> - <$27y1>a A=R"® Oa A=0@R".

Then any I' € A™ takes the form I' = {(z, Sz) : z € R*}, where S is a symmetric m x m matrix.
The operator (A,I';A) : A — A is represented by the matrix S, while the operator (A, I'; A) is
represented by the matrix S~

The coordinates in A induce the identification of Sym?A with the space of symmetric m x m
matrices. A™ is an affine subspace over Sym?A; we fix A as the origin in this affine subspace and
thus obtain a coordinatization of A" by symmetric m X m matrices. In particular, the “point”
I'={(z,Sz): 2z € R"} in A" is represented by the matrix S~'.

A subspace I'g = {(z,Spx) : x € R} is transversal to ' if and only if det(S — Sp) # 0. Let
us pick coordinates {z} in Iy and fix A as the origin in the affine space T'J. In the induced
coordinatization of Fg‘ the “point” I is represented by the matrix (S — Sp) ™.

Let t — A(t) be a smooth curve in L(WW) defined on some interval I C R. We say that the
curve A(-) is ample at 7 if 3s > 0 such that for any representative A%(-) of the s-jet of A(-) at 7,
3t such that A2(¢t) N A(7) = 0. The curve A(-) is called ample if it is ample at any point.

We have given an intrinsic definition of an ample curve. In coordinates it takes the following
form: the curve ¢t — {(z,Siz) : x € R"} is ample at 7 if and only if the function ¢t — det(S; — S;)
has a root of finite order at 7.

The following lemma shows that analytic monotonic curve (monotonic means that the curve

has nonnegative or nonpositive velocities at any point) can be actually reduced to the ample curve

by an appropriate factorization.

Lemma 2.1 Let A(t) be analytic monotonic curve in L(W'). Then for any parameter T there

exists a subspace K of A(T) such that for all t sufficiently closed to T the following holds
K = A(t) N A(7). (2.1)

In addition, if A(t) is not a constant curve, then the curve t — A(t)/K is a well defined ample

curve in the Lagrange Grassmannian L(K</K).

Proof. Without loss of generality suppose that the curve A(¢) is nondecreasing (i.e., has
nonnegative definite velocity at any point). Denote K; = A(t)NA(7). Let t — {(z,Siz) : z € R*}
be coordinate representation of the germ of A(¢) at 7. Then K; = Ker(S; — S;). By assumption
v = (%Stv,v) is nonnegative definite quadratic form on A(7). It implies that K;, C K;, for
t < t1 < tg. Therefore for ¢ > 7 sufficiently closed to 7 the subspace K; does not depend on ¢ and
will be denoted by K. By analyticity the subspaces K C A(t) for any ¢ and the curve ¢t — A(t)/K

is well defined ample curve in the Lagrange Grassmannian L(K</K). O.



Assume that A(-) is ample at 7. Then A(t) € A(7)™ for all ¢ from a punctured neighborhood
of 7. We obtain the curve ¢ — A(t) € A(7)™ in the affine space A(7)™ with the pole at 7. We
denote by A, (t) the identical imbedding of A(¢) in the affine space A(7)™. The subscript 7 is
not superfluous, since the affine structure depends on A(7) and then on 7. Fixing an “origin” in
A(1)™ we make A, (t) a vector function with values in Sym?(A) and with the pole at ¢t = 7. Such
a vector function admits the expansion in the Laurent series at 7. Obviously, only free term in
the Laurent expansion depends on the choice of the “origin” we did to identify the affine space
with the linear one. More precisely, the addition of a vector to the “origin” results in the addition
of the same vector to the free term in the Laurent expansion. In other words, for the Laurent
expansion of a curve in an affine space, the free term of the expansion is a point of this affine

space while all other terms are elements of the corresponding linear space. In particular,

A (t) ) + Z Qi(7)(t — ) (2.2)
i=—1
i£0
where A%(7) € A(T)M, Q;i(7) € Sym?A(7).

Assume that the curve A(:) is ample. Then A°(7) € A(7)™ is defined for all 7. The curve
7+ A%(7) is called the derivative curve of A(-).

Another characterization of A°(7) can be done in terms of the curves ¢ — (A, A(t), A(7)) in
the linear space Hom(A, A(7)), A € A(7)™. These curves have poles at 7. The Laurent expansion
at t = 7 of the vector function ¢ — (A, A(t), A(T)) has zero free term if and only if A = A%(7).

The coordinate version of the series (2.2) is the Laurent expansion of the matrix-valued func-
tion ¢~ (S; — S;) ! at t = 7, where A(t) = {(z,Siz) : € R"}.

Suppose that

(S, ZA )(t — 1)t (2.3)

i=—1

Differentiating both sides of (2.3) w.r.t 7 and comparing coefficients of the corresponding expan-

sions one can get the following recursive type formula for the coefficients A;(7)

d . i+l
T Ai(T) = (14 DA (7 ZzA 7)Sr A (1) (2.4)
=

that will be used in the sequel.

For monotonic ample curve A : I C R+ L(W) we introduce the following two notions



Definition 1 The rank of the velocity A(7) will be called a rank of the curve A(-) at 7. The
order of zero of the function t — det(Sy — S;) at T, where S; is a coordinate representation of

A(:), is called a weight of A(-) at T.

It is easy to see that the rank and the weight of A(7) are integral valued upper semicontinuous
functions of 7. In particular, they are locally constant on the open dense subset of the interval of
definition I. In the sequel we will be mostly concentrated on the monotonic ample curves of the

constant rank and weight.

3 Curvature operator and regular curves.

Using derivative curve one can construct an operator invariant of the curve A(¢) at any its
point. Namely, take velocities A(t) and A°() of A(t) and its derivative curve A°(¢). Note that
A(t) is linear operator from A(t) to A(t)* and A°(t) is linear operator from A°(t) to A%(¢)*. Since
the form o defines the canonical isomorphism between A°(t) and A(¢)*, the following operator

R(t) : A(t) — A(t) can be defined:
R(t) = —A%(t) o A(t) (3.1)
This operator is called curvature operator of A at t.

Remark 1 In the case of Riemannian geometry the operator R(t) is similar to the so-called
Ricci operator v — RY (%(t),v)(t), which appears in the classical Jacobi equation Vi ViV +
RY (%(t),V)¥(t) = 0 for Jacobi vector fields V along the geodesic y(t) (here RY is curvature tensor
of Levi-Civita connection V), see [1]. This is the reason for the sign “—7 in (3.1).

The curvature operator plays an important role for so-called regular curves. The curve A(t)
in Lagrangian Grassmannian is called regular, if the quadratic form A(t) is nondegenerated for
all t. If the curve A(-) is regular and has a coordinate representation A(t) = {(z,Siz) : z € R*}
then the function ¢ — (S; — S,)~! has a simple pole at 7. Indeed,

(5= 5" = (5t - )+ 0t -)) = S7! (1+o-n)" = tST_l Lo (32)

Ct—T -7

So, in the notation of (2.3) for the regular curve we have | = 1, A_; = S-! and relation (2.4) can

be transformed into the following recursive formula

L4 yr) =5 4,18 Ary (7) (3.3)

A= e

10



In particular,

Aglr) = 3 AL () = 5871887 (3.4)
and, by direct calculations,
A1(7) = 3 (L ay(r) — A8 A0(r) = (5 (578) - £8759) 87 (3.5)
3\dr 1 6

For a given 7 one can choose a coordinate representation S; of the curve A(t) such that
Ag(t) = 0. Namely take S; the matrix of the linear mapping < A(7),A(t),A%(7) >. In this
coordinate representation the derivative Ag(7) is a matrix corresponding to the velocity A%(7) of
the derivative curve. Also, from (3.5) it follows that Ag(7) = 3A4;(7) . This together with (3.1)
implies that the matrix R(7) corresponding in the chosen basis of A(7) to the curvature operator

R(7) has the following form

R(r) = -3 (1)(A (1) = 8718 - 2 (§715,) =
2 (28078) - (280 718,)’ 5

Since Q1(7) o (Q_1(7))~" : A(T) = A(7) is well defined operator, we can write the first equality

of (3.6) in the following operator form

R(7) = Qi1(7) o (Q-1(7)) ™" (3.7)

This implies actually that the formula (3.6) is also true for any coordinate representation Sy of
the curve A(t) (even without the assumption that Ag(7) = 0).

Note that the right-hand side of (3.6) is a matrix analog of so-called Schwarz derivative or

Schwarzian. Let us recall that the differential operator:
1 ©®) 3 70"\ 2 d " "9
scom 42 3LV - 2L - (£, o
2 ¢ 4\ dt \2 ¢’ 2¢/
acting on scalar function ¢ is called Schwarzian. The operator S is characterized by the following

remarkable property: General solution of the equation Sp = p w.r.t ¢ is a Mobius transformation
(with constant coefficients) of some particular solution of this equation. The matrix analog of
this operator has similar property, concerning “matrix Mobius transformation” of the type S —
(C + DS)(A + BS)~!. In particular, if R(t) = 0, then the coordinate representation S; of our
curve has the form
Sy = (C + Dt)(A + Bt)™!

where

A B

€ Sp(2m)
C D

For further information about the regular curves we refer to [1].

11



4 Expansion of the cross-ratio and Ricci curvature.

For the nonregular curve A(t) = {(z, S;z) : * € R"}, the function ¢ — (S; — S;)~! has a pole
of order greater than 1 at 7 and it is much more difficult to compute its Laurent expansion. For
example, in the nonregular case there is no direct recursive formula like (3.3). In this section we
show how to construct numerical invariants for curves with constant weight using the notion of
cross-ratio of four “points” in the Lagrange Grassmannian.

