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Abstra
t

Ja
obi 
urves are far going generalizations of the spa
es of \Ja
obi �elds" along Rieman-

nian geodesi
s. A
tually, Ja
obi 
urves are 
urves in the Lagrange Grassmannians. In our

paper we develop di�erential geometry of these 
urves whi
h provides basi
 feedba
k or gauge

invariants for a wide 
lass of smooth 
ontrol systems and geometri
 stru
tures. Two prin
ipal

invariants are: the generalized Ri

i 
urvature, whi
h is an invariant of the parametrized 
urve

in the Lagrange Grassmannian providing the 
urve with a natural proje
tive stru
ture, and a

fundamental form, whi
h is a degree 4 di�erential on the 
urve. The so-
alled rank 1 
urves

are studied in greater detail. Ja
obi 
urves of this 
lass are asso
iated to systems with s
alar


ontrols and to rank 2 ve
tor distributions.

In the forth
oming se
ond part of the paper we will present the 
omparison theorems

(i.e., the estimates for the 
onjugate points in terms of our invariants) for rank 1 
urves and

introdu
e an important 
lass of \
at 
urves\.

Key words: Lagrange Grassmannian, Ja
obi 
urve, symple
ti
 invariants, feedba
k invari-

ants, 
ross-ratio.

1 Introdu
tion

SupposeM is a smooth n-dimensional manifold and � : T

�

M !M is the 
otangent bundle to

M: Let H be a 
odimension 1 submanifold in T

�

M su
h that H is transversal to T

�

q

M; 8q 2M ;

then H

q

= H \ T

�

q

M is a smooth hypersurfa
e in T

�

q

M . Let & be the 
anoni
al Liouville form on

T

�

q

M , &

�

= � Æ �

�

, � 2 T

�

M , and � = �d& be the standard symple
ti
 stru
ture on T

�

M ; then

�j

H

is a 
orank 1 
losed 2-form. The kernels of (�j

H

)

�

, � 2 H are transversal to T

�

q

M; q 2 M ;

these kernels form a line distribution in H and de�ne a 
hara
teristi
 1-foliation C of H. Leaves

of this foliation are 
hara
teristi
 
urves of �j

H

.

�
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Suppose 
 is a segment of a 
hara
teristi
 
urve and O




is a neighborhood of 
 in H su
h that

N = O




=(Cj

O




) is a well-de�ned smooth manifold. The quotient manifoldN is in fa
t a symple
ti


manifold endowed with a symple
ti
 stru
ture �� indu
ed by �j

H

. Let � : O




! N be the 
anoni
al

fa
torization; then �(H

q

\ O




), q 2 M , are Lagrangian submanifolds in N . Let L(T




N) be the

Lagrangian Grassmannian of the symple
ti
 spa
e T




N , i.e. L(T




N) = f� � T




N : �

\

= �g,

where D

\

= fe 2 T




N : ��(e;D) = 0g, 8D � T




N . Ja
obi 
urve of the 
hara
teristi
 
urve 
 is

the mapping

� 7! �

�

(T

�

H

�(�)

); � 2 
;

from 
 to L(T




N).

Ja
obi 
urves are 
urves in the Lagrange Grassmannians. They are invariants of the hy-

persurfa
e H in the 
otangent bundle. In parti
ular, any di�erential invariant of the 
urves in

the Lagrange Grassmannian by the a
tion of the linear Symple
ti
 Group (i.e., any symple
ti


invariant) produ
es a well-de�ned fun
tion on H.

To make things 
lear it is not worse to give a 
oordinate version of the 
onstru
tion of Ja
obi


urve. In the neighborhood O





hoose 
oordinates (x

0

; x

1

; : : : ; x

2n�2

) su
h that the 
hara
teristi



urves of �j

H

are the straight lines parallel to the x

0

-axis (here we do not 
are about the fa
t that

H 
ome from the linear �ber bundle T

�

M , we forget about the linear stru
ture of the �bers). In

these 
oordinates the sets H

�(�)

are some (n � 1)-dimensional submanifolds of R

2n�1

. For any

� 2 
 take proje
tion (parallel to x

0

-axis) of the spa
es T

�

H

�(�)

to the hyperplane fx

0

= 
g for

some 
. Then we obtain a 
urve of (n�1)-dimensional subspa
es in the (2n�2)-dimensional linear

spa
e. The restri
tion of the form � to fx

0

= 
g provides this spa
e with symple
ti
 stru
ture

and the obtained 
urve is a 
urve of Lagrangian subspa
es w.r.t. this stru
ture. This 
urve is

exa
tly the Ja
obi 
urve.

SetW = T




N and note that the tangent spa
e T

�

L(W ) to the Lagrangian Grassmannian at the

point � 
an be naturally identi�ed with the spa
e of quadrati
 forms on the linear spa
e � �W .

Namely, take a 
urve �(t) 2 L(W ) with �(0) = �. Given some ve
tor l 2 �, take a 
urve l(�) in

W su
h that l(t) 2 �(t) for all t and l(0) = l. De�ne the quadrati
 form q

�(�)

(l) =

1

2

��(

d

dt

l(0); l).

Using the fa
t that the spa
es �(t) are Lagrangian, i.e. �(t)

\

= �(t), it is easy to see that the

form q

�(�)

(l) depends only on

d

dt

�(0). So, we have the map from T

�

L(W ) to the spa
e of quadrati


forms on �. A simple 
ounting of dimension shows that this mapping is a bije
tion. Below we

use the just des
ribed identi�
ation of tangent ve
tors to L(W ) with quadrati
 forms without a

spe
ial mentioning.

Proposition 1 Tangent ve
tors to the Ja
obi 
urve J




at a point J




(�); � 2 
, are equiva-
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lent (under linear substitutions of variables in the 
orrespondent quadrati
 forms) to the \se
ond

fundamental form" of the hypersurfa
e H

�(�)

� T

�

�(�)

M at the point �.

Sket
h of proof. In our lo
al study we may assume without la
k of generality that H is a regular

level set of a smooth fun
tion h on T

�

M . Then 
 is a traje
tory of the Hamiltonian ve
tor �eld

~

h de�ned by the identity

~

h
� = dh. Let t 7! 
(t) be a parametrization of 
 de�ned by the

Hamiltonian system

d

dt


 =

~

h(
), 
(0) = �. Given l 2 �

�

(T

�

H

�(�)

), take a ve
tor �eld ` on H su
h

that `(
(t)) 2 T


(t)

H

�(
(t))

, �

�

`(�) = l. Simple 
al
ulations show that

d

dt

�

�

`(
(t)) = �

�

[

~

h; `℄(
(t)).

Hen
e

d

dt

J




j

t=0

(l) = ��(

d

dt

�

�

`(
(t))j

t=0

; l) = �([

~

h; `℄(�); `(�)):

Now we rewrite the last formula in 
oordinates. Let q = (q

1

; : : : ; q

n

) be lo
al 
oordinates inM and

p = (p

1

; : : : ; p

n

) be indu
ed 
oordinates in the �ber of T

�

M so that & =

n

P

i=1

p

i

dq

i

, � =

n

P

i=1

dp

i

^dq

i

.

Then

~

h =

n

P

i=1

�

�h

�p

i

�

�q

i

�

�h

�q

i

�

�p

i

�

, ` =

n

P

i=1

`

i

�

�p

i

, l = (`

1

(�); : : : ; `

n

(�)). We have

�([

~

h; `℄(�); `(�)) = l

�

�

2

h

�p

2

l:

Quadrati
 form l 7! l

�

�

2

h

�p

2

l is exa
tly the \se
ond fundamental form" of the hypersurfa
e H

�(�)

=

h

�1

(h(�)) \ T

�

�(�)

M in T

�

�(�)

M . �

In parti
ular, the velo
ity of J




at � is a sign-de�nite quadrati
 form if and only if the

hypersurfa
e H

�(�)

is strongly 
onvex at �.

A similar 
onstru
tion 
an be done for a submanifold of 
odimension 2 in T

�

M . Namely,

let H be a transversal to �bers 
odimension 2 submanifold in T

�

M . In general, 
hara
teristi



urves do not �ll the whole submanifold H; they are 
on
entrated in the 
hara
teristi
 variety


onsisting of the points, where �j

H

is degenerate. In our lo
al study we may always assume that

H is orientable and let 
 be a volume form on M . Then

V

n�1

�j

H

= a
, where a is a smooth

fun
tion on H. We set

C

H

= f� 2 H : a(�) = 0; (d

�

a

^

n�1

�j

�

)j

H

6= 0g:

Assume that C

H

6= ;. Then C

H

is a 
odimension 1 submanifold of H and �j

C

H

is a 2-form

of 
orank 1 on C

H

. Indeed, 8� 2 C

H

, ker �

�

j

H

is a 2-dimensional subspa
e in T

�

H, whi
h is

transversal to T

�

C

H

, and we have ker�

�

j

C

H

= ker �

�

j

H

\ T

�

C

H

.

The 
hara
teristi
 
urves of �j

C

H

form a 1-foliation C of C

H

. Let 
 be a segment of a 
har-

a
teristi
 
urve and O




be a neighborhood of 
 in H su
h that N = O




=(Cj

O




) is a well-de�ned

smooth manifold. The quotient manifold N is a symple
ti
 manifold endowed with a symple
ti
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stru
ture �� indu
ed by �j

C

H

. Let � : O




! N be the 
anoni
al fa
torization. It is easy to 
he
k

that �

�

�

(T

�

H

�(�)

+ ker �

�

j

H

) \ T

�

C

H

�

is a Lagrangian subspa
e of the symple
ti
 spa
e T

�(�)

N ,

8� 2 O




. Ja
obi 
urve of the 
hara
teristi
 
urve 
 is the mapping

� 7! �

�

�

(T

�

H

�(�)

+ ker�

�

j

H

) \ T

�

C

H

�

; � 2 
;

from 
 to L(T




N).

We are mainly interested in submanifolds that are dual obje
ts to smooth 
ontrol systems.

Here we 
all a smooth 
ontrol system any submanifold V � TM , transversal to �bers. Let

V

q

= V \ T

q

M ; The \dual" normal variety H

1

and abnormal variety H

0

are de�ned as follows:

H

1

=

[

q2M

f� 2 T

�

q

M : 9v 2 V

q

; h�; vi = 1; h�; T

v

V

q

i = 0g;

H

0

=

[

q2M

f� 2 T

�

q

M n 0 : 9v 2 V

q

; h�; vi = h�; T

v

V

q

i = 0g:

These varieties are not, in general, smooth manifolds; they may have singularities, whi
h we do

not dis
uss here. Anyway, one 
an obtain a lot of information on the original system just studying

smooth parts of H

1

, H

0

.

One of the varieties H

1

;H

0


an be empty. In parti
ular, if V

q

= �W

q

, where W

q

is a 
onvex

set and 0 2 intW

q

, then H

0

= ;. Moreover, in this 
ase the Liouville form never vanishes on the

tangent lines to the 
hara
teristi
 
urves of �j

H

1 , and any 
hara
teristi
 
urve 
 has a 
anoni
al

parametrization by the rule h&; _
i = 1. If subsets V

q

� T

q

M are 
oni
al, �V

q

= V

q

, 8� > 0, then,

in 
ontrast to the previous 
ase, H

1

= ; and & vanishes on the tangent lines to the 
hara
teristi



urves of �j

H

0
. The 
hara
teristi
 
urves are a
tually unparametrized.

Chara
teristi
 
urves of �j

H

1
(�j

H

0
) are asso
iated with normal (abnormal) extremals of the


ontrol system V . In [1,2℄ Ja
obi 
urves of extremals were de�ned in purely variational way in

terms of the original 
ontrol system and in a very general setting (singularities in
luded), see also

[6℄. The introdu
ed here Ja
obi 
urves of 
hara
teristi
 
urves of �j

H

1
(�j

H

0
) 
oin
ide with Ja
obi


urves of the extremals, asso
iated with these 
hara
teristi
 
urves, in the following important


ases:

1. If H

1

has 
odimension 1 in T

�

M . It o

urs, for example, if subsets V

q

are 
ompa
t 8q 2M ;

2. If H

0

has 
odimension 1 in T

�

M , but H

1

= ;. It o

urs, for example, if for any q subset V

q

is 
oni
al but does not 
ontain a 2-dimensional linear spa
e;

3. If H

1

has 
odimension 2. It o

urs, for example, if for any q subset V

q

is aÆne line in T

q

M ,

not 
ontaining the origin;
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4. H

0

has 
odimension 2. It o

urs, for example , if V

q

are 2-dimensional linear spa
es, i.e.,

subsets V

q

de�ne rank 2 ve
tor distribution on M , or if V

q

= D

q

\ �W

q

, where D

q

is

2-dimensional linear spa
e and W

q

is a 
onvex set su
h that 0 2 intW

q

.

Ja
obi 
urves asso
iated with extremals of given 
ontrol system are not arbitrary 
urves of

Lagrangian Grassmannian but they inherit spe
ial features of the 
ontrol system. The rank of the

\se
ond fundamental form" of the submanifolds H

1

q

and H

0

q

of T

�

q

M at any point is no greater

than dimV

q

. Indeed, let � 2 H

1

q

; then � 2 (T

v

V

q

)

?

, h�; vi = 1, for some v 2 V

q

. We have

�+ (T

v

V

q

+Rv)

?

� H

1

q

. So � belongs to an aÆne subspa
e of dimension n�dimV

q

� 1, whi
h is


ontained in H

1

q

. For � 2 H

0

q

, 9v 2 T

q

M su
h that � 2 (T

v

V

q

)

?

, h�; vi = 0. Then linear subspa
e

(T

v

V

q

+ Rv)

?

is 
ontained in H

0

q

. It follows that the se
ond fundamental forms of H

1

q

and H

0

q

have rank no greater than (dimV

q

� 
odimH

1

+1) and (dimV

q

� 
odimH

0

+1) 
orrespondently.

In the 
ases 1 and 2 the velo
ity of the Ja
obi 
urve � 7! J




(�), � 2 
, asso
iated with the

extremal 
, has rank no greater than dimV

�(�)

(see Prop. 1). The same is true for the Ja
obi


urves of the extremals in the 
ases 3 and 4, although Prop. 1 
annot be dire
tly applied.

Dimension of V

q

is the number of inputs or 
ontrol parameters in the 
ontrol system. Less

inputs means more \nonholonomi
 
onstraints" on the system. It happens that the rank of

velo
ity of any Ja
obi 
urve generated by the system never ex
eeds the number of inputs.

Note that by 
onstru
tion these Ja
obi 
urves are feedba
k invariants of the 
ontrol system

(i.e., they do not depend on a parametrization of the sets V

q

). Hen
e any symple
ti
 invariants

of the Ja
obi 
urves, asso
iated with extremals, de�nes a fun
tion on appropriate submanifold

of T

�

M that is a feedba
k invariant of the 
ontrol system. In this way the problem of �nding

feedba
k invariants of 
ontrol systems 
an be redu
ed to the mu
h more treatable problem of

�nding symple
ti
 invariants of 
ertain 
urves in the Lagrange Grassmannian.

