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Abstract A new decoding method is described that
enables the information that is encoded by simultaneously
recorded neurons to be measured. The algorithm measures
the information that is contained not only in the number of
spikes from each neuron, but also in the cross-correlations
between the neuronal firing including stimulus-dependent
synchronization effects. The approach enables the effects
of interactions between the ‘signal’ and ‘noise’ correla-
tions to be identified and measured, as well as those from
stimulus-dependent cross-correlations. The approach pro-
vides an estimate of the statistical significance of the
stimulus-dependent synchronization information, as well
as enabling its magnitude to be compared with the
magnitude of the spike-count related information, and
also whether these two contributions are additive or
redundant. The algorithm operates even with limited
numbers of trials. The algorithm is validated by simula-
tion. It was then used to analyze neuronal data from the
primate inferior temporal visual cortex. The main conclu-
sions from experiments with two to four simultaneously
recorded neurons were that almost all of the information
was available in the spike counts of the neurons; that this
Rate information included on average very little redun-
dancy arising from stimulus-independent correlation
effects; and that stimulus-dependent cross-correlation
effects (i.e. stimulus-dependent synchronization) contri-
bute very little to the encoding of information in the
inferior temporal visual cortex about which object or face
has been presented.

Keywords Synchronization . Cross-correlation . Inferior
temporal visual cortex . Temporal coding . Redundancy

Introduction

To analyze how neurons encode information about stimuli
or other events, it is useful to apply information theory,
because this allows the contributions of different possible
factors (such as the number of spikes vs the relative timing
of spikes from different cells) to be measured quantita-
tively and with the same metric (Shannon 1948; Cover and
Thomas 1991; Rolls and Deco 2002). Simultaneously
recorded neurons sometimes show cross-correlations in
their firing, that is the firing of one cell is systematically
related to the firing of the other cell. One example of this is
neuronal response synchronization. The cross-correlation,
to be defined below, shows the time difference between
the cells at which the systematic relation appears. A
significant peak or trough in the cross-correlation function
could reveal a synaptic connection from one cell to the
other, or a common input to each of the cells, or any of a
considerable number of other possibilities. If the synchro-
nization occurred for only some of the stimuli, then the
presence of the significant cross-correlation for only those
stimuli could provide additional evidence separate from
any information in the firing rate of the neurons about
which stimulus had been shown. Information theory in
principle provides a way of quantitatively assessing the
relative contributions from these two types of encoding, by
expressing what can be learned from each type of
encoding in the same units, bits of information.

When applying information theory to the responses of
two or more simultaneously recorded neurons, the number
of possible combinations of the relative times of the spikes
of the different cells becomes very large. That is, the
dimensionality of the space which must be filled
adequately with real neurophysiological data to obtain
reliable estimates of the information becomes so large that
the information estimates become unreliable, and in fact
are biased upwards. Even bias correction measures
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(Panzeri and Treves 1996; Treves and Panzeri 1995)
cannot completely correct for this amount of under-
sampling. In this situation the dimensionality of the space
in which the neuronal responses are measured must be
reduced. A recent approach to this issue has been to
simply count the number of spikes in a single short time
window from the simultaneously recorded cells, and to use
these spike counts to estimate the information that is
contributed by different factors, including factors such as
synchronization of the spikes of different cells. This is the
approach taken by Panzeri et al. (1999), Rolls et al.
(2003a), and Rolls et al. (2003b). However, this approach
is inherently limited to a small number of cells and only
one to two spikes from each cell, because otherwise the
Taylor expansion used breaks down (Bezzi et al. 2002).
Moreover, the Taylor expansion approach we used mea-
sured the information from stimulus-dependent co-modu-
lation of firing rates and not from synchronization that is
not reflected in co-modulation, and when the approach
was extended to measure synchronization effects more
directly (Panzeri et al. 2001), it was still limited to small
numbers of spikes and small numbers of neurons, and
needed large numbers of trials.

In this paper we develop a new approach to the
measurement of the information conveyed by simulta-
neously recorded cells. The approach can be applied in

principle to any number of cells, from a small number to
very large numbers, and the time period in which the
information is measured is not limited, and measures
stimulus-dependent synchronization effects even when
they are not reflected in co-modulation of firing rates. The
method uses a decoding procedure to estimate from the
neuronal data the probability that each stimulus in a set
was shown on a given trial, and then measures the mutual
information between the estimated stimulus and the actual
stimulus that was shown on that trial (Rolls et al. 1997).
The advantage of the decoding approach is that the
dimensionality of the space over which the information is
measured is reduced to depend on the number of stimuli
used, and not on the number of stimuli, the number of
cells, and the number of responses for each stimulus that
are required by the direct method without decoding. In
practice, twice as many trials as there are stimuli are
required for the decoding approach (Rolls et al. 1997). The
decoding approach used here is developed from the
method described by Rolls et al. (1997), which was
developed to measure the information contained in the
firing rates of multiple neurons. The method is extended
here to incorporate information present in the cross-
correlations between the neurons. We not only describe the
approach here, but show how it can be used to separate
stimulus-independent and stimulus-dependent effects con-

Fig. 1 Illustration of the in-
formation that could be carried
by spike trains. The responses of
three cells to two different
stimuli are shown on one trial.
Cell 3 reflects which stimulus
was shown in the number of
spikes produced, and this can be
measured as spike count or rate
information. Cells 1 and 2 have
no spike count or rate informa-
tion, because the number of
spikes is not different for the
two stimuli. Cells 1 and 2 do
show some synchronization, re-
flected in the cross-correlogram,
that is stimulus dependent, as
the synchronization is present
only when stimulus 1 is shown.
The contribution of this effect is
measured as the stimulus-de-
pendent synchronization infor-
mation
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tributed by the correlations between the neurons, show
how the statistical significance of these different contribu-
tions can be measured, validate the method with simulated
neuronal data produced to contain information contributed
in different ways by the spikes of the different neurons,
and evaluate the power efficiency of the method. We then
show how the approach can be applied to real neuronal
data from the macaque inferior temporal visual cortex. For
the neurophysiology, the stimuli were a set of eight
objects, faces, and scenes presented while the monkey
performed a visual discrimination task. If synchronization
was being used to bind the parts of each object into the
correct spatial relationship to other parts, this might be
expected to be revealed by stimulus-dependent cross-
correlations in the firing of simultaneously recorded
groups of two to four cells using multiple single-neuron
microelectrodes.

There have been previous analyses of the contributions
of stimulus-independent covariations between neurons
(Gawne and Richmond 1993; Abbott and Dayan 1999;
Lee et al. 1998; Sompolinsky et al. 2001; Reich et al.
2001), and the current paper provides new ways to
estimate their contributions from the limited numbers of
trials of data that are frequently available in neurophysio-
logical experiments. Moreover, we note that there is
current great interest in the possible contribution to neural
encoding of stimulus-dependent correlations including
synchronization (Singer 2000), and it is in this context
that we have developed the new approach described here.
Decoding methods for neuronal data have been studied by
a number of investigators (Pouget et al. 1998; Salinas and
Abbott 1994), and have been applied to the measurement
of information from neuronal populations (Robertson et al.
1999; Nirenberg et al. 2001; Hatsopoulos et al. 1998;
Oram et al. 1998, 2001; Dan et al. 1998; Panzeri et al.
1998, 1999; Rolls et al. 1997), but this is the first paper
that uses decoding methods to estimate stimulus-depen-
dent contributions from cross-correlations between the
firing of neurons.

