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It is shown that in those autoassociative memories that learn by stor-
ing multiple patterns of activity on their recurrent collateral connections,
there is a fundamental conflict between dynamical stability and storage
capacity. It is then found that the network can nevertheless retrieve many
different memory patterns, as predicted by nondynamical analyses, if
its firing is regulated by inhibition that is sufficiently multiplicative in
nature. Simulations of a model network with integrate-and-fire units con-
firm that this is a realistic solution to the conflict. The simulations also
confirm the earlier analytical result that cued-elicited memory retrieval,
which follows an exponential time course, occursin a time linearlyrelated
to the time constant for synaptic conductance inactivation and relatively
independent of neuronal time constants and firing levels.

1 Introduction

Autoassociative networks, or free simple memories in David Marr’s terms
(Marr, 1971), have been considered one of the fundamental building blocks
of brain function (Little, 1974; Kohonen, 1977; Hopfield, 1982). In an au-
toassociative memory, all the components of a distributed representation
of a memory item are associated together by Hebbian (Hebb, 1949) synap-
tic plasticity, enabling the modified synaptic matrix to retrieve the whole
representation when some of the components are presented later as a cue.
The difference with heteroassociative memories (Willshaw, Buneman, &
Longuet-Higgins, 1969) is that in the latter, a representation of item X, or
partof it, is used as a cue to retrieve the representation of a different item, Y.
The representation of X is distributed over the inputlines to a group of units,
the output lines of which encode Y. In autoassociative memories, the item
is the same, but the degree to which there is a differentiation between in-
put and output may vary across possible autoassociative architectures. Two
limiting cases are useful to illustrate the spectrum of possibilities (Treves &
Rolls, 1991).

In a purely recurrent network, the output lines from a group of units
have recurrent collateral branches that provideinputs to the same units. One
can think of each memory item as having a unique representation, defined
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as the pattern of activity distributed across the units. A representation is
retrieved by repeatedly circulating activity through the recurrent loops until
asteady state isreached. The existence, stability, and characteristics of steady
states can be analyzed mathematically with self-consistent statistics (Amit,
Gutfreund, & Sompolinsky, 1987).

A different architecture consists of several (L) groups of units in cascade,
with purely feedforward connections from one group to the next one. The
retrieval operation is, as it were, unwrapped along the L stages, with the
ongoing pattern of activity at each stage increasingly approaching the target
representation. Independent representations of the same memory item exist
ateach stage. Since the system is feedforward, simpler statistics are sufficient
to analyze its operation (Domany, Kinzel, & Meir, 1989).

Many intermediate possibilities exist, of course, but already to a very ab-
stract level, one can point to three advantages that favor architectures closer
to the recurrent than to the feedforward limit: (1) the number of units and
connections required is reduced by a factor L; (2) if feedback reverberation
is sufficient, it can sustain the activation of a representation over time, en-
dowing the network with an additional capability for short-term memory
(Amit, 1995); and (3) it is easier to store each item in the memory by form-
ing the one required representation rather than L representations over L
groups of units. A disadvantage of architectures dominated by feedback is
that they suffer more from crosstalk, or interference, when many items are
stored on the same connections; this disadvantage disappears if the coding
becomes sparse, as revealed by analyses of the storage capacity (Tsodyks &
Feigelman, 1988; Treves & Rolls, 1991).

These characterizations of the advantages of different architectures, which
have been derived using simple formal models, are important in under-
standing the autoassociative function that may be served by real networks
in the brain. When considering autoassociative memory as implemented in
the brain, two additional aspects need to be studied that cannot be fully
understood using models that are too simple.

