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Abstract. We introduce and analyse a minimal network model of semantic
memory in the human brain. The model is a global associative memory structured
as a collection of N local modules, each coding a feature, which can take S
possible values, with a global sparseness a (the average fraction of features
describing a concept). We show that, under optimal conditions, the number
cM of modules connected on average to a module can range widely between very
sparse connectivity (high dilution, cM/N → 0) and full connectivity (cM → N),
maintaining a global network storage capacity (the maximum number pc of
stored and retrievable concepts) that scales like pc ∼ cMS2/a, with logarithmic
corrections consistent with the constraint that each synapse may store up to a
fraction of a bit.
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1. Introduction

Hebbian associative plasticity appears to be the major mechanism responsible for sculpting
connections between pyramidal neurons in the cortex, for both short- and long-range
systems of synapses. This and other lines of evidence [1] suggest that autoassociative
memory retrieval is a general mechanism in the cortex, occurring not only at the level of
local networks, but also in higher-order processes involving many cortical areas. These
areas are often regarded both from the anatomical and from the functional point of
view as distinct but interacting modules, indicating that in order to model higher-order
processes we must first understand better how multi-modular autoassociative memories
may operate. In a class of models conceived along these lines, neurons in local modules,
interconnected through short-range synapses, are capable of retrieving local activity
patterns which, combining across the cortex through long-range synapses, compose global
states of activity [2]. Since long-range synapses are also modified by associative plasticity,
these states can be driven by attractor dynamics, and such networks are capable of
retrieving previously learned global patterns.

This could serve as a simple model of semantic memory retrieval. The semantic
memory system, as opposed to episodic memory, stores composite concepts, e.g. objects,
and their relationships. Although information about distinct features pertaining to a given
object (e.g. its shape, smell, texture, function) may be processed in different areas of the
cortex, a cue including only some of the features, e.g. the shape and colour, may suffice
to elicit retrieval of the entire memory representation of the object. Imaging studies show
that, though distributed across the cortex, this activity is sparse and selective, and might
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involve regions associated to the concept being retrieved, even if not directly activated
by the cue [3]. This process could well fit a description in terms of autoassociative multi-
modular memory retrieval. In this perspective, while a local module codes for diverse
values of a given feature, a combination of features gives rise to a concept, which behaves
as an attractor of the global network and is thus susceptible of retrieval. The two-level
description that characterizes this view is the principal difference with other attempts to
describe semantic memory in terms of featural representations [4].

In order to reduce the complexity of a full multi-modular model [5, 6] one can
consider a minimal model of semantic memory, which can be thought of as a global
autoassociative memory in which the units, instead of representing, as usual, individual
neurons, represent local cortical networks retrieving one of various (S) possible states of
activity. The combined activity of these units generates a global state, which follows a
retrieval dynamics. The first question arising from this proposal is how the global storage
capacity of such a network is related to the different local and global parameters.

In the following section of this paper we present the model in mathematical terms. In
the third section we compare, through a simple signal-to-noise analysis, different model
variants proposed in the literature and extract the minimum requirements for a network
of this kind to perform efficiently in terms of storage capacity. In the fourth section
we analyse with more sophisticated techniques the simplest model endowed with a large
capacity (the sparse Potts model) and, in particular, interesting cases such as the very
sparse and the high-S limits. Following this we study modifications to the model that
make it more realistic in terms of connectivity. Finally, we relate the results from the
previous sections to a simple information capacity analysis.

2. S-state fully connected networks

Autoassociative memories are networks of N units connected to one another by weighted
synapses. These synapses are trained in such a way that the network presents, in the ideal
case, a number p of preassigned attractor states, also called stored patterns, or memories,

represented by the vectors �ξµ, with µ = 1 . . . p. If the state of the network is forced into
the vicinity of an attractor (e.g., by presenting a cue correlated with one of the stored
patterns) the natural dynamics of the network converges toward the attractor, in state
space, and the memory item is said to be retrieved. A substantial amount of the literature
on attractor networks is devoted to study the relationship between the number and type
of stored patterns and the quality of retrieval.

The state of a network at a given moment is given by the state of each of its units,
σi for i = 1 . . .N . The first quantitative analyses of autoassociative memories were of
binary models [7], in which units could reach two possible states, +1 (active unit) and
−1 (inactive unit), resembling Ising 1

2
spins. In our case, in which units do not represent

single neurons but rather local networks, we want active units to be able to reach one of S
possible states, while inactive units remain in a ‘zero’ state. We thus choose the notation
σi = k for an active unit in state k and σi = 0 for an inactive unit. This particular choice
has no effect on the results, since all quantities can be transformed to some other notation.