Materials and methods

The information measurement algorithm

Figure 1 illustrates how synchronization occurring only for some of
the stimuli could be used to encode information about which
stimulus was presented. In the figure the spike trains of three
neurons are shown after the presentation of two different stimuli on
one trial. As shown by the cross-correlogram in the lower part of the
figure, the responses of cell 1 and cell 2 are synchronized when
stimulus 1 is presented, as whenever a spike from cell 1 is emitted,
another spike from cell 2 is emitted after a short time lag. In contrast,
when stimulus 2 is presented, synchronization effects do not appear.
Thus, based on a measure of the synchrony between the responses of
cells 1 and 2, it is possible to obtain some information about what
stimulus has been presented. The contribution of this effect is
measured as the stimulus-dependent synchronization information.
Cells 1 and 2 have no information about what stimulus was
presented from the number of spikes, as the same number is found
for both stimuli. Cell 3 carries information in the spike count in the
time window (which is also called the firing rate) about what

stimulus was presented. (Cell 3 emits six spikes for stimulus 1 and
three spikes for stimulus 2.)
The example shown in Fig. 1 is for the neuronal responses on a

single trial. Given that the neuronal responses are variable from trial
to trial, we need a method to quantify the information that is gained
from a single trial of spike data in the context of the measured
variability in the responses of all of the cells, including how the
cells’ responses covary in a way which may be partly stimulus-
dependent, and may include synchronization effects. The direct
approach is to apply the Shannon mutual information measure
(Shannon 1948; Cover and Thomas 1991):

Iðs; rÞ ¼
X

s2S

X

r

Pðs; rÞ log2
Pðs; rÞ
PðsÞPðrÞ ; (1)

where P(s, r) is a probability table embodying a relationship
between the variable s (here, the stimulus) and r (a vector where
each element is the firing rate of one neuron).
However, because the probability table of the relation between the

neuronal responses and the stimuli, P(s, r) is so large (given that
there may be many stimuli, and that the response space which has to
include spike timing is very large), in practice it is difficult to obtain
a sufficient number of trials for every stimulus to generate the
probability table accurately, at least with data from mammals in
which the experiment cannot usually be continued for many hours of
recording from a whole population of cells. To circumvent this
undersampling problem, Rolls et al. (1997) developed a decoding
procedure, in which an estimate (or guess) of which stimulus (called
s’) was shown on a given trial is made from a comparison of the
neuronal responses on that trial with the responses made to the
whole set of stimuli on other trials. One then obtains a conjoint
probability table P(s, s’), and then the mutual information based on
probability estimation (PE) decoding (Ip) between the estimated
stimuli s’ and the actual stimuli s that were shown can be measured:

hIpi¼
X

s2S

X

s02S
Pðs; s0Þ log2

Pðs; s0Þ
PðsÞPðs0Þ (2)

hIpi¼
X

s2S
PðsÞ

X

s02S
Pðs0 sj Þ log2

Pðs0 sj Þ
Pðs0Þ : (3)

These measurements are in the low dimensional space of the
number of stimuli, and therefore the number of trials of data needed
for each stimulus is of the order of the number of stimuli, which is
feasible in experiments. In practice, it is found that for accurate
information estimates with the decoding approach, the number of
trials for each stimulus should be at least twice the number of stimuli
(as shown in Fig. 8).

Decoding procedures

The nature of the decoding procedure is illustrated in Fig. 2. The left
part of the diagram shows the average firing rate (or equivalently
spike count) responses of each of three cells (labelled as Rate Cell 1,
2, 3) to a set of three stimuli. The last row (labelled Response single
trial) shows the data that might be obtained from a single trial and
from which the stimulus that was shown (St. ?) must be estimated or
decoded, using the average values across trials shown in the top part
of the table, and the probability distribution of these values. The
decoding step essentially compares the vector of responses on trial
St. ? with the average response vectors obtained previously to each
stimulus. This decoding can be as simple as measuring the
correlation, or dot (inner) product, between the test trial vector of
responses and the response vectors to each of the stimuli. This
procedure is very neuronally plausible, in that the dot product
between an input vector of neuronal activity and the synaptic
response vector on a single neuron (which might represent the
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average incoming activity previously to that stimulus) is the simplest
operation that it is conceived that neurons might perform (Rolls and
Deco 2002; Rolls and Treves 1998). Other decoding procedures
include a Bayesian procedure based on a Gaussian or Poisson
assumption of the spike count distributions as described in detail by
Rolls et al. (1997). The Gaussian one is what is used throughout this
paper, and it is described below. The new step taken in this paper is
to introduce into the table data(s, r) shown in the upper part of Fig. 2
new columns, shown on the right of the diagram, containing a
measure of the cross-correlation (averaged across trials in the upper
part of the table) for some pairs of cells (labelled as Corrln Cells 1–2
and 2–3). The decoding procedure can then take account of any
cross-correlations between pairs of cells, and thus measure any
contributions to the information from the population of cells that
arise from cross-correlations between the neuronal responses. If
these cross-correlations are stimulus-dependent, then their positive
contribution to the information encoded can be measured. This is the
new concept for information measurement from neuronal popula-
tions introduced in this paper. We describe below how the cross-
correlation information can be introduced into the table, and then
how the information analysis algorithm can be used to measure the
contribution of different factors in the neuronal responses to the
information that the population encodes.
Further details of the decoding procedures are as follows (see also

Rolls et al. 1997). The full probability table estimator (PE) algorithm
uses a Bayesian approach to extract P(s’|r) for every single trial
from an estimate of the probability P(r|s’) of a stimulus-response
pair made from all the other trials (as shown in Bayes’ rule shown in
Eq. 4) in a cross-validation procedure described by Rolls et al.
(1997).

Pðs0 rj Þ ¼ Pðr s0j ÞPðs0Þ
PðrÞ : (4)

where P(r) (the probability of the vector containing the firing rate of
each neuron, where each element of the vector is the firing rate of
one neuron) is obtained as:

PðrÞ ¼
X

s0
Pðr s0j ÞPðs0Þ: (5)

This requires knowledge of the response probabilities P(r |s’)
which can be estimated for this purpose from P(r, s’), which is equal
to P(s’)ΠcP(rc|s’), where rc is the firing rate of cell c. We note that
P(rc|s’) is derived from the responses of cell from all of the trials
except for the current trial for which the probability estimate is being
made. The probabilities P(rc|s’) are fitted with a Gaussian (or
Poisson) distribution whose amplitude at rc gives P(rc|s’).

