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Abstrat

Jaobi urves are far going generalizations of the spaes of \Jaobi �elds" along Rieman-

nian geodesis. Atually, Jaobi urves are urves in the Lagrange Grassmannians. In our

paper we develop di�erential geometry of these urves whih provides basi feedbak or gauge

invariants for a wide lass of smooth ontrol systems and geometri strutures. Two prinipal

invariants are: the generalized Rii urvature, whih is an invariant of the parametrized urve

in the Lagrange Grassmannian providing the urve with a natural projetive struture, and a

fundamental form, whih is a degree 4 di�erential on the urve. The so-alled rank 1 urves

are studied in greater detail. Jaobi urves of this lass are assoiated to systems with salar

ontrols and to rank 2 vetor distributions.

In the forthoming seond part of the paper we will present the omparison theorems

(i.e., the estimates for the onjugate points in terms of our invariants) for rank 1 urves and

introdue an important lass of \at urves\.

Key words: Lagrange Grassmannian, Jaobi urve, sympleti invariants, feedbak invari-

ants, ross-ratio.

1 Introdution

SupposeM is a smooth n-dimensional manifold and � : T

�

M !M is the otangent bundle to

M: Let H be a odimension 1 submanifold in T

�

M suh that H is transversal to T

�

q

M; 8q 2M ;

then H

q

= H \ T

�

q

M is a smooth hypersurfae in T

�

q

M . Let & be the anonial Liouville form on

T

�

q

M , &

�

= � Æ �

�

, � 2 T

�

M , and � = �d& be the standard sympleti struture on T

�

M ; then

�j

H

is a orank 1 losed 2-form. The kernels of (�j

H

)

�

, � 2 H are transversal to T

�

q

M; q 2 M ;

these kernels form a line distribution in H and de�ne a harateristi 1-foliation C of H. Leaves

of this foliation are harateristi urves of �j

H

.
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Suppose  is a segment of a harateristi urve and O



is a neighborhood of  in H suh that

N = O



=(Cj

O



) is a well-de�ned smooth manifold. The quotient manifoldN is in fat a sympleti

manifold endowed with a sympleti struture �� indued by �j

H

. Let � : O



! N be the anonial

fatorization; then �(H

q

\ O



), q 2 M , are Lagrangian submanifolds in N . Let L(T



N) be the

Lagrangian Grassmannian of the sympleti spae T



N , i.e. L(T



N) = f� � T



N : �

\

= �g,

where D

\

= fe 2 T



N : ��(e;D) = 0g, 8D � T



N . Jaobi urve of the harateristi urve  is

the mapping

� 7! �

�

(T

�

H

�(�)

); � 2 ;

from  to L(T



N).

Jaobi urves are urves in the Lagrange Grassmannians. They are invariants of the hy-

persurfae H in the otangent bundle. In partiular, any di�erential invariant of the urves in

the Lagrange Grassmannian by the ation of the linear Sympleti Group (i.e., any sympleti

invariant) produes a well-de�ned funtion on H.

To make things lear it is not worse to give a oordinate version of the onstrution of Jaobi

urve. In the neighborhood O



hoose oordinates (x

0

; x

1

; : : : ; x

2n�2

) suh that the harateristi

urves of �j

H

are the straight lines parallel to the x

0

-axis (here we do not are about the fat that

H ome from the linear �ber bundle T

�

M , we forget about the linear struture of the �bers). In

these oordinates the sets H

�(�)

are some (n � 1)-dimensional submanifolds of R

2n�1

. For any

� 2  take projetion (parallel to x

0

-axis) of the spaes T

�

H

�(�)

to the hyperplane fx

0

= g for

some . Then we obtain a urve of (n�1)-dimensional subspaes in the (2n�2)-dimensional linear

spae. The restrition of the form � to fx

0

= g provides this spae with sympleti struture

and the obtained urve is a urve of Lagrangian subspaes w.r.t. this struture. This urve is

exatly the Jaobi urve.

SetW = T



N and note that the tangent spae T

�

L(W ) to the Lagrangian Grassmannian at the

point � an be naturally identi�ed with the spae of quadrati forms on the linear spae � �W .

Namely, take a urve �(t) 2 L(W ) with �(0) = �. Given some vetor l 2 �, take a urve l(�) in

W suh that l(t) 2 �(t) for all t and l(0) = l. De�ne the quadrati form q

�(�)

(l) =

1

2

��(

d

dt

l(0); l).

Using the fat that the spaes �(t) are Lagrangian, i.e. �(t)

\

= �(t), it is easy to see that the

form q

�(�)

(l) depends only on

d

dt

�(0). So, we have the map from T

�

L(W ) to the spae of quadrati

forms on �. A simple ounting of dimension shows that this mapping is a bijetion. Below we

use the just desribed identi�ation of tangent vetors to L(W ) with quadrati forms without a

speial mentioning.

Proposition 1 Tangent vetors to the Jaobi urve J



at a point J



(�); � 2 , are equiva-
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lent (under linear substitutions of variables in the orrespondent quadrati forms) to the \seond

fundamental form" of the hypersurfae H

�(�)

� T

�

�(�)

M at the point �.

Sketh of proof. In our loal study we may assume without lak of generality that H is a regular

level set of a smooth funtion h on T

�

M . Then  is a trajetory of the Hamiltonian vetor �eld

~

h de�ned by the identity

~

h� = dh. Let t 7! (t) be a parametrization of  de�ned by the

Hamiltonian system

d

dt

 =

~

h(), (0) = �. Given l 2 �

�

(T

�

H

�(�)

), take a vetor �eld ` on H suh

that `((t)) 2 T

(t)

H

�((t))

, �

�

`(�) = l. Simple alulations show that

d

dt

�

�

`((t)) = �

�

[

~

h; `℄((t)).

Hene

d

dt

J



j

t=0

(l) = ��(

d

dt

�

�

`((t))j

t=0

; l) = �([

~

h; `℄(�); `(�)):

Now we rewrite the last formula in oordinates. Let q = (q

1

; : : : ; q

n

) be loal oordinates inM and

p = (p

1

; : : : ; p

n

) be indued oordinates in the �ber of T

�

M so that & =

n

P

i=1

p

i

dq

i

, � =

n

P

i=1

dp

i

^dq

i

.

Then

~

h =

n

P

i=1

�

�h

�p

i

�

�q

i

�

�h

�q

i

�

�p

i

�

, ` =

n

P

i=1

`

i

�

�p

i

, l = (`

1

(�); : : : ; `

n

(�)). We have

�([

~

h; `℄(�); `(�)) = l

�

�

2

h

�p

2

l:

Quadrati form l 7! l

�

�

2

h

�p

2

l is exatly the \seond fundamental form" of the hypersurfae H

�(�)

=

h

�1

(h(�)) \ T

�

�(�)

M in T

�

�(�)

M . �

In partiular, the veloity of J



at � is a sign-de�nite quadrati form if and only if the

hypersurfae H

�(�)

is strongly onvex at �.

A similar onstrution an be done for a submanifold of odimension 2 in T

�

M . Namely,

let H be a transversal to �bers odimension 2 submanifold in T

�

M . In general, harateristi

urves do not �ll the whole submanifold H; they are onentrated in the harateristi variety

onsisting of the points, where �j

H

is degenerate. In our loal study we may always assume that

H is orientable and let 
 be a volume form on M . Then

V

n�1

�j

H

= a
, where a is a smooth

funtion on H. We set

C

H

= f� 2 H : a(�) = 0; (d

�

a

^

n�1

�j

�

)j

H

6= 0g:

Assume that C

H

6= ;. Then C

H

is a odimension 1 submanifold of H and �j

C

H

is a 2-form

of orank 1 on C

H

. Indeed, 8� 2 C

H

, ker �

�

j

H

is a 2-dimensional subspae in T

�

H, whih is

transversal to T

�

C

H

, and we have ker�

�

j

C

H

= ker �

�

j

H

\ T

�

C

H

.

The harateristi urves of �j

C

H

form a 1-foliation C of C

H

. Let  be a segment of a har-

ateristi urve and O



be a neighborhood of  in H suh that N = O



=(Cj

O



) is a well-de�ned

smooth manifold. The quotient manifold N is a sympleti manifold endowed with a sympleti

3



struture �� indued by �j

C

H

. Let � : O



! N be the anonial fatorization. It is easy to hek

that �

�

�

(T

�

H

�(�)

+ ker �

�

j

H

) \ T

�

C

H

�

is a Lagrangian subspae of the sympleti spae T

�(�)

N ,

8� 2 O



. Jaobi urve of the harateristi urve  is the mapping

� 7! �

�

�

(T

�

H

�(�)

+ ker�

�

j

H

) \ T

�

C

H

�

; � 2 ;

from  to L(T



N).

We are mainly interested in submanifolds that are dual objets to smooth ontrol systems.

Here we all a smooth ontrol system any submanifold V � TM , transversal to �bers. Let

V

q

= V \ T

q

M ; The \dual" normal variety H

1

and abnormal variety H

0

are de�ned as follows:

H

1

=

[

q2M

f� 2 T

�

q

M : 9v 2 V

q

; h�; vi = 1; h�; T

v

V

q

i = 0g;

H

0

=

[

q2M

f� 2 T

�

q

M n 0 : 9v 2 V

q

; h�; vi = h�; T

v

V

q

i = 0g:

These varieties are not, in general, smooth manifolds; they may have singularities, whih we do

not disuss here. Anyway, one an obtain a lot of information on the original system just studying

smooth parts of H

1

, H

0

.

One of the varieties H

1

;H

0

an be empty. In partiular, if V

q

= �W

q

, where W

q

is a onvex

set and 0 2 intW

q

, then H

0

= ;. Moreover, in this ase the Liouville form never vanishes on the

tangent lines to the harateristi urves of �j

H

1 , and any harateristi urve  has a anonial

parametrization by the rule h&; _i = 1. If subsets V

q

� T

q

M are onial, �V

q

= V

q

, 8� > 0, then,

in ontrast to the previous ase, H

1

= ; and & vanishes on the tangent lines to the harateristi

urves of �j

H

0
. The harateristi urves are atually unparametrized.

Charateristi urves of �j

H

1
(�j

H

0
) are assoiated with normal (abnormal) extremals of the

ontrol system V . In [1,2℄ Jaobi urves of extremals were de�ned in purely variational way in

terms of the original ontrol system and in a very general setting (singularities inluded), see also

[6℄. The introdued here Jaobi urves of harateristi urves of �j

H

1
(�j

H

0
) oinide with Jaobi

urves of the extremals, assoiated with these harateristi urves, in the following important

ases:

1. If H

1

has odimension 1 in T

�

M . It ours, for example, if subsets V

q

are ompat 8q 2M ;

2. If H

0

has odimension 1 in T

�

M , but H

1

= ;. It ours, for example, if for any q subset V

q

is onial but does not ontain a 2-dimensional linear spae;

3. If H

1

has odimension 2. It ours, for example, if for any q subset V

q

is aÆne line in T

q

M ,

not ontaining the origin;
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4. H

0

has odimension 2. It ours, for example , if V

q

are 2-dimensional linear spaes, i.e.,

subsets V

q

de�ne rank 2 vetor distribution on M , or if V

q

= D

q

\ �W

q

, where D

q

is

2-dimensional linear spae and W

q

is a onvex set suh that 0 2 intW

q

.

Jaobi urves assoiated with extremals of given ontrol system are not arbitrary urves of

Lagrangian Grassmannian but they inherit speial features of the ontrol system. The rank of the

\seond fundamental form" of the submanifolds H

1

q

and H

0

q

of T

�

q

M at any point is no greater

than dimV

q

. Indeed, let � 2 H

1

q

; then � 2 (T

v

V

q

)

?

, h�; vi = 1, for some v 2 V

q

. We have

�+ (T

v

V

q

+Rv)

?

� H

1

q

. So � belongs to an aÆne subspae of dimension n�dimV

q

� 1, whih is

ontained in H

1

q

. For � 2 H

0

q

, 9v 2 T

q

M suh that � 2 (T

v

V

q

)

?

, h�; vi = 0. Then linear subspae

(T

v

V

q

+ Rv)

?

is ontained in H

0

q

. It follows that the seond fundamental forms of H

1

q

and H

0

q

have rank no greater than (dimV

q

� odimH

1

+1) and (dimV

q

� odimH

0

+1) orrespondently.

In the ases 1 and 2 the veloity of the Jaobi urve � 7! J



(�), � 2 , assoiated with the

extremal , has rank no greater than dimV

�(�)

(see Prop. 1). The same is true for the Jaobi

urves of the extremals in the ases 3 and 4, although Prop. 1 annot be diretly applied.

Dimension of V

q

is the number of inputs or ontrol parameters in the ontrol system. Less

inputs means more \nonholonomi onstraints" on the system. It happens that the rank of

veloity of any Jaobi urve generated by the system never exeeds the number of inputs.

Note that by onstrution these Jaobi urves are feedbak invariants of the ontrol system

(i.e., they do not depend on a parametrization of the sets V

q

). Hene any sympleti invariants

of the Jaobi urves, assoiated with extremals, de�nes a funtion on appropriate submanifold

of T

�

M that is a feedbak invariant of the ontrol system. In this way the problem of �nding

feedbak invariants of ontrol systems an be redued to the muh more treatable problem of

�nding sympleti invariants of ertain urves in the Lagrange Grassmannian.

A urve in the Lagrange Grassmannian is alled regular, if its veloity at any point is a non-

degenerated quadrati forms. Regular urves were studied in [1℄, where notions of the derivative

urve and the urvature operator were introdued. Atually the derivative urves of Jaobi urves,

assoiated with the hypersurfae H, provide a anonial onnetion on the otangent bundle. If

H is a spherial bundle of a Riemannian manifold, then this onnetion is just the Levi-Civita

onnetion. The urvature operator of the Jaobi urve is intimately related to the urvature

tensor of the anonial onnetion.

In the present paper we develop general theory of urves in the Lagrangian Grassmannian.