On the other hand, the stored patterns �ξµ can be simply thought of as special states of
the network. For this reason, it is natural to choose the same kind of representation for
the activity of a unit i in pattern µ, ξµ

i .
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Although in the first binary models of autoassociative memories patterns were
constructed with a distribution of equally probable active and inactive units, the search
for an accurate description of activity in the brain made it necessary to introduce sparse
representations. This property of autoassociative memories is described by the sparseness
a, defined as the average activity (the average fraction of active units) in the stored
patterns. In our case, because we are assuming all S different activity states to be equally
probable, we consider patterns defined by the following probability distribution

P (ξµ
i = 0) = 1 − a

P (ξµ
i = k) = ã ≡ a

S

(1)

for any active state k. In this way the probability to find a unit active in a pattern is the
sparseness a. For sparse codes, this quantity is closer to 0 than to 1.

Following the assumption of Hebbian learning and, as is usual for a simplified analysis,
symmetry in the weights (Jij = Jji), a general form for the weights is

Jkl
ij =

1

E

p∑

µ=1

vξµ
i kvξµ

j l (2)

where E is some normalization constant and vmn is an operator computing interactions
between two states.

As one can notice, the long-range synaptic weights in equation (2) have different
values for different pre- and post-synaptic states k and l. In this way we do not intend
to model the actual distribution of synapses going from one cortical area to another
(since they connect neurons and not abstract states), but rather the general mechanism of
communication between these areas. In a recent study [8], the authors have raised the issue
of finding the most suitable description of global cortical networks in terms of single long-
range synapses connecting distant local areas. Applying statistical tools (dynamic causal
modelling), they propose that MRI data can be described as being produced by networks
with category-specific forward connections, roughly the kind of connections modelled by
equation (2).

The state of generic unit i is determined by its local fields hk
i , which sum the influences

by other units in the network and are defined as

hk
i =

∑

j �=i

∑

l

Jkl
ij uσj l − U(1 − δk0) (3)

where we introduce the operators umn, analogous to vmn, and a second (threshold) term,
which has the function of regulating the activity level across the network [9, 10]. The unit
i updates its state σi, with an asynchronous dynamics, in order to maximize the local field
hσi

i . In the general case, the probability to choose the state k is defined as

P (σi = k) =
exp(βhk

i )∑S
l=0 exp(βhl

i)

where β is a parameter analogous to an inverse temperature.
Finally, we can include all of these elements, as is usual for the study of attractor

networks, into a Hamiltonian framework. The Hamiltonian representation of binary
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networks can be extended to S-state models as

H = −1
2

N∑

i,j �=i

S∑

k,l

Jkl
ij uσikuσj l + U

N∑

i

S∑

k �=0

uσik. (4)

Note that, for the case S = 1, equation (4) generalizes the Hamiltonians used in binary
networks, given appropriate definitions of the weights Jkl

ij and of the operators umn.
We now specify a form for the umn and vmn operators. In the simplest and most

symmetric case these operators have two alternative values, depending on whether m and
n are equal or different states

umn = (κuδmn + λu)

vmn = (κvδmn + λv)(1 − δn0)
(5)

where we have introduced four parameters. Particular choices for these parameters define
the different models in which we are interested, including some proposed in the literature.
In the v operators, which define the value of the weights, we have included a factor which
ensures Jkl

ij = 0 if either k or l are the zero state, to implement the idea that Hebbian
learning occurs only with active states. As we will see below, this appears to be a crucial
element in the model.

3. Signal-to-noise analyses

We now show that, within the group of models defined in the previous section, there is
a family (which we call ‘well behaved’) that exploits multiple states and sparseness in an
optimal way in terms of storage capacity or, as usual, of α ≡ p/N . We begin by applying
an adjusted version of the arguments developed in [9].

A signal-to-noise analysis is a simplified way to estimate the stability of stored patterns
by studying the field acting on a generic unit i during the perfect retrieval of a given
pattern, assessing whether the state of this unit is likely to be stable or not. We can

choose this retrieved pattern to be �ξ1 without loss of generality. Equation (3) can then
be rewritten as

hk
i =

1

E
vξ1

i k

∑

j �=i

∑

l

uσj lvξ1
j l +

1

E

∑

µ>1

vξµ
i k

∑

j �=i

∑

l

uσj lvξµ
j l − U(1 − δk0) (6)

where the terms in the RHS stand for signal (ς), noise (ρ) and threshold respectively.
Generally speaking, if the field had only the signal part then the state would be stable,
but the noise can destabilize it.