Let Ay, A1, A2, and A3 be Lagrangian subspaces of W such that AN A3 = A; NAs =0. Also
suppose for simplicity that Ag N Ae = 0. The following linear mappings (Ao, A1, Ag) : Ag — Ag,
(Ao, A3, Ap) : Ay — Ap are well defined. The cross-ratio |Ag, A1, Ag, Ag] of four ”points” Ag, A1,

A5, and A3 in the Lagrangian Grassmannian is, by definition, the following linear operator in Ag:
(80, A1, A, As| = (A5, g, Ao) (Ao, A, o). (4.1)

This notion is a “matrix” analog of the classical cross-ratio of four points in the projective

line. Indeed, let A; = {(z, S;x) : € R"}, then, in coordinates {z}, the cross-ratio takes the form:

Ko, Aty A, As|= (S0 = 83)7" (S5 = S2)(S2 = 1)~ (S1 = o) (42)

By construction, all coefficients of the characteristic polynomial of [Ao, A, Ao, Ag] are invariants
of four subspaces Ay, A1, Ay, and As.

The assumption that Ag N Ay = 0 is satisfied in our further considerations but the cross-ratio
can be defined also without this assumption. Indeed, the matrix in the righthand side of (4.2)
is well defined also in the case Ag N As # 0 and this matrix is transformed to a similar matrix
under any change of coordinates. So, we obtain the class of similar matrices that is symplectic
invariant of four subspaces Ag, A1, Ao, and A3. This class can be taken as a definition of cross-ratio
[Ao,Al,AQ,Ag (see [7] for the details).

Given two tangent vectors Vy € T, L(W) and V) € Ty, L(W'), where Ay and A; are transversal
Lagrangian subspaces, one can define an infinitesimal analog of the cross-ratio. Vj is the self-
adjoint linear mapping from Ay to Aj. The form o identifies canonically Aj with A;. Under
this identification V) can be considered as the linear mapping from Ay to A;. In the same way,
identifying A} with Ag, we look on V; as on the operator from A; to Ag. Therefore, the following

operator V1 ® Vj : Ag — Ag can be defined

oo (4.3)
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This operator will be called an infinitesimal cross-ratio of a pair (Vp, V1) € Ta,L(W) x Ty, L(W).
The infinitesimal cross-ratio is symplectic invariant of the tangent vectors Vy and V;.

One can define the following bilinear form (- | -)a,,a, on Ta,L(W) x Ty, L(W):

de
Vo | Vidaon, < tr(Vo @ W) (4.4)

This bilinear form will be called an inner pairing of the tangent spaces Tx,L(W') and Tn, L(W).

If A; = {(z,S;x) : © € R"} and P; are symmetric matrices corresponding to V;, i = 0,1, then
VioVy=(Sy—81) " P (S1 — So) ' Py (4.5)

First note that if the curve A(t) is regular, then for any ¢, it is easy to expand the following

operator function

[Alto), A(t), Alt2), Al

(tla t23 t3) =
|:t07 tla t2a t3j|

(4.6)

(t2—t1)(to—t3)
usual cross-ratio of four numbers %y, t1, to, and ¢3. Namely, the following expansion

in the Taylor expansion at the diagonal point (¢, ¢, tg), where {to, t1,to, t3j| = lizto)lta=to) 4oy

3

3/2
=1+ %R(to)(h —to)(t3 —t1) + O <Z(tz‘ - t0)2> (4.7)

=1

[Alto), Alt1), Alt2), Alts)]

[to, t1, %2, t3]

is valid, where, as before, R(t) is the curvature operator. Relation (4.7) shows that the curvature
operator is the first nontrivial coefficient of the Taylor expansion of the cross-ratio.

Unfortunately, for the nonregular curves there are no simple expansions of the operator func-
tion (4.6) or any other operator functions, involving cross-ratio itself. Instead of this one can try
to expand the coefficients of the characteristic polynomial of the cross-ratio. Now we are going
to show how to use this idea to construct invariants of the curve A(t) of the constant weight & in
L(W).

By the above the function (tg, ¢, t2,t3) — det |A(tg), A(t1), A(t2), A(t3)| is symplectic invari-
ants of the curve A(t). Using this fact, let us try to find symplectic invariants of A(¢) that are

functions of £. First we introduce the following function:

det [A(to), A(t1),At2), A(tg)}
g(t[), tla t27 t3) =In

k
[to, t1,to, t3}
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The function G(tg,t1,t2,t3) is also a symplectic invariant of A(¢) and in addition it can be defined
as a smooth function in a neighborhood of any diagonal point (¢,¢,t,¢) . Indeed, by the definition
of weight

det(Sy, — St,) = (to — t1)* X (to, t1), (4.9)
where
X(t,t) £ 0 (4.10)

for any ¢. The function X (¢, ¢1) is symmetric, since by changing the order in (4.9) we obtain that
X can be symmetric or antisymmetric, but the last case is impossible by (4.10).

Let us define another symmetric function

f(to,t1) = InX (to, t1) (4.11)

The function f(tg, 1) is smooth in a neighborhood of any diagonal point (¢,t) and by (4.2 ),
(4.8)

G(to,t1,to,t3) = f(t1,to) — f(ta,t1) + f(t3,t2) — f(to,t3) (4.12)

Hence G(to,t1,t2,t3) can be defined as a smooth function in a neighborhood of any diagonal
point (¢,t,t,t). Using this fact one can construct the following functions of two variables that are

symplectic invariants of the curve A(t)

h(to,t1) = G(to, t1,t1,t0) = 2f (o, t1) — f(to,to) — f(t1,t1) (4.13)
0?2 0?2
g(to,t1) = §mh(t0at1) = Mf(toatl) (4.14)

On the contrary the function f(t, ;) depends on the choice of the coordinate representation S;.
It follows from (4.13) that h(tp,%p) = 0 and %h(to,to) = 0. Therefore the function h(tp,?;)
can be recovered from g(tp,?1). Moreover, the function G(ty, 1, t2,t3) can be easily recovered from

h(to,t1) ( and therefore from g(ty,¢1)). Namely, by (4.12) and (4.14)
1
G(to, 11,2, 83) = 5 (h(t1,t0) — h(t2,11) + h(ts, t2) — hito, t3)) (4.15)
So, g or h keep all the information on G and thus on det [A(to), A(t1), A(te), A(t3)].
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The function g(tp,?1) can be expanded in the formal Taylor series at the point (¢,¢) in the

following way:

g(to,t1) = Z Bij(t)(to — )" (t1 — t)? (4.16)
t,7=0
with
Bii(t) = Bji(t) (4.17)

Since the function g is symplectic invariant of the curve A(t), all coeflicients f3; ;(t), 7,7 > 0,
are also symplectic invariants.

The following natural questions arises: Does the function g(to,t1) determine the curve A(t)
with prescribed rank and weight uniquely, up to a symplectic transformation, and which set of
the coefficients f; j(t) determine the function g(o,¢1)? We shall give the positive answers on both
of these questions in the section 7 for the curve of rank 1 (see Theorems 1 and 2).

Meanwhile, let us prove the following simple relation between coefficients 3; ;(¢)

Bii(t) = (i+ 1)Bivry + ( + 1B+ (4.18)

Indeed, from (4.16) it follows that

ij(t) = m———(t,1).
() = i
Therefore
1 oititl oititl 1 . ) g
Bii(t) = g (Wg(t,t) + Wg(tat)) = ((Z + D! Biyrj(8) +il (5 + 1)!/3i,j+1(t)>

that implies (4.18).

As a corollary of the relation (4.18) we obtain the following lemma
Lemma 4.1 The coefficients By ok (t), k > 0 determine uniquely the formal expansion (4.16).

Proof. For a given n > 0 let us consider all equations of the type (4.18) with i +j = n and
1 < j. Consider two cases

1) If n is even then we have % +1 independent equations with respect to 5 + 1 variables 3; ;(t),
i+j=n+1,0<14< 3. This fact together with symmetric relation (4.17) implies that all 3; ;(t)
with 4 4+ j = n + 1 can be expressed by derivatives of §; ; with ¢ + j = n.

2) If n is odd then we have ”TH independent equations with respect to ”TH + 1 variables f; ;,

1+7=n+1,0<i< "TH Starting from ¢ = 0 one can express step by step all 8; j, i +7 =n+1,
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1<i< ”TH by Bon+1 and derivatives of f; ; with ¢ + j = n. Then by symmetric relation (4.17)
we have that all coeflicients f3; ;(t) with ¢+ j = n + 1 can be expressed by [ ,+1 and derivatives
of B;; with i + j = n.

So, starting from n = 0 and applying step by step the arguments of 1) and 2), one can
expressed all 3; ;(t) by Bo2k(t), k > 0, and their derivatives. [

It turns out that there is simple connection between function g, the inner pairing defined by

(4.4), and the coeflicients @); of the Laurent expansion (2.2).

