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Abstract. Measuring the information carried by neuronal activity is made difficult, particularly
when recording from mammalian cells, by the limited amount of data usually available, which
results in a systematic error. While empiricalad hocprocedures have been used to correct for
such error, we have recently proposed a direct procedure consisting of the analytical calculation
of the average error, its estimation (up to subleading terms) from the data, and its subtraction
from raw information measures to yield unbiased measures. We calculate here the leading
correction terms for both the average transmitted information and the conditional information
and, since usually one must first regularize the data, we specify the expressions appropriate
to different regularizations. Computer simulations indicate a broad range of validity of the
analytical results, suggest the effectiveness of regularizing by simple binning and illustrate the
advantage of this over the previously used ‘bootstrap’ procedure.

1. Introduction

The performance of networks of neurons as information processing devices can only be
correctly gauged by using the appropriate information measures as performance quantifiers.
This is a straightforward notion as far as the analysis of abstract models is concerned, but
when it comes to real neurons, whose activity is recordedin vivo, extracting information
measures is so ridden with subtleties, especially in mammals, that in practice few measures
have been produced until now (e.g. Eckhorn and Pöpel 1975, Optican and Richmond 1987,
McClurkin et al 1991, Gawne and Richmond 1993, Toveeet al 1993). Apart from the
psychological difficulty of accepting the validity of quantities which are alwaysrelative
to the procedures used to measure them, the biggest source of problems has been the
limited size of data samples, which results in measures distorted by a systematic error,
occasionally as large as the target quantity itself. As a consequence, important questions
such as the type of neuronal coding used by different systems in the mammalian brain, the
speed of information processing and its efficiency at the neuronal level, have been most
easily approached qualitatively from a theoretical viewpoint, rather than quantitatively from
experimental observations‖.

Empirical procedures to correct information measures for limited sampling have been
refined (Opticanet al 1991, Chee-Orts and Optican 1993, Hertzet al 1992), but they

§ E-mail: stefano@limbo.sissa.it
‖ Although for some systems, as in the elegant analysis of early vision by Atick and collaborators (Atick and
Redlich 1990, Dong and Atick 1995), it is possible to bypass the measurement of information quantities from the
data.
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are not yet satisfactory, for reasons that will be made clear in the following. We have
proposed, instead, an approach based on a direct evaluation and subtraction, of the limited
sampling bias (Treves and Panzeri 1995). The idea, which had been conceived as early
as 40 years ago (Miller 1955), needed to be developed to be applicable to neuronal data,
in particular to be adapted to the regularization procedures used with neuronal data; this
development is the content of the present report. Of crucial practical importance is the
trade off between the information loss due to the regularization and the limited sampling
error and our results, which give unbiased estimators of regularized quantities and shift the
balance towards choosing milder regularizations.

2. Information measures from limited samples

To be concrete, we consider a situation in which we wish to measure the amount of
information, in bits, that some variabler, associated with the response of one or more
neurons, conveys about a stimulus,s, presented to the animal. We takes to belong to the
discrete setS of S elements. We wish to measure both the (average) conditional information
transmitted whens is presented,

I (s) =
∫

dr P (r|s) log2
p(s|r)
p(s)

=
∫

dr P (r|s) log2
P(r|s)
P (r)

(1)

and its average across stimuli, i.e. the mutual information

I =
∑
s∈S

p(s)

∫
dr P (r|s) log2

P(r|s)
P (r)

. (2)

We assume that onlyN stimulus–response pairs(s, r) are available, instead of the full
probabilitiesp(s), P(r) andP(s, r) (the last two are, in general, probability densities rather
than probabilities, and are thus denoted by capital letters). ForN → ∞, individual (s, r)
pairs are expected to occur with frequencies tending to match the underlying probabilities,
but for N finite, use of the experimental frequenciespN(s), PN(r) and PN(s, r) directly
in the formulae above leads to systematic error. That the problem exists, can be seen by
considering uncorrelated stimuli and responses, such thatP(s, r) = p(s)P (r): a finite-N
evaluation of the mutual information, which is zero by definition, will almost certainly yield
a positive result, which therefore indicates a systematic error.

The procedure suggested by Opticanet al (1991) to correct for the error, and
successively improved by Chee-Orts and Optican (1993), follows from considering the case
of uncorrelated pairs: it involves generating ashuffledprobability distribution by randomly
pairing stimuli and real responses, calculating theshuffled informationcontained in the real
responses about the randomly paired pseudostimuli and finally subtracting a fraction of the
shuffled information from the raw value of measured information. This random shuffling
procedure, often called bootstrap because it uses the data to correct the data themselves, is
flawed in several ways. First, and most evidently when responses are discrete, the shuffled
information may in some cases be a strongoverestimationof the bias, for reasons to be
clarified below and then it is wrong to subtract from the raw estimate the correction derived
from random shuffling. Furthermore, the shuffling procedure is applicable only to measures
of mutual information and not to measures of conditional information, since the random
shuffling mixes responses occurring to different stimuli. Finally, when the responses are
regularized before being used to measure information, the regularization can affect the
raw and shuffled information measures to different degrees, as will again be clear below,
sometimes resulting in anunderestimationof the bias.



Information measures from limited samples 89

More sophisticated is the procedure suggested by Hertzet al (1992), based on a strong
regularization of the input–output distribution by means of a neural network used to estimate
the probability of each inputs given the outputr. The neural network is trained so as
to maximize the probability that a stimulus is correctly recognized, i.e. that the stimulus
estimated to be most probable is the actual one. This method appears to yield unbiased
estimates, in the sense that after the regularization one obtains shuffled information very
close to zero (Kjaeret al 1994). The last flaw in the shuffling procedure also applies
here, although, in the sense that negligible shuffled information does not guarantee that the
raw estimate is unbiased. Moreover, whileany regularization results in information loss
and in information values relative tothat regularization, the regularization produced by the
artificial neural network is particularly complex and data dependent and it is difficult to
assess the relation between the original target information and the regularized measure one
obtains. This is made evident in the apparently paradoxical results of Kjaeret al (1994)
where occasionally codes that are by definition more rich in information (retaining more
principal components of the responses) appear to carry less information, after they have
been squeezed through the artificial network.

The limited sampling error is a statistical problem common to many different fields,
whenever one tries to estimate, from a finite sample, a function of a full probability
distribution. Several authors have addressed it, outside the domain and the peculiarities of
computational neuroscience, e.g. focusing on probabilities given on discrete sets. Wolpert
and Wolf (1995) (see also references therein) propose the calculation of the function (in our
case, e.g.,I ) of the true probabilitiesgiven the experimental frequencies. This, which is in
fact the original aim, (and which is obviously different from calculating the function of the
frequencies, ourIN ) is feasible, however, only by making an assumption as to thea priori
probability distribution. It is then difficult to see how to use this conceptually appealing
approach in cases, such as ours of stimulus–response pairs, when no reasonable assumption
on the prior is self-evident.