As usual in this kind of analysis, we consider the contribution of the noise term in
equation (6) as if it were a normally distributed random variable, i.e. through its average
and its standard deviation. In general both quantities scale like p, but in some special
cases the average noise is zero and the standard deviation scales only like

√
p, which means

that one can store more patterns, as the noise level is reduced. It is clear that the well
behaved family of models which we are looking for must fit into this favourable situation.
As we said, a necessary but not sufficient condition is the average of the noise to be zero.
There are two ways of imposing this into the model. The first way is to make λu = −ãκu,
but in this case the standard deviation still scales like p. The second way is to use

λv = −ãκv (7)
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which makes the standard deviation scale like
√

p. Including this condition, the average
signal and the standard deviation of the noise are

ς =
Nκ2

v

E
κuã(1 − ã)S(δξ1

i k − ã)(1 − δk0)

ρ =
Nκ2

v

E
κuã(1 − ã)

√√√√αa

{
1 − ã

[
1 −

(
1 − λu

ãκu

)2
] [

1 − a

1 − ã

]}
(1 − δk0)

where terms of low order N have been discarded.
The storage capacity αc can be estimated as the largest value of α for which h

ξ1
i

i is
still likely to be the largest among all S + 1 local fields. The situation is quite different
depending on whether ξ1

i is in an active state or not, so one needs to analyse both cases.
Note first that h0

i = 0, so if ξ1
i = 0 the rest of the local fields must be negative. For this

to hold true at least within one standard deviation of the noise distribution we require
ς − U ± ρ < 0, or in other words

a +
UE

Nκ2
vκuã(1 − ã)

>

√√√√αa

{
1 − ã

[
1 −

(
1 − λu

ãκu

)2
] [

1 − a

1 − ã

]}

where we have adopted a positive κu.
In the case in which ξ1

i is not the zero state two conditions must be fulfilled, namely

h
ξ1
i

i > h0
i and h

ξ1
i

i > h
k �=ξ1

i
i . The first of them can be written as

S(1 − ã) − UE

Nκ2
vκuã(1 − ã)

>

√√√√αa

{
1 − ã

[
1 −

(
1 − λu

ãκu

)2
] [

1 − a

1 − ã

]}
.

The most stringent of these three conditions determines αc. By choosing a suitable
threshold U = (N/E)κ2

vκuã(1 − ã)[(S/2) − a] all conditions are made equivalent, thus
optimizing the storage capacity. This choice determines a storage capacity of

αc �
S2

4a

{
1 − ã

[
1 −

(
1 − λu

ãκu

)2
] [

1 − a

1 − ã

]}−1

. (8)

Note that the expression between curly brackets is equal to or greater than 1 − ã.
As a consequence, the system remains optimal as long as this expression remains of order
1, which, considering always a to be closer to 0 than to 1, occurs when the expression
(1 − (λu/ãκu))

2 remains of order 1. For this to be true we must impose

|λu| � ãκu. (9)

We thus define the well behaved models as those which fulfil the conditions given by
equations (7) and (9). This simple analysis indicates that the storage capacity of models
in the well behaved family scales like S2/a.

In the following subsections we examine different models proposed in literature, both
within and outside the well behaved family.

doi:10.1088/1742-5468/2005/08/P08010 6
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3.1. Symmetric Potts model

The symmetric Potts model was the first S-state neural network to be proposed [11]. Its
units can reach S equivalent states but no zero state. Though simple, a model constructed
with these elements is enough to show the S2 behaviour of the storage capacity, as we will
see. It is defined by setting

a = 1

U = 0,

two conditions related to each other (if there is no zero state, the selectivity mechanism
provided by the threshold is not necessary). Moreover E = S2N , which is just a
normalization, and

κu = κv = S

λu = λv = −1.

The conditions given by equations (7) and (9) are fulfilled, and the storage capacity in
equation (8) is approximately

αc ≈
S2

4
provided S is large enough. The symmetric Potts model is then a well behaved model of
sparseness a = 1.

This model is studied analytically with replica tools in [11], where the author finds an
S(S − 1) behaviour of the storage capacity for low values of S. Unfortunately, the cited
work lacks an analysis for high values of S, which is the interesting limit for modelling
multi-modular networks. It is not too difficult, however, to clarify the behaviour in this
limit.

The replica storage capacity is defined as the highest value of α for which there is a
solution to the equation

y =
−1 + S

∫
Dz [φ(z + y)]S−1

√
(α(S − 1)/S) +

∫
z Dz {[φ(z + y)]S−1 + (S − 1)φ(z − y)[φ(z)]S−2}

(10)

where

φ(z) ≡ 1 + erf(z/
√

2)

2
. (11)

Throughout this paper we use the Gaussian differential Dz ≡ (e−z2/2/
√

2π) dz, and the
integration limits, if not specified, are −∞ and ∞.