1 By
summing over different test trial responses to the same stimulus s,
we can extract the probability that by presenting stimulus s the
neuronal response is interpreted as having been elicited by stimulus
s’,

Pðs0 sj Þ ¼
X

r2test
Pðs0 rj ÞPðr sj Þ: (6)

After the decoding procedure, the estimated relative probabilities
(normalized to 1) were averaged over all ‘test’ trials for all stimuli,
to generate a (Regularized) table PR

N(s, s’) describing the relative
probability of each pair of actual stimulus s and posited stimulus s’
(computed with N trials). From this probability table the mutual
information measure (Ip) was calculated as described above in Eq. 3.
We also generated a second (Frequency) table PFN(s, s

p) from the
fraction of times an actual stimulus s elicited a response that led to a
predicted (single most likely) stimulus sp. From this probability table
the mutual information (Iml) measure based on maximum likelihood
decoding was calculated with Eq. 7:

hImli ¼
X

s2S

X

sp2S
Pðs; spÞ log2

Pðs; spÞ
PðsÞPðspÞ: (7)

A detailed comparison of maximum likelihood and probability
decoding is provided by Rolls et al. (1997), but we note here that
probability estimate decoding is more regularized (see below) and
therefore may be safer to use when investigating the effect on the
information of the number of cells. For this reason, the results

Fig. 2 The left part of the diagram shows the average firing rate (or
equivalently spike count) responses of each of three cells (labelled
as Rate Cell 1, 2, 3) to a set of three stimuli. The right two columns
show a measure of the cross-correlation (averaged across trials) for
some pairs of cells (labelled as Corrln Cells 1–2 and 2–3). The last
row (labelled Response single trial) shows the data that might be
obtained from a single trial and from which the stimulus that was
shown (St. ?) must be estimated or decoded, using the average
values across trials shown in the top part of the table. From the
responses on the single trial, the most probable decoded stimulus is
stimulus 2, based on the values of both the rates and the cross-
correlations

When using the Gaussian, the probabilities of 0, 1, 2, 3, etc., spikes
were estimated as follows for each stimulus. The probability of zero
spikes was obtained directly by the proportion of trials that had 0
spikes. The mean and standard deviation of the positive part of the
Gaussian were computed from the remaining spike counts. We note
that because the spike counts are approximately Poisson distributed,
the variance increases in proportion to (and equals) the mean. A
consequence of this is that the mean is located one standard
deviation above zero (assuming that the Poisson is a good fit). Thus
any inaccuracies due to truncating the fitted Gaussian below 0 are
small, because only a small fraction of the data lie more than one
standard deviation below the mean. In practice, this truncated
Gaussian was chosen over the Poisson distribution (with an
additional weight at rc=0), because we have found previously
(Rolls et al. 1997) and with the present data set that with our
neuronal populations the Gaussian fit produces slightly higher
values for both percentage correct and information. However, the
fact that the performance with the Poisson fit was almost as good as
the truncated Gaussian fit indicates that truncation per se is probably
not a major issue. The indication that the Poisson fit does not work
quite as well as the Gaussian fit with our data reflects the fact that
the variability of the spike counts does not fit a Poisson distribution
perfectly, and the spike count distributions can be fitted better using
the two parameters provided by the Gaussian fitting procedure. The
theoretical advantages of using different types of decoding for the
spike counts are considered in the “Discussion.”
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described in this paper were obtained with probability estimation
(PE) decoding. The maximum likelihood decoding does give an
immediate measure of the percentage correct.
Another approach to decoding is the dot product (DP) algorithm

which computes the normalized dot products between the current
firing vector r on a ‘test’ (i.e. the current) trial and each of the mean
firing rate response vectors in the ‘training’ trials for each stimulus
s’ in the cross-validation procedure. (The normalized dot product is
the dot or inner product of two vectors divided by the product of the
length of each vector. The length of each vector is the square root of
the sum of the squares.) Thus, what is computed are the cosines of
the angles of the test vector of cell rates with, in turn for each
stimulus, the mean response vector to that stimulus. The highest dot
product indicates the most likely stimulus that was presented, and
this is taken as the best guess (or the predicted stimulus sp) for the
probability table P(s, sp). (It can also be used to provide percentage
correct measures.)
We note that any decoding procedure can be used in conjunction

with information estimates both from the full probability table (to
produce Ip), and from the most likely estimated stimulus for each
trial (to produce Iml).
Because the probability tables from which the information is

calculated may be unregularized with a small number of trials, a bias
correction procedure to correct for the undersampling is applied, as
described in detail by Rolls et al. (1997) and Panzeri and Treves
(1996). In practice, the bias correction that is needed with
information estimates using the decoding procedures described
here and by Rolls et al. (1997) is small, typically less than 10% of
the uncorrected estimate of the information, provided that the
number of trials for each stimulus is in the order of twice the number
of stimuli. We also note that the distortion in the information
estimate from the full probability table needs less bias correction
than that from the predicted stimulus table (i.e. maximum
likelihood) method, as the former is more regularized because
every trial makes some contribution through much of the probability
table (see Rolls et al. 1997). We further note that the bias correction
term becomes very small when more than ten cells are included in
the analysis (Rolls et al. 1997).
We note that if Bayesian decoding is used an assumption is that

the joint probability distribution of the spike count responses of the
cells is approximated by the product of the separate probability
distributions for each cell. This approximation holds if the
distributions are independent, and may be less exact if there are
correlations between the neurons’ responses. In practice this is not a
limitation of the method in that the level of correlations found in
practice produce only a relatively small distortion of the probability
values used to compute the information, partly because these
probability values are normalized before being used, reducing the
distortion especially when relatively few (e.g. 20) trials of data per
stimulus are used. We also note that trying to estimate the
parameters for the joint probability distribution would require a
very large number of trials of data (Gill et al. 1981). We note that the
approximation in any case does not apply to dot product decoding,
and the fact that qualitatively similar results are obtained with both
types of decoding is consistent with the hypothesis that the Bayesian
decoding works satisfactorily, as considered further in the “Discus-
sion”.

Response quantification

The data from the neuronal activity that was entered into the table
data(s, r) shown in the upper part of Fig. 2 was as follows.
From the response of each cell c to each stimulus, we extracted a

single mean spike count in a fixed time window (or firing rate, rc
expressed in spikes per second). From these spike counts, the
algorithm measured the information in the firing rates, and in any
co-modulation of the firing rates of neurons.
We also introduced a measure of the synchronization between

pairs of neurons into the data table so that the information available
in the synchronization could be measured. The measure of the

synchronization that was introduced into the table data(s, r) on each
trial was the value of the Pearson cross-correlation coefficient
calculated for that trial at the appropriate lag for cell pairs that had
significant cross-correlations. This value of this Pearson cross-
correlation coefficient for a single trial was calculated from pairs of
spike trains on a single trial by forming for each cell a vector of 0’s
and 1’s, the 1’s representing the time of occurrence of spikes with a
temporal resolution of 1 ms. Resulting values within the range 1 to
−1 were shifted to obtained positive values. An advantage of basing
the measure of synchronization on the Pearson cross-correlation
coefficient is that it measures the amount of synchronization
between a pair of neurons independently of the firing rate of the
neurons. The lag at which the cross-correlation measure was
computed for every single trial, and whether there was a significant
cross-correlation between neuron pairs, was identified from the
location of the peak in the cross-correlogram taken across all trials.
The cross-correlogram was calculated by, for every spike that
occurred in one neuron, incrementing the bins of a histogram that
corresponded to the lag times of each of the spikes that occurred for
the other neuron. The raw cross-correlogram was corrected by
subtracting the ‘shift predictor’ cross-correlogram (which was
produced by random re-pairings of the trials), to produce the
corrected cross-correlogram. It was normalized to be in the range ±1.
Examples of the cross-correlograms calculated across all stimuli
(and used to define the appropriate lag), and for each stimulus, are
shown in Fig. 4.
The exact measure of the synchronization of the firing of each

pair of cells that is used is not critical for the approach, and indeed
similar results are obtained if the sum of the three synchronization
values described above centered at the appropriate lag in the cross-
correlogram is used. The number of these values that are taken can
be altered to detect the timing precision within which spikes are
counted as being synchronized or not. In practice, we used a
precision of ±1 ms in this paper. Different datasets might benefit
from different measures of the co-variation (Aertsen et al. 1989;
Brody 1999; Konig 1994). The cross-correlation values entered into
the table data(s, r) were also scaled so that the maximum correlation
range from any cell pair had the same value as the maximum spike
count range in the table. The rationale for this was that the spike
counts and correlations could in principle contribute on an equal
basis, and in practice it was found that the algorithm was little
affected by the exact ratio of this scaling. The decoding procedure
was applied to the full table of spike rates and correlation measures
shown in Fig. 2. The correlation measures obtained in this
investigation from the neurophysiological recordings had an
approximately Poisson distribution (as also observed by Hatsopou-
los et al. 1998), which was approximated by the truncated Gaussian
distribution described under “Decoding procedures” because the
way this was calculated fit the distribution well, and could also be
efficiently applied to the spike rate values in the table.
Although not used by the decoding algorithm, we define below

the terms ‘signal’ and ‘noise’ correlations, as they are useful in
understanding the encoding of information by groups of simulta-
neously recorded cells, and the algorithm we describe measures the
influences of these correlations.