We have therefore developed an alternative approach, based on the use of the replica
trick to compute theaverage errordirectly as an asymptotic expansion in inverse powers
of the sample size. In the first application of the approach (Treves and Panzeri 1995), we
have required that the response space be discrete (or, when the original response space is
continuous, that it be discretized with a straightforward binning procedure, that simply allots
raw responses to the interval in which they happen to lie) and we have implicitly assumed
that the conditional response probabilities (for each stimulus) are different from zero in
every bin. With these assumptions we have found that the leading contribution to the bias,
dependent solely upon the number of stimuli and response bins and already calculated many
years ago by Miller (1955), yields most of the error and can thus be subtracted to correct
raw estimates. Successive terms in the expansion are of little use: either they are negligible
in comparison with the first term, or whenN becomes very small, they explode quickly,
signalling that data are so scarce that the expansion is meaningless beyond the first term.

Regularization methods different from pure discretizations, such as convolutions with a
Gaussian kernel, are often used in practice to manipulate the raw data generated by recording
the real responses of the cell(s), which are usually continuous (possibly multidimensional)
variables. In this paper, we carry out a similar calculation of the average systematic error
when different regularizations are used, to understand how such manipulations interact
with the finite-size problem and to find the corresponding correction terms. Moreover, we
consider not only mutual information but also conditional information (i.e. relative to a
given stimulus) and find the appropriate correction terms, which again turn out to have
different forms.
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Our analysis also leads us to clarify the role of the previously used shuffled information
in the correction procedure and to find simple criteria to establish whether the size of the
data is large enough to obtain (given the regularization) a reliable and (after the correction)
nearly unbiased measure of information.

3. The average error

In this section we present our evaluation of the bias, i.e. the average error, when different
regularization procedures are applied to the raw data. We take the stimulis to have been
drawn at random (with a multinomial probability distribution) from a discrete setS of
S elements. Note that when the experimental frequency of presentation of stimuli is,
instead, set exactly equal to its probability and does not fluctuate, one finds slightly different
correction terms, as will be discussed separately in the next section.

Let us initially consider the more general case in which the (raw) neuronal response is
a real (possibly multidimensional) variable†. It is clear from the formula for the mutual
information (2), that if one is measuring a continuous output variable, in order to obtain
an estimate of the transmitted information from a finite set ofN data it is necessary to
regularize the raw data in some way; otherwise, the finite number of responses will almost
certainly all be different from each other, therefore each response will uniquely identify
its stimulus (pN(s|r) will be either 1 or 0) and, as a result, one will obtain a measure of
the entropy of the stimulus set only and not of the transmitted information. Moreover, the
response space is usually quantized anyway, because one needs to evaluate the expressions
for I and I (s), in practice, by performing a sum, rather than an integral. Furthermore,
many authors, for several reasons, prefer to use data manipulations different from pure
discretizations of the response space. These regularizations can be of a simple form, such
as a convolution with a Gaussian followed by discretization, or much more complicated,
like the neural network used by Hertzet al (1992).

In the following subsections we shall consider four important cases of regularization:
pure discretization; convolution with a continuous distribution and discretization; neural
network fitting of the conditional probabilities; convolution with a continuous distribution
without discretization of the response space.

We shall present in the appendix A the explicit calculations leading to our expression
for the bias in the second case only; but, for the sake of generality, we shall briefly discuss
how to retrieve the results presented when the other data manipulations are applied.

3.1. Pure discretization of the response space

Let us consider in this section the case in which the real responses have been binned into
R different intervals‡ [mj−1, mj ], j = 1, · · · , R, by simply assigning each response to the
interval in which it falls. In this case, the binning procedure satisfies anindependence
condition, in the sense that the number of times a given binr is occupied depends only on
the underlying occupancy probability of this bin, and not on the occupancy of other bins

† We write all the formulae in the manner appropriate to a one-dimensional response space, but the generalization
to higher dimensions, as well as to the case in which the original response is discrete (e.g. the number of spikes
of a neuron in a given time window), is straightforward.
‡ We stress thatR is the total number of response bins, independently of the underlying dimensionality, if any, of
the response space. If, for example, the raw responses are the firing rates of two cells, which are then discretized
into R1 andR2 bins, respectively, we setR = R1 × R2.
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(this condition is violated by the prior regularization of the responses, as in the cases to
follow).

Within this binning procedure, fromN experimental trials available, one can obtain a
raw estimate of the information:

ID
N (s) =

R∑
i=1

pN(i|s) log2
pN(i|s)
pN(i)

ID
N =

∑
s∈S

pN(s)ID
N (s). (3)

In (3) thepN ’s are the experimental frequency-of-occupancy tables, e.g.pN(i) = n(i)/N , or
pN(i|s) = n(i|s)/Ns , wheren(i|s) is the number of times responsei occurred when stimulus
s was presented,n(i) the number of times responsei occurred across all stimuli, andNs

is the number of experimental presentations of stimuluss. For largeN the experimental
frequenciespN(i) tend to the corresponding probabilitiesp(i), which are simply related
to the original continuous underlying probability distribution by an integration over the
response bin. Similarly, asN increases, the estimate of the transmitted information tends
to the information carried by the discretized probabilities:

ID(s) =
R∑

i=1

p(i|s) log2
p(i|s)
p(i)

ID =
∑
s∈S

p(s)ID(s). (4)

By temporarily restricting ourselves to the total transmitted information, it is important to
note that the value of the informationID obtainedafter quantization is less than the value of
information carried by the continuous responses and, in general, information measures are
dependent upon the binning procedure adopted and, most importantly, upon the number of
binsR. There is no way of estimating the difference betweenI andID from first principles,
but a good strategy for controlling these discrepancies can be to quantize the responses by
successively increasing the value ofR until the finite-N measure,after the correction we
are discussing, does not change very much. However, when the size of the data sample
is small, a reasonable choice forR is a compromise between trying to keep the loss of
information due to discretization as small as possible, which would requireR large, and
the need to control the finite-size distortion, which, as we shall see below, can eventually
requireR small.

Of course, the difference betweenID
N and ID fluctuates depending on the particular

outcomes of theN trials performed. One can, however, estimate the average of the
difference, that is the bias, by averaging (〈. . .〉) over all possible outcomes of theN trials,
keeping the underlying probability distributions fixed. We have obtained an expression for
the bias as a series expansion in inverse powers of the sample sizeN :

〈ID
N 〉 − ID =

∞∑
m=1

Cm (5)

whereCm represents successive contributions to the asymptotic expansion of the bias (the
term Cm is proportional toN−m). Here we report just the leading term, whose expression
is derived in appendix A:

CD
1 = 1

2N log 2

{∑
s

R̃s − R̃ − (S − 1)

}
(6)

whereR̃s denotes the number of ‘relevant’ response bins for the trials with stimuluss, i.e.
the response bins in which the occupancy probabilityp(i|s) (at givens) is non-zero. In the
same way,R̃ denotes the number of response bins wherep(i) is non-zero. In the case in
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which each response bini has a non-zero probability of being occupied for every stimulus
s, we recover the result reported in Treves and Panzeri (1995):

CD
1 = 1

2N log 2
{(S − 1)(R − 1)}. (7)

At the end, to correct for the finite-size problem we have to evaluate the correction term
in (6), which depends upon the underlying probabilities solely through theR̃s parameters,
and thus in a much weaker way than the mutual information, which depends upon the full
distributions. Therefore, even though the parametersR̃s, R̃ have, in turn, to be estimated
from the data, this procedure is much more accurate than a direct estimate of the information.