A 
urve in the Lagrange Grassmannian is 
alled regular, if its velo
ity at any point is a non-

degenerated quadrati
 forms. Regular 
urves were studied in [1℄, where notions of the derivative


urve and the 
urvature operator were introdu
ed. A
tually the derivative 
urves of Ja
obi 
urves,

asso
iated with the hypersurfa
e H, provide a 
anoni
al 
onne
tion on the 
otangent bundle. If

H is a spheri
al bundle of a Riemannian manifold, then this 
onne
tion is just the Levi-Civita


onne
tion. The 
urvature operator of the Ja
obi 
urve is intimately related to the 
urvature

tensor of the 
anoni
al 
onne
tion.

In the present paper we develop general theory of 
urves in the Lagrangian Grassmannian.

The �rst steps in this dire
tion were made in [3℄. It makes sense to restri
t ourselves to studying

so-
alled monotoni
 (i.e, nonde
reasing or nonin
reasing) 
urves. The 
urve in Lagrangian Grass-

mannian is 
alled nonde
reasing (nonin
reasing), if the velo
ity at any its point is nonpositive

5



(
orrespondingly, nonnegative) quadrati
 form. Ja
obi 
urve asso
iated with the extremal of �nite

Morse index is automati
ally monotoni
.

This paper is organized as follows. In se
tion 2 we give the general 
onstru
tion of the

derivative 
urve and introdu
e two prin
ipal dis
rete 
hara
teristi
 of the 
urves in the Lagrange

Grassmannian: the rank and the weight. In parti
ular, regular 
urves have maximal rank and

minimal weight. Derivative 
urve is de�ned for any 
urve of the �nite weight. In se
tion 3 we

de�ne the 
urvature operator and show its role for the regular 
urves.

In se
tion 4 we study the 
ross-ratio of four points and an in�nitesimal 
ross-ratio of two

tangent ve
tors at two distin
t points in the Lagrange Grassmannian. The last one leads to an

intrinsi
 pairing V

0

; V

1

7! hV

0

j V

1

i, V

i

2 T

�

i

L(W ), i = 0; 1, of the tangent spa
es to two distin
t

points �

0

, �

1

of the Grassmannian. The pairing h

_

�(t) j

_

�(�)i of the velo
ities of the 
urve

t 7! �(t) gives a symmetri
 fun
tion of two variables whi
h keeps all essential information about

the 
urve. This fun
tion is de�ned out of the diagonal ft = �g and has a very simple singularity

at the diagonal:

h

_

�(t) j

_

�(�)i = �

k

(t� �)

2

� g

�

(t; �);

where k is the weight of the 
urve and g

�

(t; �) is a smooth fun
tion!

The �rst 
oming invariant of the parametrized 
urve, the generalized Ri

i 
urvature, is just

g

�

(t; t), the value of g

�

at the diagonal. For regular 
urves and for rank 1 
urves Ri

i 
urvature

is equal also to the tra
e of the de�ned earlier 
urvature operator.

In se
tion 5 we are fo
used on unparametrized 
urves. Our investigation is based on a simple


hain rule for a fun
tion g

�

. Indeed, let ' : R 7! R be a smooth monotoni
 fun
tion. It follows

dire
tly from de�nition of g

�

that

g

�Æ'

(t; �) = _'(t) _'(�)g

�

('(t); '(�)) + k

�

_'(t) _'(�)

('(t) � '(�))

2

�

1

(t� �)

2

�

In parti
ular,

g

�Æ'

(t; t) = _'(t)

2

g

�

('(t); '(t)) +

k

3

S(');

where S(') is a S
hwarzian derivative of '. The 
lass of lo
al parametrizations that kill the

generalized Ri

i 
urvature de�nes a 
anoni
al proje
tive stru
ture on the 
urve. The prin
i-

pal invariant of the unparametrized 
urve, the fundamental form, is a degree four di�erential

on the 
urve; in the 
anoni
al proje
tive parameter the fundamental form has the expression

1

2

�

2

g

�

��

2

(t; t)(dt)

4

.

In se
tion 6 we start a systemati
 study of the rank 1 
urves and show that a rank 1 
urve

has a 
onstant weight out of a dis
rete set of its interval of de�nition. In se
tion 7 we prove that

6



fun
tions

�

2i

g

�

��

2i

(t; t), 0 � i � m � 1 form a 
omplete system of symple
ti
 invariants of a rank 1

and a 
onstant weight 
urve �(�) in the Lagrange Grassmannian L(R

2m

).

The Lagrange Grassmannian L(R

2m

) is a submanifold of the manifold G(m; 2m) of all m-

dimensional subspa
es of R

2m

. The 
onstru
tions of the derivative 
urve, the fun
tion g

�

, the


anoni
al proje
tive stru
ture, and the fundamental form 
an be done in the same way for general


urves in G(m; 2m).

2 Derivative Curve

From now on W will be the 2m-dimensional linear spa
e provided with the symple
ti
 form

��. Let � be a Lagrangian subspa
e of W , i.e. � 2 L(W ). For any w 2 �, the linear form

��(�; w) vanishes on � and thus de�nes a linear form on W=�. The nondegenera
y of �� implies

that the relation w 7! ��(�; w), w 2 �, indu
es a 
anoni
al isomorphism �

�

=

(W=�)

�

and, by the


onjugation, �

�

�

=

W=�.

We set �

t

= f� 2 L(W ) : � \ � = 0g, an open everywhere dense subset of L(W ). Let

Sym

2

(�) be the spa
e of self-adjoint linear mappings from �

�

to �; this notation re
e
ts the

fa
t that Sym

2

(�) is the spa
e of quadrati
 forms on �

�

that is the symmetri
 square of �. �

t

possesses a 
anoni
al stru
ture of an aÆne spa
e over the linear spa
e Sym

2

(�) = Sym

2

((W=�)

�

).

Indeed, for any � 2 �

t

and 
oset (w + �) 2 W=�, the interse
tion � \ (w + �) of the linear

subspa
e � and the aÆne subspa
e w+� inW 
onsists of exa
tly one point. To a pair �;� 2 �

t

there 
orresponds a mapping (���) :W=�! �, where

(���)(w +�)

def

= � \ (w +�)�� \ (w +�):

It is easy to 
he
k that the identi�
ation W=� = �

�

makes (���) a self-adjoint mapping from

�

�

to �. Moreover, given � 2 �

t

, the 
orresponden
e � 7! (� ��) is a one-to-one mapping of

�

t

onto Sym

2

(�) and the axioms of the aÆne spa
e are obviously satis�ed.

Fixing � 2 �

t

one obtains a 
anoni
al identi�
ation �

�

=

W=� = �

�

. In parti
ular, (���) 2

Sym

2

(�) turns into the mapping from � to �. For the last linear mapping we will use the notation

h�;�;�i : �! �. In fa
t, this mapping has a mu
h more straightforward des
ription. Namely,

the relations W = � � �, � \ � = 0, imply that � is the graph of a linear mapping from � to

�. A
tually, it is the graph of the mapping h�;�;�i. In parti
ular, kerh�;�;�i = � \ �. If

� \ � = 0, then h�;�;�i = h�;�;�i

�1

.

Let us give 
oordinate representations of the introdu
ed obje
ts. We may assume that

W = R

m

� R

m

= f(x; y) : x; y 2 R

m

g;
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��((x

1

; y

1

); (x

2

; y

2

)) = hx

1

; y

2

i � hx

2

; y

1

i; � = R

m

� 0; � = 0� R

m

:

Then any � 2 �

t

takes the form � = f(x; Sx) : x 2 R

n

g, where S is a symmetri
 m�m matrix.

The operator h�;�;�i : � ! � is represented by the matrix S, while the operator h�;�;�i is

represented by the matrix S

�1

.

The 
oordinates in � indu
e the identi�
ation of Sym

2

� with the spa
e of symmetri
 m�m

matri
es. �

t

is an aÆne subspa
e over Sym

2

�; we �x � as the origin in this aÆne subspa
e and

thus obtain a 
oordinatization of �

t

by symmetri
 m �m matri
es. In parti
ular, the \point"

� = f(x; Sx) : x 2 R

n

g in �

t

is represented by the matrix S

�1

.

A subspa
e �

0

= f(x; S

0

x) : x 2 R

n

g is transversal to � if and only if det(S � S

0

) 6= 0. Let

us pi
k 
oordinates fxg in �

0

and �x � as the origin in the aÆne spa
e �

t

0

. In the indu
ed


oordinatization of �

t

0

the \point" � is represented by the matrix (S � S

0

)

�1

.

Let t 7! �(t) be a smooth 
urve in L(W ) de�ned on some interval I � R. We say that the


urve �(�) is ample at � if 9s > 0 su
h that for any representative �

s

�

(�) of the s-jet of �(�) at � ,

9t su
h that �

s

�

(t) \ �(�) = 0. The 
urve �(�) is 
alled ample if it is ample at any point.

We have given an intrinsi
 de�nition of an ample 
urve. In 
oordinates it takes the following

form: the 
urve t 7! f(x; S

t

x) : x 2 R

n

g is ample at � if and only if the fun
tion t 7! det(S

t

� S

�

)

has a root of �nite order at � .

The following lemma shows that analyti
 monotoni
 
urve (monotoni
 means that the 
urve

has nonnegative or nonpositive velo
ities at any point) 
an be a
tually redu
ed to the ample 
urve

by an appropriate fa
torization.

Lemma 2.1 Let �(t) be analyti
 monotoni
 
urve in L(W ). Then for any parameter � there

exists a subspa
e K of �(�) su
h that for all t suÆ
iently 
losed to � the following holds

K = �(t) \ �(�): (2.1)

In addition, if �(t) is not a 
onstant 
urve, then the 
urve t 7! �(t)=K is a well de�ned ample


urve in the Lagrange Grassmannian L(K

\

=K).

Proof. Without loss of generality suppose that the 
urve �(t) is nonde
reasing (i.e., has

nonnegative de�nite velo
ity at any point). Denote K

t

= �(t)\�(�). Let t 7! f(x; S

t

x) : x 2 R

n

g

be 
oordinate representation of the germ of �(t) at � . Then K

t

= Ker(S

t

� S

�

). By assumption

v ! h

d

dt

S

t

v; vi is nonnegative de�nite quadrati
 form on �(�). It implies that K

t

2

� K

t

1

for

t < t

1

< t

2

. Therefore for t > � suÆ
iently 
losed to � the subspa
e K

t

does not depend on t and

will be denoted by K. By analyti
ity the subspa
es K � �(t) for any t and the 
urve t 7! �(t)=K

is well de�ned ample 
urve in the Lagrange Grassmannian L(K

\

=K). �.
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Assume that �(�) is ample at � . Then �(t) 2 �(�)

t

for all t from a pun
tured neighborhood

of � . We obtain the 
urve t 7! �(t) 2 �(�)

t

in the aÆne spa
e �(�)

t

with the pole at � . We

denote by �

�

(t) the identi
al imbedding of �(t) in the aÆne spa
e �(�)

t

. The subs
ript � is

not super
uous, sin
e the aÆne stru
ture depends on �(�) and then on � . Fixing an \origin" in

�(�)

t

we make �

�

(t) a ve
tor fun
tion with values in Sym

2

(�) and with the pole at t = � . Su
h

a ve
tor fun
tion admits the expansion in the Laurent series at � . Obviously, only free term in

the Laurent expansion depends on the 
hoi
e of the \origin" we did to identify the aÆne spa
e

with the linear one. More pre
isely, the addition of a ve
tor to the \origin" results in the addition

of the same ve
tor to the free term in the Laurent expansion. In other words, for the Laurent

expansion of a 
urve in an aÆne spa
e, the free term of the expansion is a point of this aÆne

spa
e while all other terms are elements of the 
orresponding linear spa
e. In parti
ular,

�

�

(t) � �

0

(�) +

1

X

i=�l

i6=0

Q

i

(�)(t� �)

i

; (2.2)

where �

0

(�) 2 �(�)

t

, Q

i

(�) 2 Sym

2

�(�).

Assume that the 
urve �(�) is ample. Then �

0

(�) 2 �(�)

t

is de�ned for all � . The 
urve

� 7! �

0

(�) is 
alled the derivative 
urve of �(�).

Another 
hara
terization of �

0

(�) 
an be done in terms of the 
urves t 7! h�;�(t);�(�)i in

the linear spa
e Hom(�;�(�)), � 2 �(�)

t

. These 
urves have poles at � . The Laurent expansion

at t = � of the ve
tor fun
tion t 7! h�;�(t);�(�)i has zero free term if and only if � = �

0

(�).

The 
oordinate version of the series (2.2) is the Laurent expansion of the matrix-valued fun
-

tion t 7! (S

t

� S

�

)

�1

at t = � , where �(t) = f(x; S

t

x) : x 2 R

n

g.

Suppose that

(S

t

� S

�

)

�1

�

1

X

i=�l

A

i

(�)(t � �)

i

; (2.3)

Di�erentiating both sides of (2.3) w.r.t � and 
omparing 
oeÆ
ients of the 
orresponding expan-

sions one 
an get the following re
ursive type formula for the 
oeÆ
ients A

i

(�)

d

d�

A

i

(�) = (i+ 1)A

i+1

(�) +

i+l

X

j=�l

A

j

(�)

_

S

�

A

i�j

(�) (2.4)

that will be used in the sequel.

For monotoni
 ample 
urve � : I � R 7! L(W ) we introdu
e the following two notions
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De�nition 1 The rank of the velo
ity

_

�(�) will be 
alled a rank of the 
urve �(�) at � . The

order of zero of the fun
tion t 7! det(S

t

� S

�

) at � , where S

t

is a 
oordinate representation of

�(�), is 
alled a weight of �(�) at � .

It is easy to see that the rank and the weight of �(�) are integral valued upper semi
ontinuous

fun
tions of � . In parti
ular, they are lo
ally 
onstant on the open dense subset of the interval of

de�nition I. In the sequel we will be mostly 
on
entrated on the monotoni
 ample 
urves of the


onstant rank and weight.

3 Curvature operator and regular 
urves.

Using derivative 
urve one 
an 
onstru
t an operator invariant of the 
urve �(t) at any its

point. Namely, take velo
ities

_

�(t) and

_

�

0

(t) of �(t) and its derivative 
urve �

0

(t). Note that

_

�(t) is linear operator from �(t) to �(t)

�

and

_

�

0

(t) is linear operator from �

0

(t) to �

0

(t)

�

. Sin
e

the form � de�nes the 
anoni
al isomorphism between �

0

(t) and �(t)

�

, the following operator

R(t) : �(t)! �(t) 
an be de�ned:

R(t) = �

_

�

0

(t) Æ

_

�(t) (3.1)

This operator is 
alled 
urvature operator of � at t.