The correlations in the mean responses of the neurons across
the set of stimuli (sometimes called ‘signal’ correlations) ν

νij can be thought of as the degree of similarity in the mean response
profiles (averaged across trials) of the cells i and j to different
stimuli. νij is sometimes called the ‘signal’ correlation (Gawne and
Richmond 1993; Shadlen and Newsome 1994, 1998). It is defined
by:

�ij ¼ h�riðsÞ�rjðsÞis
h�riðsÞish�rjðsÞis

� 1; (8)

where r ̄i(s) is the mean rate of response of cell i to stimulus s over all
the trials in which that stimulus was present. It can vary from –1 to
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∞ (< … >s indicates the ensemble average over the s stimuli). The
similarity of the mean response profiles can also be measured by the
Pearson correlation coefficient, r.
The correlations in the neuronal response variability from the

average to each stimulus (sometimes called ‘noise’ correlations) γ:

�ijðsÞ ¼ riðsÞrjðsÞ
ð�riðsÞ�rjðsÞÞ � 1: (9)

This has been called the ‘noise’ correlation (Gawne and
Richmond 1993; Shadlen and Newsome 1994, 1998) because it
reflects the trial by trial co-variation in the responses of the neurons,
and is also called the ‘scaled cross-correlation density’ (Aertsen et
al. 1989; Panzeri et al. 1999). It can vary from –1 to ∞; negative
values of γij(s) indicate anticorrelation, whereas positive values of
γij(s) indicate correlation.

Generation of test data

Simulations of neuronal activity with defined types of information in
the spike trains were made to provide data to evaluate the
information measurement algorithm, and to demonstrate how it
can be used to identify the contributions of different factors. The
spike trains were generated with populations of integrate-and-fire
neurons using a procedure similar to that of Shadlen and Newsome
(1998) and as described by Rolls et al. (2003b). Each cell (in a
population which was generally 10, but was altered as described
below for individual tests) received 300 excitatory and 300
inhibitory inputs, each a Poisson process in itself, whose (possibly
stimulus-dependent) mean rate was constant across the set of inputs
for any specific stimulus condition, and contributed a fixed quantity
to the membrane potential. When the membrane potential exceeded
a threshold, it was reset to a baseline value, and a spike was emitted.
Common inputs were provided when appropriate by connecting
50% of the inputs of the cells to the same input source. When
stimulus-dependent correlations were required, these were generated
by providing a percentage of shared connections within the
receiving population of either 0% or 90% for different stimuli.
In cases where the neurons had different firing rates to each of the

stimuli, we set the probability distribution of the firing rates to the
different stimuli to be exponential, as this is an approximation to
what real neurons exhibit (Treves et al. 1999; Baddeley et al. 1997).
That is, for real neurons, the firing rate is high for a few stimuli, and
increasingly low for further stimuli (as illustrated in Fig. 6).

Neurophysiological method

The responses of single neurons in the temporal cortical visual areas
were measured to a set of ten visual stimuli in a rhesus macaque
performing a visual fixation task using experimental procedures
similar except as described below to those described in detail
previously (Rolls et al. 1997, 2003; Booth and Rolls 1998). The
stimuli included S=8 images of objects, faces, natural scenes of the
type that produce differential responses from inferior temporal
cortex neurons, and examples of which have been illustrated
previously (Rolls and Tovee 1995). The set of stimuli were shown
once in random order, then a second time in a new random
sequence, etc. Populations of two to nine neurons were recorded
simultaneously using two to four independently movable single
neuron epoxy-insulated tungsten electrodes with uninsulated tip
diameters of less than 10 µm (FHC Inc., USA) using an Alpha-
Omega (Israel) recording system. Typically we were able to move
the microelectrodes until two to four of the simultaneously recorded
neurons responded differentially (though not orthogonally; see Rolls
and Tovee 1995; Rolls and Deco 2002) to the set of stimuli used.
The recording system (Neuralynx Inc., USA) filtered and amplified
the signal and stored spike waveforms which were later sorted to
ensure that the spike waveforms from each neuron in the small

number of cases when there were more than two spikes on one
microelectrode were clearly separated into different waveform
clusters using the Datawave (USA) Discovery software. All
procedures, including preparative and subsequent ones, were carried
out in accordance with the NIH Principles of laboratory animal care
(NIH publication No. 86–23, revised 1985), the guidelines of The
Society for Neuroscience, and were licenced under the UK Animals
(Scientific Procedures) Act, 1986. The sites of the neuronal
recordings included in this investigation were in the cortex in area
TE (Rolls et al. 2003a).

Results

Tests with simulated data

Using simulated data we tested the operation of the
algorithm in different key cases in which different factors
contributed to the information available in the neuronal
responses.

Information in the stimulus-dependent correlations

The spike trains were generated by an integrate-and-fire
simulation in which we simulated a correlational assembly
with a constant firing rate of 20 spikes/s to all stimuli, and
a percentage of shared connections of either 0% or 90%
for different stimuli. There were ten cells in the assembly,
and for each of the ten stimuli one pair of cells had
common connections. In this case there were 30 trials for
each stimulus.

In Fig. 3, the results of applying the information
analysis are shown. There were 45 cross-correlograms
between the cell pairs (0.5nc(nc−1) where nc is the number
of cells), but many of them were close to zero and not
significant. The ten cell pairs with the most significant
cross-correlations were provided for the decoding algo-
rithm to use, and for this analysis, the rate entries in the
table shown in Fig. 2 were not used. Examples of the
cross-correlograms for one cell pair are shown in Fig. 4,
where it is possible to see that the responses of the cells are
correlated for stimulus number 6 and that there are no
significant correlations for the rest of the stimuli. Selecting
a subset of the cross-correlations can be performed if there
are a very large number of them and may help the
decoding algorithm by reducing the noise contributed by
low values. However, this is not an essential step, and
indeed similar results are obtained if this selection of
cross-correlation measures is not performed. Figure 3
shows that the information grows sublinearly with the
number of cross-correlation pairs used by the algorithm
from the table data(s, r) shown in Fig. 2. The sublinear
increase reflects the fact that the ten cross-correlation
values do not contribute totally independently to the
information measured by the algorithm. Figure 4 also
shows that shuffling the trials within a stimulus results in
no measured information (dashed line), showing that the
stimulus-dependent cross-correlation information detected
by the algorithm (solid line) does reflect the correlations

375



between cell pairs that are produced because the spikes are
correlated within individual trials.