Lemma 4.2 The following relations hold

(A [ A(T) ) a@ae) = i g(t,7) (4.19)
tr (Qi(t)A(t)) —0, i< -1, (4.20)

tr (Q_l(t)/\(t)> — k, (4.21)
tr(Qu0A®) = —%ﬂo,i_l(t), icN (4.22)

Proof. Let A, (t) be the identical imbedding of A(t) in the affine space A(1)™ (see section 2).
Then the inner pairing ( A(t) | A(7) )A(t),A(r) can be expressed in the following way

0

(401 40) b = o (e 0 (7)) (4.23)

In the coordinates the previous relation can be written as follows

(A0 1 A ngan =t (7 (50 = 507 ) (429

Let us prove (4.19). By definition
In(det(S; — S;)) = kln(t — 1) + f(¢,7)

Differentiating the last equality w.r.t. 7 and using the fact that % (ln(detY(r))) = tI‘((Y(T))_IY(T)>

for some matrix curve Y (7) we obtain:
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(850 18) = 4 D)

Differentiating the last equality w.r.t. ¢ and using (4.14) we get

0 . P :
~tr(5g (51 =507 81) = =g + gy [ (07) =

This together with (4.24) implies (4.19).
In order to prove (4.20)-(4.22) let us expand both sides of (4.19) in the correspponding formal

series. On one hand by (2.2) we have

o0

tr(%AT(t)oA(T)) ~ Y (z'+1)tr(Qi+1(7)A(7)>(t—7)i (4.25)

1=—[—-1

On the other hand by (4.16)

Zﬁol )(t—7) (4.26)
Comparing coefficients of (4.25) and (4.26) we get (4.20)-(4.22). O

For the regular curve using (3.6) and applying formula (4.22) to the first appearing in (4.16)

coefficient By o(t) we obtain

Boo(t) = étrR(t) _ %trS(St), (4.27)

where S denotes Schwarz operator. The last relation and Remark 1 shows that (8¢ generalizes the
Ricci curvature in the Riemannian geometry. It justifies the following definition for the general

curve of constant rank and weight
Definition 2 The first appearing in (4.16) coefficient Boo(t) is called Ricci curvature of A(t).

In the sequel the Ricci curvature will be denoted by p(t).
At the end of this section we compute the expansion of g(%o,t1) in the case dim W = 2. In this
case L(W) is in fact the real projective line RP! and coordinate representation S; of the curve is

scalar function . Therefore the relation (4.22) can be rewritten in the following form

Boi = —(i+1)Ai11(t)S;,
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where A; are as in (2.3). In particular from (4.27) it follows that

1
p(t) = gS(St)a (4.28)
i.e., in the scalar case the Ricci curvature of the curve A(t) is Schwarzian of its coordinate repre-
sentation.
Denote by

Bi(t) = —%5%—1 = A(7)S: (4.29)

Multiplying both sides of (3.3) by S, and using commutativity of multiplication in the scalar case,

one can easily obtain the following recursive formula for B;(7).

1 d 1—1 .
Bipi(r) = o | -Bilr) = 3 Bj(1)Birj(r) | , i €N (4.30)
j=1

As a consequence of Lemma 4.1 and formulas (4.28)— (4.30) one can obtain the following

Proposition 2 In the scalar case (i.e., dimW = 2) all coefficients B; ;(t) can be expressed by
Ricci curvature (that is Schwarzian of any coordinate representation of the curve A(t)) and its
derivative. The function g(t,7) is identically equal to zero iff coordinate representations of the

curve A(t) are Mdébius transformations.

5 Fundamental form of the unparametrized curve.

The Jacobi curve constructed in the Introduction is actually unparametrized curve, i.e., one-
dimensional submanifolds in Lagrange Grassmannian. Therefore it is natural to find symplec-
tic invariants of unparametrized curves in L(W). Especially it is important for Jacobi curves
of abnormal extremals which (in opposite to the normal extremals) a priori have no special
parametrizations.

First of all we want to show how, using the Ricci curvature, one can define a canonical pro-
jective structure on the unparametrized curve A(-). For this let us check how the Ricci curvature
is transformed by a reparametrization of the curve A(¢).

Let 7 = o(t) be a reparametrization and let A(7) = A(¢~!'(7)). For some coordinate repre-
sentation S; of A(t) let S, = S,-1(r) be the coordinate representation of A(7). Denote by f the
function playing for S, the same role as the function f defined by (4.11) plays for S;. Then from
(4.11) it follows that

f(r0,11) = f(to,t1) — k In (%) ; (5.1)
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where 7; = p(t;), 1 =0, 1.

Now denote by g, 3; ; functions playing for A() the same role as the functions g,3; ; defined
by (4.14) and (4.16) play for A(t).

Note also that we can look on the function ¢(¢) as on the coordinate representation of some
curve in RP! = L(W) with dim W = 2. So, all constructions and formulas of the previous section
can be applied to this case. We denote by g, (to,1) the function defined by (4.11), (4.14) with S;
replaced by ¢(t). Then differentiating both sides of (5.1) once w.r.t. ¢y and twice ¢, we get

7 (p(to), p(t1)) ¢ (to) @' (t1) = g(to, t1) — kgy(to, 1), (5.2)

By (4.16) and (4.28) it follows that the substitution ty = ¢t; = ¢ into (5.2) give us the following

reparametrization rule for Ricci curvature

p(T)(' (1) = p(t) — 5 S(p(t) (5.3)

Now we would like to find all reparametrizations 7 = ¢(t) such that the Ricci curvature p(7)
in the new parameter 7 is identically equal to zero. The reparametrization rule (5.3) implies that

such reparametrization have to satisfy the following differential equation

S (p(t) = 3pT(t) (5.4)

This equation has a solutions at least locally (i.e., in a neighborhood of any given point) and
as was mentioned already in the section 3 any two solution are transformed one to another by
Mébius transformation. In other words the set of all parametrization of A(-) with Ricci curvature
identically equal to zero defines a projective structure on A(-) (any two parametrization from this
set are transformed one to another by Mobius transformation). We call it the canonical projective
structure of the curve A(-). The parameters of the canonical projective structure will be called
projective parameters.

Now we give a construction of a special form on unparametrized curve A(-) (namely, the
differential of degree four on A(-) ), which is the first appearing invariant of the unparametrized
curve. We will call it the fundamental form of the curve A(-).

Let t be a projective parameter on A(-). Then by definition p(¢) = 0, and by (4.18) Bo1(t) =
%5(),0@) = 0 . Therefore by (4.26) we obtain that in projective parameter

g(to,t1) = Bo2(to)(t1 — to)* + O ((t1 — to)?) (5.5)
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ct+d-

Let 7 be another projective parameter on A(:) i.e., 7 = p(t) = Then by Proposition 2

gy (to,t1) = 0. Substituting this to the (5.2) we have

9 ((to), p(t1)) ¢ (to)¢' (1) = g(to, 11), (5.6)

where 7, = p(t;), 2 = 0, 1. Using (5.5), we compare the coefficients of the first terms in the Taylor

expansions of both sides of (5.6). As a result we obtain

Bo2(p(t)) (¢ (to))* = Bo,z(to)

Bo2()(dr)* = Poa(t)(dt)* (5.7)

It means that the form By 2(t)(dt)* does not depend on the choice of the projective parameter
t. We will call this form a fundamental form of the curve A(-) and will denote by A.

If ¢ is an arbitrary (not necessarily projective) parameter on the curve A(-), then the funda-
mental form A in this parameter has to be of the form A(t)(dt)*, where A(t) is a smooth function

(the ”density” of the fundamental form).

Lemma 5.1 For arbitrary parameter t the density A(t) of the fundamental form satisfies the

following relation

AW = Boalt) — ep(t)? — o0 (1) 6

or, equivalently,

1 /0 9\ 1 &
At) = (1—0 <8_to + 8_tl> - 5781508151)9(’50’161)

Proof. Let 7 = ¢(t) be a reparametrization such that 7 be a projective parameter. It means that

©(7) satisfies the equation (5.4). Denote by ,ij (to,t1) the coefficients defined by (4.11), (4.14)

and (4.16) with S; replaced by ¢(t). Using (5.5), compare the coefficients of the first terms in the

(t,t)% (5.9)

to=t1=t B 5_kg

Taylor expansions of both sides of (5.6). As a result we obtain

Bo2(e(t0)) (¢ (t0))* = Boa(to) — kB, (to)

or

A= oa(r)(dr) = (Boa(t) — KBS, (1)) (dt)* (5.10)
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To complete the proof it remains to compute the coefficient Bfi 5(to). For this we will use the
recursive formula (4.30), where B; are defined by (4.29) with ﬂ(‘)’i ; instead of By 2. From (4.30) it

follows that

Ba(t) = 1 B0,

(BY(1) - (Bi(1)?) = =BI(1) — =(By(1)? (5.11)

(S

From (4.28), (4.29), and (5.4) it follows that

Bi(t) = —55o(1) = 38 (p(1)) = -2

Then by (4.30) and (5.11)

3

Bia(t) = =3B3(t) = 205"

() + ot

This together with (5.10) implies (5.8). To obtain (5.9) we just rewrite (5.8), taking into account
the connection between the function g(t,t1) and the functions p(t) (= Bo,0(t)), Bo2(t) given by

expansion (4.16)(the expression (5.9) is just the most symmetric w.r.t. ¢y and ¢;). O

If A(t) does not change sign, then the canonical length element |A(t)|%dt is defined on A(-).
The corresponding parameter 7 (i.e., length with respect to this length element) is called a nor-
mal parameter (in particular, it implies that abnormal extremals may have canonical (normal)
parametrization). Calculating the Ricci curvature p,(7) of A(:) in the normal parameter, we ob-
tain a functional invariant of the unparametrized curve. We will call it projective curvature of the
unparametrized curve A(-). If ¢ = ¢(7) is the transition function between a projective parameter
t and the normal parameter 7, then by (5.4) it follows that p,(7) = %S (o(7)).