The first aspectis the time required for the retrieval of a representation. In
the simpler models, time is typically discretized into time steps. If one then
contrasts a recurrent network, in which a representation is retrieved (to a re-
quired degree of accuracy) after L sweeps through the single group of units,
with a multilayer feedforward network consisting of L stages activated in
succession, the time required for retrieval is apparently the same. Obviously
such a description has little to do with the dynamics of real neurons, and
trying to construct a biophysical equivalent of the time step (e.g., the mem-
brane time constant, or the typical interspike interval) does not lead to any
real understanding. What is needed at the least is a study of formal models
based on a description of real neurons as integrate-and-fire units (Lapique,
1907; Eccles, 1957) and of real synaptic transmission as conductance changes
(Eccles, 1964). An analysis of the dynamics of an autoassociative recurrent
network model built with such components has yielded part of the answer
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as to the time scales for retrieval (Treves, 1993). The partial answer is an ana-
lytical formula for the time constants of the exponentially decaying transient
modes, through which firing activity in the network approaches the firing
at steady state. There are many different modes, each of which has a time
constant with a real part, describing the rate of decay of the mode, and an
imaginary part, specifying the frequency of the oscillations accompanying
the decay. An important family of transients has the real part of the time
constant determined by the rate of inactivation of the synaptic conductances
opened by activity on the recurrent collaterals. Since such a rate of inacti-
vation in the brain is typically short (10-20 msec, even when taking into
account the dendritic spread not included explicitly in the integrate-and-
fire description (Hestrin, Nicoll, Perkel, & Sah, 1990; Colquhoun, Jonas, &
Sakmann, 1992; McBain & Dingledine, 1992), a prediction arising from the
analysis is that the contribution of recurrent collaterals to the retrieval of
a memory representation may take place in a relatively short time, over a
few tens of milleseconds, independent of the prevailing firing rates and the
membrane time constants, however defined, of the neurons in the popu-
lation (Treves, Rolls, & Tovee, 1996). The analysis, however, has remained
incomplete, because it describes only the modes close to steady state and not
the full dynamics from an arbitrary initial state and because it is unable to
tell to what extent each individual mode will be activated when the activity
evolves from any initial state. These limitations can be overcome by com-
puter simulations of the same network model considered by the analytical
treatment.

A second aspect that has to be addressed by models that aim to be ap-
plicable to the real brain is that of the stability of the steady states that are
taken to correspond to memory retrieval. As with any other steady state in
the dynamics of a system of many units, there are many possible sources of
instability. One example is the instability of the steady states in which the
firing of different units is asynchronous, to synchronization among groups
of units (Tsodyks, Mitcov, & Sompolinsky, 1993; Deppisch et al., 1993; van
Vreeswijk, Abbott, & Ermentrout, 1994; Hansel, Mato, & Meunier, 1995). A
more basic potential instability arises out of the fact that the Hebbian mod-
ifiable connections that are thought to mediate associative memory in the
brain are those between pyramidal excitatory cells. Therefore, a recurrent
autoassociative memory is in itself a positive feedback circuit, and unless
its activity can be tightly controlled by appropriate inhibition, it will tend
to explode. Although the stability of realistic networks of excitatory and
inhibitory units has been studied (Abbott, 1991), it was not in the context
of autoassociative memories. In this article, we show that in such networks
there is a fundamental conflict between stability to excitatory explosion
and storage capacity. In the next section, we show that the conflict can be
avoided by inhibition that is predominantly multiplicative in nature. Then
we return to the issue of the time scales for retrieval, with simulations that
support and qualify the analytical predictions. The last section discusses
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the implications of these results for the operations of associative memories
in the brain. A brief report of this work appeared in Battaglia and Treves
(1996).

2 The Stability-Capacity Conflict

A full analysis of the stability of asynchronous steady firing states must be
carried out using appropriately detailed models, but the requirements for
stability against excitatory runaway reverberations can be discussed using
a simple two-variable model. In such a model, two variables, vg and vy,
describe, respectively, the average firing rates of excitatory and inhibitory
units, which approach their steady-state values with time constants ¢ and
71. The steady-state values are determined by these average firing rates
and the level of afferent inputs. If we assume that, above threshold, the
dependence is approximately linear, the dynamical system can be written
(Wilson & Cowan, 1972):

TEVE = —VE + ]EUE - ]évl + vsz (2.1)
g = —vy + JEvg — Jho + 07 2.2)

where the s are the adimensional effective couplings (signs are chosen
so that they are all positive in value) between the dynamical variables, as

they emerge, essentially, from averaging synaptic strengths across pairs of
ff

active units, and v vg | are constant terms, which depend on the afferent
input activity and are proportional to fixed-point rates. They ensure that
equilibrium rates are not zero, even if the network does not receive any
input, reflecting the capability of the network to self-sustain its activity. If
this system of equations has a fixed point, its stability requires that

Tr
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JE—D/me—(Ji+1)/u <0 (2.3)
—(JE=DJ;+ D+ JfJE > 0. (2.4)