We note that in equation (10) expressions of the form [φ(z)]S can be approximated
by displaced Heaviside functions for high values of S. Using this approximation we obtain
an expression for the storage capacity in the high S limit

αc =

[
φ(

√
π/2)√

π/2 +
√

2 erf−1(1 − (ln(2)/S))

]2

S2. (12)

The factor between brackets in this equation behaves like ln(S)−1/2 for high values
of S, which means that the correction for high S to Kanter’s low-S approximation is a
factor of order ln(S)−1.

doi:10.1088/1742-5468/2005/08/P08010 7
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Figure 1. Storage capacity of a symmetric Potts network of N = 100 units for
increasing S. Both axes are logarithmic. Black dots show numerical solutions for
equation (10), which overlap almost perfectly with the simulations (plus signs).
For low values of S (S � 50) Kanter’s low-S approximation fits well, while the
high values of S are well fitted by equation (12).

We show in figure 1 the results of simulations of a symmetric Potts network (N = 100)
contrasted with Kanter’s low-S approximation and our own high-S approximation of
equation (12). The analytical predictions fit tightly the results of the simulations, both
for low and high S.

3.2. Biased Potts model

This model is proposed and studied in [12]. The authors extend the symmetric Potts
model to an S-state network with arbitrary probability distribution for the states of the
units in stored patterns. We adapt their formalism to the case of S equivalent states, a
zero state and sparseness a. The parameters are then

U = 0

E = N

umn = ((S + 1)δmn − 1)

vmn = (δmn − Pn)

(13)

where Pk is the probability of a unit in the stored patterns to be in state k. This model
does not exactly fit our description because the v operators generate weights Jkl

ij that are
not necessarily zero when k or l are zero. The signal-to-noise analysis for this situation
shows a very poor storage capacity, scaling like a2. If one adds a non-zero threshold
(U ∼ a S in the optimal case) the storage capacity grows but remains of order 1. These
two results show that allowing for non-zero weights to connect zero states is a drawback
for the system. The poor performance can, however, be improved by multiplying the v
operators by the corresponding (1 − δn0) factors, and by adding the threshold. In this

doi:10.1088/1742-5468/2005/08/P08010 8
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way, instead of equation (13) we introduce our definition, equation (5), for the v operators,
with the values for κs and λs arising naturally from the model as

κu = S + 1

λu = −1

κv = 1

λv = −ã

U ∼ aS.

As in the symmetric Potts model, the condition given by equation (7) is fulfilled.
However, the second condition (equation (9)) can be approximated for high S by

a � 1/(1 + 1/S) ∼ 1

which does not stand true for sparse coding. If, instead, a � 1, the critical value of α in
equation (8) can be approximated as

αc ≈
S2

4a

{
1 +

1

a S

}−1

.

Hence the storage capacity of the biased Potts model can be preserved close to optimal
by imposing an ad hoc relation between two parameters that are a priori independent,
to assure 1 � a S. In this particular situation the model is well behaved. In the opposite
limit, when a S � 1, the storage capacity scales like S3, which is inferior to the S2/a
behaviour of the well behaved family.

3.3. Sparse Potts model

The simplest version of a well behaved model is perhaps the one introduced as a model
for semantic memory [13], with the parameter values

E = Na(1 − ã)

κu = κv = 1

λu = 0

λv = −ã

U ∼ 1/2.

With these parameters, the sparse Potts model is clearly well behaved, and the storage
capacity in equation (8) becomes

αc �
S2

4a
.

4. Replica analysis

Having introduced a simple model with optimal storage capacity, we can proceed to
analyse the corrections to the signal-to-noise estimation by treating the problem in a

doi:10.1088/1742-5468/2005/08/P08010 9
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more refined way with the classical replica method. The Hamiltonian in equation (4) can
be rewritten for the sparse Potts model as

H = −1
2

N∑

i,j �=i

S∑

k,l

Jkl
ij δσikδσj l + U

N∑

i

(1 − δσi0)

with

Jkl
ij =

1

Na(1 − ã)

p∑

µ=1

(δξµ
i k − ã)(δξµ

j l − ã)(1 − δk0)(1 − δl0)

constructed using

vmn = (δmn − ã)(1 − δn0).