To understand how one can estimate the number of ‘relevant’ bins, we note that the
number of relevant bins differs from the total number of bins allocated because some bins
may never be occupied by responses to a particular stimulus. As a consequence, ifR̃s is
calculated using for each stimulus the total number of binsR, then theC1 term, which is
in this case equal to (7), turns out to overestimate the systematic error, whenever there are
stimuli that do not span the full response set. On the other hand, the number of relevant
bins also differs from the number of bins actually occupied,R̃s , for each stimulus (with
few trials), because more trials might have occupied additional bins. Again, it turns out
that using the number of actually occupied binsR̃s for calculatingC1 leads, when few trials
are available, to an underestimate of the systematic error (the underestimation becoming
negligible forR/Ns � 1 becauseRs tends to coincide withR̃s for all stimuli).

It is clear that whenNs is small, more sophisticated procedures, such as Bayesian
estimation, are needed to evaluate the quantitiesR̃s, R̃. As mentioned above, Wolpert and
Wolf (1995) show how to calculate any function of the probabilitiesgiventhe experimental
frequencies, using the Bayes rule. This requires some knowledge, or some assumption,
on thea priori probability distributions of the probabilities (see appendix B). Since we do
not have any knowledge of the prior, we do not see how to use this approach to estimate
the mutual information itself, which quantity depends on the full details of the probability
tables. Nevertheless, we show (in appendix B) howa correctionto the mutual information
depending only upon a few parameters, such asR̃s, R̃, can also be well estimated with a
crude hypothesis about the prior probability functions. The idea is to use Bayes’s theorem
to reconstruct the true probabilities, supposing they are non-zero intoR̃s intervals, and then
choose anR̃s such that the expected number of occupied intervals (which can be calculated
as a function of the Bayes estimate of the probabilities) matches the experimentally observed
value.

This estimation, although based on a very simple ansatz (appendix B) on the prior
distributions, is sufficient to give good results even for relatively small values ofN , as
shown in figure 1(a). The reason for this good estimation, in our opinion, lies in the fact
that only the parameters̃Rs, R̃ have to be estimated based on the arbitrary ansatz, and the
informationI depends upon these only in the correction terms.

The observation that the leading bias term (6) can also, in general, be probability
dependent leads to a better understanding of the effectiveness with which the shuffled
information can correct for limited samples. If the underlying probability is such that each
bin has non-zero probability, then the bias should be of the same order for the shuffled and
the true probability table and we can correct the measured information by simply subtracting
the value of the shuffled information, as previously stated by Treves and Panzeri (1995).
If, instead, we have many zero-probability bins, the shuffling obviously overestimates the
number of occupied bins, which implies that, in this case, the shuffled information is a
(possibly high) overestimation of the bias, whereas ourCD

1 term, (6), should continue to
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give a good estimate of the bias. Therefore, even when restricting to mutual information and
discrete or discretized responses, there is no way, valid for all probability distributions, of
relating the value of shuffled information to the value of the bias, as originally proposed by
Opticanet al (1991). The shuffling procedure can only be used when all three conditions are
met: (i) responses are discrete or simply discretized; (ii) the target is the mutual information;
and (iii) p(s, i) is deemed to have all non-zero elements.

Our analysis, instead, can also be carried out for the conditional information. Again,
we can give an asymptotic expansion for the bias:

〈ID
N (s)〉 − ID(s) =

∞∑
m=1

CD
m(s) (8)

and the leading correction term is now:

CD
1 (s) = 1

2N log 2

∑̂
i

〈
1

pN(s)

〉
[1 − p(i|s)]

+ 1

2N log 2

∑̂
i

{−p(i|s) + 2p2(i|s)
p(i)

− p(i|s)
}

(9)

where the hat on the sum over response binsi denotes that only intervals of non-zero
occupancy probability are to be considered, and in calculating explicitly the average of
〈p−1(s)〉 the instances withpN(s) = 0 must be excluded. Estimating this expression (9)
for the bias directly from real data is likely to lead, as for theCD

1 term, to undercounting
if N is small. However, the dependence ofCD

1 (s) on the probabilities is not as simple as
for CD

1 , and therefore a Bayesian estimate ofCD
1 (s) is more complicated and, without some

knowledge on the prior, is not expected to work as well. This handicap may be to some
extent circumvented by choosing, when such freedom exists, response bins appropriate to
the stimuluss being considered, i.e. collating all bins for which no response tos occurs
into a single bin.

All the analytical results presented here for the discrete case are well confirmed by
computer simulations presented in Treves and Panzeri (1995) and Panzeri and Treves
(1995). New simulations with more realistic probability distributions are presented in the
next subsection and confronted with the results obtained with different regularizations.

3.2. Convolution with continuous kernels and discretization

Let us now consider the case in which the regularization of the data is performed by first
convolving the responses with a continuous kernel function and then discretizing the output
space intoR intervals [mj−1, mj ], j = 1, · · · , R. With this data manipulation, smoothing
(denoted by a tilde) followed by discretization, we obtain, from theN available stimulus–
response pairs, a raw estimate of the information:

ĨD
N (s) =

R∑
i=1

p̃N (i|s) log2
p̃N (i|s)
p̃N(i)

ĨD
N =

∑
s∈S

pN(s)ĨD
N (s) (10)

where thep̃N (·)’s are the experimental frequency tables, obtained by convolving the actual
experimental responsesrj with some kernel distributionK(r, rj , σ ) (e.g. a Gaussian one)
and then integrating out the obtained probability density over the response intervals:

p̃N (i|s) ≡ 1

Ns

Ns∑
j=1

Ei(rj ; σ) p̃N(i) ≡
∑
s∈S

pN(s)p̃N(i|s) (11)
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whereEi(rj ; σ) is the integral (over theith interval) of the kernel function centred inrj :

Ei(rj ; σ) =
∫ mi

mi−1

dr K(r, rj , σ ). (12)

The sum overj in (11) is performed over all the actual responses to stimuluss and the
function K can depend on some parameterσ (such as the width in the case of a Gaussian
convolution) which can be a function of the data distribution† itself: σ = σ(s, rj ). For
largeN the raw response distributions approach the underlying ones and thus we can write:

p̃(i|s) =
∫

dr Ei(r; σ)P (r|s) p̃(i) =
∑

s

p(s)p̃(i|s). (13)

Similarly, the estimate of the transmitted information tends to the information carried by
the smoothed underlying probabilities:

Ĩ (s) =
R∑

i=1

p̃(i|s) log2
p̃(i|s)
p̃(i)

Ĩ =
∑
s∈S

p(s)Ĩ (s). (14)

Again, information values are in general dependent upon the smoothing and binning
procedure adopted and, most importantly, upon the number of binsR and, now, upon
the smoothing width. It is worth emphasizing that smoothing produces a further loss of
information on top of the loss due to the discretization alone, and if the rationale for
smoothing is only to better control the finite sampling error, it is important to understand
whether much better control can indeed be achieved.