At the end of this section we give an explicit formula for the fundamental form of the regular
curve in terms of its curvature operator. First note that by definition the weight & of the regular

curve is equal to 3 dim W (one can also derive it from (3.2) and (4.21)).

Lemma 5.2 The fundamental form A of the regular curve A(t) in the Lagrange Grassmannian

L(W) satisfies the following relation

A= % (tr (R(1)?) - %(trR(t)f) (dt)", (5.12)

where R(t) is the curvature operator of A(t) defined by (3.1) and k = § dim W.
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Proof. Let us compute £ 2(t). We will use the notation of (2.2) and (2.3). By (4.22)

Boa(t) = —3tr (Qs(t)A(t)) = —3tr (A3()S(t)) (5.13)

For a given ¢ choose for simplicity a coordinate representation S; of the curve A(t) such that

Ap(t) = 0. Then by (3.3)

A3(8) = = (Ao(B) = A1 (DSp1 (D)) (5.14)

(S

From (3.4) it follows that the condition Ag(f) = 0 is equivalent to S; = 0. It implies that
Ay (8)S; = %(AQ(t)St)h:t_. Therefore multiplying (5.14) by S; and taking trace from both sides

we obtain

r (4305) = 1 2o (4:087) - 5or ((403)°) (5.15)
Now by (4.22) and (4.18)
it (4:051) = 50, (D) = — (D (5.16)

On the other hand by (3.6) (A4;(¢)S;) = —1R(t). This and (5.16) imply that (5.15) can be

written in the following form

r (A3(0)37) = —550"(0) ~ 17 (R(2)?)

Taking into account (5.14) we obtain by (5.8) that

A®) = o) + gt (RUP) = oopl@) — o9 (0) = 1ot (ROP) - 2 pld)?

Finally, note that p = §trR (see (4.27)). Substituting this to the last relation we obtain
(5.12).0

Note that in the scalar case (i.e., when dim W = 2) the fundamental form A is identically

equal to zero.

Remark 2 All constructions of sections 3 - 5 can be done for the curve in the Grassmannian
G(m,2m) ( the set of all m-dimensional subspaces in the 2m-dimensional linear space) instead of

Lagrangian Grassmannian by the action of the group GL(2m) instead of Symplectic Group.
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6 The rank 1 curves: preliminary steps.

In the present section we start a systematic study of the curves of rank 1 in the Lagrange
Grassmannian L(W) with dim W = m. We consider a rank 1 ample curve A : I — L(W) with a
maybe nonconstant weight, where [ is some interval on the real line. We introduce a canonical
basis on each subspace A(t) and compute some characteristics of the curve, in particular, its
weight at any point. Finally, we show that the curve A has the constant weight equal to m? on
the set with discrete complement in /. All this will prepare us to the next section, where the
curves of rank 1 and constant weight will be investigated.

Without loss of generality, suppose that A(7) is monotonically nondecreasing, i.e., the ve-
locities A(t) are nonnegtive definite quadratic forms. As in section 2, let A, (¢) be the identical
imbedding of A(t) in the affine space A(7)™. The velocity %AT(t) is well defined self-adjoint
linear mapping from A(7)* to A(7), i.e., an element of Sym?2A (7). Moreover, by our assumptions,

%AT(t) is a nonpositive self-adjoint linear mapping of rank 1. So for ¢ # 7 there exists a unique,

up to the sign, vector w(t,7) € A(7) such that for any v € A(7)*

0

(v, EAT(t)v) = —(v, w(t, T))2 (6.1)

Remark 3 From the definition of w(t,T) it follows easily that for given T the germ of the
curve A(t) at t = 7 is defined uniquely by A(7), the derivative subspace A°(7), and the germ of
the function t — w(t,7) at t = 7. Since the Symplectic Group acts transitively on the set of pairs
of transversal Lagrange subspaces, one can conclude that the germ of the curve A(t) at t = 7 is
defined uniquely, up to a symplectic transformation, by the germ of the function t — w(t,7) at

t=r.

The function ¢ — A(t) has a pole at ¢ = 7. It implies easily that the function ¢ — w(t, )
also has a pole at ¢ = 7. Suppose that the order of this pole is equal to (7).
Denote by u(t,7) the normalized curve t — u(t,7) = (t — 7)(Dw(t,7) and define the following

vectors in A(T):

1 ot
e;j(1) = G- Wu(tﬁ) o (6.2)
First note that
span ({e;(7)}521) = A(7) (6.3)
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Otherwise, using the following formula

w(t,7) = Z ei(r)(t —7)"" T O((t = 1))

one can easily obtain the contradiction to the fact that A(¢) is ample.
Thus for a given parameter 7 and integer 4, 1 < 4 < m the following integers k;(7) are well

defined

ki(7) =min{j € NUO : dim (span (ei(7), e2(7),... ,ej+1(7))) =i} (6.4)

Note that
0=Fki (1) <ka(r) < ... <kp(r), ki(t) >i—1 (6.5)
By definition the vectors ey (r)11(7),--. , e, (r)+1(7) constitute the basis of the subspace

A(7). We call this basis a canonical basis of A(7). Since the vector w(t,7) is defined up to
the sign, the vector e1(7) (= e, (r)+1(7)) is also defined up to the sign. So, one can take also
(=€ky(r)+1(7), -+ » =€k, (r)+1(7)) as the canonical bases on the plane A(7). Denote by w;(t, 7) the
i-th component of the vector w(¢,7) w.r.t this basis. In other words, functions w;(t,7) satisfies

the following relation

w(t,7) =Y wilt, T)er,(r)41(7) (6.6)
=1

Remark 4 Using Remark 3, one can easily conclude that the germ of the curve A(t) att =1
is defined uniquely by A(T), the canonical basis in A(T), the derivative subspace AY(7), and the
germs of the functions t — w;(t,7) at t = 7 , where 1 < i < m. Since for any two pairs (A, A)
and (ZNX, A) of transversal Lagrange subspaces with fized bases in A and A, there exists symplectic
transformation that transforms basis in A to the basis in A and subspace A to A, we have that
the germ of the curve A(t) at t = 7 is defined uniquely, up to a symplectic transformation, by the

germ of the functions t — w;(t,7) at t = 7, where 1 <i < m.

Now we prove a computational lemmas about the weight of A(¢) at 7 and the order of pole of

t— w(t,T).

Lemma 6.1 The order I(T) of pole of the function t — w(t,T) is equal to ky, (1) + 1. The
weight of the curve A(t) at T is equal to (2ky, (1) +1)m — 23", ki(7).
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Proof. For simplicity we will write k; instead of k;(7), and [ instead of [(7). Let S;, A(t) =
{(z,Stx) : x € R™}, be a coordinate representation of germ of A(t) at ¢ = 7 such that the
canonical basis ey, +1(7),... , ek, +1(7) constitute a standard basis of R™. Denote by A = 0®R™,

the subspace D € A(7)™. From (6.2) it follows that in the canonical basis

wi(t, ) = (t —7)F L O((t — )k 1L, (6.7)

Then relation (6.1) in the canonical basis can be rewritten in the following form

(%“%—SJ4>”:‘ﬂMtﬂ%Uﬂﬁ=—U—TV*@”H%XU—TW*@””U (6.8)
2]

For simplicity take coordinates ¢ — S; such that the subspace A is the derivative subspace

A%(7). Then by definition of the derivative subspace the free term on the Laurent expansion of

(S; — S,)~!is equal to zero. Therefore

(t _ T)Ql*kifkjfl

[y T I ((t=7) ) (69)

(50507, =~ [ wite,wste, 7y de =

Z’.]

Then it is easy to get the following expansion for the determinant

(t —7)*

det(S; — S;) = g O((t — 7)1, (6.10)
where
kz(Zl—l)m—Ziki, (6.11)
i=2
and C is the determinant of matrix whose (7, 7)th entry is m, ,7=1,...,m. It is well

known that the determinant of the matrix whose (7, j)th entry is 1,...,m, can be

1o
Tty )=
computed by the following formula

(zi — =) (yi — yj)

1 " 1<'H'<
det ({ ; } ) = =5 (6.12)
Ti+ Y5 )= 1 (zi +y;)

ij=1

It implies in particular that C' # 0 (one can take z; = y; =1 —k; — % and use the fact that k; # k;
for i # j). So, the weight is equal to (2 — L)m — 2", k;.
Further, from (6.9) and (6.12) it follows that
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(St —57); 4

— (Ci,j(t - T)—k+2l—ki—kj—1 + O((t o T)—k+2l—ki—kj)> ( . + O((t - T)k—l—l)) —

CLd (g~ kg O((1 - ) k), (6.13)

where C' is as in (6.10), k is as in (6.11), and C;; are (i,7)th entry of adjacent matrix to the
m
matrix <m>i]’:1. By (6.12) and (6.5) C; ; # 0. Since S; is a smooth curve at 7 all powers

2l —k; —kj — 1 in (6.13) are positive. By assumption, S, #0. It implies that

1§rl171]11%1m(2l —ki—kj—1)=1 (6.14)

But from (6.5) it follows that min (2] —k; — k; —1) = 21 — 2k, — 1 that yields that | = &, + 1.