Remark 1 In the 
ase of Riemannian geometry the operator R(t) is similar to the so-
alled

Ri

i operator v ! R

r

( _
(t); v) _
(t), whi
h appears in the 
lassi
al Ja
obi equation r

_
(t)

r

_
(t)

V +

R

r

( _
(t); V ) _
(t) = 0 for Ja
obi ve
tor �elds V along the geodesi
 
(t) (here R

r

is 
urvature tensor

of Levi-Civita 
onne
tion r), see [1℄. This is the reason for the sign \�" in (3.1).

The 
urvature operator plays an important role for so-
alled regular 
urves. The 
urve �(t)

in Lagrangian Grassmannian is 
alled regular, if the quadrati
 form

_

�(t) is nondegenerated for

all t. If the 
urve �(�) is regular and has a 
oordinate representation �(t) = f(x; S

t

x) : x 2 R

n

g

then the fun
tion t 7! (S

t

� S

�

)

�1

has a simple pole at � . Indeed,

(S

t

� S

�

)

�1

=

�

_

S

�

(t� �) +O((t� �)

2

)

�

�1

=

_

S

�1

�

t� �

�

I +O(t� �)

�

�1

=

_

S

�1

�

t� �

+O(1) (3.2)

So, in the notation of (2.3) for the regular 
urve we have l = 1, A

�1

=

_

S

�1

�

and relation (2.4) 
an

be transformed into the following re
ursive formula

A

i+1

(�) =

1

i+ 3

0

�

d

d�

A

i

(�)�

i

X

j=0

A

j

(�)

_

S

�

A

i�j

(�)

1

A

(3.3)
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In parti
ular,

A

0

(�) =

1

2

d

d�

A

�1

(�) = �

1

2

_

S

�1

�

�

S

�

_

S

�1

�

(3.4)

and, by dire
t 
al
ulations,

A

1

(�) =

1

3

(

d

d�

A

0

(�)�A

0

(�)

_

S

�

A

0

(�)) =

�

1

4

�

_

S

�1

�

�

S

�

�

2

�

1

6

_

S

�1

�

S

(3)

�

�

_

S

�1

�

(3.5)

For a given � one 
an 
hoose a 
oordinate representation S

t

of the 
urve �(t) su
h that

A

0

(�) = 0. Namely take S

t

the matrix of the linear mapping < �(�);�(t);�

0

(�) >. In this


oordinate representation the derivative

_

A

0

(�) is a matrix 
orresponding to the velo
ity

_

�

0

(�) of

the derivative 
urve. Also, from (3.5) it follows that

_

A

0

(�) = 3A

1

(�) . This together with (3.1)

implies that the matrix R(�) 
orresponding in the 
hosen basis of �(�) to the 
urvature operator

R(�) has the following form

R(�) = �3A

1

(�)(A

�1

(�))

�1

=

1

2

_

S

�1

�

S

(3)

�

�

3

4

�

_

S

�1

�

�

S

�

�

2

=

d

d�

�

(2

_

S

�

)

�1

�

S

�

�

�

�

(2

_

S

�

)

�1

�

S

�

�

2

(3.6)

Sin
e Q

1

(�) Æ (Q

�1

(�))

�1

: �(�) 7! �(�) is well de�ned operator, we 
an write the �rst equality

of (3.6) in the following operator form

R(�) = Q

1

(�) Æ (Q

�1

(�))

�1

(3.7)

This implies a
tually that the formula (3.6) is also true for any 
oordinate representation S

t

of

the 
urve �(t) (even without the assumption that A

0

(�) = 0).

Note that the right-hand side of (3.6) is a matrix analog of so-
alled S
hwarz derivative or

S
hwarzian. Let us re
all that the di�erential operator:

S : ' 7!

1

2

'

(3)

'

0

�

3

4

�

'

00

'

0

�

2

=

d

dt

�

'

00

2'

0

�

�

�

'

00

2'

0

�

2

; (3.8)

a
ting on s
alar fun
tion ' is 
alled S
hwarzian. The operator S is 
hara
terized by the following

remarkable property: General solution of the equation S'= � w.r.t ' is a M�obius transformation

(with 
onstant 
oeÆ
ients) of some parti
ular solution of this equation. The matrix analog of

this operator has similar property, 
on
erning \matrix M�obius transformation" of the type S 7!

(C + DS)(A + BS)

�1

. In parti
ular, if R(t) � 0, then the 
oordinate representation S

t

of our


urve has the form

S

t

= (C +Dt)(A+Bt)

�1

where

0

�

A B

C D

1

A

2 Sp(2m)

For further information about the regular 
urves we refer to [1℄.

11



4 Expansion of the 
ross-ratio and Ri

i 
urvature.

For the nonregular 
urve �(t) = f(x; S

t

x) : x 2 R

n

g, the fun
tion t 7! (S

t

� S

�

)

�1

has a pole

of order greater than 1 at � and it is mu
h more diÆ
ult to 
ompute its Laurent expansion. For

example, in the nonregular 
ase there is no dire
t re
ursive formula like (3.3). In this se
tion we

show how to 
onstru
t numeri
al invariants for 
urves with 
onstant weight using the notion of


ross-ratio of four \points" in the Lagrange Grassmannian.

Let �

0

, �

1

, �

2

, and �

3

be Lagrangian subspa
es of W su
h that �

0

\�

3

= �

1

\�

2

= 0. Also

suppose for simpli
ity that �

0

\ �

2

= 0. The following linear mappings h�

0

;�

1

;�

2

i : �

0

! �

2

,

h�

2

;�

3

;�

0

i : �

2

! �

0

are well de�ned. The 
ross-ratio

h

�

0

;�

1

;�

2

;�

3

i

of four "points" �

0

, �

1

,

�

2

, and �

3

in the Lagrangian Grassmannian is, by de�nition, the following linear operator in �

0

:

h

�

0

;�

1

;�

2

;�

3

i

= h�

2

;�

3

;�

0

ih�

0

;�

1

;�

2

i: (4.1)

This notion is a \matrix" analog of the 
lassi
al 
ross-ratio of four points in the proje
tive

line. Indeed, let �

i

= f(x; S

i

x) : x 2 R

n

g, then, in 
oordinates fxg, the 
ross-ratio takes the form:

h

�

0

;�

1

;�

2

;�

3

i

= (S

0

� S

3

)

�1

(S

3

� S

2

)(S

2

� S

1

)

�1

(S

1

� S

0

) (4.2)

By 
onstru
tion, all 
oeÆ
ients of the 
hara
teristi
 polynomial of

h

�

0

;�

1

;�

2

;�

3

i

are invariants

of four subspa
es �

0

;�

1

;�

2

, and �

3

.

The assumption that �

0

\ �

2

= 0 is satis�ed in our further 
onsiderations but the 
ross-ratio


an be de�ned also without this assumption. Indeed, the matrix in the righthand side of (4.2)

is well de�ned also in the 
ase �

0

\ �

2

6= 0 and this matrix is transformed to a similar matrix

under any 
hange of 
oordinates. So, we obtain the 
lass of similar matri
es that is symple
ti


invariant of four subspa
es �

0

;�

1

;�

2

, and �

3

. This 
lass 
an be taken as a de�nition of 
ross-ratio

h

�

0

;�

1

;�

2

;�

3

i

(see [7℄ for the details).

Given two tangent ve
tors V

0

2 T

�

0

L(W ) and V

1

2 T

�

1

L(W ), where �

0

and �

1

are transversal

Lagrangian subspa
es, one 
an de�ne an in�nitesimal analog of the 
ross-ratio. V

0

is the self-

adjoint linear mapping from �

0

to �

�

0

. The form � identi�es 
anoni
ally �

�

0

with �

1

. Under

this identi�
ation V

0


an be 
onsidered as the linear mapping from �

0

to �

1

. In the same way,

identifying �

�

1

with �

0

, we look on V

1

as on the operator from �

1

to �

0

. Therefore, the following

operator V

1

� V

0

: �

0

! �

0


an be de�ned

V

1

� V

0

def

= V

1

Æ V

0

(4.3)
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This operator will be 
alled an in�nitesimal 
ross-ratio of a pair (V

0

; V

1

) 2 T

�

0

L(W )� T

�

1

L(W ).

The in�nitesimal 
ross-ratio is symple
ti
 invariant of the tangent ve
tors V

0

and V

1

.

One 
an de�ne the following bilinear form h� j �i

�

0

;�

1

on T

�

0

L(W )� T

�

1

L(W ):

hV

0

j V

1

i

�

0

;�

1

def

= tr(V

0

� V

1

) (4.4)

This bilinear form will be 
alled an inner pairing of the tangent spa
es T

�

0

L(W ) and T

�

1

L(W ).

If �

i

= f(x; S

i

x) : x 2 R

n

g and P

i

are symmetri
 matri
es 
orresponding to V

i

, i = 0; 1, then

V

1

� V

0

= (S

0

� S

1

)

�1

P

1

(S

1

� S

0

)

�1

P

0

(4.5)

First note that if the 
urve �(t) is regular, then for any t

0

it is easy to expand the following

operator fun
tion

(t

1

; t

2

; t

3

) 7!

h

�(t

0

);�(t

1

);�(t

2

);�(t

3

)

i

h

t

0

; t

1

; t

2

; t

3

i

(4.6)

in the Taylor expansion at the diagonal point (t

0

; t

0

; t

0

), where

h

t

0

; t

1

; t

2

; t

3

i

=

(t

1

�t

0

)(t

3

�t

2

)

(t

2

�t

1

)(t

0

�t

3

)

is the

usual 
ross-ratio of four numbers t

0

, t

1

, t

2

, and t

3

. Namely, the following expansion

h

�(t

0

);�(t

1

);�(t

2

);�(t

3

)

i

h

t

0

; t

1

; t

2

; t

3

i

= I +

1

3

R(t

0

)(t

2

� t

0

)(t

3

� t

1

) +O

0

�

 

3

X

i=1

(t

i

� t

0

)

2

!

3=2

1

A

(4.7)

is valid, where, as before, R(t) is the 
urvature operator. Relation (4.7) shows that the 
urvature

operator is the �rst nontrivial 
oeÆ
ient of the Taylor expansion of the 
ross-ratio.

Unfortunately, for the nonregular 
urves there are no simple expansions of the operator fun
-

tion (4.6) or any other operator fun
tions, involving 
ross-ratio itself. Instead of this one 
an try

to expand the 
oeÆ
ients of the 
hara
teristi
 polynomial of the 
ross-ratio. Now we are going

to show how to use this idea to 
onstru
t invariants of the 
urve �(t) of the 
onstant weight k in

L(W ).

By the above the fun
tion (t

0

; t

1

; t

2

; t

3

) ! det

h

�(t

0

);�(t

1

);�(t

2

);�(t

3

)

i

is symple
ti
 invari-

ants of the 
urve �(t). Using this fa
t, let us try to �nd symple
ti
 invariants of �(t) that are

fun
tions of t. First we introdu
e the following fun
tion:

G(t

0

; t

1

; t

2

; t

3

) = ln

0

B

�

det

h

�(t

0

);�(t

1

);�(t

2

);�(t

3

)

i

h

t

0

; t

1

; t

2

; t

3

i

k

1

C

A

; (4.8)
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The fun
tion G(t

0

; t

1

; t

2

; t

3

) is also a symple
ti
 invariant of �(t) and in addition it 
an be de�ned

as a smooth fun
tion in a neighborhood of any diagonal point (t; t; t; t) . Indeed, by the de�nition

of weight

det(S

t

0

� S

t

1

) = (t

0

� t

1

)

k

X(t

0

; t

1

); (4.9)

where

X(t; t) 6= 0 (4.10)

for any t. The fun
tion X(t

0

; t

1

) is symmetri
, sin
e by 
hanging the order in (4.9) we obtain that

X 
an be symmetri
 or antisymmetri
, but the last 
ase is impossible by (4.10).

Let us de�ne another symmetri
 fun
tion

f(t

0

; t

1

) = lnX(t

0

; t

1

) (4.11)

The fun
tion f(t

0

; t

1

) is smooth in a neighborhood of any diagonal point (t; t) and by (4.2 ),

(4.8)

G(t

0

; t

1

; t

2

; t

3

) = f(t

1

; t

0

)� f(t

2

; t

1

) + f(t

3

; t

2

)� f(t

0

; t

3

) (4.12)

Hen
e G(t

0

; t

1

; t

2

; t

3

) 
an be de�ned as a smooth fun
tion in a neighborhood of any diagonal

point (t; t; t; t). Using this fa
t one 
an 
onstru
t the following fun
tions of two variables that are

symple
ti
 invariants of the 
urve �(t)

h(t

0

; t

1

) = G(t

0

; t

1

; t

1

; t

0

) = 2f(t

0

; t

1

)� f(t

0

; t

0

)� f(t

1

; t

1

) (4.13)

g(t

0

; t

1

) =

1

2

�

2

�t

0

�t

1

h(t

0

; t

1

) =

�

2

�t

0

�t

1

f(t

0

; t

1

) (4.14)

On the 
ontrary the fun
tion f(t

0

; t

1

) depends on the 
hoi
e of the 
oordinate representation S

t

.

It follows from (4.13) that h(t

0

; t

0

) � 0 and

�

�t

0

h(t

0

; t

0

) � 0. Therefore the fun
tion h(t

0

; t

1

)


an be re
overed from g(t

0

; t

1

). Moreover, the fun
tion G(t

0

; t

1

; t

2

; t

3

) 
an be easily re
overed from

h(t

0

; t

1

) ( and therefore from g(t

0

; t

1

)). Namely, by (4.12) and (4.14)

G(t

0

; t

1

; t

2

; t

3

) =

1

2

(h(t

1

; t

0

)� h(t

2

; t

1

) + h(t

3

; t

2

)� h(t

0

; t

3

)) (4.15)

So, g or h keep all the information on G and thus on det

h

�(t

0

);�(t

1

);�(t

2

);�(t

3

)

i

.
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The fun
tion g(t

0

; t

1

) 
an be expanded in the formal Taylor series at the point (t; t) in the

following way:

g(t

0

; t

1

) �

1

X

i;j=0

�

i;j

(t)(t

0

� t)

i

(t

1

� t)

j

(4.16)

with

�

i;j

(t) = �

j;i

(t) (4.17)

Sin
e the fun
tion g is symple
ti
 invariant of the 
urve �(t), all 
oeÆ
ients �

i;j

(t), i; j � 0,

are also symple
ti
 invariants.

The following natural questions arises: Does the fun
tion g(t

0

; t

1

) determine the 
urve �(t)

with pres
ribed rank and weight uniquely, up to a symple
ti
 transformation, and whi
h set of

the 
oeÆ
ients �

i;j

(t) determine the fun
tion g(t

0

; t

1

)? We shall give the positive answers on both

of these questions in the se
tion 7 for the 
urve of rank 1 (see Theorems 1 and 2).

Meanwhile, let us prove the following simple relation between 
oeÆ
ients �

i;j

(t)

�

0

i;j

(t) = (i+ 1)�

i+1;j

+ (j + 1)�

i;j+1

(4.18)

Indeed, from (4.16) it follows that

�

i;j

(t) =

1

i! j!

�

i+j

g

�t

i

0

�t

j

1

(t; t):

Therefore

�

0

i;j

(t) =

1

i! j!