Both inequalities can be satisfied for arbitrary values of the mean excitatory-
excitatory coupling among active units, J£, provided inhibitory couplings
are strong enough to control excitation. If, on the basis of this simple two-
variable model, we want to ensure the stability of a real autoassociator,
both inequalities must be satisfied with ample margins. The reason is that
exactly which units are active will be highly variable, and therefore the
effective value of JE at any moment in time will fluctuate substantially. It is
easy to realize, then, that for values of the four mean couplings much larger
than 1, the determinant appearing in the second condition will be of the
order of such large value, squared. Now, the fixed-point firing rates are

Gl
E Det

(2.5)
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which means that if the couplings are large, under conditions of robust sta-
bility the mean excitatory firing rate at the fixed point will be much lower

than the one determined by afferent inputs alone, vgp < vsz . However,

this is incompatible with the effective operation of the network as content-
addressable memory, since it makes recurrent processing minor with re-
spect to the feedforward relay of the cue. In fact, when we tried to simulate
memory retrieval with large couplings and at the same time insisted on the
condition that local intrinsic inputs dominate over external afferent inputs (a
condition intended to mimick the observed cortical anatomy; Abeles, 1991),
we always ran into large oscillations (Simmen, Treves, & Rolls, 1996), due
to even transient imbalances between local excitation and inhibition, which
resulted in large fluctuations in the effective couplings, and prevented the
network from reaching a steady retrieval state. Only by using as a cue the
nearly complete memory pattern could we effect proper retrieval, but then
recurrent connections played only a minor role. Therefore, to obtain robust,
stable, fixed points, we had to restrict ourselves to smaller effective cou-
plings, in particular to values of ]E not much above 1. In that case, since
the excitatory self-coupling always appears in the combination (J& — 1),
its potentially devastating influence on the stability of the fixed point will
be reduced, and at the same time conditions will exist under which even
small cues will be sufficient to initiate retrieval. Keeping the excitatory self-
coupling low, however, conflicts with ensuring a large storage capacity.

Consider a simple autoassociator in which the weights of the connections
among the units are determined by a linear sum of Hebbian-modification
terms, as, for example, in the Hopfield model (Hopfield, 1982). If the units
represent excitatory cells and the weights ultimately correspond to conduc-
tances, one may assume that such a memory structure is superimposed on
a baseline connection weight that is large enough to keep positive even the
individual weights that happen to undergo more negative modifications.
Therefore, one may write for the weight between units i and j,

1 P " n”
a0y = i _ 4 _
w”‘“’*cz(w 1><<n) ) @7

u=1

where nf* is the firing rate of unit i in the uth memory pattern, () is the
average firing rate, the network stores p patterns with equal strength, and
C is the number of inputs per unit. The specific (covariance) form of the
Hebbian term and the normalization factor are inessential to the argument

! This assumption is made for the sake of clarity. In the simulations that follow, we use
an equivalent formulation, although it is less transparent to the analysis.
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that follows and were chosen for consistency with previous analyses (Treves
& Rolls, 1991). The minimum connection weights will be those between
pairs in which the pre- and postsynaptic unit happen to be anticorrelated
across all patterns; that is, whenever one of the two is firing, for example,
at a typical elevated rate n*, the other is quiescent. Then the condition that
ensures that the underlying conductance remains positive, even in such
cases, reads
*
w2l (28)
Cn

=

On the other hand, the effective excitatory self-coupling—that is, the effect
that the average excitatory firing rate exerts on each excitatory unit—is given
by summing conductances across input lines and multiplying by the gain
y characterizing the unit’s input-output transform in a linear range above
firing threshold,

JE = yCu®. (2.9)

Note that the Hebbian terms average to zero when summing across the C
inputs. Previous analyses (Treves, 1990; Treves & Rolls, 1991) have shown
that for the network to be able to retrieve memory patterns, the gain has to
be sufficiently strong, as expressed by the condition

a
1-a’

y = (2.10)

where 0 < a < 1 is the sparseness of the firing patterns, defines as a =
(n)?/(n?) (Treves, 1990). Putting together now the condition that the effective
excitatory self-coupling be at most of order 1 with the last three equations,
one realizes why stability conflicts with storage capacity:

Nt a

O~ Jg=yCu = proa—s

; (2.11)

that is, in this case, to be stable at retrieval, the network must not store more
than a number of memory patterns,

A —a)

Pmax = F P

- o), (2.12)

that is, more than a handful of patterns. In simulations that followed these
very specifications, we found it difficult to obtain retrieval in nets storing
more than two or three patterns, whatever their size. The conflict arises
out of requiring simultaneously dynamical stability and effective retrieval
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ability and biological plausibility (in that the memory is stored on the con-
nections between excitatory units and in that each conductance must be a
positive quantity). It does not arise in storage capacity analyses based on
simplified formal models (Amit et al., 1987; Treves & Rolls, 1991) if one
treats connection weights as real variables that can have either sign and can
change in sign as more memories are stored.