To provide a statistical measure of the significance of
the information derived from stimulus-dependent correla-
tions that are detected by the algorithm, we used the trial
shuffling in a Monte Carlo procedure to measure the mean
and the standard deviation of the information that could
arise by chance from random pairings of spikes from
different trials. The mean information and ±2 standard
deviations of these values are shown by the dashed line in
Fig. 3 (left). From this type of display, the stimulus-
dependent information measured by the algorithm (solid
line) is assessed as being significant if it is more than for
example two times this standard deviation of the measure
from the mean value obtained with the shuffling (dashed
line). (The values obtained by the Monte Carlo procedure
are approximately normally distributed.) This statistical
analysis provides a useful check when only few trials of
data are available so that the cross-correlation measures
may be noisy. The mean of the value obtained in the
Monte Carlo procedure is subtracted from the raw
information detected. The power efficiency of the method
is shown later (in Fig. 8). To check that the algorithm can
accurately measure the information that is related to
stimulus-dependent synchronization, we show in Fig. 3
(right) that when a defined amount of information is
present in the synchronization while there is no informa-
tion in the rates, then all of this information (2 bits in this
case) is detected by the algorithm. [In this test data, there
were four cells, four stimuli, and each cell gave four spikes
to each stimulus. From the ten possible pairs of cells, four
pairs had synchronization that was fully correlated (to
within ±1 ms) for one of the stimuli.] The algorithm
correctly detected no information in the spike counts, and

no stimulus-independent contributions to the amount of
information measured. The total information measured
was two bits, all from the stimulus-dependent synchroni-
zation.

Information and redundancy arising from correlated
response profiles (i.e. positive ‘signal’ correlations)
and with no ‘noise’ correlations

Here we treat the case of cells with correlations in the
firing rate response profiles across the set of stimuli, i.e.
with positive signal correlations (measured by ν in Panzeri
et al. 1999; Rolls et al. 2003b). (If all the neurons had the
same tuning to the set of stimuli, and the cells were noise
free, the cells would be completely redundant. If there is
some noise, the cells would be to some extent redundant.
The noise referred to here is the trial-by-trial variability,
called the ‘noise’ correlation (and measured by γ in
Panzeri et al. 1999; Rolls et al. 2003b), and in this
subsection the noise we consider is just random noise
which is uncorrelated across the cells.

We analyzed a case where the ten simulated neurons
had Poisson spike trains, and their response profiles had a
mean correlation of ν=0.15, r=0.85. The information
available from only the spike counts is shown (that is,
there are no entries in the cross-correlation columns of the
table data(s, r) shown in Fig. 2). The redundancy is
reflected in the less than linear increase in the information
as a function of the number of cells, and compares with the
linear increase shown in the same figure for cells with no
correlation in their response profiles.

As shown in Fig. 5, shuffling the trials (within each
stimulus) does not influence the information, and this

Fig. 3 Left The values of the information available from stimulus-
dependent synchronization between neurons. The information
available from up to ten selected cross-correlations between the
responses of ten neurons is shown. The only information plotted is
that from the cross-correlations, with no contributions assessed from
the numbers of spikes. The dashed line shows the results of a control
in which the spike data from the neurons is randomly shuffled
between different trials for each stimulus before the information
analysis, so that any stimulus-dependent synchronization effects will
be lost. The error bars show ±2 standard deviations of the

information estimates obtained on different shufflings in a Monte
Carlo procedure used to estimate the variability of the information
estimate. Right The values of the information from stimulus-
dependent synchronization between neurons when there were 2 bits
of information available from this in a test data set, and no
information from the firing rates about which stimulus was
presented. In this test data, there were four cells, four stimuli, and
each cell gave four spikes to each stimulus. From the ten possible
pairs of cells, four pairs had synchronization that was fully
correlated (to within ±1 ms) for one of the stimuli
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reflects the zero ‘noise’ correlation, that is that the neurons
have independent variability in their spike trains. The lack
of effect of the shuffling on the information estimated with
the algorithm is the important evidence it provides that the
spike trains of the different neurons are independent, i.e.
that the ‘noise’ correlation measuring whether neurons
have co-variability, whether it is stimulus-dependent or
not, is zero. Such a case might arise when cells have no
common input.

Information and redundancy arising from correlated
response profiles (i.e. positive ‘signal’ correlations)
with positive ‘noise’ correlations

We analyzed a case where the simulated integrate-and-fire
cells share common input, generating correlated noise (that
is trial-by-trial variability) for all stimuli. The correlated
noise might arise from common inputs, and is stimulus-
independent. (The spike trains were generated with
integrate-and-fire neurons using a procedure similar to
that of Shadlen and Newsome (1998) and as described by
Rolls et al. (2003b) and in “Materials and methods.” The
common input was added by connecting 50% of the inputs
of both cells to the same input source. In no case in this
paper is there a ceiling effect to the information that can be
extracted by the algorithm, in that the information
available does not approach the maximum that would be
needed to code for the ten stimuli, i.e. 3.32 bits (Rolls et al.
1997).

In Fig. 6 the values of the information available from
the rates of ten simulated neurons about what stimuli have
been presented are shown when the response profiles of

the cells are highly correlated (with a mean Pearson
correlation coefficient across pairs of cells of r=0.85). In
this case, the information does not grow linearly with the
number of cells, due to the redundancy in the profiles.
However, in this case the information that is available
from the ten cells is not as great as in Fig. 5 and this
reduction is due to the correlated noise arising from the
50% of common inputs. This statement is confirmed by
the fact that shuffling the trials (within a stimulus) as
shown in Fig. 6 raises the curve to that expected with
independent firing (which was shown in Fig. 5). The
interactions that occur between the ‘signal’ and ‘noise’
correlations are described in the “Discussion” with the
help of Fig. 9.

Information and redundancy arising from anti-
correlated response profiles (i.e. negative ‘signal’
correlations) with positive ‘noise’ correlations

In Fig. 7 the values of the information available from the
rates of ten simulated neurons about what stimuli have
been presented are shown, in a case where the response
profiles of the cells are tuned to different stimuli, with an
average ‘signal’ correlation of ν=−0.018 (r=−0.09). The
correlated noise arises from 50% of common inputs, and is
stimulus-independent. In this case the information in-
creases approximately linearly with the number of cells
(because the anti-correlation is low, and indeed cannot be
made on average to have a large negative value with a set
of more than a very few stimuli). However, in this case
shuffling the trials (which removes the effect of the
correlated noise) results in less information being

Fig. 4 The cross-correlograms
from one pair of cells to the
different stimuli used to gener-
ate the data analyzed in Fig. 3.
Above we show the cross-cor-
relogram calculated across all
stimuli. Below we show the
cross-correlograms for each
stimulus. A significant cross-
correlation was available be-
tween the responses of this pair
of cells for stimulus 6 at
approximately 0 ms lag, and the
value of the cross-correlation at
this lag was used in the measure
of the magnitude of the cross-
correlation by the decoding al-
gorithm. The dashed lines show
the 95% confidence intervals of
the cross-correlation estimate.
The cross-correlograms are
noisy because we chose to use a
limited number of trials for each
stimulus (25) in order to illus-
trate the application of the ap-
proach to real data, for which
the number of trials of data
available may be limited
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extracted. The gain of information, in this case approxi-
mately 0.06 bits, in the unshuffled condition is thus
synergy which arises when the ‘signal’ and ‘noise’
correlations have the opposite sign (see “Discussion”
and Panzeri et al. 1999; Rolls et al. 2003b). This case is
important because it underlines the point that when the
‘signal’ correlations are low, the information carried by the
cells is almost independent, even when there is a high
‘noise’ correlation.