�

�

i+j+1

�t

i+1

0

�t

j

1

g(t; t) +

�

i+j+1

�t

i

0

�t

j+1

1

g(t; t)

�

=

1

i! j!

�

(i+ 1)! j!�

i+1;j

(t) + i! (j + 1)!�

i;j+1

(t)

�

that implies (4.18).

As a 
orollary of the relation (4.18) we obtain the following lemma

Lemma 4.1 The 
oeÆ
ients �

0;2k

(t), k � 0 determine uniquely the formal expansion (4.16).

Proof. For a given n � 0 let us 
onsider all equations of the type (4.18) with i+ j = n and

i � j. Consider two 
ases

1) If n is even then we have

n

2

+1 independent equations with respe
t to

n

2

+1 variables �

i;j

(t),

i+ j = n+1, 0 � i <

n

2

. This fa
t together with symmetri
 relation (4.17) implies that all �

i;j

(t)

with i+ j = n+ 1 
an be expressed by derivatives of �

i;j

with i+ j = n.

2) If n is odd then we have

n+1

2

independent equations with respe
t to

n+1

2

+ 1 variables �

i;j

,

i+ j = n+1, 0 � i <

n+1

2

. Starting from i = 0 one 
an express step by step all �

i;j

, i+ j = n+1,

15



1 � i <

n+1

2

by �

0;n+1

and derivatives of �

i;j

with i+ j = n. Then by symmetri
 relation (4.17)

we have that all 
oeÆ
ients �

i;j

(t) with i+ j = n+ 1 
an be expressed by �

0;n+1

and derivatives

of �

i;j

with i+ j = n.

So, starting from n = 0 and applying step by step the arguments of 1) and 2), one 
an

expressed all �

i;j

(t) by �

0;2k

(t), k � 0, and their derivatives. �

It turns out that there is simple 
onne
tion between fun
tion g, the inner pairing de�ned by

(4.4), and the 
oeÆ
ients Q

i

of the Laurent expansion (2.2).

Lemma 4.2 The following relations hold

h

_

�(t) j

_

�(�) i

�(t);�(�)

= �

k

(t� �)

2

� g(t; �) (4.19)

tr

�

Q

i

(t)

_

�(t)

�

= 0; i < �1; (4.20)

tr

�

Q

�1

(t)

_

�(t)

�

= k; (4.21)

tr

�

Q

i

(t)

_

�(t)

�

= �

1

i

�

0;i�1

(t); i 2 N (4.22)

Proof. Let �

�

(t) be the identi
al imbedding of �(t) in the aÆne spa
e �(�)

t

(see se
tion 2).

Then the inner pairing h

_

�(t) j

_

�(�) i

�(t);�(�)


an be expressed in the following way

h

_

�(t) j

_

�(�) i

�(t);�(�)

= tr

�

�

�t

�

�

(t) Æ

_

�(�)

�

(4.23)

In the 
oordinates the previous relation 
an be written as follows

h

_

�(t) j

_

�(�) i

�(t);�(�)

= tr

�

�

�t

�

(S

t

� S

�

)

�1

�

_

S

�

�

(4.24)

Let us prove (4.19). By de�nition

ln(det(S

t

� S

�

)) = k ln(t� �) + f(t; �)

Di�erentiating the last equality w.r.t. � and using the fa
t that

d

d�

�

ln(detY (�))

�

= tr

�

(Y (�))

�1

_

Y (�)

�

for some matrix 
urve Y (�) we obtain:
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�tr

�

(S

t

� S

�

)

�1

_

S

�

�

= �

k

t� �

+

�

��

f(t; �)

Di�erentiating the last equality w.r.t. t and using (4.14) we get

�tr

�

�

�t

�

(S

t

� S

�

)

�1

�

_

S

�

�

=

k

(t� �)

2

+

�

2

�t��

f(t; �) =

k

(t� �)

2

+ g(t; �)

This together with (4.24) implies (4.19).

In order to prove (4.20)-(4.22) let us expand both sides of (4.19) in the 
orrespponding formal

series. On one hand by (2.2) we have

tr

�

�

�t

�

�

(t) Æ

_

�(�)

�

�

1

X

i=�l�1

(i+ 1)tr

�

Q

i+1

(�)

_

�(�)

�

(t� �)

i

(4.25)

On the other hand by (4.16)

g(t; �) �

1

X

0

�

0;i

(�)(t� �)

i

(4.26)

Comparing 
oeÆ
ients of (4.25) and (4.26) we get (4.20)-(4.22). �

For the regular 
urve using (3.6) and applying formula (4.22) to the �rst appearing in (4.16)


oeÆ
ient �

0;0

(t) we obtain

�

0;0

(t) =

1

3

trR(t) =

1

3

trS(S

t

); (4.27)

where S denotes S
hwarz operator. The last relation and Remark 1 shows that �

0;0

generalizes the

Ri

i 
urvature in the Riemannian geometry. It justi�es the following de�nition for the general


urve of 
onstant rank and weight

De�nition 2 The �rst appearing in (4.16) 
oeÆ
ient �

0;0

(t) is 
alled Ri

i 
urvature of �(t).

In the sequel the Ri

i 
urvature will be denoted by �(t).

At the end of this se
tion we 
ompute the expansion of g(t

0

; t

1

) in the 
ase dimW = 2. In this


ase L(W ) is in fa
t the real proje
tive line RP

1

and 
oordinate representation S

t

of the 
urve is

s
alar fun
tion . Therefore the relation (4.22) 
an be rewritten in the following form

�

0;i

= �(i+ 1)A

i+1

(t)

_

S

t

;
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where A

i

are as in (2.3). In parti
ular from (4.27) it follows that

�(t) =

1

3

S(S

t

); (4.28)

i.e., in the s
alar 
ase the Ri

i 
urvature of the 
urve �(t) is S
hwarzian of its 
oordinate repre-

sentation.

Denote by

B

i

(�) = �

1

i

�

0:i�1

= A(�)

_

S

�

(4.29)

Multiplying both sides of (3.3) by

_

S

�

and using 
ommutativity of multipli
ation in the s
alar 
ase,

one 
an easily obtain the following re
ursive formula for B

i

(�).

B

i+1

(�) =

1

i+ 3

0

�

d

d�

B

i

(�)�

i�1

X

j=1

B

j

(�)B

i�j

(�)

1

A

; i 2 N (4.30)

As a 
onsequen
e of Lemma 4.1 and formulas (4.28)� (4.30) one 
an obtain the following

Proposition 2 In the s
alar 
ase (i.e., dimW = 2) all 
oeÆ
ients �

i;j

(t) 
an be expressed by

Ri

i 
urvature (that is S
hwarzian of any 
oordinate representation of the 
urve �(t)) and its

derivative. The fun
tion g(t; �) is identi
ally equal to zero i� 
oordinate representations of the


urve �(t) are M�obius transformations.

5 Fundamental form of the unparametrized 
urve.

The Ja
obi 
urve 
onstru
ted in the Introdu
tion is a
tually unparametrized 
urve, i.e., one-

dimensional submanifolds in Lagrange Grassmannian. Therefore it is natural to �nd symple
-

ti
 invariants of unparametrized 
urves in L(W ). Espe
ially it is important for Ja
obi 
urves

of abnormal extremals whi
h (in opposite to the normal extremals) a priori have no spe
ial

parametrizations.

First of all we want to show how, using the Ri

i 
urvature, one 
an de�ne a 
anoni
al pro-

je
tive stru
ture on the unparametrized 
urve �(�). For this let us 
he
k how the Ri

i 
urvature

is transformed by a reparametrization of the 
urve �(t).

Let � = '(t) be a reparametrization and let

�

�(�) = �('

�1

(�)). For some 
oordinate repre-

sentation S

t

of �(t) let

�

S

�

= S

'

�1

(�)

be the 
oordinate representation of

�

�(�). Denote by

�

f the

fun
tion playing for

�

S

�

the same role as the fun
tion f de�ned by (4.11) plays for S

t

. Then from

(4.11) it follows that

�

f(�

0

; �

1

) = f(t

0

; t

1

)� k ln

�

'(t

0

)� '(t

1

)

t

0

� t

1

�

; (5.1)
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where �

i

= '(t

i

), i = 0; 1.

Now denote by �g,

�

�

i;j

fun
tions playing for

�

�(�) the same role as the fun
tions g,�

i;j

de�ned

by (4.14) and (4.16) play for �(t).

Note also that we 
an look on the fun
tion '(t) as on the 
oordinate representation of some


urve in RP

1

= L(W ) with dimW = 2. So, all 
onstru
tions and formulas of the previous se
tion


an be applied to this 
ase. We denote by g

'

(t

0

; t

1

) the fun
tion de�ned by (4.11), (4.14) with S

t

repla
ed by '(t). Then di�erentiating both sides of (5.1) on
e w.r.t. t

0

and twi
e t

1

we get

�g ('(t

0

); '(t

1

))'

0

(t

0

)'

0

(t

1

) = g(t

0

; t

1

)� kg

'

(t

0

; t

1

); (5.2)

By (4.16) and (4.28) it follows that the substitution t

0

= t

1

= t into (5.2) give us the following

reparametrization rule for Ri

i 
urvature

��(�)('

0

(t))

2

= �(t)�

k

3

S('(t)) (5.3)

Now we would like to �nd all reparametrizations � = '(t) su
h that the Ri

i 
urvature ��(�)

in the new parameter � is identi
ally equal to zero. The reparametrization rule (5.3) implies that

su
h reparametrization have to satisfy the following di�erential equation

S ('(t)) =

3�(t)

k

(5.4)

This equation has a solutions at least lo
ally (i.e., in a neighborhood of any given point) and

as was mentioned already in the se
tion 3 any two solution are transformed one to another by

M�obius transformation. In other words the set of all parametrization of �(�) with Ri

i 
urvature

identi
ally equal to zero de�nes a proje
tive stru
ture on �(�) (any two parametrization from this

set are transformed one to another by M�obius transformation). We 
all it the 
anoni
al proje
tive

stru
ture of the 
urve �(�). The parameters of the 
anoni
al proje
tive stru
ture will be 
alled

proje
tive parameters.

Now we give a 
onstru
tion of a spe
ial form on unparametrized 
urve �(�) (namely, the

di�erential of degree four on �(�) ), whi
h is the �rst appearing invariant of the unparametrized


urve. We will 
all it the fundamental form of the 
urve �(�).

Let t be a proje
tive parameter on �(�). Then by de�nition �(t) � 0, and by (4.18) �

0;1

(t) �

1

2

�

0

0;0

(t) � 0 . Therefore by (4.26) we obtain that in proje
tive parameter

g(t

0

; t

1

) = �

0;2

(t

0

)(t

1

� t

0

)

2

+O

�

(t

1

� t

0

)

3

�

(5.5)
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Let � be another proje
tive parameter on �(�) i.e., � = '(t) =

at+b


t+d

. Then by Proposition 2

g

'

(t

0

; t

1

) � 0. Substituting this to the (5.2) we have

�g ('(t

0

); '(t

1

))'

0

(t

0

)'

0

(t

1

) = g(t

0

; t

1

); (5.6)

where �

i

= '(t

i

), i = 0; 1. Using (5.5), we 
ompare the 
oeÆ
ients of the �rst terms in the Taylor

expansions of both sides of (5.6). As a result we obtain

�

�

0;2

('(t

0

))('

0

(t

0

))

4

= �

0;2

(t

0

)

or

�

�

0;2

(�)(d�)

4

= �

0;2

(t)(dt)

4

(5.7)

It means that the form �

0;2

(t)(dt)

4

does not depend on the 
hoi
e of the proje
tive parameter

t. We will 
all this form a fundamental form of the 
urve �(�) and will denote by A.

If t is an arbitrary (not ne
essarily proje
tive) parameter on the 
urve �(�), then the funda-

mental form A in this parameter has to be of the form A(t)(dt)

4

, where A(t) is a smooth fun
tion

(the "density" of the fundamental form).

Lemma 5.1 For arbitrary parameter t the density A(t) of the fundamental form satis�es the

following relation

A(t) = �

0;2

(t)�

3

5k

�(t)

2

�

3

20

�

00

(t) (5.8)

or, equivalently,

A(t) =

�

1

10

�

�

�t

0

+

�

�t

1

�

2

�

1

2

�

2

�t

0

�t

1

�

g(t

0

; t

1

)

�

�

�

t

0

=t

1

=t

�

3

5k

g(t; t)

2

: (5.9)

Proof. Let � = '(t) be a reparametrization su
h that � be a proje
tive parameter. It means that

'(�) satis�es the equation (5.4). Denote by �

'

i;j

(t

0

; t

1

) the 
oeÆ
ients de�ned by (4.11), (4.14)

and (4.16) with S

t

repla
ed by '(t). Using (5.5), 
ompare the 
oeÆ
ients of the �rst terms in the

Taylor expansions of both sides of (5.6). As a result we obtain

�

�

0;2

('(t

0

))('

0

(t

0

))

4

= �

0;2

(t

0

)� k�

'

0;2

(t

0

)

or

A =

�

�

0;2

(�)(d�)

4

=

�

�

0;2

(t)� k�

'

0;2

(t)

�

(dt)

4

(5.10)
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To 
omplete the proof it remains to 
ompute the 
oeÆ
ient �

'

0;2

(t

0

). For this we will use the

re
ursive formula (4.30), where B

i

are de�ned by (4.29) with �

'

0;i

instead of �

0;2

. From (4.30) it

follows that

B

2

(t) =

1

4

B

0

1

(t);

B

3

(t) =

1

5

�

B

0

2

(t)� (B

1

(t))

2

�

=

1

20

B

00

1

(t)�

1

5

(B

1

(t))

2

(5.11)

From (4.28), (4.29), and (5.4) it follows that

B

1

(t) = ��

'

0;0

(t) = �

1

3

S ('(t)) = �

�(t)

k

Then by (4.30) and (5.11)

�

'

0;2

(t) = �3B

3

(t) =

3

20k

�

00

(t) +

3

5k

2

�(t)

2

This together with (5.10) implies (5.8). To obtain (5.9) we just rewrite (5.8), taking into a

ount

the 
onne
tion between the fun
tion g(t

0

; t

1

) and the fun
tions �(t) (= �

0;0

(t)), �

0;2

(t) given by

expansion (4.16)(the expression (5.9) is just the most symmetri
 w.r.t. t

0

and t

1

). �

If A(t) does not 
hange sign, then the 
anoni
al length element jA(t)j

1

4

dt is de�ned on �(�).

The 
orresponding parameter � (i.e., length with respe
t to this length element) is 
alled a nor-

mal parameter (in parti
ular, it implies that abnormal extremals may have 
anoni
al (normal)

parametrization). Cal
ulating the Ri

i 
urvature �

n

(�) of �(�) in the normal parameter, we ob-

tain a fun
tional invariant of the unparametrized 
urve. We will 
all it proje
tive 
urvature of the

unparametrized 
urve �(�). If t = '(�) is the transition fun
tion between a proje
tive parameter

t and the normal parameter � , then by (5.4) it follows that �

n

(�) =

k

3

S ('(�)).