The �rst steps in this diretion were made in [3℄. It makes sense to restrit ourselves to studying

so-alled monotoni (i.e, nondereasing or noninreasing) urves. The urve in Lagrangian Grass-

mannian is alled nondereasing (noninreasing), if the veloity at any its point is nonpositive

5



(orrespondingly, nonnegative) quadrati form. Jaobi urve assoiated with the extremal of �nite

Morse index is automatially monotoni.

This paper is organized as follows. In setion 2 we give the general onstrution of the

derivative urve and introdue two prinipal disrete harateristi of the urves in the Lagrange

Grassmannian: the rank and the weight. In partiular, regular urves have maximal rank and

minimal weight. Derivative urve is de�ned for any urve of the �nite weight. In setion 3 we

de�ne the urvature operator and show its role for the regular urves.

In setion 4 we study the ross-ratio of four points and an in�nitesimal ross-ratio of two

tangent vetors at two distint points in the Lagrange Grassmannian. The last one leads to an

intrinsi pairing V

0

; V

1

7! hV

0

j V

1

i, V

i

2 T

�

i

L(W ), i = 0; 1, of the tangent spaes to two distint

points �

0

, �

1

of the Grassmannian. The pairing h

_

�(t) j

_

�(�)i of the veloities of the urve

t 7! �(t) gives a symmetri funtion of two variables whih keeps all essential information about

the urve. This funtion is de�ned out of the diagonal ft = �g and has a very simple singularity

at the diagonal:

h

_

�(t) j

_

�(�)i = �

k

(t� �)

2

� g

�

(t; �);

where k is the weight of the urve and g

�

(t; �) is a smooth funtion!

The �rst oming invariant of the parametrized urve, the generalized Rii urvature, is just

g

�

(t; t), the value of g

�

at the diagonal. For regular urves and for rank 1 urves Rii urvature

is equal also to the trae of the de�ned earlier urvature operator.

In setion 5 we are foused on unparametrized urves. Our investigation is based on a simple

hain rule for a funtion g

�

. Indeed, let ' : R 7! R be a smooth monotoni funtion. It follows

diretly from de�nition of g

�

that

g

�Æ'

(t; �) = _'(t) _'(�)g

�

('(t); '(�)) + k

�

_'(t) _'(�)

('(t) � '(�))

2

�

1

(t� �)

2

�

In partiular,

g

�Æ'

(t; t) = _'(t)

2

g

�

('(t); '(t)) +

k

3

S(');

where S(') is a Shwarzian derivative of '. The lass of loal parametrizations that kill the

generalized Rii urvature de�nes a anonial projetive struture on the urve. The prini-

pal invariant of the unparametrized urve, the fundamental form, is a degree four di�erential

on the urve; in the anonial projetive parameter the fundamental form has the expression

1

2

�

2

g

�

��

2

(t; t)(dt)

4

.

In setion 6 we start a systemati study of the rank 1 urves and show that a rank 1 urve

has a onstant weight out of a disrete set of its interval of de�nition. In setion 7 we prove that

6



funtions

�

2i

g

�

��

2i

(t; t), 0 � i � m � 1 form a omplete system of sympleti invariants of a rank 1

and a onstant weight urve �(�) in the Lagrange Grassmannian L(R

2m

).

The Lagrange Grassmannian L(R

2m

) is a submanifold of the manifold G(m; 2m) of all m-

dimensional subspaes of R

2m

. The onstrutions of the derivative urve, the funtion g

�

, the

anonial projetive struture, and the fundamental form an be done in the same way for general

urves in G(m; 2m).

2 Derivative Curve

From now on W will be the 2m-dimensional linear spae provided with the sympleti form

��. Let � be a Lagrangian subspae of W , i.e. � 2 L(W ). For any w 2 �, the linear form

��(�; w) vanishes on � and thus de�nes a linear form on W=�. The nondegeneray of �� implies

that the relation w 7! ��(�; w), w 2 �, indues a anonial isomorphism �

�

=

(W=�)

�

and, by the

onjugation, �

�

�

=

W=�.

We set �

t

= f� 2 L(W ) : � \ � = 0g, an open everywhere dense subset of L(W ). Let

Sym

2

(�) be the spae of self-adjoint linear mappings from �

�

to �; this notation reets the

fat that Sym

2

(�) is the spae of quadrati forms on �

�

that is the symmetri square of �. �

t

possesses a anonial struture of an aÆne spae over the linear spae Sym

2

(�) = Sym

2

((W=�)

�

).

Indeed, for any � 2 �

t

and oset (w + �) 2 W=�, the intersetion � \ (w + �) of the linear

subspae � and the aÆne subspae w+� inW onsists of exatly one point. To a pair �;� 2 �

t

there orresponds a mapping (���) :W=�! �, where

(���)(w +�)

def

= � \ (w +�)�� \ (w +�):

It is easy to hek that the identi�ation W=� = �

�

makes (���) a self-adjoint mapping from

�

�

to �. Moreover, given � 2 �

t

, the orrespondene � 7! (� ��) is a one-to-one mapping of

�

t

onto Sym

2

(�) and the axioms of the aÆne spae are obviously satis�ed.

Fixing � 2 �

t

one obtains a anonial identi�ation �

�

=

W=� = �

�

. In partiular, (���) 2

Sym

2

(�) turns into the mapping from � to �. For the last linear mapping we will use the notation

h�;�;�i : �! �. In fat, this mapping has a muh more straightforward desription. Namely,

the relations W = � � �, � \ � = 0, imply that � is the graph of a linear mapping from � to

�. Atually, it is the graph of the mapping h�;�;�i. In partiular, kerh�;�;�i = � \ �. If

� \ � = 0, then h�;�;�i = h�;�;�i

�1

.

Let us give oordinate representations of the introdued objets. We may assume that

W = R

m

� R

m

= f(x; y) : x; y 2 R

m

g;

7



��((x

1

; y

1

); (x

2

; y

2

)) = hx

1

; y

2

i � hx

2

; y

1

i; � = R

m

� 0; � = 0� R

m

:

Then any � 2 �

t

takes the form � = f(x; Sx) : x 2 R

n

g, where S is a symmetri m�m matrix.

The operator h�;�;�i : � ! � is represented by the matrix S, while the operator h�;�;�i is

represented by the matrix S

�1

.

The oordinates in � indue the identi�ation of Sym

2

� with the spae of symmetri m�m

matries. �

t

is an aÆne subspae over Sym

2

�; we �x � as the origin in this aÆne subspae and

thus obtain a oordinatization of �

t

by symmetri m �m matries. In partiular, the \point"

� = f(x; Sx) : x 2 R

n

g in �

t

is represented by the matrix S

�1

.

A subspae �

0

= f(x; S

0

x) : x 2 R

n

g is transversal to � if and only if det(S � S

0

) 6= 0. Let

us pik oordinates fxg in �

0

and �x � as the origin in the aÆne spae �

t

0

. In the indued

oordinatization of �

t

0

the \point" � is represented by the matrix (S � S

0

)

�1

.

Let t 7! �(t) be a smooth urve in L(W ) de�ned on some interval I � R. We say that the

urve �(�) is ample at � if 9s > 0 suh that for any representative �

s

�

(�) of the s-jet of �(�) at � ,

9t suh that �

s

�

(t) \ �(�) = 0. The urve �(�) is alled ample if it is ample at any point.

We have given an intrinsi de�nition of an ample urve. In oordinates it takes the following

form: the urve t 7! f(x; S

t

x) : x 2 R

n

g is ample at � if and only if the funtion t 7! det(S

t

� S

�

)

has a root of �nite order at � .

The following lemma shows that analyti monotoni urve (monotoni means that the urve

has nonnegative or nonpositive veloities at any point) an be atually redued to the ample urve

by an appropriate fatorization.

Lemma 2.1 Let �(t) be analyti monotoni urve in L(W ). Then for any parameter � there

exists a subspae K of �(�) suh that for all t suÆiently losed to � the following holds

K = �(t) \ �(�): (2.1)

In addition, if �(t) is not a onstant urve, then the urve t 7! �(t)=K is a well de�ned ample

urve in the Lagrange Grassmannian L(K

\

=K).

Proof. Without loss of generality suppose that the urve �(t) is nondereasing (i.e., has

nonnegative de�nite veloity at any point). Denote K

t

= �(t)\�(�). Let t 7! f(x; S

t

x) : x 2 R

n

g

be oordinate representation of the germ of �(t) at � . Then K

t

= Ker(S

t

� S

�

). By assumption

v ! h

d

dt

S

t

v; vi is nonnegative de�nite quadrati form on �(�). It implies that K

t

2

� K

t

1

for

t < t

1

< t

2

. Therefore for t > � suÆiently losed to � the subspae K

t

does not depend on t and

will be denoted by K. By analytiity the subspaes K � �(t) for any t and the urve t 7! �(t)=K

is well de�ned ample urve in the Lagrange Grassmannian L(K

\

=K). �.
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Assume that �(�) is ample at � . Then �(t) 2 �(�)

t

for all t from a puntured neighborhood

of � . We obtain the urve t 7! �(t) 2 �(�)

t

in the aÆne spae �(�)

t

with the pole at � . We

denote by �

�

(t) the idential imbedding of �(t) in the aÆne spae �(�)

t

. The subsript � is

not superuous, sine the aÆne struture depends on �(�) and then on � . Fixing an \origin" in

�(�)

t

we make �

�

(t) a vetor funtion with values in Sym

2

(�) and with the pole at t = � . Suh

a vetor funtion admits the expansion in the Laurent series at � . Obviously, only free term in

the Laurent expansion depends on the hoie of the \origin" we did to identify the aÆne spae

with the linear one. More preisely, the addition of a vetor to the \origin" results in the addition

of the same vetor to the free term in the Laurent expansion. In other words, for the Laurent

expansion of a urve in an aÆne spae, the free term of the expansion is a point of this aÆne

spae while all other terms are elements of the orresponding linear spae. In partiular,

�

�

(t) � �

0

(�) +

1

X

i=�l

i6=0

Q

i

(�)(t� �)

i

; (2.2)

where �

0

(�) 2 �(�)

t

, Q

i

(�) 2 Sym

2

�(�).

Assume that the urve �(�) is ample. Then �

0

(�) 2 �(�)

t

is de�ned for all � . The urve

� 7! �

0

(�) is alled the derivative urve of �(�).

Another haraterization of �

0

(�) an be done in terms of the urves t 7! h�;�(t);�(�)i in

the linear spae Hom(�;�(�)), � 2 �(�)

t

. These urves have poles at � . The Laurent expansion

at t = � of the vetor funtion t 7! h�;�(t);�(�)i has zero free term if and only if � = �

0

(�).

The oordinate version of the series (2.2) is the Laurent expansion of the matrix-valued fun-

tion t 7! (S

t

� S

�

)

�1

at t = � , where �(t) = f(x; S

t

x) : x 2 R

n

g.

Suppose that

(S

t

� S

�

)

�1

�

1

X

i=�l

A

i

(�)(t � �)

i

; (2.3)

Di�erentiating both sides of (2.3) w.r.t � and omparing oeÆients of the orresponding expan-

sions one an get the following reursive type formula for the oeÆients A

i

(�)

d

d�

A

i

(�) = (i+ 1)A

i+1

(�) +

i+l

X

j=�l

A

j

(�)

_

S

�

A

i�j

(�) (2.4)

that will be used in the sequel.

For monotoni ample urve � : I � R 7! L(W ) we introdue the following two notions
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De�nition 1 The rank of the veloity

_

�(�) will be alled a rank of the urve �(�) at � . The

order of zero of the funtion t 7! det(S

t

� S

�

) at � , where S

t

is a oordinate representation of

�(�), is alled a weight of �(�) at � .

It is easy to see that the rank and the weight of �(�) are integral valued upper semiontinuous

funtions of � . In partiular, they are loally onstant on the open dense subset of the interval of

de�nition I. In the sequel we will be mostly onentrated on the monotoni ample urves of the

onstant rank and weight.

3 Curvature operator and regular urves.

Using derivative urve one an onstrut an operator invariant of the urve �(t) at any its

point. Namely, take veloities

_

�(t) and

_

�

0

(t) of �(t) and its derivative urve �

0

(t). Note that

_

�(t) is linear operator from �(t) to �(t)

�

and

_

�

0

(t) is linear operator from �

0

(t) to �

0

(t)

�

. Sine

the form � de�nes the anonial isomorphism between �

0

(t) and �(t)

�

, the following operator

R(t) : �(t)! �(t) an be de�ned:

R(t) = �

_

�

0

(t) Æ

_

�(t) (3.1)

This operator is alled urvature operator of � at t.

Remark 1 In the ase of Riemannian geometry the operator R(t) is similar to the so-alled

Rii operator v ! R

r

( _(t); v) _(t), whih appears in the lassial Jaobi equation r

_(t)

r

_(t)

V +

R

r

( _(t); V ) _(t) = 0 for Jaobi vetor �elds V along the geodesi (t) (here R

r

is urvature tensor

of Levi-Civita onnetion r), see [1℄. This is the reason for the sign \�" in (3.1).