For the leading terms in the bias

〈ĨD
N 〉 − ĨD ' C̃D

1 〈ĨD
N (s)〉 − ĨD(s) ' C̃D

1 (s) (15)

we now find the expressions

C̃D
1 = 1

2N log 2

{∑
s∈S

∑̂
i

q̃(i|s)
p̃(i|s) −

∑̂
i

q̃(i)

p̃(i)
− (S − 1)

}
(16)

C̃D
1 (s) = 1

N log 2

∑̂
i

{
〈p−1

N (s)〉 q̃(i|s) − p̃2(i|s)
2p̃(i|s) + p̃2(i|s) − q̃(i|s)

p̃(i)

}
+ 1

2N log 2

∑̂
i

{
q̃(i)p̃(i|s) − p̃(i|s)p̃2(i)

p̃2(i)

}
(17)

whereq̃(·) are evaluated from the underlying probability distributions as follows:

q̃(i|s) ≡
∫

dr P (r|s)E2
i (r; σ) q̃(i) ≡

∑
s

p(s)q̃(i|s). (18)

The correction terms (16) and (17) are now dependent upon both the underlying
probability and the chosen regularization. The first dependence raises, as in the discrete
case, the problem of how to estimate the corrections (16) and (17) from the data and,
in particular, how to avoid undercounting the bins with non-zero probability over which
to take the sums in (16) and (17). If one convolves the responses with an infinite range
distribution, such as the Gaussian, no interval remains strictly empty after the convolution,
and then the potential underestimation of the correction is less important than in the discrete
case. Even with a Gaussian convolution, however, some undercounting might occur because

† In the following, in evaluating averages, we assume that the regularization parameters do not fluctuate depending
upon the outcome. When data-dependent parameters are used, we suppose that the fluctuations in information
measures due to variations in the parameters are subleading with respect to those due to fluctuations ofPN(·).
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of numerical truncation. If we suppose that the typical smoothing width is small compared
with the typical bin length, we can take the smoothing to have significant effects only in the
nearest intervals. In this case, an approximate form of the averaged underestimation can be
worked out‡:

C̃D
1 − 〈(C̃D

1 )N 〉 ≡ 1(C̃D
1 )

= 1

2N log 2

{∑
s

∑̂
i

[
1 − p̃(i − 1|s) − p̃(i|s) − p̃(i + 1|s)]Ns

}

− 1

2N log 2

{∑̂
i

[
1 − p̃(i − 1) − p̃(i) − p̃(i + 1)

]N
}

. (19)

This approximate form for the underestimation ofC̃D
1 captures just the fact that, when the

smoothing width is small with respect to the typical bin length, in a bin the smoothed
probability p̃(i|s) can be considered null only if we do not have outcomes in the nearest
bins. In this case,1(C̃D

1 ) can be added tõCD
1 to marginally improve the estimation of the

bias.
As for the validity of the bootstrap procedure, the fact that the correction terms (16)

and (17) are now also regularization dependent, further complicates the analysis. If the
convolution width is not too large, we can expect that the procedure will tend to overestimate
the response range for some stimulus (due essentially to the same mechanism which appears
in the discrete case) and then to overestimate the bias in the case in which one observes very
different response ranges to different stimuli. Thus, in this situation the shuffled information
might be larger than the bias. On the other hand, when the convolution width is large and
data dependent (for example, determined by the standard deviation of the responses to each
stimulus, as in Optican and Richmond (1987)), or in general when the regularization is
data dependent (and then different for the actual and the shuffled responses), the shuffled
information might easilyunderestimatethe bias, because it might reflect an effectively
stronger regularization. Thus, in these situations it is not safe to rely on the bootstrap
procedure, either to correct the raw estimate by subtraction, or to conclude, when the
shuffled information is very small, that the average bias itself must be small.

To support these analytical results, we performed explicit numerical simulations. We
chose as ‘test’ underlying probabilities Poisson distributions, which are fair simple models
of the spiking activity of neurons under certain conditions (Abeleset al 1990, Levine and
Troy 1986, Scobey and Gabor 1989). We generated the distribution of mean firing ratesr(s)

corresponding to each stimuluss by selecting a random variablex from a flat distribution
in the interval [0, 1) and then setting

r = − log
(

1 − x

2a

)
if x < 2a r = 0 if x > 2a. (20)

The parametera is, on average, the sparseness (Treves 1990) of the firing rate distribution.
The number of spikesn recorded on each trial over a periodt (t = 500 ms in the present
simulations) followed the Poisson distribution

P(n|s) = [r(s)t ]n exp[−r(s)t ]

n!
. (21)

To measure, fromN trials, the information carried by the firing rates generated in this way,
we used a regularization procedure similar to that used in Rollset al (1995a). The range of

‡ An expression for1CD
1 can also be derived for the discrete case (in fact, a simpler and exact expression).

However, in that case, it gives typically large contributions which are themselves difficult to estimate from the
data, so that in the discrete case it is much better to use the Bayesian algorithm to estimateR̃, R̃s instead.
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responses was discretized into a preselected numberR of bins, with the bin limits selected
so that each bin contains the same number of trials (within±1). A smoothing procedure
was applied by convolving the individual values with a Gaussian kernel. The smoothing
width has an overall multiplicative parameterγ (successively increased in the simulations
to test how different convolution widths influence the finite size effect) and is proportional
to the square root of each value (the proportionality factor is set such that on average the
smoothing widths matchγ σs , whereσs is the standard deviation of the firing rate of each
stimulus).

