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LETTER TO THE EDITOR

Why the simplest notion of neocortex as an autoassociative
memory would not work
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Abstract. We discuss the idea that long range cortico-cortical connections might be the
substrate for an autcassocialive memory mechanism, whereby features processed locally
could be linked together over larger portions of neocortex. The simplest version of this
idea is shown to be implausibly inadequate in terms of storage capacity: although up
to a fraction of a bit could be stored on each synapse, the number of global activity
patterns that could be stored and individually retrieved would scale not with the size of
the netwerk but, effectively, only with the number of modifiable connections per cell.

It is a widespread assumption (pervading, e.g., the discussions reported in [12])
that the substantial anatomical self-similarity of neocortical structure underlies a
set of elementary operations that are carried out, on different incoming inputs but
basically along the same lines, by different patches of cortex. One would like to
grasp such (hypothetical) universal processing in simple conceptual terms. In this
context, the system of local, or intrinsic, connections among pyramidal cells has often
been thought, for example by Marr [9], to implement an autoassociative memory
function, in the following manner. A (presumed) Hebb-like synaptic plasticity of
these connections may enable them to store a set of local activity patterns. Later,
afferent activity containing a fraction of the information associated with one such
pattern—which would, by itself, elicit a distorted or partial version of the pattern—
may trigger recurrent interactions through the local connections, resulting in the
original activity pattern, or a very close version of it, with most of its information
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of course be compatible with other functions being performed concurrently, even by
the same set of local connections; at the same time, this could be a way to describe
in abstract terms a ubiquitous mechanism which would manifest itself in specialized
forms, particular to the nature of the information being processed, in different cortical
regions.

The number of synaptic connections which neocortical pyramidal cells receive from
axons coming from the white matter is estimated to be, typically, of the same order
as that of local excitatory connections from neighbouring pyramidal cells [1]. The
great majority of those long-range connections griginate in other neocortical areas.
It is tempting, then, to extend the above hypothesis by considering the possibility
that part of the long-range connectivity also operates as an autoassociative memory
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network. Possibly leaving aside feedforward and backprojections [13], such a role
might be played by connections among cortical paiches where information is processed
simultaneously and in parallel. This would allow for activity patterns extending over
large regions of cortex to be individually stored and retrieved,

Similar views have inspired neurobiclogists who tend to regard the neocortex
as essentially a memory machine {4], and who have talked about functional units [5]
consisting not of single cells but of local modules made up of many neighbouring cells
[10]. Braitenberg [3] has suggested negiecting, as a first approximation, the compiexity
of local circuitry [8] as well as the specificity of cortico-cortical projections [6], and
considering instead a simplified scheme, the ‘skeleton’ of ncocortex, consisting only
of its A pyramidal cells. If they were grouped into VA" patches of VA cells each,
any given patch could in principle be connected monosynaptically to any other patch
by the axon of one cell.
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that travel in the white matter, two obvious constraints must be satisfied: that the
relative synapses be associatively modifiable, and that the longer conduction times be
still compatible with the time scales for storage and retrieval. While no firm evidence
exists on the first issue, and some amount of speculation is at present necessary to
tackle the second, it is possible the both constraints be satisfied in neocortex. There
is, however, at least a third question that has to be borne in mind, when judging how
useful the notion of long-range (as opposed to local) autoassociative mechanisims
is. The question is that of the efficiency with which large areas of neocortex would
then operate as memory devices. We have addressed this issue by considering an
appropriate formal model in the spirit of the ‘skeleton’ cortex, and calculating its
capacity for storing activity patterns and information.

Let us consider a network of M modules, each containing N units. The short-
range connectivity is complete, with each unit recejving inpuis from aii N — 1 other
units in its module, while the long-range connectivity is dilute and homogeneous, with
each unit receiving inputs from L other units distributed at random among all other
modules. Different modules process different aspects of an external input applicd to
the network, and this is modeled by assuming that D local features are stored on the
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connections, however, are P global activity patterns, each representing a combination
of M features, one per module, as indicated in figure 1. If P > D, there will be
P/ D patterns which share the same feature in any particular module, but the full
combination of featurcs will be unique t0 any one pattern, and on average two given
patterns will only share features in a fraction 1/D of the modules.

Activity patterns are stored on the reciprocated (symmetric) connections via a
‘Hebbian' covariance learning rule, retrieval is taken o occur by means of attractor
dynamics [2] with the information coded solely in the distribution of firing rates, and
the remaining details of the model are taken as in [14, 15], where the applicability of
capacity estimates to cortical situations has been discussed more extensively.