The urvature operator plays an important role for so-alled regular urves. The urve �(t)

in Lagrangian Grassmannian is alled regular, if the quadrati form

_

�(t) is nondegenerated for

all t. If the urve �(�) is regular and has a oordinate representation �(t) = f(x; S

t

x) : x 2 R

n

g

then the funtion t 7! (S

t

� S

�

)

�1

has a simple pole at � . Indeed,

(S

t

� S

�

)

�1

=

�

_

S

�

(t� �) +O((t� �)

2

)

�

�1

=

_

S

�1

�

t� �

�

I +O(t� �)

�

�1

=

_

S

�1

�

t� �

+O(1) (3.2)

So, in the notation of (2.3) for the regular urve we have l = 1, A

�1

=

_

S

�1

�

and relation (2.4) an

be transformed into the following reursive formula

A

i+1

(�) =

1

i+ 3

0

�

d

d�

A

i

(�)�

i

X

j=0

A

j

(�)

_

S

�

A

i�j

(�)

1

A

(3.3)
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In partiular,

A

0

(�) =

1

2

d

d�

A

�1

(�) = �

1

2

_

S

�1

�

�

S

�

_

S

�1

�

(3.4)

and, by diret alulations,

A

1

(�) =

1

3

(

d

d�

A

0

(�)�A

0

(�)

_

S

�

A

0

(�)) =

�

1

4

�

_

S

�1

�

�

S

�

�

2

�

1

6

_

S

�1

�

S

(3)

�

�

_

S

�1

�

(3.5)

For a given � one an hoose a oordinate representation S

t

of the urve �(t) suh that

A

0

(�) = 0. Namely take S

t

the matrix of the linear mapping < �(�);�(t);�

0

(�) >. In this

oordinate representation the derivative

_

A

0

(�) is a matrix orresponding to the veloity

_

�

0

(�) of

the derivative urve. Also, from (3.5) it follows that

_

A

0

(�) = 3A

1

(�) . This together with (3.1)

implies that the matrix R(�) orresponding in the hosen basis of �(�) to the urvature operator

R(�) has the following form

R(�) = �3A

1

(�)(A

�1

(�))

�1

=

1

2

_

S

�1

�

S

(3)

�

�

3

4

�

_

S

�1

�

�

S

�

�

2

=

d

d�

�

(2

_

S

�

)

�1

�

S

�

�

�

�

(2

_

S

�

)

�1

�

S

�

�

2

(3.6)

Sine Q

1

(�) Æ (Q

�1

(�))

�1

: �(�) 7! �(�) is well de�ned operator, we an write the �rst equality

of (3.6) in the following operator form

R(�) = Q

1

(�) Æ (Q

�1

(�))

�1

(3.7)

This implies atually that the formula (3.6) is also true for any oordinate representation S

t

of

the urve �(t) (even without the assumption that A

0

(�) = 0).

Note that the right-hand side of (3.6) is a matrix analog of so-alled Shwarz derivative or

Shwarzian. Let us reall that the di�erential operator:

S : ' 7!

1

2

'

(3)

'

0

�

3

4

�

'

00

'

0

�

2

=

d

dt

�

'

00

2'

0

�

�

�

'

00

2'

0

�

2

; (3.8)

ating on salar funtion ' is alled Shwarzian. The operator S is haraterized by the following

remarkable property: General solution of the equation S'= � w.r.t ' is a M�obius transformation

(with onstant oeÆients) of some partiular solution of this equation. The matrix analog of

this operator has similar property, onerning \matrix M�obius transformation" of the type S 7!

(C + DS)(A + BS)

�1

. In partiular, if R(t) � 0, then the oordinate representation S

t

of our

urve has the form

S

t

= (C +Dt)(A+Bt)

�1

where

0

�

A B

C D

1

A

2 Sp(2m)

For further information about the regular urves we refer to [1℄.
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4 Expansion of the ross-ratio and Rii urvature.

For the nonregular urve �(t) = f(x; S

t

x) : x 2 R

n

g, the funtion t 7! (S

t

� S

�

)

�1

has a pole

of order greater than 1 at � and it is muh more diÆult to ompute its Laurent expansion. For

example, in the nonregular ase there is no diret reursive formula like (3.3). In this setion we

show how to onstrut numerial invariants for urves with onstant weight using the notion of

ross-ratio of four \points" in the Lagrange Grassmannian.

Let �

0

, �

1

, �

2

, and �

3

be Lagrangian subspaes of W suh that �

0

\�

3

= �

1

\�

2

= 0. Also

suppose for simpliity that �

0

\ �

2

= 0. The following linear mappings h�

0

;�

1

;�

2

i : �

0

! �

2

,

h�

2

;�

3

;�

0

i : �

2

! �

0

are well de�ned. The ross-ratio

h

�

0

;�

1

;�

2

;�

3

i

of four "points" �

0

, �

1

,

�

2

, and �

3

in the Lagrangian Grassmannian is, by de�nition, the following linear operator in �

0

:

h

�

0

;�

1

;�

2

;�

3

i

= h�

2

;�

3

;�

0

ih�

0

;�

1

;�

2

i: (4.1)

This notion is a \matrix" analog of the lassial ross-ratio of four points in the projetive

line. Indeed, let �

i

= f(x; S

i

x) : x 2 R

n

g, then, in oordinates fxg, the ross-ratio takes the form:

h

�

0

;�

1

;�

2

;�

3

i

= (S

0

� S

3

)

�1

(S

3

� S

2

)(S

2

� S

1

)

�1

(S

1

� S

0

) (4.2)

By onstrution, all oeÆients of the harateristi polynomial of

h

�

0

;�

1

;�

2

;�

3

i

are invariants

of four subspaes �

0

;�

1

;�

2

, and �

3

.

The assumption that �

0

\ �

2

= 0 is satis�ed in our further onsiderations but the ross-ratio

an be de�ned also without this assumption. Indeed, the matrix in the righthand side of (4.2)

is well de�ned also in the ase �

0

\ �

2

6= 0 and this matrix is transformed to a similar matrix

under any hange of oordinates. So, we obtain the lass of similar matries that is sympleti

invariant of four subspaes �

0

;�

1

;�

2

, and �

3

. This lass an be taken as a de�nition of ross-ratio

h

�

0

;�

1

;�

2

;�

3

i

(see [7℄ for the details).

Given two tangent vetors V

0

2 T

�

0

L(W ) and V

1

2 T

�

1

L(W ), where �

0

and �

1

are transversal

Lagrangian subspaes, one an de�ne an in�nitesimal analog of the ross-ratio. V

0

is the self-

adjoint linear mapping from �

0

to �

�

0

. The form � identi�es anonially �

�

0

with �

1

. Under

this identi�ation V

0

an be onsidered as the linear mapping from �

0

to �

1

. In the same way,

identifying �

�

1

with �

0

, we look on V

1

as on the operator from �

1

to �

0

. Therefore, the following

operator V

1

� V

0

: �

0

! �

0

an be de�ned

V

1

� V

0

def

= V

1

Æ V

0

(4.3)
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This operator will be alled an in�nitesimal ross-ratio of a pair (V

0

; V

1

) 2 T

�

0

L(W )� T

�

1

L(W ).

The in�nitesimal ross-ratio is sympleti invariant of the tangent vetors V

0

and V

1

.

One an de�ne the following bilinear form h� j �i

�

0

;�

1

on T

�

0

L(W )� T

�

1

L(W ):

hV

0

j V

1

i

�

0

;�

1

def

= tr(V

0

� V

1

) (4.4)

This bilinear form will be alled an inner pairing of the tangent spaes T

�

0

L(W ) and T

�

1

L(W ).

If �

i

= f(x; S

i

x) : x 2 R

n

g and P

i

are symmetri matries orresponding to V

i

, i = 0; 1, then

V

1

� V

0

= (S

0

� S

1

)

�1

P

1

(S

1

� S

0

)

�1

P

0

(4.5)

First note that if the urve �(t) is regular, then for any t

0

it is easy to expand the following

operator funtion

(t

1

; t

2

; t

3

) 7!

h

�(t

0

);�(t

1

);�(t

2

);�(t

3

)

i

h

t

0

; t

1

; t

2

; t

3

i

(4.6)

in the Taylor expansion at the diagonal point (t

0

; t

0

; t

0

), where

h

t

0

; t

1

; t

2

; t

3

i

=

(t

1

�t

0

)(t

3

�t

2

)

(t

2

�t

1

)(t

0

�t

3

)

is the

usual ross-ratio of four numbers t

0

, t

1

, t

2

, and t

3

. Namely, the following expansion

h

�(t

0

);�(t

1

);�(t

2

);�(t

3

)

i

h

t

0

; t

1

; t

2

; t

3

i

= I +

1

3

R(t

0

)(t

2

� t

0

)(t

3

� t

1

) +O

0

�

 

3

X

i=1

(t

i

� t

0

)

2

!

3=2

1

A

(4.7)

is valid, where, as before, R(t) is the urvature operator. Relation (4.7) shows that the urvature

operator is the �rst nontrivial oeÆient of the Taylor expansion of the ross-ratio.

Unfortunately, for the nonregular urves there are no simple expansions of the operator fun-

tion (4.6) or any other operator funtions, involving ross-ratio itself. Instead of this one an try

to expand the oeÆients of the harateristi polynomial of the ross-ratio. Now we are going

to show how to use this idea to onstrut invariants of the urve �(t) of the onstant weight k in

L(W ).

By the above the funtion (t

0

; t

1

; t

2

; t

3

) ! det

h

�(t

0

);�(t

1

);�(t

2

);�(t

3

)

i

is sympleti invari-

ants of the urve �(t). Using this fat, let us try to �nd sympleti invariants of �(t) that are

funtions of t. First we introdue the following funtion:

G(t

0

; t

1

; t

2

; t

3

) = ln

0

B

�

det

h

�(t

0

);�(t

1

);�(t

2

);�(t

3

)

i

h

t

0

; t

1

; t

2

; t

3

i

k

1

C

A

; (4.8)
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The funtion G(t

0

; t

1

; t

2

; t

3

) is also a sympleti invariant of �(t) and in addition it an be de�ned

as a smooth funtion in a neighborhood of any diagonal point (t; t; t; t) . Indeed, by the de�nition

of weight

det(S

t

0

� S

t

1

) = (t

0

� t

1

)

k

X(t

0

; t

1

); (4.9)

where

X(t; t) 6= 0 (4.10)

for any t. The funtion X(t

0

; t

1

) is symmetri, sine by hanging the order in (4.9) we obtain that

X an be symmetri or antisymmetri, but the last ase is impossible by (4.10).

Let us de�ne another symmetri funtion

f(t

0

; t

1

) = lnX(t

0

; t

1

) (4.11)

The funtion f(t

0

; t

1

) is smooth in a neighborhood of any diagonal point (t; t) and by (4.2 ),

(4.8)

G(t

0

; t

1

; t

2

; t

3

) = f(t

1

; t

0

)� f(t

2

; t

1

) + f(t

3

; t

2

)� f(t

0

; t

3

) (4.12)

Hene G(t

0

; t

1

; t

2

; t

3

) an be de�ned as a smooth funtion in a neighborhood of any diagonal

point (t; t; t; t). Using this fat one an onstrut the following funtions of two variables that are

sympleti invariants of the urve �(t)

h(t

0

; t

1

) = G(t

0

; t

1

; t

1

; t

0

) = 2f(t

0

; t

1

)� f(t

0

; t

0

)� f(t

1

; t

1

) (4.13)

g(t

0

; t

1

) =

1

2

�

2

�t

0

�t

1

h(t

0

; t

1

) =

�

2

�t

0

�t

1

f(t

0

; t

1

) (4.14)

On the ontrary the funtion f(t

0

; t

1

) depends on the hoie of the oordinate representation S

t

.

It follows from (4.13) that h(t

0

; t

0

) � 0 and

�

�t

0

h(t

0

; t

0

) � 0. Therefore the funtion h(t

0

; t

1

)

an be reovered from g(t

0

; t

1

). Moreover, the funtion G(t

0

; t

1

; t

2

; t

3

) an be easily reovered from

h(t

0

; t

1

) ( and therefore from g(t

0

; t

1

)). Namely, by (4.12) and (4.14)

G(t

0

; t

1

; t

2

; t

3

) =

1

2

(h(t

1

; t

0

)� h(t

2

; t

1

) + h(t

3

; t

2

)� h(t

0

; t

3

)) (4.15)

So, g or h keep all the information on G and thus on det

h

�(t

0

);�(t

1

);�(t

2

);�(t

3

)

i

.
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The funtion g(t

0

; t

1

) an be expanded in the formal Taylor series at the point (t; t) in the

following way:

g(t

0

; t

1

) �

1

X

i;j=0

�

i;j

(t)(t

0

� t)

i

(t

1

� t)

j

(4.16)

with

�

i;j

(t) = �

j;i

(t) (4.17)

Sine the funtion g is sympleti invariant of the urve �(t), all oeÆients �

i;j

(t), i; j � 0,

are also sympleti invariants.

The following natural questions arises: Does the funtion g(t

0

; t

1

) determine the urve �(t)

with presribed rank and weight uniquely, up to a sympleti transformation, and whih set of

the oeÆients �

i;j

(t) determine the funtion g(t

0

; t

1

)? We shall give the positive answers on both

of these questions in the setion 7 for the urve of rank 1 (see Theorems 1 and 2).

Meanwhile, let us prove the following simple relation between oeÆients �

i;j

(t)

�

0

i;j

(t) = (i+ 1)�

i+1;j

+ (j + 1)�

i;j+1

(4.18)

Indeed, from (4.16) it follows that

�

i;j

(t) =

1

i! j!

�

i+j

g

�t

i

0

�t

j

1

(t; t):

Therefore

�

0

i;j

(t) =

1

i! j!

�

�

i+j+1

�t

i+1

0

�t

j

1

g(t; t) +

�

i+j+1

�t

i

0

�t

j+1

1

g(t; t)

�

=

1

i! j!

�

(i+ 1)! j!�

i+1;j

(t) + i! (j + 1)!�

i;j+1

(t)

�

that implies (4.18).

As a orollary of the relation (4.18) we obtain the following lemma

Lemma 4.1 The oeÆients �

0;2k

(t), k � 0 determine uniquely the formal expansion (4.16).

Proof. For a given n � 0 let us onsider all equations of the type (4.18) with i+ j = n and

i � j. Consider two ases

1) If n is even then we have

n

2

+1 independent equations with respet to

n

2

+1 variables �

i;j

(t),

i+ j = n+1, 0 � i <

n

2

. This fat together with symmetri relation (4.17) implies that all �

i;j

(t)

with i+ j = n+ 1 an be expressed by derivatives of �

i;j

with i+ j = n.

2) If n is odd then we have

n+1

2

independent equations with respet to

n+1

2

+ 1 variables �

i;j

,

i+ j = n+1, 0 � i <

n+1

2

. Starting from i = 0 one an express step by step all �

i;j

, i+ j = n+1,

15



1 � i <

n+1

2

by �

0;n+1

and derivatives of �

i;j

with i+ j = n. Then by symmetri relation (4.17)

we have that all oeÆients �

i;j

(t) with i+ j = n+ 1 an be expressed by �

0;n+1

and derivatives

of �

i;j

with i+ j = n.