Figure 1 shows, for different sample sizes, how our correction procedure improves both
on raw estimates of mutual information and on the bootstrap procedure of subtracting the
shuffled information; moreover, the figures illustrate the effect of smoothing the responses
on the accuracy of information estimates. When no smoothing is applied (figure 1(a)), the
asymptotic value of the discretized information is only a few per cent below the ‘true’, or
unregularized, value (the full line). The finite sampling bias in raw information estimates
becomes of similar size to the loss due to discretization, and roughly compensates for it,
only if as many as 256 trials per stimulus are available. The bootstrap procedure reduces the
bias to similar levels earlier, at roughly 100 trials per stimulus (but note that the remaining
bias is also downward and does not compensate for the regularization loss). Our correction
procedure using the Bayesian estimates forR̃, R̃s allows the same precision already for
Ns ∼ R (in this caseR = 16). In contrast, using correction terms based on the number of

Figure 1. Mutual information values for the distribution of stimuli and Poisson responses
described in the text (the sparseness of the mean firing rates isa = 0.4), with S = 16 andR = 16
and different values ofNs . The three panels correspond to (a) γ = 0.0 (pure discretization); (b)
γ = 0.5; (c) γ = 1.0. The full line is the real value of the information in the distribution and
the dashed line is theregularizedvalue, that could be extracted from an infinite sample of data,
after the prescribed regularization of the responses (this latter value varies withN because the
regularization smoothing width is data dependent). In the first panel, compared to these reference
values are, for eachN , the raw estimates (♦), the estimates corrected by subtracting theC1 term
calculated by estimating the relevant bins by counting the number of actually occupied ones
(4), estimating the effective bins with the Bayesian procedure described in the text (�), taking
all bins to be relevant (̃Rs = R = 16) (+) and the estimate corrected by the bootstrap method
(∗). In the second and third panels, we plot only the raw estimates (♦), those corrected by
subtractingC̃D

1 + 1(C̃D
1 ) (�) and by the bootstrap method (∗). Each value is plotted with the

standard deviation of the mean of 100 measurements. Note that theNs axis is on a logarithmic
scale.
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Figure 1. Continuation.

actually occupied response bins, or on the total number of bins, is not much more effective
than the bootstrap or even raw estimates (note that, unlike in Treves and Panzeri (1995),
we use here more realistic response distributions with many empty bins, which accounts
for the poor performance of subtracting either the shuffled information orC1 calculated
naively). When a weaker (figure 1(b)) or stronger (figure 1(c)) smoothing is applied before
discretizing the responses, the loss of information due to regularization becomes much larger
and more important than finite sampling errors. Nevertheless, the latter are still controlled
effectively by our correction procedures. Although the procedure is less refined than in the
discrete case, convergence to the asymptotic (but strongly downward biased) values is faster
(particularly in figure 1(c)). The conclusion appears to be that smoothing with a Gaussian
does more damage than good, although we do note that (i) there may be other reasons for
smoothing (e.g. avoiding edge effects), and (ii) when it is known that the smoothing width
is small with respect to the relevant differences in the response, smoothing may induce
much smaller loss than in our examples, with possibly faster convergence with sample size.

Figure 2 shows the worth of subtracting thẽCD
1 (s) term in the case of conditional

information. In this case, no shuffling of the stimulus–response pairs would be applicable,
whereas it is evident that our subtraction yields reasonable results, bringing the corrected
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Figure 2. Values for the information conditional to which ofS = 20 (simulated) stimuli was
presented, plotted against the mean rater(s) to each stimulus (on an arbitrary scale). The
firing rates are distributed with sparsenessa = 0.7. Again, the full curve indicates the real and
the dashed one the regularized information values; and the symbols indicate raw and subtracted
measures, each with standard deviation of the mean over 100 measures. HereR = 10,N = 300,
γ = 0.33.

values within the narrow range spanned by the difference between real and regularized
information values. TheC-shape of the information versus rate plot and whether or not
(as in this simulation) it touches the rate axis are interesting facts, discussed by Rollset al
(1995b).

3.3. Neural network regularization

When a regularization similar to that introduced by Hertzet al (1992) is used, the bias
can be evaluated in a similar fashion. The idea of Hertz and his co-workers is to use a
feed-forward neural network to fit, from the real responsesrj to a given stimuluss, the
conditional probability that a stimulus is recognized as theith:

p̃N (i|s) ≡ 1

Ns

Ns∑
j=1

Ei(rj ; ω) p̃N(i) ≡
∑
s∈S

pN(s)p̃N(i|s) (22)

where

Ei(r; ω) = exp
[∑

l(WilHl + Bi)
]∑S

j=1 exp
[∑

l(WjlHl + Bj)
] Hl(r) = tanh

[
Q∑

m=1

ωlmrm + bl

]
. (23)

In (23), Hl depends onQ variablesrm chosen to describe the raw neuronal response,
whereasW , ω, b, B are parameters for the neural network, selected according to a certain
optimization procedure (see Kjaeret al (1994) for details). After this regularization, the
output space becomes anS-dimensional discretized set, equivalent to the stimulus set, which
could be called the ‘set of posited stimuli’, and the conditional probabilityp̃(i|s) (22) can
be interpreted as the conditional probability with which a response elicited by stimuluss

may be attributed to stimulusi.
It is to be noted that, in this procedure (Hertzet al 1992, Kjaeret al 1994), to avoid

overfitting, the (fitting) parametersW , ω, b, B entering in the neural network are adjusted
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on a set of ‘training’ data and the information is calculated on a set of ‘test’ experimental
data. Thus, in the context of evaluating the finite size bias, the parameterN is the number
of ‘test’ stimulus–response pairs. Without going further into the details of the procedure†,
it is sufficient, for our purposes, to remark that the form of the regularized probability
distributions (22) is the same as in (11), except thatEi(r) is no longer evaluated simply
by integrating a continuous kernel over theith bin, but with the more complicated rule
(23). This does not affect the results for the bias, which are therefore the same as in
subsection 3.2, with the only difference thatEi(r) must be computed from (23) instead of
(12).

In practice, the information estimate produced by the network is unlikely to require any
finite size subtraction as, if anything, it suffers more from the loss due to regularization. A
comparison of the binning-and-correcting procedure and the neural network procedure on a
large set of realistic simulated data is the object of another study (Golombet al 1996).

3.4. Convolution with continuous kernels

Finally, let us consider the case in which raw responses are manipulated by convolving
them with a continuous kernel function, as before, but without a subsequent discretization
of the output space. The raw information estimates now read

ĨN (s) =
∫

dr P̃N(r|s) log2
P̃N (r|s)
P̃N(r)

ĨN =
∑
s∈S

pN(s)ĨN (s) (24)

where theP̃N are the experimental distributions, obtained by convolving the experimental
responsesri with a kernel distributionK(r, ri, σ ):

P̃N (r|s) = 1

Ns

Ns∑
j=1

K(r, ri, σ ) P̃N(r) =
∑
s∈S

pN(s)P̃N(r|s) (25)

where the sum overj is performed over all theNs experimental responses to the stimulus
s. As N increases, the raw response distributions approach the underlying ones:

P̃ (r|s) =
∫

dr1 K(r, r1, σ )P (r1|s) P̃ (r) =
∑

s

p(s)P̃ (r|s) (26)

and the raw estimates of information tend to:

Ĩ (s) =
∫

dr P̃ (r|s) log2
P̃ (r|s)
P̃ (r)

Ĩ =
∑
s∈S

p(s)Ĩ (s). (27)

The expressions we find in this case for the bias are

C̃1 = 1

2N log 2

{∫
dr

[∑
s∈S

(
Q̃(r|s)
P̃ (r|s)