We consider the limit p → ∞ and N → ∞ with the ratio α ≡ p/N fixed. Patterns
with index ν (µ) are condensed (not condensed). Following the replica analysis [7] the
free energy can be calculated as

f = lim
n→0

a(1 − ã)

2n

n∑

ρ=1

∑

ν

(mν
ρ)

2

+
α

2nβ
Tr (ln[a(1 − ã)(I − βãq)]) +

αβã2

2n

n∑

ρ,λ=1

qρλrρλ

+
ã

n

(
α

2
+ U S

) n∑

ρ=1

qρρ

− 1

nβ

〈〈
ln Trσρ exp

{
β

n∑

ρ=1

∑

ν

mν
ρvξνσρ

+
αβ2

2S(1 − ã)

n∑

ρ,λ=1

rρλ

∑

k

Pkvkσρvkσλ

}〉〉

where Pk is the probability of a neuron to be in state k in a stored pattern, as defined in
equation (1). The order parameters m stand for the overlaps of the states with different
patterns, and qρλ is analogous to the Edwards–Anderson parameter [14], with the following
definitions

mν
ρ =

1

N a(1 − ã)

〈〈
N∑

i=1

〈vξν
i σρ

i
〉
〉〉

qρλ =
1

N ã a(1 − ã)

N∑

i=1

〈〈
∑

k

Pk〈vkσρ
i
vkσλ

i
〉
〉〉

rρλ =
S(1 − ã)

α

∑

µ

〈〈mµ
ρm

µ
λ〉〉 −

(
2S U

α
+ 1

)
δρλ

βã

so that they are all of order 1. Consider, for example, that if σρ
i = ξν

i for all i then mν
ρ = 1

on average, while mν
ρ = 0 on average if both quantities are independent variables.
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We now make two assumptions. First, we consider for simplicity that there is only
one condensed pattern, making the index ν superfluous. Second, we assume that there is
replica symmetry, and substitute

mν
ρ = m

qρλ =

{
q if ρ �= λ

q̃ if ρ = λ

rρλ =

{
r if ρ �= λ

r̃ if ρ = λ.

Taking this into account, we arrive at the final expression for the free energy

f = a(1 − ã)
m2

2
+

α

2β

[
ln (a(1 − ã)) + ln(1 − ãC) − βqã

(1 − ãC)

]

+
βαã2

2
(q̃r̃ − qr) +

[α

2
+ S U

]
q̃ã − 1

β

〈〈∫
Dz ln

(
1 +

∑

σ �=0

exp(βHξ
σ)

)〉〉

where the finite-valued variable C has been introduced

C ≡ β(q̃ − q)

in such a way that it is of order 1 and

Hξ
σ ≡ m vξσ − αa

S2

β(r − r̃)

2
(1 − δσ0) +

∑

k

√
αr Pk

S(1 − ã)
zkvkσ. (14)

Note that Hξ
0 = 0.

We now derive the fixed-point equation for m as an example of how the limit β → ∞
is taken. The equation for finite β is

m =
1

a(1 − ã)

〈〈∫
Dz

∑

σ

vξσ

[
1

1 +
∑

ρ�=σ exp{β(Hξ
ρ −Hξ

σ)}

]〉〉
.

In the limit β → ∞ the expression between brackets is 1 if Hξ
σ > Hξ

ρ for every ρ �= σ
and 0 otherwise. It can thus be expressed as a product of Heaviside functions. The
equation for m at zero temperature is then

m =
1

a(1 − ã)

∑

σ �=0

〈〈∫
Dz vξσ

∏

ρ�=σ

Θ[Hξ
σ −Hξ

ρ]

〉〉
.

In the same way we derive the rest of the fixed-point equations at zero temperature

q −→
β→∞

q̃ =
1

a

∑

σ �=0

〈〈∫
Dz

∏

ρ�=σ

Θ[Hξ
σ −Hξ

ρ]

〉〉

C =
1

ã2
√

αr

∑

σ �=0

∑

k

〈〈∫
Dz

√
Pk

S(1 − ã)
vkσzk

∏

ρ�=σ

Θ[Hξ
σ −Hξ

ρ]

〉〉

r̃ −→
β→∞

r =
q

(1 − ãC)2

β(r − r̃) = 2U
S2

aα
− C

1 − ãC
.

(15)

doi:10.1088/1742-5468/2005/08/P08010 11

http://dx.doi.org/10.1088/1742-5468/2005/08/P08010


J.S
tat.M

ech.
(2005)

P
08010

The storage capacity of Potts models for semantic memory retrieval

The differences between r and r̃, and between q and q̃, are of order 1/β. From the last
equation it can be seen that the threshold U has the effect of changing the sign of (r − r̃)
and allowing α to scale like S2/a, with the variables C, r and r̃, as we have said, of order
1 with respect to a and S.

4.1. Reduced saddle-point equations

It is possible to calculate the averages in equations (15) by reducing the problem to the
following variables, which represent respectively signal and noise contributions

y ≡ m

√
S2

αa

(1 − ã)

r
≡ m

√
(1 − ã)

α̃r

x ≡ α̃β(r − r̃)

2

√
(1 − ã)

α̃r

where we have introduced the normalized (order 1) storage capacity α̃ ≡ αa/S2, which
clarifies that both variables x and y are also of order 1.