So, starting from n = 0 and applying step by step the arguments of 1) and 2), one an

expressed all �

i;j

(t) by �

0;2k

(t), k � 0, and their derivatives. �

It turns out that there is simple onnetion between funtion g, the inner pairing de�ned by

(4.4), and the oeÆients Q

i

of the Laurent expansion (2.2).

Lemma 4.2 The following relations hold

h

_

�(t) j

_

�(�) i

�(t);�(�)

= �

k

(t� �)

2

� g(t; �) (4.19)

tr

�

Q

i

(t)

_

�(t)

�

= 0; i < �1; (4.20)

tr

�

Q

�1

(t)

_

�(t)

�

= k; (4.21)

tr

�

Q

i

(t)

_

�(t)

�

= �

1

i

�

0;i�1

(t); i 2 N (4.22)

Proof. Let �

�

(t) be the idential imbedding of �(t) in the aÆne spae �(�)

t

(see setion 2).

Then the inner pairing h

_

�(t) j

_

�(�) i

�(t);�(�)

an be expressed in the following way

h

_

�(t) j

_

�(�) i

�(t);�(�)

= tr

�

�

�t

�

�

(t) Æ

_

�(�)

�

(4.23)

In the oordinates the previous relation an be written as follows

h

_

�(t) j

_

�(�) i

�(t);�(�)

= tr

�

�

�t

�

(S

t

� S

�

)

�1

�

_

S

�

�

(4.24)

Let us prove (4.19). By de�nition

ln(det(S

t

� S

�

)) = k ln(t� �) + f(t; �)

Di�erentiating the last equality w.r.t. � and using the fat that

d

d�

�

ln(detY (�))

�

= tr

�

(Y (�))

�1

_

Y (�)

�

for some matrix urve Y (�) we obtain:
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�tr

�

(S

t

� S

�

)

�1

_

S

�

�

= �

k

t� �

+

�

��

f(t; �)

Di�erentiating the last equality w.r.t. t and using (4.14) we get

�tr

�

�

�t

�

(S

t

� S

�

)

�1

�

_

S

�

�

=

k

(t� �)

2

+

�

2

�t��

f(t; �) =

k

(t� �)

2

+ g(t; �)

This together with (4.24) implies (4.19).

In order to prove (4.20)-(4.22) let us expand both sides of (4.19) in the orrespponding formal

series. On one hand by (2.2) we have

tr

�

�

�t

�

�

(t) Æ

_

�(�)

�

�

1

X

i=�l�1

(i+ 1)tr

�

Q

i+1

(�)

_

�(�)

�

(t� �)

i

(4.25)

On the other hand by (4.16)

g(t; �) �

1

X

0

�

0;i

(�)(t� �)

i

(4.26)

Comparing oeÆients of (4.25) and (4.26) we get (4.20)-(4.22). �

For the regular urve using (3.6) and applying formula (4.22) to the �rst appearing in (4.16)

oeÆient �

0;0

(t) we obtain

�

0;0

(t) =

1

3

trR(t) =

1

3

trS(S

t

); (4.27)

where S denotes Shwarz operator. The last relation and Remark 1 shows that �

0;0

generalizes the

Rii urvature in the Riemannian geometry. It justi�es the following de�nition for the general

urve of onstant rank and weight

De�nition 2 The �rst appearing in (4.16) oeÆient �

0;0

(t) is alled Rii urvature of �(t).

In the sequel the Rii urvature will be denoted by �(t).

At the end of this setion we ompute the expansion of g(t

0

; t

1

) in the ase dimW = 2. In this

ase L(W ) is in fat the real projetive line RP

1

and oordinate representation S

t

of the urve is

salar funtion . Therefore the relation (4.22) an be rewritten in the following form

�

0;i

= �(i+ 1)A

i+1

(t)

_

S

t

;

17



where A

i

are as in (2.3). In partiular from (4.27) it follows that

�(t) =

1

3

S(S

t

); (4.28)

i.e., in the salar ase the Rii urvature of the urve �(t) is Shwarzian of its oordinate repre-

sentation.

Denote by

B

i

(�) = �

1

i

�

0:i�1

= A(�)

_

S

�

(4.29)

Multiplying both sides of (3.3) by

_

S

�

and using ommutativity of multipliation in the salar ase,

one an easily obtain the following reursive formula for B

i

(�).

B

i+1

(�) =

1

i+ 3

0

�

d

d�

B

i

(�)�

i�1

X

j=1

B

j

(�)B

i�j

(�)

1

A

; i 2 N (4.30)

As a onsequene of Lemma 4.1 and formulas (4.28)� (4.30) one an obtain the following

Proposition 2 In the salar ase (i.e., dimW = 2) all oeÆients �

i;j

(t) an be expressed by

Rii urvature (that is Shwarzian of any oordinate representation of the urve �(t)) and its

derivative. The funtion g(t; �) is identially equal to zero i� oordinate representations of the

urve �(t) are M�obius transformations.

5 Fundamental form of the unparametrized urve.

The Jaobi urve onstruted in the Introdution is atually unparametrized urve, i.e., one-

dimensional submanifolds in Lagrange Grassmannian. Therefore it is natural to �nd symple-

ti invariants of unparametrized urves in L(W ). Espeially it is important for Jaobi urves

of abnormal extremals whih (in opposite to the normal extremals) a priori have no speial

parametrizations.

First of all we want to show how, using the Rii urvature, one an de�ne a anonial pro-

jetive struture on the unparametrized urve �(�). For this let us hek how the Rii urvature

is transformed by a reparametrization of the urve �(t).

Let � = '(t) be a reparametrization and let

�

�(�) = �('

�1

(�)). For some oordinate repre-

sentation S

t

of �(t) let

�

S

�

= S

'

�1

(�)

be the oordinate representation of

�

�(�). Denote by

�

f the

funtion playing for

�

S

�

the same role as the funtion f de�ned by (4.11) plays for S

t

. Then from

(4.11) it follows that

�

f(�

0

; �

1

) = f(t

0

; t

1

)� k ln

�

'(t

0

)� '(t

1

)

t

0

� t

1

�

; (5.1)
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where �

i

= '(t

i

), i = 0; 1.

Now denote by �g,

�

�

i;j

funtions playing for

�

�(�) the same role as the funtions g,�

i;j

de�ned

by (4.14) and (4.16) play for �(t).

Note also that we an look on the funtion '(t) as on the oordinate representation of some

urve in RP

1

= L(W ) with dimW = 2. So, all onstrutions and formulas of the previous setion

an be applied to this ase. We denote by g

'

(t

0

; t

1

) the funtion de�ned by (4.11), (4.14) with S

t

replaed by '(t). Then di�erentiating both sides of (5.1) one w.r.t. t

0

and twie t

1

we get

�g ('(t

0

); '(t

1

))'

0

(t

0

)'

0

(t

1

) = g(t

0

; t

1

)� kg

'

(t

0

; t

1

); (5.2)

By (4.16) and (4.28) it follows that the substitution t

0

= t

1

= t into (5.2) give us the following

reparametrization rule for Rii urvature

��(�)('

0

(t))

2

= �(t)�

k

3

S('(t)) (5.3)

Now we would like to �nd all reparametrizations � = '(t) suh that the Rii urvature ��(�)

in the new parameter � is identially equal to zero. The reparametrization rule (5.3) implies that

suh reparametrization have to satisfy the following di�erential equation

S ('(t)) =

3�(t)

k

(5.4)

This equation has a solutions at least loally (i.e., in a neighborhood of any given point) and

as was mentioned already in the setion 3 any two solution are transformed one to another by

M�obius transformation. In other words the set of all parametrization of �(�) with Rii urvature

identially equal to zero de�nes a projetive struture on �(�) (any two parametrization from this

set are transformed one to another by M�obius transformation). We all it the anonial projetive

struture of the urve �(�). The parameters of the anonial projetive struture will be alled

projetive parameters.

Now we give a onstrution of a speial form on unparametrized urve �(�) (namely, the

di�erential of degree four on �(�) ), whih is the �rst appearing invariant of the unparametrized

urve. We will all it the fundamental form of the urve �(�).

Let t be a projetive parameter on �(�). Then by de�nition �(t) � 0, and by (4.18) �

0;1

(t) �

1

2

�

0

0;0

(t) � 0 . Therefore by (4.26) we obtain that in projetive parameter

g(t

0

; t

1

) = �

0;2

(t

0

)(t

1

� t

0

)

2

+O

�

(t

1

� t

0

)

3

�

(5.5)
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Let � be another projetive parameter on �(�) i.e., � = '(t) =

at+b

t+d

. Then by Proposition 2

g

'

(t

0

; t

1

) � 0. Substituting this to the (5.2) we have

�g ('(t

0

); '(t

1

))'

0

(t

0

)'

0

(t

1

) = g(t

0

; t

1

); (5.6)

where �

i

= '(t

i

), i = 0; 1. Using (5.5), we ompare the oeÆients of the �rst terms in the Taylor

expansions of both sides of (5.6). As a result we obtain

�

�

0;2

('(t

0

))('

0

(t

0

))

4

= �

0;2

(t

0

)

or

�

�

0;2

(�)(d�)

4

= �

0;2

(t)(dt)

4

(5.7)

It means that the form �

0;2

(t)(dt)

4

does not depend on the hoie of the projetive parameter

t. We will all this form a fundamental form of the urve �(�) and will denote by A.

If t is an arbitrary (not neessarily projetive) parameter on the urve �(�), then the funda-

mental form A in this parameter has to be of the form A(t)(dt)

4

, where A(t) is a smooth funtion

(the "density" of the fundamental form).

Lemma 5.1 For arbitrary parameter t the density A(t) of the fundamental form satis�es the

following relation

A(t) = �

0;2

(t)�

3

5k

�(t)

2

�

3

20

�

00

(t) (5.8)

or, equivalently,

A(t) =

�

1

10

�

�

�t

0

+

�

�t

1

�

2

�

1

2

�

2

�t

0

�t

1

�

g(t

0

; t

1

)

�

�

�

t

0

=t

1

=t

�

3

5k

g(t; t)

2

: (5.9)

Proof. Let � = '(t) be a reparametrization suh that � be a projetive parameter. It means that

'(�) satis�es the equation (5.4). Denote by �

'

i;j

(t

0

; t

1

) the oeÆients de�ned by (4.11), (4.14)

and (4.16) with S

t

replaed by '(t). Using (5.5), ompare the oeÆients of the �rst terms in the

Taylor expansions of both sides of (5.6). As a result we obtain

�

�

0;2

('(t

0

))('

0

(t

0

))

4

= �

0;2

(t

0

)� k�

'

0;2

(t

0

)

or

A =

�

�

0;2

(�)(d�)

4

=

�

�

0;2

(t)� k�

'

0;2

(t)

�

(dt)

4

(5.10)
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To omplete the proof it remains to ompute the oeÆient �

'

0;2

(t

0

). For this we will use the

reursive formula (4.30), where B

i

are de�ned by (4.29) with �

'

0;i

instead of �

0;2

. From (4.30) it

follows that

B

2

(t) =

1

4

B

0

1

(t);

B

3

(t) =

1

5

�

B

0

2

(t)� (B

1

(t))

2

�

=

1

20

B

00

1

(t)�

1

5

(B

1

(t))

2

(5.11)

From (4.28), (4.29), and (5.4) it follows that

B

1

(t) = ��

'

0;0

(t) = �

1

3

S ('(t)) = �

�(t)

k

Then by (4.30) and (5.11)

�

'

0;2

(t) = �3B

3

(t) =

3

20k

�

00

(t) +

3

5k

2

�(t)

2

This together with (5.10) implies (5.8). To obtain (5.9) we just rewrite (5.8), taking into aount

the onnetion between the funtion g(t

0

; t

1

) and the funtions �(t) (= �

0;0

(t)), �

0;2

(t) given by

expansion (4.16)(the expression (5.9) is just the most symmetri w.r.t. t

0

and t

1

). �

If A(t) does not hange sign, then the anonial length element jA(t)j

1

4

dt is de�ned on �(�).

The orresponding parameter � (i.e., length with respet to this length element) is alled a nor-

mal parameter (in partiular, it implies that abnormal extremals may have anonial (normal)

parametrization). Calulating the Rii urvature �

n

(�) of �(�) in the normal parameter, we ob-

tain a funtional invariant of the unparametrized urve. We will all it projetive urvature of the

unparametrized urve �(�). If t = '(�) is the transition funtion between a projetive parameter

t and the normal parameter � , then by (5.4) it follows that �

n

(�) =

k

3

S ('(�)).

At the end of this setion we give an expliit formula for the fundamental form of the regular

urve in terms of its urvature operator. First note that by de�nition the weight k of the regular

urve is equal to

1

2

dim W (one an also derive it from (3.2) and (4.21)).