1<i,j<m

Consequently the weight is equal to (2k,;, +1)m — 2 " k;. O

Remark 5 In the proof of the previous lemma to obtain the asymptotics (6.9) we have taken
the coordinate representation t — Sy, A(t) = {(z,S; 1) : € R™}, with A = A°(1) (where A =
0®R™ ). But then we have obtained the relation (6.14)which implies that k;(7)+k;(7)—2I(7)+1 <0
for any i,j = 1,... ,m. Therefore, the asymptotics (6.9) for ((St — ST)_1>i,j and then the
asymptotics (6.13) for (S; — S;)ij are valid for any coordinate representation t — Sy, A(t) =
{(z, Sy x) : x € R™}, of germ of A(t) at t = T such that the canonical basis eg, +1(7),... ek, +1(7)

constitute a standard basis of R™ and A = 0@ R™ is arbitrary subspace transversal to A(1). The

reason is that the asymptotics (6.9) do not depend on free term.

Take some subspace A € A(7)™. Recall that the velocity A(t) is a self-adjoint nonnegative

*

definite linear mapping of rank 1 from A(¢) to A(¢)*. For any ¢ sufficiently closed to 7 one can
identify A with A(t)*. Under this identification A(t) is a self-adjoint nonnegative linear mapping
of rank 1 from A(t) to A. Therefore there exist a unique, up to the sign, vector v(t) € A such

that for any w € A(¢):
(A(t)w, w) = (v(t), w)? (6.15)

Suppose that a tuple of vectors f1(7),..., fm(7) is a basis of A dual to the canonical basis
of A(7) (ie, o(fi(7),ex;(r)+1(7)) = di;). From Remark 5 and relation (6.13) (where | = k;, + 1)
it follows that the components v;(t) of the vector v(¢) w.r.t the basis f1(7),..., fm(7) have the

following asymptotics
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wlt) = e(r)(t = 1) HO) L O (t = pyfe R, (6.16)

where ¢;(7) # 0. (Actually, using (6.12), one can compute ¢;(7):

m

ka T) — kl T _k T 1
() — ] Gl (r) — ki) +1) L Gnln) ~hD) k() + 1) .
J C(7) 1 11 .?&.(ki(r) ~ k(1)) )
<j<m,j#t

where C;; and C are as in the proof of Lemma 6.1.) The relation (6.16) implies that for any

integer nonnegative j such that

Fon () = Ki(T) < J <k (7) — Ki—1(7) (6.18)
the following relation holds
span(v(1),v' (1), ... , vV (7)) = span(f;(7), ... , fm(7)) (6.19)
In particular,
span(v(7),v' (1), ... ,o®=MD(1)) = span(fa(71),... , fm(7)) & A, (6.20)
span(v(7),v' (1), ... ,o*= (7)) = A (6.21)

(recall that ki (7) = 0).

Now we are ready to prove the following
Proposition 3 For the ample curve A : I — L(W) of rank 1 the set C such that

C= {t el dim(span(el(t),eQ(t), . ,em(t))) < m} (6.22)
is discrete set of the interval of definition 1.

Proof. Suppose that C has an accumulation point 7. Take some subspace A € A(7)™. Let
t — v(t) be a curve of vectors in A defined by (6.15) for all ¢ from some neighborhood U of 7 in
I. Note that t € C iff k,,,(t) > m. Therefore, by (6.20) and (6.21), we have that ¢ € C N U iff the
function d(t) el det(v(t),v'(t),...v™=1)(t)) has zero at t = t;. For the accumulation point 7 ,
using consequently the Rolle theorem, one can conclude that the function d(¢) has zero of infinite

order at t = 7.
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On the other hand, let I;(7) = km(T) — km—it+1(7) . Denote by p = > l;(7). Let us prove
i=1

that d® (7) is not equal to zero. Indeed, d®) () can be expressed as the sum of the terms of the

form det(vUV(7),... ,0Um)(7)), where
Y di=p, 0<ji<j2<...<jm (6.23)
=1

Let us show that if the tuple (j1,... ,jm) is different from the tuple (I1(7), ... , 1, (7)) and satisfies
(6.23), then

det(vUD(7),... ,0Um)(7)) = 0. (6.24)

For this note first that by assumptions there exists an index s, such that j; < l5(7) (= kn(7) —

km—s+1(7)) . Then from (6.18) and (6.19) we have the following relation

span(v(jl)(r), e ,’U(js)(T)) C span(frm—s+2(7), -+, fm (7)),

ie., dim(span(v(jl)(r),... ,’U(js)(T))> < s. It implies that dim(span(v(jl)(T),... ,v(jm)(T))) <
m that is equivalent to (6.24). Note also that from (6.18) and (6.19) it follows easily that
span(v(ll(T))(T),... ,v(lm(T))(T)): A. Therefore,

dP (1) = cdet(@ (1), ... ol (7)) £ 0

(here c is some natural number). Hence d(t) has zero of finite order at ¢t = 7. We obtain the

contradiction. [

For t € I\C the numbers k;(t) =7 — 1. As a consequence of the previous proposition and the

expression for the weight from the Lemma 6.1, we obtain the following

Corollary 1 The ample curve A : I — L(W) of rank 1 has the constant weight equal to m?

on the set with discrete complement in I.

At the end of this section we give the explicit formula for the velocity A(T) in the canonical
basis. Let (ej(7),...,e5 (7)) be a basis in A(7)* dual to the canonical basis in A(7). As we have
seen at the end of the proof of the Lemma 6.1, the (m,m)th entry is the only nonzero entry of
the matrix S, and it is equal to CT”W’;ST) = c2,(7) (where ¢, (7) is as in (6.17)). Therefore, we

obtain the following

Lemma 6.2 For any vi,vy € A(T) the following relation holds
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(A(r)o1,09) = e (T) (e (7), 01) (e (7), 02), (6.25)

where

em(T) = ) (6.26)

7 The rank 1 curves with a constant weight.

The present section is devoted to the curves of rank 1 and a constant finite weight in the
Lagrange Grassmannian L(WW). We show that in this case the function g(¢,7) constructed in
section 4 determines the curve uniquely, up to symplectic transformation. We also find a complete
system of invariants of the curve in terms of the function g.

First, using Proposition 3 and Lemmas 6.1, we obtain the following

Proposition 4 If A(t) is a curve of rank 1 and constant weight on I, then for all t € I and
1 < i < m the numbers k;(t) are equal to i — 1, or, equivalently, the vectors ey (t),... ,em(t)

constitute the canonical basis of the subspace A(t).
Proof. From (6.5) it follows that always
i) — kj(t) > i — . ky(t) =0 (7.1)

Therefore by Lemma 6.1 the weight £(¢) of the curve A at the point ¢ satisfies

k() = (2km(t) + )m — 2 i ki(t) = 2 i(km(t) ~ ki(t) +m > 2 i(m ) +m=m? (7.2)
=2 =1 =1

In addition, from (7.1) it is easy to see that the equality in (7.2) holds iff k;(t) = ¢ — 1 for any
1 < i < m. Therefore, if the set C is as in (6.22), then for any ¢ € C the weight k(t) > m?, while
for t ¢ C the weight k(t) = m?. But from Proposition 3 the set C is discrete subset of I. Hence,
for the weight k(¢) to be constant on I, the set C has to be empty. This completes the proof of
the Proposition. [J

As a consequence of the previous proposition and Lemmas 6.1, 6.2 , we obtain easily the

following
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Corollary 2 If A(t) is a curve of rank 1 and constant weight on I, then:
1) at any point t € I the weight is equal to m?;
2) for any T € I the function t — w(t,T) has a pole of order m att =71;

3) For any vy,ve € A(T) the following relation holds

(A(r)or,09) = m* (e}, (1), v1){€p (1), v2) (7.3)

Now we prove that the function ¢(¢, 7) defined in section 4 contains all the information about

A(%).

Theorem 1 The function g(t,7) determines the curve A(t) of rank 1 and constant weight

uniquely , up to a symplectic transformation.

Before starting to prove the theorem, we want to describe in few words the main steps of the
proof. First, we show that the function g(¢,7) is almost the same as the component wy, (¢, 7) of
the vector w(t, 7). The vector w(t,7) is a function of two variables, but it is determined by a
curve. Therefore it is natural to expect that w(t,7) satisfies some partial differential equation.
We find this equation that is actually the system of m equations for the components w;(t, 1),
1 < ¢ < m. Then we show that this system has a ”triangular” form such that all components
wi(t, ) can be expressed by wy,(t,7) and refer to Remark 4 to complete the proof.

Proof of Theorem 1.

1. We start the proof with the following lemma,

Lemma 7.1 The following relation holds

0 _17_)2 + %g(t, T) (7.4)

Proof. By (4.19),(4.23), and part 2) of Corollary 4 we have

w?n(t, T) =

0 . m?
tr | =A-(t)oA =—— —g(t, .
(0040 ) =~ - g(e) (7.5
Let t — S, A(t) = {(z,S¢x) : x € R™} be a coordinate representation of germ of A(t) at ¢t = 7
such that the canonical basis e1(7),... ,e,(7) constitute a standard basis of R". By (4.24)
w(2 ((Se—8-)71) 8- ) = __m (t,7) (7.6)
8t t T T - (t _ 7_)2 g ? .

30



Relation (7.3) implies that in the chosen coordinates

0 (z,7) # (m,m)

By construction,

(& ((S; — ST)1)> - = —wi(t, T)w;(t,7)

Therefore

tr (% ((St — S;)™h) ST> = —m?w? (t, 7).

This together with (7.6) implies (7.4). O

By (7.4) it follows that in order to prove the theorem it is sufficient to show that the function
W, (t, 7) determines A(t) uniquely, up to a symplectic transformation.