)
− Q̃(r)

P̃ (r)

]
− (S − 1)

}
(28)

C̃1(s) = 1

N log 2

∫
dr

[
〈p−1

N (s)〉Q̃(r|s) − P̃ 2(r|s)
2P̃ (r|s) + −Q̃(r|s) + P̃ 2(r|s)

P̃ (r)

]

+ 1

2N log 2

∫
dr

−P̃ 2(r)P̃ (r|s) + Q̃(r)P̃ (r|s)
P̃ 2(r)

(29)

† It should be noted that the mutual information defined in Kjaeret al (1994) is not fully equivalent to the mutual
information carried by the regularized probabilities (14).
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where

Q̃(r|s) = 1

Ns

Ns∑
j=1

K2(r, ri, σ ) Q̃(r) =
∑
s∈S

pN(s)Q̃N(r|s). (30)

In the continuous case, the problem of underestimation of the correction terms (28) and
(29) when calculated from data, is absent, since this problem is intrinsically related to the
discretization of the output space. This continuous case is rather academic anyway, as in
practice one usually performs the required integrals on the computer by first discretizing
and then taking sums. It remains true, however, that one is close to the continuum limit,
and the simple expressions above hold, whenever the discretization is sufficiently fine with
respect to the width of the kernel.

4. The bias with fixed number of trials per stimulus

In the previous section we studied the finite size distortions when the stimuli are drawn at
random from a discrete set. Here we present the results valid when, instead, the experimental
frequency of presentation of stimuli does not fluctuate, but it is set exactly to its probability:
pN(s) ≡ p(s). The calculation of the bias is very similar to that presented for the previous
case, but with the obvious difference that, in evaluating averages as in (A4)–(A6), one has
to average over responses in the same way as detailed in appendix A, butnot, as before,
over pN(s) with the multinomial distribution.

We report only the results for the case of convolution with a kernelK(r, rj , σ ) and
discretization intoR intervals

C̃D
1 = 1

2N log 2

{∑̂
i

[∑
s∈S

(
q̃(i|s)
p̃(i|s) + pN(s)p̃2(i|s)

p̃(i)

)
− q̃(i)

p̃(i)

]
− S

}
(31)

C̃D
1 (s) = 1

N log 2

∑̂
i

{
〈p−1

N (s)〉 q̃(i|s) − p̃2(i|s)
2p̃(i|s) + p̃2(i|s) − q̃(i|s)

p̃(i)

}
+ 1

2N log 2

∑̂
i

{
p̃(i|s)q̃(i)

p̃2(i)
−

∑
s ′

p(s ′)p̃2(i|s ′)p̃(i|s)
p̃2(i)

}
(32)

where the notation is the same as in section 3.2. The results corresponding to the other
regularizations considered in the previous section can be derived by taking the appropriate
limits, as explained in the appendix.

5. How best to choose the number of bins?

In previous sections we have discussed the possible problems arising when convolving
data with continuous distributions and established the range of validity of our correction,
which in the discrete case works well even down toNs ∼ R. Given the effectiveness of
the binning procedure, we recommend limiting the regularization to simple binning, unless
motivated by other considerations (as mentioned in section 3.2). The important question of
the ‘optimal choice’ of the number of bins for an experiment withS stimuli andNs trials
per stimulus remains. A reasonable answer can be to chooseR ∼ Ns to be at the limit
of the region where the correction procedure is expected to work and thus still be able to
control finite sampling, while minimizing the downward bias produced by binning into too
few bins. This choice should effectively minimize the combined error due to regularization
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and finite sampling. In figure 3 information estimates obtained by choosingR = Ns are
compared, for different values ofNs , with the full, unregularized, value of the information
carried by the Poisson distribution of responses. Results appear to be reasonable in the
whole Ns range explored. However, the correction procedure based on binning indicates
the minimum appropriate number of trials per stimulus in real experiments. The correction
functions reasonably down toNs ' R, and the minimum number of response bins which
may not throw away information, if the appropriate code is used, is just the same as the
number of stimuli,R = S. Therefore a minimum number ofNs = S trials per stimulus is
a fair demand to be made on the design of experiments from which information estimates
are to be derived.

Figure 3. Mutual information values for the distribution of stimuli and Poisson responses
described in the text. Herea = 0.4, S = 16 and the response space is purely discretized. The
number of binsR is fixed equal toNs . The symbols have the same meaning as in figure 1(a).
Note that forNs = 16, alsoR = 16 and the result is the same as shown in figure 1(a). For
higher values ofNs , results approach the unregularized value of the information, whereas in
figure 1(a) they approached the value regularized withR = 16 bins.

6. Conclusions

The work reported here has no deep theoretical significance; conceptually, it is on a par with
calculating the correct expression for the moments of a Gaussian distribution, for example,
when these have to be estimated from the data. It is, however, of practical importance,
especially, although by no means solely, for the analysis of neuronal activity recorded in the
mammalian nervous systemin vivo. Measuring the information carried by neuronal activity
has been avoided by many neurophysiologists because of the seemingly huge amount of
data required to obtain reasonable statistics, and the outcomes of such measurements have
been widely accepted only in a few instances, e.g. when performed in insects (Bialeket al
1991), in which data collection is not a constraint and the results appearedhard (just as the
nervous systems examined appear to be hard-wired).

Our procedure for evaluating the bias and correcting information estimates will not, as
is evident from the figures, be of any help when data are so scarce as to make the expansion
meaningless; nor, obviously, when they are abundant enough to make any correction
superfluous. The procedure is only useful for a range of sample sizes, which range is,
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however, roughly of the order of magnitude of that in which typical neurophysiological
experiments lie. The data collected in such experiments are, then, available for information
measurements, at the very limited cost of adding a very quick routine to standard data
analysis packages (Rollset al 1995a–c)†. The diffusion of the practice of measuring
(accurately) the information content of neuronal activity is likely to greatly enhance our
quantitative understanding of the processing of information in the nervous system.

Appendix A.

We give here the derivation of the results presented in previous sections. In the calculation
we consider the case in which the data are treated by convolving responses with a kernel
distribution and then by discretizing the response space intoR intervals. Finally, however,
we show how to recover the results appropriate to the other data manipulations. The method
used here is different from that employed in Treves and Panzeri (1995) and closer to that
of Carlton (1969); results are, in any case, fully equivalent.