Lemma 5.2 The fundamental form A of the regular urve �(t) in the Lagrange Grassmannian

L(W ) satis�es the following relation

A =

1

15

�

tr

�

R(t)

2

�

�

1

k

�

trR(t)

�

2

�

(dt)

4

; (5.12)

where R(t) is the urvature operator of �(t) de�ned by (3.1) and k =

1

2

dim W .
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Proof. Let us ompute �

0;2

(t). We will use the notation of (2.2) and (2.3). By (4.22)

�

0;2

(t) = �3tr (Q

3

(t)

_

�(t)) = �3tr (A

3

(t)

_

S(t)) (5.13)

For a given

�

t hoose for simpliity a oordinate representation S

t

of the urve �(t) suh that

A

0

(

�

t) = 0. Then by (3.3)

A

3

(

�

t) =

1

5

�

_

A

2

(

�

t)�A

1

(

�

t)

_

S

�

t

A

1

(

�

t)

�

(5.14)

From (3.4) it follows that the ondition A

0

(

�

t) = 0 is equivalent to

�

S

�

t

= 0. It implies that

_

A

2

(

�

t)

_

S

�

t

=

d

dt

(A

2

(t)

_

S

t

)j

t=

�

t

. Therefore multiplying (5.14) by S

�

t

and taking trae from both sides

we obtain

tr

�

A

3

(

�

t)

_

S

�

t

�

=

1

5

d

dt

tr

�

A

2

(

�

t)

_

S

�

t

�

�

1

5

tr

�

(A

1

(

�

t)

_

S

�

t

)

2

�

(5.15)

Now by (4.22) and (4.18)

tr

�

A

2

(

�

t)

_

S

�

t

�

= �

1

2

�

0;1

(

�

t) = �

1

4

�

0

(

�

t) (5.16)

On the other hand by (3.6) (A

1

(

�

t)

_

S

�

t

) = �

1

3

R(

�

t). This and (5.16) imply that (5.15) an be

written in the following form

tr

�

A

3

(

�

t)

_

S

�

t

�

= �

1

20

�

00

(

�

t)�

1

45

tr

�

R(

�

t)

2

�

Taking into aount (5.14) we obtain by (5.8) that

A(

�

t) =

3

20

�

00

(

�

t) +

1

15

tr

�

R(

�

t)

2

�

�

3

5k

�(

�

t)

2

�

3

20

�

00

(

�

t) =

1

15

tr

�

R(

�

t)

2

�

�

3

5k

�(

�

t)

2

Finally, note that � =

1

3

trR (see (4.27)). Substituting this to the last relation we obtain

(5.12).�

Note that in the salar ase (i.e., when dim W = 2) the fundamental form A is identially

equal to zero.

Remark 2 All onstrutions of setions 3 - 5 an be done for the urve in the Grassmannian

G(m; 2m) ( the set of all m-dimensional subspaes in the 2m-dimensional linear spae) instead of

Lagrangian Grassmannian by the ation of the group GL(2m) instead of Sympleti Group.

22



6 The rank 1 urves: preliminary steps.

In the present setion we start a systemati study of the urves of rank 1 in the Lagrange

Grassmannian L(W ) with dimW = m. We onsider a rank 1 ample urve � : I 7! L(W ) with a

maybe nononstant weight, where I is some interval on the real line. We introdue a anonial

basis on eah subspae �(t) and ompute some harateristis of the urve, in partiular, its

weight at any point. Finally, we show that the urve � has the onstant weight equal to m

2

on

the set with disrete omplement in I. All this will prepare us to the next setion, where the

urves of rank 1 and onstant weight will be investigated.

Without loss of generality, suppose that �(�) is monotonially nondereasing, i.e., the ve-

loities

_

�(t) are nonnegtive de�nite quadrati forms. As in setion 2, let �

�

(t) be the idential

imbedding of �(t) in the aÆne spae �(�)

t

. The veloity

�

�t

�

�

(t) is well de�ned self-adjoint

linear mapping from �(�)

�

to �(�), i.e., an element of Sym

2

�(�). Moreover, by our assumptions,

�

�t

�

�

(t) is a nonpositive self-adjoint linear mapping of rank 1. So for t 6= � there exists a unique,

up to the sign, vetor w(t; �) 2 �(�) suh that for any v 2 �(�)

�

hv;

�

�t

�

�

(t)vi = �hv; w(t; �)i

2

(6.1)

Remark 3 From the de�nition of w(t; �) it follows easily that for given � the germ of the

urve �(t) at t = � is de�ned uniquely by �(�), the derivative subspae �

0

(�), and the germ of

the funtion t 7! w(t; �) at t = � . Sine the Sympleti Group ats transitively on the set of pairs

of transversal Lagrange subspaes, one an onlude that the germ of the urve �(t) at t = � is

de�ned uniquely, up to a sympleti transformation, by the germ of the funtion t 7! w(t; �) at

t = � .

The funtion t 7! �

�

(t) has a pole at t = � . It implies easily that the funtion t 7! w(t; �)

also has a pole at t = � . Suppose that the order of this pole is equal to l(�).

Denote by u(t; �) the normalized urve t! u(t; �) = (t� �)

l(�)

w(t; �) and de�ne the following

vetors in �(�):

e

j

(�) =

1

(j � 1)!

�

j�1

�t

j�1

u(t; �)

�

�

�

�

t=�

: (6.2)

First note that

span

�

fe

j

(�)g

1

j=1

�

= �(�) (6.3)
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Otherwise, using the following formula

w(t; �) =

j

X

i=1

e

i

(�)(t� �)

i�1�l

+O((t� �)

i�l

)

one an easily obtain the ontradition to the fat that �(t) is ample.

Thus for a given parameter � and integer i, 1 � i � m the following integers k

i

(�) are well

de�ned

k

i

(�) = min fj 2 N [ 0 : dim (span (e

1

(�); e

2

(�); : : : ; e

j+1

(�))) = ig (6.4)

Note that

0 = k

1

(�) < k

2

(�) < : : : < k

m

(�); k

i

(�) � i� 1 (6.5)

By de�nition the vetors e

k

1

(�)+1

(�); : : : ; e

k

m

(�)+1

(�) onstitute the basis of the subspae

�(�). We all this basis a anonial basis of �(�). Sine the vetor w(t; �) is de�ned up to

the sign, the vetor e

1

(�) (= e

k

1

(�)+1

(�)) is also de�ned up to the sign. So, one an take also

(�e

k

1

(�)+1

(�); : : : ;�e

k

m

(�)+1

(�)) as the anonial bases on the plane �(�). Denote by w

i

(t; �) the

i-th omponent of the vetor w(t; �) w.r.t this basis. In other words, funtions w

i

(t; �) satis�es

the following relation

w(t; �) =

m

X

i=1

w

i

(t; �)e

k

i

(�)+1

(�) (6.6)

Remark 4 Using Remark 3, one an easily onlude that the germ of the urve �(t) at t = �

is de�ned uniquely by �(�), the anonial basis in �(�), the derivative subspae �

0

(�), and the

germs of the funtions t 7! w

i

(t; �) at t = � , where 1 � i � m. Sine for any two pairs (�;�)

and (

~

�;

~

�) of transversal Lagrange subspaes with �xed bases in � and

~

�, there exists sympleti

transformation that transforms basis in � to the basis in

~

� and subspae � to

~

�, we have that

the germ of the urve �(t) at t = � is de�ned uniquely, up to a sympleti transformation, by the

germ of the funtions t 7! w

i

(t; �) at t = � , where 1 � i � m.

Now we prove a omputational lemmas about the weight of �(t) at � and the order of pole of

t 7! w(t; �).

Lemma 6.1 The order l(�) of pole of the funtion t 7! w(t; �) is equal to k

m

(�) + 1. The

weight of the urve �(t) at � is equal to (2 k

m

(�) + 1)m� 2

P

m

i=2

k

i

(�).
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Proof. For simpliity we will write k

i

instead of k

i

(�), and l instead of l(�). Let S

t

, �(t) =

f(x; S

t

x) : x 2 R

m

g, be a oordinate representation of germ of �(t) at t = � suh that the

anonial basis e

k

1

+1

(�); : : : ; e

k

m

+1

(�) onstitute a standard basis of R

m

. Denote by � = 0�R

m

,

the subspae D 2 �(�)

t

. From (6.2) it follows that in the anonial basis

w

i

(t; �) = (t� �)

k

i

�l

+O((t� �)

k

i

�l+1

): (6.7)

Then relation (6.1) in the anonial basis an be rewritten in the following form

�

�

�t

(S

t

� S

�

)

�1

�

i;j

= �w

i

(t; �)w

j

(t; �) = �(t� �)

k

i

+k

j

�2l

+O((t� �)

k

i

+k

j

�2l+1

) (6.8)

For simpliity take oordinates t 7! S

t

suh that the subspae � is the derivative subspae

�

0

(�). Then by de�nition of the derivative subspae the free term on the Laurent expansion of

(S

t

� S

�

)

�1

is equal to zero. Therefore

�

(S

t

� S

�

)

�1

�

i;j

= �

Z

t

w

i

(�; �)w

j

(�; �) d� =

(t� �)

2l�k

i

�k

j

�1

k

i

+ k

j

� 2l + 1

+O((t� �)

k

i

+k

j

�2l+2

) (6.9)

Then it is easy to get the following expansion for the determinant

det(S

t

� S

�

) =

(t� �)

k

C

+O((t� �)

k+1

); (6.10)

where

k = (2 l � 1)m� 2

m

X

i=2

k

i

; (6.11)

and C is the determinant of matrix whose (i; j)th entry is

1

2l�k

i

�k

j

�1

, i; j = 1; : : : ;m. It is well

known that the determinant of the matrix whose (i; j)th entry is

1

x

i

+y

j

, i; j = 1; : : : ;m, an be

omputed by the following formula

det

 

�

1

x

i

+ y

j

�

m

i;j=1

!

=

Q

1�i<j�m

(x

i

� x

j

)(y

i

� y

j

)

m

Q

i;j=1

(x

i

+ y

j

)

(6.12)

It implies in partiular that C 6= 0 (one an take x

i

= y

i

= l�k

i

�

1

2

and use the fat that k

i

6= k

j

for i 6= j). So, the weight is equal to (2l � 1)m� 2

P

m

i=2

k

i

.

Further, from (6.9) and (6.12) it follows that
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(S

t

� S

�

)

i;j

=

�

C

i;j

(t� �)

�k+2l�k

i

�k

j

�1

+O((t� �)

�k+2l�k

i

�k

j

)

�

�

(t� �)

k

C

+O((t� �)

k+1

)

�

=

C

i;j

C

(t� �)

2l�k

i

�k

j

�1

+O((t� �)

2l�k

i

�k

j

); (6.13)

where C is as in (6.10), k is as in (6.11), and C

i;j

are (i; j)th entry of adjaent matrix to the

matrix

�

1

2l�k

i

�k

j

�1

�

m

i;j=1

. By (6.12) and (6.5) C

i;j

6= 0. Sine S

t

is a smooth urve at � all powers

2l � k

i

� k

j

� 1 in (6.13) are positive. By assumption,

_

S

�

6= 0. It implies that

min

1�i;j�m

(2l � k

i

� k

j

� 1) = 1 (6.14)

But from (6.5) it follows that min

1�i;j�m

(2l� k

i

� k

j

� 1) = 2l� 2k

m

� 1 that yields that l = k

m

+1.

Consequently the weight is equal to (2 k

m

+ 1)m� 2

P

m

i=2

k

i

. �

Remark 5 In the proof of the previous lemma to obtain the asymptotis (6.9) we have taken

the oordinate representation t 7! S

t

, �(t) = f(x; S

t

x) : x 2 R

m

g, with � = �

0

(�) (where � =

0�R

m

). But then we have obtained the relation (6.14)whih implies that k

i

(�)+k

j

(�)�2l(�)+1 < 0

for any i; j = 1; : : : ;m. Therefore, the asymptotis (6.9) for

�

(S

t

� S

�

)

�1

�

i;j

and then the

asymptotis (6.13) for (S

t

� S

�

)

i;j

are valid for any oordinate representation t 7! S

t

, �(t) =

f(x; S

t

x) : x 2 R

m

g, of germ of �(t) at t = � suh that the anonial basis e

k

1

+1

(�); : : : ; e

k

m

+1

(�)

onstitute a standard basis of R

m

and � = 0�R

m

is arbitrary subspae transversal to �(�). The

reason is that the asymptotis (6.9) do not depend on free term.

Take some subspae � 2 �(�)

t

. Reall that the veloity

_

�(t) is a self-adjoint nonnegative

de�nite linear mapping of rank 1 from �(t) to �(t)

�

. For any t suÆiently losed to � one an

identify � with �(t)

�

. Under this identi�ation

_

�(t) is a self-adjoint nonnegative linear mapping

of rank 1 from �(t) to �. Therefore there exist a unique, up to the sign, vetor v(t) 2 � suh

that for any w 2 �(t):

h

_

�(t)w;wi = hv(t); wi

2

(6.15)

Suppose that a tuple of vetors f

1

(�); : : : ; f

m

(�) is a basis of � dual to the anonial basis

of �(�) (i.e, �(f

i

(�); e

k

j

(�)+1

(�)) = Æ

i;j

). From Remark 5 and relation (6.13) (where l = k

m

+ 1)

it follows that the omponents v

i

(t) of the vetor v(t) w.r.t the basis f

1

(�); : : : ; f

m

(�) have the

following asymptotis
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v

i

(t) = 

i

(�)(t� �)

k

m

(�)�k

i

(�)

+O

�

(t� �)

k

m

(�)�k

i

(�)+1

�

; (6.16)

where 

i

(�) 6= 0. (Atually, using (6.12), one an ompute 

i

(�):



i

(�) =

s

C

i;i

(�)(2(k

m

(�)� k

i

(�)) + 1)

C(�)

=

m

Q

j=1

(2k

m

(�)� k

i

(�)� k

j

(�) + 1)

Q

1�j�m; j 6=i

(k

i

(�)� k

j

(�))

(6.17)

where C

i;i

and C are as in the proof of Lemma 6.1.) The relation (6.16) implies that for any

integer nonnegative j suh that

k

m

(�)� k

i

(�) � j < k

m

(�)� k

i�1

(�) (6.18)

the following relation holds

span(v(�); v

0

(�); : : : ; v

(j)

(�)) = span(f

i

(�); : : : ; f

m

(�)) (6.19)

In partiular,

span(v(�); v

0

(�); : : : ; v

(k

m

(�)�1)

(�)) = span(f

2

(�); : : : ; f

m

(�))  �; (6.20)

span(v(�); v

0

(�); : : : ; v

(k

m

(�))

(�)) = � (6.21)

(reall that k

1

(�) = 0).

Now we are ready to prove the following

Proposition 3 For the ample urve � : I 7! L(W ) of rank 1 the set C suh that

C =

n

t 2 I : dim

�

span (e

1

(t); e

2

(t); : : : ; e

m

(t))

�

< m

o

(6.22)

is disrete set of the interval of de�nition I.