At the saddle point, using equations (15), we obtain

y =

√
1 − ã

α̃

(
m

√
q + C

√
r

)

x =

√
1 − ã

α̃

[
U − α̃C

√
r

q

] [
1

√
q + ãC

√
r

] (16)

which shows that the relevant quantities to describe the system are m, q, and C
√

r.
Following this we compute the averages and get from equation (15) the corresponding
equations in terms of y and x

q =
(1 − a)

ã

∫
Dw

∫ ∞

yã+x−i
√

ãw

Dz φ(z)S

+

∫
Dw

∫ ∞

−y(1−ã)+x−i
√

ãw

Dz φ(z + y)S

+ (S − 1)

∫
Dw

∫ ∞

yã+x−i
√

ãw

Dz φ(z − y)φ(z)S−1

m =
1

1 − ã

∫
Dw

∫ ∞

−y(1−ã)+x−i
√

ãw

Dz φ(z + y)S − q
ã

1 − ã

C
√

r =
1√

α̃(1 − ã)

{
(1 − a)

ã

∫
Dw

∫ ∞

yã+x−i
√

ãw

Dz (z + i
√

ãw)φ(z)S

+

∫
Dw

∫ ∞

−y(1−ã)+x−i
√

ãw

Dz (z + i
√

ãw)φ(z + y)S

+ (S − 1)

∫
Dw

∫ ∞

yã+x−i
√

ãw

Dz (z + i
√

ãw)φ(z − y)φ(z)S−1

}
.

(17)

Putting together equations (16) and (17) one can construct the system of two
equations that determine the storage capacity. We show an example of their solution
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Figure 2. Dependence of the storage capacity of a sparse Potts network of
N = 5000 units on the sparseness a. The black dots show numerical solutions of
equations (16) and (17), while the red line shows the result of simulations. For
very sparse simulations (low values of a) finite size effects are observed, which
make the storage capacity lower than predicted by the equations.

in figure 2 for the parameters U = 0.5, S = 5 and varying sparseness, contrasting it with
simulations of a network of N = 5000 units. This figure shows quite a good agreement
between simulations and numerical solutions for a region of the sparseness parameter a,
whereas for a < 0.3 finite size effects appear, resulting in a lower storage capacity than
predicted theoretically.

4.2. Limit case

Given that the equations presented in the previous subsection are quite complex, we now
analyse the simpler and interesting limit case ã � 1. Though it is not evident from the
equations, the normalized storage capacity α̃c goes to zero logarithmically as ã goes to
zero, which means that the storage capacity is not as high as the simple signal-to-noise
analysis of section 3 might suggest. Our analysis of the replica equations for the symmetric
Potts model (equation (12)) showing logarithmic corrections is an example of this. We
now analyse as another example the sparse Potts model in the case U = 0.5.

For the limit of ã � 1 one can approximate equations (17) by

m ≈ φ(y − x) (18a)

q ≈ (1 − a)

ã
φ(−x) + φ(y − x) (18b)

C
√

r ≈ 1√
2πα̃

{
(1 − a)

ã
exp

(
−x2

2

)
+ exp

(
−(y − x)2

2

)}
(18c)

which is still quite a complex system. We can now make some self-consistent assumptions.
First we note that, considering x and y as variables that diverge logarithmically as ã goes
to zero, equations (18b) and (18c) indicate that

√
q � C

√
r. Second, for U = 1/2 it is

doi:10.1088/1742-5468/2005/08/P08010 13

http://dx.doi.org/10.1088/1742-5468/2005/08/P08010


J.S
tat.M

ech.
(2005)

P
08010

The storage capacity of Potts models for semantic memory retrieval

possible to consider x ≈ y, and thus, from equation (18a), y ≈ 1/
√

2α̃ and x ≈ ε/
√

2α̃,
where ε is a correcting factor for x which is close to 1. With this in mind, and taking
into account that α̃ goes to zero with ã, we can approximate equations (18b) and (18c)
by keeping only the second term in the first case and only the first term in the second.
The equations for y and x can be derived from equations (18b) and (16)

y =

√
φ(y − x)

α̃

x =

[
2U − 1 − a

ã

√
α̃

π
exp

(
−x2

2

)]
1√
2α̃

.

(19)

Replacing x by ε/
√

2α̃ (and ε by 1 where irrelevant) we can approximate α̃ as

α̃ =
1

4 ln (1/((2U − ε)ã))
. (20)

Next, we posit that ã−1 is the larger factor in the logarithm, while (2U − ε)−1 gives a
correction. A rough approximation for αc is then

αc =
S2

4 a ln (1/ã)
(21)

which, inserted in (19), gives

(2U − ε) = (1 − a)

[
4π ln

(
1

ã

)]−1/2

.