Power efficiency and accuracy of the information
measurement algorithm

To analyze the accuracy and power efficiency (in terms of
the number of trials of data needed) of the measurement of
information using decoding procedures as described in this
paper, we performed simulations for cases in which the
information measures provided by the approach could be
compared with the exact value of the information
computed directly from Eq. 1 and knowledge of the
exact probability distributions of the neuronal responses to
each stimulus. Figure 8(top) shows an example of

information from four simulated Poisson cells responding
to four different stimuli with firing rates and firing rate
distributions to the different stimuli similar to those of
cells in inferior temporal visual cortex (Treves et al. 1999).
In this example, and other simulated cases, the decoding
methods give reasonably accurate estimates of the true
information, with a loss of information of approximately
10% for maximum likelihood (ML) and 15–20% for full
probability estimation (PE) decoding combined with a
Gaussian or Poisson fit of the responses. We note that
decoding approaches inherently can only approach the true
information (Pouget et al. 1998; Cover and Thomas 1991;
Rolls et al. 1997), and that therefore the values obtained
are very satisfactory. It has also been suggested that
decoding procedures are likely to become more accurate
when increasing numbers of cells and longer times are
considered (Panzeri et al. 1999), although in those cases
the direct measurement of the information becomes
computationally very long. For the case of maximum

Fig. 5 The effect of correlated response profiles of neurons, with
uncorrelated variability on a trial-by-trial basis (i.e. with positive
‘signal’ correlation and with zero ‘noise’ correlation). The
information available from only the spike counts is shown. The
redundancy is reflected in the less than linear increase in the
information as a function of the number of cells. Shuffling the trials
(within each stimulus) does not influence the information reflecting
the zero ‘noise’ correlation. The mean Pearson correlation between
the response profiles was r=0.85 (ν=0.15). Also shown (dashed line)
is the case when the response profiles, i.e. ‘signal’ correlations, are
approximately zero (r=0.009, ν=0.002)

Fig. 6 Above The effect of correlated response profiles of neurons,
with correlated variability on a trial-by-trial basis (i.e. with positive
‘signal’ correlation and positive ‘noise’ correlation). The informa-
tion available from only the spike counts is shown. The redundancy
is reflected in the less than linear increase in the information as a
function of the number of cells, as in Fig. 5. Shuffling the trials
(within each stimulus) increases the information, showing that the
simultaneously recorded unshuffled spike count data reflect in
addition a second type of redundancy, due to the positive ‘noise’
correlations (when they occur with positive ‘signal’ correlations).
The mean Pearson correlation between the response profiles was
r=0.85 (ν=0.15). Below: the response profiles of neurons 1, 3, 5, etc.
to the ten discrete stimuli. The correlated noise was introduced by
providing the ten neurons with 50% of common input
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likelihood decoding, conditions for an optimal decoding
were analytically derived by Samengo (2002). We note
that the efficiency of the approach for measuring the
information in the stimulus-dependent cross-correlations
will be similar to that shown in Fig. 8, as the values of the
cross-correlations have an approximately Poisson distri-
bution.

Figure 8(bottom) shows how the estimates by the
algorithm of the information arising in different ways from
spike trains depend on the number of trials of data for each
stimulus. In the case shown, there were ten stimuli, and ten
cells. For all cases, the information estimate has settled

down when the number of trials is approximately 20 trials
per stimulus, that is when the number of trials is twice the
number of stimuli. In the case of the information from the
firing rates, the information is underestimated when the
number of trials is less than twice the number of stimuli,
and this may be due to the probability tables generated
from the responses available to each stimulus being
inaccurate due to undersampling.

The stimulus-dependent cross-correlation information is
overestimated a little when the number of trials is less than
twice the number of stimuli, and this may be because the
correlation measures have different variability than
assumed by the bias correction procedures. The redun-
dancy arising from interactions between the signal and
noise correlations illustrated in Figs. 6 and 7, which are
detected by the changes produced by trial shuffling within
a stimulus, were little affected by altering the number of
trials. This is because these interaction effects are
measured just by the difference that the shuffling produces
in an estimate made of the Rate information.

Fig. 7 Above The effect of anti-correlated response profiles of
neurons, with correlated variability on a trial-by-trial basis (i.e. with
positive ‘signal’ correlation and positive ‘noise’ correlation). The
information available from only the spike counts is shown. Because
the anti-correlation in the response profiles is small (Pearson
correlation r=−0.09, ν=−0.018), the information increases approxi-
mately linearly with the number of neurons. Shuffling the trials
(within each stimulus) decreases the information, showing that the
simultaneously recorded unshuffled spike count data reflect some
synergy, due to the positive ‘noise’ correlations (when they occur
with negative ‘signal’ correlations). Below: the response profiles of
neurons 1, 3, 5, etc., to the ten discrete stimuli. The correlated noise
was introduced by providing the ten neurons with 50% of common
input

Fig. 8 Above The amount of information extracted by the decoding
procedures, when using a Gaussian fit of the responses combined
with maximum likelihood (ML) or with full probability estimation
(PE) methods, compared to the exact information value. In the
simulation there were four Poisson simulated cells firing to four
different stimuli. Below The efficiency of the decoding procedure as
a function of the number of trial for each stimulus shown for the
different cases analyzed in the paper. For the analyses shown, there
were ten cells and ten stimuli
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Application to the representation of information in the
inferior temporal visual cortex

We tested the method with real neuronal data as follows, to
show how the algorithm can be applied to real neuronal
data. In an example of one of the experiments (bj293)
simultaneous recordings were made from a group of four
neurons in the inferior temporal cortex to a set of eight
stimuli of the type known to elicit responses in some
neurons in this region. The neurons were recorded on three
microelectrodes within the same cortical area but separated
by up to 2 mm. There were 16 trials for each stimulus, and
the data from a 200-ms epoch starting 100 ms after the
presentation of each stimulus were analyzed. The results
of the analysis are shown in Fig. 10. The Rate information
(i.e. based only on the firing rate counts) is shown above.
The information rises almost linearly with the number of
cells, and shuffling the trials increases the information by
the small amount of 0.03 bits, indicating a small amount of
redundancy arising from the stimulus-independent corre-
lation term of the information, which reflects interactions
between the signal correlations ν and the noise correlations
γ as will be explained in the “Discussion” using Fig. 9.

Figure 10 (lower) shows the analysis from the same
experiment based only on the correlations between pairs of
neurons, to measure any information in stimulus-depen-
dent synchronization. The cross-correlation values used
were for a lag of zero, because there was some evidence
for the presence of cross-correlations at this lag from the

cross-correlograms. The cross-correlations from all possi-
ble cell pairs (6) were used. The information is shown as a
function of the number of cross-correlations included in
the analysis. The solid line shows the data without trial
shuffling. The facts that the information after shuffling
was lower, and was less than two standard deviations from
the unshuffled values, indicate that the stimulus-dependent
cross-correlation (synchronization) information is not
significantly different from what could arise by chance
pairings of trials. Further, the magnitude of the information
available from the cross-correlations was small, approxi-
mately 0.078 bits minus the 0.052 bits which the Monte
Carlo trial shuffling shows could arise by chance, that is
0.026 bits. This is small in relation to the information
available from the firing rates, shown above, of 0.341 bits.

The measures discussed so far from the set of four real
cells in experiment bj293 used for Fig. 10 are of the
information available from the Rates, and separately that
available from the cross-correlations between pairs of
cells. As these two terms could be redundant, we also

Fig. 9 The effects on the information available from the spike
counts of correlations between the response profiles of the cells
(‘signal’ correlations) and of covariations in the firing rate spike
count variability (‘noise’ correlations). The mean response of each
cell to each stimulus is shown by the filled circle, and the contour
lines show the probabilities of obtaining particular firing rates on
individual trials. (This figure reflects in part earlier work of Oram et
al. (1998.)