Proof. Suppose that C has an aumulation point � . Take some subspae � 2 �(�)

t

. Let

t 7! v(t) be a urve of vetors in � de�ned by (6.15) for all t from some neighborhood U of � in

I. Note that t 2 C i� k

m

(t) � m. Therefore, by (6.20) and (6.21), we have that t

0

2 C \ U i� the

funtion d(t)

def

= det(v(t); v

0

(t); : : : v

(m�1)

(t)) has zero at t = t

0

. For the aumulation point � ,

using onsequently the Rolle theorem, one an onlude that the funtion d(t) has zero of in�nite

order at t = � .

27



On the other hand, let l

i

(�)

def

= k

m

(�) � k

m�i+1

(�) . Denote by p =

m

P

i=1

l

i

(�). Let us prove

that d

(p)

(�) is not equal to zero. Indeed, d

(p)

(�) an be expressed as the sum of the terms of the

form det(v

(j

1

)

(�); : : : ; v

(j

m

)

(�)), where

m

X

i=1

j

i

= p; 0 � j

1

< j

2

< : : : < j

m

: (6.23)

Let us show that if the tuple (j

1

; : : : ; j

m

) is di�erent from the tuple (l

1

(�); : : : ; l

m

(�)) and satis�es

(6.23), then

det(v

(j

1

)

(�); : : : ; v

(j

m

)

(�)) = 0: (6.24)

For this note �rst that by assumptions there exists an index s, suh that j

s

< l

s

(�) (= k

m

(�) �

k

m�s+1

(�)) . Then from (6.18) and (6.19) we have the following relation

span(v

(j

1

)

(�); : : : ; v

(j

s

)

(�)) � span(f

m�s+2

(�); : : : ; f

m

(�));

i.e., dim

�

span(v

(j

1

)

(�); : : : ; v

(j

s

)

(�))

�

< s. It implies that dim

�

span(v

(j

1

)

(�); : : : ; v

(j

m

)

(�))

�

<

m that is equivalent to (6.24). Note also that from (6.18) and (6.19) it follows easily that

span

�

v

(l

1

(�))

(�); : : : ; v

(l

m

(�))

(�)

�

= �. Therefore,

d

(p)

(�) = det(v

(l

1

(�))

(�); : : : ; v

(l

m

(�))

(�)) 6= 0

(here  is some natural number). Hene d(t) has zero of �nite order at t = � . We obtain the

ontradition. �

For t 2 InC the numbers k

i

(t) = i� 1. As a onsequene of the previous proposition and the

expression for the weight from the Lemma 6.1, we obtain the following

Corollary 1 The ample urve � : I 7! L(W ) of rank 1 has the onstant weight equal to m

2

on the set with disrete omplement in I.

At the end of this setion we give the expliit formula for the veloity

_

�(�) in the anonial

basis. Let (e

�

1

(�); : : : ; e

�

m

(�)) be a basis in �(�)

�

dual to the anonial basis in �(�). As we have

seen at the end of the proof of the Lemma 6.1, the (m;m)th entry is the only nonzero entry of

the matrix

_

S

�

and it is equal to

C

m;m

(�)

C(�)

= 

2

m

(�) (where 

m

(�) is as in (6.17)). Therefore, we

obtain the following

Lemma 6.2 For any v

1

; v

2

2 �(�) the following relation holds
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h

_

�(�)v

1

; v

2

i = 

2

m

(�)he

�

m

(�); v

1

ihe

�

m

(�); v

2

i; (6.25)

where



m

(�) =

m�1

Y

j=1

k

m

(�)� k

j

(�) + 1

k

m

(�)� k

j

(�)

(6.26)

7 The rank 1 urves with a onstant weight.

The present setion is devoted to the urves of rank 1 and a onstant �nite weight in the

Lagrange Grassmannian L(W ). We show that in this ase the funtion g(t; �) onstruted in

setion 4 determines the urve uniquely, up to sympleti transformation. We also �nd a omplete

system of invariants of the urve in terms of the funtion g.

First, using Proposition 3 and Lemmas 6.1, we obtain the following

Proposition 4 If �(t) is a urve of rank 1 and onstant weight on I, then for all t 2 I and

1 � i � m the numbers k

i

(t) are equal to i � 1, or, equivalently, the vetors e

1

(t); : : : ; e

m

(t)

onstitute the anonial basis of the subspae �(t).

Proof. From (6.5) it follows that always

k

i

(t)� k

j

(t) � i� j; k

1

(t) = 0 (7.1)

Therefore by Lemma 6.1 the weight k(t) of the urve � at the point t satis�es

k(t) = (2k

m

(t) + 1)m� 2

m

X

i=2

k

i

(t) = 2

m

X

i=1

(k

m

(t)� k

i

(t)) +m � 2

m

X

i=1

(m� i) +m = m

2

(7.2)

In addition, from (7.1) it is easy to see that the equality in (7.2) holds i� k

i

(t) = i � 1 for any

1 � i � m. Therefore, if the set C is as in (6.22), then for any t 2 C the weight k(t) > m

2

, while

for t =2 C the weight k(t) = m

2

. But from Proposition 3 the set C is disrete subset of I. Hene,

for the weight k(t) to be onstant on I, the set C has to be empty. This ompletes the proof of

the Proposition. �

As a onsequene of the previous proposition and Lemmas 6.1, 6.2 , we obtain easily the

following
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Corollary 2 If �(t) is a urve of rank 1 and onstant weight on I, then:

1) at any point t 2 I the weight is equal to m

2

;

2) for any � 2 I the funtion t 7! w(t; �) has a pole of order m at t = � ;

3) For any v

1

; v

2

2 �(�) the following relation holds

h

_

�(�)v

1

; v

2

i = m

2

he

�

m

(�); v

1

ihe

�

m

(�); v

2

i (7.3)

Now we prove that the funtion g(t; �) de�ned in setion 4 ontains all the information about

�(t).

Theorem 1 The funtion g(t; �) determines the urve �(t) of rank 1 and onstant weight

uniquely , up to a sympleti transformation.

Before starting to prove the theorem, we want to desribe in few words the main steps of the

proof. First, we show that the funtion g(t; �) is almost the same as the omponent w

m

(t; �) of

the vetor w(t; �). The vetor w(t; �) is a funtion of two variables, but it is determined by a

urve. Therefore it is natural to expet that w(t; �) satis�es some partial di�erential equation.

We �nd this equation that is atually the system of m equations for the omponents w

i

(t; �),

1 � i � m. Then we show that this system has a "triangular" form suh that all omponents

w

i

(t; �) an be expressed by w

m

(t; �) and refer to Remark 4 to omplete the proof.

Proof of Theorem 1.

1. We start the proof with the following lemma

Lemma 7.1 The following relation holds

w

2

m

(t; �) =

1

(t� �)

2

+

1

m

2

g(t; �) (7.4)

Proof. By (4.19),(4.23), and part 2) of Corollary 4 we have

tr

�

�

�t

�

�

(t) Æ

_

�(�)

�

= �

m

2

(t� �)

2

� g(t; �) (7.5)

Let t ! S

t

, �(t) = f(x; S

t

x) : x 2 R

m

g be a oordinate representation of germ of �(t) at t = �

suh that the anonial basis e

1

(�); : : : ; e

m

(�) onstitute a standard basis of R

m

. By (4.24)

tr

�

�

�t

�

(S

t

� S

�

)

�1

�

_

S

�

�

= �

m

2

(t� �)

2

� g(t; �) (7.6)
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Relation (7.3) implies that in the hosen oordinates

_

S

�

=

8

<

:

0 (i; j) 6= (m;m)

m

2

(i; j) = m

By onstrution,

�

�

�t

�

(S

t

� S

�

)

�1

�

�

i;j

= �w

i

(t; �)w

j

(t; �)

Therefore

tr

�

�

�t

�

(S

t

� S

�

)

�1

�

_

S

�

�

= �m

2

w

2

m

(t; �):

This together with (7.6) implies (7.4). �

By (7.4) it follows that in order to prove the theorem it is suÆient to show that the funtion

w

m

(t; �) determines �(t) uniquely, up to a sympleti transformation.

2. Now we derive a partial di�erential equation for the vetor funtion w(t; �).

Lemma 7.2 The vetor funtion w(t; �) satis�es the following di�erential equation

�

2

w

�t��

�

 

�w

m

�t

w

m

!

�w

��

+m

2

w

2

m

w = 0 (7.7)

Proof. Fix some parameter �

0

and take some subspae � transversal to �(�

0

). Let t ! S

t

,

�(t) = f(x; S

t

x) : x 2 R

m

g be a oordinate representation of germ of �(t) at t = �

0

suh that

�(�

0

) = R

m

� 0 and � = 0�R

m

. Denote by w

�

(t; �) 2 R

m

the �rst m omponents of the vetor

w(t; �) in the hosen oordinates (or equivalently, the image of w(t; �) under the projetion of

W on �(�

0

) parallel to �). Also, let, as before, f

1

(�); : : : ; f

m

(�) be the basis of � dual to the

anonial basis of �(�) (w.r.t. the sympleti form �).

By (6.1) it follows that for t and � losed to �

0

�

�t

�

(S

t

� S

�

)

�1

�

= �w

�

(t; �)w

�

(t; �)

T

: (7.8)

Therefore

_

S

t

=

�

(S

t

� S

�

)w

�

(t; �)

��

(S

t

� S

�

)w

�

(t; �)

�

T

(7.9)
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It implies that the vetor funtion (S

t

� S

�

)w

�

(t; �) does not depend on � . Di�erentiating it

w.r.t. � we get

�

_

S

�

w

�

(t; �) + (S

t

� S

�

)

�

��

w

�

(t; �) = 0 (7.10)

From (6.25) it follows that

_

S

�

w

�

(t; �) = m

2

w

m

(t; �)f

m

(�) (7.11)

This together with (7.10) implies that

�

��

w

�

(t; �) = m

2

w

m

(t; �)(S

t

� S

�

)

�1

f

m

(�) (7.12)

In partiular,

m

2

(S

t

� S

�

)

�1

f

m

(�) =

1

w

m

(t; �)

�

��

w

�

(t; �) (7.13)

Now, di�erentiating (7.12) w.r.t. t, we have

�

2

�t��

w

�

(t; �) = m

2

w

m

(t; �)

�

�t

�

(S

t

� S

�

)

�1

�

f

m

(�) +

�

�t

w

m

(t; �)m

2

(S

t

� S

�

)

�1

f

m

(�) (7.14)

From (7.8) it follows that

(S

t

� S

�

)

�1

f

m

(�) = �w

m

(t; �)w

�

(t; �)

Substituting this and (7.13) in (7.14), we get

�

2

w

�

�t��

�

 

�w

m

�t

w

m

!

�w

�

��

+m

2

w

2

m

w

�

= 0 (7.15)

Realling the de�nition of w

�

(t; �), we obtain from the last equation the following inlusion

�

2

w

�t��

�

 

�w

m

�t

w

m

!

�w

��

+m

2

w

2

m

w 2 � (7.16)

Let us remember that all our onsiderations (and in partiular the inlusion (7.16)) are valid

for any subspae � transversal to �(�

0

) and any t, � losed to �

0

. Taking as � in (7.16) two

subspaes that are transversal to �(�

0

) and also transversal one to another, we obtain (7.7) for

any t, � losed to �

0

. Sine �

0

is arbitrary, this ompletes the proof of the lemma. �

In the sequel it will be onvenient also to make the following substitution in (7.7)
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Y (t; �) =

1

w

m

(t; �)

w(t; �) (7.17)

Then by diret omputation one an obtain the following equation for Y :

�

2

Y

�t��

+

 

�w

m

��

w

m

!

�Y

�t

+

�

�

2

�t��

(lnw

m

) +m

2

w

2

m

�

Y = 0 (7.18)

3. Now we shall rewrite the equation (7.7) as a system of equations w.r.t. the omponents

w

i

(t; �). Take some subspae � 2 �(�)

t

. Identifying � with �(�)

�

, denote f

i

(�) the vetor,

orresponding to e

�

i

(�) under this identi�ation. The vetors e

1

(�); : : : ; e

m

(�); f

1

(�); : : : ; f

m

(�)

onstitute the basis of the sympleti spae W . Suppose that

_e

i

(�) =

m

X

j=1

�

i;j

(�)e

j

(�) + 

i;j

(�)f

j

(�)

Aording to (7.3)



ij

(�) =

8

<

:

0 (i; j) 6= (m;m)

m

2

(i; j) = (m;m)

It implies that

_e

i

(�) =

m

P

j=1

�

i;j

(�)e

j

(�); 1 � i � m� 1;

_e

m

(�) =

m

P

j=1

�

m;j

(�)e

j

(�) +m

2

f

m

(�)

(7.19)

Remark 6 In partiular, it follows that the funtions �

i;j

(�) with 1 � i � m � 1 do not

depend on the hoie of the subspae �.

By de�nition

w(t; �) =

m

X

i=1

w

i

(t; �)e

i

(�):

Then, using (7.19), we obtain

�w

��

=

m

X

i=1

0

�

�w

i

��

+

m

X

j=1

w

j

�

j;i

1

A

e

i

+m

2

w

m

f

m

; (7.20)

�

2

w

�t��

=

m

X

i=1

0

�

�

2

w

i

�t��

+

m

X

j=1

�w

j

�t

�

j;i

1

A

e

i

+m

2

�w

m

�t

f

m

(7.21)
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Substituting (7.20) and (7.21) in (7.7) and omparing oeÆients of e

i

for i = 1; : : : ;m, we

get the following system of equations

�

2

w

i

�t��

�

�w

m

�t

w

m

�w

i

��

+m

2

w

2

m

w

i

=

m

X

j=1

 

�w

m

�t

w

m

w

j

�

�w

j

�t

!

�

j;i

; 1 � i � m (7.22)

The term in the righthand side of (7.22), orresponding to j = m, is equal to zero. Hene the

equation (7.22) an be written in the following form

�

2

w

i

�t��

�

�w

m

�t

w

m

�w

i

��

+m

2

w

2

m

w

i

=

m�1

X

j=1

 

�w

m

�t

w

m

w

j

�

�w

j

�t

!