This expression can be re-inserted into (20) in order to get a more refined approximation

α =
S2

4 a ln
(
2/ã

√
ln(1/ã)

) . (22)

We show in figure 3 that the approximation given by equation (22) fits the numerical
solution of the storage capacity for the sparse Potts model quite well, particularly for very
low values of ã.

5. Diluted networks

In this section we present two modifications to our model which make the network
biologically more plausible in terms of connectivity.

First, after considering, to a zeroth-order approximation, the long-range cortical
network as a fully connected network, we now wish to describe it, to a better
approximation, as a network in which the probability that two units are connected
is cM/N . Traditionally, analytic studies have focused on two soluble cases: the fully
connected, which we have studied in the previous sections (cM = N), and the highly
diluted (cM � log(N)). A recent work has shown, however, that the intermediate case
is also analytically treatable and that the storage capacity of an intermediate random
network, regardless of the symmetry in the weights, stands between the storage capacity
of the limit cases [15]. Supported by this result, we will focus on the (easier) solution for
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Figure 3. Corrections to the S2/a behaviour of the storage capacity of a sparse
Potts network for very low values of ã in the U = 0.5 case. The normalized
storage capacity αca/S2 is represented with black dots from numerical solutions
of equations (16) and (17) for two values of the sparseness, a = 0.3 and 0.0001, and
with colour lines from the corresponding approximation given by equation (19).

the highly diluted case, and consider any intermediate situation to be between the two
limits.

The second modification reflects the notion that, although the function of long-range
connections is to transmit information about the state of a local network to another one,
this transmission might not be perfectly efficient. We thus introduce an efficacy e, the
probability that, in the reduced Potts model, a given state of the pre-synaptic unit is
connected with a given state of the post-synaptic one.

Introducing these two modifications, the weights of the sparse Potts model become

Jkl
ij =

Ckl
ij

cMea(1 − ã)

∑

µ

vξµ
i kvξµ

j l

where Ckl
ij is 1 with probability cMe/N and 0 otherwise.

The local field for the unit i and the state k can be analysed into a signal, a noise
and a threshold part, just as in equation (3)

hk
i =

∑

jl

Jkl
ij δσj l − (1 − δk0)U = (1 − δk0)

{
(δξ1

i k − ã)mk
i + Nk − U

}
(23)

where

mk
i ≡ 1

cMea(1 − ã)

∑

j

C
kσj

ij (δξ1
j σj

− ã)(1 − δσj0).

Generally, when studying highly diluted networks, the noise term Nk can be treated
directly as a uniform distributed random variable, because the states of different neurons
are uncorrelated. In this case, Nk cannot be considered as a random variable but rather
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as a weighted sum of normally distributed random variables ηl,

Nk ≡
S∑

l=0

(δlk − ã)

{
∑

µ>1

δξµ
i l

cMea(1 − ã)

∑

j

C
kσj

ij (δξµ
j σj

− ã)(1 − δσj0)

}
≡

∑

l

(δlk − ã)ηl.

The mean of ηl is zero for all l and its standard deviation is

〈η2
l 〉 =

NαPlq
k
i

(1 − ã)cMe

with

qk
i ≡ 1

cMea

∑

j

C
kσj

ij (1 − δσj0).

Note that mk
i and qk

i are analogous to mν
ρ and qρλ used in section 4. If cMe is large enough

these quantities tend to be independent of i and k.

mk
i → m ≡ 1

Na(1 − ã)

∑

j

(δξ1
j σj

− ã)(1 − δσj0)

qk
i → q ≡ 1

N a

∑

j

(1 − δσj0).

Following the analysis of highly diluted networks in [16], the retrievable stable states
of the network are given by the equations

m =
1

a(1 − ã)

〈〈∫
Dz

∑

σ

vξσ

[
1

1 +
∑

ρ�=σ exp{β(hξ
ρ − hξ

σ)}

]〉〉

q =
1

a

∑

σ �=0

〈〈∫
Dz

[
1

1 +
∑

ρ�=σ exp{β(hξ
ρ − hξ

σ)}

]〉〉

where the local field, as in equation (23) is

hξ
ρ = m vξρ − U(1 − δρ0) +

∑

k

√
α N

cMe

q Pl

(1 − ã)
zkvkρ.

These equations are equivalent to those obtained with the replica method (which in
the zero temperature limit are equations (15) and (14) respectively) if one considers C = 0
(and, thus, r = q) and an effective value of α given by αeff = p/(cMe).