Recurrent autoassociative memory models based on an alternative sim-
ple “learning rule”—the so-called Willshaw models (Willshaw et al, 1969)—
although assuming only positive (or zero) weights among excitatory units,
still suffer from similar limitations. That class of models, however, is more
difficult to treat analytically (Golomb, Rubin, & Sompolinsky, 1990) and
does not lend itself to such a simple discussion of the conflict; moreover,
what is limited is not simply p, the number of memories that can be stored
(which can be well above two or three; Amit & Brunel, 1997), but the total
amount of information that can be stored and retrieved, which is propor-
tional to p but also decreases the sparser are memory patterns (and the more
information need be provided with the cue).

3 Realistic Inhibition May Avoid the Conflict

A seemingly innocuous assumption that was made in writing equations 2.1
and 2.2 is that excitatory firing rates depend linearly not just on themselves
but also, through a separate linear term, on inhibitory rates. This is equiva-
lent to considering what is sometimes called subtractive inhibition. Purely
subtractive inhibition is a convenient model for GABAg inhibition, which
acts through K* channels of limited total conductance, primarily by hyper-
polarizing the receiving cell (Connors, Malenka, & Silva, 1988). If colocated
on dendrites along with excitatory inputs, GABAg can be thought of as pro-
viding an additional term that is negative in sign and hence subtractive,
and occurs on a slower time scale (Hablitz & Thalmann, 1987).

GABA 4 inhibition, which is responsible for fast inhibitory control of the
activity level of recurrent networks (Miles & Wong, 1987), is sometimes
referred to as multiplicative (or, rather, divisive) in nature. This is because
it acts via C1~ channels of relatively large total conductance (Connors et
al., 1988) and inversion potential not far below the resting potential; hence,
its effect is more shunting than hyperpolarizing. If located on proximal
dendritic branches or on the soma (Andersen, Eccles, & Loyning, 1964),
it can be modeled to a first approximation as producing a division of the
current resulting from more distal inputs (Abbott, 1991).

Purely multiplicative inhibition acting on excitatory cells would lead to
substitute equation 2.1 with

TEvE = —VE + JE()VE + ngf, (3.1

that is, the excitatory self-coupling is now a function of the average firing
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rate of inhibitory units (the second part of the equation can be modified as
well, but this is irrelevant for the present discussion). To the extent that affer-
ent inputs are absent or negligible, at the fixed point the self-coupling takes
the value 1, thereby automatically ensuring stability, at least in the sense of
equations 2.3 and 2.4 (since the terms in Jf — 1 disappear from the inequal-
ities). Real inhibition, of course, is not purely multiplicative; however, the
situation holding in this limit clarifies that under appropriate conditions (if
inhibition is multiplicative to a sufficient degree), the stability of recurrent
networks against runaway excitation is automatically guaranteed.

As for the upper limit on storage capacity, we have checked, by repeating
previous analyses (Treves & Rolls, 1991) of recurrent associative memories
of threshold-linear units with a gain y now dependent on the average in-
hibitory rate, that the same, exact equations determine the storage capacity.
Such a result stems from the fact that by acting on the gain, inhibition now
keeps the effective JE entering the stability analysis close to 1, but it leaves
identical the capacity equations, as the analytical treatment shows. This con-
firms that the form of inhibition used has no effect on such absolute limit (a
limit that with subtractive inhibition was far beyond what could be achieved
in practice). We have also carried out simulations of a simple network model
with 3000 to 5000 threshold-linear units as used in the analytical calcula-
tion, at several sparseness values. We estimated storage capacity from the
simulations by progressively increasing memory load and determining the
critical level at which no retrieval of any stored pattern was possible. Re-
sults are shown in Figure 1, and confirm the analytical prediction, which
is the exact reproduction of previous analyses with subtractive inhibition
(Treves & Rolls, 1991). Note that a value of the storage parameter o = 0.3,
for example, corresponds to 900 stored patterns.