At the end of this se
tion we give an expli
it formula for the fundamental form of the regular


urve in terms of its 
urvature operator. First note that by de�nition the weight k of the regular


urve is equal to

1

2

dim W (one 
an also derive it from (3.2) and (4.21)).

Lemma 5.2 The fundamental form A of the regular 
urve �(t) in the Lagrange Grassmannian

L(W ) satis�es the following relation

A =

1

15

�

tr

�

R(t)

2

�

�

1

k

�

trR(t)

�

2

�

(dt)

4

; (5.12)

where R(t) is the 
urvature operator of �(t) de�ned by (3.1) and k =

1

2

dim W .
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Proof. Let us 
ompute �

0;2

(t). We will use the notation of (2.2) and (2.3). By (4.22)

�

0;2

(t) = �3tr (Q

3

(t)

_

�(t)) = �3tr (A

3

(t)

_

S(t)) (5.13)

For a given

�

t 
hoose for simpli
ity a 
oordinate representation S

t

of the 
urve �(t) su
h that

A

0

(

�

t) = 0. Then by (3.3)

A

3

(

�

t) =

1

5

�

_

A

2

(

�

t)�A

1

(

�

t)

_

S

�

t

A

1

(

�

t)

�

(5.14)

From (3.4) it follows that the 
ondition A

0

(

�

t) = 0 is equivalent to

�

S

�

t

= 0. It implies that

_

A

2

(

�

t)

_

S

�

t

=

d

dt

(A

2

(t)

_

S

t

)j

t=

�

t

. Therefore multiplying (5.14) by S

�

t

and taking tra
e from both sides

we obtain

tr

�

A

3

(

�

t)

_

S

�

t

�

=

1

5

d

dt

tr

�

A

2

(

�

t)

_

S

�

t

�

�

1

5

tr

�

(A

1

(

�

t)

_

S

�

t

)

2

�

(5.15)

Now by (4.22) and (4.18)

tr

�

A

2

(

�

t)

_

S

�

t

�

= �

1

2

�

0;1

(

�

t) = �

1

4

�

0

(

�

t) (5.16)

On the other hand by (3.6) (A

1

(

�

t)

_

S

�

t

) = �

1

3

R(

�

t). This and (5.16) imply that (5.15) 
an be

written in the following form

tr

�

A

3

(

�

t)

_

S

�

t

�

= �

1

20

�

00

(

�

t)�

1

45

tr

�

R(

�

t)

2

�

Taking into a

ount (5.14) we obtain by (5.8) that

A(

�

t) =

3

20

�

00

(

�

t) +

1

15

tr

�

R(

�

t)

2

�

�

3

5k

�(

�

t)

2

�

3

20

�

00

(

�

t) =

1

15

tr

�

R(

�

t)

2

�

�

3

5k

�(

�

t)

2

Finally, note that � =

1

3

trR (see (4.27)). Substituting this to the last relation we obtain

(5.12).�

Note that in the s
alar 
ase (i.e., when dim W = 2) the fundamental form A is identi
ally

equal to zero.

Remark 2 All 
onstru
tions of se
tions 3 - 5 
an be done for the 
urve in the Grassmannian

G(m; 2m) ( the set of all m-dimensional subspa
es in the 2m-dimensional linear spa
e) instead of

Lagrangian Grassmannian by the a
tion of the group GL(2m) instead of Symple
ti
 Group.
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6 The rank 1 
urves: preliminary steps.

In the present se
tion we start a systemati
 study of the 
urves of rank 1 in the Lagrange

Grassmannian L(W ) with dimW = m. We 
onsider a rank 1 ample 
urve � : I 7! L(W ) with a

maybe non
onstant weight, where I is some interval on the real line. We introdu
e a 
anoni
al

basis on ea
h subspa
e �(t) and 
ompute some 
hara
teristi
s of the 
urve, in parti
ular, its

weight at any point. Finally, we show that the 
urve � has the 
onstant weight equal to m

2

on

the set with dis
rete 
omplement in I. All this will prepare us to the next se
tion, where the


urves of rank 1 and 
onstant weight will be investigated.

Without loss of generality, suppose that �(�) is monotoni
ally nonde
reasing, i.e., the ve-

lo
ities

_

�(t) are nonnegtive de�nite quadrati
 forms. As in se
tion 2, let �

�

(t) be the identi
al

imbedding of �(t) in the aÆne spa
e �(�)

t

. The velo
ity

�

�t

�

�

(t) is well de�ned self-adjoint

linear mapping from �(�)

�

to �(�), i.e., an element of Sym

2

�(�). Moreover, by our assumptions,

�

�t

�

�

(t) is a nonpositive self-adjoint linear mapping of rank 1. So for t 6= � there exists a unique,

up to the sign, ve
tor w(t; �) 2 �(�) su
h that for any v 2 �(�)

�

hv;

�

�t

�

�

(t)vi = �hv; w(t; �)i

2

(6.1)

Remark 3 From the de�nition of w(t; �) it follows easily that for given � the germ of the


urve �(t) at t = � is de�ned uniquely by �(�), the derivative subspa
e �

0

(�), and the germ of

the fun
tion t 7! w(t; �) at t = � . Sin
e the Symple
ti
 Group a
ts transitively on the set of pairs

of transversal Lagrange subspa
es, one 
an 
on
lude that the germ of the 
urve �(t) at t = � is

de�ned uniquely, up to a symple
ti
 transformation, by the germ of the fun
tion t 7! w(t; �) at

t = � .

The fun
tion t 7! �

�

(t) has a pole at t = � . It implies easily that the fun
tion t 7! w(t; �)

also has a pole at t = � . Suppose that the order of this pole is equal to l(�).

Denote by u(t; �) the normalized 
urve t! u(t; �) = (t� �)

l(�)

w(t; �) and de�ne the following

ve
tors in �(�):

e

j

(�) =

1

(j � 1)!

�

j�1

�t

j�1

u(t; �)

�

�

�

�

t=�

: (6.2)

First note that

span

�

fe

j

(�)g

1

j=1

�

= �(�) (6.3)
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Otherwise, using the following formula

w(t; �) =

j

X

i=1

e

i

(�)(t� �)

i�1�l

+O((t� �)

i�l

)

one 
an easily obtain the 
ontradi
tion to the fa
t that �(t) is ample.

Thus for a given parameter � and integer i, 1 � i � m the following integers k

i

(�) are well

de�ned

k

i

(�) = min fj 2 N [ 0 : dim (span (e

1

(�); e

2

(�); : : : ; e

j+1

(�))) = ig (6.4)

Note that

0 = k

1

(�) < k

2

(�) < : : : < k

m

(�); k

i

(�) � i� 1 (6.5)

By de�nition the ve
tors e

k

1

(�)+1

(�); : : : ; e

k

m

(�)+1

(�) 
onstitute the basis of the subspa
e

�(�). We 
all this basis a 
anoni
al basis of �(�). Sin
e the ve
tor w(t; �) is de�ned up to

the sign, the ve
tor e

1

(�) (= e

k

1

(�)+1

(�)) is also de�ned up to the sign. So, one 
an take also

(�e

k

1

(�)+1

(�); : : : ;�e

k

m

(�)+1

(�)) as the 
anoni
al bases on the plane �(�). Denote by w

i

(t; �) the

i-th 
omponent of the ve
tor w(t; �) w.r.t this basis. In other words, fun
tions w

i

(t; �) satis�es

the following relation

w(t; �) =

m

X

i=1

w

i

(t; �)e

k

i

(�)+1

(�) (6.6)

Remark 4 Using Remark 3, one 
an easily 
on
lude that the germ of the 
urve �(t) at t = �

is de�ned uniquely by �(�), the 
anoni
al basis in �(�), the derivative subspa
e �

0

(�), and the

germs of the fun
tions t 7! w

i

(t; �) at t = � , where 1 � i � m. Sin
e for any two pairs (�;�)

and (

~

�;

~

�) of transversal Lagrange subspa
es with �xed bases in � and

~

�, there exists symple
ti


transformation that transforms basis in � to the basis in

~

� and subspa
e � to

~

�, we have that

the germ of the 
urve �(t) at t = � is de�ned uniquely, up to a symple
ti
 transformation, by the

germ of the fun
tions t 7! w

i

(t; �) at t = � , where 1 � i � m.

Now we prove a 
omputational lemmas about the weight of �(t) at � and the order of pole of

t 7! w(t; �).

Lemma 6.1 The order l(�) of pole of the fun
tion t 7! w(t; �) is equal to k

m

(�) + 1. The

weight of the 
urve �(t) at � is equal to (2 k

m

(�) + 1)m� 2

P

m

i=2

k

i

(�).
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Proof. For simpli
ity we will write k

i

instead of k

i

(�), and l instead of l(�). Let S

t

, �(t) =

f(x; S

t

x) : x 2 R

m

g, be a 
oordinate representation of germ of �(t) at t = � su
h that the


anoni
al basis e

k

1

+1

(�); : : : ; e

k

m

+1

(�) 
onstitute a standard basis of R

m

. Denote by � = 0�R

m

,

the subspa
e D 2 �(�)

t

. From (6.2) it follows that in the 
anoni
al basis

w

i

(t; �) = (t� �)

k

i

�l

+O((t� �)

k

i

�l+1

): (6.7)

Then relation (6.1) in the 
anoni
al basis 
an be rewritten in the following form

�

�

�t

(S

t

� S

�

)

�1

�

i;j

= �w

i

(t; �)w

j

(t; �) = �(t� �)

k

i

+k

j

�2l

+O((t� �)

k

i

+k

j

�2l+1

) (6.8)

For simpli
ity take 
oordinates t 7! S

t

su
h that the subspa
e � is the derivative subspa
e

�

0

(�). Then by de�nition of the derivative subspa
e the free term on the Laurent expansion of

(S

t

� S

�

)

�1

is equal to zero. Therefore

�

(S

t

� S

�

)

�1

�

i;j

= �

Z

t

w

i

(�; �)w

j

(�; �) d� =

(t� �)

2l�k

i

�k

j

�1

k

i

+ k

j

� 2l + 1

+O((t� �)

k

i

+k

j

�2l+2

) (6.9)

Then it is easy to get the following expansion for the determinant

det(S

t

� S

�

) =

(t� �)

k

C

+O((t� �)

k+1

); (6.10)

where

k = (2 l � 1)m� 2

m

X

i=2

k

i

; (6.11)

and C is the determinant of matrix whose (i; j)th entry is

1

2l�k

i

�k

j

�1

, i; j = 1; : : : ;m. It is well

known that the determinant of the matrix whose (i; j)th entry is

1

x

i

+y

j

, i; j = 1; : : : ;m, 
an be


omputed by the following formula

det

 

�

1

x

i

+ y

j

�

m

i;j=1

!

=

Q

1�i<j�m

(x

i

� x

j

)(y

i

� y

j

)

m

Q

i;j=1

(x

i

+ y

j

)

(6.12)

It implies in parti
ular that C 6= 0 (one 
an take x

i

= y

i

= l�k

i

�

1

2

and use the fa
t that k

i

6= k

j

for i 6= j). So, the weight is equal to (2l � 1)m� 2

P

m

i=2

k

i

.

Further, from (6.9) and (6.12) it follows that
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(S

t

� S

�

)

i;j

=

�

C

i;j

(t� �)

�k+2l�k

i

�k

j

�1

+O((t� �)

�k+2l�k

i

�k

j

)

�

�

(t� �)

k

C

+O((t� �)

k+1

)

�

=

C

i;j

C

(t� �)

2l�k

i

�k

j

�1

+O((t� �)

2l�k

i

�k

j

); (6.13)

where C is as in (6.10), k is as in (6.11), and C

i;j

are (i; j)th entry of adja
ent matrix to the

matrix

�

1

2l�k

i

�k

j

�1

�

m

i;j=1

. By (6.12) and (6.5) C

i;j

6= 0. Sin
e S

t

is a smooth 
urve at � all powers

2l � k

i

� k

j

� 1 in (6.13) are positive. By assumption,

_

S

�

6= 0. It implies that

min

1�i;j�m

(2l � k

i

� k

j

� 1) = 1 (6.14)

But from (6.5) it follows that min

1�i;j�m

(2l� k

i

� k

j

� 1) = 2l� 2k

m

� 1 that yields that l = k

m

+1.

Consequently the weight is equal to (2 k

m

+ 1)m� 2

P

m

i=2

k

i

. �

Remark 5 In the proof of the previous lemma to obtain the asymptoti
s (6.9) we have taken

the 
oordinate representation t 7! S

t

, �(t) = f(x; S

t

x) : x 2 R

m

g, with � = �

0

(�) (where � =

0�R

m

). But then we have obtained the relation (6.14)whi
h implies that k

i

(�)+k

j

(�)�2l(�)+1 < 0

for any i; j = 1; : : : ;m. Therefore, the asymptoti
s (6.9) for

�

(S

t

� S

�

)

�1

�

i;j

and then the

asymptoti
s (6.13) for (S

t

� S

�

)

i;j

are valid for any 
oordinate representation t 7! S

t

, �(t) =

f(x; S

t

x) : x 2 R

m

g, of germ of �(t) at t = � su
h that the 
anoni
al basis e

k

1

+1

(�); : : : ; e

k

m

+1

(�)


onstitute a standard basis of R

m

and � = 0�R

m

is arbitrary subspa
e transversal to �(�). The

reason is that the asymptoti
s (6.9) do not depend on free term.

Take some subspa
e � 2 �(�)

t

. Re
all that the velo
ity

_

�(t) is a self-adjoint nonnegative

de�nite linear mapping of rank 1 from �(t) to �(t)

�

. For any t suÆ
iently 
losed to � one 
an

identify � with �(t)

�

. Under this identi�
ation

_

�(t) is a self-adjoint nonnegative linear mapping

of rank 1 from �(t) to �. Therefore there exist a unique, up to the sign, ve
tor v(t) 2 � su
h

that for any w 2 �(t):

h

_

�(t)w;wi = hv(t); wi

2

(6.15)

Suppose that a tuple of ve
tors f

1

(�); : : : ; f

m

(�) is a basis of � dual to the 
anoni
al basis

of �(�) (i.e, �(f

i

(�); e

k

j

(�)+1

(�)) = Æ

i;j

). From Remark 5 and relation (6.13) (where l = k

m

+ 1)

it follows that the 
omponents v

i

(t) of the ve
tor v(t) w.r.t the basis f

1

(�); : : : ; f

m

(�) have the

following asymptoti
s
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v

i

(t) = 


i

(�)(t� �)

k

m

(�)�k

i

(�)

+O

�

(t� �)

k

m

(�)�k

i

(�)+1

�

; (6.16)

where 


i

(�) 6= 0. (A
tually, using (6.12), one 
an 
ompute 


i

(�):




i

(�) =

s

C

i;i

(�)(2(k

m

(�)� k

i

(�)) + 1)

C(�)

=

m

Q

j=1

(2k

m

(�)� k

i

(�)� k

j

(�) + 1)

Q

1�j�m; j 6=i

(k

i

(�)� k

j

(�))

(6.17)

where C

i;i

and C are as in the proof of Lemma 6.1.) The relation (6.16) implies that for any

integer nonnegative j su
h that

k

m

(�)� k

i

(�) � j < k

m

(�)� k

i�1

(�) (6.18)

the following relation holds

span(v(�); v

0

(�); : : : ; v

(j)

(�)) = span(f

i

(�); : : : ; f

m

(�)) (6.19)

In parti
ular,

span(v(�); v

0

(�); : : : ; v

(k

m

(�)�1)

(�)) = span(f

2

(�); : : : ; f

m

(�))  �; (6.20)

span(v(�); v

0

(�); : : : ; v

(k

m

(�))

(�)) = � (6.21)

(re
all that k

1

(�) = 0).