Fig. 10 Information analysis on a set of four simultaneously
recorded neurons. The rate information is calculated from the spike
number of the cells (top) while the information in the cross-
correlation for zero lag is plotted in the graph below where the
information is that extracted from the correlations between the six
pairs that can be formed with the four neurons analyzed. The Total
Information shown in the upper graph is that measured when both
the rate and the cross-correlation data are used together in the
algorithm (see text)
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show in Fig. 10 (upper) the Total Information available
from both the firing rates and the cross-correlations when
both are present in the table data(s, r) from which the
information is measured. The values for this Total
Information are shown on the right of the upper part of
the figure. In this case the Total Information had a value
that is approximately the sum of the Rate Information plus
the Stimulus-Dependent Information from the cross-
correlations, indicating that in this case these two terms
provide almost independent contributions to the total
information available.

We applied the algorithm described in this paper to a
population of 46 neurons recorded in simultaneous sets of
2–4 from the inferior temporal visual cortex. The stimulus
set analyzed consisted of eight visual stimuli of objects
and faces of the type known to be effective for activating
neurons in the inferior temporal visual cortex (Rolls 2000).
Each neuron was shown to respond to some but not others
of the set of stimuli. The response latencies were typically
90–100 ms, and the period analyzed was 100–300 ms
poststimulus onset. Because each stimulus is composed of
a number of parts arranged in the correct spatial config-
uration, synchronization between the spikes of different
neurons might be used to bind together the parts (Singer
2000), and it is therefore of importance to measure
whether any extra information about which stimulus was
being shown was available from stimulus-dependent
synchronization. In addition, a previous analysis we
performed (on a different population of neurons) of how
information increases with the number of cells in a

population did not measure any redundancy arising from
stimulus independent correlations between the numbers of
spikes obtained from the different cells on a trial-by-trial
basis because the cells were not simultaneously recorded
(Rolls et al. 1997), and it was possible to measure the
degree of redundancy arising in this way from each set of
two to four simultaneously recorded cells in the new
dataset.

The results are shown in Table 1. In each experiment
(e.g. bj185) simultaneous recordings were made from the
number of cells indicated, with each cell providing when
measured separately at least 0.025 bits of information
about the stimulus set. The average number of trials for
each stimulus was 16, so that the criterion for operation of
the algorithm, two times the total number of stimuli, was
met. Across the set of experiments, the mean information
from the firing rates (i.e. spike counts) was 0.142
±0.088 bits. As shown in the last column of Table 1, the
mean value of the stimulus-independent correlation
information included in this Rate term was −0.006
±0.014. The negative value for this term on average
indicates that it is redundancy which arises from
interactions between the signal and noise correlations as
will be shown in Fig. 9b, though as shown in Table 1 for
some cases this term can be positive (see Fig. 9d). The
finding that this value is small, approximately 4.1% of the
total information on average, indicates that the cells
encode information almost independently (Rolls et al.
1997, 2003a).

Table 1 The contributions (in bits) of the different components to the information extracted by a decoding algorithm in 200 ms from 20
sets of simultaneously recorded inferior temporal cortex neurons when shown eight stimuli effective for the cells

Experiment Number
of
cells

Rate
information
from the
spike counts

Stimulus dependent
information
from
cross correlation

Total
information

Stimulus independent
information
from correlations
included in the rate

bj185 2 0.084 −0.028 0.085 0.007
bj207 2 0.056 −0.001 0.058 −0.003
bj213 2 0.108 0.000 0.108 −0.002
bj215 3 0.085 0.015 0.094 0.003
bj220 3 0.142 0.015 0.152 −0.026
bj229 2 0.066 0.003 0.073 0.001
bj278 3 0.185 0.000 0.188 −0.019
bj280 3 0.312 −0.006 0.312 −0.005
bj283 2 0.183 0.000 0.183 −0.028
bj285 2 0.034 0.001 0.034 −0.001
bj287 3 0.120 −0.017 0.121 0.010
bj288 3 0.153 0.001 0.163 0.006
bj290 4 0.037 0.013 0.047 −0.016
bj291 2 0.121 0.000 0.121 0.009
bj292 2 0.182 0.000 0.182 0.009
bj292b 4 0.213 0.005 0.216 −0.018
bj293 4 0.341 0.026 0.366 −0.030
Mean SD 2.70 0.142±0.088 0.002±0.012 0.147±0.090 −0.006±0.014
Percentage - 96.8% 1.1% 100% −4.1%
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The column of Table 1 showing the stimulus-dependent
information from the cross-correlations indicates that the
contribution of this term was on average small (1.1%), and
indeed for no experiment was statistically significant. (The
values of the stimulus-dependent cross-correlation infor-
mation shown are corrected by shuffling for any random
pairings of spike trains in the set of trials that might
provide by chance measurable information, and because of
this correction the values for any individual experiment
can appear as small negative numbers.) The total
information is that measured when all contributions from
both the firing rate and cross-correlations are included.
(This value is approximately, but not exactly, the sum of
the Rate and Stimulus-dependent cross-correlation terms
shown in Table 1. The Total Information is not exactly the
sum mainly because these two components need not be
independent.)

Discussion

The algorithm described here allows the information that
can arise in different ways from the spike trains of
simultaneously recorded neurons to be extracted and
identified as follows. One type of information is the
stimulus-dependent cross-correlation information, which
can arise from stimulus-dependent correlations between
the spike trains. This is detected in the algorithm by using
only the correlation columns in the table data(s, r) shown
in Fig. 2. Shuffling the trials (within stimuli) allows a
(typically small) correction to be applied, and for the
standard deviation of the estimate to be measured, as
shown in Fig. 4. This is the only stimulus-dependent
cross-correlation information that is available from the
spike trains. All the other cross-correlation information is
stimulus-independent.

The Rate information, that is the amount of information
in the firing rates and excluding any stimulus-dependent
synchronization effects, arises and is identified, in several
ways. We note that the Rate information is estimated using
just the rate columns of table data(s, r) shown in Fig. 2.
We also note further that to obtain an estimate of the Total
Information in the spike trains, the algorithm must be run
on the whole table data(s, r) shown in Fig. 2, and may not
be the sum of the Rate and Stimulus-Dependent
Synchronization Information, as they could encode the
same information, and be redundant. The first factor
affecting the Rate information is, as shown in Fig. 5, any
redundancy that is related to the correlation between the
response profiles of the different neurons (i.e. positive or
negative ‘signal’ correlations) and which is not related to
an interaction with the noise correlations. This effect is
detected by a sublinear increase in the information with the
number of neurons, and a lack of effect of shuffling the
trials. The second factor contributing to the Rate
information is, as shown in Figs. 6 and 7, an interaction
between the ‘signal’ correlations and the ‘noise’ correla-
tions. The magnitude of this interaction is detected by the
size of the effect produced by shuffling spike count

measures between the trials within each stimulus in table
data(s, r) shown in Fig. 2.