We have carried out simulations of a more detailed network model
with spiking units and conductance-based synaptic action, to understand
whether realistic inhibition still allows retrieval of more than two or three
patterns (the limit we had on similar simulations with purely subtrac-
tive inhibition) and, once disposed of this limitation, to address anew, in
a realistic context, the issue of the time scales for recurrent memory re-
trieval.

4 Simulations Show Stability and Fast Retrieval

The simulated network consisted of N,y = 800 excitatory units and N;,, =
200 inhibitory ones. Each integrate-and-fire unit represents a neuron as a
single-branch, compartmented dendrite through which the cell receives all
its input, and a pointlike soma, where spikes are generated. Though very
simple, the compartmental model is still computationally demanding and
severely limits the size of the network that we could implement on a Linux
workstation. The current flowing from each compartment to the external



Recurrent Processing in Autoassociative Memories 439

0.1 L
0.1
Sparseness

Figure 1: Simulation results for the capacity of a network of 3000 threshold-
linear neurons (5000 for a = 0.05) are compared with the theoretical prediction
(solid line) at different values of the sparseness a. The prediction arises from
equations identical to those found by Treves (1990).

medium is written as

It = grea(V(H) = V) + Y g (V(H) — V), (41)
j

where g4 is a constant, passive leakage conductance, V0 the membrane
resting potential, g;(t) the value of the jth synapse conductance at time ¢,
and V; the reversal potential of the jth synapse. V() is the potential in the
compartment at time ¢. Synaptic conductances have an exponential decay
time behavior, obeying the equation

% _ —% +ag Y st—t), 4.2)
i :

where 7; is the synaptic decay time constant and Ag; is the amount the
conductance is increased when the presynaptic unit fires a spike. Ag; thus
represents the (unidirectional) coupling strength between the presynaptic

and the postsynaptic cell. ti is the time at which the presynaptic unit fires
its kth spike.

For each time step of 1 ms, the cable equation for the dendrite isintegrated
(MacGregor, 1987) with a finer time resolution of 0.1 ms and the somatic po-
tential is compared with the spiking threshold V. When this is exceeded,
postsynaptic conductances are updated, and the somatic potential is reset
to the after-hyperpolarization value V¥ throughout the neuron.
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Connections from excitatory to inhibitory, from inhibitory to excitatory,
and between inhibitory units are taken to be homogeneous, that is, all of the
same strength. Synaptic parameters depend only on the type of presynaptic
and postsynaptic unit. The connectivity level is 0.25 between populations
and 0.5 within the inhibitory population; that is, each unit synapses onto
a fraction of the units of the receiving population, chosen at random. The
excitatory units, in contrast, are all connected to each other. This very high
connectivity, out of the actual anatomical range, is necessary, because of
the small size of the simulated network, to produce sufficient statistical
averaging in the synaptic input to each unit.

Excitatory-to-excitatory connections encode in their strength p memo-
rized patterns of activity n/°, consisting of binary words with sparseness
(in this simple binary case, the fraction of 1s, or active cells in the pattern)
a = 0.1. Encoding isimplemented through a modified Hebb rule. In contrast
with equation 2.7, which includes a baseline weight, all conductances are
initially set to zero, and then, for each pattern, the synapse from the ith to
the jth unit is modified by a covariance term,

n
gee (0t Ui

==|—-1 — —1]). 4.

a8 CEE(ﬂ )(ﬂ ) *3)

If the conductance becomes negative, it is reset to zero. Memories are there-
fore stored through a “random walk with one reflecting barrier” procedure.
The barrier acts as a “forgetting” mechanism (Parisi, 1986); whenever the
conductance value bumps into the barrier, it loses memory about the previ-
ously presented patterns. Because there is no upper boundary, the average
value of excitatory connection strengths grows with the number of mem-
ory items learned. The network is tested at low memory loading (p = 10).
A systematic study of the storage capacity of the net would not be very
meaningful because of the small size of the network.

The excitatory synapses impinge on the distal end compartment of the
postsynaptic dendrite, and they have a positive reversal potential (referred
to as resting membrane potential). Inhibitory synapses are distributed uni-
formly along the dendritic body, and they have a reversal potential equal
to the resting membrane potential (except for the simulations in Figure 2).
Inhibition is therefore predominantly shunting, with a geometry very simi-
lar to the one considered in Abbott (1991), leading to a mainly multiplicative
effect on the postsynaptic firing rate. Table 1 summarizes the parameters
used for the simulations.