Now we are ready to prove the following

Proposition 3 For the ample 
urve � : I 7! L(W ) of rank 1 the set C su
h that

C =

n

t 2 I : dim

�

span (e

1

(t); e

2

(t); : : : ; e

m

(t))

�

< m

o

(6.22)

is dis
rete set of the interval of de�nition I.

Proof. Suppose that C has an a

umulation point � . Take some subspa
e � 2 �(�)

t

. Let

t 7! v(t) be a 
urve of ve
tors in � de�ned by (6.15) for all t from some neighborhood U of � in

I. Note that t 2 C i� k

m

(t) � m. Therefore, by (6.20) and (6.21), we have that t

0

2 C \ U i� the

fun
tion d(t)

def

= det(v(t); v

0

(t); : : : v

(m�1)

(t)) has zero at t = t

0

. For the a

umulation point � ,

using 
onsequently the Rolle theorem, one 
an 
on
lude that the fun
tion d(t) has zero of in�nite

order at t = � .
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On the other hand, let l

i

(�)

def

= k

m

(�) � k

m�i+1

(�) . Denote by p =

m

P

i=1

l

i

(�). Let us prove

that d

(p)

(�) is not equal to zero. Indeed, d

(p)

(�) 
an be expressed as the sum of the terms of the

form det(v

(j

1

)

(�); : : : ; v

(j

m

)

(�)), where

m

X

i=1

j

i

= p; 0 � j

1

< j

2

< : : : < j

m

: (6.23)

Let us show that if the tuple (j

1

; : : : ; j

m

) is di�erent from the tuple (l

1

(�); : : : ; l

m

(�)) and satis�es

(6.23), then

det(v

(j

1

)

(�); : : : ; v

(j

m

)

(�)) = 0: (6.24)

For this note �rst that by assumptions there exists an index s, su
h that j

s

< l

s

(�) (= k

m

(�) �

k

m�s+1

(�)) . Then from (6.18) and (6.19) we have the following relation

span(v

(j

1

)

(�); : : : ; v

(j

s

)

(�)) � span(f

m�s+2

(�); : : : ; f

m

(�));

i.e., dim

�

span(v

(j

1

)

(�); : : : ; v

(j

s

)

(�))

�

< s. It implies that dim

�

span(v

(j

1

)

(�); : : : ; v

(j

m

)

(�))

�

<

m that is equivalent to (6.24). Note also that from (6.18) and (6.19) it follows easily that

span

�

v

(l

1

(�))

(�); : : : ; v

(l

m

(�))

(�)

�

= �. Therefore,

d

(p)

(�) = 
det(v

(l

1

(�))

(�); : : : ; v

(l

m

(�))

(�)) 6= 0

(here 
 is some natural number). Hen
e d(t) has zero of �nite order at t = � . We obtain the


ontradi
tion. �

For t 2 InC the numbers k

i

(t) = i� 1. As a 
onsequen
e of the previous proposition and the

expression for the weight from the Lemma 6.1, we obtain the following

Corollary 1 The ample 
urve � : I 7! L(W ) of rank 1 has the 
onstant weight equal to m

2

on the set with dis
rete 
omplement in I.

At the end of this se
tion we give the expli
it formula for the velo
ity

_

�(�) in the 
anoni
al

basis. Let (e

�

1

(�); : : : ; e

�

m

(�)) be a basis in �(�)

�

dual to the 
anoni
al basis in �(�). As we have

seen at the end of the proof of the Lemma 6.1, the (m;m)th entry is the only nonzero entry of

the matrix

_

S

�

and it is equal to

C

m;m

(�)

C(�)

= 


2

m

(�) (where 


m

(�) is as in (6.17)). Therefore, we

obtain the following

Lemma 6.2 For any v

1

; v

2

2 �(�) the following relation holds
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h

_

�(�)v

1

; v

2

i = 


2

m

(�)he

�

m

(�); v

1

ihe

�

m

(�); v

2

i; (6.25)

where




m

(�) =

m�1

Y

j=1

k

m

(�)� k

j

(�) + 1

k

m

(�)� k

j

(�)

(6.26)

7 The rank 1 
urves with a 
onstant weight.

The present se
tion is devoted to the 
urves of rank 1 and a 
onstant �nite weight in the

Lagrange Grassmannian L(W ). We show that in this 
ase the fun
tion g(t; �) 
onstru
ted in

se
tion 4 determines the 
urve uniquely, up to symple
ti
 transformation. We also �nd a 
omplete

system of invariants of the 
urve in terms of the fun
tion g.

First, using Proposition 3 and Lemmas 6.1, we obtain the following

Proposition 4 If �(t) is a 
urve of rank 1 and 
onstant weight on I, then for all t 2 I and

1 � i � m the numbers k

i

(t) are equal to i � 1, or, equivalently, the ve
tors e

1

(t); : : : ; e

m

(t)


onstitute the 
anoni
al basis of the subspa
e �(t).

Proof. From (6.5) it follows that always

k

i

(t)� k

j

(t) � i� j; k

1

(t) = 0 (7.1)

Therefore by Lemma 6.1 the weight k(t) of the 
urve � at the point t satis�es

k(t) = (2k

m

(t) + 1)m� 2

m

X

i=2

k

i

(t) = 2

m

X

i=1

(k

m

(t)� k

i

(t)) +m � 2

m

X

i=1

(m� i) +m = m

2

(7.2)

In addition, from (7.1) it is easy to see that the equality in (7.2) holds i� k

i

(t) = i � 1 for any

1 � i � m. Therefore, if the set C is as in (6.22), then for any t 2 C the weight k(t) > m

2

, while

for t =2 C the weight k(t) = m

2

. But from Proposition 3 the set C is dis
rete subset of I. Hen
e,

for the weight k(t) to be 
onstant on I, the set C has to be empty. This 
ompletes the proof of

the Proposition. �

As a 
onsequen
e of the previous proposition and Lemmas 6.1, 6.2 , we obtain easily the

following
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Corollary 2 If �(t) is a 
urve of rank 1 and 
onstant weight on I, then:

1) at any point t 2 I the weight is equal to m

2

;

2) for any � 2 I the fun
tion t 7! w(t; �) has a pole of order m at t = � ;

3) For any v

1

; v

2

2 �(�) the following relation holds

h

_

�(�)v

1

; v

2

i = m

2

he

�

m

(�); v

1

ihe

�

m

(�); v

2

i (7.3)

Now we prove that the fun
tion g(t; �) de�ned in se
tion 4 
ontains all the information about

�(t).

Theorem 1 The fun
tion g(t; �) determines the 
urve �(t) of rank 1 and 
onstant weight

uniquely , up to a symple
ti
 transformation.

Before starting to prove the theorem, we want to des
ribe in few words the main steps of the

proof. First, we show that the fun
tion g(t; �) is almost the same as the 
omponent w

m

(t; �) of

the ve
tor w(t; �). The ve
tor w(t; �) is a fun
tion of two variables, but it is determined by a


urve. Therefore it is natural to expe
t that w(t; �) satis�es some partial di�erential equation.

We �nd this equation that is a
tually the system of m equations for the 
omponents w

i

(t; �),

1 � i � m. Then we show that this system has a "triangular" form su
h that all 
omponents

w

i

(t; �) 
an be expressed by w

m

(t; �) and refer to Remark 4 to 
omplete the proof.

Proof of Theorem 1.

1. We start the proof with the following lemma

Lemma 7.1 The following relation holds

w

2

m

(t; �) =

1

(t� �)

2

+

1

m

2

g(t; �) (7.4)

Proof. By (4.19),(4.23), and part 2) of Corollary 4 we have

tr

�

�

�t

�

�

(t) Æ

_

�(�)

�

= �

m

2

(t� �)

2

� g(t; �) (7.5)

Let t ! S

t

, �(t) = f(x; S

t

x) : x 2 R

m

g be a 
oordinate representation of germ of �(t) at t = �

su
h that the 
anoni
al basis e

1

(�); : : : ; e

m

(�) 
onstitute a standard basis of R

m

. By (4.24)

tr

�

�

�t

�

(S

t

� S

�

)

�1

�

_

S

�

�

= �

m

2

(t� �)

2

� g(t; �) (7.6)
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Relation (7.3) implies that in the 
hosen 
oordinates

_

S

�

=

8

<

:

0 (i; j) 6= (m;m)

m

2

(i; j) = m

By 
onstru
tion,

�

�

�t

�

(S

t

� S

�

)

�1

�

�

i;j

= �w

i

(t; �)w

j

(t; �)

Therefore

tr

�

�

�t

�

(S

t

� S

�

)

�1

�

_

S

�

�

= �m

2

w

2

m

(t; �):

This together with (7.6) implies (7.4). �

By (7.4) it follows that in order to prove the theorem it is suÆ
ient to show that the fun
tion

w

m

(t; �) determines �(t) uniquely, up to a symple
ti
 transformation.

2. Now we derive a partial di�erential equation for the ve
tor fun
tion w(t; �).

Lemma 7.2 The ve
tor fun
tion w(t; �) satis�es the following di�erential equation

�

2

w

�t��

�

 

�w

m

�t

w

m

!

�w

��

+m

2

w

2

m

w = 0 (7.7)

Proof. Fix some parameter �

0

and take some subspa
e � transversal to �(�

0

). Let t ! S

t

,

�(t) = f(x; S

t

x) : x 2 R

m

g be a 
oordinate representation of germ of �(t) at t = �

0

su
h that

�(�

0

) = R

m

� 0 and � = 0�R

m

. Denote by w

�

(t; �) 2 R

m

the �rst m 
omponents of the ve
tor

w(t; �) in the 
hosen 
oordinates (or equivalently, the image of w(t; �) under the proje
tion of

W on �(�

0

) parallel to �). Also, let, as before, f

1

(�); : : : ; f

m

(�) be the basis of � dual to the


anoni
al basis of �(�) (w.r.t. the symple
ti
 form �).

By (6.1) it follows that for t and � 
losed to �

0

�

�t

�

(S

t

� S

�

)

�1

�

= �w

�

(t; �)w

�

(t; �)

T

: (7.8)

Therefore

_

S

t

=

�

(S

t

� S

�

)w

�

(t; �)

��

(S

t

� S

�

)w

�

(t; �)

�

T

(7.9)
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It implies that the ve
tor fun
tion (S

t

� S

�

)w

�

(t; �) does not depend on � . Di�erentiating it

w.r.t. � we get

�

_

S

�

w

�

(t; �) + (S

t

� S

�

)

�

��

w

�

(t; �) = 0 (7.10)

From (6.25) it follows that

_

S

�

w

�

(t; �) = m

2

w

m

(t; �)f

m

(�) (7.11)

This together with (7.10) implies that

�

��

w

�

(t; �) = m

2

w

m

(t; �)(S

t

� S

�

)

�1

f

m

(�) (7.12)

In parti
ular,

m

2

(S

t

� S

�

)

�1

f

m

(�) =

1

w

m

(t; �)

�

��

w

�

(t; �) (7.13)

Now, di�erentiating (7.12) w.r.t. t, we have

�

2

�t��

w

�

(t; �) = m

2

w

m

(t; �)

�

�t

�

(S

t

� S

�

)

�1

�

f

m

(�) +

�

�t

w

m

(t; �)m

2

(S

t

� S

�

)

�1

f

m

(�) (7.14)

From (7.8) it follows that

(S

t

� S

�

)

�1

f

m

(�) = �w

m

(t; �)w

�

(t; �)

Substituting this and (7.13) in (7.14), we get

�

2

w

�

�t��

�

 

�w

m

�t

w

m

!

�w

�

��

+m

2

w

2

m

w

�

= 0 (7.15)

Re
alling the de�nition of w

�

(t; �), we obtain from the last equation the following in
lusion

�

2

w

�t��

�

 

�w

m

�t

w

m

!

�w

��

+m

2

w

2

m

w 2 � (7.16)

Let us remember that all our 
onsiderations (and in parti
ular the in
lusion (7.16)) are valid

for any subspa
e � transversal to �(�

0

) and any t, � 
losed to �

0

. Taking as � in (7.16) two

subspa
es that are transversal to �(�

0

) and also transversal one to another, we obtain (7.7) for

any t, � 
losed to �

0

. Sin
e �

0

is arbitrary, this 
ompletes the proof of the lemma. �

In the sequel it will be 
onvenient also to make the following substitution in (7.7)
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Y (t; �) =

1

w

m

(t; �)

w(t; �) (7.17)

Then by dire
t 
omputation one 
an obtain the following equation for Y :

�

2

Y

�t��

+

 

�w

m

��

w

m

!

�Y

�t

+

�

�

2

�t��

(lnw

m

) +m

2

w

2

m

�

Y = 0 (7.18)

3. Now we shall rewrite the equation (7.7) as a system of equations w.r.t. the 
omponents

w

i

(t; �). Take some subspa
e � 2 �(�)

t

. Identifying � with �(�)

�

, denote f

i

(�) the ve
tor,


orresponding to e

�

i

(�) under this identi�
ation. The ve
tors e

1

(�); : : : ; e

m

(�); f

1

(�); : : : ; f

m

(�)


onstitute the basis of the symple
ti
 spa
e W . Suppose that

_e

i

(�) =

m

X

j=1

�

i;j

(�)e

j

(�) + 


i;j

(�)f

j

(�)

A

ording to (7.3)




ij

(�) =

8

<

:

0 (i; j) 6= (m;m)

m

2

(i; j) = (m;m)

It implies that

_e

i

(�) =

m

P

j=1

�

i;j

(�)e

j

(�); 1 � i � m� 1;

_e

m

(�) =

m

P

j=1

�

m;j

(�)e

j

(�) +m

2

f

m

(�)

(7.19)

Remark 6 In parti
ular, it follows that the fun
tions �

i;j

(�) with 1 � i � m � 1 do not

depend on the 
hoi
e of the subspa
e �.