Comparing this result with that for the fully connected model one notes that, as
ã → 0, the influence of C in the overall equations becomes negligible (this can be guessed
already from equation (16)). Therefore if the coding is very sparse, the fully connected and
the highly diluted networks become equivalent, and consequently also the intermediate
networks. We show this in figure 4. As the parameter ã goes to zero, the storage capacity
of the fully connected and the highly diluted limit models converge.
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Figure 4. A comparison of the storage capacity of a fully connected and of a
highly diluted sparse Potts networks. Numerical solutions to the corresponding
equations with U = 0.5. Left, the dependence of the storage capacity, in the two
cases, on the sparseness a, with S = 5. Right, the dependence on the number
of states per unit S, with a = 0.1. In both cases we plot the normalized storage
capacity, to focus only on the corrections to the S2/a behaviour. Note that as
ã → 0 the storage capacity of the two types of network converges to the same
result.

6. Information capacity

We have shown that the storage capacity of well behaved models scales roughly like S2/a,
while in the two particular examples that we analysed in full with the replica method,
equations (12) and (21), there is a correction that makes it

αc ∝
S2

a ln(1/ã)
(24)

for high values of S and low values of a. We now discuss why this is reasonable in the
general case from the information storage point of view.

It is widely believed, though not proved, that autoassociative memory networks can
store a maximum of information equivalent to a fraction of a bit per synapse. In our
model the total number of synaptic variables is given by the different combinations of
indices of the weights Jkl

ij

number of synaptic variables = N cMeS2.

On the other hand, the information in a retrieved pattern is N times the contribution of
a single unit, which, using the distribution in equation (1), can be bounded by Shannon’s
entropy

H = −
∑

x∈distribution

P (x) ln(P (x)) = −[(1 − a) ln(1 − a) + a ln(ã)].
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The upper bound on the retrievable information over p patterns is then

information ≤ −p N [(1 − a) ln(1 − a) + a ln(ã)].

The first term between brackets is negligible with respect to the second term provided a
is small enough and S is large enough. In this way we can approximate

information

number of synaptic variables
≤ −αa ln(ã)

S2
≤ −αca ln(ã)

S2
.

This result, combined with equation (24), shows that the storage capacity of our
model is consistent with the idea that the information per synaptic variable is at most a
fraction of a bit.

7. Discussion

The capacity to store information in any device, and in particular the capacity to store
concepts in the human brain, is limited. We have shown in a minimal model of semantic
memory, and in progressive steps, how one can expect the storage capacity to behave
depending on the parameters of the system: a global parameter (the sparseness a) and
a local parameter (the number of local retrieval states S, or, in other words, the storage
capacity within a module). The S2/a behaviour, with its corresponding logarithmic
corrections, can be thought of as the combination of two separate results: the a−1

behaviour due to sparseness and the S2 behaviour of the Potts model, which combine
in a simple way. We have shown, however, that it is not trivial to define a model that
combines these aspects correctly, and that the key is how the state operators are defined.
From this study we have deduced the minimum requirements of any model of this kind in
order to have a high capacity. Furthermore, through the argument of information capacity
we present the well behaved family as representative of general Hebbian models with the
same degree of complexity.

The featural representation approach has been so far successful in explaining several
phenomena associated to semantic memory, like similarity priming, feature verification,
categorization and conceptual combination [4, 17]. The present work demonstrates that
the advantage of the use of features in allowing the representation of a large number of
concepts can be realized in a simple associative memory network. More quantitatively,
our calculation specifies that in the Potts model the number of concepts that can be stored
is neither linear [2] nor an arbitrary power [18] of the number S of values a feature can
take, but quadratic in S.

In the case of non-unitary sparseness, one can associate the necessity of introducing
a threshold (U) term, whatever its exact form in the local field or the Hamiltonian, with
a criterion of selectivity, which is actually observed in the representation of concepts in
the brain, as pointed out in the introduction. The threshold behaviour, which is a typical
characteristic of neurons, appears to be also necessary at the level of local networks in
order to maintain activity low in the less representative modules. The origin of such
a threshold has not been discussed in this paper. However, a comment on this issue
can be made regarding the internal dynamics of local networks. One can show that, as
extensively described in the literature [7], only when the state of a local autoassociative
network is driven by external fields sufficiently close to an attractor (inside one of the S
basins of attraction) may the local system end up retrieving a pattern on its own, a process
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that from the global network point of view corresponds to the activation of a unit. The
local basin boundary acts in the full system as an effective threshold, roughly equivalent
to the simple U term we introduced in the local field of our reduced system. Whether
this threshold mechanism is enough, or some addition must be made, can be assessed by
studying, in the future, the complete multi-modular network without reducing it to Potts
units.
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