Once the connection matrixis constructed, a test of the retrieval dynamics
was performed according to the following protocol. The network is activated
by injecting a currentin arandom fractiona = 0.1 of the units (see Figure 2A).
The excitatory and the inhibitory population become diffusely active. Notice
that units active in the memory pattern being tested are on average slightly
more active than the other units. This is explained by the fact that they have
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Figure 2: Firing rates computed with a time window of 30 msec are plotted
for excitatory units for different geometries and reversal potential V;. Units are
divided between the 1 population (upper trace), active in the recalled mem-
ory, and the 0 population (lower trace), that was silent in the recalled memory.
(A) V; = 0 mV with respect to membrane equilibrium potential and inhibitory
synapses are distributed along the dendritic body. In this condition, inhibition
acts to some extent multiplicatively on the firing rate. Efficient retrieval of the
memory isshown by sustained activity in the 1 population and complete activity
suppression in the 0 populationafter the cuehasbeen removed. (B-E): Inhibitory
synapses are located on the edge of the dendritic cable. Reversal potential V; is
0 mV (with respect to equilibrium) (B), —10 mV (C), =20 mV (D), —30 mV, (E)
and —40mV (F). Whatever the reversal potential, the two populations are never
satisfactorily discriminated.
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Table 1: Parameters Used for Integrate-and-Fire Simulations.

Quantity Symbol Value
Number of excitatory cells NEg 800
Number of inhibitory cells Np 200
Corruption level o 0.3
Random activity period tinit 100 (msec)
Cue period teue 300 (msec)
Retrieval period tretr 200 (msec)
Sampling time window twin 30 (msec)
Number of dendritic compartments Nemp 10
Dendritic compartment leakage conductance Gg 6.28 x 10712 (S)
Somatic compartment leakage conductance G; 5x 1077 (S)
Dendpritic-dendritic axial conductance ng 2.25 x 1077 (S)
Excitatory somatic capacitance Csoma.E 0.5—4 %1010 (F)
Inhibitory somatic capacitance Csoma.l 5 x 10712 (F)
Cue current Teue 0.25 (nA)
Firing threshold potential (excitatory) Of 32 (mV)
Firing threshold potential (inhibitory) O 25 (mV)
After-spike hyperpolarization potential Varp —15 (mV)
Excitatory-excitatory connectivity level CkE 1
Excitatory-inhibitory connectivity level Crr 0.25
Inhibitory-excitatory connectivity level Cre 0.25
Inhibitory-inhibitory connectivity level Cr 0.5
“Unitary” excitatory-excitatory synaptic conductance  grE 5 x 10-8(5)*
(see equation 4.3)

Excitatory-inhibitory synaptic conductance SEE 4 x1079(S)
Inhibitory-excitatory synaptic conductance SEE 2 x 1078(8)
Inhibitory-inhibitory synaptic conductance SEE 9 x 10719(S)
Excitatory-inhibitory synaptic time constant TET 1 (msec)
Excitatory synaptic equilibrium (reversal) potential Ve 65 (mV)
Inhibitory synaptic equilibrium (reversal) potential Vi 0 (mV)
Excitatory-excitatory synaptic time constant TEE 5-40 (msec)
Excitatory-inhibitory synaptic time constant TET 1 (msec)
Inhibitory-excitatory synaptic time constant TE 1 (msec)
Inhibitory-inhibitory synaptic time constant Tr 1 (msec)

Note: Ranges are indicated for quantities that varied within runs. Potential values are
referred to membrane resting potential. * Scaled when the synaptic time constant is varied,
to preserve the total charge transmitted during a synaptic event (see text). The value given
is the one used for gg = 20 (msec). Simulations in Figure 2 are an exception as concerns
inhibitory reversal potential (see the figure caption) and ., which is set at 500 (msec).
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on average a slightly stronger excitatory input, because the memory being
tested contributes a positive term in the random walk construction of the
connection strengths. Since p is not too large, even a single term makes a
difference (Amit & Brunel, 1997).