By de�nition

w(t; �) =

m

X

i=1

w

i

(t; �)e

i

(�):

Then, using (7.19), we obtain

�w

��

=

m

X

i=1

0

�

�w

i

��

+

m

X

j=1

w

j

�

j;i

1

A

e

i

+m

2

w

m

f

m

; (7.20)

�

2

w

�t��

=

m

X

i=1

0

�

�

2

w

i

�t��

+

m

X

j=1

�w

j

�t

�

j;i

1

A

e

i

+m

2

�w

m

�t

f

m

(7.21)
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Substituting (7.20) and (7.21) in (7.7) and 
omparing 
oeÆ
ients of e

i

for i = 1; : : : ;m, we

get the following system of equations

�

2

w

i

�t��

�

�w

m

�t

w

m

�w

i

��

+m

2

w

2

m

w

i

=

m

X

j=1

 

�w

m

�t

w

m

w

j

�

�w

j

�t

!

�

j;i

; 1 � i � m (7.22)

The term in the righthand side of (7.22), 
orresponding to j = m, is equal to zero. Hen
e the

equation (7.22) 
an be written in the following form

�

2

w

i

�t��

�

�w

m

�t

w

m

�w

i

��

+m

2

w

2

m

w

i

=

m�1

X

j=1

 

�w

m

�t

w

m

w

j

�

�w

j

�t

!

�

j;i

; 1 � i � m (7.23)

By Remark 6 the system of equations (7.23) does not depend on the 
hoi
e of the subspa
e �.

In the same way the equation (7.17) 
an be rewritten as an equation for 
omponents

Y

i

(t; �) =

w

i

(t;�)

w

m

(t;�)

of the ve
tor Y

i

(t; �) w.r.t the 
anoni
al basis:

�

2

Y

i

�t��

+

 

�w

m

��

w

m

!

�Y

i

�t

+

�

�

2

�t��

(lnw

m

) +m

2

w

2

m

�

Y

i

= �

m�1

X

j=1

�Y

j

�t

�

j;i

(7.24)

4. Now we show that equation (7.23) (or (7.24)) has a "triangle" form. Note that by 
onstru
-

tion all fun
tions t 7! w(t; �) have singularities at t = � . Moreover, from the part 1 of Corollary

4 it follows that their Laurent expansions at t = � have the following form

w

i

(t; �) =

1

(t� �)

m�i+1

+ '

i

(t; �); (7.25)

where '

i

(t; �) are smooth fun
tions. Using this fa
t one 
an obtain the following

Lemma 7.3 The 
oeÆ
ients �

j;i

(�), 1 � j � m� 1, satisfy the following relations

1. �

j;i

(�) � 0, if j < i� 1;

2. �

i�1;i

(�) �

(i�1)(2m�i+1)

m�i+1

;

3. If i � j � m� 1, then �

j;i

(�) 
an be expressed by

�

k

�t

k

'

m

(t; �)

�

�

�

t=�

with 0 � k � i� j , where

'

m

(t; �) is de�ned by (7.25).

Proof. We shall analyze the Laurent expansions of both sides of the equation (7.23). We

start with the righthand side. Denote by
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�

m

(t; �) =

�

�t

ln

�

1 + (t� �)'

m

(t; �)

�

(7.26)

Using (7.25), one 
an obtain the following series of relations

�

�t

w

j

(t; �) = �

m� j + 1

(t� �)

m�j+2

+O(1); (7.27)

�

�t

w

m

w

m

=

�

�t

lnw

m

(t; �) =

�

�t

ln

�

1

t� �

+ '

m

(t; �)

�

= �

1

t� �

+�

m

(t; �) (7.28)

�

�t

w

m

w

m

w

j

= �

1

(t� �)

m�j+2

+

�

m

(t; �)

(t� �)

m�j+1

+O

�

1

t� �

�

(7.29)

Therefore the righthand side of (7.23) 
an be written in the following form

m�1

X

j=1

�

m� j

(t� �)

m�j+2

+

�

m

(t; �)

(t� �)

m�j+1

�

�

j;i

(�) +O

�

1

t� �

�

(7.30)

Suppose that the fun
tion t 7! �

m

(t; �) has the following expansion into the formal Taylor series

at t = �

�

m

(t; �) �

1

X

k=0




k

(�)(t� �)

k

(7.31)

Then by dire
t 
omputation we have that the righthand side of (7.23) has the following form

�

1;i

(�)

(t� �)

m+1

+

m�1

X

j=2

(m� j)�

j;i

(�) +

j�1

P

k=1




j�k�1

(�)�

k;i

(�)

(t� �)

m�j+2

+O

�

1

(t� �)

2

�

(7.32)

Now 
onsider the lefthand side of (7.23). Using (7.26) and (7.25) , we obtain the following

series of relations

�

��

w

i

(t; �) =

m� i+ 1

(t� �)

m�i+2

+

�

��

'

i

(t; �); (7.33)
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�

2

�t��

w

i

(t; �) = �

(m� i+ 1)(m� i+ 2)

(t� �)

m�i+3

+O(1); (7.34)

�

�t

w

m

w

m

�

��

w

i

(t; �) = �

m� i+ 1

(t� �)

m�i+3

+

�

m

(t; �)

(t� �)

m�i+2

�+O

�

1

t� �

�

(7.35)

w

m

(t; �)w

i

(t; �) =

1

(t� �)

m�i+3

+

2'

m

(t; �)

(t� �)

m�i+2

+

'

2

m

(t; �)

(t� �)

m�i+1

+O

�

1

(t� �)

2

�

(7.36)

Therefore the lefthand side of (7.23) 
an be written in the following form

m

2

� (m� i+ 1)

2

(t� �)

m�i+3

+

1

(t� �)

m�i+2

�

�

m

(t; �) + 2'

m

(t; �)

�

+

'

2

m

(t; �)

(t� �)

m�i+1

+O

�

1

(t� �)

2

�

(7.37)

Comparing 
oeÆ
ients of (7.32) and (7.37) we have

1. If m� j + 2 > m� i+ 3, i.e., j < i� 1, then �

j;i

(�) � 0. This 
ompletes the proof of the

�rst part of the lemma;

2. If m� j +2 = m� i+3, i.e., j = i� 1, then �

i�1;i

(�)(m� i+1) = m

2

� (m� i+1)

2

. This


ompletes the proof of the se
ond part of the lemma;

3. If 2 < m� j +2 < m� i+ 3, i.e., i� 1 < j < m, then, taking into a

ount that �

k;i

(�) � 0

for k < i� 1, we obtain

(m� j)�

j;i

(�) +

j�1

X

k=i�1




j�k�1

(�)�

ki

(�) = 


j�i

(�) +

2

�

j�i

�t

j�i

'

m

(t; �)

�

�

�

t=�

(j � i)!

+

�

j�i+1

�t

j�i+1

'

2

m

(t; �)

�

�

�

t=�

(j � i+ 1)!

(7.38)

By (7.26) 
oeÆ
ient 


n

(�) 
an be expressed by

�

k

�t

k

'

m

(t; �)

�

�

�

t=�

with 0 � k � n. This together

with (7.38) 
ompletes the proof of the third part of the lemma. �

By the previous lemma the equation (7.24) 
an be written in the following form for 2 � i � m

�Y

i�1

�t

= �

1

�

i�1;i

0

�

�

2

Y

i

�t��

+

 

�w

m

��

w

m

!

�Y

i

�t

+

�

�

2

�t��

(lnw

m

) +m

2

w

2

m

�

Y

i

+

m�1

X

j=i

�Y

j

�t

�

j;i

1

A

(7.39)

36



where �

i�1;i

=

(i�1)(2m�i+1)

m�i+1

. All terms in the righthand side of (7.39) depends on the fun
tions

Y

j

(t; �) with j � i. Note also that by (7.25)

Y

i

(t; �) =

w

i

(t; �)

w

m

(t; �)

=

1

(t� �)

m�i

1 + (t� �)

m�i+1

'

i

(t; �)

1 + (t� �)'

m

(t; �)

(7.40)

It implies that in the Laurent expansion at t = � of the fun
tion t 7! Y (t; �) all 
oeÆ
ients that


orrespond to nonpositive powers (and in parti
ular the free term) depend on w

m

(t; �). This

together with (7.39) yields that all Y

i

(t; �) ( and therefore all w

i

(t; �)) with 1 � i � m� 1 
an be

expressed by w

m

(t; �). But by Remark 4 the 
omponents w

i

(t; �), 1 � i � m determine the 
urve

�(t) uniquely, up to a symple
ti
 transformation. This 
ompletes the proof of the Theorem 1. �

Now our goal is to �nd a 
omplete system of symple
ti
 invariants of 
urve �(t) of rank 1

and the 
onstant weight, i.e., some set of fun
tions of t whi
h determines �(t) uniquely, up to a

symple
ti
 transformation. By Theorem 1 it is natural to look for a 
omplete system of invariants

among 
oeÆ
ients �

i;j

(t) of the expansion (4.16) of g in the Taylor series. Sin
e �(t) 
an be

des
ribed, up to symple
ti
 transformation, by the 
urve t! w(t; �) of the ve
tors on the linear

spa
e of dimension m, it is natural to expe
t that 
omplete system of invariants of �(�) 
onsists

of m fun
tions of t. By Lemma 4.1 the �rst m "independent" 
oeÆ
ients in expansion (4.16) are

�

0;2i

(t) with 0 � i � m� 1. All this arguments lead to the following theorem:

Theorem 2 The 
oeÆ
ients �

0;2i

(t), 0 � i � m� 1, determine the 
urve �(t) of rank 1 and

a 
onstant weight uniquely, up to a symple
ti
 transformation.

Let a fun
tion '

m

(t; �) be as in (7.25). From the identity (7.4) it follows easily that the

theorem is equivalent to the following theorem:

Theorem 2

0

. The fun
tions � 7!

�

2i�1

'

m

(t;�)

�t

2i�1

�

�

�

t=�

, 1 � i � m, determine the 
urve �(t) of

rank 1 and a 
onstant weight uniquely, up to a symple
ti
 transformation.

Proof of Theorem 2

0

. Let fun
tions '

i

(t; �), 1 � i � m, be as in (7.25). First, using the

system of equation (7.23), we prove the following lemma:

Lemma 7.4 Any partial derivatives of the fun
tions '

i

(t; �),1 � i � m, at any diagonal

points (�; �) 
an be expressed by the fun
tions � 7!

�

2j�1

'

m

�t

2j�1

(t; �)

�

�

t=�

and their derivatives , where

1 � j � m.

Proof. First, it is natural to make the 
hange of 
oordinates x = t � � , y = t + � su
h

that the diagonal t = � be
omes the axis x = 0 in the new 
oordinates. Indeed, if we denote

37



by z

i

(x; y) = w

i

(

x+y

2

;

y�x

2

), then the system (7.23) 
an be transformed into the following system

w.r.t. z

i

:

�z

m

�

�

2

z

i

�x

2

�

�

2

z

i

�y

2

�

�

�

�z

m

�x

+

�z

m

�y

��

�z

i

�y

�

�z

i

�x

�

+m

2

z

3

m

z

i

=

m�1

X

j=i�1

��

�z

m

�x

+

�z

m

�y

�

z

j

�

�

�z

j

�x

+

�z

j

�y

�

z

m

�

�

ji

; 1 � i � m (7.41)

(here we also have used the �rst part of the Lemma 7.3). Relations (7.25) 
an be transformed

into the following

z

i

(x; y) =

1

x

m�i+1

u

i

(x; y); (7.42)

where the fun
tions u

i

(x; y) are smooth, u

i

(0; y) � 1, and

�

k

�x

k

u

i

(0; y) = 0 for 1 � i � m,

1 � k � m � i. Substitute (7.42) in (7.41) and multiply both sides on x

m�i+4

. Then we obtain

some singular system of equations w.r.t. u

i

. By dire
t 
al
ulation it 
an be shown that this

system has the following form:

x

2

u

m

�

2

u

i

�x

2

� (2m� 2i+ 1)xu

m

�u

i

�x

+ (m� i+ 1)xu

i

�u

m

�x

+ �

i�1;i

xu

i�1

�u

m

�x

�

�

i�1;i

xu

m

�u

i�1

�x

+ (m� i+ 1)

2

u

m

u

i

+ �

i�1;i

(m� i+ 1)u

i�1

u

m

�m

2

u

3

m

u

i

= 	

i

;

(7.43)

where

	

i

= x

2

u

m

�

2

u

i

�y

2

+ xu

m

�u

i

�y

� (m� i+ 1)xu

i

�u

m

�y

� �

i�1;i

xu

i�1

�u

m

�y

+

�

i�1;i

xu

m

�u

i�1

�y

� x

2

�

�u

m

�x

+

�u

m

�y

��

�u

i

�y

�

�u

i

�x

�

�

m�1

X

j=i

�

x

j�i+2

�

�u

m

�x

+

�u

m

�y

�

u

j

�

x

j�i+2

�

�u

j

�x

+

�u

j

�y

�

u

m

+ (m� j)x

j�i+1

u

m

u

j

�

�

ji

(7.44)

The lefthand side of equation (7.43) is a prin
ipal part of this equation in the following sense:

Di�erentiate both sides of (7.43) k times in x at the points of the initial 
urve x = 0. Then the

righthand side 
an be expressed by the partial derivatives

�

n

u

p

�x

n

(0; y) with n less than k and their

derivatives w.r.t. y (here one 
an take i � 1 � p � m), while any term of the lefthand side (

at least for k � 2) depends also on partial derivative of some u

j

w.r.t. x of order k at (0; y).

Moreover, using that u

i

(0; y) � 1 , 1 � i � m, and �

i�1;i

=

(2m�i+1)(i�1)

m�i+1

, one 
an easily obtain

in this way the following linear system w.r.t.

�

k

�x

k

u

i

(0; y), 1 � i � m for a given integer k � 0:

�

i

(k)

�

k

u

i�1

�x

k

(0; y) + �

i

(k)

�

k

u

i

�x

k

(0; y) + �

i

(k)

�

k

u

m

�x

k

(0; y) =

e

	

i

; 1 � i � m; (7.45)
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where

�

i

(k) =

(k + i�m� 1)(i � 2m� 1)(i � 1)

m� i+ 1

�

i

(k) = (k + i� 1)(k + i� 2m� 1) (7.46)

�

i

(k) =

k + 2i� 2� 2m

m� i+ 1

m

2

;

and

e

	

i


an be expressed by the partial derivatives of the form

�

n

u

p

�x

n

(0; y) with n less than k and

their derivatives w.r.t. y (here i� 1 � p � m).

It turns out that the determinant of the system (7.45) satis�es the following remarkable

identity:

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1

(k) 0 0 : : : 0 0 �

1

(k)

�

2

(k) �

2

(k) 0 : : : 0 0 �

2

(k)

0 �

3

(k) �

3

(k) : : : 0 0 �

3

(k)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : �

m�1

(k) �

m�1

(k) �

m�1

(k)

0 0 0 : : : 0 �

m

(k) �

m

(k) + �

m

(k)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

=

m

Y

j=1

(k � 2j)(k + 2j � 1)

(7.47)

The proof of (7.47) that we have found is rather long and will be presented in Appendix.