We present here the result of the capacity calculations, which will be described
elsewhere {11]. The maximum number P,  of activity patterns that can be stored in,
and retrieved from, the network, i in any case proportionai to the totai number of
connections per unit C' = L+ N —1, and depends on the sparseness a of the coding
scheme in the usual way (cf {15]). We are interested in the way it depends on the
fraction
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Figure 1. The architecture of the network (lop, indicating only the connections relative to
one modufe) and the corresponding memory organization (middle). The table (bottom)
gives a small scale example of how features could combine into patterns, when p = 2.
Boldface letters denote one particular pattern being retrieved.
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measuring how many times a feature is repeated, locally, in different patterns. The
‘square root’ case of Braitenberg would correspond to N = M = L = VA and
¥y=1/2

F,x torns out to be determined analytically by the expression
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where the A symbols denote certain averages over the statistical distribution of the
firing rates present in the activity patterns, and are defined in [15).

When u = 1, the organization of the memory is trivial, in the sense that each local
feature pertains to only one global pattern (which is therefore uniquely identified,
even looKing at just one module); one is left with a mixed conneciivity, partly iong
range and partly short range, and for the capacity we find results that interpolate
exactly between the previously calculated capacities of networks with highly dilute
and full connectivities.
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With larger u, we find that the usual contraint on the storage capacity remains
local, expressed as a relation between D, and N (the number of short-range
connections per unit). This relation can be rewritten as

PmuOCN(l—’Y)C 4)

and hence it would seem that, by increasing u, P,,, could be made large ad lbitum.
This is illusory, however, because of an insidious new phenomenon associated with
the modular nature of the model: the appearance of the ‘memory glass’ state. In
such a state (which bears some analogy, but is different from, the spin glass state
of simple fully connected networks [2]) the network retrieves one of the very many
possible spurious combinations of features, one that does not cotrespond to any of the
stored global patterns. This state exists only for lower values of P than those limiting
the existence of the genuine retrieval states, because its signal-to-noise ratio is lower
(the signal being carried only by the fraction (1 — ) of short-range connections).

When the memory glass state does exist, it takes up such a large basin of
attraction, because of the very many spurious combinations it includes, that the
network will tend to Bow dynamically to it from most initial conditions. As i becomes
large, the interval of P values for which retrieval states still exist, but the threat of the
memory glass does not, becomes narrow (figure 2), leaving one in the odd situation of
having to fine tune the number of patterns stored in the network in order to ensure
the proper retrieval of each one of them. In practice, we take this to mean that the
high-p region is not viable, and that as a result the pattern capacity is still effectively
limited to the usual range proportional to N, with no special increase to be sought as
a result of the organization of the patterns into features, no matter how many units
(VB N x M) the network contains.
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Figure 2. Capacity diagram, as a function of g, for 4 = 1/2 and a = 0.01. The upper
line gives the limit Ppax on the existence of retrieval states, whereas below the bottom
line the memory glass state also exists and disrupts performance.

We have also computed the total information capacity of this network, and found
it to remain in the usual [15] range of a fraction of a bit per synapse. One can
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conclude, therefore, that our long-range autoassociative mechanism does not lead to
under-using the available storage space, but rather to mis-managing it: the number
of patterns stored cannot scale with the total size A of the network, and what scales
with A is the information in bits contained in each pattern. Clearly, such a situation
is untenable from the point of view of organizational efficiency: even without risking
an arbitrary estimate [9] of the number of patterns a reasonable animal memory
might store, one would like to guess that the extraordinary phylogenetic increase in
neocortical size (vis-a-vis the much more modest increase in the number of synaptic
contacts onto pyramidal cells) is to be ascribed to the need to store more memories,
not just more compiex ones.

What are the assumptions that determined our results, and that, if changed,
would allow us to avoid the negative conclusion? One such assumption is neglecting
(persistent) external inputs. A very strong external input (of the same order of
the signal produced by local and long-range interactions) would stabilize memory
patterns and destabilize the spurious combinations of the memory glass; but resorting
to external inputs would be admitting the failure of long-range connections to perform
their putative task, and it would also be against the notion that neocortex is close to
a ‘reflexive machine’, working on its own output [3].

One possibility is that the assumption about the relevant neural code (the
temporally coarse firing rate) be helplessly wrong. Abeles [1] has argued against
neglecting the role that temporally fine phenomena such as synchronicity of firing
might have in coding information, and the recent wave of experiments by Singer and
his group [7] might be taken as lending support to this view.

It is also possible, on neuropsychological grounds, to point out the inadequacy
of focusing solely on a memory ability for storing and retrieving discrete memory
iterns [16]. It seems unlikely, however, that considering additional alternative forms
of memory organization would by itself solve a problem associated, perhaps, with just
one type of memory.

A much more conservative hypothesis is to note that maybe it is the assumption
of a random long-range connectivity which produces the dismal performance. Indeed,
such an assumption was only introduced as an interesting conceptual scheme, already
known from the start to be at gross variance with the observed neuroanatomy.
Possibly, capturing to just a slightly deeper level of detail the specificity of cortico-
cortical conmnections might result in another organization of local activity patterns
into memories, and solve the capacity problem. It is a challenge for theoreticians to
produce a more sophisticated scheme, but with the same appealing simplicity as the
random connectivity one, which would allow analysis and discussion of a model of
the large scale properties of memory in neocortex.
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