We start by calculating the average of the total amount of information (10), which can
be expressed as follows:

〈ĨD
N 〉 =

∑
s∈S

∑̂
i
〈pN(s)p̃N(i|s) log2 p̃N (i|s)〉 −

∑̂
i
〈p̃N (i) log2 p̃N (i)〉 (A1)

wherep̃(·) is defined in (11) and the hat on the sum over response binsi in (A1) denotes
that we must exclude from that sum, for each term of the sum over stimuli, the bins in
which p̃(i|s) = 0 (in fact, in those bins the only permitted outcome isp̃N (i|s) = 0 and they
trivially disappear from the average). Now we can used the following series expansion for
the logarithm:

− log2(p̃N(·)) = 1

log 2

∞∑
j=1

(1 − p̃N (·))j
j

. (A2)

This expansion (A2) is convergent for all values ofp̃N (·), since 0< p̃N(·) 6 1 (note that
in our calculation the configuratioñpN(·) = 0 can be excluded since it gives a vanishing
contribution to the average). Taking term by term expectations in (A1) we find:

〈ĨD
N 〉 = −1

log 2

∑
s

∑̂
i

∞∑
j=1

〈
pN(s)p̃N(i|s) (1 − p̃N (i|s))j

j

〉

+ 1

log 2

∑̂
i

∞∑
j=1

〈
p̃N (i)

(1 − p̃N (i))j

j

〉

= −1

log 2

∑
s

∑̂
i

∞∑
j=1

j∑
k=0

(−1)k

j

(
j

k

)
〈pN(s)p̃k+1

N (i|s)〉

+ 1

log 2

∑̂
i

∞∑
j=1

j∑
k=0

(−1)k

j

(
j

k

)
〈p̃k+1

N (i)〉 (A3)

where in the last step we used the binomial decomposition for(1 − p̃N (·))j . We can
now calculate the average by the following procedure. First we average over responses
(at fixed stimuluss and number of presentations per stimulusNs ≡ NpN(s)) simply by
assuming that the probability of obtaining a raw responser (given the stimuluss) is given

† We are happy to make the required routine available via the Internet.
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by P(r|s) dr and by substituting the sum over outcomes with the corresponding (correctly
normalized) integral in the response space. We are then left with an average overpN(s),
with a multinomial distribution. Note that, in averaging terms of the form〈(p̃N(i))k〉,
since the parameters specifying the kernel can be stimuli dependent, we must decompose
p̃N (i) asp̃N (i) = ∑

s pN(s)p̃N(i|s), average first over the responses (at fixed stimulus) and
finally over pN(s) with the multinomial distribution. In general, we obtain the following
expressions:

〈p̃k
N (i|s)〉 = p̃k(i|s) + 1

Ns

(
k

2

)
p̃k−2(i|s) [

q̃(i|s) − p̃2(i|s)] + o

(
1

Nsp̃(i|s)
)

(A4)

〈pN(s)p̃k
N(i|s)〉 = p(s)p̃k(i|s) + 1

N

(
k

2

)
p̃k−2(i|s) [

q̃(i|s) − p̃2(i|s)] + o

(
1

Np(s)p̃(i|s)
)

(A5)

〈p̃k
N (i)〉 = p̃k(i) + 1

N

(
k

2

)
p̃k−2(i)

[
q̃(i) − p̃2(i)

] + o

(
1

Np̃(i)

)
(A6)

where q̃(·) is defined in (18). Ignoring the third term in each of (A4)–(A6) and then
substituting (A4)–(A6) into (A3), we find an expression for the bias which is exact up to
O(1/N2) terms and is a good approximation to the bias if in each binNsp̃(i|s) � 1:

〈ĨD
N 〉 ' −1

log 2

∑
s

∑̂
i

∞∑
j=1

1

j

[
1 − p̃(i|s)]j−2

{
p̃(i|s) [

1 − p̃(i|s)]2

+ 1

2N

[
q̃(i|s) − p̃2(i|s)] [

j (j − 1)p̃(i|s) − 2j (1 − p̃(i|s))]}
+ 1

log 2

∑̂
i

∞∑
j=1

1

j

[
1 − p̃(i)

]j−2
{
p̃(i)

[
1 − p̃(i)

]2

+ 1

2N

[
q̃(i) − p̃2(i)

] [
j (j − 1)p̃(i) − 2j (1 − p̃(i))

]}
= ĨD + C̃D

1 (A7)

whereĨD is given in (14) andC̃D
1 is the leading contribution to the bias:

C̃D
1 = 1

2N log 2

{∑̂
i

[∑
s

(
q̃(i|s)
p̃(i|s)

)
− q̃(i)

p̃(i)

]
− (S − 1)

}
. (A8)

By going further in the 1/N expansion when considering the averages (A4)–(A6), one can
also obtain the next terms in the 1/N expansion of the bias by the same procedure. Here
we report only the results for the second term:

C̃D
2 = 1

12N2 log 2

{∑
s∈S

〈p−1
N (s)〉

[∑̂
i

−2p̃(i|s)t̃(i|s) + 3q̃2(i|s)
p̃3(i|s) − 1

]}

− 1

12N2 log 2

{∑̂
i

−2p̃(i)t̃(i) + 3q̃2(i)

p̃3(i)
+ 1

}
(A9)

where

t̃ (i|s) ≡
∫

dr P (r|s)E3
i (r|s) t̃(i) ≡

∑
s

p(s)t̃(i|s). (A10)
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Higher-order terms (valid in the discrete case) are reported in Treves and Panzeri (1995). In
fact, (A8) is derived (as the leading term in the bias) under the condition thatNsp̃(i|s) � 1 in
each interval; whereas by inspecting the higher-order expansion terms, one can, as mentioned
in Treves and Panzeri (1995), expect them to be successively smaller (and negligible with
respect toC̃D

1 ) under the less stringent condition thatC̃D
1 � 1. Therefore, the higher-order

contributions are, in any case, close to negligible wheneverC̃D
1 is a good approximation

for the bias. When this is not the case, because the conditionNsp̃(i|s) � 1 is severely
violated, computer simulations indicate that taking higher-order terms into account (which
is itself not easy), does not help; on the contrary, in such a low-N regime in whichC̃D

1
is often already too large, the next terms become huge and signal the breakdown of the
expansion procedure.

If one is interested in measuring, instead of the average transmitted information, the
conditional transmitted information, relative to a given stimuluss, a similar calculation can
be performed to obtain the bias of this quantity. The main technical step which is different
is that when calculating〈Ĩ (s)D〉 from (10),

〈ĨD
N (s)〉 = 1

log 2

R∑
i=1

〈p̃N (i|s) log p̃N (i|s)〉 − 1

log 2

R∑
i=1

〈p̃N (i|s) log p̃N (i)〉 (A11)

after using the convergent expansion (A2) for the logarithm, one has to calculate the average
of 〈p̃N (i|s)p̃k

N(i)〉 up to the next-to-leading order

〈p̃N (i|s)p̃k
N(i)〉 = p̃(i|s)p̃k(i) + 1

N

(
k

2

)
p̃(i|s)p̃k−1(i)

[
1 − p̃(i)

]
+ k

N

[
1 − p̃(i|s)] p̃(i|s)p̃k−1(i) + o

(
1

Np(s)p̃(i|s)
)

. (A12)

Our result, again valid whenNsp̃(i|s) � 1 in each interval, is now expressed as

〈ĨD
N (s)〉 − ĨD(s) ' C̃D

1 (s) (A13)

with

CD
1 (s) = 1

N log 2

∑̂
i

{
〈p−1

N (s)〉 q̃(i|s) − p̃2(i|s)
2p̃(i|s) + p̃2(i|s) − q̃(i|s)

p̃(i)