2. Now we derive a partial differential equation for the vector function w(t, 7).

Lemma 7.2 The vector function w(t, ) satisfies the following differential equation

0*w ag)Tm ow 2,2

Proof. Fix some parameter 7y and take some subspace A transversal to A(7g). Let t — Sy,
A(t) = {(z,S¢z) : * € R™} be a coordinate representation of germ of A(t) at ¢ = 79 such that
A(19) =R™ @0 and A = 0@ R™. Denote by w™(t,7) € R™ the first m components of the vector
w(t,7) in the chosen coordinates (or equivalently, the image of w(¢,7) under the projection of
W on A(7y) parallel to A). Also, let, as before, f1(7),...,fn(7) be the basis of A dual to the
canonical basis of A(7) (w.r.t. the symplectic form o).

By (6.1) it follows that for ¢t and 7 closed to 7

0

g (St — Sr) ™) = —w™ (¢, ") w™ (¢, 7)". (7.8)

Therefore

S = (18— S e.m) (150 - ST)wA(t,T)>T (7.9)
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It implies that the vector function (S; — S;)w™(t,7) does not depend on 7. Differentiating it

w.r.t. 7 we get

—S,w™(t,7) + (S; — ST)agwA(t, 7) =0 (7.10)
T
From (6.25) it follows that
Srw(t,7) = mPwp(t,7) fin(7) (7.11)

This together with (7.10) implies that

%wA(t, ) = mPwm (b 7)(S; — S~ fin(7) (7.12)
In particular,
m2(Sy — 8 fn(r) = —— L A (7.13)

Now, differentiating (7.12) w.r.t. ¢, we have

82
otor

WA (t,7) = mZuwnm(t, T)% ((st — ST)_1> Fl(T) + %wm(t, m2(S — S:) "L fm(r)  (7.14)
From (7.8) it follows that
(St - ST)ilfm(T) = _wm(taT)wA(t?T)

Substituting this and (7.13) in (7.14), we get

Pw? &g—tm ow 2,2 A
— = 1
otor < wpy | OT o 0 (7.15)

Recalling the definition of w? (¢, 7), we obtain from the last equation the following inclusion

0w &g_tm ow 2, 2
Y vl A 1
Dtor <wm or T € (7.16)

Let us remember that all our considerations (and in particular the inclusion (7.16)) are valid
for any subspace A transversal to A(7y) and any ¢, 7 closed to 75. Taking as A in (7.16) two
subspaces that are transversal to A(7p) and also transversal one to another, we obtain (7.7) for

any t, 7 closed to 7y . Since 7y is arbitrary, this completes the proof of the lemma. [

In the sequel it will be convenient also to make the following substitution in (7.7)
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Yt 7) = mw(tﬂ')

Then by direct computation one can obtain the following equation for Y:

0%y (%= gy 0? 2 2
g 1 Y =
dtor + (wm ) ot " <8t(97'( n ) +m wm) 0

(7.17)

(7.18)

3. Now we shall rewrite the equation (7.7) as a system of equations w.r.t. the components

w;(t,7). Take some subspace A € A(7)™. Identifying A with A(7)*, denote f;(7) the vector,

corresponding to e} (7) under this identification. The vectors e;(7),... ,en(7), f1(7),..

constitute the basis of the symplectic space W. Suppose that

éi(r) = ij(r)ej(r) + i (1) fi(7)
j=1

According to (7.3)

It implies that

oy fm(T)

(7.19)

Remark 6 In particular, it follows that the functions o; (1) with 1 < i < m — 1 do not

depend on the choice of the subspace A.

By definition
m
w(t, ) = Zwi(t, T)ei(T).
=1

Then, using (7.19), we obtain

ow = [ Ow; & 9
= Z + ijajyi e + m Wy, fmn,

or P or =
Pw = Pwi o= Ow; 5 QW
oor z; gir 2 gy | ST gy
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Substituting (7.20) and (7.21) in (7.7) and comparing coefficients of e; for ¢« = 1,... ,m, we
get the following system of equations

P2w;  2Lm du; 2 92 = w; ;
Gior wy or T US| Ty e LSS (122)

The term in the righthand side of (7.22), corresponding to 5 = m, is equal to zero. Hence the

equation (7.22) can be written in the following form

82wz~ 315)? ow; 9 o m_1 85’—{" 811)]' .
oo o7 T = 2 Ty e LS iEm (1)

By Remark 6 the system of equations (7.23) does not depend on the choice of the subspace A.

In the same way the equation (7.17) can be rewritten as an equation for components
Yi(t,7) = % of the vector Y;(t,7) w.r.t the canonical basis:

o2y; [ %=\ gy, 02 oY

! T ! 1 202 )Y = -y Lay, 7.24
dtor (wm ot (8taT( nwm) +m wm) EP-IrT (7.24)
4. Now we show that equation (7.23) (or (7.24)) has a "triangle” form. Note that by construc-

tion all functions ¢ — w(t, 7) have singularities at ¢ = 7. Moreover, from the part 1 of Corollary

4 it follows that their Laurent expansions at ¢t = 7 have the following form

wi(t, ) = (= + pi(t, 1), (7.25)

where ¢;(t,7) are smooth functions. Using this fact one can obtain the following

Lemma 7.3 The coefficients oj;(7), 1 < j < m — 1, satisfy the following relations
1. aj,z'(T) =0,ifj<e—1;

(i-1)(2m—i+1) .

2. j—1,4(7) m—itl

3. Ifi <j <m-—1, then a;;(T) can be expressed by %(pm(tﬁ)

. with 0 < k <1—7 , where
om(t,7) is defined by (7.25).

Proof. We shall analyze the Laurent expansions of both sides of the equation (7.23). We
start with the righthand side. Denote by
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By (t,7) = %m@ +(t— T)gom(t,T)) (7.26)

Using (7.25), one can obtain the following series of relations

+0(1); (7.27)

ol
o, 5 n Wy, (t,7) pris (t — + om(t, T)) - + & (t, 7) (7.28)
%meJ' _ 1 n P (t,7) +0 1 (7.29)
Wy 0 (t—T)mmit2 (- p)mitl t—r '

Therefore the righthand side of (7.23) can be written in the following form

mi ((t _,nj-):nzj-ﬂ + (t ?ngi’b:z“) aji(1) + O (t _1 T) (7.30)

j=1

Suppose that the function ¢ — ®,,(¢, 7) has the following expansion into the formal Taylor series

att =171

o0

Bty 1) = Y cr(r)(t — 1) (7.31)

k=0

Then by direct computation we have that the righthand side of (7.23) has the following form

—1
w1 (1= aga(r) + 5 ¢ 1 (r)ana(r)
k=1

1
Gy o(iy) 0

Now consider the lefthand side of (7.23). Using (7.26) and (7.25) , we obtain the following

(t Cil i()77;1)+1 +

Jj=2
series of relations

0 m—1+1 0

—w;(t,7) = (= + E%(t’ T); (7.33)
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8_2 . :_(m—i+1)(m—i+2)

50 wi(t, T) (== + O(1); (7.34)
9 wm 0 m—i+1 Dy (t, 7 1
E)fu—mng’(tﬁ) == (t— T)m+i+3 T (t— T()fnzﬂ —-+0 (:) (7.35)
1 20, (t, T ,2n t, T 1
wm (b, T)wi(t,7) = (t — 7)ym—i+3 + (t iDT)(m—i)—I-Q + (t f T()m—zﬂ +0 (m) (7.36)

Therefore the lefthand side of (7.23) can be written in the following form

m? — (m —i+1)? 1
(t _ T)m—i+3 (t _ 7-)m—i-i—Z

(q)m(t,T) +2som(t,7)) LembT) <%>

(t —7)m—itl t—71)2
(7.37)

Comparing coefficients of (7.32) and (7.37) we have

LLIfm—j+2>m—i+3,ie,j<i—1, then o;;(7) = 0. This completes the proof of the

first part of the lemma;

2. fm—j+2=m—i+3,ie.,j=14i—1, then a;_1,(r)(m —i+1) = m? — (m —i+ 1) This

completes the proof of the second part of the lemma;

3. f2<m—j+2<m—i+3,ie,i—1<j<m, then, taking into account that ay (1) =0
for kK < i — 1, we obtain

i+1
26] I(Pm(taT)‘ %‘Pm(t T)
(m —4) a]l Z Cj—k— 1(7) ok (T )_cj—i(T)+ 1 =1 =1
Pl (G —)! (G —i+ 1!