After 100 msec, the random current is replaced with a cue current, injected
in a fraction a + ¢(1 — a) of the units active in the pattern being tested and
in a fraction a(1 — g) of the units inactive in the pattern. In this way, the cue
is again a binary word with sparseness ¢ = 0.1, and ¢ is the the average
correlation between pattern and cue, which in the runs shown in the figures
was set at o = 0.3.

The cue current lasts for 300 msec. The average firing rate for the 1 units
is much higher than for the 0 ones. When the cue current is removed, the 1
units sag briefly but then recover and stay steadily active, while activity in
the others decays at zero firing or at a very low level. The memory pattern
has therefore been successfully retrieved. To test the specific effect produced
by the type of inhibition, we performed the stepwise manipulation shown in
Figure 2. First (see panel B), all inhibitory connections to excitatory cells were
moved to the end of the dendritic tree, colocalized with excitatory inputs.
This made them somewhat less “multiplicative,” and also weaker. The result
is that inhibition becomes unable to suppress the firing of excitatory units,
which should be quiescent, and the network fails to retrieve correctly (the
residual difference between 1 and 0 units being due to the finite-p effect). To
make inhibition stronger again while maintaining its subtractive character,
the equilibrium potential of inhibitory synapses was lowered in panels C
through F in steps of 10 mV. The result is that inhibition tends to suppress
activity across excitatory units, without ever allowing the retrieval state
to reemerge after removing the cue. This manipulation then indicates that
altering the form of inhibition makes the network cross its capacity limit.
Since even the first form, with the inputs spread along the dendritic tree,
is far from being purely multiplicative, this capacity limit is well below the
upper limit predicted by nondynamical calculations.

The simulations were repeated varying the neural and synaptic
parameters—the excitatory synaptic time constant (changing at the same
time the synaptic conductance to keep the strength of the connection in-
varied) and the somatic capacitance—in order to vary the firing rate. The
inhibitory synaptic time constant was kept smaller than the excitatory time
constant in order to speed up the stabilizing effect of recurrent inhibition.

To assess the quality of retrieval, we have taken the same information-
theoretical measure used when recording from behaving animals (as op-
posed to immobilized ones, for example) (Rolls, Treves, & Tovee, 1997,
Treves, Skaggs, & Barnes, 1996). The retrieval protocol is repeated for up
to 30 trials for each stored memory. Ten randomly selected excitatory units
are “recorded,” that is, sampled for the number of spikes they fire in a time
window of 30 msec. The window slides with a step of 5 msec spanning the
entire simulated time course. The firing rate vector thus constructed at any
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Figure 3: Information time course for different values of synaptic time con-
stant. The transient corresponding to cue onset is well fitted by an exponential
function. The rise is faster with shorter synaptic time constants.

time step of each trial is then decoded. This is done (Rolls et al., 1997) by
matching it with the p = 10 mean firing rate vectors produced at the same
time step when testing the retrieval of each of the memories and finding
the closest match. The result of decoding all the trials is a probability table
P(s'|s) containing the likelihood that when testing for memory s, the activity
of the sample of units was decoded as matching the average vector from
pattern s'. The mutual information between the actual and decoded pattern,

1 P(s
I(s,s') = Z ; ZP(S/|S) log, Ifz—sl/s)) (4.4)

was calculated and then corrected for limited sampling (Treves & Panzeri,
1995; Panzeri & Treves, 1996). To reduce fluctuations, results were averaged
at each time step over a number of samples of recorded units from the same
run. The resulting quantity is a sensitive measure of how well the activity
of the network in the time window can be used to discriminate which cue
was presented and, unlike simpler measures (such as the correlation of
the firing vector with the underlying memory pattern), can be used with
identical procedures in simulations and recording experiments.

In Figure 3 we show the time course of the information for different val-
ues of the excitatory time constant. The mutual information stays close to
zero during the random activity period (the small baseline is a remnant of
the finite size error after the correction), and when the cue is presented, it
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Figure 4: Transient time constant plotted against excitatory synaptic time con-
stants. The firing rates were the same in each case, since conductance values
were rescaled in order to equalize the charge entering into the cell through the
synapse. The best linear fit line is shown. The slope of the fitted line is 2.538.

rises steadily to an equilibrium value, which depends on the correlation be-
tween the cue and the pattern, with a time course well fitted by a saturating
exponential. This appears to be consistent with the linearized analysis for
transients (Treves, 1993) and indicates that the transient modes that are ac-
tivated in this condition belong to a single family; they share the same real
part of the time constant. The time constant from the exponential fit is in
a close-to-linear relationship with the synaptic (inactivation) time constant,
as shown in Figure 4, with a best-fit proportionality coefficient of 2.538.