As a 
onsequen
e of (7.47) we obtain that the determinant of the system (7.45) has exa
tly

m positive zeros at k = 2j, 1 � j � m. Therefore, any partial derivative of u

i

, 1 � i � m, at

(0; y) 
an be expressed by the fun
tions y 7!

�

2j

u

p

�x

2j

(0; y) and their derivatives, where 1 � j; p � m.

Moreover, by Theorem 1 u

p

(x; y) 
an be expressed by u

m

(x; y) and its derivative. Hen
e any

partial derivative of u

i

, 1 � i � m, at (0; y) 
an be expressed by the fun
tions y 7!

�

2j

u

m

�x

2j

(0; y)

and their derivatives, where 1 � j � m. But this is equivalent to the statement of our Lemma, if

we return to the old 
oordinates t and � . �

Now we de�ne a 
anoni
al moving frame: For given � take the derivative subspa
e �

0

(�) and let

f

1

(�); : : : ; f

m

(�) be a basis of �

0

(�) dual to the 
anoni
al basis of �(�) (i.e., �(f

i

(�); e

j

(�)) = Æ

i;j

).

The basis (e

1

(�); : : : ; e

m

(�); f

1

(�); : : : ; f

m

(�)) of whole symple
ti
 spa
eW is 
alled the 
anoni
al

moving frame of the 
urve �(�). Denote by E(�) and F (�) the tuples of ve
tors (e

1

(�); : : : ; e

m

(�))

and (f

1

(�); : : : ; f

m

(�)) 
orrespondingly , arranged in the 
olumns. Denote by S

t

the matrix, 
orre-

sponding to the linear mapping h�(�);�(t);�

0

(�)i w.r.t to the 
anoni
al basis, and by S

0

t

the ma-

trix, 
orresponding to the linear mapping h�

0

(�);�

0

(t);�(�)i w.r.t to the basis (f

1

(�); : : : ; f

m

(�))
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( see se
tion 2 for notations). Also, let 
(�) be a m�m matrix with (i; j) entry equal to �

i;j

(�),

where �

i;j

(�) is de�ned by (7.19) with � = �

0

(�). Then it is easy to see that the stru
tural

equation for the 
anoni
al moving frame has the following form:

0

�

_

E(�)

_

F (�)

1

A

=

0

�


(�)

_

S

�

_

S

0

�

�


T

(�)

1

A

0

�

E(�)

F (�)

1

A

: (7.48)

We 
laim that in order to prove Theorem 2

0

it is suÆ
ient to prove the following lemma:

Lemma 7.5 The matrix in the stru
tural equation (7.48) depends only on the 
oeÆ
ients of

the expansions of t! w

i

(t; �), 1 � i � m , in the Laurent series at t = � .

Indeed, if Lemma 7.5 holds then �rst by Lemma 7.4 this matrix depends only on the fun
tions

� 7!

�

2j�1

'

m

�t

2j�1

(t; �)

�

�

t=�

, 1 � j � m, se
ondly, the stru
tural equation (7.48) has a unique solution

with pres
ribed initial 
ondition, and, �nally, any symple
ti
 basis 
an be taken as an initial


ondition of (7.48).

Proof of Lemma 7.5. First, a

ording to (7.3)

(

_

S

�

))

i;j

=

8

<

:

0 (i; j) 6= (m;m)

m

2

(i; j) = (m;m);

(7.49)

Further, by re
ursive formula (2.4) for i = 0 :

_

S

0

�

=

d

d�

A

0

(�) = A

1

(�) +

�1

X

n=1�2m

�

A

n

(�)

_

S

�

A

�n

(�) +A

�n

(�)

_

S

�

A

n

(�)

�

; (7.50)

where A

j

(�) are de�ned by expansion (2.3) ( here we have used that by de�nition of the derivative


urve A

0

(�) = 0 and by Lemma 6.1 the order of pole of t 7! (S

t

� S

�

)

�1

at t = � is equal to

2m� 1). By de�nition of the ve
tors w(t; �), we have

�

(S

t

� S

�

)

�1

�

i;j

= �

Z

t

w

i

(�; �)w

j

(�; �)d�:

Therefore any A

n

(�) with n 6= 0 
an be expressed by the 
oeÆ
ients of the expansions of t !

w

i

(t; �), 1 � i � m , in the Laurent series at t = � . This together with (7.49) and (7.50) implies

that

_

S

0

�


an be expressed by the 
oeÆ
ients of the expansions of t! w

i

(t; �), 1 � i � m , in the

Laurent series at t = � .

Finally, let us analyze the matrix 
(�). By Lemma 7.3 all its entries �

i;j

(�) with 1 � i � m�1


an be expressed by the 
oeÆ
ients of the expansions of t ! w

m

(t; �) in the Laurent series at

t = � . The entries �

m;j

(�) do not enter the di�erential equation (7.23). To �nd an expression
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for these entries we will use the integral-di�erential equation (7.12) that 
an be rewritten for

� = �

0

(�) in the following form:

�w

�

0

(�)

(t; �

1

)

��

1

�

�

�

�

1

=�

= �m

2

w

m

(t; �)

Z

t

w

m

(�; �)w(�; �)d� (7.51)

Using (7.20), we 
an obtain from here the following system of equation w.r.t. the 
omponents

w

j

(t; �)

�w

j

(t; �)

��

+

m

X

l=1

w

l

(t; �)�

lj

(�) = �m

2

w

m

(t; �)

Z

t

w

m

(�; �)w

j

(�; �)d�; 1 � j � m (7.52)

For given j 
onsider the Laurent expansion of the lefthand side of (7.51), as a fun
tion of t, at

t = � . By (7.25) the 
oeÆ
ient of

1

t��

in this expansion is equal to �

m;j

(�). On the other hand,

all 
oeÆ
ients of the appropriate expansion of the righthand side 
an be expressed by 
oeÆ
ients

of expansions of t! w

j

(t; �) and t! w

m

(t; �) in the Laurent series at t = � . Therefore also the

entries �

m;j

(�) 
an be expressed by 
oeÆ
ients of expansions of t! w

i

(t; �) (even with i = j or

m) in the Laurent series at t = � . This 
on
ludes the proof of our Lemma and also of Theorem

2

0

.�

8 Appendix

In this appendix we prove the identity (7.47). We are sure that the proof presented here is far

to be optimal, but this is the only one that we have at this moment.

Denote the determinant in the lefthand side of (7.47) by L

m

(k). Expanding this determinant

w.r.t. the last 
olumn, we have

L

m

(k) =

m

X

j=1

(�1)

j+m

�

j

(k)

j�1

Y

i=1

�

i

(k)

m

Y

i=j+1

�

i

(k) +

m

Y

i=1

�

i

(k) (8.1)

Then, substituting (7.46) in (8.1), one 
an easily transform L

m

(k) to the following form:

L

m

(k) =

m+1

X

j=1

m(2m� j)!

(m� j + 1)!(j � 1)!

�

k � 2(m� j + 1)

�

m�j

Y

i=2�j

(k � i)

2m

Y

i=2m�j+2

(k � i) (8.2)

Note that L

m

(k) is a polynomial of degree 2m , exa
tly as the polynomial in the righthand side

of (7.47). Also for both polynomials the 
oeÆ
ient of leading term k

2m

is equal to 1. Therefore

in order to prove the identity (7.47) it is suÆ
ient to prove that the polynomials in both sides of

(7.47) have the same roots, or, equivalently, that L

m

(2i) = L

m

(1� 2i) = 0 for all 1 � i � m.
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We will do this in two steps: First we will show that

L

m

(2i) = 0 1 � i � m: (8.3)

Se
ondly we will prove that the fun
tion

L

m

(k)

def

=

k

k � 2m

L

m

(k) (8.4)

satis�es

L

m

(�1� k) = L

m

(k); (8.5)

i.e., L

m

(k) is invariant under the re
e
tion of its argument w.r.t. �1=2. This together with (8.3)

and the fa
t that L

m

(0) = 0 (whi
h follows dire
tly from the de�nition of L

m

(k)) will imply that

also L

m

(1� 2i) = 0 for all 1 � i � m.

1. The proof of (8.3). For 1 � j � m+ 1 denote by

p

m;j

(k) =

m(2m� j)!

(m� j + 1)!(j � 1)!

�

k � 2(m� j + 1)

�

m�j

Y

i=2�j

(k � i)

2m

Y

i=2m�j+2

(k � i); (8.6)

By dire
t 
omputation the following identity 
an be easily 
he
ked:

p

m;j

(2m� 2l) + p

m;2l+2�j

(2m� 2l) = 0; (8.7)

where

0 � l � m� 1; maxf1; 2l + 1�mg � j � minfm+ 1; 2l + 1g

In parti
ular, applying (8.6) to j = l + 1, we have

p

m;l+1

(2m� 2l) = 0 (8.8)

By 
onstru
tion,

L

m

(2m� 2l) =

m+1

X

j=1

p

m;j

(2m� 2l) (8.9)

Denote l

1

= maxf1; 2l + 1�mg and l

2

= minfm+ 1; 2l + 1g. Consider the following 3 
ases:

1) l

1

� j � l

2

. Then from (8.7) and (8.8) it follows that

l

2

X

j=l

1

p

m;j

(2m� 2l) =

l

X

j=l

1

�

p

m;j

(2m� 2l) + p

m;2l+2�j

(2m� 2l)

�

+ p

m;l+1

(2m� 2l) = 0; (8.10)

2) 2l + 2 � j � m + 1. Then 2m � j + 2 � m � l � 2m, so from (8.6) it follows that

p

m;j

(2m� 2l) = 0;
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3) 1 � j � 2l�m. Then 2 � 2m� 2l � m� j and again from (8.6) it follows that in this 
ase

p

m;j

(2m� 2l) = 0.

Therefore, by (8.9), L

m

(2m � 2l) = 0 for all 0 � l � m� 1, or, equivalently, L

m

(2i) = 0 for

all 1 � i �m.

2. The proof of (8.5). We will transform the expression for L

m

(k) to the more symmetri


form. Following [5℄ (Chapter 1, x2) we denote

x

njh

def

= x(x+ h) : : : (x+ (n� 1)h) (8.11)

Then similarly to the Newton binomial identity, one easily have

(x+ y)

njh

=

n

X

i=0

0

�

n

i

1

A

x

n�ijh

y

ijh

(8.12)

Using the notation (8.11) one 
an rewrite L

m

(k) in the following form

L

m

(k) =

m+1

X

j=1

m(2m� j)!

(m� j + 1)!(j � 1)!

(k � 2(m� j + 1))(k �m+ j)

m�1j1

(k � 2m)

j�1j1

(8.13)

Applying (8.12), one get

(k �m+ j)

m�1j1

=

�

(k + 1) + (j �m� 1)

�

m�1j1

=

m�1

X

i=0

0

�

m

i

1

A

(k + 1)

m�1�ij1

(j �m� 1)

ij1

=

m�j+1

X

i=0

(�1)

i

0

�

m

i

1

A

(k + 1)

m�1�ij1

(m� j + 1)!

(m� j � i+ 1)!

(8.14)

Substituting (8.14) in (8.13) and 
hanging the order of summation one easily obtain

L

m

(k) =

m

X

i=0

0

�

m�i

X

j=0

(2m� j � 1)!

j!(m� j � i)!

(k � 2(m� j))(k � 2m)

jj1

1

A

(�1)

i

m!(k + 1)

m�1�ij1

(m� i� 1)!i!

: (8.15)

Lemma 8.1 The following identity holds:

m�i

X

j=0

(2m� j � 1)!

j!(m� j � i)!

(k � 2m)

jj1

(k � 2(m� j)) =

(m+ i� 1)!

(m� i)!

(k � 2m)(k +m� i)

m�i�1

Y

l=1

(k � l):

(8.16)

Proof. Using representation k � 2(m� j) = (k � 2m) + 2j, one 
an split the lefthand side of

(8.16) into the sum of two terms:

(k � 2m)

m�i

X

j=0

(2m� j � 1)!

j!(m � j � i)!

(k � 2m)

jj1

+ 2

m�i

X

j=1

(2m� j � 1)!

(j � 1)!(m � j � i)!

(k � 2m)

jj1

: (8.17)
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Sin
e

(2m� j � 1) = (m+ i� 1)!(m + i)

m�i�jj1

;

the �rst term of (8.17) 
an be written in the way su
h that one 
an apply the binomial identity(8.12):

(m+ i� 1)!(k � 2m)

(m� i)!

m�i

X

j=0

0

�

m� i

j

1

A

(m+ i)

m�i�jj1

(k � 2m)

jj1

=

(m+ i� 1)!(k � 2m)

(m� i)!

(k �m+ i)

m�ij1

: (8.18)

In the same way, the se
ond term of (8.17) 
an be also written in the way su
h that one 
an apply

the binomial identity(8.12):

2

m�i

X

j=1

(2m� j � 1)!

(j � 1)!(m� j � i)!

(k � 2m)

jj1

= 2

m�i�1

X

j=0

(2m� j � 2)!

(j)!(m � j � i� 1)!

(k � 2m)

j+1j1

=

2(k � 2m)

m�i�1

X

j=0

(2m� j � 2)!

(j)!(m � j � i� 1)!

(k � 2m+ 1)

jj1

=

2(m+ i� 1)!(k � 2m)

(m� i� 1)!

m�i�1

X

j=1

0

�

m� i� 1

j

1

A

(m+ i)

m�i�1�jj1

(k � 2m+ 1)

jj1

=

2(m+ i� 1)!(k � 2m)

(m� i� 1)!

(k �m+ i+ 1)

m�i�1j1

: (8.19)

Combining (8.18) and (8.19) together, we obtain that the lefthand side of (8.16) is equal to

(m+ i� 1)!(k � 2m)

(m� i� 1)!

�

k �m+ i

m� i

+ 2

�

(k �m+ i+ 1)

m�i�1j1

=

(m+ i� 1)!

(m� i)!

(k�2m)(k+m�i)(k�m+i+1)

m�i�1j1

=

(m+ i� 1)!

(m� i)!

(k�2m)(k+m�i)

m�i�1

Y

l=1

(k�l)

that is exa
tly the righthand side of (8.16). This 
ompletes the proof of the lemma.�

Now substituting (8.16) to (8.15), we have the following identity:

L

m

(k) = (k � 2m)

m

X

i=0

(�1)

i

m!(m+ i� 1)!

i!(m� i)!(m� i� 1)!

m�i�1

Y

l=1

(k � l)

m�i

Y

l=1

(k + l): (8.20)

Then the fun
tion L

m

(k) satis�es

L

m

(k) =

k

k � 2m

L

m

(k) =

m

X

i=0

(�1)

i

m!(m+ i� 1)!

i!(m� i)!(m� i� 1)!

m�i

Y

l=1

(k + 1� l)

m�i

Y

l=1

(k + l): (8.21)

It remains only to noti
e that all terms of the sum in the righthand side of (8.21) are invariant

under the re
e
tion of the argument w.r.t. �

1

2

or, equivalently, under substitution k ! �1� k.

Then the fun
tion L

m

(k) is also invariant under this substitution, whi
h proves (8.5) and therefore

also (7.47).
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