}
+ 1

2N log 2

∑̂
i

{
q̃(i)p̃(i|s) − p̃(i|s)p̃2(i)

p̃2(i)

}
. (A14)

The discrete case(for which the results are fully discussed in section 3.1) can be
easily derived by choosing a Gaussian as kernel function and then taking the limit of zero
convolution width. In this case, it is easy to show from (A8) that the leading bias term
takes the form:

CD
1 = 1

2N log 2

{∑
s∈S

∑̂
i

[
1 − p(i|s)] −

∑̂
i

[
1 − p(i)

]}

= 1

2N log 2

{∑
s

R̃s − R̃ − (S − 1)

}
. (A15)

It should be noted that in the discrete case the following evaluation of the bias of the mutual
information was derived by Carlton (1969):

〈ID
N 〉 − ID ' −

∑̂
i

{
log2

(
1 + 1 − p(i)

Np(i)

)
− 1

2N log 2

p(i)
[
1 − p(i)(N − 1)

]
(Np(i) + 1 − p(i))2

}
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+
∑
s∈S

∑̂
i

{
log2

(
1 + 1 − p(i|s)

Nsp(i|s)
)

− 1

2Ns log 2

p(i|s) [
1 − p(i|s)(Ns − 1)

]
(Nsp(i|s) + 1 − p(i|s))2

}
. (A16)

The expression (A16) for the bias agrees with our expression (6), up to the 1/N order, but
is very different when going to higher orders. The procedure employed by Carlton to derive
the result (A16) is similar to that presented here, in the sense that he uses the expansion
(A2) for the logarithm and takes term by term expectations by truncating averages of powers
of p(·) to the next-to-leading order, as in (A4)–(A6), but with a trick (valid only in the
discrete case) used to obtain (without going further in 1/N in the evaluation of the averages
(A4)–(A6)) a partial re-summation (to all orders in 1/N ) of the complete expression for the
bias. This partial re-summation, however, is of dubious value from the conceptual point of
view and gives utterly nonsensical results when checked numerically. In fact, for example,
by using the correction term (A16) in the simulation reported in figure 1(a), we obtained
an estimate of the bias much larger than the raw information in theNs range 8–128.

Thecontinuum limit, results for which are presented in section 3.4, can be reached when
R → ∞, as follows. Let us denote some typical size of the response by% (taken here to
be uni-dimensional) and let us introduce the following succession of infinite discretizations,
indexed byn, into intervalsRi;n (i = 0, ±1, ±2, . . . labels each interval)

Ri;n ≡
{
r; i

2n
% 6 r <

i + 1

2n
%

}
. (A17)

The discrete probabilities (13) have the form

p̃n(i|s) ≡
∫

Ri;n
dr P̃ (r). (A18)

By introducing the function

0n(r) ≡ 2n

%
p̃n(i) for r ∈ Ri;n (A19)

we have the identity

p̃n(i) log2

(
2n

%
p̃n(i)

)
=

∫
Ri;n

0n(r) log2 0n(r) dr (A20)

from which we can derive∑
i,s

p̃n(s, i) log2
p̃n(s, i)

p(s)p̃n(i)
=

∑
s

∫
dr 0n(s, r) log2

0n(s, r)

p(s)0(r)
. (A21)

Now, with the hypothesis that̃P(r), P̃ (r|s) are bounded and continuous almost everywhere
(Ihara 1993), we have that in then → ∞ limit 0(r|s) → p̃(r|s) and in the same limit
the (infinitely) discretized information (A21) tends to the continuous one (24), whereas the
infinitely discretized term (A8) tends to that derived in the continuous case (28).

Appendix B.

In this appendix we briefly discuss the Bayesian-like method we use to extract the values
of R̃s, R̃ from the data. Let us first recall some terminology from Bayes theory (see, for
example, Wolpert and Wolf (1995) and the recent review of MacKay (1995) on Bayes theory
and data modelling). The meaning of the various parameters is explained in section 3.1.
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If we wish to measure a functionG ({P(r|s)}) of the set of probabilities{P(r|s)} and we
know the prior probability distribution of the probabilitiesP ({P(r|s)}), then the Bayesian
estimate of the functionG ({P(r|s)}) has the following expression as a function of the set
of experimental data{n(r|s)}:

Ĝ ({n(r|s)}) =
∫ ( ∏

r

dP (r|s)
)

P ({P(r|s)} | {n(r|s)}) G ({P(r|s)}) (B1)

where P ({P(r|s)} | {n(r|s)}) is the ‘posterior’ conditional probability of the underlying
probabilitiesgiven the experimental outcome which is calculated with Bayes’s theorem:

P ({P(r|s)} | {n(r|s)}) = P ({n(r|s)} | {P(r|s)}) P ({P(r|s)})
P ({n(r|s)}) (B2)

where

P ({n(r|s)}) =
∫ ( ∏

r

dP (r|s)
)

P ({n(r|s)} | {P(r|s)}) P ({P(r|s)}) (B3)

and the ‘likelihood’ probability distribution is binomially distributed:

P ({n(r|s)} | {P(r|s)}) = Ns !
∏

r

P (r|s)n(r|s)

n(r|s)! . (B4)

The procedure we use here to evaluateR̃s is the following:

• We first pick for R̃s one of the allowed values,Rs 6 R̃s 6 R.
• We construct, by using (B1), the Bayes estimateP̂ (r|s) of the true probabilities given the

experimental frequencies. The prior probability functionP(·) is chosen constant among
the Rs non-empty bins and for the other̃Rs − Rs empty bins is a different constant,
fixed by requiring that the probability of that bin being empty ish times larger than the
probability of being occupied, wherehs = Ns/Rs . This last requirement simply reflects
the fact that when the responses are concentrated into a few bins (i.e. highNs/Rs), the
probability in the empty bins should be less than the probability assigned by a prior
function constant on all thẽRs bins. We want to emphasize that we use the constant
ansatz for the prior probability distribution only because this is the simplest one. Of
course, if, in particular cases, some reasonable assumption on the prior probabilities is
available, this more detailed assumption can be used and the Bayes approach is expected
to give better results.

• We pick other values for̃Rs and we finally choose as an estimate forR̃s the value of
R̃s , which gives the expectation value of the number of occupied bins that is closest
to the experimental value ofRs . It is easy to show that this expectation value has the
following expression:

〈Rs〉 =
∑

r

[
1 −

(
1 − P̂ (r|s)

)Ns

]
. (B5)

• The procedure is the same for the evaluation ofR̃, the only difference being that the
Bayesian estimate for̂P(r) should be calculated now fromN and notNs trials.

As shown in figure 1(a) this procedure, although based on a very crude ansatz on the prior,
is sufficient to give reliable results even up to relatively small values ofN .
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