(7.38)

By (7.26) coefficient ¢,(7) can be expressed by %@m(t, 7')‘ with 0 < k < n. This together

with (7.38) completes the proof of the third part of the lemma. [

By the previous lemma the equation (7.24) can be written in the following form for 2 < i < m

9Yi 1 1 (% [ %= 9y Bz
ot @i—1; \ Otor + ( wy, | Ot +\ gtor (Inwy,) +m*wy, ) Vi + Z O‘J, (7.39)
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% All terms in the righthand side of (7.39) depends on the functions

Yj(t,7) with j > i. Note also that by (7.25)

where a;_1; =

: wi(t,T) 1 L+ (t— 7)™ oyt 7)
YT = o)~ G 14— pnth ) (7.40)

It implies that in the Laurent expansion at ¢ = 7 of the function ¢ — Y'(¢,7) all coefficients that
correspond to nonpositive powers (and in particular the free term) depend on wy,(t,7). This
together with (7.39) yields that all Y;(¢,7) ( and therefore all w;(¢,7)) with 1 <4 <m — 1 can be
expressed by wy, (¢, 7). But by Remark 4 the components w;(¢,7), 1 < i < m determine the curve

A(t) uniquely, up to a symplectic transformation. This completes the proof of the Theorem 1. [J

Now our goal is to find a complete system of symplectic invariants of curve A(t) of rank 1
and the constant weight, i.e., some set of functions of ¢ which determines A(t) uniquely, up to a
symplectic transformation. By Theorem 1 it is natural to look for a complete system of invariants
among coefficients f; ;(t) of the expansion (4.16) of g in the Taylor series. Since A(t) can be
described, up to symplectic transformation, by the curve t — w(t,7) of the vectors on the linear
space of dimension m, it is natural to expect that complete system of invariants of A(-) consists
of m functions of ¢. By Lemma 4.1 the first m ”independent” coefficients in expansion (4.16) are

Bo,2i(t) with 0 < i < m — 1. All this arguments lead to the following theorem:

Theorem 2 The coefficients 5y 2i(t), 0 < i < m — 1, determine the curve A(t) of rank 1 and

a constant weight uniquely, up to a symplectic transformation.

Let a function ¢,,(t,7) be as in (7.25). From the identity (7.4) it follows easily that the

theorem is equivalent to the following theorem:

2i—1
%fffm t’ 1 < i < m, determine the curve A(t) of
=T

rank 1 and a constant weight uniquely, up to a symplectic transformation.

Theorem 2'. The functions T

Proof of Theorem 2'. Let functions ¢;(¢,7), 1 <14 < m, be as in (7.25). First, using the
system of equation (7.23), we prove the following lemma:

Lemma 7.4 Any partial derivatives of the functions ¢;(t,7),1 < i < m, at any diagonal
points (1,7) can be expressed by the functions T — %(tﬁ)‘t:r and their derivatives , where

1<j<m.

Proof. First, it is natural to make the change of coordinates ¢ = t — 7, y = t + 7 such

that the diagonal ¢ = 7 becomes the axis z = 0 in the new coordinates. Indeed, if we denote
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by zi(z,y) = w;(%32, £52), then the system (7.23) can be transformed into the following system

w.r.t. z;:

B Pz Pu\ 8zm+8zm 0z 0z 23 . —
m\ 912 T 0y gr oy )\oy " ox) " mET

m—1
0zym  Ozp O0z; 0z .
Tom o ZEm et 1<i< .
j:zi;l(<8x+8y> (ax-l-ay)zm)aﬂ,l_z_m (7.41)

(here we also have used the first part of the Lemma 7.3). Relations (7.25) can be transformed
into the following
1
zi(z,y) = it ui(z,y), (7.42)
where the functions u;(z,y) are smooth, u;(0,y) = 1, and %ui(o,y) =0forl <i < m,
1 < k < m —i. Substitute (7.42) in (7.41) and multiply both sides on ™ ***. Then we obtain
some singular system of equations w.r.t. wu;. By direct calculation it can be shown that this

system has the following form:

22Uy, 1“; - (2m — 2i + 1)zu,, 5 Oui 4 (m—i+ 1):vul B+ Q1T 1%‘—1:"‘—
(7.43)
Qi1 i TUm, aqggl + (m — i+ 1)?umu; + o1 i(m — i + Duqum — m2ud,u; = ¥,
where
0%u; ou; ) U U
\I/i = x2um 8y ayl _ (m — 1+ l)xula—; — Oéifl,ixuifla—ym
-1
ouj_1 o [ Oup, ~ Oup, ou; Ou; e 2 ouy,  Oum,
Yi-1,:%tm dy o ox * oy oy  Ox JZZ v oz * Jy 4
s ou; Ou N
z) =2 ( 8; + 8—;) U + (m — j)a? H'1umuj> aji (7.44)

The lefthand side of equation (7.43) is a principal part of this equation in the following sense:
Differentiate both sides of (7.43) k times in z at the points of the initial curve z = 0. Then the

righthand side can be expressed by the partial derivatives 9" up (0,y) with n less than £ and their

ox™
derivatives w.r.t. y (here one can take i — 1 < p < m), while any term of the lefthand side (

at least for k& > 2) depends also on partial derivative of some u; w.r.t. x of order %k at (0,y).

(2m—i+1)(i—1)

m—i+1 > one can easily obtain

Moreover, using that u;(0,y) =1 ,1 <47 <m, and oj_1; =

in this way the following linear system w.r.t. %ui(o, y), 1 <1i < m for a given integer k > 0:

O, OFu; Oy, ~ .
Gik) =5 (0.9) + mi(kR) 5 (0,y) + 6i(K) 5 (0,9) = ¥y, 1<i<m,  (7.45)
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where

(k+i-m-1)(-2m—-1)(i—-1)
Gi(k) = m—1+1
ni(k)=(k+i—-1)(k+i—2m—1)

k+2t—2—-2m
0:k) = m—1+1 m’,

(7.46)

and ¥; can be expressed by the partial derivatives of the form %(0, y) with n less than & and
their derivatives w.r.t. y (here i —1 <p < m).
It turns out that the determinant of the system (7.45) satisfies the following remarkable

identity:
m(k) 0 0 0 0 01(k)
Co(k) m2(k) O 0 0 02(k)
0 C(k) mn3(k) 0 0 03 (k) .
: : : =[x -2i)k+2j - 1)
j=1
0 0 0 Cmfl(k) nmfl(k) emfl(k)

(7.47)

The proof of (7.47) that we have found is rather long and will be presented in Appendix.
As a consequence of (7.47) we obtain that the determinant of the system (7.45) has exactly
m positive zeros at k = 27, 1 < 7 < m. Therefore, any partial derivative of u;, 1 < 7 < m, at
2j

0,vy) can be expressed by the functions y — 6—;‘-” 0,vy) and their derivatives, where 1 < j,p < m.
oz

Moreover, by Theorem 1 wu,(z,y) can be expressed by w,(z,y) and its derivative. Hence any

partial derivative of u;, 1 < i < m, at (0,y) can be expressed by the functions y 8;;’2‘;" (0,9)
and their derivatives, where 1 < 7 < m. But this is equivalent to the statement of our Lemma, if

we return to the old coordinates ¢ and 7. O

Now we define a canonical moving frame: For given 7 take the derivative subspace A°(7) and let
f1(7), ..., fm(7) be a basis of A°(7) dual to the canonical basis of A(7) (i.e., o(fi(7),e;(7)) = 6; ;).
The basis (e1(7), ... ,en (1), fi(T),...
moving frame of the curve A(-). Denote by F(7) and F(7) the tuples of vectors (e1(7), ...

and (f1(7),...
sponding to the linear mapping (A(7), A(t), A°(7)) w.r.t to the canonical basis, and by S the ma-

s fm (7))

, fm (7)) of whole symplectic space W is called the canonical

yem(7))

, fm(7)) correspondingly , arranged in the columns. Denote by S; the matrix, corre-

trix, corresponding to the linear mapping (AY(7), A°(¢), A(7)) w.r.t to the basis (f1(7),- ..
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( see section 2 for notations). Also, let (1) be a m x m matrix with (7, ) entry equal to o ;(7),
where «; j(7) is defined by (7.19) with A = A%(7). Then it is easy to see that the structural
equation for the canonical moving frame has the following form:

E() Qr) 5, E(r)

. = . : (7.48)
F(r) Sy —0T(r) F(r)

We claim that in order to prove Theorem 2’ it is sufficient to prove the following lemma:

Lemma 7.5 The matriz in the structural equation (7.48) depends only on the coefficients of

the expansions of t — wi(t,7), 1 <i < m , in the Laurent series at t = T.

Indeed, if Lemma 7.5 holds then first by Lemma 7.4 this matrix depends only on the functions
921,

THW

(t,T)‘ —» 1 < j < m, secondly, the structural equation (7.48) has a unique solution
with prescribed initial condition, and, finally, any symplectic basis can be taken as an initial
condition of (7.48).

Proof of Lemma 7.5. First, according to (7.3)

: 0 (i,5) # (m,m)
(Sr))ij = (7.49)
Tl ) = (mom),
Further, by recursive formula (2.4) for i =0 :
~1
P=tam=am+ Y (AdnSA )+ A0S A0, (7.50)

n=1-2m
where A;(7) are defined by expansion (2.3) ( here we have used that by definition of the derivative
curve Ap(7) = 0 and by Lemma 6.1 the order of pole of t — (S; — S;)~! at t = 7 is equal to
2m — 1). By definition of the vectors w(t, 7), we have
t
((50=5071), == [ eyt e

Therefore any A, (7) with n # 0 can be expressed by the coefficients of the expansions of t —
wi(t,7), 1 <i < m , in the Laurent series at t = 7. This together with (7.49) and (7.50) implies
that S? can be expressed by the coefficients of the expansions of ¢ — w;(¢,7), 1 <47 < m , in the
Laurent series at t = 7.