�

j;i

; 1 � i � m (7.23)

By Remark 6 the system of equations (7.23) does not depend on the hoie of the subspae �.

In the same way the equation (7.17) an be rewritten as an equation for omponents

Y

i

(t; �) =

w

i

(t;�)

w

m

(t;�)

of the vetor Y

i

(t; �) w.r.t the anonial basis:

�

2

Y

i

�t��

+

 

�w

m

��

w

m

!

�Y

i

�t

+

�

�

2

�t��

(lnw

m

) +m

2

w

2

m

�

Y

i

= �

m�1

X

j=1

�Y

j

�t

�

j;i

(7.24)

4. Now we show that equation (7.23) (or (7.24)) has a "triangle" form. Note that by onstru-

tion all funtions t 7! w(t; �) have singularities at t = � . Moreover, from the part 1 of Corollary

4 it follows that their Laurent expansions at t = � have the following form

w

i

(t; �) =

1

(t� �)

m�i+1

+ '

i

(t; �); (7.25)

where '

i

(t; �) are smooth funtions. Using this fat one an obtain the following

Lemma 7.3 The oeÆients �

j;i

(�), 1 � j � m� 1, satisfy the following relations

1. �

j;i

(�) � 0, if j < i� 1;

2. �

i�1;i

(�) �

(i�1)(2m�i+1)

m�i+1

;

3. If i � j � m� 1, then �

j;i

(�) an be expressed by

�

k

�t

k

'

m

(t; �)

�

�

�

t=�

with 0 � k � i� j , where

'

m

(t; �) is de�ned by (7.25).

Proof. We shall analyze the Laurent expansions of both sides of the equation (7.23). We

start with the righthand side. Denote by
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�

m

(t; �) =

�

�t

ln

�

1 + (t� �)'

m

(t; �)

�

(7.26)

Using (7.25), one an obtain the following series of relations

�

�t

w

j

(t; �) = �

m� j + 1

(t� �)

m�j+2

+O(1); (7.27)

�

�t

w

m

w

m

=

�

�t

lnw

m

(t; �) =

�

�t

ln

�

1

t� �

+ '

m

(t; �)

�

= �

1

t� �

+�

m

(t; �) (7.28)

�

�t

w

m

w

m

w

j

= �

1

(t� �)

m�j+2

+

�

m

(t; �)

(t� �)

m�j+1

+O

�

1

t� �

�

(7.29)

Therefore the righthand side of (7.23) an be written in the following form

m�1

X

j=1

�

m� j

(t� �)

m�j+2

+

�

m

(t; �)

(t� �)

m�j+1

�

�

j;i

(�) +O

�

1

t� �

�

(7.30)

Suppose that the funtion t 7! �

m

(t; �) has the following expansion into the formal Taylor series

at t = �

�

m

(t; �) �

1

X

k=0



k

(�)(t� �)

k

(7.31)

Then by diret omputation we have that the righthand side of (7.23) has the following form

�

1;i

(�)

(t� �)

m+1

+

m�1

X

j=2

(m� j)�

j;i

(�) +

j�1

P

k=1



j�k�1

(�)�

k;i

(�)

(t� �)

m�j+2

+O

�

1

(t� �)

2

�

(7.32)

Now onsider the lefthand side of (7.23). Using (7.26) and (7.25) , we obtain the following

series of relations

�

��

w

i

(t; �) =

m� i+ 1

(t� �)

m�i+2

+

�

��

'

i

(t; �); (7.33)
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�

2

�t��

w

i

(t; �) = �

(m� i+ 1)(m� i+ 2)

(t� �)

m�i+3

+O(1); (7.34)

�

�t

w

m

w

m

�

��

w

i

(t; �) = �

m� i+ 1

(t� �)

m�i+3

+

�

m

(t; �)

(t� �)

m�i+2

�+O

�

1

t� �

�

(7.35)

w

m

(t; �)w

i

(t; �) =

1

(t� �)

m�i+3

+

2'

m

(t; �)

(t� �)

m�i+2

+

'

2

m

(t; �)

(t� �)

m�i+1

+O

�

1

(t� �)

2

�

(7.36)

Therefore the lefthand side of (7.23) an be written in the following form

m

2

� (m� i+ 1)

2

(t� �)

m�i+3

+

1

(t� �)

m�i+2

�

�

m

(t; �) + 2'

m

(t; �)

�

+

'

2

m

(t; �)

(t� �)

m�i+1

+O

�

1

(t� �)

2

�

(7.37)

Comparing oeÆients of (7.32) and (7.37) we have

1. If m� j + 2 > m� i+ 3, i.e., j < i� 1, then �

j;i

(�) � 0. This ompletes the proof of the

�rst part of the lemma;

2. If m� j +2 = m� i+3, i.e., j = i� 1, then �

i�1;i

(�)(m� i+1) = m

2

� (m� i+1)

2

. This

ompletes the proof of the seond part of the lemma;

3. If 2 < m� j +2 < m� i+ 3, i.e., i� 1 < j < m, then, taking into aount that �

k;i

(�) � 0

for k < i� 1, we obtain

(m� j)�

j;i

(�) +

j�1

X

k=i�1



j�k�1

(�)�

ki

(�) = 

j�i

(�) +

2

�

j�i

�t

j�i

'

m

(t; �)

�

�

�

t=�

(j � i)!

+

�

j�i+1

�t

j�i+1

'

2

m

(t; �)

�

�

�

t=�

(j � i+ 1)!

(7.38)

By (7.26) oeÆient 

n

(�) an be expressed by

�

k

�t

k

'

m

(t; �)

�

�

�

t=�

with 0 � k � n. This together

with (7.38) ompletes the proof of the third part of the lemma. �

By the previous lemma the equation (7.24) an be written in the following form for 2 � i � m

�Y

i�1

�t

= �

1

�

i�1;i

0

�

�

2

Y

i

�t��

+

 

�w

m

��

w

m

!

�Y

i

�t

+

�

�

2

�t��

(lnw

m

) +m

2

w

2

m

�

Y

i

+

m�1

X

j=i

�Y

j

�t

�

j;i

1

A

(7.39)
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where �

i�1;i

=

(i�1)(2m�i+1)

m�i+1

. All terms in the righthand side of (7.39) depends on the funtions

Y

j

(t; �) with j � i. Note also that by (7.25)

Y

i

(t; �) =

w

i

(t; �)

w

m

(t; �)

=

1

(t� �)

m�i

1 + (t� �)

m�i+1

'

i

(t; �)

1 + (t� �)'

m

(t; �)

(7.40)

It implies that in the Laurent expansion at t = � of the funtion t 7! Y (t; �) all oeÆients that

orrespond to nonpositive powers (and in partiular the free term) depend on w

m

(t; �). This

together with (7.39) yields that all Y

i

(t; �) ( and therefore all w

i

(t; �)) with 1 � i � m� 1 an be

expressed by w

m

(t; �). But by Remark 4 the omponents w

i

(t; �), 1 � i � m determine the urve

�(t) uniquely, up to a sympleti transformation. This ompletes the proof of the Theorem 1. �

Now our goal is to �nd a omplete system of sympleti invariants of urve �(t) of rank 1

and the onstant weight, i.e., some set of funtions of t whih determines �(t) uniquely, up to a

sympleti transformation. By Theorem 1 it is natural to look for a omplete system of invariants

among oeÆients �

i;j

(t) of the expansion (4.16) of g in the Taylor series. Sine �(t) an be

desribed, up to sympleti transformation, by the urve t! w(t; �) of the vetors on the linear

spae of dimension m, it is natural to expet that omplete system of invariants of �(�) onsists

of m funtions of t. By Lemma 4.1 the �rst m "independent" oeÆients in expansion (4.16) are

�

0;2i

(t) with 0 � i � m� 1. All this arguments lead to the following theorem:

Theorem 2 The oeÆients �

0;2i

(t), 0 � i � m� 1, determine the urve �(t) of rank 1 and

a onstant weight uniquely, up to a sympleti transformation.

Let a funtion '

m

(t; �) be as in (7.25). From the identity (7.4) it follows easily that the

theorem is equivalent to the following theorem:

Theorem 2

0

. The funtions � 7!

�

2i�1

'

m

(t;�)

�t

2i�1

�

�

�

t=�

, 1 � i � m, determine the urve �(t) of

rank 1 and a onstant weight uniquely, up to a sympleti transformation.

Proof of Theorem 2

0

. Let funtions '

i

(t; �), 1 � i � m, be as in (7.25). First, using the

system of equation (7.23), we prove the following lemma:

Lemma 7.4 Any partial derivatives of the funtions '

i

(t; �),1 � i � m, at any diagonal

points (�; �) an be expressed by the funtions � 7!

�

2j�1

'

m

�t

2j�1

(t; �)

�

�

t=�

and their derivatives , where

1 � j � m.

Proof. First, it is natural to make the hange of oordinates x = t � � , y = t + � suh

that the diagonal t = � beomes the axis x = 0 in the new oordinates. Indeed, if we denote
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by z

i

(x; y) = w

i

(

x+y

2

;

y�x

2

), then the system (7.23) an be transformed into the following system

w.r.t. z

i

:

�z

m

�

�

2

z

i

�x

2

�

�

2

z

i

�y

2

�

�

�

�z

m

�x

+

�z

m

�y

��

�z

i

�y

�

�z

i

�x

�

+m

2

z

3

m

z

i

=

m�1

X

j=i�1

��

�z

m

�x

+

�z

m

�y

�

z

j

�

�

�z

j

�x

+

�z

j

�y

�

z

m

�

�

ji

; 1 � i � m (7.41)

(here we also have used the �rst part of the Lemma 7.3). Relations (7.25) an be transformed

into the following

z

i

(x; y) =

1

x

m�i+1

u

i

(x; y); (7.42)

where the funtions u

i

(x; y) are smooth, u

i

(0; y) � 1, and

�

k

�x

k

u

i

(0; y) = 0 for 1 � i � m,

1 � k � m � i. Substitute (7.42) in (7.41) and multiply both sides on x

m�i+4

. Then we obtain

some singular system of equations w.r.t. u

i

. By diret alulation it an be shown that this

system has the following form:

x

2

u

m

�

2

u

i

�x

2

� (2m� 2i+ 1)xu

m

�u

i

�x

+ (m� i+ 1)xu

i

�u

m

�x

+ �

i�1;i

xu

i�1

�u

m

�x

�

�

i�1;i

xu

m

�u

i�1

�x

+ (m� i+ 1)

2

u

m

u

i

+ �

i�1;i

(m� i+ 1)u

i�1

u

m

�m

2

u

3

m

u

i

= 	

i

;

(7.43)

where

	

i

= x

2

u

m

�

2

u

i

�y

2

+ xu

m

�u

i

�y

� (m� i+ 1)xu

i

�u

m

�y

� �

i�1;i

xu

i�1

�u

m

�y

+

�

i�1;i

xu

m

�u

i�1

�y

� x

2

�

�u

m

�x

+

�u

m

�y

��

�u

i

�y

�

�u

i

�x

�

�

m�1

X

j=i

�

x

j�i+2

�

�u

m

�x

+

�u

m

�y

�

u

j

�

x

j�i+2

�

�u

j

�x

+

�u

j

�y

�

u

m

+ (m� j)x

j�i+1

u

m

u

j

�

�

ji

(7.44)

The lefthand side of equation (7.43) is a prinipal part of this equation in the following sense:

Di�erentiate both sides of (7.43) k times in x at the points of the initial urve x = 0. Then the

righthand side an be expressed by the partial derivatives

�

n

u

p

�x

n

(0; y) with n less than k and their

derivatives w.r.t. y (here one an take i � 1 � p � m), while any term of the lefthand side (

at least for k � 2) depends also on partial derivative of some u

j

w.r.t. x of order k at (0; y).

Moreover, using that u

i

(0; y) � 1 , 1 � i � m, and �

i�1;i

=

(2m�i+1)(i�1)

m�i+1

, one an easily obtain

in this way the following linear system w.r.t.

�

k

�x

k

u

i

(0; y), 1 � i � m for a given integer k � 0:

�

i

(k)

�

k

u

i�1

�x

k

(0; y) + �

i

(k)

�

k

u

i

�x

k

(0; y) + �

i

(k)

�

k

u

m

�x

k

(0; y) =

e

	

i

; 1 � i � m; (7.45)
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where

�

i

(k) =

(k + i�m� 1)(i � 2m� 1)(i � 1)

m� i+ 1

�

i

(k) = (k + i� 1)(k + i� 2m� 1) (7.46)

�

i

(k) =

k + 2i� 2� 2m

m� i+ 1

m

2

;

and

e

	

i

an be expressed by the partial derivatives of the form

�

n

u

p

�x

n

(0; y) with n less than k and

their derivatives w.r.t. y (here i� 1 � p � m).

It turns out that the determinant of the system (7.45) satis�es the following remarkable

identity:

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1

(k) 0 0 : : : 0 0 �

1

(k)

�

2

(k) �

2

(k) 0 : : : 0 0 �

2

(k)

0 �

3

(k) �

3

(k) : : : 0 0 �

3

(k)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : �

m�1

(k) �

m�1

(k) �

m�1

(k)

0 0 0 : : : 0 �

m

(k) �

m

(k) + �

m

(k)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

=

m

Y

j=1

(k � 2j)(k + 2j � 1)

(7.47)

The proof of (7.47) that we have found is rather long and will be presented in Appendix.

As a onsequene of (7.47) we obtain that the determinant of the system (7.45) has exatly

m positive zeros at k = 2j, 1 � j � m. Therefore, any partial derivative of u

i

, 1 � i � m, at

(0; y) an be expressed by the funtions y 7!

�

2j

u

p

�x

2j

(0; y) and their derivatives, where 1 � j; p � m.

Moreover, by Theorem 1 u

p

(x; y) an be expressed by u

m

(x; y) and its derivative. Hene any

partial derivative of u

i

, 1 � i � m, at (0; y) an be expressed by the funtions y 7!