The ways in which interactions between the signal and
noise correlations contribute redundancy or synergy to the
Rate Information are clarified with reference to Fig. 9. The
issue we deal with is not stimulus-dependent synchrony
effects, but instead how the variability of the spike counts
interacts with the response profiles of the cells. The left
part of Fig. 9 shows the case where the degree of
variability of the spike counts of two cells is uncorrelated.
The trial by trial variability, measured by the noise
correlation, is zero, and is indicated by the circular contour
lines surrounding the mean responses of each cell to each
stimulus. In the upper case, the response profiles of the
two cells (measured by the ‘signal’ correlations) are
correlated, in that when cell 1 has a large response, so does
cell 2. The lower left case shows anticorrelated response
profiles, in that when cell 1 fires fast (in response to
stimulus 2), cell 2 fires slowly. In both cases on the left of
the diagram there is some overlap in the response profiles,
that is some uncertainty about which stimulus is present on
some trials. We show on the right the effect of correlated
noise (produced for example by common input to the two
cells). When the response profiles are correlated (upper
right), the positive ‘noise’ correlation increases the
uncertainty, that is, decreases the information about
which stimulus was shown. The interaction between the
signal and noise correlations in this case increases the
redundancy of the encoding by the two cells. In contrast,
when the response profiles are anticorrelated (lower right),
the positive ‘noise’ correlation decreases the uncertainty,
that is, increases the information about which stimulus was
shown. In this second case, because the signal and noise
correlations have opposite signs, there is synergy (the
opposite of redundancy) produced by the interaction. This
simple case demonstrates that interactions between the
signal and noise correlations can produce synergy (which
is produced if the signs of the signal and noise correlations
are opposite) or redundancy (if the signs of the signal and
noise correlations are the same). We have demonstrated
above how the decoding approach to information
measurement we describe in this paper is able to diagnose
these interaction effects, which are revealed by the
procedure of shuffling the trials within a stimulus in the
part of the table data(s, r) shown in Fig. 2 that contains the
spike count (i.e. firing rate) information.

We now compare the current approach with earlier
approaches to measuring the total information available in
the spike trains of simultaneously recorded neurons,
including the information available from effects such as
stimulus-dependent synchronization. First, the original
Taylor expansion (Rolls et al. 2003a, 2003b; Panzeri et al.
1999) used an estimate of the stimulus-dependent
synchrony effects that was effectively an estimate of the
trial by trial co-variability of the spike trains of different
neurons, rather than a direct measure of the synchroniza-
tion. In the algorithm described here, we decided in
practice to utilize a direct and standard measure of the
synchronization between pairs of neurons for the correla-
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tion columns of table data(s, r) shown in Fig. 2, because
we believe this to be most relevant, and synchronization is
a key current issue in understanding the neural encoding of
information. We note that it is a minor alteration to the
current decoding algorithm to replace the correlation
columns of table data(s, r) shown in Fig. 2 with other
measures of the co-variability of neuronal spike trains,
including a measure analogous to the scaled cross-
correlation density (Panzeri et al. 1999) computed for
each trial. We note that a spike time version of the Taylor
expansion algorithm has been described by Panzeri and
Schultz (2001), though this algorithm suffers greatly from
the limitations described next. Third, the Taylor expansion
approach (Bezzi et al. 2002; Rolls et al. 2003a, 2003b;
Panzeri et al. 1999) is severely limited in the numbers of
spikes with which it can deal, as it can deal with only up to
two spikes on every trial from any neuron (which limits
greatly the length of the time epochs of neuronal firing to
which it can be applied), and is also limited in the number
of cells to which it can be applied. In contrast, the present
approach works better with large numbers of cells (and
indeed may be a little limited in its application to a small
number of cells, although in practice we have shown that
the number can be as few as two or three cells, see
Fig. 8a), and is unlimited in the total time epoch that is
considered. The current approach is relatively efficient in
the number of trials of data needed, in that as shown in
Fig. 8b the algorithm operates well with as few as twice
the number of trials as there are stimuli. The algorithm we
describe here should have many applications, as it can in
principle be applied to datasets with very large numbers of
simultaneously recorded neurons, and with temporal
windows that can be as long as are of interest. Another
approach (Hatsopoulos et al. 1998) used a direct method to
compute the information, and a disadvantage of this
approach is that to avoid the limited sampling bias
problem, many trials of data are needed. Another approach
(Oram et al. 2001) is to use a neural network to estimate
the probability distributions, but this regularizes the data in
a particularly complex and data-dependent way that is
difficult to interpret and can sometimes leads to paradox-
ical results (Panzeri and Treves 1996). The decoding
approach introduced in this paper has the advantages that
it can operate with relatively limited numbers of trials, and
has no limitations on the number of cells or spikes that can
be analyzed.

While one of the main contributions of this paper has
been to introduce measures of spike synchrony between
neurons into the decoding algorithm, it is useful to discuss
the efficiency of different decoding algorithms, in the
context of how they are applied to the spike count
distributions which are part of what has to be decoded.
The information measurement procedure we describe can
of course be used with any decoding algorithm. (We note
that no decoding procedure is likely to be perfect, and that
different decoding methods may be appropriate for
different types of data; Robertson et al. 1999.) First, the
Bayesian decoding used with for example Gaussian and
Poisson fits to the spike count probability distributions has

the potential weakness that it assumes that the spike counts
of the different neurons are independent. However, Wu et
al. (2001) show that for example when maximum
likelihood estimation is used with Bayesian decoding,
then correlations do not strongly affect the accuracy of the
information measurement, particularly as the number of
elements in the decoded vector becomes large ≈100.
Second, we note that dot product decoding does not have
this difficulty associated with Bayesian decoding, and
moreover is very biologically plausible, in that the
simplest model of a neuron holds that it performs a dot
product between its input spike activity vector and its
synaptic weight vector. Dot product decoding is not as
efficient as maximum likelihood Bayesian decoding (Rolls
et al. 1997), but the latter is concerned with measuring all
the information that potentially may be present, without
any constraints on the decoding process. The dot product
decoding does at least allow the information obtained as a
function of the number of neurons in the population, and
including or not the synchrony between neurons, to be
estimated. Third, we introduce in this paper the synchro-
nicity measure of neuronal firing to estimate the informa-
tion available from stimulus-dependent correlations be-
tween the neurons. However, we also introduce a method
for measuring the stimulus-independent correlations that
are present in the spike counts of the simultaneously
recorded neurons. This method involves comparing the
information before and after shuffling of the trials within
each stimulus. The effect of the shuffling is to remove
trial-by-trial covariability in the spike counts of the
different neurons (measured by γij), and thus is able to
remove the effects of stimulus-independent information,
which only is non-zero if γij is non-zero (Rolls et al.
2003b; Panzeri et al. 1999). Given that both the unshuffled
and the shuffled information estimates have been through
the decoding process, both are likely to be underestimates
of the true information. However, the effect of the
shuffling procedure is to measure how much, relatively,
the decoded information measures are influenced by
stimulus-independent correlations. Provided that it is
remembered that this estimate is relative to the decoded
values, the procedure is very useful, as established by the
analyses of the quantitatively simulated datasets shown in
Figs. 5, 6, and 7.

When applied to real data from 17 experiments each
with 2–4 simultaneously recorded inferior temporal cortex
neurons (see Table 1), the main conclusions were that
almost all of the information was available in the spike
counts of the neurons, that this Rate information included
on average very little redundancy arising from stimulus-
independent correlation effects, and that stimulus-depen-
dent cross-correlation effects (i.e. stimulus-dependent
synchronization) contribute very little to the encoding of
information in the inferior temporal visual cortex about
which object or face has been presented. Although
conceivably over very large numbers of neurons, or
under different stimulus presentation conditions, or in
different brain areas, stimulus-dependent synchronization
of spikes from different neurons might statistically provide
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some evidence about which stimulus was presented, we
note that in no individual experiment in Table 1 was the
stimulus-dependent information statistically significant; in
all cases it was small in relation to the information
available from the spike counts of the neurons, and there
was little evidence that the stimulus-dependent synchro-
nization information was orthogonal to the information
available from the spike counts.
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