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Appendix B: Evaluation of the bias and of the variance of information derivatives

It is possible to analytically derive an estimate of the amount of the bias, which can then be

subtracted to provide an unbiased estimate. This is done using the standard error propagation

procedure (see e.g. Bevington and Robinson, 1992).

A function of the �ring rates can be expanded about the mean rate as
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Applying this to Eq. 8, we obtain
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where the `hat' over the i summation indicates that it is only over the `relevant' s; i pairs, i.e.

those with non-zero underlying probability of spike emission. If the underlying probability is zero,

then no �nite sampling uctuations are possible and that s; i does not contribute to the bias.
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Obviously this correction as it stands cannot be applied to the components of Itt. A similar

correction can be derived by the same method. This calculation as we shall see is slightly more

involved. We will have to calculate the bias for each component of Itt separately, so we will

consider a generic function f(�x) of a set f�xjg of (possibly correlated) random variables. Each

random variable �xj is the average (obtained on the basis of a limited number of trials N) of a

random variable xj . We assume for the purposes of our analytical estimate that the number

of trials N is large but �nite. In this case the independent variables �xj uctuate around their

true value h�xji, and the uctuations scale as 1=N . Therefore this derivation of the bias of each

information component using error propagation is equivalent to the 1=N expansion of the bias of

the full information derived e.g. in (Panzeri and Treves, 1996).

Under these assumptions, the sampling bias in f(�x) is:
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where the (co)variances of the means of the random variables fxjg are
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The expression for the variance of f(�x) is similarly
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To apply the above formalism to our cases of the information derivative components Itt1 { Itt3,

the random variables used are the S � C mean rates of the cells to each stimulus �ri(s), and the

S � C(C + 1)=2 variables ��ij(s), which are de�ned as

��ii(s) = �r2
i
(s)(1 + ii(s)) =

n2
i
(s)� ni(s)

t2
; i = 1; � � � ; C (B.8)

��ij(s) = �ri(s)�rj(s)(1 + ij(s)) =
ni(s)nj(s)

t2
; i; j = 1; � � � ; C; i < j: (B.9)

�kij(s)(i 6= j) represents the rate of coincidences between cells, whereas �kii(s) parameterises the

rate of `autoincident' �ring by the same cell (i.e. two di�erent spikes �red by the one cell in

the same small time window). The corresponding ij(s) parameters could have been used in this

derivation, but use of the �� variables in this section makes the bias derivation easier and more

transparent. These random variables are each calculated on the basis of Ns trials per stimulus.

The leading contributions of these (co)variances can be calculated analytically in the short

time window limit. They are:
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Note that the leading order uctuations are those in the number of coincidences (i.e. �2
��ij(s)

).

This provides a note of caution for measurers of correlation. For the estimate of the biases, which

we are about to detail, in practice the variances may as well be computed numerically from the

measurements as from these formulae; the formulae do however provide a check.

Carrying out the di�erentiation, we obtain for the bias of the three separate components of Itt

(denoted by Itt1(bias); Itt2(bias); Itt3(bias)):
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The `hats' in the summations of terms proportional to �2
�ri(s)

have the same meaning as before;

those in the summations of terms proportional to �2
��ij (s)

similarly restrict the sum to cases with

non-zero underlying probabilities of observing coincidences from cells i; j in response to stimulus

s (and similarly for the other terms).

Note that the leading contribution to the Itt bias is from Itt3, which is proportional to 1=t2,

whereas the biases in Itt1 and Itt2 are only proportional to 1=t.

We now have analytical expressions for the bias due to �nite sampling in each of the components

of Itt, as well as It. The bias estimate obtained from each of these is subtracted from the `raw'

quantity. A more detailed study of the range of validity of the bias removal using simulated data

can be found in (Schultz, 1998).

We conclude by noting that the procedure used to count `bins' for the summation over `relevant

bins' in the above equations was a `naive' counting procedure, in which we only add terms in which

there is at least one spike (or coincidence if it is a sum over i and j) in any of the trials. For

suÆciently short time windows, and a small number of trials per stimulus, the bias correction fails.

This occurs more evidently in Itt3 because of the 1=t2 dependence. Other non-naive counting

procedures can be used to obtain more accurate estimates of the bias. By using a Bayesian

counting procedure (exactly the same one described in (Panzeri and Treves, 1996)), it was possible

to reduce somewhat the time at which the bias correction broke down, and obtain a more accurate

bias estimation at very short times, at the expense of losing the property that the resulting

information estimate is an upper bound on the information. In this procedure, the problem of the

summations reduces to estimating the number of relevant bins. This is done by choosing a \guess"

value for the number of relevant bins, and a prior probability function which has one (constant)

value for each of the occupied bins and another (constant) value for each of the empty bins.
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The posterior probability distribution is then calculated and the posterior estimate of the number

of relevant bins obtained. This procedure applies just as well to Itt3 as it did to the full information

in the case described by Panzeri and Treves (1996). We do not describe this Bayesian counting

procedure here, because it is exactly the one reported in Panzeri and Treves (1996); however, for

values of �ring rates in the range relevant for visual cortical cells, the use of a Bayesian counting

procedure makes a di�erence only for time windows as short as 2-3 ms.

References

Bevington, P. R. and Robinson, D. K. (1992). Data reduction and error analysis for the physical

sciences, McGraw-Hill, New York.

Panzeri, S. and Treves, A. (1996). Analytical estimates of limited sampling biases in di�erent

information measures, Network 7: 87{107.

Schultz, S. R. (1998). Information encoding in the mammalian cerebral cortex. D.Phil. Thesis,

Oxford University.

6