Varying the firing rate does not appear to have a comparable effect on
the transient time constant. Figure 5 plots the transient time constant rela-
tive to different values of somatic capacitance, corresponding to firing rates
ranging from ~15 to ~100 Hz.

When the cue is removed, the information rises again very rapidly to a
higher equilibrium value, as the network is no longer constrained by the
noisy cue, indicating that the network is acting as an “error corrector” during
this later phase. The second transient is very rapid indeed, and it is in fact
masked by an artifact induced by the finite size of the time window used
to measure information (the artifact is that during the time window, what
the measure reflects is actually a weighted sum of the lower value before
cue removal and the higher value that is reached in a very short time).
In fact, if one shrinks the sample window size, this linear raise shortens
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Figure 5: Transient time constant plotted for different values of somatic capaci-
tance. Firing rates during the cue phase ranged correspondingly from 15 to 100
Hz. No clear dependence of the information time course is apparent when firing
rates are varied in this way.

correspondingly (not shown). Although the actual time structure of this
transient is still to be clarified, it seems clear that it follows a very different
modein this path to equilibrium. The final approach to the retrieval attractor
is thus essentially immediate.

Finally, in Figure 6 we show the information behavior of the network
when the excitatory collaterals are made informationless, or memoryless,
by giving them all the same strength. A finite, small amount of information
is seen in the cue phase only, at a much smaller level than for the struc-
tured network, and it falls to zero as the cue is removed. This demonstrates
that selective activity, and in particular the capability of this network to re-
trieve memory patterns, depends crucially on the information encoded on
its collaterals.

5 Implications for Recurrent Processing in the Brain

The more effective control that shunting inhibition may exert on runaway
recurrent excitation, compared with subtractive inhibition, is an intuitive
principle that has informed direct experimental studies (Miles & Wong,
1987). What has been shown here is how shunting inhibition may help
avoid a specific conflict between stability and extensive memory storage
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Figure 6: Information time course plotted for the structureless network com-
pared with the time course for the network structured as in previous figures.
During the cue phase, information reaches just a fraction of the steady-state
value in the structured case. After the cue is removed, information decays to
zero, reflecting the absence of self-sustained activity.

that would otherwise prevent the applicability of the abstract concept of a
recurrent autoassociator to actual recurrent networks in the brain.

An attempt to demonstrate the large conductance changes that may un-
derlie shunting inhibition (Douglas & Martin, 1991) has not confirmed the
expectation; however, it is unclear to what extent the model used (the striate
cortex of anesthetized cats) is relevant to the conditions we considered of
massively reverberating excitation.

Having ensured the possibility of stable, asynchronous firing attractor
states, simulations of a model network with spiking units and synaptic con-
ductances have been used to confirm and extend earlier analytical results
on the time required for memory retrieval mediated by recurrent process-
ing to occur. The time course of the initial approach to the attractor state
is, as in the analytical treatment, a saturating exponential, or a mixture of
exponentially relaxing transient modes with similar (real part of the) time
constant. This retrieval time constant is a linear function of the time constant
for the inactivation of excitatory synaptic conductances and depends only
mildly on prevailing firing rates or on neuronal time scales (as determined,
for example, by membrane capacitance).

In practice, the contribution of recurrent processing, in this particular in-
stance of an autoassociator, can be dominant within a few tens of millesec-
onds (with the parameters of Figure 3, within 2.5 times of the synaptic time
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constant, which can be thought of as being in the 10 msec range; Colquhoun
etal., 1992). This leads to the conclusion that at least local recurrent process-
ing can be fast and that it is wrong to exclude its relevance in cases in
which neuronal activity is found to acquire its selectivity within a few tens
of milleseconds of its onset (Thorpe & Imbert, 1989; Treves, Rolls, & Tovee,
1996).

This result lends credibility to the hypothesis that recurrent autoassoci-
ation may be a ubiquitous function of local recurrent circuits throughout
neocortex, as well as possibly the main function of recurrent connections
in the hippocampal CA3 region (Treves & Rolls, 1991, 1994). At the same
time, it raises the possibility of a direct manipulation of the time for such
a function to be executed by acting on the inactivation kinetics of synaptic
AMPA channels.
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