�

2j

u

m

�x

2j

(0; y)

and their derivatives, where 1 � j � m. But this is equivalent to the statement of our Lemma, if

we return to the old oordinates t and � . �

Now we de�ne a anonial moving frame: For given � take the derivative subspae �

0

(�) and let

f

1

(�); : : : ; f

m

(�) be a basis of �

0

(�) dual to the anonial basis of �(�) (i.e., �(f

i

(�); e

j

(�)) = Æ

i;j

).

The basis (e

1

(�); : : : ; e

m

(�); f

1

(�); : : : ; f

m

(�)) of whole sympleti spaeW is alled the anonial

moving frame of the urve �(�). Denote by E(�) and F (�) the tuples of vetors (e

1

(�); : : : ; e

m

(�))

and (f

1

(�); : : : ; f

m

(�)) orrespondingly , arranged in the olumns. Denote by S

t

the matrix, orre-

sponding to the linear mapping h�(�);�(t);�

0

(�)i w.r.t to the anonial basis, and by S

0

t

the ma-

trix, orresponding to the linear mapping h�

0

(�);�

0

(t);�(�)i w.r.t to the basis (f

1

(�); : : : ; f

m

(�))
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( see setion 2 for notations). Also, let 
(�) be a m�m matrix with (i; j) entry equal to �

i;j

(�),

where �

i;j

(�) is de�ned by (7.19) with � = �

0

(�). Then it is easy to see that the strutural

equation for the anonial moving frame has the following form:

0

�

_

E(�)

_

F (�)

1

A

=

0

�


(�)

_

S

�

_

S

0

�

�


T

(�)

1

A

0

�

E(�)

F (�)

1

A

: (7.48)

We laim that in order to prove Theorem 2

0

it is suÆient to prove the following lemma:

Lemma 7.5 The matrix in the strutural equation (7.48) depends only on the oeÆients of

the expansions of t! w

i

(t; �), 1 � i � m , in the Laurent series at t = � .

Indeed, if Lemma 7.5 holds then �rst by Lemma 7.4 this matrix depends only on the funtions

� 7!

�

2j�1

'

m

�t

2j�1

(t; �)

�

�

t=�

, 1 � j � m, seondly, the strutural equation (7.48) has a unique solution

with presribed initial ondition, and, �nally, any sympleti basis an be taken as an initial

ondition of (7.48).

Proof of Lemma 7.5. First, aording to (7.3)

(

_

S

�

))

i;j

=

8

<

:

0 (i; j) 6= (m;m)

m

2

(i; j) = (m;m);

(7.49)

Further, by reursive formula (2.4) for i = 0 :

_

S

0

�

=

d

d�

A

0

(�) = A

1

(�) +

�1

X

n=1�2m

�

A

n

(�)

_

S

�

A

�n

(�) +A

�n

(�)

_

S

�

A

n

(�)

�

; (7.50)

where A

j

(�) are de�ned by expansion (2.3) ( here we have used that by de�nition of the derivative

urve A

0

(�) = 0 and by Lemma 6.1 the order of pole of t 7! (S

t

� S

�

)

�1

at t = � is equal to

2m� 1). By de�nition of the vetors w(t; �), we have

�

(S

t

� S

�

)

�1

�

i;j

= �

Z

t

w

i

(�; �)w

j

(�; �)d�:

Therefore any A

n

(�) with n 6= 0 an be expressed by the oeÆients of the expansions of t !

w

i

(t; �), 1 � i � m , in the Laurent series at t = � . This together with (7.49) and (7.50) implies

that

_

S

0

�

an be expressed by the oeÆients of the expansions of t! w

i

(t; �), 1 � i � m , in the

Laurent series at t = � .

Finally, let us analyze the matrix 
(�). By Lemma 7.3 all its entries �

i;j

(�) with 1 � i � m�1

an be expressed by the oeÆients of the expansions of t ! w

m

(t; �) in the Laurent series at

t = � . The entries �

m;j

(�) do not enter the di�erential equation (7.23). To �nd an expression
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for these entries we will use the integral-di�erential equation (7.12) that an be rewritten for

� = �

0

(�) in the following form:

�w

�

0

(�)

(t; �

1

)

��

1

�

�

�

�

1

=�

= �m

2

w

m

(t; �)

Z

t

w

m

(�; �)w(�; �)d� (7.51)

Using (7.20), we an obtain from here the following system of equation w.r.t. the omponents

w

j

(t; �)

�w

j

(t; �)

��

+

m

X

l=1

w

l

(t; �)�

lj

(�) = �m

2

w

m

(t; �)

Z

t

w

m

(�; �)w

j

(�; �)d�; 1 � j � m (7.52)

For given j onsider the Laurent expansion of the lefthand side of (7.51), as a funtion of t, at

t = � . By (7.25) the oeÆient of

1

t��

in this expansion is equal to �

m;j

(�). On the other hand,

all oeÆients of the appropriate expansion of the righthand side an be expressed by oeÆients

of expansions of t! w

j

(t; �) and t! w

m

(t; �) in the Laurent series at t = � . Therefore also the

entries �

m;j

(�) an be expressed by oeÆients of expansions of t! w

i

(t; �) (even with i = j or

m) in the Laurent series at t = � . This onludes the proof of our Lemma and also of Theorem

2

0

.�

8 Appendix

In this appendix we prove the identity (7.47). We are sure that the proof presented here is far

to be optimal, but this is the only one that we have at this moment.

Denote the determinant in the lefthand side of (7.47) by L

m

(k). Expanding this determinant

w.r.t. the last olumn, we have

L

m

(k) =

m

X

j=1

(�1)

j+m

�

j

(k)

j�1

Y

i=1

�

i

(k)

m

Y

i=j+1

�

i

(k) +

m

Y

i=1

�

i

(k) (8.1)

Then, substituting (7.46) in (8.1), one an easily transform L

m

(k) to the following form:

L

m

(k) =

m+1

X

j=1

m(2m� j)!

(m� j + 1)!(j � 1)!

�

k � 2(m� j + 1)

�

m�j

Y

i=2�j

(k � i)

2m

Y

i=2m�j+2

(k � i) (8.2)

Note that L

m

(k) is a polynomial of degree 2m , exatly as the polynomial in the righthand side

of (7.47). Also for both polynomials the oeÆient of leading term k

2m

is equal to 1. Therefore

in order to prove the identity (7.47) it is suÆient to prove that the polynomials in both sides of

(7.47) have the same roots, or, equivalently, that L

m

(2i) = L

m

(1� 2i) = 0 for all 1 � i � m.
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We will do this in two steps: First we will show that

L

m

(2i) = 0 1 � i � m: (8.3)

Seondly we will prove that the funtion

L

m

(k)

def

=

k

k � 2m

L

m

(k) (8.4)

satis�es

L

m

(�1� k) = L

m

(k); (8.5)

i.e., L

m

(k) is invariant under the reetion of its argument w.r.t. �1=2. This together with (8.3)

and the fat that L

m

(0) = 0 (whih follows diretly from the de�nition of L

m

(k)) will imply that

also L

m

(1� 2i) = 0 for all 1 � i � m.

1. The proof of (8.3). For 1 � j � m+ 1 denote by

p

m;j

(k) =

m(2m� j)!

(m� j + 1)!(j � 1)!

�

k � 2(m� j + 1)

�

m�j

Y

i=2�j

(k � i)

2m

Y

i=2m�j+2

(k � i); (8.6)

By diret omputation the following identity an be easily heked:

p

m;j

(2m� 2l) + p

m;2l+2�j

(2m� 2l) = 0; (8.7)

where

0 � l � m� 1; maxf1; 2l + 1�mg � j � minfm+ 1; 2l + 1g

In partiular, applying (8.6) to j = l + 1, we have

p

m;l+1

(2m� 2l) = 0 (8.8)

By onstrution,

L

m

(2m� 2l) =

m+1

X

j=1

p

m;j

(2m� 2l) (8.9)

Denote l

1

= maxf1; 2l + 1�mg and l

2

= minfm+ 1; 2l + 1g. Consider the following 3 ases:

1) l

1

� j � l

2

. Then from (8.7) and (8.8) it follows that

l

2

X

j=l

1

p

m;j

(2m� 2l) =

l

X

j=l

1

�

p

m;j

(2m� 2l) + p

m;2l+2�j

(2m� 2l)

�

+ p

m;l+1

(2m� 2l) = 0; (8.10)

2) 2l + 2 � j � m + 1. Then 2m � j + 2 � m � l � 2m, so from (8.6) it follows that

p

m;j

(2m� 2l) = 0;
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3) 1 � j � 2l�m. Then 2 � 2m� 2l � m� j and again from (8.6) it follows that in this ase

p

m;j

(2m� 2l) = 0.

Therefore, by (8.9), L

m

(2m � 2l) = 0 for all 0 � l � m� 1, or, equivalently, L

m

(2i) = 0 for

all 1 � i �m.

2. The proof of (8.5). We will transform the expression for L

m

(k) to the more symmetri

form. Following [5℄ (Chapter 1, x2) we denote

x

njh

def

= x(x+ h) : : : (x+ (n� 1)h) (8.11)

Then similarly to the Newton binomial identity, one easily have

(x+ y)

njh

=

n

X

i=0

0

�

n

i

1

A

x

n�ijh

y

ijh

(8.12)

Using the notation (8.11) one an rewrite L

m

(k) in the following form

L

m

(k) =

m+1

X

j=1

m(2m� j)!

(m� j + 1)!(j � 1)!

(k � 2(m� j + 1))(k �m+ j)

m�1j1

(k � 2m)

j�1j1

(8.13)

Applying (8.12), one get

(k �m+ j)

m�1j1

=

�

(k + 1) + (j �m� 1)

�

m�1j1

=

m�1

X

i=0

0

�

m

i

1

A

(k + 1)

m�1�ij1

(j �m� 1)

ij1

=

m�j+1

X

i=0

(�1)

i

0

�

m

i

1

A

(k + 1)

m�1�ij1

(m� j + 1)!

(m� j � i+ 1)!

(8.14)

Substituting (8.14) in (8.13) and hanging the order of summation one easily obtain

L

m

(k) =

m

X

i=0

0

�

m�i

X

j=0

(2m� j � 1)!

j!(m� j � i)!

(k � 2(m� j))(k � 2m)

jj1

1

A

(�1)

i

m!(k + 1)

m�1�ij1

(m� i� 1)!i!

: (8.15)

Lemma 8.1 The following identity holds:

m�i

X

j=0

(2m� j � 1)!

j!(m� j � i)!

(k � 2m)

jj1

(k � 2(m� j)) =

(m+ i� 1)!

(m� i)!

(k � 2m)(k +m� i)

m�i�1

Y

l=1

(k � l):

(8.16)

Proof. Using representation k � 2(m� j) = (k � 2m) + 2j, one an split the lefthand side of

(8.16) into the sum of two terms:

(k � 2m)

m�i

X

j=0

(2m� j � 1)!

j!(m � j � i)!

(k � 2m)

jj1

+ 2

m�i

X

j=1

(2m� j � 1)!

(j � 1)!(m � j � i)!

(k � 2m)

jj1

: (8.17)
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Sine

(2m� j � 1) = (m+ i� 1)!(m + i)

m�i�jj1

;

the �rst term of (8.17) an be written in the way suh that one an apply the binomial identity(8.12):

(m+ i� 1)!(k � 2m)

(m� i)!

m�i

X

j=0

0

�

m� i

j

1

A

(m+ i)

m�i�jj1

(k � 2m)

jj1

=

(m+ i� 1)!(k � 2m)

(m� i)!

(k �m+ i)

m�ij1

: (8.18)

In the same way, the seond term of (8.17) an be also written in the way suh that one an apply

the binomial identity(8.12):

2

m�i

X

j=1

(2m� j � 1)!

(j � 1)!(m� j � i)!

(k � 2m)

jj1

= 2

m�i�1

X

j=0

(2m� j � 2)!

(j)!(m � j � i� 1)!

(k � 2m)

j+1j1

=

2(k � 2m)

m�i�1

X

j=0

(2m� j � 2)!

(j)!(m � j � i� 1)!

(k � 2m+ 1)

jj1

=

2(m+ i� 1)!(k � 2m)

(m� i� 1)!

m�i�1

X

j=1

0

�

m� i� 1

j

1

A

(m+ i)

m�i�1�jj1

(k � 2m+ 1)

jj1

=

2(m+ i� 1)!(k � 2m)

(m� i� 1)!

(k �m+ i+ 1)

m�i�1j1

: (8.19)

Combining (8.18) and (8.19) together, we obtain that the lefthand side of (8.16) is equal to

(m+ i� 1)!(k � 2m)

(m� i� 1)!

�

k �m+ i

m� i

+ 2

�

(k �m+ i+ 1)

m�i�1j1

=

(m+ i� 1)!

(m� i)!

(k�2m)(k+m�i)(k�m+i+1)

m�i�1j1

=

(m+ i� 1)!

(m� i)!

(k�2m)(k+m�i)

m�i�1

Y

l=1

(k�l)

that is exatly the righthand side of (8.16). This ompletes the proof of the lemma.�

Now substituting (8.16) to (8.15), we have the following identity:

L

m

(k) = (k � 2m)

m

X

i=0

(�1)

i

m!(m+ i� 1)!

i!(m� i)!(m� i� 1)!

m�i�1

Y

l=1

(k � l)

m�i

Y

l=1

(k + l): (8.20)

Then the funtion L

m

(k) satis�es

L

m

(k) =

k

k � 2m

L

m

(k) =

m

X

i=0

(�1)

i

m!(m+ i� 1)!

i!(m� i)!(m� i� 1)!

m�i

Y

l=1

(k + 1� l)

m�i

Y

l=1

(k + l): (8.21)

It remains only to notie that all terms of the sum in the righthand side of (8.21) are invariant

under the reetion of the argument w.r.t. �

1

2

or, equivalently, under substitution k ! �1� k.

Then the funtion L

m

(k) is also invariant under this substitution, whih proves (8.5) and therefore

also (7.47).
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