Finally, let us analyze the matrix (7). By Lemma 7.3 all its entries «; j(7) with 1 <7 <m—1
can be expressed by the coefficients of the expansions of ¢ — w,,(¢,7) in the Laurent series at

t = 7. The entries a;, j(7) do not enter the differential equation (7.23). To find an expression
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for these entries we will use the integral-differential equation (7.12) that can be rewritten for

A = Ay(7) in the following form:

QDT g (1) / w6, TYw(e, T)dE (7.51)

87’1 TI=T

Using (7.20), we can obtain from here the following system of equation w.r.t. the components
Wi (ta T)
m

8’10]‘8(;,7') + ;wz(t, T)oy; (1) = —mPwy, (£, 7) /t Wi (€, 7)w; (&, 7)dE, 1< j<m (7.52)

For given j consider the Laurent expansion of the lefthand side of (7.51), as a function of ¢, at
t = 7. By (7.25) the coefficient of -1 in this expansion is equal to (7). On the other hand,
all coefficients of the appropriate expansion of the righthand side can be expressed by coefficients
of expansions of t = w;(¢,7) and t = wy,(¢,7) in the Laurent series at ¢ = 7. Therefore also the
entries oy, ;(7) can be expressed by coeflicients of expansions of ¢ — w;(t,7) (even with ¢ = j or

m) in the Laurent series at ¢ = 7. This concludes the proof of our Lemma and also of Theorem

2'.0

8 Appendix

In this appendix we prove the identity (7.47). We are sure that the proof presented here is far
to be optimal, but this is the only one that we have at this moment.
Denote the determinant in the lefthand side of (7.47) by L, (k). Expanding this determinant
w.r.t. the last column, we have
m j—1 m m
Lin(k) =Y (=1)7*"0;(k) [T m(k) [T &) + [Tmk) (8.1)
j=1 i=1 i=j+1 i=1

Then, substituting (7.46) in (8.1), one can easily transform L,, (k) to the following form:

3

2m

m+1 .
m(2m — j)! ) . .
L, (k)= - - k—2m—7+1 k—1 k—1 8.2
() j}lj DG i 2m =g+ 1) ! >i2m||j+2( ) (82

[|
N

i
Note that L,,(k) is a polynomial of degree 2m , exactly as the polynomial in the righthand side
of (7.47). Also for both polynomials the coefficient of leading term k*™ is equal to 1. Therefore
in order to prove the identity (7.47) it is sufficient to prove that the polynomials in both sides of
(7.47) have the same roots, or, equivalently, that L,,(2i) = L,,(1 —27) =0 for all 1 <i < m.
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We will do this in two steps: First we will show that
L,(21) =0 1<i<m. (8.3)
Secondly we will prove that the function

L) Lun(F) (8.4)

satisfies

Li(=1—k) = Li(k), (8.5)
i.e., L, (k) is invariant under the reflection of its argument w.r.t. —1/2. This together with (8.3)
and the fact that L,,(0) = 0 (which follows directly from the definition of L,,(k)) will imply that
also Ly, (1 —2i) =0 forall 1 <i<m.
1. The proof of (8.3). For 1 < j < m + 1 denote by

J 2m

m(2m — j)!

i(k) = k—=2m—-j7+1 k—1 k—1 8.6
pm() = oy (k20 j+)>£§f 0 I w0 6o

By direct computation the following identity can be easily checked:
pm,j(Qm — 2[) +pm72l+2,j(2m — 2l) = 0, (87)

where

0<I<m-1, max{1,214+1—-m} <j <min{m+1,2] + 1}

In particular, applying (8.6) to j = [+ 1, we have

Pm,i+1(2m —20) =0 (8.8)
By construction,
m+1
Lin(2m —21) = Y pj(2m — 21) (8.9)
7=1

Denote I} = max{1,2] + 1 —m} and lp = min{m + 1,2/ + 1}. Consider the following 3 cases:
1) I} < j <ly. Then from (8.7) and (8.8) it follows that

lo l
Z Pm,j(2m —2l) = Z (pm,j(2m —21) + pmoi+2—j(2m — 2l)) + Pm41(2m —20) =0;  (8.10)
Jj=h Jj=h

2)204+2 < j<m+1 Then2m —j+2 < m—1 < 2m, so from (8.6) it follows that
Pm,j(2m — 2l) = 0;
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3)1<j<2l—m. Then 2 < 2m —2] < m —j and again from (8.6) it follows that in this case
Pm,j(2m —2l) = 0.

Therefore, by (8.9), Ly, (2m —2l) =0 for all 0 < < m — 1, or, equivalently, L,,(2i) = 0 for
all 1 <3 <m.

2. The proof of (8.5). We will transform the expression for L,,(k) to the more symmetric
form. Following [5] (Chapter 1, §2) we denote

gnlh z(x+h)...(z+ (n—1)h) (8.11)

Then similarly to the Newton binomial identity, one easily have

n

n . .
(z +y)"h = Z _ g ilhyilh (8.12)
i=0 \ *
Using the notation (8.11) one can rewrite Ly, (k) in the following form

m—+1

Lo (k) = ; e ](iml)_é)_ o (k= 2(m —j+ 1)) (k —m+ )" (k= 2m)y = (8.13)

Applying (8.12), one get

1‘1 m—1 ' '
koo (o s oo ) 5 () i
i )
m—j+1 )
[ _imin (m—j+1)!
—1)* k4 1)™ 1—i/1 J T 814
g( ) i ( ) (m—j—i+1) (8.14)
Substituting (8.14) in (8.13) and changing the order of summation one easily obtain
m m—1i . . .
(2m — 5 —1)! , L\ (=1)iml(k + 1)m-1-it
Lin(k) = k—2(m — j))(k — 2m)’| 8.15
“ ZO jZOJ!(m—j—Z)'( (m =)k = 2m) (m —i— 1) (8.15)
Lemma 8.1 The following identity holds
m— . . mfzfl
2m —j — 1! j . m+i—1)!
=07 J ) : iy
(8.16)

Proof. Using representation k —2(m — j) = (k — 2m) + 24, one can split the lefthand side of

(8.16) into the sum of two terms:

m—i m—i

—om (2m —j —1)! 1 (2m —j —1)! il
? JZ '(m—]—l)( m)’ +22 G — D —]—z)!(k 2m)’1. (8.17)
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Since
2m —j—1) = (m—+1i—1)!(m +5)m I
the first term of (8.17) can be written in the way such that one can apply the binomial identity(8.12):

(m—i—z(—l k—2m) mZZ( ' ) (m +4)™ I (g — 2m) 1! =

J=0

(m+1i— 1)k —2m)

R (k —m + i)™, (8.18)

In the same way, the second term of (8.17) can be also written in the way such that one can apply

the binomial identity(8.12):

m—i

(2m —j —1)! c (2m —j —2)! ;
2 k— J|1 -9 E — om)i Tl —
Z]—l —]—z)!( JZ —j—Z—l)( m)
m—z—l
Z 2"“9‘2) (s — 2m + 1)t =
= D m—j—i-1)
2(m+1i—1)I( mll m—i—1 i :
=il —9 1)yt —
(m—z—l ]Zl ; (m +1) (k —2m +1)

2(m+1i— 1)k — 2m)
(m—i—1)!
Combining (8.18) and (8.19) together, we obtain that the lefthand side of (8.16) is equal to
(m+i—1)Y(k—2m) (k—m—i-z'
(m—i—1)! '

(k —m+i+1)m—tL (8.19)

+2) (k —m+i+1)m =t =
m—1

m—i—1

(k—2m)(k+m—i) [ (k-1)

=1

(m+i—1)!
(m— 1)

(k=2m)(k+m—1)(k—m+i+1)"" i—11 _ %

that is exactly the righthand side of (8.16). This completes the proof of the lemma.O]

Now substituting (8.16) to (8.15), we have the following identity:

m m—i—1 m—i

B (=1)'m!(m +i — 1)!
Lm(k) = (k 2m)Zi!(m—i)!(m—i—1)! I =0 ]]¢+D. (8:20)
i=0 =1 =1
Then the function L,,(k) satisfies
—_— k - m' (m+i—1)! T5 !
L(k) = —5—Lm Z _Z_1|Hk+1—l H(k—i—l). (8.21)

—o "
It remains only to notice that all terms of the sum in the righthand side of (8.21) are invariant

1

under the reflection of the argument w.r.t. —3 or, equivalently, under substitution ¥ — —1 — k.

Then the function L, (k) is also invariant under this substitution, which proves (8.5) and therefore

also (7.47).

44



References

[1]

A.A. Agrachev, R.V. Gamkrelidze, Feedback-invariant optimal control theory - I. Regular
extremals, J. Dynamical and Control Systems, 3(1997), No. 3, 343-389.

A.A. Agrachev, Feedback-invariant optimal control theory - II. Jacobi Curves for Singular

Extremals, J. Dynamical and Control Systems, 4(1998), No. 4 , 583-604.

A A. Agrachev, 1. Zelenko, Principal Invariants of Jacobi Curves, In the book: Nonlinear
Control in the Year 2000, v. 1, A. Isidori, F. Lamnabhi-Lagarrigue & W. Respondek, Eds,
Lecture Notes in Control and Information Sciences 258, Springer, 2001, 9-21.

A.A. Agrachev, R.V. Gamkrelidze, Symplectic methods in optimization and control, In the
book: Geometry of Feedback and Optimal Control. B. Jakubczyk, W. Respondek, Eds.,
Marcel Dekker, 1997, 1-58.

G. Polya, G. Sego, Problems and Theorems in Analysis I, A series of Comprehensive Studies

in Mathematics 193, Springer-Verlag, 1978.

L. Zelenko, Nonregular abnormal extremals of 2-distribution: existence, second variation, and

rigidity, J. Dynamical and Control Systems, 5(1999), No. 3, 347-383.

M.I. Zelikin, Homogeneous spaces and Ricatti equation in the Calculus of Variation (in

Russian), Factorial, Moscow, 1998.

45



